-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_flow_past_plate_demo.py
430 lines (357 loc) · 15.6 KB
/
test_flow_past_plate_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import glob
import os
import pickle
import time
from types import SimpleNamespace
import firedrake as fd
import matplotlib.pyplot as plt
import numpy as np
import torch
import yaml
import UM2N
from inference_utils import InputPack, find_bd, find_edges, get_conv_feat
print("Setting up solver.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#################### Load trained model ####################
with open("./pretrain_model/config.yaml", "r") as file:
config_data = yaml.safe_load(file)
# print(config_data)
config = SimpleNamespace(**config_data)
# Append the monitor val at the end
# config.mesh_feat.append("monitor_val")
# config.mesh_feat = ["coord", "u", "monitor_val"]
config.mesh_feat = ["coord", "monitor_val"]
# print("# Evaluation Pipeline Started\n")
print(config)
model = UM2N.M2N_T(
deform_in_c=config.num_deform_in,
gfe_in_c=config.num_gfe_in,
lfe_in_c=config.num_lfe_in,
)
model_file_path = "./pretrain_model/model_999.pth"
model = UM2N.load_model(model, model_file_path)
# model = load_model(run, config, epoch, "output_sim")
model.eval()
model = model.to(device)
###########################################################
# physical constants
nu_val = 0.001
nu = fd.Constant(nu_val)
# time step
dt = 0.001
# define a firedrake constant equal to dt so that variation forms
# not regenerated if we change the time step
k = fd.Constant(dt)
RUN_SIM = True
VIZ = True
SAVE_DATA = True
# all_mesh_names = ["cylinder_010.msh", "cylinder_015.msh", "cylinder_020.msh", "cylinder_040.msh"]
# all_mesh_names = ["cylinder_020.msh"]
# all_mesh_names = ["cylinder_010.msh", "cylinder_015.msh"]
# all_mesh_names = ["cylinder_040.msh"]
# all_mesh_names = ["cylinder_030.msh", "cylinder_035.msh"]
# all_mesh_names = ["cylinder_020.msh", "cylinder_010.msh"]
all_mesh_names = ["plate_015.msh"]
# all_mesh_names = ["cylinder_square.msh"]
# instead of using RectangleMesh, we now read the mesh from file
# mesh_name = "cylinder_010.msh"
# mesh_name = "cylinder_fine.msh"
# mesh_name = "cylinder_very_fine.msh"
# mesh_name = "cylinder_coarse.msh"
# mesh_name = "cylinder_multiple_very_fine.msh"
# mesh_name = "cylinder_multiple_fine.msh"
# mesh_name = "cylinder_multiple_coarse.msh"
for mesh_name in all_mesh_names:
mesh_path = f"./meshes/{mesh_name}"
mesh = fd.Mesh(mesh_path)
adapted_mesh = fd.Mesh(mesh.coordinates.copy(deepcopy=True))
init_coord = mesh.coordinates.copy(deepcopy=True).dat.data[:]
V = fd.VectorFunctionSpace(mesh, "CG", 2)
V_adapted = fd.VectorFunctionSpace(adapted_mesh, "CG", 2)
Q = fd.FunctionSpace(mesh, "CG", 1)
Q_adapted = fd.FunctionSpace(adapted_mesh, "CG", 1)
u = fd.TrialFunction(V)
v = fd.TestFunction(V)
p = fd.TrialFunction(Q)
q = fd.TestFunction(Q)
vortex = fd.Function(Q)
u_now = fd.Function(V)
u_next = fd.Function(V)
u_star = fd.Function(V)
p_now = fd.Function(Q)
p_next = fd.Function(Q)
u_adapted = fd.Function(V_adapted)
p_adapted = fd.Function(Q_adapted)
# Expressions for the variational forms
n = fd.FacetNormal(mesh)
f = fd.Constant((0.0, 0.0))
u_mid = 0.5 * (u_now + u)
def sigma(u, p):
return 2 * nu * fd.sym(fd.nabla_grad(u)) - p * fd.Identity(len(u))
x, y = fd.SpatialCoordinate(mesh)
# if "multiple" in mesh_name:
# # Define boundary conditions
# bcu = [fd.DirichletBC(V, fd.Constant((0,0)), (1, 4, 5, 6, 7, 8)), # top-bottom and cylinder
# fd.DirichletBC(V, ((4.0*1.5*y*(0.41 - y) / 0.41**2) ,0), 2)] # inflow
# else:
# # Define boundary conditions
# bcu = [fd.DirichletBC(V, fd.Constant((0,0)), (1, 4)), # top-bottom and cylinder
# fd.DirichletBC(V, ((4.0*1.5*y*(0.41 - y) / 0.41**2) ,0), 2)] # inflow
# Define boundary conditions
bcu = [
fd.DirichletBC(V, fd.Constant((0, 0)), (1)), # top-bottom and cylinder
fd.DirichletBC(V, (1.5, 0), 2),
] # inflow
bcp = [fd.DirichletBC(Q, fd.Constant(0), 3)] # outflow
U_mean = 1.5
re_num = int(U_mean * 0.1 / nu_val)
print(f"Re = {re_num}")
# Define variational forms
F1 = (
fd.inner((u - u_now) / k, v) * fd.dx
+ fd.inner(fd.dot(u_now, fd.nabla_grad(u_mid)), v) * fd.dx
+ fd.inner(sigma(u_mid, p_now), fd.sym(fd.nabla_grad(v))) * fd.dx
+ fd.inner(p_now * n, v) * fd.ds
- fd.inner(nu * fd.dot(fd.nabla_grad(u_mid), n), v) * fd.ds
- fd.inner(f, v) * fd.dx
)
a1, L1 = fd.system(F1)
a2 = fd.inner(fd.nabla_grad(p), fd.nabla_grad(q)) * fd.dx
L2 = (
fd.inner(fd.nabla_grad(p_now), fd.nabla_grad(q)) * fd.dx
- (1 / k) * fd.inner(fd.div(u_star), q) * fd.dx
)
a3 = fd.inner(u, v) * fd.dx
L3 = (
fd.inner(u_star, v) * fd.dx
- k * fd.inner(fd.nabla_grad(p_next - p_now), v) * fd.dx
)
# Define linear problems
prob1 = fd.LinearVariationalProblem(a1, L1, u_star, bcs=bcu)
prob2 = fd.LinearVariationalProblem(a2, L2, p_next, bcs=bcp)
prob3 = fd.LinearVariationalProblem(a3, L3, u_next)
# Define solvers
solve1 = fd.LinearVariationalSolver(
prob1, solver_parameters={"ksp_type": "gmres", "pc_type": "sor"}
)
solve2 = fd.LinearVariationalSolver(
prob2, solver_parameters={"ksp_type": "cg", "pc_type": "gamg"}
)
solve3 = fd.LinearVariationalSolver(
prob3, solver_parameters={"ksp_type": "cg", "pc_type": "sor"}
)
# Prep for saving solutions
# u_save = fd.Function(V).assign(u_now)
# p_save = fd.Function(Q).assign(p_now)
# outfile_u = fd.File("outputs_sim/cylinder/u.pvd")
# outfile_p = fd.File("outputs_sim/cylinder/p.pvd")
# outfile_u.write(u_save)
# outfile_p.write(p_save)
# Time loop
t = 0.0
t_end = 8.0
total_step = int((t_end - t) / dt)
print("Beginning time loop...")
def monitor_func(mesh, u, alpha=5.0):
tensor_space = fd.TensorFunctionSpace(mesh, "CG", 1)
uh_grad = fd.interpolate(fd.grad(u), tensor_space)
grad_norm = fd.Function(fd.FunctionSpace(mesh, "CG", 1))
grad_norm.interpolate(
uh_grad[0, 0] ** 2
+ uh_grad[0, 1] ** 2
+ uh_grad[1, 0] ** 2
+ uh_grad[1, 1] ** 2
)
# normalizer = (grad_norm.vector().max() + 1e-6)
# grad_norm.interpolate(alpha * grad_norm / normalizer + 1.0)
return grad_norm
# Extract input features
coords = mesh.coordinates.dat.data_ro
print(f"coords {coords.shape}")
# print(f"conv feat {conv_feat.shape}")
edge_idx = find_edges(mesh, Q)
print(f"edge idx {edge_idx.shape}")
bd_mask, _, _, _, _ = find_bd(mesh, Q)
print(f"boundary mask {bd_mask.shape}")
u_list = []
step_cnt = 0
save_interval = 10
total_step = 1000
adapted_coord = torch.tensor(init_coord)
monitor_val = fd.Function(fd.FunctionSpace(mesh, "CG", 1))
exp_name = mesh_name.split(".msh")[0]
output_path = f"outputs_sim/{exp_name}/adapt_T_final/Re_{re_num}_total_{total_step}_save_{save_interval}"
output_data_path = f"{output_path}/data"
output_plot_path = f"{output_path}/plot"
output_stat_path = f"{output_path}/stat"
os.makedirs(output_path, exist_ok=True)
os.makedirs(output_data_path, exist_ok=True)
os.makedirs(output_plot_path, exist_ok=True)
os.makedirs(output_stat_path, exist_ok=True)
if RUN_SIM:
with torch.no_grad():
while t < t_end:
solve1.solve()
solve2.solve()
solve3.solve()
t += dt
# u_save.assign(u_next)
# p_save.assign(p_next)
# outfile_u.write(u_save)
# outfile_p.write(p_save)
# u_list.append(fd.Function(u_next))
# update solutions
u_now.assign(u_next)
p_now.assign(p_next)
# Store the solutions to adapted meshes
# so that we can safely modify mesh coordinates later
u_adapted.project(u_next)
p_adapted.project(p_next)
# TODO: interpolate might be faster however requries to update firedrake version
# u_adapted.interpolate(u_next)
# p_adapted.interpolate(p_next)
if np.abs(t - np.round(t, decimals=0)) < 1.0e-8:
print("time = {0:.3f}".format(t))
if step_cnt % save_interval == 0:
# print(f"{step_cnt} steps done.")
vorticity = vortex.project(fd.curl(u_now)).dat.data[:]
plot_dict = {}
plot_dict["mesh_original"] = init_coord
plot_dict["mesh_adapt"] = adapted_coord.cpu().detach().numpy()
plot_dict["u"] = u_now.dat.data[:]
plot_dict["p"] = p_now.dat.data[:]
plot_dict["monitor_val"] = monitor_val.dat.data[:]
plot_dict["vortex"] = vorticity
plot_dict["step"] = step_cnt
plot_dict["dt"] = dt
ret_file = f"{output_data_path}/data_{step_cnt:06d}.pkl"
if SAVE_DATA:
with open(ret_file, "wb") as file:
pickle.dump(plot_dict, file)
print(
f"{step_cnt} steps done. Max vorticity: {np.max(vorticity)}, Min vorticity: {np.min(vorticity)}"
)
step_cnt += 1
# Recover the mesh back to init coord
mesh.coordinates.dat.data[:] = init_coord
# Project u_adapted back to uniform mesh for computing monitors
u_proj_from_adapted = fd.Function(V)
u_proj_from_adapted.project(u_adapted)
monitor_val = monitor_func(mesh, u_proj_from_adapted)
filter_monitor_val = np.minimum(1e3, monitor_val.dat.data[:])
filter_monitor_val = np.maximum(0, filter_monitor_val)
monitor_val.dat.data[:] = filter_monitor_val / filter_monitor_val.max()
conv_feat = get_conv_feat(mesh, monitor_val)
start_time = time.perf_counter()
sample = InputPack(
coord=coords,
monitor_val=monitor_val.dat.data_ro.reshape(-1, 1),
edge_index=edge_idx,
bd_mask=bd_mask,
conv_feat=conv_feat,
stack_boundary=False,
)
adapted_coord = model(sample)
end_time = time.perf_counter()
print(f"Model inference time: {(end_time - start_time)*1e3} ms")
# Update the mesh to adpated mesh
mesh.coordinates.dat.data[:] = adapted_coord.cpu().detach().numpy()
# Project the u_adapted and p_adapted to new adapted mesh for next timestep solving
u_now.project(u_adapted)
p_now.project(p_adapted)
# TODO: interpolate might be faster however requries to update firedrake version
# u_now.interpolate(u_adapted)
# p_now.interpolate(p_adapted)
# The buffer for adapted mesh should also be updated
adapted_mesh.coordinates.dat.data[:] = (
adapted_coord.cpu().detach().numpy()
)
if step_cnt % total_step == 0:
break
print("Simulation complete")
all_data_files = sorted(glob.glob(f"{output_data_path}/*.pkl"))
C_D_list = []
C_L_list = []
for idx, data_f in enumerate(all_data_files):
with open(data_f, "rb") as f:
data_dict = pickle.load(f)
function_space = fd.FunctionSpace(mesh, "CG", 1)
function_space_vec = fd.VectorFunctionSpace(mesh, "CG", 2)
mesh_original = data_dict["mesh_original"]
mesh_adapt = data_dict["mesh_adapt"]
u = data_dict["u"]
p = data_dict["p"]
vorticity = data_dict["vortex"]
monitor_val = data_dict["monitor_val"]
# Mesh coordinates
mesh.coordinates.dat.data[:] = init_coord
adapted_mesh.coordinates.dat.data[:] = mesh_adapt
# The velocity is extracted from adapted mesh, we need to define the function space based on adapted mesh
function_space_adapted_vec = fd.VectorFunctionSpace(adapted_mesh, "CG", 2)
function_space_adapted = fd.FunctionSpace(adapted_mesh, "CG", 1)
u_holder = fd.Function(function_space_adapted_vec)
u_holder.dat.data[:] = u
p_holder = fd.Function(function_space_adapted)
p_holder.dat.data[:] = p
# The vorticity is extracted from adapted mesh, we need to define the function space based on adapted mesh
vortex_holder = fd.Function(function_space_adapted)
vortex_holder.dat.data[:] = vorticity
Umean = 1.0
L = 0.1
n = fd.FacetNormal(adapted_mesh)
# F_D = fd.assemble(fd.dot(n, sigma(u_holder, p_holder))[0] * fd.ds(4))
# F_L = fd.assemble(fd.dot(n, sigma(u_holder, p_holder))[1] * fd.ds(4))
# C_D = 2/(Umean**2*L)*F_D
# C_L = 2/(Umean**2*L)*F_L
# C_D_list.append(C_D)
# C_L_list.append(C_L)
if VIZ:
rows = 5
fig, ax = plt.subplots(rows, 1, figsize=(16, 20))
# Uniform mesh
fd.triplot(mesh, axes=ax[0])
ax[0].set_title("Original Mesh")
# Adapted mesh
fd.triplot(adapted_mesh, axes=ax[1])
ax[1].set_title("Adapated Mesh (UM2N)")
cmap = "seismic"
# p_holder = fd.Function(function_space)
# p_holder.dat.data[:] = p
# ax1 = ax[2]
# ax1.set_xlabel('$x$', fontsize=16)
# ax1.set_ylabel('$y$', fontsize=16)
# ax1.set_title('FEM Navier-Stokes - channel flow - pressure', fontsize=16)
# fd.tripcolor(p_holder ,axes=ax1, cmap=cmap)
# # ax1.axis('equal')
ax1 = ax[2]
ax1.set_xlabel("$x$", fontsize=16)
ax1.set_ylabel("$y$", fontsize=16)
ax1.set_title("Navier-Stokes - channel flow - vorticity", fontsize=16)
fd.tripcolor(vortex_holder, axes=ax1, cmap=cmap, vmax=100, vmin=-100)
ax2 = ax[3]
ax2.set_xlabel("$x$", fontsize=16)
ax2.set_ylabel("$y$", fontsize=16)
ax2.set_title("Navier-Stokes - channel flow - velocity", fontsize=16)
cb = fd.tripcolor(u_holder, axes=ax2, cmap=cmap)
# plt.colorbar(cb)
# ax2.axis('equal')
monitor_holder = fd.Function(function_space)
monitor_holder.dat.data[:] = monitor_val
ax3 = ax[4]
ax3.set_xlabel("$x$", fontsize=16)
ax3.set_ylabel("$y$", fontsize=16)
ax3.set_title(
"Navier-Stokes - channel flow - Monitor Values", fontsize=16
)
cb = fd.tripcolor(monitor_holder, axes=ax3, cmap=cmap)
plt.colorbar(cb)
ax3.axis("equal")
for rr in range(rows):
ax[rr].set_aspect("equal", "box")
# plt.tight_layout()
plt.savefig(f"{output_plot_path}/plate_Re_{re_num}_{idx:06d}_adapt.png")
plt.close()
print(f"Idx {idx} Done")
import pandas as pd
df_stat = pd.DataFrame({"C_D": C_D_list, "C_L": C_L_list})
df_stat.to_csv(f"{output_stat_path}/df_stat.csv")