-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdernvo.f
243 lines (243 loc) · 8.69 KB
/
dernvo.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
SUBROUTINE DERNVO(COORD,DXYZ)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION COORD(3,*), DXYZ(*)
***********************************************************************
*
* IMPLEMENTATION OF ANALYTICAL FORMULATION FOR OPEN SHELL OR CI,
* VARIABLES FINITE DIFFERENCE METHODS,
* STATISTICAL ESTIMATE OF THE ERRORS,
* BY D. LIOTARD
* LABORATOIRE DE CHIMIE STRUCTURALE
* UNIVERSITE DE PAU ET DES PAYS DE L'ADOUR
* AVENUE DE L'UNIVERSITE, 64000, PAU (FRANCE)
*
*
* MODIFIED BY JJPS TO CONFORM TO MOPAC CONVENTIONS
* (NOTE BY JJPS: PROF. LIOTARD'S TECHNIQUE WORKS. IF THIS
* IMPLEMENTATION DOES NOT WORK, THE REASON IS A FAULT INTRODUCED
* BY JJPS, AND DOES NOT REFLECT ON PROF. LIOTARD'S ABILITY)
*
*
* AS THE WAVE FUNCTION IS NOT VARIATIONALLY OPTIMIZED, I.E.
* HALF-ELECTRON OR CI, THE DERIVATIVES OF THE 1 AND 2-ELECTRON
* INTEGRALS IN A.O. BASIS ARE EVALUATED IN CARTESIAN COORDINATES
* BY A 1 OR 2 POINTS FINITE DIFFERENCE FORMULA AND STORED.
* THUS ONE GETS THE NON-RELAXED (I.E. FROZEN ELECTRONIC CLOUD)
* CONTRIBUTION TO THE FOCK EIGENVALUES AND 2-ELECTRON INTEGRALS IN
* AN M.O. BASIS. THE NON-RELAXED GRADIENT COMES FROM THE
* NON-RELAXED C.I. MATRIX DERIVATIVE (SUBROUTINE DERI1).
* THE DERIVATIVES OF THE M.O. COEFFICIENTS ARE THEN WORKED OUT
* ITERATIVELY (OK FOR BOTH CLOSED SHELLS AND HALF-ELECTRON CASES)
* AND STORED. THUS ONE GETS THE ELECTRONIC RELAXATION CONTRIBUTION TO
* THE FOCK EIGENVALUES AND 2-ELECTRON INTEGRALS IN M.O. BASIS.
* FINALLY THE RELAXATION CONTRIBUTION TO THE C.I. MATRIX DERIVATIVE
* GIVES THE RELAXATION CONTRIBUTION TO THE GRADIENT (ROUTINE DERI2).
*
*
* COORD HOLDS THE CARTESIAN COORDINATES.
* INPUT
* DXYZ NOT DEFINED.
* EXIT
* DXYZ DERIVATIVES OF ENERGY W.R.T CARTESIAN COORDINATES,
* IN KCAL/MOL/ANGSTROM (3 * NUMAT OF THESE)
*
***********************************************************************
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM)
1 ,NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA
2 ,NCLOSE,NOPEN,NDUMY,FRACT
COMMON /GRADNT/ GRAD(MAXPAR),GNORM
COMMON /CIBITS/ NMOS,LAB,NELEC,NBO(3)
COMMON /NUMCAL/ NUMCAL
1 /KEYWRD/ KEYWRD
2 /VECTOR/ C(MORB2),EIGS(MAXORB),CBETA(MORB2)
3,EIGB(MAXORB)
COMMON /FOKMAT/ FDUMY(MPACK), SCALAR(MPACK)
COMMON /NVOMAT/ DIAG(MPACK/2)
COMMON /WORK1 / FMOOFF(NPULAY*4), FMOON(NPULAY*4),
1WORK2(9*NPULAY), WORK3(4*NPULAY)
DIMENSION FBWO(5*MAXPAR)
CHARACTER KEYWRD*241, BLANK*60
DIMENSION DXYZR(MAXPAR), EIGBB(6*MAXPAR)
LOGICAL DEBUG, DCAR, LARGE, RELAXD, FORCE
DATA ICALCN /0/
C
C SELECT THE REQUIRED OPTION AND READ KEYWORDS
C --------------------------------------------
C
IF(ICALCN.NE.NUMCAL) THEN
THROLD=0.08D0
DEBUG = (INDEX(KEYWRD,'DERNVO') .NE. 0)
LARGE = (INDEX(KEYWRD,'LARGE') .NE. 0)
FORCE = (INDEX(KEYWRD,'FORC') .NE. 0)
DCAR = (INDEX(KEYWRD,'FORC') + INDEX(KEYWRD,'PREC') .NE. 0)
IF(DCAR)THROLD=0.004D0
DO 11 I=1,NVAX
11 DXYZR(I)=0.D0
C ACTUAL SIZES FOR C.I. GRADIENT CALCULATION.
NBO(1)=NCLOSE
NBO(2)=NOPEN-NCLOSE
NBO(3)=NORBS-NOPEN
MINEAR=NBO(2)*NBO(1)+NBO(3)*NOPEN
NINEAR=(NMOS*(NMOS+1))/2+1
ICALCN = NUMCAL
ENDIF
C SCALING ROW FACTORS TO SPEED CV OF RELAXATION PROCEDURE.
C# CALL TIMER('BEFORE DERI0')
CALL DERI0 (EIGS,NORBS,SCALAR,DIAG,FRACT,NBO)
C# CALL TIMER('AFTER DERI0')
NVAX=3*NUMAT
C
C BECAUSE DERI2 IS CPU INTENSIVE, AND THE CONTRIBUTION TO THE
C DERVIATIVE DUE TO RELAXATION OF THE ELECTRON CLOUD IS RELATIVELY
C INSENSITIVE TO CHANGES IN GEOMETRY, WHERE POSSIBLE ONLY CALCULATE
C THE DERIVATIVE EVERY 2 CALLS TO DERNVO
C
SUM=0.D0
IF(DCAR)THEN
DO 10 I=1,NVAX
10 DXYZR(I)=0.D0
RELAXD=.FALSE.
ENDIF
DO 20 I=1,NVAX
20 SUM=SUM+ABS(DXYZR(I))
RELAXD=(SUM.GT.1.D-7)
C
C IF DXYZR CONTAINS DATA, USE IT AND FLUSH AFTER USE.
C
ILAST=0
30 IFIRST=ILAST+1
J=2
IF(MIN(NW2,NW3)/MAX(MINEAR,NINEAR).LT.10)J=1
ILAST=MIN(NVAX,ILAST+J)
J=1-MINEAR
K=1-NINEAR
DO 40 I=IFIRST,ILAST
K=K+NINEAR
J=J+MINEAR
C
C NON-RELAXED CONTRIBUTION (FROZEN ELECTRONIC CLOUD) IN DXYZ
C AND NON-RELAXED FOCK MATRICES IN FMOOFF AND FMOON.
C CONTENTS OF F-MO-OFF: OPEN-CLOSED, VIRTUAL-CLOSED, AND VIRTUAL-OPEN
C CONTENTS OF F-MO-ON: CLOSED-CLOSED, OPEN-OPEN AND VIRTUAL-VIRTUAL
C OVER M.O. INDICES
C
C# CALL TIMER('BEFORE DERI1')
CALL DERI1(C,NORBS,COORD,I,CBETA,DXYZ(I),FMOOFF(J),MINEAR
1 ,FMOON(K),WORK2,WORK2(6*MPACK),WORK3)
C# CALL TIMER('AFTER DERI1')
40 CONTINUE
IF(DEBUG)THEN
IF(IFIRST.EQ.1.AND.LARGE)THEN
WRITE(6,*)' CONTENTS OF FMOOFF '
WRITE(6,*)' OPEN-CLOSED'
WRITE(6,'(7X,I3,5I12)')(J,J=NCLOSE+1,NOPEN)
DO 50 I=1,NCLOSE
50 WRITE(6,'(I3,6F12.6)')I,(FMOOFF(J),J=(I-1)*NBO(2)+1,I*NBO(2)
1)
C
C
WRITE(6,*)' VIRTUAL-CLOSED'
K=NCLOSE*NBO(2)
WRITE(6,'(7X,I3,5I12)')(J,J=NOPEN+1,MIN(NOPEN+6,NORBS))
DO 60 I=1,NCLOSE
60 WRITE(6,'(I3,6F12.6)')I,
1 (FMOOFF(J+K),J=(I-1)*NBO(3)+1,MIN(6+(I-1)*NBO(3),I*NBO(3)))
K=NCLOSE*NBO(2)+NBO(3)*NCLOSE
C
C
WRITE(6,*)' VIRTUAL-OPEN'
WRITE(6,'(7X,I3,4I12)')(J,J=NCLOSE+1,NOPEN)
DO 70 I=1,MIN(6,NBO(3))
70 WRITE(6,'(I3,6F12.6)')I+NOPEN,
1 (FMOOFF(J+K),J=(I-1)*NBO(2)+1,MIN((I-1)*NBO(2)+6,I*NBO(2)))
WRITE(6,*)' CONTENTS OF FMOON (ACTIVE-SPACE -- ACTIVE SPACE)
1'
K=(NMOS*(NMOS-1))/2
LL=1
BLANK=' '
DO 80 I=1,NMOS
L=LL+NMOS-I-1
WRITE(6,'(A,5F12.6)')BLANK(:12*I),(FMOON(J),J=LL,L),FMOON
1(K+I)
80 LL=L+1
ENDIF
ENDIF
C COMPUTE THE ELECTRONIC RELAXATION CONTRIBUTION.
C
C DERNVO PROVIDES THE FOLLOWING SCRATCH AREAS TO DERI2: EIGB, WORK2,
C WORK3, FBWO, CBETA. THESE ARE DIMENSIONED ON ENTRY TO DERI2
C WHICH IS WHY THEY ARE NOT DECLARED THERE. THEY ARE NOT USED
C AT ALL IN DERNVO.
C
C# CALL TIMER('BEFORE DERI2')
IF(.NOT.RELAXD)
1 CALL DERI2 (C,EIGS,NORBS,MINEAR,FMOOFF
2 ,FMOON,EIGBB, NINEAR,ILAST-IFIRST+1
3 ,CBETA,WORK2,NW2,DXYZR(IFIRST)
4 ,WORK3,NW3,FBWO,THROLD)
C# CALL TIMER('AFTER DERI2')
IF (ILAST.LT.NVAX) GO TO 30
IF(DEBUG)THEN
SUMX=0.D0
SUMY=0.D0
SUMZ=0.D0
DO 90 I=1,NUMAT
SUMX=SUMX+DXYZ(I*3-2)
SUMY=SUMY+DXYZ(I*3-1)
90 SUMZ=SUMZ+DXYZ(I*3)
WRITE(6,*)' CARTESIAN DERIVATIVES DUE TO FROZEN CORE'
WRITE(6,'('' ATOM X Y Z'')')
DO 100 I=1,NUMAT
100 WRITE(6,'(I4,3F12.7)')I,DXYZ(I*3-2),DXYZ(I*3-1),DXYZ(I*3)
WRITE(6,'(/10X,''RESIDUAL ERROR'')')
WRITE(6,'(4X,3F12.7)')SUMX,SUMY,SUMZ
WRITE(6,*)
SUMX=0.D0
SUMY=0.D0
SUMZ=0.D0
DO 110 I=1,NUMAT
SUMX=SUMX+DXYZR(I*3-2)
SUMY=SUMY+DXYZR(I*3-1)
110 SUMZ=SUMZ+DXYZR(I*3)
WRITE(6,*)' CARTESIAN DERIVATIVES DUE TO RELAXING CORE'
WRITE(6,'('' ATOM X Y Z'')')
DO 120 I=1,NUMAT
120 WRITE(6,'(I4,3F12.7)')I,DXYZR(I*3-2),DXYZR(I*3-1),DXYZR(I*3)
WRITE(6,'(/10X,''RESIDUAL ERROR'')')
WRITE(6,'(4X,3F12.7)')SUMX,SUMY,SUMZ
WRITE(6,*)
ENDIF
DO 130 I=1,NVAX
130 DXYZ(I)=DXYZ(I)+DXYZR(I)
IF(RELAXD)THEN
DO 140 I=1,NVAX
140 DXYZR(I)=0.D0
ENDIF
SUMX=0.D0
SUMY=0.D0
SUMZ=0.D0
DO 150 I=1,NUMAT
SUMX=SUMX+DXYZ(I*3-2)
SUMY=SUMY+DXYZ(I*3-1)
150 SUMZ=SUMZ+DXYZ(I*3)
SUM=MAX(1.D-10,ABS(SUMX)+ABS(SUMY)+ABS(SUMZ))
C
C HERE IS A ROUGH BUT SIMPLE METHOD FOR DEFINING THROLD FOR DERI2
C IT MAY NEED MORE WORK
C
IF(.NOT. FORCE .AND. GNORM .GT. 0.001D0)
1 THROLD=THROLD*SQRT(GNORM/(SUM*100.D0))
THROLD=MIN(2.D0,MAX(0.002D0,THROLD))
IF(DEBUG)THEN
WRITE(6,*)'CARTESIAN DERIVATIVES FROM ANALYTICAL C.I. CALCULATI
1ON'
WRITE(6,'('' ATOM X Y Z'')')
DO 160 I=1,NUMAT
160 WRITE(6,'(I4,3F12.7)')I,DXYZ(I*3-2),DXYZ(I*3-1),DXYZ(I*3)
WRITE(6,'(/10X,''RESIDUAL ERROR'')')
WRITE(6,'(4X,3F12.7)')SUMX,SUMY,SUMZ
WRITE(6,*)
ENDIF
RETURN
END