-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_flow_past_cylinder_uniform.py
403 lines (334 loc) · 14.4 KB
/
test_flow_past_cylinder_uniform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import pickle
import firedrake as fd
import matplotlib.pyplot as plt
import numpy as np
# import wandb
import torch
print("Setting up solver.")
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# #################### Load trained model ####################
# entity = "mz-team"
# project_name = "warpmesh"
# run_id = "vnv1mv48"
# epoch = 999
# api = wandb.Api()
# runs = api.runs(path=f"{entity}/{project_name}")
# run = api.run(f"{entity}/{project_name}/{run_id}")
# config = SimpleNamespace(**run.config)
# # Append the monitor val at the end
# # config.mesh_feat.append("monitor_val")
# # config.mesh_feat = ["coord", "u", "monitor_val"]
# config.mesh_feat = ["coord", "monitor_val"]
# print("# Evaluation Pipeline Started\n")
# print(config)
# # # init
# # eval_dir = init_dir(
# # config, run_id, epoch, ds_root, problem_type, domain
# # ) # noqa
# # dataset = load_dataset(config, ds_root, tar_folder="data")
# model = load_model(run, config, epoch, "output_sim")
# model.eval()
# model = model.to(device)
# ###########################################################
# physical constants
nu_val = 0.001
nu = fd.Constant(nu_val)
# time step
dt = 0.001
# define a firedrake constant equal to dt so that variation forms
# not regenerated if we change the time step
k = fd.Constant(dt)
RUN_SIM = False
VIZ = False
# all_mesh_names = ["cylinder_040.msh", "cylinder_020.msh", "cylinder_015.msh", "cylinder_010.msh"]
# all_mesh_names = ["cylinder_030.msh", "cylinder_035.msh"]
# all_mesh_names = ["cylinder_005.msh", "cylinder_002.msh"]
# all_mesh_names = ["cylinder_020.msh", "cylinder_010.msh", "cylinder_005.msh", "cylinder_002.msh"]
# all_mesh_names = ["cylinder_015.msh", "cylinder_010.msh", "cylinder_005.msh", "cylinder_002.msh"]
all_mesh_names = ["cylinder_015.msh"]
# instead of using RectangleMesh, we now read the mesh from file
# mesh_name = "cylinder_040.msh"
# mesh_name = "cylinder_020.msh"
# mesh_name = "cylinder_very_fine.msh"
# mesh_name = "cylinder_coarse.msh"
# mesh_name = "cylinder_multiple_very_fine.msh"
# mesh_name = "cylinder_multiple_fine.msh"
# mesh_name = "cylinder_multiple_coarse.msh"
for mesh_name in all_mesh_names:
mesh_path = f"./meshes/{mesh_name}"
mesh = fd.Mesh(mesh_path)
adapted_mesh = fd.Mesh(mesh.coordinates.copy(deepcopy=True))
init_coord = mesh.coordinates.copy(deepcopy=True).dat.data[:]
V = fd.VectorFunctionSpace(mesh, "CG", 2)
V_adapted = fd.VectorFunctionSpace(adapted_mesh, "CG", 2)
Q = fd.FunctionSpace(mesh, "CG", 1)
Q_adapted = fd.FunctionSpace(adapted_mesh, "CG", 1)
u = fd.TrialFunction(V)
v = fd.TestFunction(V)
p = fd.TrialFunction(Q)
q = fd.TestFunction(Q)
u_now = fd.Function(V)
u_next = fd.Function(V)
u_star = fd.Function(V)
p_now = fd.Function(Q)
p_next = fd.Function(Q)
vortex = fd.Function(Q)
u_adapted = fd.Function(V_adapted)
p_adapted = fd.Function(Q_adapted)
# Expressions for the variational forms
n = fd.FacetNormal(mesh)
f = fd.Constant((0.0, 0.0))
u_mid = 0.5 * (u_now + u)
def sigma(u, p):
return 2 * nu * fd.sym(fd.nabla_grad(u)) - p * fd.Identity(len(u))
x, y = fd.SpatialCoordinate(mesh)
if "multiple" in mesh_name:
# Define boundary conditions
bcu = [
fd.DirichletBC(
V, fd.Constant((0, 0)), (1, 4, 5, 6, 7, 8)
), # top-bottom and cylinder
fd.DirichletBC(V, ((4.0 * 1.5 * y * (0.41 - y) / 0.41**2), 0), 2),
] # inflow
else:
# Define boundary conditions
bcu = [
fd.DirichletBC(V, fd.Constant((0, 0)), (1, 4)), # top-bottom and cylinder
fd.DirichletBC(V, ((4.0 * 1.5 * y * (0.41 - y) / 0.41**2), 0), 2),
] # inflow
bcp = [fd.DirichletBC(Q, fd.Constant(0), 3)] # outflow
Umean = 1.0
re_num = int(Umean * 0.1 / nu_val)
print(f"Re = {re_num}")
# Define variational forms
F1 = (
fd.inner((u - u_now) / k, v) * fd.dx
+ fd.inner(fd.dot(u_now, fd.nabla_grad(u_mid)), v) * fd.dx
+ fd.inner(sigma(u_mid, p_now), fd.sym(fd.nabla_grad(v))) * fd.dx
+ fd.inner(p_now * n, v) * fd.ds
- fd.inner(nu * fd.dot(fd.nabla_grad(u_mid), n), v) * fd.ds
- fd.inner(f, v) * fd.dx
)
a1, L1 = fd.system(F1)
a2 = fd.inner(fd.nabla_grad(p), fd.nabla_grad(q)) * fd.dx
L2 = (
fd.inner(fd.nabla_grad(p_now), fd.nabla_grad(q)) * fd.dx
- (1 / k) * fd.inner(fd.div(u_star), q) * fd.dx
)
a3 = fd.inner(u, v) * fd.dx
L3 = (
fd.inner(u_star, v) * fd.dx
- k * fd.inner(fd.nabla_grad(p_next - p_now), v) * fd.dx
)
# Define linear problems
prob1 = fd.LinearVariationalProblem(a1, L1, u_star, bcs=bcu)
prob2 = fd.LinearVariationalProblem(a2, L2, p_next, bcs=bcp)
prob3 = fd.LinearVariationalProblem(a3, L3, u_next)
# Define solvers
solve1 = fd.LinearVariationalSolver(
prob1, solver_parameters={"ksp_type": "gmres", "pc_type": "sor"}
)
solve2 = fd.LinearVariationalSolver(
prob2, solver_parameters={"ksp_type": "cg", "pc_type": "gamg"}
)
solve3 = fd.LinearVariationalSolver(
prob3, solver_parameters={"ksp_type": "cg", "pc_type": "sor"}
)
# Prep for saving solutions
# u_save = fd.Function(V).assign(u_now)
# p_save = fd.Function(Q).assign(p_now)
# outfile_u = fd.File("outputs_sim/cylinder/u.pvd")
# outfile_p = fd.File("outputs_sim/cylinder/p.pvd")
# outfile_u.write(u_save)
# outfile_p.write(p_save)
# Time loop
t = 0.0
t_end = 8.0
total_step = int((t_end - t) / dt)
print("Beginning time loop...")
def monitor_func(mesh, u, alpha=5.0):
tensor_space = fd.TensorFunctionSpace(mesh, "CG", 1)
uh_grad = fd.interpolate(fd.grad(u), tensor_space)
grad_norm = fd.Function(fd.FunctionSpace(mesh, "CG", 1))
grad_norm.interpolate(
uh_grad[0, 0] ** 2
+ uh_grad[0, 1] ** 2
+ uh_grad[1, 0] ** 2
+ uh_grad[1, 1] ** 2
)
# normalizer = (grad_norm.vector().max() + 1e-6)
# grad_norm.interpolate(alpha * grad_norm / normalizer + 1.0)
return grad_norm
# # Extract input features
# coords = mesh.coordinates.dat.data_ro
# print(f"coords {coords.shape}")
# # print(f"conv feat {conv_feat.shape}")
# edge_idx = find_edges(mesh, Q)
# print(f"edge idx {edge_idx.shape}")
# bd_mask, _, _, _, _ = find_bd(mesh, Q)
# print(f"boundary mask {bd_mask.shape}")
u_list = []
step_cnt = 0
save_interval = 10
total_step = 8000
adapted_coord = torch.tensor(init_coord)
monitor_val = fd.Function(fd.FunctionSpace(mesh, "CG", 1))
exp_name = mesh_name.split(".msh")[0]
output_path = f"outputs_sim/{exp_name}/original/Re_{re_num}_total_{total_step}_save_{save_interval}"
output_data_path = f"{output_path}/data"
output_plot_path = f"{output_path}/plot"
output_stat_path = f"{output_path}/stat"
os.makedirs(output_path, exist_ok=True)
os.makedirs(output_data_path, exist_ok=True)
os.makedirs(output_plot_path, exist_ok=True)
os.makedirs(output_stat_path, exist_ok=True)
if RUN_SIM:
with torch.no_grad():
while t < t_end:
solve1.solve()
solve2.solve()
solve3.solve()
t += dt
# u_save.assign(u_next)
# p_save.assign(p_next)
# outfile_u.write(u_save)
# outfile_p.write(p_save)
# u_list.append(fd.Function(u_next))
# update solutions
u_now.assign(u_next)
p_now.assign(p_next)
# Store the solutions to adapted meshes
# so that we can safely modify mesh coordinates later
# u_adapted.project(u_next)
# p_adapted.project(p_next)
# TODO: interpolate might be faster however requries to update firedrake version
# u_adapted.interpolate(u_next)
# p_adapted.interpolate(p_next)
if np.abs(t - np.round(t, decimals=0)) < 1.0e-8:
print("time = {0:.3f}".format(t))
if step_cnt % save_interval == 0:
# print(f"{step_cnt} steps done.")
vorticity = vortex.project(fd.curl(u_now)).dat.data[:]
plot_dict = {}
plot_dict["mesh_original"] = init_coord
plot_dict["mesh_adapt"] = adapted_coord.cpu().detach().numpy()
plot_dict["u"] = u_now.dat.data[:]
plot_dict["p"] = p_now.dat.data[:]
plot_dict["vortex"] = vorticity
plot_dict["monitor_val"] = monitor_val.dat.data[:]
plot_dict["step"] = step_cnt
plot_dict["dt"] = dt
ret_file = f"{output_data_path}/data_{step_cnt:06d}.pkl"
with open(ret_file, "wb") as file:
pickle.dump(plot_dict, file)
print(
f"{step_cnt} steps done. Max vorticity: {np.max(vorticity)}, Min vorticity: {np.min(vorticity)}"
)
step_cnt += 1
# # Recover the mesh back to init coord
# mesh.coordinates.dat.data[:] = init_coord
# # Project u_adapted back to uniform mesh for computing monitors
# u_proj_from_adapted = fd.Function(V)
# u_proj_from_adapted.project(u_adapted)
# monitor_val = monitor_func(mesh, u_proj_from_adapted)
# filter_monitor_val = np.minimum(1e3, monitor_val.dat.data[:])
# filter_monitor_val = np.maximum(0, filter_monitor_val)
# monitor_val.dat.data[:] = filter_monitor_val / filter_monitor_val.max()
# conv_feat = get_conv_feat(mesh, monitor_val)
# sample = InputPack(coord=coords, monitor_val=monitor_val.dat.data_ro.reshape(-1, 1), edge_index=edge_idx, bd_mask=bd_mask, conv_feat=conv_feat)
# adapted_coord = model(sample)
# # Update the mesh to adpated mesh
# mesh.coordinates.dat.data[:] = adapted_coord.cpu().detach().numpy()
# # Project the u_adapted and p_adapted to new adapted mesh for next timestep solving
# u_now.project(u_adapted)
# p_now.project(p_adapted)
# TODO: interpolate might be faster however requries to update firedrake version
# u_now.interpolate(u_adapted)
# p_now.interpolate(p_adapted)
# The buffer for adapted mesh should also be updated
# adapted_mesh.coordinates.dat.data[:] = adapted_coord.cpu().detach().numpy()
if step_cnt % total_step == 0:
break
print("Simulation complete")
import glob
all_data_files = sorted(glob.glob(f"{output_data_path}/*.pkl"))
C_D_list = []
C_L_list = []
for idx, data_f in enumerate(all_data_files):
with open(data_f, "rb") as f:
data_dict = pickle.load(f)
function_space = fd.FunctionSpace(mesh, "CG", 1)
function_space_vec = fd.VectorFunctionSpace(mesh, "CG", 2)
mesh_original = data_dict["mesh_original"]
mesh_adapt = data_dict["mesh_adapt"]
u = data_dict["u"]
p = data_dict["p"]
vortex = data_dict["vortex"]
monitor_val = data_dict["monitor_val"]
# Compute drag and lift
u_holder = fd.Function(function_space_vec)
u_holder.dat.data[:] = u
p_holder = fd.Function(function_space)
p_holder.dat.data[:] = p
Umean = 1.0
L = 0.1
n = fd.FacetNormal(mesh)
F_D = fd.assemble(fd.dot(n, sigma(u_holder, p_holder))[0] * fd.ds(4))
F_L = fd.assemble(fd.dot(n, sigma(u_holder, p_holder))[1] * fd.ds(4))
C_D = 2 / (Umean**2 * L) * F_D
C_L = 2 / (Umean**2 * L) * F_L
C_D_list.append(C_D)
C_L_list.append(C_L)
if VIZ:
rows = 5
fig, ax = plt.subplots(rows, 1, figsize=(16, 20))
mesh.coordinates.dat.data[:] = init_coord
fd.triplot(mesh, axes=ax[0])
ax[0].set_title("Original Mesh")
adapted_mesh.coordinates.dat.data[:] = mesh_adapt
fd.triplot(adapted_mesh, axes=ax[1])
ax[1].set_title("Adapated Mesh")
cmap = "seismic"
vortex_holder = fd.Function(function_space)
vortex_holder.dat.data[:] = vortex
# print(f"vortex max {vortex.max()} min {vortex.min()}")
ax1 = ax[2]
ax1.set_xlabel("$x$", fontsize=16)
ax1.set_ylabel("$y$", fontsize=16)
ax1.set_title(
"FEM Navier-Stokes - channel flow - vorticity", fontsize=16
)
fd.tripcolor(vortex_holder, axes=ax1, cmap=cmap, vmax=100, vmin=-100)
# ax1.axis('equal')
ax2 = ax[3]
ax2.set_xlabel("$x$", fontsize=16)
ax2.set_ylabel("$y$", fontsize=16)
ax2.set_title(
"FEM Navier-Stokes - channel flow - velocity", fontsize=16
)
cb = fd.tripcolor(u_holder, axes=ax2, cmap=cmap)
# plt.colorbar(cb)
# ax2.axis('equal')
monitor_holder = fd.Function(function_space)
monitor_holder.dat.data[:] = monitor_val
ax3 = ax[4]
ax3.set_xlabel("$x$", fontsize=16)
ax3.set_ylabel("$y$", fontsize=16)
ax3.set_title(
"FEM Navier-Stokes - channel flow - Monitor Values", fontsize=16
)
cb = fd.tripcolor(monitor_holder, axes=ax3, cmap=cmap)
# plt.colorbar(cb)
# ax3.axis('equal')
for rr in range(rows):
ax[rr].set_aspect("equal", "box")
# plt.tight_layout()
plt.savefig(
f"{output_plot_path}/cylinder_Re_{re_num}_{idx:06d}_original.png"
)
plt.close()
print(f"Idx {idx} Done")
import pandas as pd
df_stat = pd.DataFrame({"C_D": C_D_list, "C_L": C_L_list})
df_stat.to_csv(f"{output_stat_path}/df_stat.csv")