forked from metamath/set.mm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mmnf.raw.html
528 lines (434 loc) · 20.7 KB
/
mmnf.raw.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"https://www.w3.org/TR/html4/loose.dtd">
<!-- The file mmnf.html is generated from mmnf.raw.html -
see the regen-from-raw script for details -->
<HTML LANG="EN-US">
<HEAD>
<!-- improve mobile display -->
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>Home Page - New Foundations Explorer</TITLE>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<LINK REL="shortcut icon" HREF="favicon.ico" TYPE="image/x-icon">
<STYLE TYPE="text/css">
<!--
/* Math symbol image will be shifted down 4 pixels to align with normal
text for compatibility with various browsers. The old ALIGN=TOP for
math symbol images did not align in all browsers and should be deleted.
All other images must override this shift with STYLE="margin-bottom:0px".
(2-Oct-2015 nm) */
img { margin-bottom: -4px }
-->
</STYLE>
</HEAD>
<!-- <BODY BGCOLOR="#EEFFFA"> -->
<BODY BGCOLOR="#FFFFFF" STYLE="padding: 0px 8px">
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH="100%">
<TR>
<TD ALIGN=LEFT VALIGN=TOP><A HREF="../index.html"><IMG SRC="nf.gif"
BORDER=0
ALT="Metamath Home"
TITLE="Metamath Home"
HEIGHT=32 WIDTH=32 ALIGN=TOP STYLE="margin-bottom:0px"></A>
</TD>
<TD ALIGN=CENTER VALIGN=TOP><FONT SIZE="+3"
COLOR="#006633"><B>New Foundations Explorer Home Page</B></FONT>
</TD>
<TD NOWRAP ALIGN=RIGHT VALIGN=TOP><FONT SIZE=-2
FACE=sans-serif> <A HREF="wn.html">First ></A><BR><A
HREF="elopprim.html">Last ></A></FONT>
</TD>
</TR>
<TR>
<TD COLSPAN=3 ALIGN=LEFT VALIGN=TOP><FONT SIZE=-2
FACE=sans-serif>
<A HREF="../mm.html">Mirrors</A> >
<A HREF="../index.html">Home</A> >
NFE Home >
<A HREF="mmtheorems.html">Th. List</A>
</FONT>
</TD>
</TR>
</TABLE>
<HR NOSHADE SIZE=1>
<CENTER>
<B><FONT COLOR="#006633">Created by Scott Fenton</FONT></B>
</CENTER>
<HR NOSHADE SIZE=1>
<B><FONT COLOR="#006633">New Foundations Proof Explorer</FONT></B>
<TABLE>
<TR><TD ROWSPAN=2>
<I>New Foundations</I>
(<A HREF="http://en.wikipedia.org/wiki/New_Foundations">Wikipedia</A>
[external], <A HREF="http://plato.stanford.edu/entries/quine-nf/">
Stanford Encyclopedia of Philosophy</A> [external]) is an alternative set
theory to the Zermelo-Fraenkel set theory presented in the regular Metamath
Proof Explorer.
Unlike the Zermelo-Fraenkel system with the Axiom of Choice
(known as ZFC), New Foundations is a direct derivative of
the set theory originally presented in <I>Principia Mathematica</I>.
</TD></TR></TABLE>
<HR NOSHADE SIZE=1>
<TABLE WIDTH="100%"><TR>
<TD VALIGN=top>
<B><FONT COLOR="#006633">Contents of this page</FONT></B>
<MENU>
<LI> <A HREF="#strat">Stratification</A></LI>
<LI> <A HREF="#axioms">The axioms</A></LI>
<LI> <A HREF="#theorems">Some theorems</A></LI>
<LI> <A HREF="#bib">Bibliography</A></LI>
</MENU></TD>
<TD VALIGN=top>
<B><FONT COLOR="#006633">Related pages</FONT></B>
<MENU>
<LI> <A HREF="mmtheorems.html">Table of Contents and Theorem List</A></LI>
<LI> <A HREF="mmbiblio.html">Bibliographic Cross-Reference</A></LI>
<LI> <A HREF="mmdefinitions.html">Definition List</A></LI>
<LI> <A HREF="mmascii.html">ASCII Equivalents for Text-Only Browsers</A></LI>
<LI> <A HREF="../metamath/nf.mm">Metamath database nf.mm (ASCII file)</A></LI>
</MENU>
<B><FONT COLOR="#006633">External links</FONT></B>
<MENU>
<LI> <A HREF="https://github.com/sctfn/metamath-nf/">GitHub repository</A></LI>
</MENU>
</TD>
</TR></TABLE>
<HR NOSHADE SIZE=1><A NAME="strat"></A><B><FONT COLOR="#006633">
Stratification</FONT></B>
<p>
In <I>Principia Mathematica</I>, Russell and Whitehead used a typing system
to avoid the paradoxes of naive set theory,
rather than restrict the size of sets (as Zermelo-Fraenkel theory does).
This typing system was
eventually refined by Russell down to Typed Set Theory (TST).
In TST, unlimited comprehension is allowed
(approximately,
A ` e. ` ` _V ` is a theorem).
TST avoids the standard paradoxes by being a multi-sorted system.
That is, there are variables of type 0, 1, 2,... The WFFs are
restricted so that you must say
x[n] = y[n] and x[n] ` e. ` y[n+1], where n
is a variable type.
This means, among other things, that
x ` e. ` x is not a well-formed formula,
so we can't even sensibly speak of the Russell class.
Thus TST counters <A HREF="ru.html">Russell's Paradox</A>.
<p>
Now, consider introducing virtual classes into this theory. You need
to say things like V[n] = { x[n] | x[n] = x[n] } for each type n.
This leads to a "hall of mirrors" type situation: each named object is
duplicated for each type.
<p>
Quine noticed this and proposed collapsing
the whole theory into a one-sorted set theory, where the comprehension
axiom is restricted to formulas where you could theoretically introduce
subscripts to make the formula a WFF of TST.
Quine described this approach in a paper titled
"New Foundations for Mathematical Logic,"
so this approach is now called "New Foundations" (NF)
<A HREF="#Quine2">[Quine2]</A>.
For more details, see the
<A HREF="http://en.wikipedia.org/wiki/New_Foundations">Wikipedia
article on NF</A>.
<HR NOSHADE SIZE=1><A NAME="axioms"></A><B><FONT COLOR="#006633">
The axioms</FONT></B>
<p>
The axioms begin with traditional axioms for
classical first order logic with equality.
See the regular
<a href="/mpeuni/mmset.html">Metamath Proof Explorer</a>
for discussions about these
axioms and some of their implications.
<p>
The key axioms specific to NF are
<a href="ax-ext.html">extensionality</a>
(two sets are identical if they contain the same elements) and
a comprehension schema.
Extensionality is formally defined as:
<CENTER><TABLE BORDER CELLSPACING=0 BGCOLOR="#EEFFFA"
SUMMARY="Extensionality">
<CAPTION><B>Extensionality</B></CAPTION>
<TR><TH>Name</TH><TH>Ref</TH><TH>Expression</TH></TR>
<TR ALIGN=LEFT>
<TD><A HREF="ax-ext.html">Axiom of Extensionality</A></TD>
<TD><FONT COLOR="#006633"> ~ ax-ext </FONT></TD>
<TD>` |- ( A. z ( z e. x <-> z e. y ) -> x = y ) ` </TD></TR>
</TABLE>
</CENTER>
<p>
The comprehension schema is stated using the concept of stratified formula;
the approach is the Stratification Axiom from [Quine2].
In short,
a well-formed formula using only propositional symbols, predicate
symbols, and ` e. ` is "stratified" iff you can make a (metalogical)
mapping from the variables to the natural numbers such that any formulas
of the form x = y have the same number,
and any formulas of the form
x ` e. ` y have
x as one less than y.
Quine's stratification axiom states that there is a
set corresponding to any stratified formula.
We use Hailperin's axioms and prove existence of stratified sets using
Hailperin's algorithm.
Thus the stratification axiom of [Quine2] is
implemented in this formalization using the axioms P1 through P9 from [Hailperin] and
the <a href="ax-sn.html">Axiom of Singleton ax-sn</a>:
<CENTER>
<TABLE BORDER CELLSPACING=0 BGCOLOR="#EEFFFA"
SUMMARY="List of New Foundations Stratification Axioms">
<CAPTION><B>New Foundations Stratification Axioms</B></CAPTION><TR
ALIGN=LEFT><TD><B>Name</B></TD><TD><B>
Ref</B></TD><TD><B>Expression (see link for any distinct variable requirements)
</B></TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-nin.html">Axiom of Anti-Intersection (P1)</A></TD>
<TD> ~ ax-nin </TD>
<TD>` |- E. z A. w ( w e. z <-> ( w e. x -/\ w e. y ) ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-si.html">Axiom of Singleton Image (P2)</A></TD>
<TD> ~ ax-si </TD>
<TD>` |- E. y A. z A. w ( << { z } , { w } >> e. y <-> << z , w >> e. x ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-sn.html">Axiom of Singleton (not directly stated in Hailperin)</A></TD>
<TD> ~ ax-sn </TD>
<TD>` |- E. y A. z ( z e. y <-> z = x ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-ins2.html">Axiom of Insertion Two (P3)</A></TD>
<TD> ~ ax-ins2 </TD>
<TD>` |- E. y A. z A. w A. t ( << { { z } } , << w , t >> >> e. y <-> << z , t >> `
` e. x ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-ins3.html">Axiom of Insertion Three (P4)</A></TD>
<TD> ~ ax-ins3 </TD>
<TD>` |- E. y A. z A. w A. t ( << { { z } } , << w , t >> >> e. y <-> << z , w >> `
` e. x ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-xp.html">Axiom of Cross Product (P5)</A></TD>
<TD> ~ ax-xp </TD><TD>` |- E. y A. z ( z e. y <-> E. w E. t ( z = << w , t >> /\ t e. x ) ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-typlower.html">Axiom of Type Lowering (P6)</A></TD>
<TD> ~ ax-typlower </TD>
<TD>` |- E. y A. z ( z e. y <-> A. w << w , { z } >> e. x ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-cnv.html">Axiom of Converse (P7)</A></TD>
<TD> ~ ax-cnv </TD>
<TD>` |- E. y A. z A. w ( << z , w >> e. y <-> << w , z >> e. x ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-1c.html">Axiom of Cardinal One (P8)</A></TD>
<TD> ~ ax-1c </TD>
<TD>` |- E. x A. y ( y e. x <-> E. z A. w ( w e. y <-> w = z ) ) ` </TD></TR>
<TR BGCOLOR="#EEFFFA" ALIGN=LEFT>
<TD><A HREF="ax-sset.html">Axiom of Subset Relationship (P9)</A></TD>
<TD> ~ ax-sset </TD>
<TD>` |- E. x A. y A. z ( << y , z >> e. x <-> A. w ( w e. y -> w e. z ) ) ` </TD></TR>
</TABLE>
</CENTER>
<p>
The usual definition of the ordered pair, first proposed by Kuratowski
in 1921 and used in the regular Metamath Proof Explorer,
has a serious drawback for NF and related theories that use stratification.
The Kuratowski ordered pair
is defined as << x , y >> = { { x } , { x , y } }.
This leads to the ordered pair having a type two greater than its arguments.
For example, z in << << x , y >> , z >>
would have a different type than x and y,
which makes multi-argument functions extremely awkward to work with.
Operations such as "1st" and complex "+" would not form sets
in NF with the Kuratowski ordered pairs.
<p>
In contrast, the Quine definition of ordered pairs,
defined in definition <a href="df-op.html">df-op</a>, is type level.
That is, <. x , y >. has the same type as x and y,
which means that the same holds of <. <. x , y >. , z >.
This means that "1st" is a set with the Quine definition,
as is complex "+".
The Kuratowski ordered pair is defined
(as <a href="df-opk.html">df-opk</a>), because
it is a simple definition that can be used by the set construction axioms
that follow it, but for typical uses the Quine definition of ordered pairs
<a href="df-op.html">df-op</a> is used instead.
<p>
Perhaps one of the most remarkable aspects of NF is that the
<A HREF="nchoice.html">Axiom of Choice (an axiom of the widely-used ZFC system)
can be disproven in NF</A>, a result
proven in [Specker].
As a corollary, NF proves infinity.
<p>
There are several systems <i>related</i> to NF.
In particular, NFU is a small modification of NF that also allows
urelements (multiple distinct objects lacking members).
NFU corresponds to a modified type theory TSTU,
where type 0 has urelements, not just a single empty set.
NFU is consistent with both Infinity and Choice, so both can be added to NFU.
NFU + Infinity + Choice has the same consistency strength
as the theory of types with the Axiom of Infinity.
NFU + Infinity + Choice has been extended further, e.g., with various strong
axioms of infinity (similar to ways that ZFC has been extended).
Randall Holmes states that <a href="http://math.boisestate.edu/~~holmes/holmes/nf.html#Consistent">"Extensions of NFU
are adequate vehicles for mathematics in a basically familiar style"</a>.
NFU is not further discussed here.
<p>
A fair amount of the definitions and
theorems (notably the ones on boolean set operations)
are taken verbatim from the regular Metamath Proof Explorer
source file set.mm (based on ZFC).
This also follows the development in [Rosser] fairly closely.
An unusual aspect is the
<a href="df-tcfn.html">stratified T-raising function TcFn</a>.
The work to specifically formalize New Foundations in metamath
was originally created by Scott Fenton.
Those who are interested in New Foundations may want to look at the
<a href="http://math.boisestate.edu/~~holmes/holmes/nf.html">New Foundations
home page</a>, as well as a
<a href="http://math.boisestate.edu/~~holmes/">proof of the consistency of
New Foundations by Randall Holmes</a>.
The descriptions given here are based on a
<a href="https://groups.google.com/forum/#!topic/metamath/yj1j4Ebb1bI">discussion on the metamath mailing list</a>.
<HR NOSHADE SIZE=1><A NAME="theorems"></A><B><FONT COLOR="#006633">
Some theorems</FONT></B>
<MENU>
<LI> <A HREF="1p1e2c.html">Proof of <I>Principia
Mathematica</I>'s version of 1+1=2</A></LI>
<LI> <A HREF="vinf.html">Proof of the Axiom of Infinity</A></LI>
<LI> <A HREF="ru.html">Russell's Paradox</A></LI>
<LI> <A HREF="vvex.html">Proof that the universal class exists</A></LI>
<LI> <A HREF="nchoice.html">Disproof of the Axiom of Choice</A></LI>
</MENU>
<HR NOSHADE SIZE=1><A NAME="bib"></A><B><FONT
COLOR="#006633">Bibliography</FONT></B>
<OL>
<LI><A NAME="BellMachover"></A> [BellMachover] Bell, J. L., and M.
Machover, <I>A Course in Mathematical Logic,</I> North-Holland,
Amsterdam (1977) [QA9.B3953].</LI>
<LI><A NAME="ChoquetDD"></A> [ChoquetDD] Choquet-Bruhat, Yvonne and Cecile
DeWitt-Morette, with Margaret Dillard-Bleick, <I>Analysis, Manifolds and
Physics,</I> Elsevier Science B.V., Amsterdam (1982) [QC20.7.A5C48
1981].</LI>
<LI><A NAME="Eisenberg"></A> [Eisenberg] Eisenberg, Murray, <I>Axiomatic Theory of
Sets and Classes,</I> Holt, Rinehart and Winston, Inc., New York (1971)
[QA248.E36].</LI>
<LI><A NAME="Enderton"></A> [Enderton] Enderton, Herbert B., <I>Elements of Set
Theory,</I> Academic Press, Inc., San Diego, California (1977)
[QA248.E5].</LI>
<LI><A NAME="Gleason"></A> [Gleason] Gleason, Andrew M., <I>Fundamentals of
Abstract Analysis,</I> Jones and Bartlett Publishers, Boston (1991)
[QA300.G554].</LI>
<LI><A NAME="Hailperin"></A> [Hailperin] Hailperin, Theodore, "A Set of
Axioms for Logic," <I>Journal of Symbolic Logic,</I> 9:1-14 (1944) [BC1.J6].</LI>
<LI><A NAME="Hamilton"></A> [Hamilton] Hamilton, A. G., <I>Logic for
Mathematicians,</I> Cambridge University Press, Cambridge, revised
edition (1988) [QA9.H298 1988].</LI>
<LI><A NAME="Hitchcock"></A> [Hitchcock] Hitchcock, David, <I>The
peculiarities of Stoic propositional logic</I>, McMaster University;
available at <A
HREF="http://www.humanities.mcmaster.ca/~~hitchckd/peculiarities.pdf">
http://www.humanities.mcmaster.ca/~~hitchckd/peculiarities.pdf</A>
(retrieved 3 Jul 2016).</LI>
<LI><A NAME="Holmes"></A> [Holmes] Holmes, Robert, <I>Elementary Set Theory With a Universal Set,</I> Web. Accessed 23 Feb 2015. <A HREF="http://math.boisestate.edu/~~holmes/holmes/head.pdf">Link</A></LI>
<LI><A NAME="Jech"></A> [Jech] Jech, Thomas, <I>Set Theory,</I>
Academic Press, San Diego (1978) [QA248.J42].</LI>
<LI><A NAME="KalishMontague"></A> [KalishMontague] Kalish, D. and R.
Montague, "On Tarski's formalization of predicate logic with
identity," <I>Archiv für Mathematische Logik und
Grundlagenforschung,</I> 7:81-101 (1965) [QA.A673].</LI>
<LI><A NAME="Kunen"></A> [Kunen] Kunen, Kenneth, <I>Set Theory: An
Introduction to Independence Proofs,</I> Elsevier Science B.V.,
Amsterdam (1980) [QA248.K75].</LI>
<LI><A NAME="KuratowskiMostowski"></A> [KuratowskiMostowski] Kuratowski, K.
and A. Mostowski, <I>Set Theory: with an Introduction to
Descriptive Set Theory,</I> 2nd ed., North-Holland,
Amsterdam (1976) [QA248.K7683 1976].</LI>
<LI><A NAME="Levy"></A> [Levy] Levy, Azriel, <I>Basic Set Theory</I>,
Dover Publications, Mineola, N.Y. (2002) [QA248.L398 2002]. </LI>
<LI><A NAME="Lopez-Astorga"></A> [Lopez-Astorga] Lopez-Astorga, Miguel,
"The First Rule of Stoic Logic and its Relationship with the
Indemonstrables", <I>Revista de Filosofía Tópicos</I> (2016);
available at <A HREF="http://www.scielo.org.mx/pdf/trf/n50/n50a1.pdf">
http://www.scielo.org.mx/pdf/trf/n50/n50a1.pdf</A> (retrieved 3 Jul
2016).</LI>
<LI><A NAME="Margaris"></A> [Margaris] Margaris, Angelo, <I>First Order
Mathematical Logic,</I> Blaisdell Publishing Company, Waltham,
Massachusetts (1967) [QA9.M327].</LI>
<LI><A NAME="Megill"></A><A NAME="bibmegill"></A> [Megill] Megill, N.,
"A Finitely Axiomatized Formalization of Predicate Calculus with
Equality," <I>Notre Dame Journal of Formal Logic,</I> 36:435-453
(1995) [QA.N914]; available at <A
HREF="http://projecteuclid.org/euclid.ndjfl/1040149359"
>http://projecteuclid.org/euclid.ndjfl/1040149359</A> (accessed
11 Nov 2014); the <A HREF="../downloads/finiteaxiom.pdf">PDF
preprint</A> has the same content (with corrections) but pages are
numbered 1-22, and the database references use the numbers printed on the
page itself, not the PDF page numbers.</LI>
<LI><A NAME="Mendelson"></A> [Mendelson] Mendelson, Elliott, <I>Introduction to
Mathematical Logic,</I> 2nd ed., D. Van Nostrand (1979) [QA9.M537].</LI>
<LI><A NAME="Monk1"></A> [Monk1] Monk, J. Donald, <I>Introduction to Set
Theory,</I> McGraw-Hill, Inc. (1969) [QA248.M745].</LI>
<LI><A NAME="Monk2"></A> [Monk2] Monk, J. Donald, "Substitutionless
Predicate Logic with Identity," <I>Archiv für Mathematische Logik
und Grundlagenforschung,</I> 7:103-121 (1965) [QA.A673].</LI>
<LI><A NAME="Pfenning"></A> [Pfenning] Pfenning, Frank,
<I>Automated Theorem Proving,</I> Carnegie-Mellon University (April 13, 2004);
available at <A
HREF="http://www.cs.cmu.edu/~~fp/courses/atp/handouts/atp.pdf">http://www.cs.cmu.edu/~~fp/courses/atp/handouts/atp.pdf</A>
and <A
HREF="http://web.archive.org/web/20160304013704/http://www.cs.cmu.edu/~~fp/courses/atp/handouts/atp.pdf">http://web.archive.org/web/20160304013704/http://www.cs.cmu.edu/~~fp/courses/atp/handouts/atp.pdf</A>
(retrieved 7 Feb 2017).</LI>
<LI><A NAME="Quine"></A> [Quine] Quine, Willard van Orman, <I>Set Theory
and Its Logic,</I> Harvard University Press, Cambridge, Massachusetts,
revised edition (1969) [QA248.Q7 1969].</LI>
<LI><A NAME="Quine2"></A> [Quine2] Quine, W.V., 1937a, "New Foundations
for Mathematical Logic," <I>American Mathematical Monthly,</I>
44: 70-80 (1937) [QA1.A515].</LI>
<LI><A NAME="Rosser"></A> [Rosser] Rosser, John B., <I>Logic for Mathematicians,</I> Dover Publications, Mineola, N.Y. (2008) [BC135.R58 2008].</LI>
<LI><A NAME="Sanford"></A> [Sanford] Sanford, David H., <I>If P, then Q:
Conditionals and the Foundations of Reasoning</I>, 2nd ed., Routledge
Taylor & Francis Group (2003); ISBN 0-415-28369-8; available at <A
HREF="https://books.google.com/books?id=h_AUynB6PA8C&pg=PA39#v=onepage&q&f=false">https://books.google.com/books?id=h_AUynB6PA8C&pg=PA39#v=onepage&q&f=false</A>
(retrieved 3 Jul 2016).</LI>
<LI><A NAME="Schechter"></A> [Schechter] Schechter, Eric, <I>Handbook of
Analysis and Its Foundations</I>, Academic Press, San Diego (1997)
[QA300.S339].</LI>
<LI><A NAME="Specker"></A> [Specker] Specker, E.P.,
"The axiom of choice in Quine's new foundations for mathematical
logic," <I>Proceedings of the National Academy of Sciences of the
USA,</I> 39:972-975 (1953) [Q11.N26]</LI>
<LI><A NAME="Stoll"></A> [Stoll] Stoll, Robert R., <I>Set Theory and Logic,</I>
Dover Publications, Inc. (1979) [QA248.S7985 1979].</LI>
<LI><A NAME="Suppes"></A> [Suppes] Suppes, Patrick, <I>Axiomatic Set Theory,</I>
Dover Publications, Inc. (1972) [QA248.S959].</LI>
<LI><A NAME="TakeutiZaring"></A> [TakeutiZaring] Takeuti, Gaisi, and
Wilson M. Zaring, <I>Introduction to Axiomatic Set Theory,</I>
Springer-Verlag, New York, second edition (1982) [QA248.T136 1982].</LI>
<LI><A NAME="Tarski"></A> [Tarski] Tarski, Alfred, "A Simplified
Formalization of Predicate Logic with Identity," <I>Archiv für
Mathematische Logik und Grundlagenforschung,</I> 7:61-79 (1965)
[QA.A673].</LI>
<LI><A NAME="WhiteheadRussell"></A> [WhiteheadRussell] Whitehead, Alfred
North, and Bertrand Russell, <I>Principia Mathematica to *56,</I>
Cambridge University Press, Cambridge, 1962 [QA9.W592 1962].</LI>
</OL>
<HR NOSHADE SIZE=1>
<TABLE BORDER=0 WIDTH="100%"><TR>
<TD ALIGN=LEFT VALIGN=TOP WIDTH="25%"><FONT SIZE=-2 FACE=sans-serif>
</FONT></TD>
<TD NOWRAP ALIGN=CENTER><I><FONT SIZE=-1>This
page was last updated on 28-May-2018.</FONT></I><BR><FONT
FACE="ARIAL" SIZE=-2>Your
comments are welcome:
Norman Megill <A HREF="../email.html"><IMG BORDER=0
SRC="_nmemail.gif"
ALT="nm at alum dot mit dot edu"
TITLE="nm at alum dot mit dot edu"
WIDTH=90 HEIGHT=13 STYLE="margin-bottom:-3px"></A><BR>
Copyright terms:
<A HREF="../copyright.html#pd">Public domain</A></FONT></TD>
<TD ALIGN=RIGHT VALIGN=BOTTOM WIDTH="25%">
<FONT FACE="ARIAL" SIZE=-2>
<A
HREF="https://validator.w3.org/check?uri=referer">W3C HTML validation</A>
[external]
</FONT>
</TD>
</TR></TABLE>
</BODY>
</HTML>