-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformxy.f
executable file
·229 lines (229 loc) · 7.8 KB
/
formxy.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
SUBROUTINE FORMXY(W,KR,WCA,WCB,CA,NA,CB,NB)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION W(100), WCA(NA), WCB(NB), CA(NA), CB(NB)
C***********************************************************************
C
C EACH OF THE NA ELEMENTS OF WCA WILL ADD ON THE NB ELECTROSTATIC
C TERMS FROM ATOM B IN CB
C
C EACH OF THE NB ELEMENTS OF WCB WILL ADD ON THE NA ELECTROSTATIC
C TERMS FROM ATOM A IN CA
C
C BOTH SUMS WILL INVOLVE THE NA*NB TERMS IN ARRAY W. ONCE USED,
C W WILL BE INCREMENTED BY NA*NB.
C
C NA=1 IF ATOM 'A' IS A HYDROGEN, NA=10 IF ATOM 'A' IS NOT A HYDROGEN
C NB=1 IF ATOM 'B' IS A HYDROGEN, NB=10 IF ATOM 'B' IS NOT A HYDROGEN
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /NUMCAL/ NUMCAL
LOGICAL MINDO3
CHARACTER KEYWRD*241
DATA ICALCN/0/
IF(ICALCN.NE.NUMCAL)THEN
ICALCN=NUMCAL
MINDO3=(INDEX(KEYWRD,'MINDO').NE.0)
ENDIF
IF(MINDO3)THEN
W1=W(1)*0.25D0
C
C CALCULATE THE TOTAL NUMBER OF ELECTRONS ON ATOMS A AND B
C
PA=CA(1)
PB=CB(1)
IF(NA.GT.1.AND.NB.GT.1)THEN
PWA=(PA+CA(3)+CA(6)+CA(10))*W1
PWB=(PB+CB(3)+CB(6)+CB(10))*W1
WCA(1)=WCA(1)+PWB
WCA(3)=WCA(3)+PWB
WCA(6)=WCA(6)+PWB
WCA(10)=WCA(10)+PWB
WCB(1)=WCB(1)+PWA
WCB(3)=WCB(3)+PWA
WCB(6)=WCB(6)+PWA
WCB(10)=WCB(10)+PWA
ELSEIF(NA.GT.1)THEN
PWB=PB*W1
WCA(1)=WCA(1)+PWB
WCA(3)=WCA(3)+PWB
WCA(6)=WCA(6)+PWB
WCA(10)=WCA(10)+PWB
WCB(1)=WCB(1)+(PA+CA(3)+CA(6)+CA(10))*W1
ELSEIF(NB.GT.1)THEN
PWA=PA*W1
WCA(1)=WCA(1)+(PB+CB(3)+CB(6)+CB(10))*W1
WCB(1)=WCB(1)+PWA
WCB(3)=WCB(3)+PWA
WCB(6)=WCB(6)+PWA
WCB(10)=WCB(10)+PWA
ELSE
WCA(1)=WCA(1)+PB*W1
WCB(1)=WCB(1)+PA*W1
ENDIF
KR=KR+1
RETURN
ENDIF
IF(NA.GT.1.AND.NB.GT.1)THEN
C
C BOTH ATOMS 'A' AND 'B' ARE HEAVY ATOMS
C
C
C THIS COMMENTED-OUT CODE RUNS SLOWER ON A SCALAR MACHINE THAN THE
C EXPLICIT CODE ACTUALLY USED HERE. THE CODE COMMENTED OUT IS PROVIDED
C FOR USERS WHO WANT TO VECTORIZE THE CODE
C
C# IJP=0
C# DO 3 II=1,4
C# DO 4 JJ=1,II
C# IJ=IJP*10
C# IJP=IJP+1
C# KL=-10+IJP
C# SUM1=0.D0
C# SUM2=0.D0
C# JI=0
C# DO 10 I=1,4
C# DO 10 J=1,I
C# JI=JI+1
C# IJ=IJ+1
C# KL=KL+10
C# FACT=1.D0
C# IF(I.EQ.J)FACT=0.5D0
C# SUM1=SUM1+CB(JI)*W(IJ)*FACT
C# 10 SUM2=SUM2+CA(JI)*W(KL)*FACT
C# IF(II.EQ.JJ)THEN
C# SUM1=SUM1*0.5D0
C# SUM2=SUM2*0.5D0
C# ENDIF
C# WCA(IJP)=WCA(IJP)+SUM1
C# WCB(IJP)=WCB(IJP)+SUM2
C# 4 CONTINUE
C# 3 CONTINUE
C
C START OF EXPLICIT CODE
C
WCA(1)=WCA(1)+
10.25D0*(CB(1)*W(1) + CB(3)*W(3) + CB(6)*W(6) + CB(10)*W(10)) +
20.5D0*( CB(2)*W(2) + CB(4)*W(4) + CB(5)*W(5) +
3 CB(7)*W(7) + CB(8)*W(8) + CB(9)*W(9))
WCA(2)=WCA(2)+
10.5D0*(CB(1)*W(11) + CB(3)*W(13) + CB(6)*W(16) + CB(10)*W(20)) +
2CB(2)*W(12) + CB(4)*W(14) + CB(5)*W(15) +
3CB(7)*W(17) + CB(8)*W(18) + CB(9)*W(19)
WCA(3)=WCA(3)+
10.25D0*(CB(1)*W(21) + CB(3)*W(23) + CB(6)*W(26) + CB(10)*W(30)) +
20.5D0*(CB(2)*W(22) + CB(4)*W(24) + CB(5)*W(25) +
3 CB(7)*W(27) + CB(8)*W(28) + CB(9)*W(29))
WCA(4)=WCA(4)+
10.5D0*(CB(1)*W(31) + CB(3)*W(33) + CB(6)*W(36) + CB(10)*W(40)) +
2CB(2)*W(32) + CB(4)*W(34) + CB(5)*W(35) +
3CB(7)*W(37) + CB(8)*W(38) + CB(9)*W(39)
WCA(5)=WCA(5)+
10.5D0*(CB(1)*W(41) + CB(3)*W(43) + CB(6)*W(46) + CB(10)*W(50)) +
2CB(2)*W(42) + CB(4)*W(44) + CB(5)*W(45) +
3CB(7)*W(47) + CB(8)*W(48) + CB(9)*W(49)
WCA(6)=WCA(6)+
10.25D0*(CB(1)*W(51) + CB(3)*W(53) + CB(6)*W(56) + CB(10)*W(60)) +
20.5D0*(CB(2)*W(52) + CB(4)*W(54) + CB(5)*W(55) +
3 CB(7)*W(57) + CB(8)*W(58) + CB(9)*W(59))
WCA(7)=WCA(7)+
10.5D0*(CB(1)*W(61) + CB(3)*W(63) + CB(6)*W(66) + CB(10)*W(70)) +
2CB(2)*W(62) + CB(4)*W(64) + CB(5)*W(65) +
3CB(7)*W(67) + CB(8)*W(68) + CB(9)*W(69)
WCA(8)=WCA(8)+
10.5D0*(CB(1)*W(71) + CB(3)*W(73) + CB(6)*W(76) + CB(10)*W(80)) +
2CB(2)*W(72) + CB(4)*W(74) + CB(5)*W(75) +
3CB(7)*W(77) + CB(8)*W(78) + CB(9)*W(79)
WCA(9)=WCA(9)+
10.5D0*(CB(1)*W(81) + CB(3)*W(83) + CB(6)*W(86) + CB(10)*W(90)) +
2CB(2)*W(82) + CB(4)*W(84) + CB(5)*W(85) +
3CB(7)*W(87) + CB(8)*W(88) + CB(9)*W(89)
WCA(10)=WCA(10)+
10.25D0*(CB(1)*W(91) + CB(3)*W(93) + CB(6)*W(96) + CB(10)*W(100)) +
20.5D0*(CB(2)*W(92) + CB(4)*W(94) + CB(5)*W(95) +
3 CB(7)*W(97) + CB(8)*W(98) + CB(9)*W(99))
WCB(1)=WCB(1)+
10.25D0*(CA(1)*W(1) + CA(3)*W(21) + CA(6)*W(51) + CA(10)*W(91)) +
20.5D0*(CA(2)*W(11) + CA(4)*W(31) + CA(5)*W(41) +
3 CA(7)*W(61) + CA(8)*W(71) + CA(9)*W(81))
WCB(2)=WCB(2)+
10.5D0*(CA(1)*W(2) + CA(3)*W(22) + CA(6)*W(52) + CA(10)*W(92)) +
2CA(2)*W(12) + CA(4)*W(32) + CA(5)*W(42) +
3CA(7)*W(62) + CA(8)*W(72) + CA(9)*W(82)
WCB(3)=WCB(3)+
10.25D0*(CA(1)*W(3) + CA(3)*W(23) + CA(6)*W(53) + CA(10)*W(93)) +
20.5D0*(CA(2)*W(13) + CA(4)*W(33) + CA(5)*W(43) +
3 CA(7)*W(63) + CA(8)*W(73) + CA(9)*W(83))
WCB(4)=WCB(4)+
10.5D0*(CA(1)*W(4) + CA(3)*W(24) + CA(6)*W(54) + CA(10)*W(94)) +
2CA(2)*W(14) + CA(4)*W(34) + CA(5)*W(44) +
3CA(7)*W(64) + CA(8)*W(74) + CA(9)*W(84)
WCB(5)=WCB(5)+
10.5D0*(CA(1)*W(5) + CA(3)*W(25) + CA(6)*W(55) + CA(10)*W(95)) +
2CA(2)*W(15) + CA(4)*W(35) + CA(5)*W(45) +
3CA(7)*W(65) + CA(8)*W(75) + CA(9)*W(85)
WCB(6)=WCB(6)+
10.25D0*(CA(1)*W(6) + CA(3)*W(26) + CA(6)*W(56) + CA(10)*W(96)) +
20.5D0*(CA(2)*W(16) + CA(4)*W(36) + CA(5)*W(46) +
3 CA(7)*W(66) + CA(8)*W(76) + CA(9)*W(86))
WCB(7)=WCB(7)+
10.5D0*(CA(1)*W(7) + CA(3)*W(27) + CA(6)*W(57) + CA(10)*W(97)) +
2CA(2)*W(17) + CA(4)*W(37) + CA(5)*W(47) +
3CA(7)*W(67) + CA(8)*W(77) + CA(9)*W(87)
WCB(8)=WCB(8)+
10.5D0*(CA(1)*W(8) + CA(3)*W(28) + CA(6)*W(58) + CA(10)*W(98)) +
2CA(2)*W(18) + CA(4)*W(38) + CA(5)*W(48) +
3CA(7)*W(68) + CA(8)*W(78) + CA(9)*W(88)
WCB(9)=WCB(9)+
10.5D0*(CA(1)*W(9) + CA(3)*W(29) + CA(6)*W(59) + CA(10)*W(99)) +
2CA(2)*W(19) + CA(4)*W(39) + CA(5)*W(49) +
3CA(7)*W(69) + CA(8)*W(79) + CA(9)*W(89)
WCB(10)=WCB(10)+
10.25D0*(CA(1)*W(10) + CA(3)*W(30) + CA(6)*W(60) + CA(10)*W(100)) +
20.5D0*(CA(2)*W(20) + CA(4)*W(40) + CA(5)*W(50) +
3 CA(7)*W(70) + CA(8)*W(80) + CA(9)*W(90))
C
C END OF EXPLICIT CODE
C
ELSEIF(NA.GT.1)THEN
C
C ATOM 'A' IS NOT A HYDROGEN, ATOM 'B' IS A HYDROGEN
C
SUM=0.D0
IJ=0
DO 20 I=1,4
DO 10 J=1,I-1
IJ=IJ+1
SUM=SUM+CA(IJ)*W(IJ)
10 WCA(IJ)=WCA(IJ)+CB(1)*W(IJ)*0.5D0
IJ=IJ+1
SUM=SUM+CA(IJ)*W(IJ)*0.5D0
20 WCA(IJ)=WCA(IJ)+CB(1)*W(IJ)*0.25D0
WCB(1) =WCB(1)+SUM*0.5D0
ELSEIF(NB.GT.1)THEN
C
SUM=0.D0
IJ=0
DO 40 I=1,4
DO 30 J=1,I-1
IJ=IJ+1
SUM=SUM+CB(IJ)*W(IJ)
30 WCB(IJ)=WCB(IJ)+CA(1)*W(IJ)*0.5D0
IJ=IJ+1
SUM=SUM+CB(IJ)*W(IJ)*0.5D0
40 WCB(IJ)=WCB(IJ)+CA(1)*W(IJ)*0.25D0
WCA(1) =WCA(1)+SUM*0.5D0
ELSEIF(NB.GT.1)THEN
C
C ATOM 'A' IS A HYDROGEN, ATOM 'B' IS NOT A HYDROGEN
C
ELSE
C
C BOTH ATOMS 'A' AND 'B' ARE HYDROGENS
C
WCB(1)=WCB(1)+CA(1)*W(1)*0.25D0
WCA(1)=WCA(1)+CB(1)*W(1)*0.25D0
ENDIF
KR=KR+NA*NB
RETURN
END