From 611f14f8a317db6d07794c8fa13ff4f450479da5 Mon Sep 17 00:00:00 2001 From: merliseclyde Date: Thu, 7 Dec 2023 03:00:25 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20merlisec?= =?UTF-8?q?lyde/BAS@5c1950cb24c9a11217791e1a8b88a164d2c6413b=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- articles/BAS-vignette.html | 106 +++++++++--------- .../figure-html/diagnostics-1.png | Bin 37824 -> 37856 bytes .../figure-html/diagnostics-2.png | Bin 41146 -> 41302 bytes .../figure-html/plot-confint-1.png | Bin 20731 -> 20698 bytes .../figure-html/unnamed-chunk-1-1.png | Bin 49026 -> 49025 bytes .../figure-html/unnamed-chunk-1-2.png | Bin 39151 -> 36990 bytes .../figure-html/unnamed-chunk-1-3.png | Bin 70568 -> 70596 bytes pkgdown.yml | 2 +- reference/BAS-2.png | Bin 49586 -> 48554 bytes reference/BAS-3.png | Bin 29790 -> 29284 bytes reference/BAS-6.png | Bin 20277 -> 20354 bytes reference/BAS.html | 28 ++--- reference/Rplot002.png | Bin 4963 -> 4899 bytes reference/Rplot003.png | Bin 7505 -> 7878 bytes reference/bas.lm-1.png | Bin 52892 -> 52885 bytes reference/bas.lm-12.png | Bin 20354 -> 20277 bytes reference/bas.lm-2.png | Bin 41195 -> 40732 bytes reference/bas.lm-3.png | Bin 75509 -> 75430 bytes reference/bas.lm-8.png | Bin 49270 -> 48091 bytes reference/bas.lm-9.png | Bin 29832 -> 29446 bytes reference/bas.lm.html | 28 ++--- reference/coef.html | 12 +- reference/confint.coef.html | 22 ++-- reference/confint.pred.html | 26 ++--- reference/diagnostics-1.png | Bin 41654 -> 41929 bytes reference/diagnostics-2.png | Bin 58240 -> 57811 bytes reference/plot-2.png | Bin 49941 -> 49511 bytes reference/plot-3.png | Bin 29456 -> 29217 bytes reference/plot.confint-1.png | Bin 16701 -> 16675 bytes reference/plot.confint-2.png | Bin 15619 -> 15580 bytes reference/plot.confint-3.png | Bin 21366 -> 22106 bytes reference/predict.bas.html | 30 ++--- search.json | 2 +- 33 files changed, 128 insertions(+), 128 deletions(-) diff --git a/articles/BAS-vignette.html b/articles/BAS-vignette.html index 696ed5c8..42f65775 100644 --- a/articles/BAS-vignette.html +++ b/articles/BAS-vignette.html @@ -331,23 +331,23 @@

Posterior Distributions of Coef Density intervals from the summaries from coef.

 confint(coef.ZS)
-
##                    2.5%       97.5%        beta
-## Intercept  6.668044e+00 6.783787269  6.72493620
-## M          0.000000e+00 2.192320648  1.14359433
-## So        -5.751335e-02 0.307426845  0.03547522
-## Ed         6.476458e-01 3.227313256  1.85848834
-## Po1        0.000000e+00 1.462613496  0.60067372
-## Po2       -2.798292e-01 1.425802768  0.31841766
-## LF        -5.305761e-01 0.989284449  0.05933737
-## M.F       -2.390702e+00 1.728841837 -0.02702786
-## Pop       -1.287358e-01 0.005151215 -0.02248283
-## NW        -2.381958e-05 0.167769999  0.06668437
-## U1        -4.897097e-01 0.366114580 -0.02456854
-## U2         0.000000e+00 0.669002969  0.20702927
-## GDP       -3.073416e-02 1.216292967  0.20625063
-## Ineq       6.537824e-01 2.105661202  1.39012647
-## Prob      -4.100642e-01 0.000000000 -0.21536203
-## Time      -5.249789e-01 0.052986444 -0.08433479
+
##                   2.5%       97.5%        beta
+## Intercept  6.670469697 6.785152320  6.72493620
+## M          0.000000000 2.202308895  1.14359433
+## So        -0.056058236 0.301798257  0.03547522
+## Ed         0.665575996 3.213773443  1.85848834
+## Po1        0.000000000 1.450391161  0.60067372
+## Po2       -0.221171926 1.458348086  0.31841766
+## LF        -0.403621472 1.124187338  0.05933737
+## M.F       -2.192806188 2.172851229 -0.02702786
+## Pop       -0.124776006 0.008026921 -0.02248283
+## NW         0.000000000 0.167554995  0.06668437
+## U1        -0.493080018 0.390273539 -0.02456854
+## U2        -0.003165238 0.659330844  0.20702927
+## GDP       -0.062907223 1.218823142  0.20625063
+## Ineq       0.695530392 2.143256295  1.39012647
+## Prob      -0.414228765 0.000000000 -0.21536203
+## Time      -0.522037075 0.058013400 -0.08433479
 ## attr(,"Probability")
 ## [1] 0.95
 ## attr(,"class")
@@ -505,7 +505,7 @@ 

Alternative algorithms } )

##    user  system elapsed 
-##   1.398   0.000   1.399
+## 1.375 0.003 1.378
 system.time(
   for (i in 1:10) {
@@ -517,7 +517,7 @@ 

Alternative algorithms } )

##    user  system elapsed 
-##   1.325   0.003   1.328
+## 1.278 0.008 1.285

which is faster for enumeration than the default method=“BAS”.

@@ -639,7 +639,7 @@

Outliers Air.Flow -0.999820 +0.999845 1.00000 1.0000000 1.0000000 @@ -648,16 +648,16 @@

Outliers Water.Temp -0.469180 +0.458995 1.00000 -0.0000000 1.0000000 +0.0000000 1.0000000 0.0000000 Acid.Conc. -0.092285 +0.096450 0.00000 0.0000000 0.0000000 @@ -666,7 +666,7 @@

Outliers 1 -0.592975 +0.568905 1.00000 1.0000000 1.0000000 @@ -675,7 +675,7 @@

Outliers 2 -0.157340 +0.164340 0.00000 0.0000000 0.0000000 @@ -684,7 +684,7 @@

Outliers 3 -0.626540 +0.599715 1.00000 1.0000000 1.0000000 @@ -693,7 +693,7 @@

Outliers 4 -0.949395 +0.945255 1.00000 1.0000000 1.0000000 @@ -702,7 +702,7 @@

Outliers 5 -0.070165 +0.070515 0.00000 0.0000000 0.0000000 @@ -711,7 +711,7 @@

Outliers 6 -0.072855 +0.082030 0.00000 0.0000000 0.0000000 @@ -720,7 +720,7 @@

Outliers 7 -0.065905 +0.071865 0.00000 0.0000000 0.0000000 @@ -729,7 +729,7 @@

Outliers 8 -0.063990 +0.073040 0.00000 0.0000000 0.0000000 @@ -738,7 +738,7 @@

Outliers 9 -0.068005 +0.068185 0.00000 0.0000000 0.0000000 @@ -747,7 +747,7 @@

Outliers 10 -0.067625 +0.068825 0.00000 0.0000000 0.0000000 @@ -756,7 +756,7 @@

Outliers 11 -0.064650 +0.067620 0.00000 0.0000000 0.0000000 @@ -765,7 +765,7 @@

Outliers 12 -0.085210 +0.094680 0.00000 0.0000000 0.0000000 @@ -774,7 +774,7 @@

Outliers 13 -0.335925 +0.333155 0.00000 1.0000000 1.0000000 @@ -783,7 +783,7 @@

Outliers 14 -0.179170 +0.184975 0.00000 0.0000000 0.0000000 @@ -792,7 +792,7 @@

Outliers 15 -0.074295 +0.075650 0.00000 0.0000000 0.0000000 @@ -801,7 +801,7 @@

Outliers 16 -0.058830 +0.059995 0.00000 0.0000000 0.0000000 @@ -810,7 +810,7 @@

Outliers 17 -0.064605 +0.070005 0.00000 0.0000000 0.0000000 @@ -819,7 +819,7 @@

Outliers 18 -0.060805 +0.067955 0.00000 0.0000000 0.0000000 @@ -828,7 +828,7 @@

Outliers 19 -0.100315 +0.091375 0.00000 0.0000000 0.0000000 @@ -837,7 +837,7 @@

Outliers 20 -0.126005 +0.126265 0.00000 0.0000000 0.0000000 @@ -846,7 +846,7 @@

Outliers 21 -0.986045 +0.982385 1.00000 1.0000000 1.0000000 @@ -857,26 +857,26 @@

OutliersBF NA 1.00000 -0.3397571 0.5779604 +0.3397571 0.5555328 0.2016282 PostProbs NA -0.06380 -0.0220000 -0.0216000 -0.0202000 -0.0184000 +0.05740 +0.0198000 +0.0194000 +0.0189000 +0.0174000 R2 NA 0.98920 -0.9873000 0.9923000 +0.9873000 0.9922000 0.9803000 @@ -884,8 +884,8 @@

Outliersdim NA 7.00000 -7.0000000 8.0000000 +7.0000000 8.0000000 6.0000000 @@ -893,8 +893,8 @@

Outlierslogmarg NA 23.82319 -22.7436630 23.2749373 +22.7436630 23.2353597 22.2218573 diff --git a/articles/BAS-vignette_files/figure-html/diagnostics-1.png b/articles/BAS-vignette_files/figure-html/diagnostics-1.png index 2bc59b0e7ccda4a2704f405b76881b5d42af1808..f08564f58f46dbb78fc2903ecd7e4e5b821beebb 100644 GIT binary patch literal 37856 zcmeFYXH=8f_ck1gg+ag(1*MLPpd*4v@1v-QN|6?N5$RnBy{QPJ2sogCR1u^klu!c+ zBvBMbT0{(?CKMqOAfXrn2?@^~`2EXT@ALKj_PCZJx$k|>KKtx_?Q8FI^31}_Sm-y2 z-#{RckjbsFDpoWJw*F0McQ`j^G$P9|9gOdbpHoq4SNM~wLO8(%^o zgpQi$v&fV?M?WOrcCt8n^u)^(2Lv8Jmb-f8F+b0j$v85@n7*^nAA-a!8c5@!F|PG7 z1BDc5CE5m0x5gu2#g%)?{J($xf3bk=+&Eqz)?-^=WnfX{8s8cdOP{3tjxU1s)t|qa z)ESci`JmAy2tIXO$|A#9Ui)8C=93PpA}(R4_)=_ACQtmY`D`j!8dUSh(Uw+IJht_NDo3*JY-4suA3PwXl`5%pG*Y+F!MUCJoRWZ7g^FnI z{0#3p*MmL`_GMMdDOFJ$Kek15p$m!fv|us+Z)-nX4$6la@Dff+9aVa+^;5>8vko~3 z<>SfAMp^IL>WAYW^?zuS{AvU{;`eNG7(JQ(1dZVt!C%#tZP;z=b|Ym^&;P-CMhS%p z^SWJ?u_E{7*}-mOi5&=#svZ6P1P4cm5DM^v1&@v@kQT(o-4+s}cQf zT+@=xwHh`PoLjKE-3e1zX{^Zv8(J3)ztkeus=`oUgrtz`Xvo8@5PCkP1d6F4etT(G zj8KKj)}hNvyOMD>^);N1(x!HtlG~e&hc_Vz%4XS28Z=wt7;V?0v*z@pT~|T7&00yc zY-G@As%(wSB)q;gtO{ua!BGle{^<+RCiG8~6PJQ^>-;1yQBd>)Lgs^{24*A03-2kJ z@d0e33@x63$9q4EwwdrpD2;hd9>5n!=tS)-bw~c%nog0e6`Sw3bu0&iY_(aYWDnQwN>gcOQGgNR>G6N3;_ zs**u95gwH*5o46#Zbfq9iwhf2)ZdH~LgJw|m@D!rf)VY)E#raB1loueA*juQw4$Sr znwd@16l?GF3dITZ5f|kt@}dj+-!?-rZvD-PsJG`GEZdqjlsbW$g zyAfzC@5lgd=BU#!TT=OBK5lUs0$V@u$B++9WMa%h=3Axo0>* zJJQtARn~7uWkXQ+6X%7>MrT~=_JX};K+9lHchIck_s9T5PP~DGb$r85cH6K@gdbf& zS8<~Z9~jY4Bb$F;-%Lv8p0l42q1sE=*1KJ7YUQC=XnF&IStXXZ+fao(>9!JQnticl zNztcWK~wIem;M_Je5$Blp-9dgT5Rz7O0cfiDP>tzcFFP?w2_ebZxaK%hCTgZZ85)& zhXzXf?6e8Q71cHx;`_5?#Cq>Wib-X^Sl&b#G4z;pg>3!bL_M3NeJi&P|YU-)LB#_wR(0 zvC&%hPZ7?g)ufGq#;51swofGEh)$i6JbikTt1+MBH!Zp~H42l>i$XcW5=t59;OEht znw6!$T~Dd9?S;f2XHRw@*Yj}2Z3At9sk%kRN+&~=rdFT#t#}vi{-T&mx)ex|KLv)5 zrGP(0Og!j0C8XjKPx*O}YoVQ>Kzed_B4P7Be!_pa)+oN4?AV>qevjT4dp_}vZG0i_ zAvNzaG_%LEmV72)yxqU3)?*4z@hB5xNKaTdeHUM9lr0(g+TRWqW)s_Pz+m7CEC(EJr=f6DT3)%62&ju61qMQM!0+rxnDRUJswSx z)|sL0S~-XI&QCToKU^Sd`{5^iib=I)Xc%+o)cvt^o8bBz?Ns3s+>!|%Qia<@*>BEY z+3af*h9qESF4S2`4)Q5z?!08Y$MZ?L7&*1t$da21b-fxWbD{Q2?S~5@sQHy?WGAA| zh!D&`!%v0O;8{T4+g9Xq53Sf8ZRk&C(#nL)orrZvhn|er+0Z`CIPq?M?cH-i=H9sb z|15pl%n5aF%z&t1uQ^X{fsb`V&cMaNlkRVDzEMTHGCK@XfgC?minG)VbtwSAX$K1dj#*d$? zVM46gR~huJxF;!Kmchgp!6_HO7L_IcSE&*@*G_5D+AybY*dv4T_6~%_GcMZ9V4mxL#c;v`S z$QZb5tH+B9rBz9`I*>g)EaNsf83TUKb(bn?l}7>%(Y2)l=~l)Q3xBRmwyqcTC@xWj z7)7Y)QEJHCgkl0qcta_yNd6M-t>zHCW-03i0L1?DKjgvFn)cW$vX|YX%>(0}viwCC zSm^?N1>t855i^7tQRmh*g(AcY`$4*bqPNr8RabQ{rrpw1nVNhNa595M=Ob>pgE~#>cG)jYD{0)p348OG^Q}oUbK7%jL}(W@(ilCzZ)wW zVQEy~rVIJ8;qQ^7xpITjxYPtQ&kG(`h#ArUfXa<;f5E<@WdCa#yDxoQd!0q zsZc($9aTt<8N7c_fM^O}tV5>#u?|Cok>apiRPH^^nvDjP3+U*?9~=mpP=5Y*yqv>`ErGFKdI%RL$lr!7y`d9jrocrXkj=7{NJ2>MFr^urs@k27b zYUX43q{c}?0kwQ(vr<Yrn9W|GB&X zepZ^~NGm5MnM>8FdqoeslmiM}5xZC7?D=sW?fY@PwaH9?7)|SA+|5fUW_eByKNAVM zWxI^;*kmBTrwteC%D-+A?wQjggo&lyUJdGP_x~2tpEW(@TVTrKr@dQB0T5OGvnGu; zS~D^~et(=ft1sGXznM_@3Z&;0|KMXsrK!Ug=lpOH)@#uP$4#Buu*Z=ugp*B*vGxF_ z*6m~JAMFoPapX{5gNBZ!7u(Ax00b%|Y^A-mk|f<5lf&h$jjnq1G*U8S!syk$kNrCL zLaS0kPa0h$(t?ul>#?s~QHNQz9+}JN6P-fL&}%v!5X=AvhF_bzL1e+t*K22hwNq(>aqn*i*0)(E zABgIS*cm=JA>^v&MYNB(zDsa6)4Xu+*R1q{zGdfw+&*nT=hh)TjAORa$&xX65#YTO z{%>Sl*dGde9V(g2e@GydbK6}bm`cuw8KDf4pHC*6EmW_t>q7TL{p~3;vZzH`Y4;FY z3fEJ5s4wno1uXS4ji0827XrXcadtdbdKuVx1dvNtdPLOYTot0}$++%wQ2&2FPd3h& z&?;@~p$2*m#AoEn(7H~efC>8_I-wn&F1a;U&i&7Ctv>wP;r`KEvuLBSyXA(X(Nko$ zh}l-ac;#S(Un05VLLZFjL^t*@&~3>58rm6?5&K)zw^rTBHFL=T%@<8p!B~Zu;I1V< zl*%GLHxz>oqEnrf$W@RrZuT^FsO)St0b;}dlne2zDpjwf#*w?^F<)1uFpOSPk#4y5 zP_>YG3_GmLblbC{FwtS@VWD{#kW`UUnQ1P#8{@CS2=aE7NO$Lqbcg;H#-A(n@%#DA z`$d~`s0ft-WBIsjAwjB3!}#lTJhD|6c7~ zCZ3U+BlekkH)hsjytUn+vx_WlZcn_Ic?xiD9kIC+5+u%KTV;~?{5LBzOhMYeQ=_`fUO_1rMr7pw>LoQx^R2wn zE2N*am#7@!di8@JepMW}BvnTR!K~p~@p^_`B+YuU}k}E%Ux)FjA zH+2UM+5;WPw35BeK5!gmJIoavtYTvDM&r(&iR~#emq`xJ(FHgK z_HC9UfU?`&m}`u-ktK0PCOENSV5`p>C##A(JHCx?37w##O-Y~~PpE70!(#g#Du7w~ zi*Zq@+wx^-_m=7^3xb8aia+H0Y{#IaKFYu!`!#9daAD51unx&LIOicI~mq|Lk zX|qLFnG3$`wWAtwZ((?xb7uL~khd=6m?dN^g-~SRqVFa?Ov9Jck*@Sqq5AJqQzSyI z%lB2akBWPHekwiq=KOOZ%;ViCBUHC>W?!~sP%+Jl9Xl5rMa%?pNse<#e8fj@!?BR7 z=!vDg>;iP^tZ73Hd;KM4a3!I@IkA5Wk$%dso*i$IvGL?#e8UB?Xlg$GV)qNf$(MI^ z^1}_Pkv4SYft;Uq;Zv6{^>lOKW~{X|SYjQz*@OHNsL;)K){?i)0y2Uu6Qv`iR5=gv z*^$Dbet=7us^I*4eJ?E`A4~x}>pinQrScY8J#IK}Ue70^Ps=+M67wN%n-h_`Eu-W9 z2Ib3GEKj-lBeF>tN4ybj%wA1?Nc>vn%k|t3suN~7N<+t_wuO9hViMawxD)sD6Dt)%2*I{H$ z3r8>f?2=K*en`#t)JI2Tt`%zS%;n81B7^JzRz9-jMNy%ls zmYLMIp*_1(usi7$`n5ABI3iSdp^4#oiX15-1uT|cwo9oa53mrzO^EKNyX)!W2127OZ|QM0EU&6gF5 zI}rb62cTxp*01R)FZjW=L%>JV(JM<$5+kws4}0{Bnnh(ap9@D9Ia-4*F)sf%-ruPXhLX|Jm| z$_@6jLiMBp76f1BNkgo(-0iEw$q;@-44(}67`^Z~MRu#Zv)g53f*ahVWFWW|f#6O{ zE2x{B7FSm@)mT(tzcFh1AI}wLt(`Cp@`%+XxppS>dm9dK3IAx__(c(~aN?LPbea|1 ze@%E*5aQhUH!|;B_Vm*jQ;1jBvn7&u-mWKpDt}Uo^R#Ro^Dc&Q+%vI;*_z^#uFxXg zEX*m3nHL`3@f(f|3JIl8Q!4N<@4uIXgz8IQ_=`mS&Z#Ypp9+;Ol%gXkUP72pE(!f= z*~LG#{X`K%W=hpEM7Z=W>G(z`+`Yi8Q5HeCa;eFHW!?38p|Zkm@M_B-`3)w(hZI!V zw$P3d=?z5>ve6a^F=G|PY5a!QB_b!;EY*5weZuN|M zyCy*N5f>8LXZTeHU33Jt2q}S(mXy{%hlH_o#wVrNt)r(Ik& zs4a;FO(D!tiC^1$55aQP!rL~1?g&Ox)@snuyrJK8;wEa1nxgS<-S?2}n4S~}(%vYQ zPc}Fz@YiRddV|i$=Z%cHO@|6ky!Y;RcqY1qNlh6{8VpDbf7yCCZCqKzFUs`S&9a$= zGEb+>EbImd4qEX)))6iJM{7t{uM_UOG7OsaWUgu zoHG9F;J08k&X=jPLMvfB+?U|jjYT_RPsud=s@nT~H0&|sL!Zbg?z5zP{ST~EJRW>h znfqpG#4yiM(6DwjG6=GiGB^@sQ)KVlguDxJp+BO~@dYq(aDCmN^VJ%z?Em}o|FuAf zg_HvX6kes%i42EWLPF{7ln%E$PB&5ly$Q_3cO=ENuNIU@-B zFT$GU|IjjWa`h1fweekj??X#zD5vU+z@)j2tPES%7wP@OmwWgKdaDB*BS{_2tVsyz zBgsM&I%C}F#VHz*h*m^wRjDa)$vUzw0g7Ds*+i@5lrh(C9PIdu0F@bqCvc^u0%WTP zs|TGSe-!jCand4h(m9tBcdya=go>(HMrKmvXlD^Gbem#mG9HdkU8@r!@K?EFa1Asp zW)u2k)Vg@uxkHw?zS{%FXc?W#wZ=F&x9G&GQPFrD?Nak=E#?pE1{CAyF2xm7#LdI% zYp52^UTV~jlvf>#1NpHwJ>$5}5t%+DC8yB^)zfG@UzoCmBl=$B3TO~(VG3aJaK(B$ zg;IQr*OAjpDB{eg1^HQ1A@k!zVNF(=n8QyMIjmF?`Hu}}f#tVHhw{`3%RJpT62^=bG(Bi;F)lT-hShdFfbD6EEt+l6Jr6X9cs(8 zF|SIfWMZGsK7PNwKzWzJZdB<5veQ(baNMBY2SM({+CkR(=o$B}GHs|Pm{F_L($lE_ zp|89BKK%}U+cbBy^DPrk`Lj|09Kbu@EWthDr%Cy|b8iP| zYDdgh{+LHb4ZmMH#rs?PqYqiy21)rGC0#ohMOFUeNo(oy+7 zN$GNX3%@K&s5baUWk$t(_bJYX2G_bY&NtnGdV^i@JL7~YApxTH*Xw-TVFQYlgKvE+ zM)xhsIsl#F=P8`Geo;t<2&~7NmLHjUSpt*sIn6f*bC%QsY+|}U?5)Z?KUw<_#0tqf4>HLc8X-R=In>xjdGeNmFuZi z(#1yhuIfw%H0(TgtES(!8$+Jx_wT-ui)5S-AP%f!Q(S#B9Bdym+=X8E=*3SJ_Hh-~ zI*g9b+;DYQx(C;giyBLBf{86==Z!hVCZA5iuH-&D)K zTq~lXhSV2f1m9Y9xl*~#eM>mYilMc8hkWdSztQ8!CcOy!UM_(js{}J@>e^GUxHxx4 z8_d9!_I<-Gy3T$Iu2aioP)N|Tq7|4J2nN_M{3d)dO(K7$uvsxly0f+POf>h@7#QB} z9m=*o;NP?WY2w7oDE*b>#o(c@4;Ho^E7-Y|M|cIq1@CVmCJ@@w+Og&0Z%0Y?Fk${t z{XG*-|Dj!7IyO+01+TBEyEoOzOq4Duj1PiTQodI8$F98VDC;_ak5mj7@>cjDD0%C# zI53^oEtxTDb^|$Rd)FJiq5|K8?9^ou&XKLF@D|Hui_Pe)45}A=($x`*Sx{-jwUR*xN-@ zzqSj)B(s`wm+y}!)}R}Zw;@fGheGBnoI8-2SACvFCac^mkG((XnZmVNM-2P;MqD!! zbt>nxK}giTov{Yt4n~a;VuUx|e=G+d>i`5mmlM4;nw53a1Q$*oVgdA8EO^A#ult`@ zhk$2x=BdznU!PcpV}9puIbz__nN58zyao5@+~9hK+pcyk(%9%eBd07>Tusg|Si{pk z7)n&fd>y6zX9qRFwN$YFTV%J-q%o9KEkjzB-_(WPF~7H5p{6iQ8t@5u4r@np-D2Oob-Q1RWP} z(fBA5zWkQms{IOZ17JFMl(%(ejloERQ$Gt@Qd8I5(`a6ge*49oEyI7TBkZjZV6C~F zT~b916}rDXV?;H;!w??rO<*9rSv8c8+KO`>8Nrp}Uh*GMQM9r3-Fg?Bqrljp7ZA&? z0s?>_+7gi_MjHZT>w2eqPVlq9764RU*}z78ptNI{Y{3P55M-N@3QM*2&ghPZGTD>{ zd@NX0Y`K`9_HbuWst@@f!;@=Wsq2KmTNI83qj{Zc|Lp$RVt@)`fniBAUv_pOYrKw3j=fv56ip=8@cOZ|$NK5h>BXPTS6-G-f- zV*Y|)Qd%Qm1{UlHdMv)j_PDrW(LRnA%-Z6|@C=*E7u{?tBh@2`w$AW(ZEl|X+ivHr zU_<%_bW|uqZ2($p%0;*qZ$h-O|9NVh3!_@;mm`Tjla(;TDjCPlSYSyG|CzX`&|bfd z`445iER+`XQ*GrLzS34ytVUrUlx&y&ke$go%E408@%`V-9ETDN>>**QT_t#nN|YvlDr@BIu=$OBLuvF}bAUGp%^PrIxL)XW@SGoxbn z8zocM;P;(z3dW{VNhL@lbuZO({W3|kX#C|Qn<8C-x<&`%C83V#-O};!r9z5l8RpS} z{Y6h--z_W3Mj01<2VT7k+-On3>xv&258>TkRjW?z=?}WKu2l(P=u(ibb_WF*7yz-0 zu2%6Mj%>uw4Q7KjB0~>;ZqnAw8xbsNqRoWQZb=EN_D2`A;sDdq` zO2*JLx}+{4GGmPgUg0vadT~0;c8`om{RM`}xWre@aCUCdXNKBffp4g{@w%;dn}$P5 z=96&-8?RDmxc`-&?9c_^M7ttFL;3QOWbv$iV80##M*Q~U6ZJE`OYEd3tAJlQ;Ez2! z*kyF#HNlC)4av*r@Eg$jz{tR5msX}L{*bOgL##Vs-9WO8`k`n4BT&<4&8R1i0|MRv z2@1OG@g@~kU`?`!kA^($OcglRu@SNk-J>pUN@#eD1-%S^!g!7d)^BA#q0GgeXJt`b zjrrg=_hUw5A`sRDqb=Iik!|qW_!3REO3<>^K7JICe^4eQkD(%^(ot01&}#ZUgqkGEpu@mW)(rUq*LlSxh*+2k#9; z8{BVy=q14A@%S!iuq4}=o|WQtlG9kap*ju9-opsH!U=1J6g&1QJmU=*Vt`NQ5vB8Z`3NWW3$68`DtQIW?Rs zrK_0z-)7%LDIicks1aSRwxq8On-T7Y+0#XQfqO{WkGqs_U=QeVpT3004CtS6bJhKi zJ8%9&D{?P3!lz|T9`O2OpL!Z18~|_T*$2zZhOY1*+ev(8dywvCpycWt(H(85hWjh& z2|&6!i-;ljzlO;J7OkmQu1kQ$B+}oj=BzO`1P^K50?xgcdhwCg-e5*mUE_e7f(;{3 z>q4PpJQ7(IbCr(o6A%RiM?aKOF2cNRXg+NOj1&Di1vs>0A}I4=>B33vtToEN8eK-M zcfSBg)rrrJJ{rJVoBOlUL@rmKfoSibfGMJ#_K5m2$ zMr^RzpM|vfw5kA_dN?<*3Z7|8q*co}=~uX+MoF=r`BEHUp@gq3M$7Rh@bU_z5ZJQJQ=$NW$>xzI^xvSnV^R4nKRDW5)f~yjc z%od6QbOJFpp!~6eJ6`cvgXo8dqVlQMIdiede2Wq3*1L#m0n7bS@b96r)x_@&ELs?h zR2u}`pmf7zO?#e|3QU=~WfYvRpwl@g+L8OlVr0aZq)WP-dy~8ENszE~N-i`rd>PH+ z!{cnh_U=w_lF91ehX_-i%dW0%^SdQu3mY3|TdXkA-f^9kQ>w=Nz{XlnHR_;{-bSj= z)%Ehi&AKGp#cR$hB{^pUmAas0aYt=wdhuC>xP<#C{Rz{isb+DSJ{SA6Ld>947yTNK z0Xdm!PRHp6mPk5A`H-FNv5quGD?k=@UE60MnYHNYWDKIf3*}2fGQI+G)7Z8Eqttnk z+B!`M#v96B1>|tg2^9OTr~7m4JiwbE1vm^R8H0gbvyYru-v#5Oeh1{FqzKgsWig3H zXBaW~Sg35UkL{Yf36=Nqha#PkzgXU|f}ri?6ug3QiGD(#+C)ozES+NI*gLLd-ysmr zt&g!+CQD1Dr_yvHl-Z3GUCDf3kgd6be?W4V5ayW7*p&`g3@Zn-+W^oG&QIC~tOOdQ zE0OR{ClW|^G`l%k!M>GmXuoHoDK^rmQ~(zJAO$D74+NM$&P@+ZOEDYD2vBvhF4E4Y z7JF1^hqm>tUn|kw+tY=W=RzX4JL^3dgR(H0vCZHwyh~RBsfS&Z5*>qkEauQwZNj^? zXHy%nU>D1dv@_fw$97D@W1Nh_QjKXvKo`&svItDJoWZXwx%eA!h4P|#-ogt?C5#MK zt_CV}Vv3iP#y6g=Cw3l9*w$**c%qR>pPKeX)QPEDDkwFoTXtqw$u>Iw~m zdaM1i;tQGHPnJuwAx7j`fV^r-M3%?608mdePUO41w-`{(xF;02rs^=|rbcbTi*hSp zJ5xK*(mrpnd+iSv0mu*Xqt7HpQx38VXMTD<%R74VSVzHpA*K9MqTvIRzRpOxl~8@} zGX70jqOxvkBj6XKcM-t=*@@MOC}H)cu!x5BN?dn>TZpSQtA~f%$l+uh#* z-mW2j5fYdJhc6RX-%%EY1YD=5qi-8IhX4#_>_PFgrzX{v?bTzbuLtu6Yu0hXgt-hF z&Z)Ct-vavaX@E)Yv0dmBcosmsu;@Sjr|vzApCDV0M2Gze)KE$E2zE-vfyAm((H05n zC0QG`iIIXI2%8ceX!LPQ8z?}5ciI7slANI3snck!?(;t}mD}>l%rbzN zO#u3V6sLe@o?RF7E}rm3ef!T*jurUPg~-rypz8@^<0UP#Zi+m znW8f3OG}TnU$y+UM|b)len#s*N_08J>*i2LAZkHC-$0Ao%>{|8h3DCJ)tBZjm)6t@ z%x-L2aNBq+k_{9<8$0JPHEJ1tPBQ=K&R4)m+%n{%#A)yGh;&ZkFvWG#Vk8~0v+Egq zp6j~orEY*w#oAP6c6YV|p5p+a0wPK2zl@|wK~!$1@-{uwv6tD5^-$eRgF|+j`95xE3yG^sKZmlHmY|ZR_T54-LU^2`Np7*ni@v?i$YsM^ zD0N~rnK~5PjZ;_a3Yinw;Hlx;>zQ@U7J;W)O2OZtj<&(oL}&e$7>E(dxTH!cU{nEI z1vG2wklqlsXzxx=il_#l#Gzqz$?=g+SIGQOn}{{W83@t_fJTB?Bbs2Ka|OFHEG!Nt zbuMGc{i56!NE6BiIRDVp%_Lq#S1>s#6>N~kGli%zEpSajwGL+S7)sn4Gyav2Qn5$y z@&--t2yh~4O$4M5WA--J3kE3dEBY|LBPNRecS-~V(}?tibW+BJR_MiGwlRGZ`2L0A z3r?rofi<8>0oTd(|JlYmjfWV|891}A(nnJ&c0pRxa#7&9k0}RNNgaE2mz}P+tw>!$ zIdaEm5(P5`CtAn*sk`&Qfh_}o$c-*+6Iml;8}AJPN_9_wX>Um6dxDbY_G%g|rSRL= zH=ASlKmanJ#kTrTCK<2+HsvK3P?F|RmH>%=0#&^^$AQIMqqkA`03MzsbaszV_HCR4 zf;kqPE0Z33r)wB#UTuJQ*9IE3*mFI&9ncgC1`whE@gnh_5eumdRkFY81X||Xe|)kM zZ1|O1QQrLTijwPSvU@dL(l#=No2ws>$LI0P2Yd^#CKq-PU`;k) zO^`w6p3+BxzJB!`7qQJfl^*NJwIFsGP+-QU^lE`;&WBsH-#ld82s!O*Q9D=WNkiDMn` zM_g+p`NsQai=rG;HzczVKvfBRBMIn@0_FC@WzY+S54wlO_jpHkENjoAOUsf#y>5?JC7(JB zswwM&?VVG|=WQ-dm7zoG?t!rR`|PHuNOvx-q`?0;i2HRQU?c6osZd+3&x2-HV^m4b}TL8#|FF~VzF*ZU#Msckdrc;{~cpAz;=SFqRvyOSU1 z8kqpWIp;)HF)JuffveOzDX{}a3U?E0Df7CDyW2wMC-~r}0Lb|Pd}%O6Ud&AIjf)dI z5ICh_sP7e69)idId{xlT(s$3=(&vdju+rbrN050oqKVY2=| z`B#4GmDDCw78ST_ImJiP$@oMyy)_mZ;8h|=it>&hbn7%(t-}t$G{bkku$=K@LMv3W zf>-)Z&WM;0`le`ad>ACH{rZ3o7bTJg9==K8SXV?FZKUH(6kdhZQozv6pf^-D-rNT4 z@ar}Ro&zX8{WzoO?~ zZ=)@5Qj6RN6faqGXEtX3fHL{E(16~pRjT2>7^iLQSO>1g1vyVkgBjLR^D2&mPTm5v zekY28xyYpL8+Sf<+%a{$q$Z(EC+tfoADjbRQJMa6p>lWh+B>_FdBDj+I&gzpBn4P1 z7qMd!WW0Mh-o1EE#Yhn}@Uh%{& zcX}Jp2>zHW-kvmdOg8obj#0CH>EpqmEIE^`^0?@uZ3jnD&;17vy7=AI&XT)OJ(9%O z!2bHVX6#=$cVc?{=h~Hz#*x6gawgl2r%MMuUU_T%VVl9bJN5OsoQb8gP7+vPw+(ZB zB~a!z7E>0zz+2>dymGR@WJ?#Lv~-OtNQdz+AKA$W*(HW`j4Uk?du*_IM<}o5P7J?K zPBauAM7}%&J6AZxYo{HfC;hW-tv#2=FheGjuN4|9!=2Ys=O(W)C=-MLp?C$8HXfxv z62Qt}PhhQ*KkMxBEAbi}SRD|1&n_U}$44&f(KnK0B&#+gqUws1P zFQPB)dhX z`UISE7hU$nIu8-Dlb0@lf^gwCclN9a26O%{n`g*cpb>(LwSN7{3aim z0^+^hzhN7&n7>Kh{b!SrOAqXF<*MV`zc}1n_?>hld_)_3L51*GhujOB!43?CE`Z38 zW7lwxBFdc)?i7w|^z;exxd2*Jw~z2A@ONC@LC>E0_#3g|)CjODp5U7@^5_e8)r0Nb z@(VG|gYD~n#c2=?gxC)znG|7Hc} zvrd-W`wvN)XURuNQUR*}wm%uuQz4iy6<(~*`mmD1E>wN94q^njSpY15HtZ8_2Bnnu5`L7!DE&gfUPqY& zEhzQ>J6J|WE=FmxJ9!m>_>B*Nli ze-$F+YIzI#lfYaz8#sK;AN3>l#na@GXukMk7Fp#TSEdI>6JG5$w~-aPOXQo6oxC$D z6`*+f`&1g-62VZf<%n;cJ-F+VeM#b=gOI*jD6!_ae}Me{w(G!nN&GJI35J&?w+^zE z&-^1-efUUJ*!0mHkpP%BdUPkNfNJy#VPjXC876F2*aUpHvQsmZ_#(V7Kw^J{D+M5N zp0xA9|3se0BfezIUC0FF@0(5=Km{Ybd6ypC3pjWi+w_UVipS=;kdK@ru53mygN7}5 zgUtFjp8fZB`-w|qiC8=kp`Dr>p29-`>R9zy5Jmybpvg}f(*B*kG$m*9=P^E_)CC?% zP$f_1aAXyWf0fV8W1Lp;K(u#Pk$5oUQ1`h(`x8+Ym~7Yu+8w>$+w?-&iqBD@k9q0= zR2lyu@hVtxilFl3D_Go3Ektc5-fBI*>r`@1WR_gZ8DQuox#V2YM{7fbl{!p>Smy7K zX+{E?;m*%Uj-Za=r5&Z|DbqTA(>?d}gTVN3R%4ZtG*H6fe$yBFf;)%i1p)B#1FpmT z34C)n*fJJ3Yma4`*6TR$OL(4}*6>4-Fa_{8^p_RjOD2{YN1|+Qbv+UlU?cwQ9E$yI zGX^v3#6ldQy?Zqk3<1(2(DV2y+f9Cf=k{`6K>`KBATpvV)8d1u58RR5^pbb{&W zfL2A5EbG?}yu>Mi`1cYs2%&tglV#<*ho=*2U;3Q@LM{-%I~Tztrl^;<${u^{VPp9W z_7OJLuY>dSxc@(LCV`*Cgt$`HsAt%Ju=lWjkp2x;crWl|rGl8m0Au5QkDuWR9$0so z=Kokn>MCo%@QCwP@_NAXmV&1Lv4&;KnMnL4?*0T`JQw3;>?Bmv+b_2h8Rk3!s4iz> zLjgtb1-;+V9|}&&JccMN7++!>(h&m{Xs+nKl)K=nbZ#d$DrDs8ar;Z9%Vq!!y9^OZ zUSvGQE@E$BMXRkVi4{CW&+0S%XT$36ww2cA8XkTL7-8rIukeA4LmDr-7x={ayx}{n zl8r}Su$l+oL>iO^)1Fk@04BA5+K^mO*kjMB{A$i)44S(Ft5c`D=uascmam^U{8}bb zy&-{%pJLgMhLZ??(>%O+b`QL$pJq-St`%n@WzoNnYO%A%516k9qLR=lI4^9ol#*40j}sN){xJiiCw)7q~%PVNAZVC z)Rv+}nvS>qw&j)r0rFihAQ^OIMwzUVBNAJ3Afvxd&GX+qWQo3#1Mm4)^%D(D{G<7T zqiPqBzWfdy>^RVRXdDmp~f%GqMB_Oh%@dSUUxqUcV zC~Bf$FV-3@fgI~37%qxY-afl(a;@MXFu5M!$0xr{ZySSj`4o62Hkq9SiJeKV>+oMb zGFtNWxqF&VfJ%tA`w5!SDLjC{ukJ`E7gU@|HWkRa7?FE(&ha|=Ld}_z0yRf!jBdR!mtl6<0brH((~ zK;aR+{`ExLFLS|I%}0SgMSo5186dq?CBy)pv_)jnurtY@j{_!@1+3+E94@;mo+F~* zDj&z+Tk@i3liy1vq-uh+b_TBe*>%hxdl5(#H_!8+K$=zwvhio(qMtFDIdat}fLv4l z1pe;Vl^l`Nxgauc!L*RIr9fNWBfiP#WQ#cBA7p2f2JnW&o>5KDK2qk*JVsK*DRd~0 zUFKT<+w_qr)hnso-S&4dClH;+?W)^5)QK*fY{$rogTO)J`Xc7e{&c3nQa<_b>|DBZgHzpXj;{T0Q0F!}XYQ3a|{h=(Ddkhn}0sb2x+5VRa>P3py=> z?Tz>Mrt^dFmYj)u2qz~*U0A*N@v-Pc7Z5hUc&AjRYX>_&kw_HCpt_0*p&wu&&-c9J zPxX|qjmsB$8FgC%@QA%>!cVSNxZM&W=sC?nRw$j%dYYCB{ml$F08cileQ;^oZu+oW zfZFDf5FPi8+32xXT<3ift(;;q70on4Rf73IM%VbHc8h*z_ zJ_VB0!Pr&k(VHN_zk?lQ`88@DX3!rUIu;hrQ}*9{V0_{rwjCQc%bG|8xxQ;-v;hF3 z0R%@Cq^a2*n_JeS%nK%5?x{>tFY6)mr1{mHqlxjNcoScsiASPdz)e1RV%f<91R_XG zlw;P-1LFa{@+|kQ)}f1~-4!qa5$=h`C9GT$~vw0+h{v@aLNOgrVh} z)P($kmePCVdVr>zz#7A;ui^M8V(e*U|6Vk$c<_g4tsY*}U*VnRb(`A@rtRt9fTRzq zKgL;geYcrD{y)S$H*D@vu&C`tu;_9GPbH6NzUxEE9({5k`C$=B;J<0UuKZ{-|H@baew!mE?S>J!dQAvZ>NmU#;Qnnc%^rfJoQ>mCIL0+ky-ZNtt(CSe?Kg znZ7$+9ncF5;iuff-%%hhgRv)XVDLCD?qsbmPGMEB;sUiJpyG4QE(KTFwBLb`t)BuZ z)kZWkcVv6#3#Su?*Ukk#E$`k2m13v{pCsi-raoOE`fxdJjgU3&aEXU@|D%`NQDz`s zbUi0#06-ME3x+92d8b65IksHlsr!Q;CGxU1!_7FJ zva*Im-r+~CAld_~9AF&g@VzeeNCg?$d*qEorM1yLaP&hTTfH}Z@LFE1+Udzop;774 zlUgF&;3&^g5w^?G8acW3E5Veaj_U=|Z3j@wvC#Xa-1ub3$H!@@f78B*^NRD*`sx72 z@%^UKxydI|g^<%LKP6@hu!jURQ}HK%n=Hti>$Zkj6`$fFqNo3f>EqL$v#hl-?3W=L zU=j5+p5PSuqY=23_S134N8um+34AhUPN?H{Ej;Rfmh3rQ$Xpi_>`QV?G8fhGJ}LO(MS`=)=srQ_9B38ia@q2Q#Xo)xb*67|P?Bvj zTZc<`xjteGBm$}MUGo?%EqP*G7q5FJ27x?4fiA*H)Sq+3dAIAVk7 z!_Z|A(%m&8!WmK;$x%u=6o%&8&**u-_viQXy{^ye{NT*<>{x5Byw{pN!sJ(*S&s&u z^-J0s-*q9XH{N9cqveE%9nZx>cRvaYCDY|bsT8#)!NyK!vX*{}eN|?yj#PpVp_mlS z1quo$GSWH}5(v!?fzj92{V2AOg~GunbCb!Wr@J{3kF=5qTcU-ELTK0(K-72fi8jf2 zDXWXt>DTPar!U_kliMRqImA+#DAi|9v3FwY8f;0?`mI<=s)!wj107-nbq7EAq^#sr z=q0QT-BJ%?oKgVMNs-d_5qNF1Ek2T*fqp3zaA#YkvU+U4h#@{8&W369fhGIy|H*>( zt{^$6H7OM^wXt6~K=>JP%~v8FjOJzf`}{05+cjDr$;jqvY#ZID<_@=s|#jo~6r6w<#t`nmJ@8f&OSm_kjP$VYe>m5v*JmycL4 zb_9f;&~Vdb;xVG1)dzcLg;g&=R_dQgD6%DqW3h$ECNZLb6=v)dpahfWAo8waS2{mGc6C%>8EDMe&S;Lz?#cS<3Fl6jmV>|(RdKcEOe`5v3NBuJG{UH+xx zF<=cID`_}@)TA1>-Yz6@6KyJGu7|?1<7jIW%8bo?zVdVeWaqij=Eh*NRrm0T%E|am ze1WmTPjkw>xWYGKe5Z$F$pciJm^ahoZf$1{zd|*`SO7)`sME~onMTV_o2wj~3iNF8 z<_@i|$uFPcvXX85@g%*8R2@RGdGTs692Flj_|e~UA&%e*?2Td^RQ`DEE7jI`yHJ{E zD^4|7H7vgfS%&Qy{B(uVFkQbG+O@+!l4Y%| z=q63=C2VqN6m1O^Pu&1<7Pd7#g`C!trOKgix`z~L<$VQFr~g>FzGLUZA~QPP*0Ovn z{<(0rd&T#j{#y~-mmrGNqvUE-dOV>WtQepxww&<^aAc!IMY&U*JGU<=dRkJy=4oMf z)3f$$T?;r|O_O7#V?*vGZ&~;#0GYW-1~&R${I9^y+Y(5(L0hiO^c$EftsgLWU#xT! zsYHMz8`BSrC5e270WZ~VP#E|`^K;({Z%DUYnO#sf-fX{ zOE_*mi^+HVDeX$*L-WMWDE7rC*o@ldMSWFR)B=W2w zf{O<67M`_AUF=JK#NK%#M!s#Tmo=+M0x^Qk~JS+%}SfG^1j^uXVMDj?^Rjtnp5$U@*fw{}B@4|m~b&EwgAv5n*!Y)`po!;n%k$jQrqZFHq zoI~a}jNXrRRzFh=9=hV(4MIt1Amgx{VgI~W=&6#+24MEAVin~h+2)^i5klc#4;O8T z=NhTcBzq5Z(>c@ao%5sGGWabQlH~;hZqp+NdLe?+j6-F}GB`katn0!wzJ!$zJ&UI# z_I7ux+#U^~m%B0a-LD(*i-Cq4nRvoSK_Tp`VO~p4*io@yUE3i4QpfXy+^8+g)dtqz zZQkv`)Z=J4^4F^Ku$CFd&%kN*X+A;F9HVGHP>>;UuU@eJ9KP`0k|Vr%x8}a4m>ZwV zL5y?B>rL$&<@P}H5hKSahFu+Nn5sW+a{&?KwJo>*H&oN=7V-W({S~+8Gg%e=$^bx% zfdPuFprf3n_bQ)m1!n;CcUL3d9MCW)O4PVs$7dT$5%S`da9H#iSyT;Dm%4J91EgLR z6eNmY^SK{rPoo6&{X1%yBUA0R$-se%5F-d&Vzv(M3%Da!8CRFi&D8QG_kjJQH!>d` z+tIu@`mffD`g|XoiuVD}{n81-dZc|G!^83;hCl)P6b4Y8l;hm>ncF<>Cxv8W?4m6i zED39J)4P&@u~~6upK_GW&?PDFJ(+UD%bcfT35m_sh(M#8C(c^4J>Nb@d4y3R6Qd6dGi5P65}3&pKM|=EIIn0 zVS}3$gu^a{GKbc^FF+nps-s-d&N~3qL1$ec$1WxlLRKNb-l>QUP?;gsY1sexDvY-X z%t%LbW^5L|8=q$H%;@g=puLmq$S}MP_wce|Uq@W{t@ImjAuN#x8b4Rc(?Yv|{`GZA z02Gpu>gEj_*s7UPUv2+8$ms@N_V^a}s*07p;_Ou_0SZl|h2yoOd5-74#&7LZa?7ts zS>1YjDZT2#@-{HVJ=zpL+@;n-T*3#kN~}*tu(oIW$Y${xBWJD0$Ckb+0&Ns=%SW%BJdQ4O#7>@Yc5%l=cLH8~>0JgUOEA3h`_WC?tJiYT)lr$y?< z>^H_?4Y}g9e5#w8NnY&l%s+>pbkeTAf6Tzfm(k}gm4cGdmtB)1UNBkQ#~&`R)8(>7 z)FG0n%n-FH+OWbyN9-?7=ZLy-JI{BgM$>+GTTj5Ck_w1MN{V$UAD-PmaZq2-R(%Y- z=SWXv!G#phA{&`TcAX+&Ql{SkfM)9656Lqm?Qg1GjKo(>-V+W+-mT2AFl7(Y1s8gyqcL;DY-e-6GGQquyM!~!KFl`C@mVpzc#ov) zqWq$>I!S1aG%>g)Nle5`q_H&HbpTtMW>CnzYDj(HTRZDVHB=NSO-3hDrAYcjJ*$l; z27)l#AMu~_OrspVxkc|!6Q}n{JO}aXz0-1rH${8sB3=9YV#!B!ku0G>ya%lofKxi% zd7A#0O$psp&Mf8)NOu7t#kJi-ME#BJ%tV-K13P@8s4_2;KNHnWlE?Vv#+G9NjbpOd z?;6>{d|br4)WMUIOn&iOUFi*zsxQtzVFf08-Su*zB8bT~8|zxXgmIKIB3<8?a}0EH zmZqt`8e>>gS_{F#{lvGPS_B70BRSmu_1 zMC+vK`7N$@^2(QvUUE+3hL^~?%||?s3b$X?)~n%SPc@k}%iItJb7gl8hMr1XmCLJN z!NT0-R?DGTd5@cMP+8HCOEI4{^V*3AQqiB!EcF)CwP6;OatoG`#6lJ2NpCK8!;yfB zim8dgMwwag@uviQtH#58)5PCod|)^X={7m`#!oK2vr0l$uD+zR3Jm=kKEQBHVeNrM zR0LdygU20iRL<(MX&ewVQu6rX0Mk5?as!=JkPWW7IdDy6-I%;Q|YNeya$vr>#kM~BWy(Ha#D zCIwLZVl}S>aopXrLMW-S)`bk_VZo&vhu@dRfRp8L%+~~~K-70!F4yqB)4!HJdE|g{ zQPV!>Yf1O;F#a&lGsU%0V4@<;ARYj9#}%x9F$z^TIvpVQB)`*CA@+Z7XiZmo~_|;!2aDQL|{zeLzc$*F$cULU20+I*TVy+F!r5=6aS25VkeMY;zhvVfuWvYQ&8Id z`3t{4HAJjSFbtw(dk$yp;Ya7Xz<%ASfCM_KdPsyLfj`L zc<0_9j%CIoSP)Sn+1lTVKn|aEyqr4!!l=#fQMbLbLmY}l@Cwt>z%czhw!`GTE1Pj& zCyNX(tF|4pQY5;zhCJI-BclFT^(+wpmEQJJX|uzsJ&YK;HstZ}^mjq0qgE_dD^1d~ z$H&7vZWo;fUaQ)G@)hD0)j)Xj_=P~3pUz5ZAb$iheu`VC{tD^7RU=}y;0A3-)ZkG5 zJNe3g3?aQ7@6g`Rif1bvDTr6p2LHmf4K$|AgUanylKS4w1%MRfw%^mEjx#=J7=o;3lh4yT`kSF5w>#J*}*7!hjG)Cm*zOF8e-jvB|D< z)%&s5!P^h&aWCGXwkX}{zcXLEb*yoWH8hghMA$6sJHWg^+|8GVCB=e%2z`$+&F3wK z>3T1LU98Z?>k+ky+*Wp0a4t<9*3lcR_45nt%rTDtoN#CT9x)_~Pdk!tOclps?j^bW z&zJz*q%b^qk605{t}f4-DbJJyY7o}s;Gy_Cx0AFeZv8dsj@1K>*$4^+WwzyUB!iny zL~9C&oXb*4%&w!SnQ3YOzH(xj1KwB}4{H2mS{Y$Dy4y@XF(ZN^nEiYgBJ%h_u>{4y zocGej#u?s6-*}=`LAWjokQO8l#fXZ{7`{I&qW2)2{|r0_uVnQz!zr=(J5I2~mz5Xc z>F~Wxhff;l_GpdBbuS={k$ir-uLq6*&FLE-pnip7q-nlkqlL-@l|naLGH!(~D+Q+@ z{3sRh(nS6F*WmAzMBOIVjB!SFRIu7;J)l>Ui*2*Wx7RMv@y~&a4F<3hsIc%_9s21eHO&d3)C{`3}_jhi+ zOYq$5E-sB3b{rJk6mAF-$`BE$C)JVw+F6d{Uvv+NhTS1uw6b`y0b5ik?X*PHYSF|( zvA_+;)0GzBal+rdOA03MTInec#$sLQf*!sv zqhghsN{XWg|BOv}2nvaKEZu2*;y?oJ0_v3>4@10KVYim{0w^feJ;0JjyH}zg*T}c{ z+QHr!1)Zu9~9du zB#l8cgryHnv!1`k^RF4-4XjLlJNdSfH4^fKi>_&b-`+PbxT1V8B_KuydV1h}&m8#u zE28<$3o^QSuqA=?Xkji-x3y{1lYN_>)t~=Q7Ps&X$kvCwDsr@8eUkD*6Lt#ybkb%+YtFv5G#IpLpBojqLeKO25p1oMI5ZH=mLTwuQwq zdz@R`f`l$S{x$h7Ftp(4B?jJjBY~Uy8h5V1^vNG9$O~FIz-%jDxGiCH45O3k+I6q(AY4{MV}d-X+`L>U+YvLz6f$;&R>iH%PI%UHluy~o|4hhnm+;1fOe%kRVC z@!hS5y*V&cnig1tTMeEg=F-2R_Bs|_x83jz+|UlfX`Nr{)S4&@p5UdRSF6f3Yxw0b zAL&PR^{F(t1hX1=f78hTm#~(4m#oy4xHlV`92ylJ&4Eyh}BEc){a9NB;Ov%u*xP@bT->z)XleoQv4rBtE-Y-3b)T(eS@6gp`BOuR3;x5dvgq zH788e=R_Mm(XS?G(p928#!8#Y02hF?g=z2~s_vburrkPQXzXK4K6O(7vT({>XX9qb z`BBYC+-WMyRGEZdulmzftf$J2`Qz2l06J>&ZhF_)bfw@t#h$RoK5y9hF+i$= z6)QkY>7QAOav&LLZj!-y;Ee7A#%@u2R2Hfn9c1ERR0-fv0Tw7rTNN*W@4z(}jMD}t zwT?`Y^*rG-NQhjyd;OTu?1MeC9>)vit?hh4%%=QtW#YpdfXv>a`@Sp?7F{!oWJT7X zDzryA!eJVqGzN`}7Aiir=YQqWwl{(@ugT||K$*O*Nxs`}R}AH#$T5^^na5}0bD9cX zcA+e(3{02d}Yg1QcWJ|Rlll_MdFc7ez1XtwTI{f6iGFjN69bs;0IJtFdm2- zy9c#Ub_f>KuO2=PGNnIY@J4(%$d)mMr_PAaA?cm| z!_BmTisOa;$zE3x78>tBs0nkp-CMiK!-a?#2^Msy2Xx%~F>Z#1^*4fpT9W}Vrh0gLmyL!4U9;V{a5Q7v_iuQ~_i<}|K zQZt?0cm}tZK18pmL7$T*C>ZNg+6tRTam>h@r|WN;M@Y7w#@w#33g;l zG+$2P&ajGJ%dmGt_J(@D_bR`)ee@!YOuoIvHksb=Dnf$ZHR@WOwK|Y?uTpym?J~Gu zEWFDx%fWEfdexo8u4E62y?~KS)U}RuTvq5pkwVqq3;){Jg4P(-FB{j1S6V+01IXh{ zZRRc`eqv5`2$ZvE&vd`eCTpob>;)u^o$60~ztmQ9Lg|eLwG`<%@f?wxhQ%rbg|u68?IEGjBsOM(=w_{ ztUch-$f_0wqxX1`99*TUKe>bRs-nMYX8fzD2XhlW4eEDCtVO23FY;cqi}reeuv`%T zuQ5j_n1M!tNltxlxcC@IuH61EIs6E=s`q{nr;=o5cQAMJbwOh-A2^Ur1J1p|IoltD zxNmsL_Y#We3cA#EOg|VrDApHLg;zpdK!?3gUxq<+Vnr1#w=f{t7%y? zuK%nXF>f&=VEwGm|GMoM^ns4gE0Sg)vU!{{mnhHdC-Nt%#pr+<9P0|BRl(1-lZ`F! zoXWI+tR;K5U&`{%L$VzWq&veAA%Bb3Taa@6-#-v4l%}*pF&*Ufv|p<04za$;OjkE6 ze;b6(;>`n~wfn@6!RG4Zx}CbI(T9A76^SX#;s#lyF+uRq8CEJb zC8MGmYcUCqt+OEaxFJDyt5Di|V2smd;?;lV$(}OeJr}@Eh7RQalaK4bNa#$uV8FtN zwT0z<(CO2_?Oc1Ays(})2nHO(HLV0eMz!?5$d%}5C9`Vx*P%f3a1cLtjvkx~P420P z4pgwJ{g+ke|5i32KQ>A{HqXuoDhDYSof9@iiFxEUAF%a2xYydz@M5W@)SIub-d#G^ zko?t>RDthtRwe5aW(f~o$d+UniafShuXxUs!A$jM!LHSRER(PSt4EujjXMIm9oQr4 zjwG?37yO$vVH|Y<%fu=pu#=(Wy7vc=T*V^k|E5LgGHF2AyeZw#^RG|7Ge2KTr2Vvf zNb$GB0Yc9m0+~qjycF6+!Gq9!UqprH0$r{)u15E*0P zr=S`w=gvm1M!R#mbFZrZr5WAdgf-NWHKLa~Ek$vLH9{VhgfydUZ_6Ni04Qw-WLA#) zphyMQ4nUpn-bx04NFx5$pg|aP9&F8|GXOI{OB^QP!kY!y*O^6uXcLjji zv}~wazH*6F~82v;VKwE?}Mlkbb{=-w?e z5Ig>7Zh0`bG3Y5f`nmp^otO_3_`@3y{rC6^19;paMmfYP_2$^B60K(eA_GPG({lqn zJtt5v$0r{6S7B`NLG#W=Gcbgpptgo2=2rHTuY+{Owo&ABr=B` zRC7c&#~>RxDQiMr)Wb;U~kjaS4sx zv#UOT4H7y_2e|D3(67o2*m(-D^A^|xYv}TS21ln1SZYIxn}`pz@^@k>euX~97c(sA zIDytHL=wXJc!W1Hmf2uY0r%f-vL7Mcenn&XL(M~ju>UJ=GBeJa*8uh1Td1h_Mbh}H zZeiK~)FiF(8;FmL;!T&}&gQjS^DiB_zwcIoHa?Tl<}i(()5i`af74ovmL30_bwMCM zts!0hmc64%oLJr^u0uIbVxQf3hP~TYNqbXe#xd~6$g}4kCoj+m3xBjvvOm$S&D@tR zf{nCi&{PUP9&ub9{qfQJX1c};A8%Z|d+p-wYZjhW?p3iViar~CbMF`WH>C9YQ@c#; zHnQd|m+G`O#?AE`hV4>SLXx2pKZmiSp{_Gf;MHX2$_lQk`n3|>QJ$#w$ck-cu1~Tu zUYL}asnp`qu00!w$8M*A4SdlKasMTypzdVaRgFsX*eP!eBc|AEIoU7KY4orVU4V(N zGY#6?ZSI-xeoZ`Ie?E#WcFMAM@sclk+X{N*=nUWOca7&nt@`7jVlnC67~IRO4I2eQ zqDkvFw`VSFJapsV{jWia7*Cso{U3@@tuSH#?;t_6U;GiCjQGG^BG$I9KxaUf`f85A ziP}d24HTcS5djh&k z%QHA3$SMHR;_?s7Er2hZQ|F)?=QJ|)MHz%XHQWplu`-q{<&FL3or-Qj`+GzCtfaA+ zsSg-UHBWu{4)`)Ws}r|ZUyTpo=rg!%PtVAsaN?HV8oaQcae<1dP@lX67a zMRIK${~ZFg`!ZQyv&>uM0P{2DErz(@i{s?HFpOI3b7(_uX-=-HfZ*13(5NCU4%NU^ z2uT$D+vDvuSWuYcjS={W+Za)H7~3*_L>eF9l9nMnb~p&C;NH%`(PtyU+wB*fRz*%p zpua))e=M6~7?(@JQC=%k6Pn7-lTw&fi7`P!BD5#f(XbSO8GrLh@L%{MLZLad-&6d# z+7G^VkR5v4b8_J))wtY#PaSS`cQP5VAFnqy9VM5%ew!SJi2*@AbK9^4gw=^%IE24p*Trqs2R+d{@g5cY;7vPFn z|Bhz*d$`_F#PbwtV&Q`w7)|x{O`Nwkla}Xg2n8)B7F(<&^Ewq;1jNIhfdXI@O7)?#j`{;R? zrDrbES)3UKBBSo91ZhOOP6-YN~ zuQ0<09$lz9XGXwZiv2D(Hvx$j`r5l@^tzu5M^(OkH_UDY|lPnNxRzi8aK@X zR`!8h#LHlr#Oka5!y;oE3w@R6B-orIxu~s6@;)DX>F5Y+5#si$W_(m{l5_&PfL*sv zP<4F={Y&}s!rSJq(7-4pO`$NsX1ZjuvAkvC1SMP6*k055 z^Ua%&h07Z_Xfn|5l9}HI+M;Sj2%6&M@cLE*d)}(c)9K!l_Y&eisR_PPTR*s(EMKcr zptjD6={&1s{8=P+>N#(lkX(s}ET%qA#A#;~P3r3<-`Qrb^^b2ggHwE1u#1}K+UwRG z!t2(vPmaP8REA;iu3X7S+o7eo2)<5#$oYK(yq{#?i@M*G!mB0#4ov~ktt z)w@6Zyk?2^Gu8+e1`LZu8&6cOKseho3h^QVWQJrsp%g4}RUo_pJKA%ctbdHQ%S8Kh zb@>Sz!GexZzVxXrcUYPLXyhh@M(j%PNXrwlFu`~Ju*J$A?YAHq>seHg4CP{qi<$v{~{h1w46}Rnu*M^ZYj71!DA>}?#CR-Ps z@?|F%RV7ktZ(vF}*Y*vlh2b6ijd;Y(*#g~lX~Dc2&aWM2P-MCn1*sf8C>iYYV)tI_ z4}JpKP#Yq7y+OZ|b6WErkx z;@F6k<~}#jXlK>+Z#eO1ERlyHJpKk50TQBMS-d0nr#3w);f}N^8k(yMLD9wI!dAxK zbK;+Bl%d0fDN_gbU*;H1ty%hBSW$$|!`A%}y8q8Q5*1Sxke>UJ23Yqo@Cyb!{$8yj zr(d@0q+-Ss?sW;5!bStT2E5BZW!{ojr~LeE4|z~A-pYxdcAq#g7KtKnCB>F^HC2_i zm@&(_S!8b@RD|}s<>u5%)e9AGE(2?=Z|>%E`b5ev;NV0ONxad!hn!qRyVE!~4=_6d zYg>7(|7TEHamc?|Tlv!B!!l%B_Q)h;7BlsWmoO%)GjLhqGNB|YiG@I({^!38z^kRj}xj`GsAfAO{z z#H{~7$C9+0Loo^|Q(v2xYNDLg<2PhnfR28zW`$Xbzfs9Uu!#yRS$?9oDUgey*Q z?r+FMyEMdmu9cbUoTzZpg(?ELq_1+F-J|D^40;H8-5MNyGa^XP^p<>2!-L+=Lx)69 zwI_^Fl-$#WCbZV0(JNVHTtcSoNmHdb(wUaQ(bI8UPEb;`NC2tI{BG#Mo-stjy`796 z?1P_##1)IpI7J1%n<@YOBLh7+I7a*P%NyRzOTZ%NAg?P@yB z11$@#wC!=XGQ#uJ$bXgb+O+Xb2?fSxh8H{{f6}0K*0jOESNRMRi!p0z7tc3&!btDo z4v#O7zg_FY!c=z8zb0<_qSK_e7sRX!)dF`aN8rRT-Y#})m8tXP-u8g_bm}|y9!}1t z3BDj}Nq9V^oBXn-r?CzBE=Hr{YGfORQ0FDzB!a;5l5Z3Mf|^dg>;i$vz)^y$ivXK( zxql|GXPr1J3EZ@X4JhX>U3$B#yZ)wod zrSJ#C{Dk9}nR!?Ep5y-$|8iAXA-1Tg5{#?5X8=SG)p8N)Ma?9`hoyE&W>6g@$4^LP z^$u1fh-h>mT>HYYsNIVq?t1e`Qn<__}LS}EK+R=g<#S72opJ>-;LATKU7*&o2F|~=v zCD9){JahY(uf4kM|HkrXVIAM}QPS1^qaP%e4}$b!tFuRDaFR+w5!_2B;Qm{AU zRgw2K)gR@lq{ksbVGpg%=G9jZ<%{xoz~lRz1xFBj>!$V(w`GoA2r!QLw@5v?vhcuboTN>YQccJeH|5pwxOUeJNMX z)0S&f1=U9%MKnF@@{e!NcqB#6=0b8#V7ld$L0Po7-ZQZ+V(7A36wg)sByOn3ELt1_N$85;bU5V}?;M0YcuymyA% z1Ifm#uW@_|+=NJ-`y6FnTCMsoS>(N5fKyA1ISBHw4VgT%@Hjdlt*DHfU>vc3_-1NX zS%9NCFMmxucB-j$Nm0{t0Wtk4Ez8MSzolDVzDZDTv*7$&i#YG7-@zv@VAc~If}sbIo?*_KGO4boG#_|HjmoEaz5`e96x=e{40%13$#<28TR*wLydmXY zK>G3rXtY9S<_Y>~hFRMD+vcE#)G0-pkIeVS(rP(uZ-XPFq5)(ra0aWjEuGISbv;w& z@NJ+t)T_XkOEa%C>ogc0u_Ji9%Kdvh##L3?CD5Z|fj&x3g5ZL&cs*5z>Z8f|gs$bF zGJ5~8we!09U6wID|Mq2FlRvUmg-*@uBlR2~r1>lYmR>8ZW$iHw$pZn9dQNroV5(uO zpUQ`%96l0%MV;U@&NGfWYIV5GrZpB?YVPyZ9XR#aSh$tz9JjT)=#BfUBJ|lD>H+d~ zzhAW;TyV=JGqPuwB&+L1<^BtSV7`O7aa~W7PYWcSfq_jMp9=fr%Qw~6zc(MyL!;7v zgv?U5V$m|8m_e0?CoNEWPRual`WVb#$ZV&MQTQpiI_CFpv@C-WM|*X3ipp5XyYO;68!5Vh>dnqy^VU(5PQ}a;#4`2n7Q8U7Rj;pZ9vF`nDd+xHp}d%Y zp4IDPfW>J=ji$8}i6N)O~yJzK||SSz~P zdvdOPF8%1_?4llDmWV6z+C9=1iZK}6+Ock1GE6r^WG71+Y?9Q9M~*B!_5kX3-uzpL z6XYb*d!k8RRNx0vfz9ZDJ+NrtNdPQPe97@G@LS?9+H zWQ_*n|E?`xUwk;t{-Yp!aV7d*=BWYt5?4rJK^R<7-~NxA-lk=b@}4eG!jvB{JAt;p zo}$O3OjPc7qXi?U1bUrLG!G=;HU@@WmhRU1-s|ZXuNRnO_Y_oM6V(9Ls=pU+C~`md zGksfP7%;GExoTB~Uw)Vf(fB?~*7Ee`+Vs$cEiC%?N-|_-#7inQ%6vU%I5_msGbTT| z99pVG&Oi0|_^WJTUDY_i=lR&{bQ`BhEbvnO;^mroxL?fzMHu7tG@0^1VS*Uz^tsxo zRbwWi#dyk$V&co*gDbDyJ~o-Bey=4C8cT+oB=7Gk81GnbkG&bS^-zUk!n&I03={3eTTPDXCbd7Fjp=;CG7*)pZss3gnuKK->n;^?L7Naw`+gQfC5F!w>{RQ0+H$yWc&bwe5@;-fe_P2-golKeLfhRce z9G12kenJ~GD%l~ZErIq|hv-e_gYTxc&_vx&ryIAhte6tPKG#bY?{?X(d61&NmaV$@ zwAoBjJ;9o^V$p24F*5ZSC&`{HK&wCIvvhdu-D&UeJPROMOY;vc{jSBNtPi{F`c2%T z-pICbmM@ExVX0^^CVaZCF;l!Zo8X%Il+jJsLb1Tq^Q>rNspEZuF)w|{#2D9dDf(9W z-lK%auwc9k@vXU_SMyT&6FM=hh^hqEEZf$rV>toO_9t=i&xABUq+xj*vpzm*vzOXD zba&^sSNF&lmoo%|m0NaUe5xW&^*GNrFJd#2mVIut^2)|?fv+`lXh?gz4uHU?x4~Kr zH0~vXgA&JVYE>0}*T$rzh%g_-;Cd~)RI4bqBQAYpZGQKvXyXg+CCh;$1ON$wyOk=m z(1H=bc>1)0-;{r=2>kE=i8%8A@+NYr6Qi6pJOQ#g_sIQhZEJ!<>kvyeiP4PUfC};WOhCgDtkD$ z(ksSoa95ziCdqV$RDqVxTH9@i=yC&BE!SR0Al_O!L3=7Thvpd9f+BvQ1x=SdIVr*$ zZwX37oI0G7{9f?KY&tH6yzP8~zv8Y7H8?CbC@Op==iS(C5LO%C_Vnp+v95N}n7b9* zKlb{ZJm0jm(e3pxMh~WfCix(SB{Jf9Q=YTqMsEQ~?J^Q6-B#$v(c8h7mK(Jtk09a% zG*^%aqxcP8y6ilRLT@ENMKaJFnx5WJ2c|xHiXXH2^IdyK#Ja$Fo8M5u41XKTOHrL{5yGUSrxBWy%$wduavSex6kC^z4a)b#X(_|8oSDcVN# zK9a$eB~_uHa!Yefuarp>A~2m8&%h5$$+=V84y3rxQGr4P{fL%8NdR_^+QmQQcsEMj_iT-7|iK8)Hx&ObjSsQ}cHJ>g!%DLHm_$pGVq;qJHP#0tiu#w{qXRaL4g*^sf0v0SWeBvC z{+xvZKRn$`ehtwsrw7%^DYnVatjP2=NUJdqHjJg$6)bv=+L7Gb=`r=m(Cy`n*t4}u zcQ==d`13|GBsLg6bm=dpPE|8bkK&-TB|GYsgXp2bjj!aNE|K}jJ<_R0y0P%XNBybD zE@qW6r!&|&8|SYVJ2X(9()%u`#(=#-f?z1yRPI{A{jE-I-%@oQ{ANsmYV73jC0p+M z1xvfXI29E0S{@iMZA{=qOn=+Tmy_O{e^oa~xuP^FJ)Ea(i~&DgV`-A{${PH#)h>5c z&Qnj|h;^oYDkxV1r?`Q2Ej1r1C}DzxP!S+Y?Vy_FcnmUyoKhaNS9&g%{w)D@l}rL!+IC=g0|1M>$m zu4>##jtJ0yYLnpf96hKb^NP=HPa`$;0=n^gbFnf@F%qy&y`{+`lmmfxV6NdN zC>q>V9OcfRpj;7}Uu>zkGVN`uTw0bln7$j{xqoHN@cy>=J(do;xi$G(wSB|1ASGw> zm=w*4W$7R@uKT8{o)4tGFypc5E#uWb3#uup11)ATkdRsDasDED3?o>9Q;oUt5t?z( z&SBj%ld0s^sS=7e9pJ8_na$7EwYtqZ;kDbDF^%JLO4ExqGU zmaEqpIDY;INVLW{ZTX3haX01@Bs@MZdSNhV!GnWs^HxXm`|o2ZSG1$ISV+fUeD4}7 z;NbxMWB$yC*K?op|Jn^^uKoP6#IQ!Mb=#F`t-st=E1qkl&ynKl^`0w!R9mFyD@uH5uf{_vz-^d< zZAF6%c1r6m+CG2m^W@tslp8lVgC8KVbK_PmGE8L0-F1xqIaoNOC<*IB)IyEZtux9>tu zo+}N6jp!{`C-KNe2i^tb1TpVb_}QgK)@3}68`!Xu%^Ryu(ku}Rz=Zj##VnhAJG5Y$ z<|2fEczWsBVB4?W>{y%X%;JVTHRp;+t=8eD*|c9h$MSaeWf|wg&<%+qd^^H(a-zON zLHRNt4tC{ZJiJrA4Gv!=@5mtv!4J?=AQ+ZYmN_vo+}+j57K#qu2Fz+>0)+#P0ZhV= z6gVcu7H8{YXER+%nDt~d3BcLs<@lz5_+Zwj9%vQ6D(>1CzV$G|RBwN8!1cZeqOjHI zJrZH%P6Oz9+Zx=^#@1(Ux6$YraP*F*Z2#FTOEpaWM#)C;_*~)e;DSkWfZnE|h?+07 zcRhhHmZLkc7<8vKw_lt$mGAW7X;Q(vph)%gs^$YeC@}qL3qwtpew%Dzi_c+Tq{qwb zl2-)_zlsp}aFItWU`Zxb;}9>e*vd?U&BLJ9`PvV~heTwngPj+Yntt{1>K5+htBo3g zrOPgw#=71?5KTtuFFSK~FMvjmTyh+&+`B(Hn~Y&k=~TNB9uTvlfT`~uI_yPrEUbBe z(@SKHw2Ynl3e4=oRBycov#RW_77B!DD}x0B``zz)?1URYbK`Km#RYN2GAkHQj7`JC zPes-y>g^po{@t{#9DNfYcdt_e36@*#=t1jOQ&9z{o}`GqjR%&8q@UdqcF)bD%wG5K zbg8em1Std$1ug4Fucr)f`E*^~r^sOGkKe7!{|rN)c#(n3+@k8ru@tD#xHAyy(z`p- zAv8L?wQp;aTf(uDi>nBU9db17S}xjqs>fc!UuWL#q@h||Rwlnc5aP~tP$?m-^|8qr z6HgfFl)X|UIR(rMu)M!_(`|D{1x?XArAiyEpYd=Js7&eBip_;m-wxcs7~a$8rrwAP=AG1obP zdg4@`@x##%>Z_gU+f>c^4x5M3XADwJod<2Bi(OUM!^Kh$K>|W$xT_7EK$Tc(q$|s7 z7(#yg(y@4{4b$0H$1Kt2QZRq#KKMB{>;7+%=2vWe5|7vRP_7K4EmhrG^vA%@PH8}O zQKJL5YC3OY+RGBkDOWD_>wC@8kse2?>@N5U#9R9?`Cw?yHw>9rE%*@># z>4=2nKz%pjEq_~;fGzi|ihNT&zyNhmc=j%j@M8L1Q=-0aRA_G6SJmaWxWKkXQN8Ne zn3gQANZMBVS;6l+6Ynqa?WQ`iQXz6>-~jV;k(BJ}zvx3gf)?bgwO)WZ5VL(A7TJC+ zdBt(hEOqKDXKdZi6m%xnH-6i^UQr$B{)p}gn~B@&%jigrb)r}-)0xLn!d_ z^j*UdU1%9ZAv-wAshS?sMt75>l;Y*p)U@`G=5jM$QMCeuWsE}XoVqKT;U+3!I$g;%(CbCxH;cMhjdQa`7%t(2D<3{TiC0xViGq;nlv~ z!02i47#m+`!d#1~!Vlk--OMdIUud#t+v-=t-Ps8LYRj1y{YgagsF|zd75zitE0hu$ z(#xs3UZ(KG_nRFxSGlLf)*j=$vA+3L{6cNxNg@LRk>AKQ2<4Jt=2|aamK2efEH~|J zS|5*}hUBVe$^nMt=rRU$&*}<4+TUy}0(;h1trfbAK)6VMAr~s)$^ZZH&tT>dIrRHu U4o?#<2c{UKqIn}<$?Bi~2Wpd8!vFvP literal 37824 zcmeFYXH-*L)HVvDB4Xeu3QDygSSd=8eiRi^DM|?~6ghx&5JTtzOHgSF3MfrPDG4O> z5=c>m9H}CNp3np&KmuY2B!t`@IPZJEG4AjC@5>mPkiGU=bIvvAGoLxv&T~t16VP7i zy#fLPAk!OH?+OU)3KI|za@(^T_y)40*BN-*eeagZRp1?Xts6JOfj5z$8}=ar0&?;E ze}XB~%N_y(M+Ho;UbYU)UZB7-&v`?ZxC|W`(_87~JIcRc5T(9hh2%ULx z!+}XAEv*$FR%kwORZZa06DjMfS9e{#^Vii6ikB?~FT0BD5Eaep=9n?O$-D&wrfkA|NGzn9~LN=9ze-k8lWRQn47dmv?f{(IS-tIq&w%- zemE?+O4~(#I`UA}!NW4>?;(Y^KaawV#C}&+>2sDNYZpA;dBn88^K@RFVm*oe`PD{P zz<2TqEeq*_4$$|^PBUo^aH7C&@uX}CcW~9%hjHpVI3rw?(Yt#aC&OXi(5BOdYFzoKNPh}T2@-L;5D*qPPSH_5nks6zs!i1&rS*TGK%R=$K9^# z2(<6*Xph;*El-hkh60Fs_c*x+{at@*@_pnD zCW5vbCAQPmoPLMv$b4oad_j0B;BWD=3&kggEk+(_i?LUC+ku4_qrPrVNk5LZc$D#Y z!30IZ=ty2Qne=q=85ZjTtTKw5B`GWM^MG4HvWO8(cY3d$OLI=x%&DDIJ1rn zvjL-WE6Z;P?l$UO+B?)we@*KLkqS(k%p08jZq=^TM6a?YEt|!E1ic*6mL#n|3wP+p zW82&xP3`wxTd^%hY$HvoSWTbDeJ!D#t^E5TIVALHmI;urr77`!U2O;R@A6wo`A-BsMSmRa2 zhL52qIKeE0|5_Z)4K(7T7mw7l5iiE0vGn`zGHfl-&O?*63}k=L2fQOVAnd{BEtD!U zzy?y`rVwSroTPQj^fS(>V|=0)`#+8RX)KSpWh|5er>r6575bM7$RDzMd{Vr!Jnct* zCrZ{q%n!d=CzCTY7Ul`VrsQnWQ{xuY~yY5Cp5-|`XhPXZh$r4#i* zRS1uUQ0SXGI=tTU^VGhe(zPN4qqC{g{cR@oIObOWy4^lCZDnnzdf6kr2Jp`-1b1e# z$chnOuLwJPaGLOb(NQ?M=lJ-0W=y+%f_tnREW{Gz8JuRHSsrXeBBWhiJrn0d?nUVTtTyCn)@63Gon3c(>n znG}`Y5E+$CnER`FUrF&yHAYUrhX8fA;S>G}EKyP-2iBMf+fS+rqz}U8Cq+CUKi0U@ zts}2FKh>vltJ*zs`YY?EZ4(T;M+p<2?se0Fi}VO5`-EYtqkmh2dr@U*<-d#gXCXf| zRx6DbGeQQcN%O`@V_q=<@q>8=o>=gL8bv<^;%-Vrk%fpj~h zKBD7baNuGW3hyTsY~~P{F+XS}FajNcBvOkf?nP^><1xp+aZnPiL*I}CJxzE=M>%AS zPpil9>C^Z`re*?e^hu5`U^DWp|HaNy5$ZMhZoG&1wESW~rCEc8%tiW#+&1Uc+S2K4 zub2q&X@$9}Kv~HeoG+8q;@vGbUvH#xPsghwgX>MmZuB%=O3vyo2(?2P$z7xvS!8-r zNrQBx9} z>|z4;3%ll5XA_!D{cEbGFgc){2G!_h^xInaZNU6hZE<)limq(;nqT{%iZ&`HSbSQw z7s*<&?~<#sV{X=$PCGp@(}R^&LG`stBgTqbqDflhbEE|5P;$3lv8P8}t|R3^>-u8r z90a|EU`S;$>0Y`YA@^_BY|}&UjXW-|Y-}nir^Dt&N7hRcg7MY)cj~>J z2-tQluFH>Ai?^}?vwLSqkoVjW=Ge#|qbhd4dhbSb^V3#Skj0JB`iXm9da41J)XnG3 z7n>Hv$bo?mqe1Z#D-n00a>-sC%DIsT zM@BrH9_tdumJSYl1I@-s$i)21c|?nsaW;0UwPDOwW$SrX(73_&?G1afLh0{{Zp}DR zb>(Gjae;mJ@b2we-2kK{OU+lxF|?Z>!hdv;2q_x+!QmuYh;A(=+cKwr338bAb7NLp zKgS^9nu^4TV=MHVu6%-^BrUa-kgA5>ABU?4!X?VNd45A#LpI1F@X{WO2ATxKIpo)-$p}rQEOsU(_6>0 z#=;=`mF#Ok`#(|T&KIwKp6;5 z7e(I>R=*6DB!t9!XEfYSn}K~t-M8z9e*2KpBH%myRY`#uSP>g;_|KP(+@3WdI>s!M zuC3G&_~ZG;MG!$uf$<{AXs*e>BPu}O&2Z{W9PhXKl*`~M#*9mR5`G&Aqlvi}Hhf&R zxv}t2uzJL$K|wt~akh@TYFIH*=>21ZWS_AWAs-{Y8TNEB|8c>y->5gIH{dQWp9FJ=y`I%iBxzAB8o z;*-N7g{#b-lYBEyc^xwFaXRzlXHKu)*9&HkU`I#@C{z%2%x zrA8?MJ?~yDY<#~=STomsWdvBMm3swlI;Hx)RWntM?w#Y6e1xY>O5`cHx56i$Oczgl zc{r+jc;FrVBXgCc*Aa-Svp6;TN2HhH^W~w5((O8x`TMzJWia#1Zc3;fI_F$SbmzSv zW`nO(MjRL)`(slWXg$xEUgwYa$S?Ym!TOD@Pu8OspRD_P21DH2P|(-hZ^aLc@jC}WQ_{m3un!4{&jWj9^*2x^7A zl)zrbgCvYH?fJ+by-&-SJBxpO*G`h*Nk?k4`b|>mMsyp^{ffnX^#TJqx`>nrUnpJU za*gx+edn>VG?`qnu`b~eh-l4JX)pU7+0+pm%$Z)6?^}xKcP<-Q_H!5`2Q^1UY0oJI zznZBzpV0sTa@{D&HqWm>JD!iwj)5OVuN%X2H(e{zyr zN}qw+Em2nn|YzPq@ z^?-it0;RG>5_G5tR6CD0@*K8zxXK%VBx|3(^CwlV(BLlaVaAG%52U|GpWv9LayYNI zJQvufdEd7&wd}__Z)(g*RgdqF);i6E4$U<_Y({8bib3TYuCg?nayKH$Qj5pa!|jT= zQFXJ)_NBd>_5V&geKgYnRBe)Int$kLR}}5Oe}FpgsyZOqXy9Dh8@l1z%z~zZEe>m` z+<_RY%+!J`B8&Zb}!7i;_HkRBNs*_jH?;+Q@(x~bEcGW?df-S{(gk3XkuV0C(49H3L68>gB^5E^r zw9ew_`}Sq?fUqC)P>}XCIP(G9yR1FNu(QEka=y|?B|=Ba+o}ta<(iWWny&;>3>pXa z#sFRpPzP_l%~_S!^`$3n;Gx2?37W7>j6j$%bB#74lNy@WYuWiVAg@#&oI+Pjuv4n7 z>zGf4>Pl7}KhPwrkru<`Qa@d*&`Zl*%d8DRThP@uQct(*(JI{8y!)hkO*g0J^JD-$ zKRCs-EyF_gH^?-GM|eSUm)?fTou@U{oGyg8tc1EXcYf|gG6KRtmXYb5H@b9iDb!HiU4KPu?oIJjw9l7v ziZw5|_23GUX>YQ!5n$#}7|fLEE?6*Iy6Eo`zi=9av5AH?Ck=iGc;7!4Ry#M-a6SVE zF{B2i!Q*MHtWA;XMosIfs#Eioc@_XPwO|)g5}doP4FhO>JiDoR$zEE{Im5jfyC73j z@5=~x00K}0ph3gQjU~zB?<5e>8}&SRJ+}L`ddEmp#`ER$Xh@|B>7MOXpnjY=WQKnq z(IGp_{4CN;$0p1v*Suio&Rwz3JV90kD4an7!AQ$vk4NdTo;gdRJMjR>zB^2uW|+1UHTc%zu7_|l{9ztv&TQTUk!{=j%#G31>p3mP`meRmGm-mk7+`(H7ar~pt_hRL``_H>ooVTJfxM1vq69D=SLR_N8bj;>{W@tknpa1=I+bq226VdM zKwh01(q4^+jwHLNyA4jzILiCry!7t011KYBt^f>w9R%kZ% zADjR7?AL&_i{{^Co})n%MQ#Dp_kG9A2nrQ=G3p1VnxN@6*sZa72urGSCe*`A*$Mt^ zm;8v&ncni`E(|)!5hm`#-aC%5Q$r+W{Ps)D~ge}~^St6Ud7|8@4ZeV48SX{94xX6)Hay$l&hntV;CLXG~F z45z;%JCgqJ-qm6V%Y6uNgp_x>dvo=I45u034aypd$#p9^0BsJKeF_r67t}U_^=W}h z`#6;%&7PVVkKuzWO@-P0y3QHrrtCWQ-T*oh(Ma};TxY zG!3yXxr0F~8$=pGdhE+ejFU@y^}^IpxCDY5*1T&y0OM}%$CiAd-BMZG-i&Ij<3K~F z)VX8og}kO(*5#pY@it~lq2130Ut5f9FE7aW!rc8I>rZH+D7bg+RnmtPP;X`6g7|#3 zoDn7h!rUdN7w^*h8&Q@H z&NX2%au@UByMpDt80EKBWiL|37S$*xlsZDRnT9#vEuU`$q)#+7o?;X;vMjqsq|NVv zX@kA}%9>6K(f-XX-}{%9$*=V0BSyLy=Fh_W15%+bCRI^&c>gaNjdMzxKPyUsa#i^D zvqj}ueat)mER~foTc$$esoBY7gIAn2^=WzVPf>fSapwdSi58ot3gK4WzJS#%6d&lw`D@ z-E6db|C$eDfZA9iG9Wos+8ml)6X}(gqo&_55&u4z!^5H4lUfZvO&r=3Ur@_4HQIOH z{cY$)g6T+%eQ#eBTHP~;bpd@VJve7~d4Ejxdd{ELlVRdu)py40f!-S^4U@9p$5)C% z8)TwcV8gKP-G%-{@t^t5X(K$41lsXt~bc6kTfrsCc{joKm>E`NU(BoWIyIl6w9nD=5p49rq6PtK zy3{o#?cN`*I)(k`$bfgLj*UjpcdjRtgt$(Soc@7u`G=%=y;epQg|BC#SALZ=9-eh4 zqY6*0+%OjHBN$j+MFj^m!+h=%}%NhP)MDrpd_*W4c3yo`fpt~Knt?iz!Z7kYRW{0<-d_!ctWrmoc4 zz}P9!Ck*7_6irN63Is9dlYPg37HeDA`K+B>tyZ799r0nd*v!d9uc4YfgkY}KS>0xR zKtOfBZ3S(|)KCLRDr?qUJ@2tkPWMIlkR^d)9^4rcsqmT`l~c#LT>Wpzz&U5?_u}Do zy+jrVG*H=Y9<#7Is3yv3-7KdqhFvzkyXw3cWfl_vEmBhc*o_IGybPm$8v=oHJM|{C z7yyW&@P$sZ^QqV56YM{P<2MDf7A6rA169(gI2UTrj(YAdp09?JYt(!80Id@w)rq-} z1xEpWwjOvhA|Y8%V*|O-0Kx=h_XZK+{>{D*0=?H-0&9Iwn%F^amvK&Mgc(nrQ7CpE{ysiz^w5t( zjkv9Y$-0-DRht|-1pz@{LdqtTn73ro=WIbBv8d9Cnw|`eCib7)({0ogfH9{-^&|b8 zwXlIu0-`mx>pooLW$m7XVHI)zFtb0N1@!)c@X`1AhIMB(n)+ErAm$(3CpW@Ie2+fN zmpa0Ezc9<;vhVet`#q{zM(`dqA=I!7@0Pt04V0mug!q@vk$a^NR0m?@`z()aPV1#F;hc;OZV`Iclwm0vecfBfLc{}dW=r%> zk$pc3_@`I`uH7Qk`13~p@IMRqtnOr_A$`k^@=vy0jTZ|Aj|voqT!A*zLP1Go(QeS| z&>Y%c@;aG=(zXpObH0nivOD(P`@iQ+eB=FpU$KuTzaxd-8E3g|AhVHNFftv3T)DaIdKwBshPfhHv*Z8cKX z3^Jv;mvbB+s@e!b2z6+_+ z_3dL^CU-BKuYPlh{gb|eBDlE8@>e_8?M==>>Dhn}GaHL_PX|U+%{Y@Q*ddrkQYE_K zQ|SPsqSQvG@z`cnsPukdd~6b|k(PoK)k`0UfHGrgZwq+cPWBHuv8`B1hOMI^JSfE@ zI_!1>f9`S>^J08OggtW@v6C)B&ePCu;k1yeq^S;GDb_vZVN#(B6)O_MBT_KmE1Mez zueX9`CDegQq)m`PCfu&F&G!*bOgi~V4Z(Cth1!n9C`98un5vPd=4TuY2~pzH{AGwu zQO?YAL~XIT43pDMQzu&?EzqaXLYEJL5?CAO^YWZ>^xbuolM2VsPWFar@m;_K`$qj@@?#gPD2JV zszPimQ26_8mASds`&VxRtH5HQ-Ly{yyg)}>Sp=Awh_DqhvWsrQ7Q1CReZqzUX;pGp zV3gBaR*50*7m+`c>rWrDxUF~@T93x+p*<%vtQjtMoXRy^z>v`j7cI{@l@fa00&%uO zqKPkZ)|4k%LRwx+|6M_ZFY`U^LFBm+i6*~nlr6y$^8Mj+iYUsZ1YNQ5a@PD2AC+8j za=;NN*CwO$4h}dZyuYS@W2r0djC4A1O4ep?fcQDMfu@Hv(fV2H^RJCTS;TE7=Io0E5ydd@)CYvg&={8XH!w_KP%6NM zLdfS9oz<*f|HC3*M2Rn|E!Lpot&RFBwEs1-SY^v z407W6=pxdl-k;fr&?coM^RPf+X72oOyySzRR_acEC=sJZiznuWDb>q=e)VW5TeHfX zu^xk;$RQ}zz!>H{9kG)kTl`@w7`3{=)~W$4i($hLSRbYb==p?nEU3xIDtR>Jv7lUNZ=uz5MoN6^^L;JeJkLJPV) zlYnw5Q^|F_TKak?!&9d*KlgQkJpSW)j49x$OR{b3-#uf#UHRwuH$9$lM9DDR*cK-n z8ZkGP0@4-em4vQyXFqfPrEP|&te|F`pe48W?!lezgy0&>Tg&YKVtpRc_R#r3VOMq zna8T!o{DlV#Ssd8DIie#wS+8$lv&761cL)}EH0Ibity8jfE~IWtPIX8PF_%>*C2(# z;w6S&;ww${`O;lEGbDt4%lsyPSkQMT!o=bN%XZdAK?d4gg8wILIk4B#V+L+xH1KjX z+TFO4)oj(pxxwU;&w4$R8Nc8>7GxPtMGEmHw@Veaoz?z%wH2CzGB2S+xQpqV8Mbg| zN{z0@83tbObxloUIh)<0LhZ-}j%wZlXVilRTk?$`U8jfUC33%}cjqDH9VuZ~8l)C1 zsT`!^dDpiy*B)gE&D}!kC1K4Jw{}$a-~h_7moCv{B8_xetDv1}JjI(KSJk~G2_sEx ziaG=DNM3ma6Vs@y4R^N9(O^g2|M85kUTI&7O_8}yCkHt;I9(rzqPsxyvEIg4SlKi= zkd0oDz>OuqHw1|HMqvo=fRXP=TvY5i=d zyzOEuuwH}Pkw3Z$h=22;Ax9@e`LsANwmetN#^p|q4aG}*y2;CMBIvIh0H#I$Ms3Ag zOz2HxcP}r^zI;ch8m(16tB@-Irk2DMuqzqB2fw$ zbZz_tj1}b*n?_Sgg8yb6eL0>Z1O=>?RTqViX3nDa?gaFVm80NwQSAQY=`LrAC4ru2 zE45g$A)ct4DJnv3iDadB!|ZMT;#(vUdZjsQz{>_E&upw_Pa(e2jml1`48GdQn9Lbj zO0Xcegq&jZ>AdE9@ZUMM(Jss-TH+l-2x<%?55{?Ex_zbtd5EOYT~T^#)=m-_MZ63& zdq2`ywqR){Ck4no3buJpW_D`ZzAPa22uL-m*A+ za|UEF9|I;yqu{>Hz1Z$z!>SMUuE!L^_~H*fj7MU;Z!E+Bfd_}=KyV**D<9RnPW*S( zIs?_^cVmHiua9w&Y=t7(20HT7&w;IMghlz~8Lr6e**`}bK>i~ne|7U7HFe>JK z#C<5cc#LOlQ7Z3(gI^2&-1=(E@m%c<2@zMB6!NqQm)gHnP47inU;x*!+g|$Ik9=AH zh^!VxN#6uYRTowZ`P12FqN}^MAvN?tv2Fo20P4)_>KQXNFT>;VC#oG&*f}oTJIqX4 zS;C%!u`LnN(2o)S!DHyd1{w(k(;n?sSnR?8r^=pL-e?lyj98q3T!)Z_!i|r-8OobeJazg8nuviST18h&~e;1fmjf z9|1>5i91>4_LMe?cX8G(R*wIe68}~DrqQ;jLyZFN(h+l&`p=taE9v@j<--4Y4-`1W zhv*NSiiOoa7ohXG7eXpl;tPH%9mjxStZiCF@sgSJYpiza4q7w14@1$mXAKqYQnC#$u4&0dF#_c~>55^B)*z>)DDI2Ml~)8j454 zOLJ|xB(Yw3B>k>IC7a#Dvr**-zbfk1tilC>MArXdV$p}w2zF3P;+zUHre;wAuh+ot zN~Rbql&BQv-lc^0#5EraCTnfLsQ867yJ@Ac0J-AbRLq-=_F$`^_Mw0TNB5fyeYqgwwmmz#h5ygLNZ#c9BSqZ!@ZCFPWe+sXFZR)1bjCd3PbA4$ zL5?A*;OORky@axeX{QrA#P*3$r?C;tB(goI%*WY1E7-hPzAxzR+HK}H+9d5M8Imrc z1l(Hw*cd3ujLJ4~6VAMwAd5*uj~5SA%H*9P7Z?J9nHYtVWWQd6sP;?BV4l8bQvs!S zc;V~DyiEF3I6$L-2|R-yFy+X;x}lgDw`ML|Dydb+8tB8ZSSHe`Sfl!{gKiXkoSVy~ z5ON&RT>i&TA$GLM6n9f>N^ViU=Ih|B+18erJ!I09Q9Sw}cijZ(Qi^WuT#M(Qk{QDq zBRTLAI`-Flw@%Zg%KhlUrG(KQp|wU-yp4DnRfoo^pdlPv!|kC{2xX{v3Ig}BJ$DZp z|J5T?dCU4*-#U@Xwt4hHgLOw4B)Dl*rO>DW>&TQKW3;TNgE(58MW;+D5ofJ0u!jpf zmkJR=oIA=knBfZxzs4l$PR~A})i}0Aj89&1-sT$plzbYU>;fH%FWbbj-)SJkR)BMx z>tW_3^PMA_siE;Ik(KrHPb%rv9!+LuFK_Zgqa3XQj)pVSlPPd`A)7*zJew%GdX~Rt zkI&&`jq1YiCaXrjN36XPZNs|s$QhZLA6pJl9)N~$uP`T)DKG+oT|$%Q-=_zF>LB`z zz|4F|UDRfuR&%!zoo8Wj%6GoLs9Tm_Hd{hR5W2w%-z}5wfy9+^C`;GrPl3eeI-nRP z#rS|w4)iT9nEf}nIR#Va)fikW!%D@)^POF|ON5L=nS_?U`+5R+U{NuYSFy~R7VtFz zYJ33b0{*PiK$u8B==9X)SU~n-Ycz*y43yEaLQ^k5pmd`T*q-9CBBZiSO4(+}wP3-8 zZvb-*64>ZX?`Dm9u2GUXJiJ63b|AeQldE$aSntxM088$5CLVE>o`i&fjeb~`O`b>_ z-R1hIF|_p2>I%{^;7DjMO`^cfV(>y&D0AK!r3<@dKXNibJMMZvFo7LHPqVKeGMGgF zV@1!1@q1Ht!Kl8L5|uRVXv8^4Lg$mi}g$ zo!}D%;)iVOXh$XzKn)jbg90pf@6?W3<hgTL;y$qDgNQ~p%ri9~L zYc-8lM?@Jz<4qVjW42sZ==!17T?@$oIh{KLJV}YNI6V7@2Decyc6Q*JGs{5aOMbdr zZoE2aY5aH^-s7S0A|lv0Qd9bMd?!HMWNvJQkA1d-LHUILV1X%R1>lbXHDBsuhk(BO z=jSLfz)k|Lk9=*6G-!rieT-}b@<^^-bQrKfrQ3|cRSrmZ{{TV!tssVXHwR+Sn4cpZ zE3}1`0(MgIGSX5;C^qsA;RJa_=0GD)jja&7e@iG=GTJiQg87W5R1h<3V}X`;nv130fIHPc%dIqF93~DyJO&4y?Z~T-~14b=t##ve# zA8ea((*>v^;L~mazsvz`#l*b2tp-JAqcItRGQy}V+S%+=Eum9<h#%=TS z+w->M6Ee;yLytbjR)O_nb1xBq2{bjI)<^qI79pP`7s;3-{%bM%LF=(50BePf{ow5a z5>m#Dp``1aVps;l63U_FlC{BgZ`J5os99S$1Xq~nK} zj9T%bUchyZZiTCJFMDR*iz8rNj30%i;qY$Zx&JBs>klmhl@hu@{evT?fWZ(qC*me> z?CsvpCzAkKoyh1k6&VeYIg@7ui(k&AEID)(rt*2PU0@w1_YS15BC-dL#+T`OKMfY- zqyV8X1;+ZNt_qP;tm{hA-@T09MBeWMh$DvB#H*i!`<}j|y2TrbY@Pgk>CYLk1?oyF zO^2KVG*`=k-d*K>b4KO2Azp9LWOnNWO*!T4?Cy}n;I~^=?k9PJk_vGscUG1HCI;7u zW9;M;S(ynhz0lN+9D{VGqhlMp#UQ=r%$5_QV9m51NbNf!93yWF;fpAoz#ncSr)TdB zOYwk&+_J}vx!a?*!n<5L9@%K!?Oz--@ryfs3&qjmjuZ++o&*xanl;J%-O7F0#ryVB zUHPTkeIGk?noO!PX1K^d|G8Q^284Sk?%{9tR~{jrpXvvB z=sR3jW-}QI)HHVu^7Hq87Dt~_5tz9FV6?MsH22rac@%ue*j{_=_xg0?DWG!@%blMg zpFlB?=5owPUuY<^gLV-JLjkQHtk9u|5R2T3>@*~tdbeM^>m+vC>KcIP#0{XMcZUll z(PdJs;Wm_L4Ov%8@rSsiAfIMTfr$k=usA@=dbFatzP3(rOyOR3FtrJulpBfoFy;qvBfZR1DmSfxm{Ce~=1%=$JU#o2 z&m+kVca57V;+Oz{(SD7Hp1;(qkfK8CI zWx7Cj$#rV9F~YampkH=x{xQVc+|F`JLY*DR_ zz6bMVy`^Q<0?++p!N$>86H-HUL=5wd94b&Mmi%)3DQK(Dd3*lyV)m%PFvJq*hUL>1 z9ocYXgcCIFBuR`I#xIS;_`Ti!Au`e>@7_ilim*7yrAGqP0B#xWhtC%z(za|;-UYNK z)N8!6?Qjk37Fq+jWkqbSK>yRNLUVor<(W;NBZtf!*&|R|(7er4lfvz+A7R0IA+`COd6q@R&UgjUC(9n+L`Pq4x_C-#J`8 z;hTX0eo0b>JW|7J0r?;G+aZ?hQVa$O@bfDb-_cF8?Xf@iH zW%S7n;0m!O$fQ9AUnAF*Y)b03wpGe1lf!Y?=DX7Z<63Fgd7xf!l7 zNW@J*>+w#;3t2RM$g<_jvU2Y&BmotZ&#tAR$x^m;(p=npF|XT3^+*yt>Ief(e{+=) zbCOR&vu2Cl(FJph%umh#1`dXJSdR^$ek?JB$6pe&VR;veO^zW$klHpWm;i0=J;CyO z2b#_X%_Gug`z2U#TcB+mui<}pH3&Evb|dShoMn}f{bvqn&Tk=uR=W){By010r=vW$ z3yN|<8diD$EeoSN5dR)gL83$II3!NA(T{R-#hgg3jJTeGJLL-Jx5Z*Re=m00g2uX2 z3JH*A(8e`K1P&YVw=oVcAnU{z;BvDn8tk$Zh3>cP1oYnA!h@{ofvoeNIW!eVFZxNc z0@!8PYXBok{H*v{Pq?@CTm*$ykg(_HC7u=6kC}P015iG88LdC{5O$brP{-!d>STtU z1O;a95AS4LNNq%AD*%q2!Tfxrh-1y{<)7_!smcntqP%5*v>3}v!Eut)P^BEh&9{_4 zFaJ6!c!hZM=+5JNZdAk`-+M!1?pj1f`gru%@st$T3CTdmE2?)7&K-U9;^3VZu?HF7 zcOJKixK}KAS8H*7N|%#;v2p0aMX#Cci!0#-=h-(yzTFM0b@rLr>vT=Rt-HPrsJ40h zuI%R%Xhl<~2l1?Fs-h{a(|~yKkn=^EdaPK@jnt1SXZ(A{Ixv)_8B$9 zh$urhA#MKXyZCcE%>@GTd07R~GLCf9)V{ySyPM(#tO`huU>y=6ZtQwW#$QzI3I5== z3=tyw$$OZqQCHrMY^#A6!2M>!vDzZ}3o_PYGx=8sFGEF^#J=ZV4{pPGKgnB9vX?pz z+*o3A($#T1OfAFm7nbLL<9%3O6dhD8Q=U!@3+@TL7tGE`M zn8lOC?mcH=CW2Wz#I1EQ6#27+8pmM-)8d}@3_6Wp7~ePU{pEOGQr!7C^(VXZ#D!Rb zqS8(nMbq<`cd@XMuTvww8*I3#K2=P}c}w;$ZAA4aINR$c?tubcLQ(@&~ z(<3OQaf<%(+O#xb6ZM>wMZUDX-UXQ*$~!m*SOYoNe-%WY|NiO@1dt*RDH3M%Ds00! z$%V(2pE-0+wDjt)XwApNJoHImA(1be%6j`BQMygsZ|%u)wGgBy8Kx_mn)#>%OK|V* zU4eGhs6B0Xf!?_wrf><` zoIg?ZJaG50Z#L?6rZ4czv}v;Ic>k|UsEn0ik^I>op#^60gyVibme#wQ_*?3pBpkE1 z>DC5z^4gcZ)K^FP0l5SNugjmnpSHudHe6SliKuLC`0aCclCfOu+{IC+G>rCt_sR4#w?b{F71d&+c%%8=+ohJ@sp12$JJ>$HuW{#;(3VD>V*N)fmurGy`-dnw!-3* zm;V<%0VBnjvLy|-%Qq}UZv)mA6{7B={2jHjw8!m4#m#*?gxEJUOLu2Q!hpI#cG|wUNQdc>l9i^X-iHQVw{?Od{&E;O>EhmTqPlB-F()=v zar%v5VC(9~jk=Z`f;#oh_nWSYZXxBbo>;=9zTBjs2Q)b1OGSUUI3-7oKef^ku9HpR zyQLMc_JsjE{IRWcXOvW?=|+U>?j^Yh=c~s}@9samG(!}8DDHPwC;5KVHxSFdZRE_k zs@EZ_7THz7sv*((!PJ(y^dYrvfp~rbPCGh^nyyjftf@*CsUP((jCVd?CO)>7Trd~v z|M$b-zSprC&j>8xxc!i>BR85x7Afa&X2v4*n(Eyd^VWg5BTF}d5FwZDjuIK%ZKRuj#$%FYsKA7I(K*U3z`cTR{gPL9T_JPBdV!p-*&&|L81h1 z@3?-l%U&ex1bYMensriM$mwnU=Ajpj!H)!i@J@AT=^~EJZ4Uo}jw@cVpqMwuxr<=3 zQZX`Jiq%bNiX}&mEX~;I9cz*mIwuu9N{jIETGlwWX81D5c;MCAsM9$AF>3(@@1RBR z3*&EqXsPlQ?)t=lX<|I77=cVKYBIwqvtBPSOc@_XzGWCpR$qQdwr9U)4Xk?~fU}(BP_qBN7!pE6%$f1GKtAm;AJ+FOV0SNdW zKtPlCuS1W$GV1f*LO*2PW#Zr&j9d!egvcwJf{ehpIB%%~CE%cQd~{@L93I3V=JkG@ zxtgk2Bk8DdgAXLkRsj8{_wt{2<}7@vCv zr-&$`*r6`wPPa4`dy0x98};ttQARVN$M};z9o{psxcHiO3` z%%2{;N#sBb#|A3AP7p*)Qy=_%@P+V{;|00#%0{9sKq!09!hz_GH@`B4vjv@Y=%?L; z(tP%Q&s|%4vO8w+&>rpTn%`1_z_e%Hxe?=timq2Qw1n#qUP}8tV01CgIL?=&!}|0D zb{+6a&CwfQ%(@<8dAr%+<3X<0o@C7;G^$8uTG_gGN4^mW2P$;|CPKDe8h6~?W^~*d^?uFL+`$=zJ^Reu zC`OMCUi;JUM74DPo|zS+}eyXPS@n)=|sn5yXO}nZN9Q&y`?(e@n+f9)* z*(Jxx-1=LwdU2S)h5`5Z*s4Bm_BmF!+i2&YYXMJFJ!5 zDk%UyV7qMij-NSA8~U!-dt)=pPhWn}LjQ0-YU-E%Q=6T}aff0L6&S_;Xp-q^c*Kvc zqzlq(T1&dizNz+4V3O!;H{j;efZ4kePn7mWr_r;J6!C>Cc0D7so5VumX`=f>UgJ&q z6rr(QT1DYIg17QLc_f0ki|8~NIS&_z-!Ewe2ppw0-Wlgc%mvUx-n>h(X;<4=A}MsY zb3V(mu4oGCD*l2{Ik06Drsa-Wp@2^thHOt)nHO+{^QLz%0!Vm6#_ihNp@-tfq;|{- z%8Y}o?~2sFrV5P?J+X`mRhWesSAbWf`2cv@%sB2utnzcl+u6UIGj9J|t^)8XZ6J4c ze2DxNrd@tQ?NT%L_rk+A9-b1}w$-TxXanF@U-88uCb<=x{O~QcXow+`S7eg&MdZDh|m(m z_pT#4uYcnk9wW28j!qQTg`f-WmY|mxKJ&SA>~vh9Am+f>6n@u+b`1jpnES6>DWHDE}7n)kBd^El5>nMClJkvM|&N&#Q*n%SgT9Sd-xLlL< z3A6(*ZxAC_kA9(p-*w34L4CHP*qWhR&4ZJl1B8Qg)v(Jai@Nx`T(VxaFG_q(d)Z)d zo>=Fd9O(c6lb8_opmpyDH+R>kzm~1Ph}Dtpc5Ljsl=eN<)oMKM%Oe z0KmulciNsP4ayX5+O02oTX{iIKj*LCfPkjqt0Grq5Yf-IrDC3ZM@&dJ6#)jk2?0`6 z?Q>Gyz#5a68rCG&sjw94AfSIl4!Gm)s~Uh*q&*+0gW}zN_b!1KFu?9vYm;|2Whu)O zoTdign#*BT(zC$W)V@pY0>VOR&$M@K3e+FIBpPOzRSA6Ua0^&K`9R7TYI&Y8*39S4 zslVq=5QB;PpV;~esP1>bKyEK$_5)vA$NB7_zB!O0MP6g3aU;R#U?7}UJFnF~yo{VDzphoy4PmMvy0eo`=5WJKf!weMfg+u6yh?u zJfRuGeJqgz+MJKu{0(U4J8o}C4s*5JX}Fu(b!JKcDCj6_&W=W{pE;?59z`3|B#MQRzq%WkPXRna_UI;iAUcnP zOWDpN)c$U(=jx73XvfI?g1Q62J_rbc$kPcnju=&rxX5l=3_>wTa{|8w6(IUTS8Ekv zofm|fK}y($KoFAH8079-Hmr!7g$upWnI+9=!AfWH9&WUWNDv`Aq7jOPToX#g0+)D^ z*Nkh@txb;x8EJ*)K`j0>YC%#%4 zMz}OVHYUJ@K+B`|UMr2i#0}uGj&H4}_0oD!Ffl6vC*<{wL7F6Jct)C2I;C5fZc={o z)}-C!OxObS|CD~!AkV~T)7rxMVIlDL+ZJ7LD;UTNKk)&@Ib%UegJ$%ACwIEA#`3FH z=n$?-;XrxDN-F`%@wLgpT5lCo&YKI z<>x)P9$XQwtp_hOX*B6)c9*360$D(#15eVbR=>Mn``iNTvp^RgJc>s4K0|18%DLRZ zTBf+z<5$WY2bsf{$VN|%h}tEx)t`;KHD6MVd;ww*jP|)w%9IZ#IvAOA*x;==`U3Mh)ojt?j2Lx?a=Fw|4+pVpU$YzO1gik1o)0UX9exBPrE z!+sb@_5{y7iiI@C<}MHKlFHS@bUq) z^WmE1Tj0O7$$1-Zy;Rf;Q1n$1U&(9$cbAsjQTjguJq`S`$M>HO2#7%Dr9*+yfwZ-dXfy@=anYZ|vZ8Fif+W}kdlShm` zt59s_5AeepA<6%jW08G9n7k7qi7U^u{(by@JL>%t^XKZa4rJFP%pSZV0XiH+KS(_Z zH*QaaEc}I7uF7{a$d-x+)t~Wru>Lt%dOS&KregH@91!>=NQ@7@OSJQGo1RRfk>m20 zle?a?=|MLHxw_i3WSq3B@WHTV0>2&H@66gQ5=NuKqy6?Cjf5nm3POuaJEm{^CU)SW zXW8OO5R=!*QX}yBDFu`OV?B8%`-0U1Jufa@By$oGrKq6M$EsOF`{e_ykLSz!bzlbB z1WI@{^Yif^pNd}Mba2{@ls3>EeV_S0kBe_!2JcB95u)Ox;iSrC53i*&f+Znpj*VT@ zxRMDn@jGRb=6zpZ1ey2X-5PDiO%bleP^5;kp(RD8ENV3P1h5M&P20=CW<*IdXG%z1 zC^{=hI_YwkPf6ZYaR`!4;%z&>2ji^@ z?Frlj+B0Z5h$YR{iqU7$1l9pQS%s#2(?7AI+@O{Yp>Ewh)b`~CS}85fKot=KJGR`m zXf<>!HIb$kB)3%X7bOB(;30vkB&W!7$R}aw8%HPAc}?Wsmt6(Grtp($tnK=1(+=^I z&?@=|_|XjWvSY>oc^0d?fm9M+kU3JWr0rAgQJQIesBQKhrTHQm&}VrVVw+SxPtuYS z4w!0I;7^CSKR;A211-}Wfk68ALdX?#a?snL9$bD;&&}D) zyFJ213?MnUQaI9oMHrHmYZ^ZAHWb&$%i{*bS$Pr!FnPAHLRKfm(g`Xx2d8Clw{j|( z;|UvMfokds!RvP!bsyWET!N`C%~WMk3;H-xal@Vt>EAmg1S5Q2ONc~r*DDjx(1FM9 zh@OBv()Qsj*W@iT)3#ObUEBK;Sx^|0bBE*nUoMpjYaR~&vBA+hYV&lzqWM}L4ii`T zY{BaO8H9Jj6@bC*@PAxgS({I){_H@p8bG(p4YopCF@I9$JS{~hZ@|@c>B75;1rpFI z?`U24N~j85Kdka(lpI>#ZC^Q3n)$i%*k<$}T`=U18Scxi;o$D4A2(jMdd^qhc?GTY z@|y1^s?i(IXsTA`fP9b~8$BnT zoSOH%k7S_-R~^A7_?)-nq-(I6EwHnGKk$I~2s#aYC-~^|1fq=M3@Ono7Kav>)+CpmLR z81?d}0J0>Cnj|$yOEJ6O&{FjTzF;T}-z=nbf;(Ljy}<5EFOAsdUAuVPEj9CTBtjpB(bVihd%`}Jk1pVpgUexu9NVlP>qi@}2iOCk(kEX&mS7P-KsQn z9=Z%W`@CW<71-828hi|Z%j%|W9vXYL6iiH$p#HYWB!t-OuiE znGgIU7|b(h6U@R}&D$xH+MWON*J;~_RlY;3u3`&1YoZIY?`g#F2iLdSHgCDqJ)fdE_iQOJT1M>Wh8#oNMZLAze*~IDM7h%g1?5N4zDz?09~=e*G@!l7F_K-= znRNK&n{@}biL)vyuLY}r1LB{1*OjVygLQZhB(6G-D=s{UU2g%Vmww1`(`%@6qlu`x zN~VZVNFez^O?Fx@*J-6+tXwZHSLDk(k2hZL&)B~TR8;~nR@glE)E5IZ=U052h{__2 zjfD3Soe&{4^ODRl!p-4RS#aCL1-$n-_=aCo7z*GLdL)AbN1rkuCL7YqQTQ?F=cl@2 zsh7{>^M5s+uen#nfsb~Rlm(cBS#JUp6+RbmO0zWwV;;H~pc7K{<^wq`?@~bRH1Q0yKyr@*qzwc!qNC?@KoCJxhU=NXcpuIzM6l4|1!YRv9Ou zz2&%L8|*2Phe)F8K>4i*O#U;!0bZo}1yE%1LD-NQDkef1en7Nwlu`EExG%baF6XKs z@1&+rV2@N{cZk<9+x5)}xKPcWQnJ_w<05vcOY48~a2}_RSSz4cNkBevk-jTAKXmrd zX@9w}ZY`o7?k%nlXlNCV-8es)!Du+Lpvd=f^wX&jTtjH26-<%L0daVz=6RM@=$fZ= zN}+W-s_Dxo;)Pt;?p^tlAiI&@J>zsgdMKZ&10js)JeLclteEr;_Xp#bW0WI4vESPv zI$w@neLhZ^G-jFdM_>?tA99Q=H)-N-;4hlB%sbQQv&5-v62(^GX&l@Bkc;x3Jwf2S zI=MV7&@}O_QlfKnqsb_1Kw3{162A8!JtvvmJ)-aXIrM~(WevvS=~NvHgm6Tlh)v<#!zKm=LWQ$HdpNpSi9lZnIZ+3Ye#j~=OhZ6D}hAqJSV@nAF{g!Z7l9ffOR8F z*${-?YW_c7kHcN_6210^NQ_63qxhulKI_^eL|p_V9RT=-f%PhKb>wW?GjfQu#aKyz zqdA0PT-L(AM4iTRVjdKmVy=k>uf=q9{?OqjEXGd}dH4RWuz{J1M0re~X0ry-E!joZQ{_q1@pH4q|jJw}hd6tWtK z*piQc>rzT0wkQS{uFZAgl6+W&QJQb(=l8HV#x(o)xaLSu_{Qx)-Gz*-KQ@t1%MgX{ zMh*kckok&NtzjWv7%QbjUH>lc@5Bt@(0COVaATPx7n=Bw4iFj_QaMiTpJG$;D$@I{ z{E-3|iH=4uYUQf{{FY#oCifEcG0Nr$x`HkNd14?ekW!sukgQH=dnOl>KG6476uVJ1xS>DH zuIC)fI|we`j{x#T_Vu^n?>IG_F17%Fg)E9D@4e3n57ygre?2q6PGQnh08~*xWlWpk zpTTEnkC60Mis$~eAL#Q8<i13J@9{h8+b}TgBKD(0s&)%C| zj*dpuM$}{Ap=CaKlX@e$7WKClwu;Y0|6wwn|%{=fNrk}JD}gbxOU=aNGW?ESE1prqzxL8 zW?}WBGeA5wF(Au}plZHnvC2f?a-;vq`vOc0nGLtNWE$-&C|VV}5leDSc0=9lMu54^ z8BD;P#qBi_8M+vKW`v_it^$)Y1q@r}<@U?L7dLzr^Q{ppC?n#FDv%pO{zB&yxnIiK zYV+e?d#@A`vZq$~p)pvZAW!kiLj@f!SmE&aS5;vDN8uT$YL=}?Nk*j^5P6lS;`H`y zQf7!!jy$&NYV}{vyf>HsHcin83;^qRV=L|?{&BhSUvfmw?CG&{)fCQPS*xR?eakKK zd9vzGXp3Wp_FE8}ri9|2G&-(?+_unwX$1)ed7mACNNiMPjP690A|H1oxZ50%p_!z+ zUrA23Wua zWC#*=nP5rUMMg=DJ+Y6hkjWvl$&_(i!K{yY;1+w%Ki=S$<`eduSeJBvg7Cb*s+mj? z`PFh^OnO;o5^1(W%C|9CIw^zpV=n>!7VAO~HBnjzjJ>Ei=F49ckmy zgT?{cip(zcKP^orP0MyFycPzEhbL-MNyHPTzrXi{*S){~pnJvU8t<*Wm#sLxP$|_~ zjyU*!P=$XKNi6i>p1CaXND$T3-^8T^A6BJ?HJ@Q5m`JdAA&(=#>>2#0n;7Kg&Q z<;&zyV!WP5hv&qz>r-qqdcn6ZMwhFxk#WM4V7X_*YZ;6{ep(ZEs}@o@WOk_9#oQCs zR~K&~vtbHq`!&Oxafqb5W4a%urh-!8t9fBHR~5c34G43Q9ev!v*OeEw7)g zjoK@%HUF;{0JnXj{xBJr$6^8n79dM5vc@q@Hs_vvpMLr);)qV@oLu>pWxxsL$I9p; z4nw+q%Qq5Yse|k_T=^pBXg(H`CiY_{ct`@2*S)R2|Tmr)K*8Q!V2p zQ7Gz6@W*jCtrp6#d3}lXc7)#@`soXqM*3Zl^PK>~(JYY;I(%83+~P>xuxx^xV46Bf zbKokq_;WD~9zmW@c6ee8zF!f$0jYELrGIy@pY~PHUfW1YgcK;fPzI3aj!cd~H$eQJ z)+9s;=&Y#V)^&`^udUIFvQ*G+i~jfoO&FC&N($QSwP)NT?+qP$3ZNP%ZQH9r#(Cn| zljxx_)5r|3FG~LPw z6gd?6xT*vC>_ByD3f&h}9-8WF%D3O^ATw!ZcHUpH-jo{4Zb(WqXFyhQ!d&!Y@~yeI z`+7n4pjfVhMxdpbQ|n_0N+w{TIrVBZ%csvUD$Xgumgs1gTvpEDj*9=95#1*r(0W3` zg<7q2sAZY!yHjbx^xI^Vf)tUR)vr>HACL4f^PDvKH8=b+cy3x_)7hQ|PaSuAzH3j- zjKl0f?Hf{v%?FVx63QX$VjO5&2~9Pfpa_8bAxZfuGJE*! zS`OpkO-?qU(a4R!Bg zwXJNI7u1Q5_@tB)8TOg*q9l$TnVkVmCgnUm^W|Z?EV>E-=jGo$6#zjuC!S4?;uf2_ zl8-3ssB%e-2H@og6PBj%rjLzrCknV=W1#s+yD?$~+N|nL^htDOQ&+qOEQCynRG>j& zPK!ZP50N&)SG-xIVh;Ia9C-m?Rev_Q9r+T)5|!T>HvK8TQNX|*8hMMY@$OFW-Gg+Z zpN$e!mPMFDXhU>mTAbPp<=NJhFBeNrQcv<$DHhZ!d6hR7o|xr0!AT<*9cM*v9@R#Z ztwZXsP)>xDLdbd2NsVqp=wuB*ne@jT%HE3!DG}DV%l;juCqVt->8~n1P|t23`se{k zOtT7@nCQ7h_#+%`qhaKEyLY;IL~2LN!>$BDO#0G39G}56XMY?2%tgh_B(}?*7PQ`| zjrIOC2Q_E;!gJBeB)Mby!v(!E2HmCo3&xgx{4Q3Nap74iWdBs&3BExr!J9%MDCW&S zAS8DJWOX)S1ieZ&k^gIiIp{m6X0rF-?ItgPn$>sl6HurL`Gbn*dN%S}*?u!Cy%BRk zDBM5IF(fF@VFs=oM~XW~QW)C?e>qQTPZER6XrU310uYUrlcl8@>{NCpQ=D&utTaF0fo@OFoIXK#9DfUss_TQ8nN%44xnxu7u(yYQ>*cd|)b5){ zR0ox7#*sD#Dd5V5b(HSEH1w{M64g5OlX6f*fJ64dp6mBHc9T+Q^z4VADU%}qlXhSd z`IyGe!cQCj7lm&;@1Af)wUz7H)EtUWrih;)0Y^$mDMSWzx#C zLoJKgwE+t^f-Zo0!Xsf+WQd>%_$a*Za@?ZdvBd+D!Iu5!@({$3rzc!Na8k*s)Ci31 z;k3=do4lu9A5E+-S0pXy9gs4=H!W&|>5zYYvw9Jyf%XjjHq08t9AxQR@sw>XFi7e* z_tGKrHv5AdTN0S1*8tnoxYTUUQLRO${luDUTafT_Rgb1(hJ4#tWpnss{Y3#Z9 zx@)>TNt-|bX87*kmYu(c9y2XLtMJ4=xdRNHSH|PB0KDXG?2mngRXkra0wqhJ8>IlZ zq-7BW-JU#c8C(Sj-v|5A4wN;TSB0qjn7!h+z2~n?hTw9J(+iXhH!!F$CMSVfs)~}J z_@30-WKX*9CO>R(f-|EdxM3VsQkwQDdn1g=0nMNDF zX&yrGozh+9D>(YM2}dAM88?Vq4f@{HB~gwT)mk!z_(l*Qfbj06XvDhHmiC9*Mwt4dYB3uxgzkh?l$Ezudxf-n*A z6=Vt+7LVGNv7}r}o_8hfvIMZ{6Xz>8_Ag6xO7LAB`pQ1n_J*tgo4gsMg5GKB;*Eq; zozmSP?O*?W2uY^z-m(5$w3PJa;>*fn5MxN_aui;4qWZJZ@_3TZOt6XwI}Z3C{s#j$ zsLa2KQ`dU3f<~Kb=Th{($zc*EoEqE4P`HsEd`K`$jTKqfah(;=m+#3O55^HoO!6uB zy=2`=2i4>bZ9%Jojma0X7Wh4Q`yC4r(6am%?Ri}E12*!GKBLBQ<-_HnfZxt2|Jy4l3Y_h&dmV*oyT=4aMA7m?4KDhWR_<3 zO5OJUdG=PtzY&n!lMsG(|NR?l*3}IX3A!!X*0|@8m}Ckri-PBKv3Y zG|$@e#YxIy1I49=;^KpVUBEF=`@5IJ_?UEO^6t(L$ufA+d7X))ALBR}et)wTQ!GY} zr;4MsJ00#0(}QaTwOk`rQ9-Qwn#@u13{2y02$DCPEaJjfV|^L+M2e)7fW+%Kj{GrL zsQnMiz)bVSoyea%OXUTRgB#t^A15IyM!Oj};Nm_?J1US~MX}Wb1^_tKw@{1?qJ(TH zcl!eh?Torh>aUw;VfEylu$0zJQiCW4st`lr3U#e}Bs?av*@U7KE)4&-whp4u2jH@H zU?L+(Ie>HDV+2W$BQ=KzNkNf19bn*vG%ozhZd1><&+M)`ae*Ecj;$dmxImKF`E<8% za(aY1OgFOmDWd+|*T-H0iN&O=Q14xIx|<)Cae~(Vrzg@zX%H)Av8)@Ev00J-1 z(Yx@~RQi2)#K$Y_^@$+eVZeQ|Qzqqds642*;j$DpK8kTE;2OIj%t(E{VDJ9F`+nRS zaZnC-I_)G>s4Tw4=Vanm^KWSYnSBS4FPamB6nvn#sFYU34{9kGxiRwLqilH;F;HC&Z1an$ZB`CO`#r6H00RmqNf)EOeAPaO_ zP)`qj5n$9yoZcxnIpIsdJ!G*ZwiQ7hyq?;x1WCLHnoT1|7Q}1 z(T0JEJ!++%WSk^7`|)haAGlqi$?yL?oCB~VUAOSMlbn;Z=rwlVQ_{>86S>uCK~gVU=(*r$D) z*UT1lS8*{5BZ3{7=t|G9fmZWYG;88Mxj?WD9Qv>rrP~NeKWE>GSI@!_n-`GarX{?le za9vdtjlTyOC^3WV+xJuCap?01#Nz2S`jpbtapZnN?0c{Za)1sB|ET|@*` z1ne$=!&3kbgNXlGFGLvgTFz(z0>&4%+=D*=f02Tp{2yA1g3A)UFf*yi+qZBh&;L_< zBJPA7_P=Gl1oU6_sk>w$%#W`6A=!PYDj20Xyd?e``os?~w0zzjy!bMsnV0w$t$FE+ zB`)NDnsgexJR^_X?#{Dsg<5~F;!Z){8hP9ZqFPcp1|7NG|) zK;b_dK&e41%hM%~po}2XebanMmxM^-k%zjCfJnJO*qSrga*Q|x3a=zUV_a@rAaMzR zTYV2?ru>!6l<)7*fu=aXApt)tGhQ&Sg?@U! zXkhe`?1tnwu)ASg`!M!+qtolavw5~^ljM^R%;KLd z$uwqK*OM#!^Dh)4H$i_+|088w4A?_bArh(#iWN#H_8x1vwg7^#6pcQQ6TQXIe+S2D z#$5>VqJASvGG9bgPiFLRvYk9AP0r_bm?XU4c}@jT{eK|S~M;(j-sjB-#dG2Oq1k>aZ~4POS|hr{N^)&B1VUmh7fHKHNAuC)F@%F(^$_&Mn-PBgF~dyzb`h(lG`pi;4ZJNwH<0u3N5~p zoVixL5;Yx%EKqm3F;zE;@e^;gM&;*ZK_^gvk6~yCJ);RO4PVnc8f&c3#j}EYp7ams zqgLm%FjXy?NbjiW5R^JU`uKUX%Wm&XoL2^~#kW*ul*>p<+rPSS8FAYrd7b=;?O~?b4Ts>W9nXO_C8&PlB$iDqi zLfkah+5P8!&=67T&poMg8)SVv`MmF9M5G)PFSimg`@Wb+{+*|7--jGfE}m@@Pl!lg zei@!*0t%w22 zwBEz`iMB@C+K`qlno-7Q@Y!z4#Yd&~8@^7od5bvp0ZYCzD?aMujnU&9&Tb}+-;q$S z-dbDpb>)?+n3&h^@6ITNcNrxidJFETfQzj%N|$W)XEAbDEziEPl62s2Wz~ABmYO)7 z;*$U!M+93&t*OVFUy152uty1VYZ@q?)s*>Gcphj_jb!UZcH(&SbQlt7gTwK1&?)!9 z{e24#xG=n+W$VicwPLHOx<##+r`vrdB|If%xXV%l%~T2EIY zguwNK<535H@XK5SGcvUwD}Oh=gl$^cIlD@+2u;ZB8PY3WN0#5)8#9EI`RqI~i_GGe zk!WSGITj0TIJx7&tfuf*sTM{8RmNX=u{HT>i5u^h%DOKqLZ#Sus*Wck*L1%JS^n>I z*sjwM{v@inJi}NacS@0w^Nf4R$W)YzI_6~5nArNDTEREX!6Es}ybn{5NBm$`^&0=} zEllj!Fe)DvA3wV4VUJotj;c1KBO8qorvUoo0G49PG;E{(*r)CUUXafjbzs-em>I=5_Pt-v~=v7Uph zru`BGi7gBQ-ha{hhs0xFiPUMeD>F-q08_N;X$Y0bM2w%LCEc&@Q%4i1l<40nKfu>< zu)+k?+BFt+RWX5`k7VsWff>1;wEDWnKHvoNchmKJJGu!ietMX`zMV!lXb@E@8k5Y% z`t+$cg)aoG1?MTb_Ha=u|(+GXhMXEQnAUCivq>GUbM zO@@zJ(U#-gnPUcpS6gkhDF41{_MbqZr~@ywCQFo(aFj2Ge0APlt_QztT zXOZPdZ%vED)72Tdd)4xoAEI`)7IqDna@AxEpS=@%h4wY<+peq~)Wt2uJKBvdI8b-Q z?I2xI`JHVp55S2D<8*NpuI^H1EckaAoRN{<76vJz?&8g3$%&nwLeblg)ycN52$Yy) z{Qx$q>3I1~H`92|dV&D$W$ov1k&mA6a8rY}or3DfrQUf)C2VWw+K%gCR$zlchT zS?8YGP8fxkfbXMAfY(83|cYGe)brV{;?R7G3@ki6$e?Z z^tG9Dar4R8^_u$Zl~=ehZ&Vw8*K3?E=}wpuF` zmpog26_bi{VlxzFSG3<3FEguHLAhv!U1594(aULpTifoS=mzi^g~|O=eO}aJHp))9 z*!IUV+Q3a8Q@iLu-ti%XPv-N=T^y~?4U7`$KgKbf@1Nwayn^QW|AardoUi9wuc8zZ zr<;-G{FUcg4KYhn-`u}_4lfDp;vJT4?ZebmKAa;)jU_yB#k6DgEirTABNTmh7!z5K z`!4pFylDH>tL0>`vOE7s#7;Y-2vO69;Z=?f{YNQC4b`)*qTvf{h8rkJUK!rjJ17U0 zV%}C3RHy2CFS0t~vjbb{9@6_ZCN}-=AC;272l%>+`GFWhBz*ccmUZVP{b;oo!Kq7g zT-0W2W#XQD_LnMqb?=Mheb0JLWYvu`0{}wlBv08|V7^rK*S?#sIn_^>rrUxaiJMLk zb{9qtr%Z33AEHa!s&QK#W#BYFh}sG`tv{2JKw!RQ^`zn`X(5;6ZeGOUxW;o&=e=*| z`%g}ZTZ0dObNb6mi$xmR#dBQ!xW?~|gSa*Edh=kAK`rMBjV9xHFt8h{M`D_^8+WR z9t`2DK4=nRuzmj!Rb5q=G1F^zeRJGbuLf6{bEYIue?bx6uglDTK*~O~PUQw+crPT# zAJ&K8c05K3thVk&SJ-MDTC2H&sYMa$JyBu;rSFP`MO0s)I1C+a`<)Fi67MH1s|FfanJrGfS?r8ayhJf-_Jdx{STjEw5 zr!KZV8?}Frck8N_kyO~o*T1X$It#VlVVjN0Y9sjTpEVC}hVKD)uj?LBFePYdk18HT z&om&jZS9s#1?CdCf0-JD27ZHWHX_+9Nprt;&cO3&gOX-1jmEY$BJ{AWqgE4Xw(}`)I7CNE2k(eIk^I9>TY2tS(J{>5FeJ$y7Bw-9_&wGHp{07I1A0ukEE z`RJ4GIktZC#l=T2kc!6UGNRcFe#^U?$WcLep6Kbi=xb6)8S$A5I#g0Cdk4rPnH$NX zi+nQ&mz2O^nL^Tq#ev2Qe+(ZvtV(A9<5g2SBD|Z%HXm*wdDxVaML(k;8&v4SD_&{k zRl3B?chh+4%k?j7uHmVRm>OhjCCWj=#R4OeiA>otHkW@8d)>4;->yIKX4}h?U8*ix zZPrt7ZB0z$ri*|DuRlkwa(qzGr{nv1a0$mWpyffo!c;w<*=Dg7*IQ-Y&sPhOW5+I| zE;gbS zQkiv$#rc;y-aHiU5v8$6IDhR$tigi=vysK$8J^l(RNfZGkRX8qPei*s^2Q{+pPssy z&+sZ^rKnU76DhuB`fj?Dto;Q_b7*_SZ2#eD7>rpIb^E4vrR7mC*7Cu1ne#Jmm9r|Z z(Jcf3`C_MgSKVI^$GH@B_eCvSbnAute8jpU?$T{jLQ?rJ~90Oxc z*Gp|3DYRZS@ELd#_ryISuM!!UxX!&6hBW2)AQX2Ss9yEuy;YU?ox?6vK;^?jKjlVi z3rxx7qApbfjnjO_$pyv*>fXyE@76P>odryF^HFCFtC2e*sJijjihP#)s2ewZqxKCL z^fNluH^hU!`MgeT@7415Sm9JCg0}YYQHqL-OGbo7MondiwdNe&=V4mdsHOsAxkV@? zNlDXVToj@@qpa1ln@m_ryyE@b!OzWHwzN|#HVwf8L;2EF@AA^UF`aFOi7sl}Ad(DH z*6o{?^|1^e^K9t|MRxtukRezf_$tg`tA`{VQsXo9bY59M9Kw&tTMjyCHg_%y3Q_SH z0E-B@Qf?aULiX8%pg%mJ*yS$n|T*$6EVkJ+B zga$JKgE^+;EPgyNq?FC8?u67PJFq}){WtO`&v`El#8Pt%UBCv|4MX@0Ch$i_ZK|I= zMn$x_J=JCoCydO;MTLQ+1uyS;X6>=GmLn_EUG~WS9eZ=T?J(B&b$w28y(cDFS6`%~ z3bmWt0#59|cCzl_a3G4|k4E-VpwFAdR}T}hhqX!=5u|s()YiSI8aYh0Y5~w#Tg^d3 z+w#)4n}qi$y`k-@bl-n!x1Bn~0b1#3AWU21is(gz9GL*X3Ka>@G@f~D+rZg--b0~v zAR6DI<_sxIcfF^wi+RRa-{a(4nWn}Ti>(G#9wW+SQqHI>cpm{)j!`wXls#ZX|i!!6*4j|T778+vC^6mY~{1z2~z z>jf;=Q>Vw2_q`GQC!@@;G=wMX6Or&Q-3J&um5tQSmniNOmq*r^rS}<*>8zOjyCLf) z@v}ZJcsPOUK;7-B_dRP$?CNz4ov8bD5#6digkKn7iT3fWT%%OQR1sM7)eMeYi#kO3 zcD{=%iWZ;@CU%*xxGQEwTD-VEaJ5V_J=dUCpJ0zNiJ7jm4hSti-)ey|>eeJO@5w2| zi3_T&ZS7X^#*(R~FXVu$TOCNeR+lruCz4+CXWs4R=Y=xc zqY&!S&lYx@%Fko1^@jEu5hZ`ILk^=YdkWV+>v35uX8ZS7Rvi3Lrl+^L7CWOjphNXk2{sABc{@+Y_PqzBJ7;SD|2~Rju>;E;2TDUU5V3y z^iAvOZcf>nt%`g*&)TwGOLV2e5)SFo%1S60PRgB8r1Q0RZ6s|9}3! zO2AA4pY+5Q0}}Q746~S|)LugQ;OOa0ZIJ{2gytq?IkB1TGCmo<_=(k&>HOwZ9vO&h z(Rxz10 zp7t~Ms)`>d|FAc&LalA3OsZj4rG5!>x~Bp9^w(c*7&_V@74u;vVOlJFZx#bG#`j1) z{^6u)Llgn?q>H<4Z0yo%@72NK0x9tTLh|${dgu012^4qKw7&qV_DcA~>R4vj9>2E^ zrUYX&@w#4aMxQ6ObJcQm;AkGn&tLiJA%UnhC@o*11iD-y(nU-2&?GTxEN(gp*&;PU zXjM*0^@x;_YYo8|4S02UMgg+ZKPH<Jcx|kUZMnHg0ni@@c8OK}QukABOBGt%HFulrQ4S7RUsVj9KelB4E0Au~ zQvLH5C_#Ksr0^r&(<%#Df0*qu;WFA@g&nrPJ9TMcsiia8<)~Q2&em{5k4)P609owKTJ**6Z^m9nz_ zwOd~Ol^6|)YCe5im)o+XQ2eck zm@sMlOzvK_`z66_{)Ro3_WrB63gyr0k)E3mI+s!EIb$m^lgR~gJQIsd5D9aG70l&V z8E1%KT`yEwai(+hw>TK$_x4EW8W_Q5(Bzaj7c4lbx?U+7#c;+>2V9vc<+~MI zeQ6Nr!wk2p4u&5vnt$TxP$};*azkHWFX+J>oare5Y&bdn;YGG;=G6Kh? zEGc)4(sIY6IOC_=lnr=R9_U`ve_pP~pe{D-^Effie6v#gmq=dIc*45Wcpy2>MQqE=g|utj=^vmcN$@cR=B~&W*})}U2m%_-NJ<1KbCr8eaq`z)6ZQYHItS8^B(;)gmF#G?nwcaH$t)EJWo?q zVoZY9X0bDJF(s0%I|jSN-@FaJk9iLt$~Qp@+=KW@35IWw^H~Uw)W7S>2(LSN|`wZrbpm)F{ zo{hI$kLNUnmrB|8I)yFkzcB4}bC2}4f&`4K=ez@O{al)ZaFhF}^n7b(sSbr$?Ctem ztEm$ixr3H`KBzTrFoZM1A4rB@dlKwyYaifUa#)*u@Ym{BkLOjYl99B!#b|23xP>(+ z9v9-f?YNX?EG5ppF+jgL0h$kP3GL1(`&FOpv(IjFOZZ(mFA=>x7`z5FAt3U%O7!-N z>ZZCvrt0jFGB=kaP)->*@1RXXSWq1m)Qr)8W)~PVzHZvOV#Y62IeL1lfyVjORBf>@H zx?8eW>aWJG8y%TrMEENCh=++rrlG54x*M00Vv4!fuAsORdjn&{mK4fe6Hw!C*^9>a zl^Cw-4Al22_$!=&#XWqHlt~4<;p`phteCUJkdSoNGkJg*?zy#txAl2#Z5&wEH zTU@0i_O@5~li&H#2dkS8OfdUamVx#3&b4xic|J0kzL)n#tC~Dy57Tqi{M4_D(Dmd@ z)K7g-zrS8BQ1Xch6*+-&nW*CEZ79(c1|<{?bs}={(wiKwe z6z&<7*1YhsBX$wl%0FLU+^$mKISK2yBnHlLr6hj9Zc0gchWgrA9!+HBcFJDfW8nUf zz>X2(L^%ufv3-QJYJ*f&{Zj3kE^)+elJ(#j7l@rpo%pxqr1h^(CXm9%{&H@9Dyxibxr;=>wJ0^KW ztEF&v>=U9l>Cc$;C?MjaM*&r+Xd3FT6sr$2V=1D9OfMh?b9(PlY{i87dV@gz#uhTw zafv7SnyV|mEF)KCcLD1jSiSQQGsnAAe(I~G%uq(hbj{}wycD0exAHBA5r0|U?2#X? z*J=(2TT`x-4{cUlvBLYWgb1*H+OrP1CYdEf^(UHp!O-oA<&l;>i2HQzJ!gfPNuRNz z;*OsV8si+{tg>BC#tCcG4; zhQHM!N>2L645E2v7a7946OH6iufz{*Vbk|wfkWmc+gbS=Bbsz3D=SxazY}}5^lgiu z17?VK_+snawPc!Qb7Ez?R`W!Wfd8+~yE1d2#)~a23GBAwh;-bqL0TG+eyE4Cu$PxQ zGp|#3L!d;T6{Iw{d3o_4MMoW=Mgeq6lvx+}Zvj?)L%S9ei86%l+j`ZrjzdibagfF- z6(um&*!CuU-z#GuCHvB_VjZzJ*FOgRpc^_Kx`vWb^E+?JHJNPdaI&LVDl4qC-C_%h zmvP;>;5T`V+FoXL{Ce3lEI)J0@g$1d*wqk*rYS9h!hO-`GZ?viz}SaX^ID=#!_Z|( lzer^VXyE_f_#?P+1lzxVrYMNKxDHw|>W=#D{99(v|1TyvP{#lO diff --git a/articles/BAS-vignette_files/figure-html/diagnostics-2.png b/articles/BAS-vignette_files/figure-html/diagnostics-2.png index 4353bfb44539ba3b7125345553b3d785c03959d5..287df38074b61a914625ab705f0c4424e5d9037e 100644 GIT binary patch literal 41302 zcmeFYcT|&G^fnkoMMcr8SCQ_$py*XVrGz42MNt7odPk%as-Xw4qC(^f3epvnk^rFx z5>ga_D=kuz03ig8v`_-Z5J(7_H}LyrzM22$k6CM2O9StF%0Bz-{p@G&bMpL_<<&jA zdy1#PTNxBKO+5SD4u2kbF98 zCmC#?<$6066vve!$2jjsIe6a+-C=NOSj&`7VN`PLP@PF1R*owjiR{07&Xi52{t z++G%2e(IgQov5*O)vD5xc6ZH=Ih60sz9FO6@gvB{pdi8bEZtJ6e9Yd}D|aT?O~};j zbOo2z;~B-?3GDm~bX09Ya%Qs|=Tx90=Ttu;Yj5D}G(r-D@#ZeD+AORVdc%1vD6+#(2uN_}lrEeVhB#q=QvNXtCJEa}OhohCZnR925GWXKd zTr3M<&3Bd!;+EdI-V`te2e+y>v_@J^{`?^?Ex7qm)@~{p>04pABMJ8FCrbh;^YBTv zmSm%6KGK#qH07Y*Y@jZ=cvLOgQ+NGRF@4l=><%odc%Wf`7LA*AB7+;SjV&O% z?^Fa5Ww_(eXZ+(~O=noEOiA3dNyn$}<9WM@ZPyk*|H^m7-Ou$;sKA7AXUS3sj)Ib= z%Pm+LzmD~Qd=NP`=llWGDhg=1h>mHxTrBy{l;-1xO0SX?q#vN;w1k$5{%ePO7S?|1 z6&BhFr_XNrP7Jm5xt$5sbm!`Nk-L%`pe%%B(xvHSL|6C98o`D{^K>jMQ+COxUsGfc za*-jG!A5db^rq7ZA7bxtspKw1qMur(?2Hrn5+V+4_+llVi!s|fs8wZx9-q({X+Xs3 z8D29OGw(bB{~|yl2?1)0rue;Gcw44msRs^=w&a$z<3~DQv6jg~1=J(Ah_fVj8&Z`U zZGDbm3n>(?1-n+=j#!r=Q*GQGT`^(1@pwLy6{SFnLZ3ke#Lc%~aZWWt#l{ss>M#w6 zy_%L5u;$m`Ud3Sb`bzcHE>Cc21YvmRhwcyrzA>!D-Rtc7K!*2PL~&&&+A4F2ltHrl ze#8~L{DWV)?BFtqv5ZJ=Ul(SbC}dO`dZ}b33YQaA6#eh71J2|u-!WzYmq{!fXgXGK zlXpk}c|)bfq-D>dFQu8L;k___3n*5FQyjO5Aw{-|IF{ftjKysQ+ z@L1H3y(1XkLHnB~rcTD5xf8HP3@6pw#jEpdZ=lP$s2^8LyG1oV==>;-S#q=yJyI)J zZClh`EF@}%WmR%&>T1dBm^Vsa1S9Qxg2+}@&%d`QRki+uCjE_f9&jmL`nPs~8*9$| z`$^Wg@yf=vDr)`YrcCVGAp2X`xm=bJMa&1keW`^ex{VX`B;p~XFDA1&?11@KE&x3gyP(%>IC!eyP2)<(l2W*CkEK|kUDR6ms2lv zGI8Pknip*5(LlmH$F@*5Dvs`e_6jqlLY3=YmKKiQ9gTt8&sp8iIN`naCG{8j#-e7R z%3zu2O0!a?00n>i-vu1np&p9C_eOMA@C|;{moP*jx}$Nq-sG|UEgkYalKt?fa509) zm+~SCgqZf;xH(N`OYOAa&!K~m#n0jNh<0Cg*%)DO*SV2s+|M}Pt#(%h@R3r|8TL_m z@DovtEN9JbfMjKA?7b!_5B^j)+JfnSO)9{(HL1dXelJF!h|1BHN3Dzo_pWL=3VrHS z7A;3Dvw~Zc(F4bfs>sil0|%$Xm#Fdu0p8Ysm_<7|wobaLZWy zKDLIX4@XfOX+qKJo6h(tgMB-7l-x7vKnZq1E-4lA6zi&Hp|wu!F%$1bOGEc(j6a#k zA+HD`mi@CC)VVLeEMZXQn-6r%rQ%CX^rm1g^p1&Opt0(&nEH7IYGGsq|0(N{b86yw zt`cA%-ppgO^=2CV3cA6+8-I25P$$RcX$cG^gYO~{7V}v%E255d0h?E9M}Qp?(hV0( z=B>1*kYjFwneDWAd|3_xX;P@Poio?vJ(uO5zf%ZU6m14RODu=0{K6w*FEe$!y`8vW zCM2kr@@(iS%|KV*)w|pkjds)TkG%^Wg~USx!fxeETsLe{8m`6;9&LFP6H*g=CL4#kuS2ol*CreW}LDPM$XkN9kdZ@Fz0r!2s^xs0CeJt;K- zpv|`C>KW9%o3rOVwW_Ln&bp68=ZjvqZ<}(0r+llhzgj}~vy5|{Tv@DPDJT#eR3PVW2D{zj$1XqC}zNn`V@BBv6-vsBZU_S5X%A%=);77e)EEXTe zY-lGnaQE)(8g=93@DBE?!Yw^YdW{yv!9=4-=KkQU`O#ToIMxQ@ZXG!`)H0b9u`}=ETb2yDh zSnRozY0DfFRn1p?ruCJe9oMQLldhAo{zaaFU52Q+4%jYGAZyUaoru4ylDWDl*A;hR zKug~g?1e8ZJWHxjc&nw8aL}~xV{XDHVY1vTv{3JL4{Wm(LN1dm&+SN)CH-m=gz6_ zlgl~OV3qS}rvHUdchc)+k|X0D;k!A*WS?$rD~l4S)#8G;yQUXGG5ajts1%Z9aO!R$ zsw-y60gIGt?Ctnbu`=mMjS0#cujIecFo_%cS*Hq5UOQlFy1u>h+|DuYg-0DdZ>O%@ z$%NL=XS6swCVTlQ?Qao4H#DUQXlmrQUc7Hx(|^54UuYy4c_Q7rii$ZJ4R-zsBL`;@ zQaPPx7w&)@RI~h+dnkK&p4sf&nwFEjZ`tYaFH?3LSWRW(OdeE{1E?*>PW$_3AJGqk z%16)q8=wiW&fkR7-ux)5?DYxlyNIwmCJ>{Wv*yv1MnMlG6FqF?`#Pdhjsu%WU43bh z?d#e|Dk3Sn%tZi~K=Pg$;s#K1n5rLx^e8T=GK+rW49jD$1@m3EY{*Pocr-~pZ z?t^>&oBUM;o~Wbh8P$Xa4}^fMLSnCa548BT`wj%$QBEX>t;O-IHyw1@Hyq7mD}IHcv2*PB{&V@T_zJ^dS3e%I>Abo zK)gWs$kQmuT3JK4U=(WD%d3OUK#dMjKWfZJ*(IXeR@mhU@hMBBG85CO+RSFLlGa?g zujIO7?YV4i6VpCJrAu9n-LtcnY1vRiiZ4CUb+GJ$X^(DXbA^9z;nHwckK?3a1@&ui z_S73F!Rq_I#U~FZ3<$&KWB!ECq*<1>3C+BSWvgw1UDy1v;!+o~Xj+p}t0$nJV1|rk zQS5{zCkF6!m9*ZRhWP?YTcA^ru1i#B3+MOr8qX*%*sf^W3Z2b!;K~}gSXPpj9e+m! zQhI)+f4L*>Dr1ijw&*?}e;+{0*>Q%crFeW^r>WemdWOog`D| zj${I=V#b$>BO6VOL>Oo1qv0Y#W7S9AYvWVC*#Zv=uI*%0b;YCTkg$Do6MW2omyhd9 z?p|>3L|sc5u$$?F9ZHqK!_lg9+sLyDrY`aCwS+G%BJv@bHE)D&T2H+T>?uN%CzsAY zl+B!l01F;|n5A2(F(NPfdOlB^Sw|l~^<%Js7A#p^_eLWAU;DK(Q<_2zGt>9@K^%<7&7a+tmG2w zV;zc%h|cm2ECTXX6E=W3MECDu`Oi=H*1FHOwP|o#Y8QAX6u0besdlMLSV~yzFB-~r zY&aOzuP_}}I6TRb23G#Oz|ebbFZvJWMDAE53s|{eB6VK9`ECB_dG;5}fP!9UBj~G0 zENq#Bh3=b+jGIs9$nP~HA=hsdAL`1_5qeSnImL>PJnP(sAMHtKeuse!xIY-}b(No5 zd(=pIG(b@(Z3%f9Sux!eUA!PC^&~Bb&Ol@D zb8DXFY#@@;>4~%QgaavEI4-E&7hP6`BYO7)+=1F9J9qTNy28Lpl8~qfLYCU7GYtb7 z4%CfRsp6;InS@0S&V5~ZXm9t;X)HNeD4bp znF9IGt!T++@3O;)itJ77^J2jd`B37MST>(;Xd)ptr*2AY;$n8 zSN_X3p&K>kTtqI()LyuxoK@2etER@K&|5HgO#sC-IDAa*hOOr7TnT+6R|pGF2}>(m zXh=D{+?r4!>mD!+xF#NO&3^&j6>CwKVHxM2F@IU5U}+dU=dtc+{28AZ^?okbi%hz? zI(H!>Q8fFSR7zg29HuRpHgMr9mQRIq`#b@+qe8UVuOgT8^%sr=7v{fhaN`B8yAN7D zoo{eee0>35-mYI& zc%y8Ydoyk=?mkQJ%p9eNno?QGYN>tszwFMvqClU?5!t||6ekj5++z;_keoPAh^TWn z$9zfE?+uB}z16k+`2Sbtl^AA}nrSXwS)-E7x2+So} z-QR~MS;p7QK#E+E^9LsCI*sMf)U%ZXtKG;51v{MkOI^d(7z<`)YKJWtQeUV)?|`3> z=>*_>dDYXP*B(dO`_O-0K)q{N;4*2_^o~DuVt`SE`IYKTe;0OYVGvlX%nLEB3U7th z^YLn9DD$I>Ww$O^!!nvFtQk75hDMN z1x8#&*QLtdmAR9laBN&XkYuRL#o7q!4A);7O zJ%lHm$4jhfBMV0+&T&>I6PmEQa&jML5^EkiV)L@wy?HvSi5VD^VXVG5(-+w@@XM8Lz}!HH@*~)@Za7D){Ja z8bGSxK{5VZuLmU03szCH)ryy-+AxZvctY7Q^b9s9YC_^+H8Va6iS(#GCJ^)Mabz(_S0NHyq4IKVSXgsjl>o3qB=;(bLM- z!-DBdO?otWw#A1qsn2dS>eDTK9T6XG$9z-76bQD%?ak3NH)n$#G~WU?#hX^vP(u#A zz`X>Az}A}1HN098jQI|0__2yrh<2(v=bGhu;b?%TXu8Q*(dd@YZ z^W0v>-4U8ab|l64yW^cnN5F=9^*F|;FpG2eidkJeyKd4z&)ZRodw8T5dj&Fu*Vx+HW^O`bx}+x72v?qY8;rH1`E#-5$=T|kc9mD9k;(k1;3s2RKF zoo~M^05TEXWmDSvWE8m7Zs!={s%EI1FUg_M_E@x)zfKV$0~-BRrmLdQuD?Ef{e9RU zgqsQtl~#eH(_=V(!+{ca%B6NK(zBQ`&m1Vjgp+_?=cKMip1nEy<(?xg&`s*Q#C^x9 zIz$xvU8?j*8C;Mm=bhiZbIhqXA;w3cgQ^8q4n@(*EF#w48uYLH@!M0olR!)5I(#v4 z=W%`%bvjMfMDIJ$f<0sP5S@wLTYx2cE2#hm+wm<@<}(+XV{3Y~+o%OudEjX&*myX~ ztynm4!=eNS8ltg)4=9+>0@CkP!Ji48Msr2os_@5)e=n12mCtI@dNb&`AwiZcF~jF>)-BL{$Jmrt z%gd*YG(KS~02_F;2*Olw9O2M0i)>QfZOYezao6^Qm`Rzgx4L-)b2)}$;+o**Vk6$^ zqtWQbZdm9ls}6gLm!F@E?v!ZJ5P%Goqq z9W!9pa#xh$eIq2EreFK;+DB8^Mc!zMni zjJM}f2@r+Y5JVND$xqa!$Pw8> zNj_1#L)Sm78QHPvSB6DyFlX)_^3>!rNVbUsE;!e}U}(W8vZ*@O23p60M||Nnwg>8i z3%tf+gkHrkdQ^}$-5G%jTH6mBJ~0r)I~^qkZxus<9|Fa0KvMV>W(y zrX9Xq8YRc@Z0MzCXXyqw1b#NYg8&E#N~h}EO%y%va%o&X#Ozh+kk6Z zvO4v z4}=jHm_@?RX0^Otxb%3Xx`+_YoMh#(*hoU4TBQ5Hg4+@d!kk>&4p*q6=_K4HL^8>5 z(sVSV6J3QDm_F-6%9Oz21Vq?_yh-Zvtz`zdk!-5~QKjQCw$K4H+Vv?t%}&u^lSH(u zm(jw6gs+xKe^U%Df=MQZK<+;bx8%ygWvJ`5aA6$h#Kc;UOjgvlMv^5C-M2n+5Q)`$ z+2yR8-jo$QxGV8eaUCYhhRyJ7R-avVD)G)Etz&A^*1ez%7E)pAXMW_nu*37zgqVBG zgTr;lT6@&Hn%s(wvDykK-Gr7tv+p#8jtO_m%;q~Oqf^Nf`liEd4Vj1D^N;rG;R)`H zCUn!)Vh$xj{@@7*q#aQn{8O2e8&e6dQWy?tRz5hS^F(Qqyx~X zGzsx(PW9!zL9q{cFHfdQi~k(|7UROzg;OUQBkY*a`pR^yin;T=_zma=x5ez?az2>{ zHk8yahCgP1l%KyTj2{SGP!6oO5TD_Ji2Ieq348SC{^E_lJxDvpu4db@>JUsq6N$^&IMY|Og4#?gR{W|tP6T+bN@L^_6dXz*fkTK=tG?xDk~8)G|1 z$19i*yN`M~T8-FHtmbP@Z9HyV;_Ic?Qh~?z!#0#$p2MMy$F!9op!JpeFC$wjIEQX+ zJPb|J`1|{RLAeKNu#h<36h`V}8q zIM@1w49il|-HgD*2v81@O#|_hdv%AY*zPGSU+0}|WH+J=1|K--&Q39W;c`oMo;F@S$(h-teoh1)Y$r%+=W{67M-gUMy%O$MdhcD)=OV>@FH@4inmEjYLq zdm{3*P&B3^tP}M699D}KtJuM}ROcT@&pbZVh@?&XIIS^!$I*?aIIgKBi+W< z#*l$?q;sC9@*e5_ue$&yn>wWQc_TY)*ukoa-12tkSt{dh?9Q=m-?p>Yv7uQ5DoAB| z*}T9QICY(}GadY7!4ex~=r4XP>o)lka882Y*#JDwou7Sz^Xb8&6=dyh7+-VJ$Vs?R z5>u!zhuW?s)&er}L!bXh2>2g;Ws<$nn>!Epk#8*C&fZe?2`gI1W0rohyKGhH-{WO% zdFAULfZF_31>G1lD|(N(cjotcRsy^;4qcFHL;wu=C#&b=i`j4Kr$!SK>t@)qbKzss z2&{cb_L@k2WEiC)?o)luz9OL_)?GC_ZkEMB76#X&1Vptc`-^+VguD`qL`E$=v5(+D zZ+`U?x1={9UKR20eDbvZJi#U_CsiOYgV3k!-5qYb+!V_=hM8ewdmP)R5HuT=p|}mt zI6d%+m5Vg3SbxudU>43h2uJr2YWZZfDC$G`76H4J9A&X?60&z99>Hg^2nz;(i{)Ce z&O+d^u|d$fuT2riDO)T5!BOv?Yl{m6FS4|(4W$DBcJZDPi(GKA(cDMmH|osZ@&Y&E zbyfAYob>T+z`LZ@nM^VhA+RsCXvZ}hVq?SN;uP|azWSe+%-5^}_?HFn&2}YZLg}j^ z826`0ao_$HWYh=DJ*XKIgstYs7sC!n9S{qY5<0_*11tcXmnsP2R1TY$)z$d5nrwc7!EDo4+>kbki}UDwBqs>TwT@ zJr@PfX~rs<*wE3hj+p${8(cwR0;lajAENo(GCcCWmY*u&H_PlvE42Lg>YAC$UI*wA zsbS1qcLx1cyVl=(bI$bmBD8F>5Sn#uQ`EAAx-gG1!USbfIAV5iy;%DAY;Q&)sy3-s zEXGi%lj;M(5GyhxOxA|rX575=RR46cdgRhb)0B;=4ZXs!POI`w+`Y5wC*|jh;-??4 z7S_Km1FxBJ$c6>FEeYj;;!#3>VJ>nRn3Y_n$W3??T6wU&K}k1ScKjV-A#tAzl20rV zi7s>RzZ=c!}T6nIi7bEAu+*R0Xfm-e2jR+WU__)8%Y(L z{4;XAH24UHgft=KR7cLOlB4Vy+N%nbekN^Y;-@UnfshI=RORG{tH=rhqrq|8>J z`#8wZ8s=5}YjhI*QPgz%LdYK$L7FM@Es8r(AID{;pIBMu58c(*n{YnZ&_c(wkMH~@u)`Re6(taRvwn-*3UIMMx{gw2B?i{VFH z#DPv~${A4?>DX?807L#^wy;vSwKoBLUp!qa6j6vY=`$Of5|R@uH3^@aGOs+0lBfq9 zx3?1ik)QHa6yhkn#2sU8BP%H6qhPg$gc>VNcUK$+0u|wZXXV7%7BbjGv37=J(Sh}- zID%QBg)IvBO<+XccJhVv+waQoN1P$$r_xA)rqSZIJCDR#*H5*CsNHv`nN>|aWIX{0 zp67?{T2j3S5rsiIk8!#GXUP2dBxA!lWiq<#OL-a^~O7wTELO$@h}Tf<>R zvGLr;W>`!VBG`^z9d_Qmw(mo$6f(+|UEyZD%4<3JMXV%Ze6Wo%hCjyY&j@293apLM zeb43RvbVAW^4xJ=XMq-=&~SZg7>wIwrgHu2F{Y@c55J&dCtG<;$I@<7U)A8OGJM^u zA>72h(HOEcLft;Z`L>I=%qs4Fx)5n&dds*4!@oCr6$zBT9AWpagoQo3wzz?k3-R9E zA+sruthcEGteN(1t)SmETW|cev4bF*krTbLZ+9y=L|!BX_c^@YV%YewN&n|&pz^?I zBc$xo%6kETjprsJOKn8;In^HjjvG7lR#^`J7F|XCvk#CUDPyz&an)uovPxf$_W-!% zBq}$-7d0hG&b64?ikPhzeovasX}Lm=h{bhof^r|S*7U+phm@^HKu2~l4dsjpH82%% zxIe4A5h3;GEX(ngfFAOXF*OkhbxUU4SpemNZan09tbR9pG$tNsj_!?2*2($QvVL#0 z6zLApX`d!tx|{1PF9rH$Mv9ci`Ugh{RA z*NRu4bm-=I>91%0K8aMfPrT*Yl>VQ`-c1GQXXm@Yu5yQ1b{Sz)V8fNzaBk+owr$dz z+9Q6Q?j&DAUbUeDSnR;<{uW`$>Eo_ARq|1!w!E>Pn*$7Qh&F8e+$5GprYKi0 zVAiDiRYZC0)#AnlX@pkAam^vX@4Eo3hjKN@FobjW+hsN)%O=qVSB~*xY_KW)=$AH8 z5P-Mf{nu1%eeDx-Ufd^c5%cNxo!;oyWQ0J^(m`rCS7DaZZ!0C;zi3$ zaNx%d2V*`r4P{S(mxm<*Xb+mY#?A9l4>fg#-TTF^m~k64(@K+iwN)JZtL>>}1-D@J z@Vu{5NEKvNJ{QVU)*1K+Hg_tq-@0f_Wy2ha zEqF|<8`Mo9CLL_cu+7JRZhD)xRZHq~1136rS>%7eq*39j0^vMFb1GIkH7t8W(Mfdu zkNjnp7VWJ@oUtRm5+!fnjQkxKv=3V(>Q_KTd<;t$Y2-%Py zzs$*5m8UfiU457(`JD^NdtBArQCn48UIAv;RM>7tS)b+vt~9xHI2 z`FDKcJV5%@i~mp3Px)ulXVeX?={5WwGmdlzM+JpgpfBWNe*$LjnsmoriTGEjTXAc> zyn1oU@-52b)}`jS<5Ga)Je2b6=;&A%Xztf0X@onfz(v>tn1ke{hfyLNg5UU+0YfCfZJv1k2T}Ie{)%?`iWH3Qe=cxVO`$; z2E00b;%>>LY`6^5lxh~tTnW9PY8CqA&6N&>U(o|eU_99oeSh3X!@w->QQ$_HY)B&S z|3co-CYNIV6kew$?#JQ?>&3|zugJivKo&Z4ga~9v`TE^oB4<0%t^Ym!P!Rn5MJ6L@ zc05$@{fpT=gb9K1Kuq!HJ{?6$+4-XDUI3Z4n+v@G$MxJ=t+mh>J>h|MNBZoM)st5? z{clhVq)8bxGD3vrqbIu(<9WX>`CJ(spCC40xq2F9E zvA4Ky_4qRUAnqJMsIW+9lH>9#Gsb21nDetx{Y|5&zC*1P6R6^h6$B3q5GaI6gZ~I_ zkZ2nx8+mOLPv+wx#d1#tHl;V)aV4?g#RgBM8{bah;Cj(o4PD-_ioOd9)sk23H}k>3 znL(Bjf@<-U?FWRd&#Xu|{z(F|G6Sp2m*Wc!G6m_ZB7;dukDX(qW?r*^q(pvmJXe)W z&?)$yW($}~BW78%3*%Ue68%718 z!VZ=cQk!>cVQ)QWD_h8`R+LfR>878w;esA8#qtGfpdY;*D9z$M0@N&1F(0qQj2in6D?tD`D*-!zYikVJSPM z^&S0+#8KI!#C@whbEu zM9MgM621drWlOl_DthdXa)SjA+&7XdXknZL-B@00j}ibke76o6YzS+q=Wb_Q&cCnl zbtuX{tx8kd3!mJ``MF@Kn*&YCc)nFj@%+a2=Iwr|ljFQH&-$#lzXnx-$MvbTTCQD# z-mc5Qvde<2o4$EMfYV@!4I?C8h>Qj7^JV`_bq^Av%tz2e8Cofcy;uU~mV?16WOx@#e&qK0w}S3v>U!=bfNKmp0r} zUyhCkXkKD~PS-7fiPa$)m6|TMT|m;Ca^;<}L@o^Yx$`#D#j$I1>s+y1;7zJ=A?gY1 zJy{hQXw?pD;ZLyS$Wnm!67l~--VwPvh8A(RpzZfYjR0y#u!AM&dPk-7w-jOgwuMPlJl=f0&!rZVs9F=3^0i4zFMwt8F;)P~>~La3BOduc zO7`h%DEVtsn$8GC_>ol%o8Xz*aqkn_ZFN`5REyWz{ac zp;|7eU}XTajuSV%IdeV|z6@pC=bx41VSvpd+;Oc2c35V!_U0jHS-C(5G`S2U-gboB z#?7& z-YASP|; z9=P1v*M5aL19t<1v1R-&7MaWdyYW_RiXnvqh%VinAblj}4m3+|KL%apHs<&F`ycR> z{won*#N0Z$?W6qjR~>flKy~H`s~LcpMDcc2l;_%q%>E#3$Cviq62M1b^R!~P+EOth zD*x7k5yJVDS^(v_yqFNiMZsC6@(`AC;>&dpt{3@@-C+R0 z7Qph~;o%#&^_F38Pn!KfnhHVSkxP@Oh!_6;gau(CMc*BOuiRuH65ZqVamD-vGx%7C zo%jnB9=w-2?tA7dUG7Q%U*7^L9xJus1+*9opn$*GYLx?=CS#X1Xzp9BJ7>}9YizVn z%FMM8&f>_&Dj>=cKSg8%ZjYr!XY%hC_iyAgNmp(^ijs(QeiUUIFkdzBYiMK^i3(W@ zXtAdT4*n3XZRrHKvc8-vVaaEfXPcFu8W+NS%`$+iX@Q8>{lw*t@f%9z3l2gbsHcK% zq`NI0+h)@w;Q$U;)FcK6ZWISnBAlQMGXVyjor-AhK+ z-qzN}AGi$gkI=WU7{IfqMxu|c3xLDV)PwEYs(0o1IlL++cgQP<^1h0u!al?@KIB<_ zFn-^9QEWx}K`(6>HnxChFK`?oi z=b#L9su&?7lEM6{=1w3o!W*H9%}aKtK&QR{cWY@7zQBFCX>D&1U(mRD@?!_&CLOlC zko%Ty+)SXfc7+@RU~p2#5YQYo@|#x*G$-9WA*P-(4~xmh06sAD|5af}{hVW=j)|m_ zV8Go4UO?_TJ~XY1G1~i$ymewleOm58nmMO6O3)Iq$ z3Agl?tCq*bLsN#KfchDX>C-JNA)uqW5kYPhsQM&FEt=s>zx#_ffky}7U~p%FN3 zz#_m^rwlIN($v^F+@=^_9aaQI=|2Y3o_o_}L5e0@M3)ugD!^p=LdgdP)vbVY_LP^DxbH3OIi zTq{JJ4kH%@noHfv-sRfd*ZyrunqdT#ANARA1Ufi}_n8$S*rz(Xflz?BemV*(Xvn$3 z0%u_%YZ56fJ$~!exND67x^(Q&OIuXg0zJBNqL%#em}snw-)Lq*KQL7zxmQ*k3_add zIT_>mp$eprDg~)n)-L82{ZzGRDv|g5<4ziVH-oVDuj2-9@;DgmW{kXjgSVnRLtHxorJ zMYxw2jQOQYfMoV;zI>=)msX|h;u?E)p-`a#T1cC|yayzc4_Gy?;^isBf1isAaRQmF z;tGN3`dCE&rHlJ_sBPV$`}!O9_``Qcj@a(|_0_jHt@00Oh6=BMu`q+J(>Bt^vZ>IXH^#Zyad_A8} zu681E7twd85XyUZUyE;bF_G?^)Hd__n7Osy<(<(XTlwv-*KS*Xs@Z62%9jxQ!JiFw zi4Qhe^!=PlH$Oo>YHmF_RCFO7Xz==A*A~Y1ms`ya77F$?RX5?XtXu=k}0kCLXQ6_@e56}RucQEBM?Mgj#0KA2|* zN|1=ZJTtbWF@D+OvbcS}7cuuQq(tc-CeZoA%a&UsLHrWC{Ms)`_Toio=I#$3m%W9t zir+e(vvKkH0s^TczyP2SvZ`7t-U$ zMM)Oc6*tmfn{IEBBVSzkn6Pu+v<(u7NHkw!JNN%{tNiT7!hZS7jVBXn^@U9l|C}~# z1GaJ1o0xmXE9t;a!njc{1@`aa!F-8w+tP~Do9(?J<59$*>%3@@1b*A@n>Cu|*6V=c zh(|o!$IlohW7v`%lEv0YOUHY}lfXWDyGsoH(e!4S7jqzmB-?+|B7N}u?&v%HTY`4F zm`~k``YZIWYKisF_SDVg&dKjk+N*Q^M!NolG_J7nfeYi{uO;{}nfCD+k5D_~srJ^6ulx zn(*;D=0MUFvGb1G4CXNCw?d1 zCcbE!Dgnt#$bv!uq*OD%{&vGH)F!CcIz1`SM<3y>yhHy#_c^3g3IC1qQDDzJ= z>58J)Z0(ts&&xHv83!IGatI}^&wyU9wI!26wqzWq-{{$xC8AGPhpZ zUr&R0^)XoFdL3C~hXl3QDf<5NP5x?_|McaQ|8*Cj^W3KI8+J*WZW}B8a}F<+w>$MF z>XdnUfDbV@z2~^AO`ZeO;c6DV!4~dyLS@rvI)gwi*Zq8{k&NGJq5Hm>immuXibTln zqTl26nz8WC4 zH*au~9g=jAo|bNr8I>8m5$W@(YOCTlMVZ|vO?cb?8pLgVn<>WA@&`Td2Sw%kTB9Le z8mXSAybF!R&i=Z7B5C$GJ@EdhvZS76CC1~%c)(}aEoaxgAi;jf-!Ik7WA5!8d)@u+ zzC^zh)8R>N&E%kd=C4m1pkpq7<83+3wTaf)vmJkHYJ|UU%czvUY2U;@L5}L?0hZfa zPGn!6xqI(2+-r}9!mO$8%a8FJE^Tei2U+#U0Ua$=w|+KP*dAZF{E1^TzWZXzcJuU{ zH-H|U{#N9iA7<)e>BzIlEaQag_Kjeoi+=O~ju=YxA1{4wv%liP^hd#=#Ty>p<5$M7 zd0ZKnBIfQaa0gaD8EdFsFoXs6+Zi5z{u&EY&(g1z4ZdAOIM zva)^N`Es|U<~F@&p78)$zY=eLeC)YBO*L~flA5aZ&sLJY@jboA_l?iUw~HOO0{@NJ`SgfwJ4f zKX;4c)6w^taxH}~Lh;-rQ&2=#d-i2NWAMAD)W6KFwZpcDbS{77Jn5S!x;<{AKHVSd zxaa6&OdJS(KP*+0)YG=PVKM)*TImMF@m(Du5|I)M)2G`RN%K2}Q9wAJ*d47se!d8H zajX%BTt9l!d;6xoqRQ3_es=C^SK1n{@YW@A^wc<**yP~;K+PN&6s+35W$zvOmB9nV z0RKOcgK}b^I&ngn{R#Pe*DrTV+VF8Y?dr2~ZgvoKf2<>qvaAQtyR44r?M zC)vL_36k6)4X)p>spBgdv9r+Q8emK>CYOFt-jH{^U-*mo?~e#A$*C<_fABeg3cL#> zLWBo*7~>+3#cvCGq`WKyhf1FQBl=H=yl5!U)0+7Yhz9DAjJxHe@H2QkX#CK1?KpAl zwTx7)z&Ot!@Dns6qRG$12ZnKCm6nh3|A-YBTh8!fO*~5$%x2yIJ2p@!1(;m-IQ`Af zi|x4w`$;4WdFIuep*UD= zTGB;{p`A_eWoi!^h@CM7eEe|Vtew7hb0-1m=mhnsJ=olCDi zvXzKVQlZ-Ah=D#%awqsn#~(fm7vDAu)W==Mn_shli90J^YDcSsXt(1WM$43oe!ErP zVmhdHwZ|5<*Yy9`@S8SIolyDrrNK1aU$n;|c#Vv^Vmu5NdwS#J&?>LECk8}0V$<*I zT_3EDY@zFC}^HJaDa3-7s%kMUGhN6UqR! z8r&5m>0&kYE=qYZ&_gL__Q3KbKL!}>{w0jR|4@CP!t65#1k!W^v$#G7KjT{OU#AjK z`#z7o7n@D`T_CK5UD_ei&zJ!ytxUWTuAdbEdT$y=3ryVafbBff{s;fX8y-XHPcJxk zgHe5``g6zpp(@pScR%bhPHHISbT&Y-bq`67DLNipG59`fGjSoLZs=w2U%ZpVa$+!X zl9=;2dsiSRSHk`87GJH%usKWaDHER!JNSnxJERi*xSzYQ<@3dW+!Arbz7Duc?DxloBkn=Mnlm~!HY$CTa7Boc`Efc)Uijt46)Mx>AM8tL= zTd?LF1}W}Z%k9T~QXJsP_qf>j|F9;r6O<(;8WD6UVzI+M3C1HE~ z`I+@`rExX+;`z4#;3P|gTz5*+cyMw?k)^5jdtfAKQTJ52s(7zIwErK}eR(+4-TVK{ z$d;Y5WP5}pd$Mmu5?RW=8_AMgvSb|*m8}rUma=6mlYKW4o)QXUHwK}`PJ^t!^VakI zeV@ zW%8pPGCE9C#FLI*IPn32b9KGJ#A>3-YW{X-LI^8}{f+JZnR2XMz7%fK;_GBdW%~zx z{LYZtnj8O&eTg;J8O|?<3w;f{2s}1Jugnjek>{l$=R-gyr<5x8d^m@TnCdpnTUIgx z!xIB!ohYhjAG2iDhfWPj-uyHauc&xCE+adSJ zqy7_-SFmEg!r~RF*^OE^fId#B|NGUw52#v|z_nXpkU|5>52L9O3Vh_#w_^Qf&qHCWo|^(e2^$cb2**=~(d^UjypDD7M{J>I zxH4c`@Ybic1%Rj|Z{}&V1xb=hK3{)9r+*;D=^|~MebWZVhX===Lf-un25a^7{BeJk z->25-+T8Kk#{I8yXSXQq=b^0_koh6w;cu)mK`2FaIdS~DIz}mRKRSJ`_wD`XO5)M$ z$1bk%J65C_L0@P1S!@I~cA-cVu(-4-k^%D1v|j63nfQR zjtn4ZjM>%o@P|ygNgz#vj-Hx@BTuUneg`Y|QSD#?v#;&w3{#}o4!@I%bB1EPypN2#>4LD)u2mLPHh=LX z{Km+8@{1kHrt~j13jH(F!EdZs6Rf(<@Y5qii@NggP`OcPT_Y7cQ+qvF)maclqfC)X z1lc#?#jPjmn&tINOL;0>r)Fx*XdS9kJRThD$Ww``Sk)@8w>6A)uXdb!vo%S>I{}^6 zkw9RSfzFmbv7_vLZjDyOZs~w>=QM`jJ{tWh22yQ?9;p;9lug%wX+JZq7%~^ttMKY; zd+jUK_5d{wc#da)%y(8Zs!x53qUrh8k+Z3|X}o^yML%`&BUmHP%IEf8xo52Q?aT-lg(~u*r+NzBn)CI9&tg_r9FpL|< z4GjJZ@U8*&SV7=meFuh5;do9PugT?U10VJB&5uVhR@yyWSf%8;{&Vb|nDPNX#{S_# z=|^vZ0Kr~;M2Tfb4tU}25CW37FGVoXI1eL>a74{L4X4lZaaMuMSzZa}iHWPL9#kvv zYac^a93yziR#USU$OwhlqVztX4N_#uZ08K&Bbi^*+?iFTE-CBPrB5Yw{H8xb3!P}Rz+e1e^^eFw-52>sC$qjZ7EL{nbRaXfsB??^hB4k#JJ z)X*oy@_`kyUV&dfxUD+mo#Q;WfJ^MN6iay z@}`zcAD}gGJ+&U@aQECAa>QU@Hzj8|; zS!&jI#3(|U*?k!?6nr1KXyOnQ%<8?{sNskOR9b`ub*7rzJVJ@=Nc6CYN%E!lTW>*o z)2?9bB_w=$>JIyK=s02|XDuvsJl?w`Qz*aK@e52{J9g>}$44^mRxm%MZ z(atCq)Qd&Cdy~uR=9sr*FL~$2&mwbz*m$HNQ=2EsNyT-oPG2nN$(|BYrA^L=Jxx6mvcuzJ^_osxc3Z?Nb4s)&8U2VI)mNGBwTnWtxzuYkd1% z*jAKVL@hJ41lmtsLJ4=r`V0dfdEaWH!1c9w@I`&pVnOt5_#BbBGv2^`W~hF|*V(i7zOdT}6+zrkDm53ytlY`=ttz zl2)~|as$wYQzpZosv@1TDyZdlyY%oYdI(j!eyrVsIBE7zreE9h%H^h{)dLV^Ql1kC z6dvY9PFD35LOL}mFX%kXie>kQ_?uHpc*-R`mjP(a?{lnmz8=#YQq|9Ux|9h#NbTQ4 zY&#e2;~)PI^i4pR2}jWc69MMn82U1f{C}cwNhw7DB)Wm6#y*O|MVqKO4;(H=b>*2r zzSp%lvIKH^3X0P?!3mO9+xL+EijF|4v`1xfzH-j;A%Ca1-IeuN4INL_+JfY_`T|S| zCO2?6_QN0P{93TNAF#lfJb10(&V~HgACG{-h;7M3 zuz>bA_O;HxbYi35N0m1&>$|XdlY28_cqPSJ`UfAaPR9WyIvA2l*Ih;obZcrOE-XG4A|LeFDFF2kz24%@U5H5DG$qfWI7?e6;SZL#>_Y7==q=<;hLMq^t;@g=I>?P%{u&vO8srCS zw{K1@e^Nfvn~r*o!kfpNx@;Y+r~u9+!rP}sU}h-pB=$0rqwNh}_o;Bt!E#>3NI)7K zpwN1IUJ)v=B@N|dMrc!o_7ZxEact87P0cU#^5-gdWzWN1)%2-ZufntNYtQ+dq>=^eFBftW&g3WTr_h1+7LrcO|N zya^~xB6fqY=Kbk4zGaQS`9B3vanu4};joD&6BZ{lF>!yX*6O@!tGKu5ntse|U-1px zC&-<7_x?0$8AXk~turhUfM{esII~WJ9lw9Xx3ky*K`O#(z~Kak4QX3!LwzuZ0nrPQ zonH@CcB#Kw&asPO8IzWD=U?a!DY&K|%DdsJ{Wz zK2riAF4amGycKrkfWMeQJmZ6K3jXcXko=H^qeGVIKi2Er`#1sX)h4Z95`sDJ6zW_}T|GZsi_`RL)$ zlW1RZ2~sX8c4Am@EO!-y@ezf)!Ga&TD~>H)2SAa*bv#jk3LYS5uMIxV;>lW0DDyao z#k;EJo4m22j*Y)+6883DZL|+ql!kuw;o%FB5oFY{tu>*(ZnA4y1ZBdbD53=iJL`1a zT_A+lpIMJa`|d1d>OeOhejk(Ab+V`w&}0!AJFyz#ji}n$<40OY!`-Ifi65 z-;0AFc!5So4dmt)>i+eGu}pR%D@7+CP*|J_N$wWGWNx0>^XZ|*{sVsG#kC9Gf@@T{ zh3o%VUdfXqh!I}%x9#bTOuKkMs^&T;l5}#LTX*ML|Htp2e|}qyu)8LI4fL0EyP5{` z?1!DSwfc|P+G9il3SM=F6|XkZTS&y;j)=fYpB}1|Hn>7umQgUKoCK1L16HPNEz~oamAC_C(d=4@$mpUYRJTy zaZIzye`oIzwgbx$@slK`2k6mBgL^5m!j6PJffR-BvINZ=@a^076+1@oqxd7fbu7#? z5zB{Abx)tVob;Aob3h6qP1=Tk+rm95RdvcQ0g|*`c_4c*hx>~Vj7?72Z5F3E)TFw# zS72r-w1{A18sn_O?b3Rm_on|Aw3cmi?8fFfAsK9iW1v{_K^0FfrMm(AhY|LIFpe^} zbwwZRQB}UkN}%azr5t(g0$&yP3*tT=hoZ@l9x|32PBH|C3p7{k_(h8?4alfVX|l!8 z4zk{SHrqWOf?wuK&rM{-l{SO*IR&7uf5tI{t>iaI{vs;kWY5UQe+{l#p74UJ!LI$f zw^T??Q)jvn#0txaZv}9@z$cX1X9zbj%nnI)S*9J*#T4kFy6^ISRXrIJPuzvA>ZSi2 zA6QH$TjDgE29z06{$I+z4_~DTG%cS#(Ad!AtJZ#mS& zo@l%60W~uOt`brL!Vgw7vz~Ac)8hGnp_GcU#loZkjNb~kE%n*|1VH;#`V4qC<1U?= z?YZwWp>i$ITG5Wwu}?#p*l(nV?w<8#@#e@~zHI#_jNMib9aUC> z;GzSE(*Q@g;4QwUrT#Z(p)i(PDp43rRXFm3O&tF_z2DB@bj47N{%lmnq>V@uojcp? zZ}FvRYZVW*1n)9L?qr)^6f3od!=y&KW5#^U5<~^F`!~i&SLb}){4EY)@DI1R=rV`9 zRYhRol>UO*9Peu3Qwf3A`2cvls6;=~v@?Mq^kEgE{HejWK$Sd%MCF#d`obe@&{zSp zrNUq_L#}~`Ol81oL4{`DF{pPzX^Wq5N&Ti6Xdt5q?96fS`EUPstq;TMnPGBzLpEx(ql}@lqv`Cf^D%^R-pUi3NUJC=2 z%Kb(|SPN{Te>!~}l~v^43E3yef6eED4x>%nXx>PCJ+lxuViM7fGEmHPxUj~FG-m6f zh0&8A+SD9z5zZnf+1)_=l(g|TN{#||91IwH-M|GdEu|9!Ps^ucevCCl@ig! zz^tApG98*va3 z2C^Dpy%c5S^FlWh!Pj}`oQ`AO74o*F;cq590dko0Tds<3@Rk!?lp$q16U>Bb0JUnF z>4W+{)tFjE0|HHA$8ACYQ$p-LU71uw0wSC89An$00m?T*2Gtx9EHwc%E8s9An?ip^$-I+y-&k@7J^{xudlB~3 znc*UYGf4Xw-%yTmC_d4?1?C9QvPd4eMm%b7-0*Z(iK2C;aL=2}<#TNI(|5R>|@L~#D zDl-o8yx`5mhYS-b*o4qNLp?~P^izSezAM-b$36pi8HGL>UN5&y){U%@(elz|s%$T~ zr!K+T4bg=Fr_dmZV8|r1rvIWt$b{G>Fc&R$MnKp~mJDC8kX>Vh;x6W@g}KA`eBV&xsSf5 z;A>j;_*Nl^bw?(j?6RS&L&v;dIrk-H`BNa_;3P4K(!8*(L6OK1!jf(*i?=2)V1t;t zQUEc=3jZiCVWpM43h!EvjH|1a7IGA-Wyq3uQKRiP7Ekfcr_;P73|$LvKAA)1d{w<1 z#vot6697$x*bcN9AJAf-qvPL+Pk4;`uh@Ud#d4a&kys^5Vto$TbIW*5*Io@%it~Nx z_fT39CU8cL0{aR1Xka(rVzn55@i}E!iSIyYU??GBcy%fig)V@z{jnaW`1)} zc4#Fxdm3eSHg5aevYPy%-p7X2uPx1ONJ1la(=q&r+FP}G`v}^T#=HR1xRL_-_`*l5 zT_F?qu*FQBR`2Vo$(w_BabPQVllX$_~zWwUaIu4xzRc3Dfc? zpM$gv5=eotU77#w_=eR`c}q`S4gXCh&iBlk;Opw0O%0G)AP1vyV+S5M2#9sMSm{_$ z%igjWG2IiOK*gUo0xmcJ1^GGJ@5vCwwC`k`+=ZFI8|O*OHu=#~V>OSkIIJnt6dN>M zl0$5Ciu()AT~>%D8`=5SR9$Ia zX)qD3a3wIh0PZE+>vJ@-X?<8iubjCASqxK)tMChu^^>>6PS&L1IQ{byvedRysk-g` z=UQpSxb-_xfPhkTC>hi`|1(NX!<7G5bB5+ZM(GnQ{pG2_Vxv?bh=w&K zdu#?j8lgt%^!3n5x2FrR@0A98=aRRgH=Vaw?$nCxeU$-!Wp63_Z$qx_lMAT)q+nsF zA@gl)hIBWJx-A)g9@3Mp1Bei&x~#2XN;$GUn884B-QF3DQ`RClyG=U901m0xVN3cu z7o55{D-uE2^b>-nK&IF0P|iXNEP2!xy+P=$vt@{%vBXQpM&ggL|tSlc6bR60F?HE3nBP}l+yYrqqQG$F5v#;Z{m)IeX4N8E1w*{Y z3iV}5=t0jy`RDK`#J85Qj&TI$H8Cgy zmaBNeoFLx7V3I>wqg@yMf|_@1t7c@BnZVTcrnn1OR~0qx9g}s^vG(O8!>5E?U*K#A zM%hFhf;=!Nqa*Kg30=tL)m&l-vMj9g z-i>lQTbfKQb8=3kw@<9A4qX?BEYI(fv7nxxUK&qZD}6;5k#@VxVSL6kJ}e5q=ZuhJ z8M_D#o^F#^q?HLF-{F@$ zKeJADyXZJO(KzD#mF4;OW=&N0UzyysKe23Qn=K&TXv$tx^u5k(uwY<*2)kUE)i(n>1B2(S;rZmUcy8T6qQE zA%u-`9Slba9@rbe|MF} zr*RxFR22fTCeM{)t$+X@n;M*ix$7^>`IlmyqHvAfUEx)oJ}*=ti7IKq9%9>5!g9p_ zvX(zc4s4$k#4;>yRzQrE`3r>mr@%2W!`*OSIflBZuM*xSufru~e^Hw9iLPw~BlTm} zRYkK43twt~76Rg+)9FpPO3)jVXxXA^L%0Vshu7_~OJaB=^dVMgTqNk-;zg>p4POkl z)Z5cWp5^4gwBsqr9em2~~v$rh3BxxD5h4Z?UMa0hciM*8BMGXPe~B zL#Y$R_zkSV-KjG_Z3tc1zfUIc>i^&rog9+ zHDR=0;46qNp|RCbR%GoAy8)b%rEQivDvXrDYNX)%|Fy>WK*6L4XDU{#~qb zc{X?+cyX^6wkWn4cc)Bm3lpvr9#zabBNh;DA8)Qc#V*+r#im$UY~Ml@3wE&5aST(k zYnk6)zD)S5?K9pj+1-uGF#}$ncTF;zvBi`*MOBZ=tFe-Ktra_1;b2SILP;B2zjAP) zc?V9ND7dea(7wFSb@HKfk-VnyNMiV~m?)3j zshyK+<@Dj(&dAsci{?xt+&dH)Y00Li4q7lFI0MTrg#mxmP$63vQF)i#xTjL!;VIgELW!k&H|uSGNd zww(Dn3{G}{O9Ku~`S|aKCqLlCxHIe}!aRxIam#03MM6FNruF8Q%=+=cv&-WgMkC5H zfr6EEaf=pNNaX;bkcQ158~1PF6i-oJ3QH0B0`j`rr8*-PkdS*DDPjs5x?BiqV!V3^NA-q=Gk3b7frDP%lPTJQn zVjo^e5Xt$u=c8MFK5UqU6<(Z2y5=Rz_vLB^PrG?iN)&>0aP3n9mZo`W^U-66@NAG# z3XMGYdgf%H7dgFzDv!E3A)h%CU}mgFVo#@{W>{l{Q1KB8Qt?9CKAe;#CS9AQ)*n(`8m-$$PV1roFrFuXK zmw;2kBO6Bo7}u(2R5eh0sO5+bDR9VaC}tZQI8jB__2q2^tESvl_Fz@-8&R`>Fad1^ zW-|u7+f#>Xu~)KGJ4QaiFC-&fs4?^y%NU0Rcz79s%Pt|`5a5eLAk`_8aeZeI6_4sE zmY-K{Q_pX%XWOBiCi|vi0}Hv?aR^N{@0@H7BjH^AJ1LN^zrF7^_UO9dxBjS`+a@}# zzVkOHSBo^U4cJ%M!IOy(POzJ6W{DtH&;7~U%bz~krt$@tF_1S_3%tK?X|uwoi%jBI#gP~mLnTvwQhBs{M2<<_4Vnx{<;2tew2RS;2N|q} zufQFK2u|wesd4ph;jqSUEpi9v3HCt@0ex?L4fYPP&#?#Cl9@0gs-xxcYI7~)(kRt! zmI#Ija_o4NzqS%i{y3Wum;4U^(f^e}o-r`fP*RDZF7B&btF@}mWT}%z|8EHo4<1bP>dYNhtwn7$t0+kyW4b*2LJv zNsyQHDAxa2U!I8r2!ycPE?Ev)&Dj&xykrdUqZ9LK%fmV@)oWAtr)Ia#sqgG*kNPem zVi4m@mSSIE=a^W9GcKEl93vP4+BO)<^1N&=Sd-=gc~2_L3uY&_GOP~tgQNk5N)~H0?Y@)rAVmKS>A;hOjVg$B5;8ti$P*@tOnbx|+7oDRNW&t+`|B zfD?HSKyrp=^luxmvOkx@)PEcYmdEEX$G+U)uV{pGp3POt9Ez57ek&LF0$=!2X7pQ zVf;#5(uf_nBsylcf8y}gT=20aEl!9n(S~3F$Ekko)gXE`HZmb5r{yr#^wI9a8>nH_ zd+ZoEntO@88&e06x3cw62nP@#0iOX1<%P$0Vc~@vjK8D^$rrYA@Y4%A52wp&9z;E> z??13Bxwl^*RdeciLf--EkJTI!(4I?xsoHfMW*{QbBjM+B>TkB|RaoQ`y!pOn zOpyh%SY9zE7Gg7SX@9ij;0SO79sByRpRfaig`^Ly5ehO~;Uf8(>H&yz0hLq1*xV>t zW|)%EsQc_x3O95r08YfD|A1!wI5v64I;Ow`#)rLysvkVZP4(O!ZFs=f7H8bf51(|W z%QWBL<7H`^fZH@3`k|~EIF3#e(5IVYkExbFKC4)5yqGrJTbHu<_@dI58t`4a zZT2V65(?mLegM4!J);IOo`)%rX z!-alHD8`iSeVzZ7atxz^xGNS|b7jWNzN^o&hE&aO-#%fb7!E6S;Ojpi4|TAE*f75!+NpYA)m8ngt`P z=Az4KWLV6>X2k)EJj)Jku9=e;xwdC*6FzO!T#;D))Qd%{aD{VY+$9{2$=ra@APCz0WW`-a#*Xg}YmdmF zmbT@UP_5N_=qGrW4**=Bu7V@|8`y=27pT!FS$a8`fsn=PW4^~j*hkW~5>TDvv@nno zf38Z>T>RY|W`8!x%7+K@@Zo=yl(8T{AM@^b=%!~`#?w*duCXIsmrmol?%riPw#0_g zP&9c5f}y15 zouQd3n(NrJ>WhyZW7Wc86DRl21fDDXb9Kk{+HtUu)-V2-Q*wkCED=E#fsjuums=G{3ETSnZ*u-Ba&p)t>4TtR&K;C&1l3B!tWWZ`;^kI!ULg~YEZvgTU@ z!wVRH0a7{ZoY(h`T6m~KQVhka6_dYO9k&y31bSYe!-0|z)HdT#8SwyXgw@6hVJ&{X z7seE(_BVxbh8L)S}5_u^gi%`JN%ZRXuO~qb}vZy;kh*O?Bz0EA!@=8aEF7A_Dh*Qj^;uc4+ z!|Z?9FAQCT=y9c53vENVbYJD-@0(s(#KK4H{_w{dAXtNOrsSURA??OzDHGIOR847M zBSKWYlLefA)pHYh7Gpa0NWfi|?{99}ID`{3Yjh(;9jEiku@yL$7MYA>mrU;f>a6jr zqC4TslMkxySXdC2?dWB0cHGoer>1&(_U7a3{1?uq%0HyteM0u;#&iE4*L;w_h3Oxo z9)`(Mov+e}d|Guc@?EP9GFhcrMJ#Je<@iE5(O>k468{Oyb z(l<3E=`*Iq#tvN}_6B8tBK&-+8tQg8i1Ro{oSJc8IbK0{^AYYrEY-@TrpAU_e!T_5 zYUbeHcQ@`uGE}e%%c1j-&76|W%)nz&dm!8VAc*vqE*UM>$Y3@#CaJ&noTz48>&gCf z+5;zuGoguvsu7xBU~a+|@6`}%&m`qqDOesXMB^J<3*( zSAiOS8^y&IXMh`}9EzqYRk$CHw4j+NHMK1g2Z~obXisnGULk^~9nJ@6wtsXj&-8+7 zf?^xMWq;ETxx^Nnoyn1D=;7`5m!GGMYqLb{ZZ!vG+zYpztloV~_7tj-V$Ofgf-H5C z9Oru`DG&Xf17{_)c!b_%z&Xna6qZjtD>_^x+R!{Xo-z%Xa>Z^xv9MUe>&J&iSA0u{ z+tJ8<4O!3+OczvuG|%%r!(3lmUS`tVxEn)UC@!}^TJQNiXqW#0ec}tspNO_SC)(4g z-1ou|%;%@?;)Gbap-PjOL$Gd<{`#aCTqrB|-#Pl&wl_VZ|a4rl~cuxm!j-{LllgC!K7k^K_F;bQ5bGIf_9 z2CUPYEXe9!_RHhD`|AnuDRBoe`|vJTSy;KWNPVy#Y4gvAU`Mk}-}FlZlaj02%rh!4 z&$epDGzcWizqeK`+#Mj!$I{=SIIREKMRoWM6o!ujMaN($K~S$ei%!LNy8%>vyR7jr z@I`aO^ntS1w+M^`gU1h#Fva1Gi(;#;KSD$5f{feK&X2!1xI-c8hDcqy5=xO(Cc4#*n7n zT>XR7?F+`OILU~yCl#w@hi;^og?=ZXy}EpTt>Plj@TX7t+oo!UHpW>~?^F;BdbX{h zq)58vfUa@1>C11j8L07d0j8v>ViBv5v;I8YtH#a-K3rusHg2CCpu$T_Stle!rk%1f zt#@BWe;VAH@g_aiBTd|kmf{frO-cEs zmMmU;zgOaROCT_<&jJ@~8G`W7?q-qp7YCn;a#GuxwoTPMzq30SI^;Kd%cdOfY!eF# zU|7?e9DSW(!E7#72e-cD76Tt6Qw0K@k((zpzTmm9Ev}9`+whJQ*vi|q;w4#sDeh(v zV>u6xx0(5k7&dM!2Vuk|wA^9UQ&!c^Y^hSb&WOaz#{H4&z%Z#1^oD(vOvq|YOBmW7 zH`?%jOG;a=6z^4DFsUsQFKH>ZSFiRXwGqQb6`}P(J%GMtiyO+Z%?f=*%9I%mLkHO_ z#XyDZ8g>IoLqru^POatk(Yij*n>#|~MJ+PT0g#}iNBE+<$J2lPl)-syn|FB>-?-+- z<@O`K{;6(-Z1{q4ZIP$NfkkZ24|mpX7S3}~jm{c~ZKBxckgA~X-wz;t)ZHiGCXGz0 z{@wTn)Xz=&w5ep`Rg5=PK?j+%e|O_8Qyulz7ccU(oU9H)l3r#Io4iO*9#Hn`C>W{~ zfl{EcKoc&`R1nwc=ni8+37ZLi@KmXZjmd!#$&Ajf01N=bewl3KW2(-vjWaW2kpF>o z)@8ttf+uDPL@}|JwB@E$%DyERXfoYb8Ej2^NoXxIvzpoy!|#bcxOjTi?=Jyw;`@pY z^BM{|gpdo>)+Qh-q-O^WF!#ZNVHxQt7yF~7)OiOa%T^}QvBg$$aW8{B+n>>|dj5F+ zd!9I#+~q*?IBm|iX!^!OtxL4sn1r&D!zxfpV3myv(uY_>P>v(cz|<>U6qEdxj)gdh zv0s|w^<)q5&*DP2&rt*CJ~Rf#oaw}?l-uj#(41if zVVdoK4V1JlnlPYS8tp~r{d^ygesd&2N)kCQ5XgYfC5q#ki-8E#X^alb{kj)o@2Bn8 zGx2uzb*P0#;v^?9777pCNcnUcQVuGu)KyM#a5%>Ii6QdVS7YM z&Y;zV+VHlBt17(C;OT-EoRVe8J^$A3DPuV=_OR(NoDI6tIWQA+gCYri=+>#T5EAMP zD`-A)KlpD=kS8tkVeeV=r%u+a^vTtGexR&VwNr2))JPgs@jF%qUH_pBdZSK&;}9ND z-o~t2b#}?taMIO3h8i@GZ`WR{U_PvgKQUUkQd!2CNDLyWE?TC5#|y(;NoiuL97>CG z`M3vvrUqkflE!>a_A7m=6gMSHGbRe-nzw5>62&Q-=tNwyWP)O>?{|@x&NHJ3$ixY6xwf+ z;S%hnYR!s!mlhS=Dh^CZ_b>^UbOS+Iv!ABGY6jy-oMoSsj1%?mK~54(|DLDc1I}cV z=7NT0p2a#nzfVO84y7wmW@yz zxj5e-$KV_N+-M%N$sYub?0S>yYdpm~rZxjJELD5IFB0U=1VuvHOO&4)&mnoW{X;`l zuF#yrnND1Du-`4eMItNREXnp(b7RmA(tjy{ZQc8MyR}3LAOwjCW~(KK6}#i$o$qbY zOJ^ZU=k*^3NU2&h+gD(e6E4xdeSe{>EZg>An^;XZD-Vt3P4S%Yhz^}Jp<;RvNctWP zsuO`<&Y(02yLIIcSi!GUVm7YvkDmgI4G8=O|C&p*1n(0Vyi~Sz+fbyORTVp02Q`~m z=p1BktU$|n^XG>~s+i(N+=f|tM>{)}+8`j?=z;G0xF+N`xcl^59Di}GOy(Yg zxGWbmAOVOFdbaRA@;3YsD0w znG{g2evmg-Y2NMS{v1-$&}1JNz39HaO@m%A?knRN`LH#AP(YmSak`$^m#v(w7TGY= z6MLrRMBVK_Dh~u4+r|g6 zWTBKwR(BF7MT*tX;^}*hkPb5!4_fQR79UN7pPnd57U~Ex26c#uDuX_CyYGn$TIG|) zL3^qW8AI+gMj`)|3-B%a{lmmBugiGfwK#6CEqv>LBQA?A{tPOXo+opGIg_zO( zBLLJIno_lh$^Z4YY>=C(Uyh%Oz45Taw#D!p<@bDtyteoM0N#kT8at zb^ana3hsMwK4~$SbheS>!I6leL)GWIpAnk1+pjvUdbK>6lrsrXe7$|_r@BIZ0c*0; z`^tZ50o?`PGo379TJ1MEatxbmb`zZBtlNY@U8^6Z!HwDn&@hsq9P(y>J9v3s%Dro0 z@hR{?3goRP3xjTv8lw3)dW&suhFbV75ChK5Z6$vXbtWC)s?iI}Z=qUFu=KHSnv~uY zfp`6mKJ98QmuoF7Ut5$I*HUqQxXBqbe~1LtdEL@vei1_Nk%q)-6ec8pPhPSM;VN&b z4bmq)*G-4KD=gyrTJIFi*!4Bl=G`{^6`WFO<+<_1#W~|zmmk{TaRu_^Vf-zX{M{a6 zd!u{!n>5l3x~`C=&%`!iB18mi=wm%@&O^6}^om#$Trw+*6MU3M*qe?ngb^^&%JX}eoQiVl))q*qsiY7RI`^bE4RLB4UvF-RUaUczkDlfv@ zH0KBTk~Tig{?z?aLr-sFHzrBjesHc2Z9DNy^l*Uqsv``D^T79N2fA6-qkE(V@(##ph27A2nC9p^3u+S{O-O#T#!-SYeg+3q`r^uhc zn-&#!Wsja7KNDSC6cpMnN!vOsdH=Yr7?m`#eKr@(aXNq>u1mX0G(F4is zBa^wr>tnP?Metifzly_5Opy^O$mQuGhsR6WA6#r4eM4qW3F-^aJ)t`)%2~r`l2SOHq4{jSfW%>t#GH%x&22?96tIZzAMrO+>o z@-K>Gj+@{5Q#ThT0s=nhCrC|>$m0mlbiqWc7!-LlHZ$(}gFnD9pve6H@X^frN^Q+; z3~i*he?YBKFZe(y_Z2IZ>W1Gbb85~N`?}ys0DBy7zVopac_tOe@HrP${iGRFt>1f3 zoI00iRgVF3yr9AlVy5Tto3iCtQKytuEi+tfJD;%-I1zaPye4^Nq^+%-HDx)y#kO-$XSKAxTV zY4H8_vv0ct#W|&Acn9ub<3x0}e9&^^HplS?m>Ge@ajCLw{ddFd90=Kf!9;+4J+xJ{Y<0=;oAj(YtOy-C=5&cXHU4+- z2bY7NxY0t3K8xh#+Tyg|JJ5QI}H)`+E#ik!a68yAaC za}QenZ_PwZrh5`WQ=DNMP|9N-I$z+?TCltM`=9rTMw-#+u^*3u6}xdbGI~XCXhtyN zF77Q_WZddDc+t0xc#V?x_zeV13GFuwyR%FjI(VD-hB$;1JJT7`{3a*>RN3pnbqghS zu`&xExBuV&U#68xU63v519287g3fv8`Tq7^mS0w^qAcc16^GDX0&#>VH7(Pr1XFC< z+*9Z2*G0SnTrHHyHU#SUfsEh4iAbN?kL2iW=^ca5w`4;_pHtKS13$i>Jy~ zb?c3$!En3$+|mb=_ODa~07N@$`zse7KUhEf)Uyl>g=sg=^%2_Gd^48wJa~b%FGe3S0i;w_1(o?&r-$B>w)JlvZs_$HY`3@n&ra3ATaljTS;K2rek!5WJa_s=YUd(Z z7QM2@;w-Elu}{CgD_yVvSpUGIvmTdxZqdxFwL)Xm#C>=O)a{M+uKczeQ+U4h!C$MJ zX)djmWxlt%C{ka_IxHv_`q`4c5I^k|k(vIR$}iD<9GSwsd9t%Nffo~huCKLn_bdI} zaH)-zFf*`Nf%~Zj`t?0R*A}(@M~7;r2iEOhDnapE*PZQy5@K64{?aPvi=)G6yd0(s z?3DCslgCW-uVfvZRh_Y)pdr?A2SST|CE3+Cew*AK9!i2JcCQK>N*Ryie2Px}Pl9ud z4va~~#3>=i1OuKaz>uX>Tuyw=@9Gc=WN4{ThLjtck)P|5M`tgP@Z>CEkIq^2Q9#9^ zS}~>E#GaDH3x5x>yZ0@k0^*0tihGW4v{8s3} z_upQoQ{V7Ojn&!9XE2eK#Uh+7Sqiq3{xKCX=-R~3c#lv2(sxe2i8)p_s>OZa+|LY% zn)`yxTMw_6JgK(guTFpV-B4+de0jqi<1Jx2hgor>I4pCpE~nfEdOR$;gO~e7aQNP; zpK9VkZ$qypH>bJNSlmG~crVFUixgUZ8NodNtsRx4! ziR|_`pr-wgz(a~1;8m(HTfZ5N(dkbuEoHlDdL$L^H1NTHj#xAAOX2RpJr>95e~)3T zYY8*eyrw|bdwF~Hdqz;1t$IyMaZaxW_Xn0b6W}xn0QMf zfkmLNUgvFDzgRX~EOr>SO%}&A^hkEr7>LalusMNW3M#Cs>Bhx|6<)JPoZdK{wVUg( zx$)h9wX8Lb!Y6ev%Q$P;0~MY9dZO;h7mtx7&WIXPHP@ppt|Np+% z@c-F}*dTf10~7G>!r*NU1&>wt$46#t+<%{AGd7d`xK;0qA6CrNVqL6=UR+q+ws3k8 z>e0TZWI7od+sgZ01&XL7Uj&Z_auHf6HgU=CkJu!a=0)wr`eL zjZMu7FI*Pr!iG+JYH}i=sz=ac^6jcca_iBeZ1_}pbEeiv!im-U)c99N$Gu?C?H<3( zLqD9F>!QZ{cum}mCJX#pv|nk32OZ6hJ@%@V3Y91l&q--+Xz7DEhGKd$Gv=k zsitz})A(K83_{kzKLknK<-fB2$S8$ZC~#HP@+eifCbT_o>BybE4f&F#Nef+DwI_Kh zrkE|^b7+@1>ClL?ImG!c)D!;)rO=19^8p4>eC9U4BztZ(Xytpg2GAkpCSG3YqlYrM zKI5E=j?EG-4u)lKkB9KGZVs$C+-`IaK!5YM!*2)$qCE$$#qk#Rj=%XLm-xAx@4esSgFfxx1%^%Zw!!Dt`f0`e8UMp~yZ(Ev zzNC-QdAoCT+Lc0PIn5ftOc_t++gCKTdesT3jy#JxiqKwCQplREoRkeH&mLRbJm^M; z7xCP(35Y!ai1Oc{I(!#8z_b-;^|U~AuPeLh_gvhnjP5S!dGz)n1Kq+LkDgi-_7XL| z``n!D)Ha(xQQ+x-DBCLYKv-FQ4|qJZdHU6ki{H;YJf+!!{^upZ4@%|1X8>!=rJZY^ zUk$vXVYtwDt=ywJWKY~LTkXQ$xKXE+{u;h$+WC`E_SEf|WgZz}-#LLT0HT^6m~;B5 zx(!TuPF%aV^f_8P&3}{Q?QYneYf>w7%APF=38sB+i;K>i7*4Hm`9vkLaI?ufpAUG; z4#&kwD!0?N@3+Mlo9Qx5G1P{hJ-naLXF9(BO?I5i>v}>0%kWg=ji#yE?!B-pjjao_ zxWzNfpBhK|*qhk&IlAZPW<0i}W8FNLq{m!@YAjU;pXE&g*qdkj5||1mx>Gxktv2}H z_QwqZH?b+uc!jet&cXNL_7bu9(`L?yQwBes%3OlnuZJZ#?KK|HANhf2hsv{?zVEdk&M&$sH+`I+Q+&IeU@9@0yEH$?4=My?Z5_Rdrrs@hw<;3w zz%Hl%D~s>gPMAYc{NhOpX-e)Q;Ke>DCH`3mjah;ICvzJ_E6%WuP#44b&Eo%4+_gp}nXTcO zb!NunX|N{eOr?fnnRYwbMKQ0eqSU68a@0vpO-;>Fyx|Q|nVJTx(WtacxsBOqf{00Z z1<6oJO&Mbll@JXD6$O<*LxJ;IXRUMo&ad<5`|+*4*LwHb&wAhIy{!GP#Q{leB!twq zoA%)xO|yFtwzNiF%{#G|h_KT0o?@Gw;PYisF;qxxPk1+qY?7p(mQJo^a=xAG3LlUL z2?q-(^yKUaktR{^P`OkZw6P{>^!7EkfG}$0oaD6ERJh}mK@uTuDpIUm=42dJ7Om3V znAI?RZ+KuH90ureB z@5*^g<Q-aW*Q2THy(SNY zZDMzw$6h0=QuxEaI?#`G3P0ZgvD$G~*FC7+NH}%@?SjM8E9vD?cyC;9@;!IaoL%J- zP8?%w+r?>54$!_u^t$H-$X2szRF^G#x@dQ))yP~(vf9P1#N*HIlwDjZS@gS-3(&%( zo98o^x++_hPhc%5yKG+k)(tD!upOG0kf~Tyzu=Dp#FbT{%3mmpw5vL`Ft9{gFH;Wv zDYJboGp%ntOq!n2;tdc#rhx-~JG{3elmmYSXXeue6&tNs`J6!o_5L_5k{~pff~=E$ z_LFXd>T8S7np|vh0sPTbGbbyT$gI;NCWXD>?kD%VwM;y&QvvanxtS>?H73tYW=1iB z!;u+F!)g&BxF07-+WF}x`x#kIYw2ib2P>K+jW6kjF6T?ycTyzQG#nSA z@9B~LO2Lpj^1qppP>fDF1}acW^7c|}A>|(x7zU)46u8n~M!+_d#iOKgixzmdx_l$}EaLaU-em1^6YqxX%;z(lovSa(kF~;eU z#b*ut1 z{THqK##bN;bgJNTUUhgOf0&2Lm46)r!9m;j!?e(m8NIK1S631@+ug8;uX;?!CTOmO z&Yevvmoi2iRWs#-xb$>Moot@)hj*HFw4!ol0zs%&+M)vqg>am z_AyP0uA?+PflIC4%@C#ht?$w|%U#2c+_=HIP*yu@SJuW+AeC>T>TYJj8wS+nc&$ZQ z;~P^3v-;DY`0GkgwdEqeU?ty6fycB%Nw*bMs~hA-T_0rg&W$v%XRwj(yUdtA($!q> z77a9Y+y|t?&EB(p7I%};!ByK-=|PJKa9oZX`EUr77~a}9$)zaZLz1zBv8rmPcOf3H z7cfL~`CDvg;K4X@sDAO1zKvq^=z=iXW!)NaY;SY2Q%s9_EDGQn)yIHJ?|CQkP){^H zNlx`rB#YiP!3&3=d6KU{b+!4(217C8OtvQB2n7>XX#T_q44=qS!Q2B>Pe`!wZ52L! z?%S}T?otzH)ufGOBXW6Ar-%g)cIa@$+jyTT@69S}Xs3^`UY`0Ndrlg82Qcj4Dx4!gH%Lu@dWVxB!CoP~LD4E|@FaFy zjj;YLMJkSQ9>y;_KO_tMN#J0+@BF)V1f7HaO2rI&iBF^#RfCCL$|As;-cAyLyYrPmMV=8 ztU+@`wuu+Zb_v0J2ZN8zuO-5GuPy9!IUMFy*H45`0k#q*YKfbb2jWQR6F)O7y5F=1 zYn%l?kD@IP0#-SDDcFLA&xbQJ)&{;_9ZehpI77Yn2fJL^I{BH_nEfPi?2jA6gWb%erHf**W`c*M?C8sbY~O0&((vIz)QKv)>pdX^0xb_v(> zdUP4oErD5yI|tE^T2E>o&k9Vw=2u{)Yt|OspBZ}nNPkZW0f1(p6h&-)Q?CO?zKZ7) z9@x$!EwLrT2`Vw_4Il8!&n;ZrY$}jUn=7kt2i3&;1_YlisrNBWGfmJRgee9 zmyFb8sWW514e?}d)rA9NQPzxBncqqw_L4eD6cMg}J^j9PF2(9c&kxs-1IX`CWznD> zQt71T|PpGWvhV%vl4Pa~!=xE#!nSrQbxm;Ig2f}#W1x{gfVV0w<(wJ)YByoxb z@^CRG-E4pY>a>bO=`R%)cPVWx5pGSNGnV$?No1#~hI_#gNMQQrD=}MjmKy`&99vWE z(Pq7H2a>3ZI6!aer@-`wLJ`ZdyCgS)lTAoYeDK5&E1<*A@f^;8c}Wi=nU8=m)Z3dTbA+mPx5Lj z?58=Fn{TuK_;F)@{RrQ(d%K|p3w~xlrY8RY^%pnmq(Mh2JOGsTgAh`fMcs{kcA7Pm zhHQZ?MJd411mTBtsJ4u+kJl%eH641|p^iJR+F{kX3ACEp1{s(T4m2w>Tygb#W$RuD z$arGIO~)uEg|qEFg$hrfKGL{;9=kF&lAC|B@qqlRpf2V|Hd6HJNC)~+(d2Yx+=b<1 zA+pa@pCbtD)&6*EMH)ErpH?3e!`eFlK}c9ZE#3%L@yIZ}NhFYbLB*RycziOPopBUb z{|~d-kNlvMY0fOLu-hLpHAe0$A7}j*>HkolS&C4CTR=j^{C6^Mau zUb!xXvtVk{fx7nI?IqwX9$Y1_LmC)@+U>D^F)6hZ^5qXd{^}=*sS5%2w4OR~>_f}` iukQc(zI*}9!Gj>XLV{Pn%_EQWevTvuzGJ~-X#uyTg zJu${MGbBqhW6(5)8DpN$jPLiK=X!pBK7Tyd^|-E*`P}#Yd9Sbc>wVw1Uf;7cJM^2( zZ$d&shsflplajJg8f_CK^R`wRFEd~Myp!~@^Nf^Rv52?@!) z;{Op&Sy=ZJ5;`qp{?|3z$UGV`s!7GcVU|kP)4F#2#vi9|2*0=^RdgZkbp4mU(`E2I z7vH@3`@?|GG;yPy`Q}Y@`om+#g|q(}GrehjFJN!>-WOi=d$0ZZ@1Kj!Wj|(2Kn32b z`VAVacLo})$yJWwdLHb|Sy1fZw^w1!4=eWwg!=#g`hUX$x>;2&L|pW3W((yk9*j@} zt(Nc9M>|6al;14g9Ck(u{M7b*vg#f&N_>>NDc{r4F`IX={oJj!Pv7!E+}`t}+X2u{3JW1= zC#|XP+*HlJ#niz|+PT>o#SEX>cVfqT{&)+sQyDIiu;Y~$g}vS4NV7j0}0OZO<&BC?GOHys=vG`r&Kr|g;eg<)Jub4GwHeA`IIQ9A4g3m{qvI-yU3^pk z1`Q)z2_zcX6H)7fbRSCNL$@jQ+%u@IYhM1MvfNh-rcBnhw4O=wQ zG4H00E$T7TjH{ozM1Vvs)p32SIX_!gh;e!k?k}Q2gq{ebFcc&#}Uwi!TJ8p z%wF&Q>cT2nOb9U}MnyH$rL_5m2QMzTZz%$0N$gy3Lu1LJuVnJ$i8yv+cTGfKQ7743 zr|NajD7MShX^{yn?HPbNk!p4t;4#=3I|9;pbd!#4V%M2^W>xBrm0bucqEvLlhz@XQ zb2OA)Tw$fP(KRi@ibe&^xD8FWjwe=5_cQw9Fjm6uqLzU(^>W$jt&dVN|J_=?19v_s@X>5)Fk=eap>NHCoX}u(aMbY50j83V(Z8sBoLaY zpqcvAsb;bfvIY|#)So%<+a7icY{zhHN z9bV1lDr)%UXtyeKCLtTK3NZ|TG;A|F^HY@l)mTw0h16~@Ply+awdLx37VR;<{%he- zH@7dTR-0`cVB0-1S8=(!iNKjHL+Yd+uIr0~`jh9~3a%1Cw1unn)Baz=RoHp0;GO~3 zxMA&S1tswChgt1KjdFJz{nfax$#Oy$6R*M zq|%JqiBD@h%wf+Z!W~s}vl~`aryURd4Sxv_{EQ;s@(DcGEvc2-Y5+Unw6T%B6ycA( zfsZH8MGxM7qxLXnWh_wsPc;n>(pfwq;L5P2LKTY=8;)~%7xlPl?p;=)fhQY_fHW?{ z91@#{wo_c*#TQ$c=&s<6-8P~^Fa)@rffOs$CE_7qDTZv40dD;bwE_Ba8Lfl3rmj$4<=fvUQ7kD&<81;V|CC05T(WNY4;D}M5V@hZ)-OVgbQaE8LIyt2 zOLRu%$Ck1}3$QKS^j{M$pQAiUEamFUQ?oC+S_nzQBnOzgWJXledUS6J?L!hqEAUTC zQb%j4X5eqQAX&z?_2{q_PSr0Mv7ry7e{6TRRE^sZ zBJP3of?8i~3M1cHC;Z{@Y(w|+j4GN$R zS~w%uqZx6nXx)O9?^zBTHF39#tWpgEJPM@2I>e6J#`&b~h}hDlEISv}JpRnkCC-BJ zi}|d*YAWLu-Q+^7S$}MB-O+w0CKC=$ZKO)TCFUCE_3`mpKPN9uHNE^kryb-RKQ;J+ z3|1hyZ;K#Sv(<;m+JUu}eq(2_*XB)w&c@@1re-j(+*Qnto^2i&c?lAxr&B54G#KT# zt7{Q`l=LgKjkeN|S%vOhVj#*}XpG5g)oHNizq#s_8t=U|{i^e4nk4cjHvd?qB3@~^ zb~+b(Dl8c^2hu)YJe8Q}NN{MoZxsG)J;lIlveeF`rsFZLKG9PxRAD>%Y%fMmCn%oe zRFMJ||?pu(}o-GGwi23Tg0l}+AXMdJ$)Br0&lG4%Sp0Z&0@SWI?n%5;U6KS5=F zOO*<7om68f3k~$%yc>Vc!%_4%OvuN(8Cyzl!j_efbMTOl^K&n(zWR!3*c4UW?3I-* z`RisEJGdzStIlB7j>z7J_D=kZ60|h)tM<+l+Gon3&7xk6 zX+SOna~2MMGZX-Eb1ApJu`EpOYwkYp*;-%2OC~junkum}jc@Iyj2QsLSN$NT6?O7_ zXo+c#)D`wiI6($C(QWdlN+^(0mTrF-jVnra=@M^Do)g~z~*NB`;^+F1BdrJ*q8 z-jY(^AWHPtOdg(A(1;^(V$+8b&8DWH9w3K){r}CU$6oU-H6z|SZs6{ez_l$=88SI$ z;6l9P-F_gjG_#bTM{d@r5`Kx(O$O~zvIF+x^`>j9nx1UN^k#aELSapk z10;~>)n_QJg%x`}7`W5O7Uvaty<1P!CXto2{mu_K?wEo+IRhMw7V>W6aATCgWGN_x z?7n>lO|XQpgnunR+xE);a+ezHgV9+|G%R$1bQ>C!_tsOyNJLuyOsr?gA zqG${|JvDjX7_CmwmVMrFvgJ5bN!wx##NF6mXcX~t@_qM>oti=gn24tmfI{?VJp)-w zH*GSYO@nEzvJNjie2yP!je)|5^s99jhY$0{e`&{hcj*ofA-$pDI!NWzn^gqFxky6p z5)2=niTj(;cZO~wWdBF0CdZ4)1`Na+wkLrHvsTsNpO;J-u#fQgA9+v_#+Q@*IUtR> z4_>@)dX>-q_HBU11@-;H8GEu>mf1U=8V?a6HpUQxJ5=+?@kUPP-3&BIPoq!IqdQh7 z_bU0VGNYnzBbyaLHPXmnUe2wUR!Ia(oEBC1*R4!ic_b+4za9xfUTy0N>0exYxB4Q? z7}J;JN%ZKhEphm`ceRzZ!12CgG7My_7x%1;$ue!+aAOORCyfpxX4#DcX$duu%h$0C|0Q$pbriqE?cKoFK zjAt&%bUY~V3jJLP?s}sGBq0$YX}J|}35$~VN3NvjPxy!joL#C9k?l0Y*0E=_A3AE5B|9D8-en7k#SftPuT<)kMLX z|Kt9gQXVyKX2;G8)1%;1FC+Z7%NqXU%-HD~#Y$^MD(r`+{?Vc|mF8^e=;61$3lbH@IH)$QeFIHi2h^l{% zxL53kmVrvx@o{P-`aeb=f?OIbw0XVboAVc%;%dFyTm*%pVLW~N0|l>PjG=3P+k99T zv}S^Z*N$^WmFI&o@cWu=F6vWG}k?_H&k)5xX-f(fL?wQ|IoAdX$NgC!cwp;d; zl}~-o&U@3NsyG)|r_{sANUN7yU)&5xN_G71Sp#sD$#vV{`hlioXfT zi6)9^ZVO~)Ii!1Vi{N2fDnWVcll6*B>sLr8ZPJ05Ys{D3lG1MUujCrvDr~R1b}fP0 zRsFvP09u2GSV*_GPClcyq~WI1{L|X(Fz?vLd`Iux2BXI$?LNm<3w&K^Y)i?o9KvPQQjoU*U;MFN4bzz1Q0Zo@ z)ItNi;K`ChU7+2Nx9Ff3C-g06L2{~9BiAE;rfgv&1^)cA?{r?g0cb&&JOuSn0{yU` zp+bpOINDc2K71;k+hcmSD&O(DaTYXaJ;=#^98{v`XP5lmu5lVjisWoNy>T-7g|D&k zeBEeil8LiXv9+zZbL(gq1wAB2MyFms}$IG+WP|9MO^CwW?zvzdT zw5%c=4WI>$7}&;7OoKu|M9j(yhODINaAjPRb>c$u;LcV5lZ#MegM!N*Zh_u7XM1Af z57eK5i>mOjow#Xoe@h@OJxV?i*;uut<3|fztcj8P@4Qr$@k|O!3i(iNs5jBj3$zfU zU3s+K#8-2)vG4VLmMYS}h|zZqYxUrTz;%ziz0qY=T0NeFel}3hD<`wTXcw4)oCqX5 z4411o<22m_nbeTMN`hfa@1hFvzcyBlF^O4=zT;H)9`>iC;l{7qJy3K_h25kvV<&LX z5#3WGX*L`Ez)yS}_Z;KXrWf<1H%>9{d`gC3!uQ3&OnH%J* zIbSFJfAiYw(x9JP(n#FYf;y0<;W0rq`CtNg;e=!TO;JOgFd6xX`ZhR)CFenI)PO5^C!P9+L+&%eB(fc;=*?l+3VF< zZK`4@O71yh^20!wo2ox<`v!9!E~5!9e8(ulADwRfkr70`?racZcxuUM&OUEt#tR+8 zvsh_!;FC!QmJ}~Uyq~>z`A*o_HNBU~4KylM6B$}jIMRJLzak zN_R_)*hcyxX(t-}Nz|_H45+I^7w4D+f5V^xWt&pCz7+u`W1fZL8ZF3s^9aA(IICkc zaH?hY;hueifk*vDTmcS!R;D3Rhkg84=U`md%B8!wkeu-c)3q-4T*kZMKsy)T?pANe z&#fAPo+wT1-Fl5FLu+H?%zQ}9<*yg>hgO@)8qX)9%_{|(2Pjug2Z^26W zzFn#l_j-p;D?k?FyRjPa0ivFjId-i>v8_MM8+|2zFea8n7j)gaU~RWuonQ~2t*Ze$ zPL}=ld~`{+2-Ui9+2sq6TywMz5|t&=qKP$CdLQ$OIyGcb$K;4)f`9AnmdTB&|KcW$4YmSZ-ZwbP z${vyincyeJ%~JZ0%DyHm__h{ctYstkdUY9G63zy756S*z_F(zMYEJnG_KX_zd zl4=rh+aU(OvwDWL@L{9>EE1!Q0aKaDJO4z`*8FWs3VV#nl1p7t?;8H|2q95hj@BiY zY5)!KmqR63;yYh&;?V*v&jKKb{DaiVVX}nJMg979>##zt;kU~DQ>dOVULY=8fAFHA z*(o`aHO$4I{N$4M2BRXX4f1SZ#=ZNOWd4!q1zD5-EOS>wY!;oqM-MuVS8&_Pq5ugS zhzn|z)>;D4id0ndMizB&(GSpEqU6;~B}>an_P2aav~=^Cdv^-4U9`+nba*TmG%w83hfismrDWfLD_m1hFWSZo+o$j; zv5DFcvf`$EBIjxcM$W)|ZTumtBW$s$qNr1ovwmV~Ag-y+vW~X&cfQ1`@BH(*-n&*C z`D7p7ui7+UE8o`cc>4MNsk=`jT&Y_A4# z7pc?uA1pYU`2vy=W7)HW?Xsl30>BU0M40%o2Gz)bZb%iC&xn7GSR$+9ddgJztOAhl^8T<9QO z;lWw58y4EVWHS9r;=A_GPn4y`lbv204}r8+UqxGObJkI0nikngsnv(cej`Bmc%&CV|cxg&tVnM zLJzJ;_ZyDmzTWzegdAKoHvtpd2Gd5C>~w+@3v|N5i#qF~l!yXFYgdt=t=3vR=UA4n z0m?)qX6aM+P0kDWqt$#F>2@cpo%rh z9U)XuKo8Myme$=Pql1d@Yn9ntfm_}is&t)P4qmaVTp{OLDK9CYn_9VzuttiT>L?KO&utMREbMfTm3VIh_w9%d}fd0cvb@4v5qSXqz6AU(=*NT_Wl=y(1Qj-j7 zJrgtjsA=obNpJ0`I)ln}$N5qj$g#Gf5a%|(+JVZPC1aBdJzMK>K{X00ehRTo>s;<) zH@3@2HXmIuUFNg)wA-jVJpNAM;=iYEaJtk}n7FbkO$Ry=fw_~xY3@#;#v7h&biDCP z1HQUmi4e6V-zOHojpUY6hGhmX$=z*QvFmDzLJ<&7FE|LSK1zjRyidp-VUt6W8Vh$* z5aA!^xIc+2`yoaOa(w74INcE)@<0Unw5p=B>ts+xkasg&`zb$B{v-RcCG8{iOSUHC z%Lix2#*egRLh3b`{&!K$F~uX=Ck3;`A8U4Ca_2(CQ)Ku*C%7m@D%5QLBh3GyEMFFw$49JGpJ9Oh!mP|vn;Cu6A>emQv@)fvdTIiln;g#NBc8}D97=#NHw)TK>WG? zANfki*RQ7uE#HG?Q^qLIDIX{n_$d6_bKU#+^0!}=utS&2J7F8%e$Ll!tzJov*};M-Hd-j92~(|DuHcOV85V3U|Tdfr1< zP5CPbX|GL;r`Ff6#%6-u$JZ|xbjwGo=yJ$h5CK(1 z^g*#&DV_KjL>Pi_XU8aB`R)Jt5V-y6k4F%m9)w7Cb9Ou?c#r4+9O(^GKqcD-RmL^y z!(=`4OtM-3%@pk>-3^mb$A=pebK4Y7qkZyTHU6A?z8@Y~)7`ivsgjs*<}Bsg$O(7&-a}u{;mfJZ!YDtr)aRyOl8A&I!(sVK{rr$-$_V?}Wb&;ZLsC1((t7iERzell$Orl1RV2J{n;fw8L=z z-H%@(+}w0l#1WmcchKbNStHD0jz@-^;GHpa5d61fYM5hCK&AQUS-ePwlw3fEfg|Uq zYl!$LkJ9p^5dSgv!9TP75OGh>|5CQRNg4lXFRev#=ar2AbQ!jKnhBdttc1NqfAylj zrzlewohd~#|9cl8ihY$~zQ%V?^_!}DMu_Mj|1IROHpvl3-#==xHuOY0l0~{Xowsv~ z`JX9-tWXj6K_A5~-w3+T50r#?0>L(=EUy0T_sVEDX0a*bV_~7X0!@51a78*X4Skh7 zN3kLdayEM-wIcaIX5V-NZaKOWQS@|vBo>cE#OUPsP9({+hW)#Ll@tSpcJ`9N6~=8{ zTdGxb8!i+m&^Rr>pMhiRf}B?QWRB;`q_YBzPDWf~KBc_I=Vl%wJUQpk#M%h~7&U3J zRT{)9BdKrkh8r5(On?^(xfiq{*pn14{1LqpX$8Vf__(oNrOvqgrUfXLJI;mmH}Y=s zZbM5=Q&}%_?+74*@fcJzU$0Q5YH*TOWeOoKf!$p1JKrhmz_3Uy^i|Aib&?tgU2a^@ z2^PGfydK9ILug ziLQG-lns71wIYP z-Y$e)e;TnRVV7BM2|491ZRh4!AN0+g?|yfARWSD!vy8${3vnwea4>3)CZ~RTn5h^k zy?PHyrA#9@w&<*@E7M46aJ&Pyyd`p2kdL#GpbNcPV;h@jV1W(c0!pgoO zLz0}|_L-mUCr4x3*rCu#%1_zYI5T47gP%U;n@7@{Cv=N&p_rCRuxX@q)Em+W{SE!y;UdMTL*jf@inud&(uXWX3@;JDb7`5wySHB+Qz z^2;IkISNi&qOYjR3Fe+z1Ho&_K=v12c~!gP4b7(vBUbZnMDZ6C#lvONMHKAw^-r>f z;ZrTcm2LHT)s3_*!1*S+Te6_99!{Kv?>gZQ<44ESnc^4~e+Sac-#n|`{BJjYT*l5Y zU1(+oS@7(No{|i6CY+CHMNUeSzDzv{A9Trp;-Q|{s7%kxi2@{S-*71zG5hM|)GwJ2 zHY#eF1nxu}5+mt->761u#V5cXXL`b7Z#VNrJ5^W(;{L__LP09c8-t80*@LRtYTtxX zXNfUOI{J5zBQICFFcPN7j)NR*1QDrg|iFUz0XXgsNxCWVe?RFDatjMTH;Kax0Ny8 z98X4FqW%%~I&i(dgYU~=^HQxG_sym8P!k{$or&(RLsqmPYqe_5CG1dt(IqEDU86%c z9HCQrX?~jml)0u`yZO-BfOIQ2COVRqMDX!dmTnK76VG%Qh)(e}vLl1Ap+9*}Af7GP zAHWVce28FdrjDMgDv$AOYcv2)vc8WM!4{N!B_=2T=-EaJuh&>h!LytBrJ!^2Fs+w0FHtXq}t~ zkq?Se&ep zlTmpzEA-RTYfmHM^)UJmh&+Ynia+_wB!_w1N+RX&!|;!0ULi_taW*hN^AKUq#1JP4oQJ=%qofZ1`pI6~a9zhfK5gyGFClBkitw!1fA?X@D4!@F*p{ny|<+X}t` zUDZ7q5yE^0*Fm`9iksYRjf zBXJj$fm<`c*Q{8h$}(o;1Czxe|dKRs+Tu@2W5H^aj8J&^)CcAzaF^~u(WVbs^3-mgCp4V-#3rcPC$qnCM7d2r)?&q)0eb20xETL1$=e1vBgL>A=M4vp|xp zZ>nY&8==|dloGtJOACnpzIQX%HpOp@7JREY5rL3QfKJrbC+6#mCs8LwO!aiHZV42lR;Hu}E-3hIDfon~ay6<_$W? zKRVJ%6HkGxd}qi43|oxa$A00G(V!v->voWHTl6EQnoI5LekEJCy3b8n3SzDsFLdg| zkF+eR_P0=4YDumAwHY@BIg+)|f=7W1A(th8woyj#$1|j*V*Y#@Az|qpE+pDMIL_sc zxMVQbl^6IGwxY!b!2v}CX&Oa6VA3h)@cqbXozx~W(NUBU56(BrUi`4HNBkbX)REKh zqZmN;CX2SzYK3xvCZfY=kiv2*SG-c8t(v|nj##ooJKior5a3sTg;^Y5A%TRrQ zY=f<68A|fC^jBmTOqLNj&+sO6m`^p2-(+M~a5xV5UIUe-;@)l9bbcsRzX`N8D%F1= zJ}Qr(Px-`1yL$>i7j?4re|wA37WE;NWjA<^egc*%y`+Xff>Qi7YpUg>ZE-WY z*LFto=J|HddWAy9q1o=t3CeBE1?n5dfddkI?rN%xm&z(N^=M7uu^zyV4;$YgyTU90 z!UflHE-vnYcbmFmy9@~iQBm?#$z0huW=32J2mLG3V^;69eV0|GDc>(cC z=VF;01T@FMr^y_jL|FR$(yJ#fo^)*}OLzalw~5~_$+jc-Du%~bjF`vbMG;Cme$=>d zV!gEOaJhW*pr@gK=G8sbuLNKPB&RG=8rm!I-EDOFU>s=QCnRX8kvWA4DzltO({eu! z#0BRc0glrol|X=_+Zy)L_Tg9U&_q)`bfxj+VlOca;XkAtz9A~+I`K+SdE6WFUAcFd z9pkB}LPT71%eX{;YaCM=k~e`Zi#COJx!fF#Qxud;en0Uq<{oSuwv-ZeT9RN@xnOE8!XS9zfc!;?Y(+Zp=3TNASdVg*lTj z=S8k4?G_HvVP!lQX$E%FImt?=?1Rf-g52&qw`=cqAu5FTri^`LqR*#Ub@+L4S8F5G z$j(Y@ER=Z^e*=lU+s%z()>Cwp;zinR^&J5JBxn(kq%Yn1DRSk&VZ_?0j4%cz8y`jO zi}NqS5^Wam8PlFyj=L)eP$*%}A8Dm&)QpMSL>XM*1s8d(xuGsCeFKuw#nC@VnxEDi ze+V=wOG8970uA2C+>nzBr=FsO3>zQhbWzIjhn5=lToDD%NhAd#|7ldVaxNmp7ByWw z;BSYU@u_1i8v=b&Nz2z6f>5{>00)n2`H4~;Nk%`53UteNfX!yD1G^bEL{x+Guq>hu zX;P&+@gS+)c(*(N1FJi?+S=aE8r8H!01Wa{Fhs_wg+h8J)CE|Oz)u_qN=Gg z3gybR<@aVJ#4rd)^zmRl!z4>gfOne!De5ieh-q%~H1j#7HVw!77=53K!Amb5Ia$4W z$~BxHy+Wd2km0&yPb3&bc7Q>O#;d-oo^s#yRU*s4AZrN**N)_QFueg!!VgRU9Ra_S zlUfaumHPm}d&|Bi@-RvxLY$0Uu|f^YqM1@99B1e%MI=U6qFUj9JWF~{vBYoX-eLU& zwv=UXLYbl8Y6Ts=?w^*G^7o8dTGk)UWFpB(5-6Xvd~4+f{t_bI^*UgdGXe;#W>q;D zRYc!{F7!4@g00F6tasT!-tK!z&2~T$WPy}`U@h0ju!|^9fg*THX;<7u>T`+#vPW}j zva+S=?HAZX;L7xWq1Q!{b#^snguI|!!=FW>vXeN@Oapky2@)=^I$=J0cX4{`UFP4E z4ne&K1AHZ%xy4@`IFIIAa5|!lU1F+nkX0pN)r~`p9PBK#lfJB^IeYr8p!Q9)q#-$4 z`j!~xqnUkpahcad9W`au*@WH7I5CrsR6xnQx`e6I)9^tcoHgtbz;Z zd(g?=rU>9)#yIv*fQOdts+9~aV~?A1TF8xo+x;Nq!Hp8=ve2wZ4?-&rVkS0)LBlXlL7rg-Sr zM>DyygIBh%L3e<+PN)lVWA?P(d-evPa700p!F_JX*&0qxJxZK*R$z|yYr)MFGlZEP zp)iSaojE}1#d9)_Nw-(+zPP7O18HU}SyiQblC=YnC0;QUln;QVuYh-#UjJ51F$M@+&~BRt|4cUlh*N^mSwV!*BESfMI7LD$0petb zvjcjXHNMngyOZOfMW&^`k`{uXyv{-4LQ>Ub^?>rQvNVIQq+Smt;GzEbyhgBwZn!&_OtL=_})?2CZCEMO0# zxJd}~R1iHtQ5`9(woucQ7g$84AR|rJMsaLZ0V| zx?dOY3;V`V0De;tfq<>LC=U2EWW0l=y%5rB_i2VdSP~W2st;4AKZ6(3HIT!6W590g zKCPeDnj&D`pr0PiQ28$0ZD1xMcJ;ZbTf?pbA_rZVgehZlfxQ$m5R(b8yMoCR7Nuax zDtT)cZ*{r`5F1vNI}jiyPf71i#s)v5yv0A0$uG0RmRdWp^x&3bLKEk96>^oZBhLW# zGdRyfv2y`>sfI|*JSx+^Zoa#8r44X}STQ_E?_@+A^C|EgXgb7an|6Bx+L#@(uuR_3 z1<;9%B$vh2u_pi*>R#D>@k)yWbD1IxpTgJ$p@ynl?eo!qoh44~zWI^_7@$|3!35|$ zul4N&%oF-Z3=rC9*ZnG`AQM|7gucHz9k?QcR06L8n>s@OLlkLAln3}52vklI=N|JN z{bvG!f#1_D7tojU{NROhEFL^F5)xcXP5(M52z7AbA?eUGsOTsj?ThZh z6>pYwhOB{KgE%dUe@}5j>eOTToA7t>L??fdzvqD?IAC*rTh7nWhUb|XJHC@hsY)9b z2Eq5Po}v}Me%T36?6#4`237&R7=ogO$H<^!VjD*qht2WFW$$X|*%516Ed0fYPGB{E z&AGMe?wdcp$$jRZr-*iW%D#SU2G#-4I+U3QAdJanWmO^2*dP)O?R66&6MV|J`ysfE zl{wSY&BOSZWMx)9{_^4xE#zN^fDSc*h%se~!?mF)#%A$N!1iDt&`G%)jLo_{WjJAi zTg$eT+=Cpk|5}`n)@u`Zk~RZuT&$!HF9jjmaO;aI?Q#5_g=xr#xm!#N{85C}kVziN z0YF>R)gs{5n`pl~N1~xlW=dAiQ^FIF_>`iOEqNp|X2ax8w~I5jNgoppxp+&s`etI> zV5k2%2jsmcaSJaZxZhi@()xj<1t7cNI$b_+>xe6(8jgZRPAv z%7<}3T3ZXdYSCtHzdOE+uSlf;KnDQR!+^~Wl9xLD6Yz^CN+4bnKhl-Lb7qa2*}c8M zm4xk2O)jj!)+#q0yg5NdJblmK?k-#os5`eo}1u2E&k>mRlj2QonyGl3rOY}E& zwy4YNl{VSKa(sZ{61AwxxFYsL|KZQ8eu^r z)fxhm>>H7Gl8|36VffyrFj)w72Q*)4FO-#-uNWDGrmsrUL$?$hSu99|;J`*@lwg-q zPA4ztwNftQC-I301|K&{B7x)%_tIGmS&JWODG%kKFT zT&}4) zYZR{rcC&%SGrK?D6cxfej-Hq9FY0WFupiP&R$l50d!1~@S{#q&hp+uPor;2~WtElX zI*JL{#38>Ci2G#la8RDVLN)DAi4W4~@R}G4XrK0yN%{Jl{tO}6u#W+BLz&(NRnnIKi>%o=f=8)k6s0SXp@t z%`kknLqJSbM!~?Ao$=IE*bg(M`L^iSK*{;*Nb99pQOx5{;Rc;4myI7~+~LN#zrc5n`>HdNy+E<4JQr?a&%HB0c`O0X$1)|lb+fcx;bc)QKc2AD zpp?MJ`{RD;u@3R08Y#|?YFab)HlIDVyXpg-2{Vf#krpCtr-mq)0FtylL_kXbBJ~FU z3~8pR&#htyFsJc0vUk;m+MoQvm#{r9n9FAlh<>1xvjF&d7{DQf+n>|{af(IUU`Rar zHq0sml4X-OiCK-*qeS!OQAR(+#LRC!|2_Kkv1@AkeCg@!Nvznn2|zCRIs}D zl0hNSXJ~*EyTnL;XR>dW@qDKx=3a|5Hsy;OE8IOK@2jG@-$C;|B(lh}TGiq*P)CiT zd8(qa$$k;eVKz0cqzNV0lySv__2U-QJasHMVB|FL*xc{fd_qw|(UXNYoRU46$IuaH z@#oC%cixs=+mVRWOuWut!~C+p%WUNAX?LFxa@}+7gM>YdGyG9Dexe!gAZQ_{`2cr2 zFZH>29i1N4zku=gZTGpG&8q5?JxKclQZ8>RmLGS%yNTwtPrRtlQTzQ<^EsEs=Ju2) z=Igg@Bu=c|2BuU(bb}Sw3_o&uC)>N)mClZzGe?++kp43j78OzZYD9zW(>--Uu2Ns? zqKGRXQn}V;$?e~>On;Ep-P(KGC;kR>`gU~|avCXYa(a8b!G9t~v|8@U1xKi#;{H~? zNd8+YbNl0jKXN|zByiV_ty3NIg@Z(7gaY=>++zJ3VZ3(K9YXs!)^{-SoOx>TqK?q! zku~YttmladvI&Fh1@}^qomkUudixxgC%r7c(I$NAI7;*8qxMUHFj^?tZc4c5V9M^p{#EL};^&CFWyOlb2RD_i0kn#IZ znYBjkUA^>E=;@6 z3eASxW<{*Dr?ND&Tt=681c9xiVP*R|qu$5Kx%%owcVA#__9dep4OX7 zuMNC~j-COG+@~f&+OKg~H+xN_jT%6FC6=;$5DvnnZU)V%s@m@<$jKt=} zD=H6NQj51WW+6hIPhd}!mgOmJqIm~Yqye{_*%g2Nc!FGl$=5C8)#PtG*IU0Tn&17L zpp&ZYZZj*>@~TDriA4f)U9>IQYu9j958CJ2>)z2Bi@$rVRms(;n%@sopB-#(-`mqF znnbN#Rcm)>H)`LmzsV27REnS8EVZ3*fw+nlaXzqpDoegx6^P{&Md8)2o^CuTU4_W^ zn@fkgE|;HFPEO~CuAR5Yb$=}P$+a$6+LJIbR?Ny<3b2yam?dlcpaaA&uF>ZoVB9yE zKkfH&;%>7ZCO*kcsH`RyD3-?sjQsONQG*{2isoB&$JRV&Bi)(b+ENnwpNJ=b`FWCh z|JIQ;H3rV`~3VEFQ{lkD1?&k*%CVO&&?3O$lWl6X6$PdZ#7e%fJy5fKcRq90Zgee3x9O>w)AnO z(o@ul+8S*Oy^Nn70<94P>~=M=6`DRhw_uON{(8IwP?&cAUx1f?Ram4JSDaY$I&CgV zlIv@0Gg#Q-Id3qfpP1cGR^n?HHNKyAXBmZogpiNSN?ng9ioS`@P&D6@y00}i17>s% z7;m@1Jg?ltH-B-fjPR-7PDxfc%;@A^dB%#JUC{LeJ~qu%oaH{ABxu+a@QPf!`LR_D zsy-78c;iY-Q_ydJjA2i0Ub*iA0IpK%-q!vM81}-#mUJcz>)f}C!)n^+>K{zJ`ucQK z^61o+ZF&0>{Mdb`0U-9i_AlQEkYe#DahKhdy|jLxNc^1^SJf1BI9M)NbFU%J0RxLhG{OiYu1?5j&ceM5k zr@VuQ#FXI6-=5^xg7WMnQOkX#_mATl^1=Gm0iOZg`$R-Ye|HOuE4#ECnnjM49q|{k z%9O(#P>XeZEf6xNqcovEA?h6+Qn0`6;6b>3CgAyp?Xr_?j{|F}_cn=7Bvx-uU2wNw z$N3Az{O&~wH|oZ+bgjk{JL1TBE*p0lyEE_5}a%7;;%qLf%OqeWLN?$2+Z%Uq}P0b20taBpBziDI-(lqTD)|RRS2M){^s)iOB%C4MBOi%KG3w^{?8wAi-+A! zK0O@)OehP85g>FWr}_ge>s#TuD}r$zGD5UNhPRgXy^j}8)BLXX*}E4it)W}R0Htc37rcZ%P4-3pa|ASI!a+~d!aY!Yh{i9BWR z%%Je|V9`#fagXKRjeqO4|Kqkdx34@Gljet5O8D7|mg&(mkGYT_5zarneH2;;-`df# zca~RJiXVYrs`+$>c<5U?KqdO?M1%IH4$Kl?Oua}#<9%i(ers2Ia)T2&Xx8rRe&VCq z=f1l_fu~h|R+|hh^0SYvA)$LjHz(NW(3L|?dz(%~>hP1#+`1txV87ovr#k(#p;d<5 ztZaKr`+*kG#TVappb7J0brJn3CZ(!&gqH$bxAmtAnJC@)ce&|hTt;=)R5hPQ6c6Qf z$i5a1f}a1nWmI5kf2UFg(yr{%?V#5wL+#~gGgB0u=ypYt2(wJ0^=woLb=uICQz^J3!H|7`kar|>ZV z{EFswC+{@LbEU2{_Op!l4~fR@9jNlS+j&6eh0^a{^y^v8G5dn$*B;9GzXh`3MU_Tm zkZ|L9nEgzJ{QF-HmkUEH);&G$TIzvRhWN43S31(}w#+MU#ii}EppP6)Q20HX5}wDo z{3$J{e{60W5Z=gp&GhHK>$(Ky^+44%5BK}6UuC}byfZFpJlK87jj59&2;ZNjhc?fq zqg`VTp15D+sJ*x91LJdA&l8?veKJrmw;lkQbz#>1(^)GQwPjaf38n1}9DeZMU(LnX z*?>#3{-C~^hgSsx6~fBnU~mr&L!OYk)$Ehnb?L*7-H<0-D8M}~0jX0fGq+wg`50G? z5t&FH=R%^l0+tTlPi_dDv`3eox+KNt6~)`ilAue(o$QV%vpqdW&;Rqz>anh+v12JajPT2sdBo7Fsle(74*h5tNMG{JW19o&dbncfD zJ#y7b*xydCTk*PE&CeZ7r$$9h!LF@5kEg!CSR@Q0bgiCz37m^~Eb$I#lF!^Z5BO}b zD?!H$w6D!7G7qu+6lE81mz78aKha1aCcvL)iAfLp3&{#&ju_WvM(b`QGF6N{1SN7y zz2Lj>YV`3WlLHfl)mNN)Lc|YS$~+P$^a~HNX6oSiqqBEeG@0`Z~aW1Pky1e zQ64dOQUE1=nS0h$@otzQ5z}8+>Grd@C-LcW8giR|RL347y#iRj;r>>=E5|0}BLAjK z$Bv#EKi+@h`hP}+6xHNu0JTDxYIZa$3g30SX-ERB?s1>~c zA1>2&zcCxyqSjqq))e3Qjp~R$?e6mFy6=(*T4eZlkWAeErlKYuwVkc#mQ{IJfbI*! zZyrlL;!I2JDO5FR6AG|uqF;_D=0D%?sH{Iwr)Yi=VDVRuK1mbP2*bF}8Xcrv%NjwB z3;4}DD~@$kdyMmX*86sF0`C%sCOuboq^J9Xo^x!h<%&w(fO#&*4oJSF(U?dnp{GX!Ap!W-LV8a}a>| zUBXh{Tz^;!w4?En^Q^0V^~v!3XGx&+0d?Zw!8^eNe5RUFePTkq%OvGOp!wjfkO1UF z($||m$q%IfI#!&~cr5rruwk`n2)XC^&2%*(*Vi^6o&SryH;;$9ef!2|?6OtL8WJV4 zCQH^zNLk9hWJ{5qvhN})TOs>Wp_sAnyTKKgy<&{rNVdVuh_Nrf^P}s&pX+TH)4NokmM;86*aXHj`4?MdqiTU3t7-M}6}W=VyV-T) zp5qtq=Ed{VX0)c$+Wj1!3Xkq|?D0_mGZeI^g{uxS=2iOqRu0J~GlEylCK{9_6dd~P z$fH)J@>Ky~YPDs3&Ac84fViOSOo(%+GAv5a-0_fhBz0d?{4#7%!^>Pz=~h!be;0dW zsvAU`_@T52*dDn6EL#+xu2cJ6j%mB)j^{-wDzg#{ zKX?UtnGOqtl)x>;f*6S0ZW2UE?7 zWPM?`JyWQ&6qxz0^^XdV>pKAqc=p6%_GwtNhH-e|*^GO0Gx(x#lYVgij6hqXBHKH~ zVzapV$o>-Xj2ks?Z$r-ZLTcbS$tqbFNs&Y8H$V3L&;PU2A@n7bYskyQ;ApO*)XGSUg+e877gJRACIJMN|U z=O4a=9btg3S#AKp`e%PbmszU(BT7=gIq9$Gs8Wt0iIi^w)w5&vwBkJ5XNgN3 z89Lxdr~v#_j=iam$-hzij!k=!u9_x=yq9mE=^@}&((^N=7H3N=BfrsY6-M_f7aO;K zM?L!*s23U)nhht|dT>LU3hh}SvIc3cY;Q{O{bI*9gnwO5n_H8&14?_Y+UB|U15>Lb z78f4Q=9P&O>8wOEODLK6G^v2P;GouzHNdY>HENJ#81B&^5AZ6x>5(H4lLO@<;xWel z9u3_IBP48vW&-`Ba6Dx7?<3D_09e8FK9W{Z5xbX98d@t=#$f_(r<6(1vyHZI3BY7v zEtH!A!sQRdr+SiA#Ke0JDKWAJv0zsfu`FeiPCjO#g zv?S!QN-oEUT&SEFJ11ZY5GqvC=RI@W{rY@Mr8(o-o{qGPXNAVcROd5e+3H<&YX=^^D~~N3lVrO>^@k(9_#ZlwSn;AT zFA?qvp^tNIh2?}6vUBPKbc?`r>k5%!Cf^Hwt?M8loI*A8py{h%hY-`Ng*-NOz&}k5 z%p+8_@ugljbS$VDFIJk@zALT1(OES{9$va7jWF}R2^t~N;I69&lp{IYq#oENg3G<=^#QO&j8w-U`u5BU;Og*az( znkbvOM_?Q%?eMz_sj$8kEJR5w#=PaSg^>18Ysk%}(G5xSp--yqZdMF!FNxjZ?_Wip zy4CL;Digv=8&}g;+`7Zrr(h+3ZT^`p1G9ix@F{d`vCTZ+c}sjceZ%V7%=2-Ik!+%G z(s+zp7|`f)$1cN;s4{NUCM~-O0Jl&!jSL@{Mpw@`wDcBnaHD0+ZD&)M$Y7PXoBYsQ zo}8`#zrIv2LUye39fOO*<8~U!=h=B44APO}Vcx4su|P-DB>`K;1U|y;6YlZxN#~|4 zQS~m8NhU`EwH3OfzcpG(ZbvqYvwSxHhbhu-Eau6-{~ZY$n0RP5B)HAwvt1w_+t_0(1_|3}l;^3Qv{&AGh9B zxdHyRHm7tln-F`{bckapMp6!F=JEQ>S2{#*)Xmd_l2E zp)>5+j^b`Siqs9}HD;v@;b2VwT>0z;0*G<29<|~;v`4@uml-#tqvuu{QfgnQynVSv zx}I+2^_bRe*~sp;$=KCk2Ys+a-3oDR%rEl0tVML8 zxCN#II20EuttlXw{niyELufl~%b9_(DgEG81+o!_ZG+7@KwXWcRgJ~YaS0V`(HSyB zToh!<>*ftp2Wb)L(nysDpVX=znyE6(jlYya0Msd9mkpC4x3>+OqSu7s1rL2M6REK^ zC|yD58tXa&&krS@GK-4wW4+^Wd#JPHeaxa959ByB;9s3Rlnmjb5#0OqvpFzSCR8l< zoEhj;WFv@uidDrL-nz3VAuiQwEbzqGD01sG_g2tnNH5ed=U-|aN1w)Wv}sPIhxE}( zp2Z6&T<|{iUW{f_lZpg!h_WF?EU)l~VTp0i6K+bpiwEj2Bx=a1PO+%=bX$h1FmppI zm{SXNbI;0EHp%04s}O{>(?o>@eA=G29`ZW7m~!k(fk{&qle6g7vjorp*CKzo)}0{p zx?3HjSh!Mtc|;93bqpZukmgG3_y;w3+#}R@I$5cN8^_0zhnCr$k|=LlnH%=w_Sa58 zm%|iu13MiWDQHd*rU+7@dET%~-&HJ_4C@*GaF~NEv_9e(f@FgxkjZaVqavP-Gml-1 z7C!VnHB(k;Nb9;+!RaRPe&Di6No^)$Bl$V%iC5WQ08%D@5C1yw$2AG7P5jos+-DK% z|K3gU`iJiIK8nusUC*`Q}AYZ;l0|rr7_nUNDZ)#xP#$* z^&F?`=?q1th9*Ej7Rc>KcQImHu!j2wQa`2jf&9DhPz619-^vcyOLR0k4-YuSYZ(`S z!sx(4)%cEqsy}C)l2n1}mWXn=!MwE3o~ccWW3PsP@n9Dy$*zEqqtBkk+ICqlvDj!H zo=m>{<=mctJ~uHd@i(N8A$WiStwh;)b0KQURWHzO^n`ZK2D>>B-_N@{c5nXUTq&rF z7I;W#ytgDbr`RS|rTp&u^|271@7|>iCuKwNI%!7 z6bo$K)kM+!0WzwuB41|SiwVW6TK@c(a_}1&^UZtHMeeBW$k56RC*xlYi>6W=UJ8IV z!~h_XUejly0ac7jU?2WbI3`$hS}~+_!&_6 zS@27O@eJ=|KwL3c`)W+l3lr_~`C7x1utb|8GwI<~XbbEB?dCdfV>RV!Zu>BAvxr|h zmh29UKY?StiUZdYnI;lGvgPmvi(@IBp^9A#AZkybfWi@N73485d8Tgi-zPf zT9Fg%I-adA^46gV|LwQ=ss~eI0x<^7CDU0YEALzBR1hy%{G(0p!ekj_!@e1L z-?K8e^0ZRD)iULaG7D$FCU$xk+jNJ<7YP1%Hu`;ew+p4#?w0aI&Nktx7Ig%)UERA> zjqbv*tSc_yKUG&DCoD(G{Rx?~AQ7X96AEeYYp@@C{v4E+VV&gE%vmR25ToXv(?&J+ zN9hA6czka3u_H(dh)!}~n6mb49=-b(F~fZ;SQ6?D0){~N3QkABso?@JN7k)A%3@eQ z-^OpK?@%suc=5mO$v)QLAE2&&4RnRGk|mQ#9!JUe3u2G|jF36U#-K?(kJ*{vJUu49 zLQOA(_kRK654U}I* zJ-Wr_$DdbP#R8NJGN!~#|5HSHE4o`pll;0Y zIT^ci7(xX%&V_q9C4|1eszkU0qUZ0+*Lx{~$O_Y*t+dlr1n&9itcM)vWkGr|E(RE- z2hqQ6#`@AzeRKqto_o;Fqx)lXc9K7q>)nOPa|GfOQ39XnnZ?P zryVdUID4AA=FuOy+8qu7r!FDh;)Y>5t)AjllaOgioh_NSmQ<+*mjjpCzeQ1W_!PN-|YkWodro<(+u_ z&_EjH8pLEZRWnngWi`PWE03!6YYycuyhkF~ohmhreguwtXsGzoLsxD#5aoIgxm)MD z&SNhk=v1c3=93S0G}*N-Kkq~eCuKQZS(UhM+ocT>B z3sAjVI&^*A4ur*pv{S)q96;QO{b`hW2-s)X9^FR+m5Wi)eY_jP=H%PDYa@OlS%xv} zs3a8mK_lJ;ONS~y&;vY#6VyU>=13}OIA85-)V9;q?e*!tp zIe-ljA)f9bb?f}jRX0xJ`6}07@slH*vZqEWYh8KWM2LFWHI8h{V|qqBilRE!$g)0c zeQn{UxP)GuunBR6>vi|bgo&GZzvRdSes&E9DG+-(RbaO$x21su9Vg~O*GIJ@s8<6 zivUs-cmoO&BY>k&DoroM-Jmgu@>bl00|UI7exD1tPR>517Ns60_ktbXp$Ppi(;woX+<~?RdV7iDN~(}!{pj9 z#`C>Xls+7?thJ0O*;pWtfURK=AL7j_l+CMGH12Q>L`%CPpXhRrOJSYKy)IO`jey`T zEs^?G>E4aC0jPcAz5kKC(;aEg&LvMKOCighqCX+Sxqa46iKzQ#9a1rM+e=l$plj+1 zBfyvu3V2m3D(luNn-IPbiLV4LxF}2%Xx5)0-UC@d_T*F3@Hkt@sp)W6g~odI^ewmX zsexrypovc-ek%l11(C1ZGtOtgo&q*lddN$IKcRCiWM)6oaGK01rXtiJwJZE+asmqN z>S{UDPMqk?@#qszcAF&D1;ujFHEJy^$23>hJ+Tzy7fz`*`AkrQmMQX3t2R~{0AtZS zUASBEmvkhL9`3mS3Bvfa@f&T0qldRfD=zm{u6A7t_d4-DqLBx7L|2$d;)F<|FA0>X z7&6978;#3;38WKlvf^?eqX)`m8Jg(N`F(#gm@y5cs{Y9ZC{*e&IqOsLLV|_N4tDR! zks%m?ADsf?0wxUGaBELov5bW`Y#bg21qPtNZ=WNl5R#F5 z-1*8gr6IVmQD4-za`z56;S$>d!#-s>GzoAwvp+@7jPRT~j32&K=_Z>~%hX18IeCaU z0l2u?@PcruVG%Ftwv{=SHN3f@=aRzF8(PSykI#L0?-^gxUydl%uO&J~gV%xmbC8>= zxaVlqL+@bBk`mu43sEnTvnr#NZsuLjWN0K!oLN$2!=Ph;3!tj9D_ImXcf&<->RPrD z1yu$CGUR7j3#iL&niv@hQEHa&b;?tpejYLu1lAUIJZ7@caIn})D5NHUOsk)4W|!D< z0vxGh^XJkNp=sFtiP9;r!#OMMJz7Tn*ha$oqw@2m0KV(4kG;l`k8;&VuSHVWY*YqT zNxOoef`)Dcy$>hK4Tu!l`f1}Pbszm_bx+X+P<%*tT?p2a`}<_|@(W}bt)yQCjn4u( za_FZPghk!aKm~P1eMU)nw4|EesWman_J}IV_l5ceMW5gJaU=%t`X(woD3+aC;qDQ9 zWgzsXd8~Qfi&?~|C}acZ@?@*N}q?jSrw`u!>=>{~eIU7;! zhxSs(lAje_Tiaz5Cx;-wEQ$R|s4x#ENmdvJj?6n3e1@3J-9e~tB6m7YJ6m{ZKoHoN z;<-VSrL5&sZ?_cGub6W3gdO{D#(TRrp=*w~PCj*~n|!KJMoJlIpm*`Njn4x#=nIMoCN!U%8I*6UuyKhJTEpTpAc68g*v`k05ljY})$K&}veG>B+XQC*UqUkdL8jP^K*s=wqX zi4W+f&INeZe04)T{qJPAP~%zHkt_xJeF_k(D8u(!9p?`?Jk@wH79&{#2u*qtY?Ue$ zH_BnmY!Sx|im2qC1y~n4i+oL<=?M7vlq4&nHw-!I*sDh5!(F*}04kcuoR$$;1U` z%AWT$bKg!mmF`(fN8|}lVye2z>OWw1-E z`703qk;V$QwWMm)kau^;UzjrnX%2eRN(YoyQn#kDA|X$feZXY{X%)3;Zp!XfE4TO! z`T^<*t*iW?EPftZ_GDJ^-LuBK)%GaFXb?R#cpAVeNDm}(S^0>ZSZZ~{R?209^d`06 z?AUR^PFbdu2m5|p*b2c;uKx6%~N>z%on8bsoo&-eQq;AchdX>&>ua z`$LJIo>H3H<@`oY5ou-ew{zc$@@Z&UT7R=Qo>I8Iz*(D41Bxl+>L# zEL&^GADI4CS>k-ERP3Ximvjv`jMI9(9 z+cd|ngxG~(Xrr<+DGLo+*BnpX8g_Vr4iqYMmc-5}b)+)vGl0AsPwWw*aQ4NCWx%BI z{Qqclt|->U(y04VZ{$ zJt6#XaHeY1Wd!)>VB2%bcG>WB#9?e!wu3#n7dgJjEyI#b<@B)G`QD+TUkVj_JBJ71 zN-fY)=nMYWq)0NN0K(DEEnsx*9$cOLNO!I>AO@u+&vTi@Zg?;&{ z?@Eu9KzN;JpyabkX*44nX!MX@NW`&wv@($`mkLiay0P=p1PSE$0g$h$2_>CAw>3~mS8!iP zIp>Om;^3cb(Spb5Pahk3rfpE78-cU3xx_)fL#HS6R!~J8(ZCK;&O!}~yaC)(zrVnpsyX|(z z220#0X$o)9{2Cm4D<0)-OJ$>>tCi28diqRI>ZrehVl%1F!4ym?a6->%Ke`eh zoNe3`!XBZk&mHrXu=1B{4R-oxI~l~}@ozYW@;W3_iCcls0l-!@zC&?@v)8^Zp9Xp;!F6|rplOQXdB2%R|7;Z zi0FLFax`Y?@cEMqM7F@lG9H-x8OvY?<&q-Xarr@SV5b2zYYnMsrT_H&Z+~&|Pmve~ zf!>oi8t)@A`U1U}Hv=I?x=Bjv#+7AXz=xnH{8x+!L*uue<$9OZ@XH%2>UjreY^6ZfNR=oFu(V<^I*W_t|;_YOwi zl;)dGX~sb&DInp_8MZ6%D9FVIDFh zY~Yft^pY1>DHZXSa!ES*irMC&;is*nlRRWcT8oMSXNc=Ref!CqDd_M04uy1NT{?h= zkX7x#Jsa{>pQpO{_R&qpi)MKXLELQSg}xMSCy1uW7~qPcEFA9fH|LgR+XjJfD?55O zXyJk)e~>?KzU(Y1J#^d*wFmgI?kwB5$|_~s%7j*k4q2Gww!$&>(GpOqK6IAP9B=q*hB}7s`Cs><70;`MHW#002AS}=Q*Qzezq~m*@OOu78UBJf zNPnvbdGX|47dLW6U?s2`awcZm7Dm`-xE^hVt&ieX#N+0Q;JI9RaKm$#~$VnbdmV}>`TK=risfgMX?DV1AHtm);Ubw>v z$dXH=g8P%plRLt%koBA%lNjnY4_EzeL8bK0EqWnDF~qxE=y=v#1xR<8uQ^dFRQl>< zaq)?V@Is3(>n%+CY(CtzS&wJ%kFiFmyc_;rd4IO)3Jsn?1&bs*q6{eS*-E-Uo>~v{ zCIh8NnP2>x4beHcorSys9^Bh}`?w>&f#X%)hxNb@smshsIdOCQ$h2@( z6}uNc+Q79pMb%6mO&$R^+LY{w3}-nF(Ia=>Lu%%b0P^kcATr=3`ex)b73MY(Ai^g= zt6WIEb)O)O(gKnib40#a^ILx}7er+P|H|ZrVKkZr7=qdW zyP@6=wt#erOe!I+!if_m{w$pfVn5hHDNO`J2u@~e9` z98cLX^eJCXPR0v<+@k75HQ;SsWB=@}SsJBSEp29JTNFBOAQQFdfHs zC1^jIPA?3H41>h72jOmB8a(43R^v(?wT0QU>!k;;PwGS7^Z21`B<)r_NPy=bfKud^ z7^qzMgkKFOmjTPg5fuZBS2ye(tRVJ^RAJfhXILjp9xe%zKOo}h_LNeW@aK77Ej4&q zA_7C6sS$&>z#@in5o7*5vKc3hmDRV4kjHdH@Il6+-DP6mna%~N3Ch}+-;$2;m|qq0 z&E2(g1YT^z3JO`}e~3{9Y3O(DbXUkOTxa%?{?Fgu2fwXlla>1Cw@?c74?jgOxYX|l zOnX^mo3L0a7EH~ta0XvAv6>|0dK}UV=hhu6Ho;_1ZPS;Mi8J}Un`fvvzMkDhwkP=c zL4m3eOEUGpMEUuS=mOHkRkmLLJT}haIT9f?+vP&3Sg9cJufcoaNpM5z2=XJcL#jsF zLbflxn&zRatjGK8W`GO}m-8T{GaZEuvS{ES`dVoeMIjQdA6s~UYLJ6Ax1Wkk2Hs%c z`|u-G)zG*mwrE84SpMX8SA7Lc#L>%CpfuskBE!rQeT+#O*R26d%}lqE)6l&Myz)%s zU`LXu_Ohhtv-53vVi*oe!31MVjDEVQTVX~$a?1FuF-0TA1Y@Jc{vjKPE^kV_xre=r zHN-k$PXcGb`TntoGk!4 z9E7Ohgj0t#27S`BHL5j z$J~C{O}A-fugr|V0Y#O}=Lqdg#NLj=K#+qGdd%_2foXa8Ak)ARUP{*g&;t}Xku9;N zi73f;85QRpn>K1OYWleQ^XtoMF`kk`t@g)mEe3&TCERvsgvJl>bur9}SF^lByT1T$ z+4Q0Q)2aZ+UM7y!+vg}>#I-~zc;h+-;cw7l3hGGuC9jqs4+ooLFN0p^%rBXQUF2`= z@#21HKD?nZ$h7it^qwuEtND^c@#xdiV=JZJ>k5vdlDgJFZ7O4$8iKt}+a?2jw8~XgedBl*VQ} zADS|fXRNmol$fFK1e3soX=$gvnmH~W_*i(Vc{+QldK&mKKJ%C;2la5?Hzbe!KVNM1-yTLZ=x>2y6O-H6}H8&1%mD)$lG=7xMcg_p~^#(TD>?))55P#U}Zw!>-8FB=B{%XykLm zmuvKN<%{7f!pTU)@&Hj5qWPXcYmaViegd8i? zle^PMN7I0-UfeyBc3zdBPe@oi_KBcEb?z3hEglO%6LOK~JQ#E8A&;4TQS zKQ{0A$(Tdh0`0e4^~6@bw&Vv@?S8>^0*xwJ`Y{)FQKyx z%%9QXn|M#^e8-HpEjSp-ZMV)sg=v_ln7bBhJU{n4Lc&X|sNZ?9YVS8LCyE}byls^Q z3NR3!pu;XLvl^8s-Y~D>DQek=x^DO4+(9{&br#O8R>5o9$L2^m!%eNf-(*r$W2OZ(1T;sRc`vp$_{Lg zpyRjVXhFZ#+x`r?HkcrTnlck?cpOtSmu(sn_rUwFE01ZXS_f*j!&eHEjvh?ZuOulrQpM%E{(G6rzx7wVzCCwjRjd|1L7U+9&-FX z%6YrNNT#Z7{*}h0mXc-Jaw zi3a#q|0tZfNVE5J7YQ)t1R!Ol;PZ$J%;vcCA^oylroo1un@Y>q9m@|4NzZ&-3=ULDX*fr-sWtnOr))M`mq00zWD)6eU>cZg zT7OZolMNY=uQlT~Ts1|a>}dB!IoAjY?$1xM9gRg9#W{%N7 zC4Q?Kt;o^gc~BV9)d29xC+ov{t>FPYMtv;so^Z%2+xdeFtUqSPRY zcA(LD2`_VIqjAhpjE^D?%l(Wy93eSjY!dM_q}8Tj|0aS-DVWiVH0sHkE-&MGL=nI5{G=YOP7FNiq+hJ)yY46jP=u&+v^Ayky1B z+ZqQ33>7q2gPE3|>f~-l;N%fT1{i0(`EG4|7bKxk_BUQ^5sM7G3-E()jT>hfpG@CZ zZ1H>GsWC3FC7ZG!A{XNP&`7buPm|R3N8N#aX`F6?}SFqmbfhT}KybmiiWq*U(4NSh)*Lz0Mm;*L+d&Ps{V zq*c_G>-TSi8+GV*`H87U%kghf9xMsJ1M$Ds_SuK3go>T-OtpwNRYF5y|Mq<(u=OM0 zSTTsWy)gg3p}^J0u!2yqyAZic>s6gURgW<^Dysj!uY3X8?7JLrwS@Nu4w73{(emm8 zJQ(8op5xa2&N3V|GMl~0D;-x(-XUEi$=PuNe52^8Siig5HLGWPe_Ht5{9`X3yR#WhA$Q2Nf3>7_si8G&WT;D4HzWbHBaCtL_l+06FYyir{@c;=PY#gZS=}X$c zRfGC5Ei1or@nyJr#T8HsIfm13Ip{$=9vY$aS#woFXP=^fHYvlP>6t#pyPv6w>C`YDaRUEvbL7;d?+y?{Tc)(lN4D@!}Y{&qX91qo{8i)AXb=(U%^U5l~?#l4pO zk^hY-GW;Sue-P!qxdZ`~j7mjg^p)>VI{zN40#%1vM!wCmL&ITF`0=i$ds`I`|A7^g z4Q$f~a51W-WBVdGBW!EY@L7m4psU*Rqt2bA$1vM~zgXtq==aETu${?wo-rPKP>8cf zcaFEs#*wvsIb&KzxqkTEJr zQQ)?`(Wu^PN-E)qu=c_J@?nhVKaDPE_@y9QO%u6L) zu52~itN_w4L+S%e_A0;6bqCSHX5=mt19P82Q;VM(C#MC!&`gT_tdUNO`V9`Jt-|0k@IIu;`OyyvX@_Eblenf;;A0Lwl_~T`7WOGja zYDt5B#idA&&zVY` z%b5ziUFh5)1*DttiB68Om>!Nxh05K)7J(r_`Q|!>ycr&n=X6c}4Mwb1dRF$Rc-h!X zx>rw3J6X73rTUfZD2u0(Ax*OW-{G)(bCLin6N`IF>X;roe}|U}fEPy829inpll5}0 z-*0NpJOCx|TOKHSx0b=wr@i%=3WKWrT3^_}W19)iDN)#DB&&!l3wF_8lQahkJSGc6 z|Ji#N@lhi9!|pm|=hYY{1A>{y$sSE63znI3Rci4(CT;HNhX-pH$l*zCyN}^u-@#d%vB9%eN!LO;Voa#UQ8 zwTF<47oqx0;Qr(uS6YO@k`g6+SY3QdV-MRZEi`DcXewPzXaF7r z-`}`cMGV{(SV(GpnNhD{1Py`C)eyk5__pP<|tmv98>jK7x^0#mP-jf(Z zW#z3`$2`FY>g*nhB7&Z7?7K5G`D8ydH#MIsP!Y{YX*}$}6(sytzUp`M09~}ee9WAs z!jR?iN7pK^_lolbvZu_id$Gz@*$OJv21CUsU^83xVu!QcQ1w~0T205lw7&yp!Hb&) z6957qNt2GZ@`aanYDZqlRCzYUGiCr|KwWrDNaJV!3(AhCw(2^zfYg@<5dBkjigsGn z(+G?C*@JX$xYwsX*yb&8m@lQtN9dfXdPnNe@6oTjey8EQ{0nER(HC>%VvQF1#MP?3 zTs%u6e#xO+ij4w&J?DX?pVYR);M{RDl1Qe_B$JO%)iyq;k6D@d?ACCu{0I$5_+t{6FO(9DAk8ND9hU7r z_4M_$C#~Q@69Ppps9C)ZF!6li`6zPEj*}xhr+L~0Qg9kQ08*W=!(m} z?~3=Zrzma&_26^gNZOH4>#*U+z7(Sum@RtQ_tG|wU~$7qO?@NxUU&!Yyi{yVU`NF4IhI3EGqF0yC9d$0p%CE3$3m}JVo#v!+R=3g$ z*A&UM^ZG`z2<&bM16Rq8VoP&r1YuNNT+Qlc|H`j2W3OGhZ)Ld5oN`N#zc%HUaZwlbF~w5#trcNB`KM7xbZLLnp8xuY(JB!j=N-B5kwbfa+FLd>w` zb=933*D zQGfa$>(yRv#K|DPaD8AjrUK{KJ9hOinnzmG}y+O~+1PF>&G9Fk<*xBsBuz7J`TL2_WKQVuyYy;XrQySDM!myo}|b#0?L z)S&8LwEgFJtJrlA+}BKw`f%495-pRwoG)q+%V~hFX{S}!SNpMco@Vu5EMC{YV4!T+ zgxJOA_P*|#_2+DUHCewq_+7dso&YN>{@1yWqyi=^AI$6X(IsVHT0Uy>d)(gClJLYH zV;HZNtm?Dy^gvB7(bAD^!G7}W_}Pc3|JX)G$67?HJ*LHDvT-*faF|kkQmBf(qMBZ! z&3e%GTn2$XL))+kz(qU478+G6ht#0`;BZiV`RE&7nNGI%KgO+NJrXxPN+bu1MgMEDy|G}i zjD}TxvK8QykQ&XbBj|0Xdcj#F+6eq?G0m!+PiVPFQVEySxge2pAo^zhZpme^AV_FicKNcOf z21wh7sAQKZoKg_ld%mh%Ctt!A%7@oOIF8kR6f3}g>tGF~;-PUjz;QbH<{bEV!B3 zOX=B5nG<1~Yw|1JVgUmogWtmBc0Nzp?;Lm?-uvMl*R8aEa!bBMZs8Q4u)K3eL9=hV zbMfTIW;?A@JcTa|o=OgnZ8J^#uw&f&SP0XzCvCzFKK9AJC$N_`J#m%fZYfwXbZ+KUlO6RsS{rlNx!wMlw)uv;oXMuN zjdQYGwOR89H0Gy1S#VoQE1tMWN(=aGm9HdWGYz6q@z+asV{vhaIH_x7B?VdcCvCgs zHpkBQJG879Kj)TcD<8CVk{uSeA@Ong_3oRKW+JkrfFH|5F~>S$?D-};pKt>haXu9q ztkj{BofA-CQp7P`fMHv!z)34z_hI+3 zij$@ILSRvw@8dF2*V-TpZ`9SEl^}*}f{$mM$dq!gKV;Kc32hZ=U*i`pZc(Xgap7BY zZ`{4_*}=W}d`oK_JWfy<=Tq}LD`J4yOFpzVB>mHGpSz~%X8W4)^r3Xl7PrjnRV{QG z`Cm2Z_5*xQ3qI{q9!u~Z;fg((fM#ZNvWwolJ6FFVq}Z1tCCBc>;**8~Kn3qO(wvL` z2xh%{LcJcG@9A{DcW$wU%)W)M~ z=PBj=VIM)h-SJ>&!OMfW(Ll$EuX(a# z14J;N>28kUSjH0@+VlHMvTjD(_$$VhW*X>BY1@oZ5EKZ178GF5N&7}D>(jn$tAE`0 zU5rlIYFjQ0KmPu3IWaLLa00M+V6671W&D47Kl2gj2=pXx45$9o-~O$+2|Haez~lyO|&p>dR%^3Z(iNd z_q3s8aZ$hr=`yYs&4cJ4|I~|#>29o@$yoX2uRiChm?P`ByIza-)F-K;#jf#_iZdF6 z52ZaPa(D6IJNbJG)UTvJV%!HDL`L&8JFJl=w!Cn`Ty?9mJO`xrwI#Ji@Mv{fJB z|C5|SW1EoqS98L_x$M>II(1TXL^i?F{yF&hn;zIoIlM}dBC-*-779VapxER=94=_!viZ$cO|<)f7a@E^m~unbMH0m^galT%X$#)e?2a} zBu5gd{B(KQZoQP#uG*d3+w`!wel&4U+3+CQ9Je=Pt~6MmZWt`78W88OcY8l5cEE6a z|4@27xSTYX7Ezn>8^(Bf3r2#q+Ctv>rt#39S|+_fCGuci=%?q!xSUJOyDCEtRmKT;3;b zcWon4{`)t&@+5&)|H6;SKm7_VrF;X6c9ENh?6Fnv&iM~UKWela%OWW z8o8voZX72^(C;Q`!S$EuX&0dy^MPvj)3X(yqivqQsKG5c^A}a`7HmwajTavM3NSg{ zD8(Pq(Ur|Lpm^1<`mim3KN9JRbeVb^ zZiXzzh;I@u<~$S2dUixWa)0aa46tqYyo!(6tL9P~9Q$030k!qN<@i0Ep1-|lnDA(I zVcV&yZyX`!$~J6M#GC4$9kFcJ)a&ad`gs^>n4ddtTf7Iz`-rZiMOD zkCFRhxy5wgiLRsnue)o1YVu0Mv~}C1D@v`c2nbbaY1JyABytH^mz%Bvm0Lw15dnch z0tn#}0;!e>#R5TT0SSa6Dj@;e)^AH^O} zwLx~p4FC9|xeV`vKjRsQhMiCUZeN#pDB2ezNqCpO@X{UKS0d$WV6MrqLqGruMo{-e z*WeZ;Q5DAidkY_4j>BkquNb{jF8-en@9%f%`KePmShFF50;ev+xp6v31;lPULmNvP zB2$h^@2k6Os?9x4&;G9V_eY?e$*+5|?X!|6N+-ao_1#}W&*;JsX&9|tzAd_bVM;yX zuel9JUC$K!`N|Ocn|-JXZLQOx9KQyCW+wy-Xki2Nkn5Sv*i0)^5?w_c!q5Mvk3IW) zO9)=lIM|)DP~TEe+=XA+K07s>J&oIERDIF4+IW7o`BofBk`%mY+N;JhVxDIf4@uKV zPCUz>R>_e{xAx+>+0emB5LHISxXm50!YPZEIWIlGcfxr0yht4I!LYx^gQ^APgQUpFYfbH`cLB7XEJ24!>Qauw(>yuss3-YEYAD6&c7VR<3hBblEg zA5h5__m_ar;k+?`GwM~v2>i-#dQuSr*|ja%OwMc}LUDKY(;wQ(rTKjSPr7PYWbP6s z9p!mUBx$nug0~htl)^=dST{9LkAm9`^x$0%^-Jzv`?_REJ;6_ttW1fk&8560ktz*PtWHtQ>Lv&!pXk@ge|l3A}Aevbv%&?-UHKIO<%jKu?R|%r#@omnvV^Oxz+|bp zcyPs4c4&VV!ipWpd{CFEMsrLbxoN&aSIOH&Cu$RLw#=N0HhE%f!wghlS)wNf1NB(n z26CC9cqqV4v3vx^igJHJ3`YK%VoZt^2&Y$3b{GI1m;uF~@V-qClk!a-c_eLiA24}z z-k|tmn3dbn=km&7b4U8*<0p-Txp^dXWBWz{6_Az&BLLG49`BN^@8d$0z%W}izUI%e zXh<#9t(1H*lw^a?XrPBP+W7M%1#x%pKKarLH@WIgpJmG=hA~w)eS#a;p5Vd9)aw(w zzI3isSoTt8h%RnsW^@sPCqD(Ff(dBWoqkG9j$&-B$_kj8v2AFQx4|@N<)D_g?!Ia zoETA_z;UYy!I8MPrDF{x0t5f7;q%qUN=})6*pj0*z9t|Z#GTkc#u+1~V;;P(Q2&Dp zuWrI8>MMehj;j*U5i(Rm(K;mPzoo%p?TM_O8a(VGUUlElV$qD}TsvrqYg_9aTqAZl z&P>uqD4QXU{sVmr-(p7P?j@0kTwGh8;XWx{?GP#D*zWXbE-OfSJ_hqq(Q3233RE&b z8yZ#f%z-}ZW?3?fshJL66p3bvt{F zq)2K1&vj6wSs|H`gavw(on`tZuaNijMSeV42rJbGL%Wf>Q=PyKl8!OQ@*)M)=lKNMh@h$acq}CGwRonh%#PtUJ_BvTdT^E zQu=69_tc}VtHfx2@rQbgvqASBtINoY81lw9{6vZ3MkKa(~YupPb z%cg*smiw#~9^pVXT8)9y54!RlGJJ@AF5 z5Ts)m{%o(Ir<&sqUQ;*~S>04SUOIrk$nMM-qfG0myv9CS)X2OnVKe%7!LuBFNSQv( zeksq>itTKjczVr=Y3378*nPVTbUn z$f3NK6m_WliIn~dt|NlE{Vui#F#v?_-t1l{Syw_Ww;@8){nXiU68A4H5ah5VjHq*i21pTil|$I8I!4{p?bdIo=a$rj zy^7nk#Txg%F06RF3Ra}ciey_bpx;=iUPG;JT@ga;IGgv^x|L_CJPP93%xC9iLWhqR z_J9pIc{;l;BJ}mP+;g69YvaN-b$cN>q3nljxa3)VhVeMC#k}=Ixifq$e;Jez3hgMC z2~zwboEztPRJ_cAIRZ$di*!AIxI^u-TEU{?f|aKg^AbUS^hwnA@f34LvfNsl%)!up z&CZW?mdh7yJDa9fBAvGs@|7qp2cCWm9lrqZq0 zadV2DHdKHTx0?(e$HN>Cjf{s!MVF4$BN_(m^YWU+aRZx*%||6jfb8Lzi$gf?fq hP6hw(Glfn7JI&bem}{c?k*ytPy#2je{&ng4e*h~5e;@z= diff --git a/articles/BAS-vignette_files/figure-html/plot-confint-1.png b/articles/BAS-vignette_files/figure-html/plot-confint-1.png index 3e1a412b2f39fbd4887693a7c8d68a3b664554fe..2bf507c46372a68bf9e480071d47b7986f4a7fef 100644 GIT binary patch literal 20698 zcmeIa2UJsO-!Hnsf({}&j-ntijwmun5tLpmqX;4(Ez&_mkSZVn5+JA}s0e829Yu-+ z2+|>>D2_XHlNyDNOr)gh;0y2bGIpR7Zg`!aN?iu zMPsjOnRdhfZGnfx1=+j(W@wBXAd(h<1}6{i3d2=-j+vzRz`@Oi{~bw}7OgYl z+h0}V_l>kRn%6LjQYhAS^IMwK#)j5&MROlpoZff_aES`HvD@50Qg^-20K&TK=teAICyB5^mP%{P?7eE zg&){`#KV=UPW$4y;CdsQV6I_S|+9SaNXuOz{HQ=aud8TH&w zrLu?zyk$1P;|So>)C@_jrbA*aBK#w+b%ayW6Q;kLVr%#}=f7|0gk>+kje2VpmF&{* zy5mkF$$Og-_!`wS(l(j1TcnbHllR##8URZ6#MfCWdPMTS{H-Xb#K9S#Pz%*=!g6ZI z;h~KeW&r60`mfr&I$RMNE||q-YQP252B;0`8$rcrsvZzNeT6)cpl@Vhy^jbF9&mrX>lB zfrMq__GwncJjJSh|7~Zp zrb(CD6h%vVe(8T%^X)3SyZ)V;uR1LL4gJF=5MtvqJoiRr&fcY-Scr=oyee85AY1{D zI8&9F4Sy1x$njX+X2mggV_IGG!V(1 zW}985M^%6B2l@(?Mr|bS)gCj!aQOvUBGX!{Ep9V4M{HIf6qJQG=o@Yrvs&@Z#e{%L z%t?&IH)%*DN&$imyfB`n@k|{Q&sP&|u-g&T$IzmWPpaFaFJO8qi>lpUeeI6Fzy0)` zN`%vR)ACef52CUVgCc@&c)TDW-rMJg7}ptQaP3F)Rj6Jc{V zwyj?S)oynJVH0p`*M4znUi|qdR}+#@iS~$kHZv>bsw7a0D6k>b8^m6~1UQyEF!Ddp zyQxQri5vEU2cn}-^laNgd9vdcptdMBlr?dLOwmS3sI8fZ0V8Ici;wrHEY#qk4Zj2N zeA+CLp$jqqiwb~f)R?rN$Ec#nPF6QT2M!{_-tb{JA-=>x450Zkss)^bi|Q4@9?)OO-0;s~%MThwham_{B#s$IRKPAoU>l1RU1L3EgjgO#m;4t`LUh)% zn~Q0mzgB{{E%;2G$E=2sYGIS=lcu6)_Z$X%locSxVT;@~;g5fZ7x= z9O6pyd+RKkb;F>MOG(hzOSQ*OXi9&Ji(L7xS;UmPhO217UzBF-N32jrTWdqNk4gBGnj=b z0Xr{R=K}B(K`W+$TSpZT6&)1aG5n8IG%C@t=n6JEoeItXb`~E#kbrrx!4z+qH@Kyx z1WHddsEw8%w@5KgP#(K&10*JoNa540^DlRqQe1lOnv-xOo1Wv z5KU4#Bnp?W3q7Pd7cSf1BiX5bU7CNRb222W(fGEtq8RGi-2}=TeUSBpJGUylekwU{ zTJQRK*Pr5tKY{Mo$YoP|Y)iFic)mOT8tXL`?mIy~Pb^X^KMBOQy5ieD=%iq7MATCw zdekJYrh^9Xh`2N{M|tLS!sL&w!%dHgvI5{8HGPkqy_Ts+L2a8sQwT{>gJ3 z)DQ5=!?bvv=bY#JvQmx=iwEA@2zfmN@UN1+`+MGCYJdJQ%>{13`nY8bU&ftvtK4$+ z$=}ly(YWU@*1;gMYpi*Pcq-wiT^qvM%Ps^}LfJkms8;wW!HW@DJz19+A*TH!oSX{} zWnqa@l@g9wXp-OwwU_ErDgD?^w)VgeA-HB@Z;bNtiy>;GIH{1GwR<;)|20?ShJGU# zNp%b`MTAClQV0F^ih*bBH3xnQocoh%2u3XkThfh1cA_J?(%qR90oqXTnmY_^(FtpT zU0}VXw&gXny0DN`6sJ;@Qiwkfn(<_#CfL-$MXQ=ZXHs-zk7&se1+ind+O4Z`k$2e2 z5bKfB4fKWn0sM53@tXKhQi16t@1nFFoayOvPyqvY&Q8E3I8}( zBCfFL2Nu;U$s&xPeQRWY^_b@xVOb7rn{E z=IH#8C^5iO7#(vC-Cw_KX5vyRA% z;DtD20|rpnn%nERD?tZ2l|G`dh}NbHNiF;^SCz7**tBVUi`elzAl(VqZh*LucMg7K z8+`5nv16anoIKH#epU^zgND`16c}<1+3z1iA&yz}mfyfU%&#cIrcPcS6%Asi87h?_ zn#dv&|B?!S5!4uaJt(i7q`N4J2IFJTO55CMeGW5cMG{RR=zwpFoH}a$?uBcdgD-J7 z*v*cWt@Z2vtOmF0ZJsdoo7+yKO-e{A0a=Q9ALt(wc7d3zmjdoja68CwG6U|m4Nk=p zNvLvrj~4U1R7X=MzH5Er4e?tJ2uHWb6sTg*wlio9R35~CP+&)Td6hg!k(+S^H<$XD z>LE9`J=VX&|0&22Kov|w^e!VC7poG^zly6ImGl-dxoUILucA-jpS;I^!(RQKdywE zH@6@LZlUWjG|Mr>^{g8~N39zVXVVMW0ZzJTf!IcU*ism$Vy~E{1I6AtfVmWoh3l?pttNmH4D4(| zR|XS@j88LM`N6D5)YqVX@`(twQY`>VJhT0@DVp0z&6K0T;VcqS5n{%!I|dwGq@e8f z`3YH4=Vm>c3}*qt9nN>^DebZRSJ1VmRB~kVL4e&2x`MTv5-Z^j6bFP8-#+4=)R@sr zFXVLcn*rH5FSr$Jh0R$5MpP4J6M{n;3mS&lO9z9jCpyMB-O3OS==MneaC>OhiH1Yo z;e0TeFuE|t|F$*A#Kz4Ai<_1suy}D%A>F>`5AqSdCKTO#ba(|lR${o31l`RRHJdtg)?8nMYdbk^j%wSal zbGZi8kC7Dq*w^pPD2?$cc3P#3W05WCIX8#eP3!k2NlRCLJQbTaG5j>afut~^$rx*Phz!}UB~5sT^QVck??{5EE0N_a zGLt+lAU3K)@j)|V4~C3?#=Vy?ox`cFx#Ffp;S2oE0kFKypl{i$%HHrTbzUhZ5)fBd zQ#wWPnQrRkfME@{sW=T+!+oIZ*hs_&eQhzly5VF>km7cn9;k6QDe3dAaVu;h@D+mf z6osz}o&%l*hlz(l_&h=^65%WWNQ{AV$<75QO8V?j%?%?51Dl;O`Fm@`2}bUNn%Him zNk`*~LwewLJs+~Y0j{zXs!?(5dEZx5-l^m1C(%Vg`(dkh7QwI<@_i)Xrb`o-v`ito zp@d^eqA25PtZvY^Lre-W2!(P`rr+WS)GjW)I%qjAVxSQ>HY1-)Jhi&)jl9g z%DI~{&;siS&WR-FL%zECS^pZp>qeaq0<^n|jH^+NGUJJr_)05sl0;|W?s#?3S2pD6 zOQB0-K*@QuJ3iP7Xaj@dT9?hma$u0e8;e^ct!fjS9kUo8@R5sD9FfKTM&3w*Wlk-P zYzh4IlsXKee~~+>qMEXql(GjEVDIbLTt#n~*$CqR=xChO=~U2BPxY4BK=P_GzQIPa z8}K~(uecT7n7OgpX=?fjQBtwY3`|x(p0;7l5-(K_SCODMK(|bvSa6{d3{0{`3HRDz zt7<_=L>$Y>jm3PgLTn}C?M;VvrGu7MWV?ZpOUm}vXazm9@uC`qR?IBO2|Hylr_TO3 zd}>E*(XcmaoMsEMpCEQCiY5*?j$rfT+g+>M99V7CHiGW4?^)q7+ zJ1x(#ne;BSUhqI-s*-L)x&>lfK}jERSO+`;4+;F@=`G_xb|3{`z+iOOpMGDadiXZP z-h5-dvnel#*`f_nS<&g5$Qwva;Ph9oqp1{>Y2de;_zdZz>zh3lLEZ(@yTTjRS`&a3 z{ea;+eNG?bJwsftVBr_?B!|^Ca!S+yTEMhQu@)>E)s2`6)htiN#Ian6aFhp_h#iyiu*5ZUA5v#REjC>RLphKw z)+j;L9k%Hh8InCjU>eLX(OKFtVgs1Qn$_#>Var0$# zi;Mg~pf;Dpnp|V8>R$f+Mo1<*DNmK+j4z@f2tRYN`Dg`<~yUuSYPqjF}d5 zKZ2gOrwRx?g#9V@6iAT+3A)(CaV&>;Ols100?-~Q!=~DS-*7iaLG;~&N(}kh5+Z{6 z9wku1-a)^Q&34LxHlGm8s|r$R9(8?Y7dlRbjqB0FwRR|6^#UU$FgVS%9-9mGRd0Mm z3@-^%h_vW9wlh9Mv;Z(wyf&zy*zDojaL-$#khIzJ;NMR`f|)H4HSh^$8}$+R%qTKI z>}u{tzy{PxC8A{Pn~OfsUnFGUG=j4OqEv-81>?0ga-Z0_R5EH@Eowp=`Yh97`8Am8 z*Kl2GF&(?_3}k}X07AN%vO{yAV2g`YUP)iI?1iqNa*2byo~P8rN>i7qY(z~V)^N5e zT@g(mUO#+6SPpwb&)8HOF3L#(ybormJO|y8YZyCLR=^@iEw2l_apiTRi-LA;j{dj+ z!g3&HU?Bb7t65YyB@ph!B2eFuR3$tqAc+Cg>{~DjWmcvQ2lH47rtQ|UsAE^JWI=@3 z*HC6cAq@R(#AXs*DX50QIxL3ena7;*r+6( z5EK~M`f+;1;<4cttS8h|xdeSzS8O{dg=uD00hpBQapmXp$+vL*@|Y)knc-5D*{2)H z0ez`~tPOb7$4s}khttkF668^m25dv>>Y^0UH^q@e)q|z$#Qa@4!hlwq}gE_CcOSybmgEqIxr30MepW}mRli*SQ@|LN)*6**U!H~u5ieJ>+ zTo^rpp58=I(H=9d%Z9gR$xbknaiil~I<29tXa;k1+v%Tq)VX@lm1;>GxRs|)C zT~erBMUAMvuLU3lRV5otUHSeU4SN8>pW9F8%r?}tX?@uub!MPTN^xI^J%724@8Jq&<&##d^EpNg;Q0o0 zpqJ&m4?9AdA%RZkU|}b^F8(^Q7)N?%=64_6*E9F47{e;SM3~>(DuMH`{_IB=BRd73Ivo=}2ziFt) zUMY2Wg_x-DYI`bcf?9`nP@deQl@TG1kySMg*mBsF4vRj;1L!K_$S#qd%Y&vNmOeJn zjHZ98?dHrLCT^}JlgbX&x|SiTO=7z^(Vn8zu`!r=y{A8h_aw2^*OCbHneBWEmaH^K}CLs*{u#IZYP#r?KCeAtFj>XWVY>`kpc^MVW)k?&~wy z=Kg8v{_Jyi3@GL!#&Yhekp^p1kUS>P?B^<2_!c1;2GD}_ zRlg3)!RUQoUrE{3S&~pFQ|F~@vVS)9CYA2Szfm+|7j-z*4>t_DR&oi1`V7{dHy(Os zyu(BZLmkD@Q_cdL26RR6s~KL*^^SZq;jM{94sGNlU^j`Vc*dcB5C4<&f}7sB5E78> zTb-a#+zeVZmtlF{u$0*9??yPEMPX-CvjvkiO!uX67s-5n(ayp4$FvF?5;)`%b^q1%X#aY?^|=A2Sq)~< zTRv|SVy^;Oi(NE0hzc)UVpbFdUG-eFh7=2Y=)(2{cSxeF`zB%Bgkao(%o zb5xgCp>Sb&(<_IUA>}+_H7u@nU>)9>@Ma>g-+Qu^o-L=|S}51FT3Z&~92v62!191a z4>mgl3? z7kpW3jYuj=ytgD+_Hbhf;RnVuR999r8-)r%4A&UH^Hh&HL24s5{1p+Jx)&A$lBcSM z+XAUJ;c=kCx@IPX_I>fMHMl*5Ul*J~9q$q_bw-+h275SEv#K$1AM-o&>*(ChtgDx# z_N*Z;^(=^SHw9#wlHY}|$Aov{SOv?1bHqm8Tj^F^lu7g=*H9KFM{4jo(x$3AA}m@+ ziFH3GJ>?J;(=#T-QBMSnw-=H%(d6GhhY0Bm;p+rBEA;j(NfxJX8YjG>i|Y6L zCdO@s+vE9P8Hn%*3TP%dqf;%ig40pKov`+5TR!HMP%aOxOooAOaLDSfCQv@OIyZrn zQZJi;MfgULq*4lIhviJHNx_TD8d>(_Y_Q2C%E+u5A;dnPHYy-$YRw*&DvDHh!c2VQ zbH2*+lsV!TTHz2AlSC6{Q13|LQ#GngZcPXlbXI;h!9Gh|`hNJA6neM$f^qJ!Hx=@Aji3Q%<};=}8OGYP}5ze}D_5Uz3DrHoG()eS-G2Rb1-$A=<^6o{tp z1OvgVa9FJJtD>s73ND}eLDgOO8&7!iUTp2M;Dz^gp;5S{JhhVSSH(T(YPRra-^5F= z5#EQz1-Uk^VvaYjr;)voigzPiIDU8KVepuyGGcC`_J|TgReUA-`K^wsiaFG z{&33dhr^${R|`kjg&G=iC08AXJ}4B63@1Ao5fIfs;pN!zkoT;{pv|*n(U|D=?)P0S z)JG@}9Wx#(k|^{28A&w=bP@w+o%@$KH@FUst!m@xr0_a@L`4rY7`Kx%owpEPhhY=`+A4EXC@J;nHUOu6GGGV2b)onP zA4Du7Zg9GtWsOgZIo?w!&NF;(d^%u%9o7%ssN2LXv4K*xo!8sj+vba8bfDD|Re1&$VSmIc{(KGIJ!hIJLtQWl^@nm~8x}t`>E3SsY zUvrZ}<%8AG&*3O^Md3%y^hj-r1Np=2wJ;`<%B(C3%1-br(RfMzu+&OhH?B$|-u7V? zgLNoQ!`k!513{}*h-n4lU;eAC1dY@ivzwYDIR{_WINWkPw~d<#CVqU0S&;I_PQR!wWJ;B^ zr>Hw~C#hZ0@?t#^gYbBP*Ek4JrQW~5cYPD>X2kybT z7ch=OjXM-MxM|+F0{^BXb%t`oom{Keby;>UxV>e1J#cQXl;qc2OYJYY->E^w5S?D) z>Vqq);@O2v6xwMiI|+p!z3&{qrNG&^{TbwSqTIfVFo%vu3|-Le2?C2Qo~OQvwdot5 z)`gzwh}QR|on^nTb{4G1>}#3MlP#3QpMoADD2dph>?oYPhR;L9q+3XDGd}I~_J|ZS zpa3lO05sL|=Czn`hhaC2(X+P6$2{)Uj^?kop0s1R{3g1XbH|%gy8hWmr@n%X2jSa6 zmm3CZM`vts1g~+t(1U-zy7T1dyY>9wqY)z;Wl|5ogf zI$EK&Jk`?`20GZqEZ{x~6oy($4;w7L+O*U7*}dW2j1(fGi4`4vgL(f2jc^A3MGSy1 z6i7)1_Huhe7ZVf$vU>d@udqxnRY(Hyvn?JSxrdZ{{Wv74lD!IJuje1HpuyBoNR5I$ zsd_s6d!j6?voI^#^p0DZ#4!M6B|Vr7cK#WbgKynYekw*E`~E@Uc^QdZr0=QxduTA? zxOc3{rr1Yf0X5`e*1Ot3ODAm*TTey#7ZeX(UA^@N2d-MA$$(>#4dCjsi_z zyQGZI$b45N`hdxiK#RXuZ*POGi!XXWjDxfM?_B=TjW|-Hh>G)0fud0ggJ26JTU0~? zixi7(&$+@%bcOner|>?}yAlHl8SQAB5`tA@@OG^o1rk{i?1YV2YznCg9vr-6KVW?U ztRR8+Je>q3-d>a~#96QfEMsFeAX^j65P;Wz-c1xCO8J20;XRdx5J*vp8_^e%75sr- zM=koh$IdbdT+)*f>&yBROb8%SbWEL$VJ<|lz(vWYMib|?#|rA8YjqoWbtmI8*hK%O zdwrs#vL};d&-OVPgULs$s!5#^QYldq>b?&kWY)MBI2IWA^6YNt<{T({lk#IW-qAx3 zx*Mz>!lENc)ED|=g@Z#_Q&ft57Omk}_TLO^S9clrB-j45(GmBbpU!7*6iC~f`mV7b zAM2E(-P}tI;1|ZFH{Ue{ufLi=SOIynu{kHNMqpv#4ALWd9epunL51y0LRp zTdnjeCm&9qRr&ST2dmq*ZhyV){9%*R0VmIoUwb>W`rN;S*zzSHXY8|?!b!iZ&?94S z|2SuPeS7sI$K;kL``!G1dHKup-S<4Jw;$Uay=_bDZ^Q6b{#V_vquRaR1Nv}xUYtq5 zVgx5=ZIQg*Z^EOKdn4oELI807yZ^S~?*?8!wI9+t==?*QiW`3@-|2wA8+eEQZUwIX zyA}9fU!b}VBX<1$Cgi$3(o9KTr7I1&9yq&Jf^;=yI*NgWC+ruud8cpO)%h;nDd+q- z5idM#)qhm3oO`y}yc^A!NixShnWXN~{T~^HPP!Wf zwWG5?gVF{7|M~WNjxQZgX6 z9@US+^}Xy9LAib_=$-(L8&HGIP*SuE^P^A@MKePxxXA)-U+-z0Ko}e3JSlx!SidJ={^Y8lOcNYV-`5QX7mHXFY+%GX^$p(&T`F5jo>;2w6 z7ymgbu%lrVxUJS@raC*&x13P)5H#wU8_t5?guA&(9&2#PIEVhHS^clTmiXC?)VpkB z2(qV6VLwj0M=|awh|E_VMetmFLPDw4V8Ls8{A0?JHt3!Z>Ne0hSx>2}(MkHJf!vUA zS+KnH&nlsgFlFD>ad#gI6OdlV$T=EIjy<{D!X+ zpBcX0=<=A86Fxk+S~LOh8+quYcqMv1f7~_;RBrGh*tj4MKArI~r(12`6RD){UznU5 z|HIE;eW-0K-Y-92uvCF@&7Zjw9zdEAsTKgJHE$@FV_Km6@&qQWUA;@Xd?Fzu{b{-A zE|3g6vo&>{rf!IAk9vegoJJxJeo9Cd{U!zgj2)4*f|+ckkjo*(t6UZAoWQ)sDkli{ zaJEoM*Yf4YHVKc7k1TMO4mJdm{~&cLk7lrTt-Qb7C<{A6(Zt4 zX!7-=;hy!9xp7hZEfD`9PQQzBRA0Z#%e={l|1&p3iFX9FI-~ParWymcH5xZCbEF}w zRCk1?j!7`W8FuxV?<_RiXs{|Sg2&hG?nudFBG+#tU3^D2;AelgPxs@x+?j9bJh;h; zuJ0;hlso27r8P$+T6yg{(ptIorb*w1n6>&NFc)Zc4Rgn!GdsrLyt7ZOE|IG&r!POh z+^*2)^qDEyLs_a)G}N_fSv-&tL_YaEKhAfJRy4Dsgm^OZC7r{JRBkP0GDpn?Zpg&X z6#<{us3}UqCo^}ILM|=mE13lrWBVW0f5_ywH`Z76fe!ld=1XZbx{HG8Yqp|7Eq`9B zIdsg*D$I?}hd*{^=Ulp!Q+7rub3rX+V1@jkz`aCXIzLQqq@DVTRhvM4iD{48gEkA_ z_kI0Mn1RtkXIJ%}VBX#CCcN>B$8o-`2h*32@RcZ8D5Q~Y$G{1>`GA^B%k8@(g4w6? z_vn^M@uFRZ#v@r5s5)8(Mw7oma3jPAPJu!VcdN^7vv z32mfN#G}O#QOq=n)cT#`Yn#%kTDF>dJW=3%dt`Ys`qYzW`)1e0?|qBR>|oldyG=Sr z)7q8rPqZvrxF%4%lC)KrKho5yb-lIb35Hx9D0t4YGZJmz?QX;`BlSR3 z(G1(Sf9WP)n$oqCu5Y%a$m|<$(72;`0bj4DkU!aziT@Z~RTHGbAQtJ*teNw28`I$z z*&aXRgWl?hn4iF>{TwChwfWc}BhTDq*a^{*U1uuta=GK>#9|e=vk%|Fyh-;e#{yY2 zz?~5rx5FL6S1_FuPp&%m4)rVH9oN=ob`^QY)F$!TlZ3dBN?QdZzNslS7e69-;SIoKQT@1O7 z?dv>wmGMkPyDJs*VKuv(=HpDs;@i<58q;whl%s1Ixe?-h@GCxiI~B^k^I?uY{8~%jvr2R2;}9e7_e|oh za9Mr^?x*<6^NM1*N{n9a`@3g6GL3L`mv!}A!2{znSvutWnQxbenvs(s`jJPYosjno z2dYbHXvvQ}wb@Tw9p3d`URGN(pXbX#HTL8ZPk1Wzhn)~lKW~H&Tu^N`oYi_qQPwZE zqckZgA6*OcXzd6PO#UDS*_Y4Iq$w2UHICxu#=6o8xKVYjO7-4AAEw=2^swssg+ z6&<<+0K2Y<{$Bv?_2hRJ-MR&&I^DMw>*sAam%n7L;9j@ASe~d#5mWpltLLQnpqmq3 zdAN4={5_P{P7qf<3ZE_4r1RKP0mJt*>U>jI<+Ihrz7+af3 z)=%1u3f#_hpA6j~YB<6p)IWJRs1E-TA~u+PM$8Y{-nP7IlF?ZNiEcLtAlGdzHs2mW z&ewYOsY25W(oMVTlK43sQW{wBp@bN#L+=y&r0aj1RI|h6s7c1;CB%)09jm{#fgQ}p zzpRxC&-n;v_TGzmVJm2noxNEI+#ZOy2onyZ@UF$7AJY#*eGSC?SlVy(|6@PQCY(V+ z?9NJm(S|;3%W@GfiK(q~$13*Z83^N!c5!@%^Ix`UcZD1s)#xfgu9v6xD94RJf=_kj zmf+Y_P`feaXg4_(k##0^4xVOYJlp5+Wxr=r%H_3q zE&pi7gmdSyq^P)7^-_(4l;_>tbN=ZPx%Kr7iou!BMl^^M9(7?YIe$-%>mJ@(_v4~< zXfCK7kEFDJ*}s3bOv%F{EDSlUymr+>;v@F>G>7uJ=H^(=jA}tCk0+00#SRwywbY`- zFb})nGtRRgLRYTAbU|nB@<;B8`8YvvvO)PM z2oWP-s#>$(B`xMRA4kIBI+JJbQqy9B-IH@)G0J;wqRt?P%O)xeRkWpXN4wNEHNBLx zw8y(em=9dj*Xh#LeTDS~_TSh&pwaKtQ)2Mbt&d%@s98pEv0Cp?O*-&xq<^6E$lB0W zY7YBYw=#I1sw;8zls~99ubDD(YhymeCV`}3O8u(YUtT}?q5Zcm1g%PVvm5KpJ}Ff5 zfxfBP^ZNoZWOiXPV6L_sRuE#JQ;__)CVU4F0gB7)$cceSRa?X?iQ7tMIpjtM}8-%wuO-tfuB3C5&bh;|gzpSa7Wa{C%fhr1BcGpPN@_ z5;jF!JLyY@miHn@BBFd^;X~)9CCWII927ayuSl(RBiJ+QC!kgdN}Cb#v813rF@`t_P*_71(T7 zoD#|6$HXE-dP@#TdLHpXzNit5LQs3mjD0QLTx{v8W307g-J~rWFg!-dLTJx{0gVx= zKF(SPIsK#&txRhZp}SnXxDb1QRst-IWxu*jj2$iuus#M#+aj4h6JaIP<- zPPa45HmR74@IvlBYeYu7j>E6|0T)~CKO~TMH4oUlif$z1hD~Y7;X%yWqrEw z@^ERscfyCFz6*PJtz!^ZoAA7Upid@#sPVDbH;nDkQwGLe14mm!x|_d|@_f)QTyK1T zuS6+pX7cmISk*5g5tA8OPPUwnsl;^MY6^!K;ard3C-?bn-rFCDCnF|O)_I}LDBp9f zx60#M%aK`yV8ka#jZpIR4aV~o!R1M0nEvg^lT#Mm7b`y5(qBTF0jbzNoZLf}1+< z)05k?NQKjkVKbJ~S1R`C*Ny?f@L{ARmfqJ6BFn+cSCmopR}r(Jt<1o7R#TN2CUYeMB|mnmfI}^ zNNw-v00vq&_nv-nkn3(`@~YX zIoo`Dw@_zRZ#Aa-$dc*U+XenHA1DWJ9gT>I?)K>%4tZ`h7O>&ifbs5_4$SE=K(Gzn zzESu3m+K_|BSG5#9&?ND@3dZaF~{Z4u$2rAdVDr@7iP~CnBy|9!%Jy78Ctqf1s?sg zb9>Er0=jPs{H4;38$pv`A~8NQ$`&~w6VpTqc4uCWw5FXeD*QMeb<~n)gou; z{ahb&t3q!V@V|$ss|o>Am7Y%nFNb;c)tUK3t#-`?F0LhWXuxVLA(4GJV#9!6HuFkgO_p3}#$%9&r6H1D?vvxO;( z$zDIwHK4rKQ8iE;cL|w{O>BpDyM)7I=;`pbrLyc++_;EAUR8y@kLu3rfjx01^HZzaA@rN5P zf;yTr8EfcgTIj)y6yrnFQwgpo?cikd z;yHhT$>rm^pI41_FbK>vE#s8?La!`Z+pj1h2$hcc^~iC4(g_yU>!KTv=yxe{?R_>G zWDoc=vL-dw*`81_l9x(W)^Ih&*n6xoQ%kEZI2Oznc=+(ZpG@YB;UmC~BYM4m9>&Kc zO-rlZDpq*ywA+uO;vAJUFZE1dhWwgFOVhFlKh-6sqFstV(S_J=(`f-ahbu65&zza+ z4-YU;xqRUA)!6FtWWQlW`)*QZ*!(KrFrxbQ7-vKY%qdmL%{;cq=}d|0Q_?TDWfM;L zVD2y~fQE}(R_eZ%f zI`&k_rol3Hh?WTu6jsENC?;DR=+b{blupLGu-_k=?cFHK5qcfWb_fJVsnH>&g&Ur^ zR&K3}V0u&cdhi8_T>egUI)WKbq3n&OdsZr5Z1Yawmoig%v>6f}k$4llK=NLNZ! z8l80VSmf!>OU*Sw1;)?bEexEs<29$;q}SswZ&x#Gt*^rkWY>WiN>Pr}@>0Z$IdahR zLh7+Dlz(uzoe%#^>;TK!sDbh4qEk9h^OEnRY< zs178&e9)*bSVt9ARtOCf8LTJt+H|;C@LP8Jb{KNz&H>X<8)Uw%6aL!iSkrG+MfohA zy?UPLxt^whn0_%J?u{I%EM@Zpstb7BLzu}`Cq#dCoeQ!Zx6GtSr0bV68U9G$kanl= z;m?97JFC{I=JyLYtRgYto+k*?BtsWU}I zEFkpMk?V$dMx&M7hnmQh41S4~9J?}oRQbp%Ji;Qo4fBZ|2MR~pjSXqNoICFO>8H~u zgb?!f;zkYnhNla%=c8PHva`GHi^9XU^k}E%LZ%jsz1*l&lv9kO*ZGP0f&8}u#y*?m zIRdb;C&T0qPW|Zb&S2%H@If58}lWrT2d+{znO!T_{WiG;Rt3tW{ Wc4L0>QBbP@!2G<`A2nw^@BSb7UkGgg literal 20731 zcmeIacUV(fw?4YSf{K8CZbboMyG2n!u+ghq1tU_F5?UxCMX7?J1Ol;vioh16C?zN= zkN}|u2_!*Lkq%;LAq1p{5?Tl(B)KcNzjM$1{qDK>1ZriqkEk}>;P697mZT%iOCe$Ctp61-x zrKoz$|NJwRkLWv)b6cf1AGt5e5x>^)dnfw57{ZFhFuF57M-BD}qcIhVClU(FQQ*s`mi)iLaIo3jPQhzLn;wICc8}>)GXeE+89o3aEjt6d%q1mc$WzLChVd$&%bct+gf%^xRJ%K zzdQ98=^h9g1{^1_h=>oQ@mzK)uu=Biue82Oy4-sOnYN?3IwOE{HNXY`Hw8lN-PBrXi0 z9f^p6AdV$#4`nv(ZbYK*hXCOKb%&OVB#4TJ*I-_;A!2aJjy>v|gzd2{5}5XLn;%NO z>a_i}6LQB~XpN}(r;M_L_z`Laa=8iX{A^==u0LBun)J-+z5D!pqRfO(8z0Hp*b3Ca z+T7&&#sKx8lX0gu3uo;5a~beBkl;s%9P_pjcC9=9_cq@Ad;c5%@oR_bHrsFB{`V7G zgguY`^GH&E?P|J;$T4C2Df_<}*x3}r@3l0@(4R+K|cT?)I4FNjiUnrWmiY8j;rr$y)2ohHAGou+8 zbbcE)TQ7H(tD~jg0L~C~fgu8`H0i1QdeTc3f%?P`zgoXE-RCY1YD(R(=iac?u`!9b zKe7TXV?GLBdCE=HGIi>yS(?{L#D+3)&4H$}$n)^z_+~*K=kw!A;pB~u03HG6IRDO5 zJ#-g;r_gZLY_82_;hhY*gEfHUi&z_S>76wh$C+re3#)6SlwUV>ccIE2clGP67IJWu zMC-Jf5vE}-;u4&TTt6s$xb6^Zp0O%P^`IPPFR|^??DUw4p7I7&@C~SX zGbzh`3j^^*jLYyMMz_T4iA0TMNgj*gNwHcPW=GfR`ui;+^93K0&8dZJrJC`%@u zXg^SuSv@JTgKHus1k~>PHbeHQOIW1<&KmXWiH*6NgVVbjT`{$&Z-U)eyT&#n`}bW{ z)jNeFM!2K1^3Fjnc_?u~g-&uq@lT6bV!V%GGTj#<=QfzD(?p_|=$1}4o0mv5kV zB}Mpx5($xGy4top-q)4P=RQJlMLjwoDkZ#i^-5&6i>$0~S-P5&+t{SDTH!}uJNkTJ;dIUDIp=y}6mz{G7lz0poXP}Wg zyOd@r4L)HvXV05pv>ccPb=zT%ceWp9t6$9NBBpHxmUKy_r_oC?Z9Nyhsy^H_d|Dzg z%_|YM4FG07u|pQmj+Eh*3YX;p!PN~7LtzoNEQ}``K$?MyYCy>g^=7|hw3-&|v`YtG zWXTn@70=nyumlr$TKsf^Ewk8}ekzhPHoJa9D4}9s78pgr6}tEZrYzQU1t;gKwmD~J z^fg61q&GS(ezr!&c~ZfO*S&)w)Cg2{rbdX!)vqrpOBnS2nqRtj9%wRG#X8&RW87A` ztuo^p+Qi|~U|!6YI|da~=}J&^RsR{GQUELMa18rykVnnLGsm`pLQ(R5Y+d;_Y~3ax zaKF>{c~WTi4M^Q%p$DN_EMGb`f%{wAd#{4fSnJj`Ci~2G!_@o!0eINA_1;}OnQOB# zas~(>skr{TYoY(djNPcRonF@D4|mp@7%vb1QfI*oh#G-I2Me-YXg5bDn8gP8L^AU{ zWp-s@ML10QE|FsqtQQPf4OPP`P7!h)R+aCJPplH|Q{CrnMtyO4)`_$ak_;`wRXvO&4-1r z^gaSdGa$SjMlxT5=E2tj#96olYg!^0X-mxEBrtmIwg_ia7qU4=<)`1{#E{JIs7*f;C`@b3%+5K41k*y*dxCwq z0h8xpa04{EVm(-XakBVU{UW#BZ;zL3`+h^^{%3O%fl!j%jxE9~W0?wAqamZ!rkI|m zSy zN_vajWn5vK|Eg$+k{Wi-TK~gvT>q>bcCb7XwBM-XoR`J@4}OAvsdm+Lf+h3KG5~uf zpW{1rxqg1-62cv33G;e(<6ff{d6+diP%17m)X}x+H%TDw_tM8*Sf7?^k=Xib3Q}5c z+>=r@d*LLwIf3e+N4fITrEpaX{ABkSR1!UsTiCQe-Xg(LtptIt{5b;Na6Poq?fYH@ zG4PZ4Zj@+=bO3DO4)~!26ciw0p^Q-mlVkt%5ZZXaaifF4T0i)sJ3o|#8A}tkLY06m zuDGZ&1TE9g&`G~mhZH>qHrGLfV>7-pT&$x{<c@V#I9J z3Jpr{@VqdF1@iVtH&((mjL>z^dYIs~f9{VqA1xQD12wxOA2yuRbI#TeIaH^ZMW2@m zo&zN;a1!=?UURAi+z@=8*#9s`8nu>nO`pKw#W&li6_ap;IlD_DR9(=G1nNe!C^Kp> z3v5DwuWofMXZg%iQK0t`EhlS8+7{O?%=3fCKos-n;9e=wUD{ty^q4TY=Q{69M+On_(U2etwv?u7U-ftW({# z5%l6iY0ne3q+Z;J^h${0D}ghyskU26d_YkHC2khxMD&+#AeOtmHgUcAt1XMiP)!IA z8HdMK{=N}j_4Wm0dQ?03t(3DX1^Zmj|J@CC4Qa)Cuia0|1z%%D zNL(1fI$I*|)&`-nel?^189e?!g?y))Us8H(Li<&e3D0bI3-v8?b531|IX0>U z5y1M+2-Yl)zRCK^sH70T9+v>`yBdgEx+9*M`v^FKjM2?lD zpo>Tz2_Zd&*^bCgeyUInOLRpohrp;MD(v10*iN$8@YrXb0KaKbLZNwTVJ%3V>dXHS zzP(=y6wbQ-YPx(v1oezKi0&&ieJnE|#2|2j@soi(+m9?me3zRAY>j~(nT#2jeCX0U zTd-T#g7x<(b=q)GE!zUr3Ok6#;gT~nCHNt z5>`+RB4_Faph>S7iZqA!Fq|n+Yjn*mfggsAt39#OEQ?X={coe z(On)2E0y}^%3s(Q7dpfAt6ytQW?{}^ml{-_BH^{1HU=yhFGyj8bD@&L=jRTHwyQ*! zlx8t{G2(9TRP#x15$3EqzkVkN{ZfR(1#clYQv#a5x)1{={d~?MgNg~j`8)CGG2wrr z9g(gT46p+*4hoZJIO}VOdHuORN*L%pbzHYVB9KzY)c3xc06rz6Yz6 z@%;dGFC`_oq9&h{un|&f{l4>_7+^;{i=DRaNiXLeIJ@GKtK(y_7sRNGLMp_TxrJhi z>GG=J+Fe);ABoA%rfSBFbm~KT)A;Ot;5Ayp4T zauq}dv#1pHs=nx1h7v{%OTrUwUV@9%xh)4%YN*v>ldV`WTj_Jla|4aBShDjK4`2pc zzYmoSqrE3Y!SAq&V_r)DCB753?LOT3;Bu}Fx&M@kJkYCv>+KB*BF6yBew4#2#6JMr zpP)}?_nZrjc0uMN{8)xqL)@SXF%NOMeBz!6>e6~7{Hy3Jxtx=P#DI`A)S>fDWb!$K zL@AdQZ53G4eB(68);tJ2*3W;Un-YhmGhES9KzDmYCA%fm5 zjIB;dR9{|+WPODjUgOmrZ-}ZzxYYmknF`Gda1tD(WXOy^5^;^Nz{;P?ZH?F9Bfa6w z1Ag>tNS`i;&65T-dUMTb4nk}c>kh_@P<=soq3!aQ#}yZ5UqhaUDm)FlnM)JbtR%Ma z)7oEYEu^~{OsHq#VxPgbk}K`wGCTWz@)gYI4bU z{&A{m;w42Nt7NNoYjxLJ59NWZ?L4(CS%D=SuaTc36*z>v2CvcXr{xgx z`&`aN=5QvR;~dUP&nqW*N~oF0d>c*qMo0gW^K~ zZvYfP-Rie)O}p^y9%Ta%)KGqMpD#s|@SHh36A@jA;C>xzR|%|<_Lma}B3P-6fRH-_ z0cyg42~|J$`_`N)4F9%qh8k^^y;Xc*t}|w7L8|8X4nRZOSwG~XyEBaU(clN@4F={P z{0uD9DDhqu;r^`ReHjmC&1D5`JD?)2@@fI;&K~m20@6wGa!~VBXy5VX60ax>EZMOR-;HscUN*<=1z{g>r)|yUV zvfMp3=fv$seHui1)Gtk@2%q1aL*0Y&Hv@LeNQ+E%gErt^h-HMPK>=rwvACBgI%$^pX)ANV%mW9vS}|M}FWbvVb z6IU81{0ww=fy%Hk!l~r{1iqn4VO}HjT*?9Wec+i~O#~m=U;msTi-kf120zTrFh)R~ zi+E-Y#`UL8gGlB|X)BDX(!midph&|YW7b~`7R5qi^E>d(H6eFrL_xA}tb$P`gNSZh zJWCm)Sg|YrKuuLg2$jqnXMjUQz^6bGvydOQ9YmXBps>}Q&@Wv3)V?PQkGRF^<{cMv zP2%SeC`kcJnT$~%-&}pXZ0LQv0^3Hu23J%gStFE` znv**uwUh~q3>O>n_mVP}Ip1JdDVC}m5y#Ra*P-XkK% z>Q)STXSNG03O#w*47HUiIj#9YO35qkglgD;!WPUteEO*7kk(lhf9FCj^D4%J}!z@`b`v&Z7XuNAr^4%#ZMd5Ag;0a zj5`P0+Ae4oMHLZpI5^oJ7;ZSOQ5=KD6la6^z0y{e~FM8zjafOAk+=iOwoGA$bNA(URYUZ`|2{UBYm! zL;F6=-Dku|#KjS#-Vy*UIseYaN638(lOCX&nd9Wk<3>nceUAVYp$_b)evuV8cXn+0 z4OpQf!Q%)Ceq{ayhRK-u`2p8*D$F&0BY~sk>rZMPX>-24cX}cfv;)s#uE_yDLemNc z{lT426LpUnRL8ojWz#mh%54~R$qdbz#SfaQl}}kq-HayCwe3st5wUv(YAz@@CE_L+ z7tEYaF3p}&gbh`X$R6&oPNYWMk^=&Y`FPIymc$6Y!H+U?183qJ#L)c)VxYop5jz=S zZYXe97Nz75_JLqLxlhh-&O!e*jfEO<)pq9Dv0}yLmI#bXT&p&R@JJSFT;Vk5Ib#a+ zKkEjC>p(r2{K-h5%!YUeFEPY0YJQWHm6@0lPu=LW`K4293Y26FIx}}x3>$0Puu}Pk zHP2zhVg+YRsLh};Q61=c3ZP*Bo~66ls#i2zs}~|CyF=r64d=FTs=Ea_Cu+VNGDPx4o$hiM`GC3xLaCkX;8Hyc^jC|X9D2rGEhaR$f931sC>X0Hv$Oz zMJ8=%Wp0;g8M1B7)7S=U%>(7fy0d}1KB65Tkr<20C3^n|#S0@AZ#_Z)nf)xB&r0y* z=aBIFh=KYm0HKl#FY8fK%IXSq9yA04lA6=Zw_oM_rM$y7o$|TA)?iES`?%x0+cgs` zx?r%cWN`+jQA{>rVI`DX_zikes4oNgh&%9cIX_%q$&LkWuETCQJ&^aSHR9${aObY- ziU3zZ7S!Iq!v<=sM?N%J?OC7k#nHCCw?d$c4Y0F^mpGWn+Va;M@d}Hi34UV}I@$^?CovIo?yyrajv71tTt4r?PBSl@tg9IKKwzmR)VRSjj`WC% z_4z}mG_p1WS2LYA&5TNBWwMtPWcNk%wUx%Wk;xwxmO$s{acn`DcO33+_ydLymTn)V zUH5RnRjOey@Rp67T$OLS|JxY$iD>G)!RV5~XmA6ZdA{|T`7S-f+rQ(ic(|CgzN+A*m}}drZjsc=r3ljM zEj`4?%Gk7-3n!;1cT=K$xHilH8~rNI<IZWwBf2V*^IofF}>Q_^fL{3gT6$%68S z1eErAloC07^`~|}dYhhw@ATlF3sN0lRl{rbpfH|!k|DF4|KHc-T2pX75E zKVLfm0~gE>UW~?;8y5tz_VH?#D@R^b2dR0NE-e<`X>zLORw6Bii|`8ac`cPWVw2s= zz@xEMV$8(%3k|BHC7qjIWcgpx0({W}DOe ze9a;S&tpnBKeRs?vfsN4-n!Wh>I{%QW(9E}RachGH2uA1 zIJ0yCFHdv1Oy~RjEK^@&MF3Zd#bvG9Yqra57m4pA%X&RLNvEp@Wc7pv@QL_ ziXoPx34Y;=mr{k{c|oK5<_BjkU%>TVl0M6;j{#=B zeO-x(aju*W6s(j9IFt#$enDdl8@&{{8=SQpJwsZ1{i@PLol7jY>KQN3rrn#HjdonC zX3SC)3eWSJ2cpq2Q|A(_anxRo8n60Dg1U-jXxl!ng~|$t5aZm7c5>snGjXrkYi@$| zyS;1$zpz=}Z-Dq(%F7GU7R@vsev7z&?X_ z_qi)btrQH-&N(?%9A&8m3yy%l`c@$c!*OZwYT;IA79;3AMFw1GO>`eM+$Tg}dxxLh zVM8u-%;SI?*ylLoD2_mtB{yrpNMAD>GE1ix3-`9}W4&fXI5oHH%)yRa0d6ikf%_bU0d2Zorqlm z!$95$Guo_PF2O`bUZCVGWk_q3@6J|#PFkg4lZ4A=g(CSM9qy~+j&i!q zQZ`J?9CepmaWjwF%+Ih!lWz&e*-FrJEnkr4_1|7tsMpe~-*PTOqXj`f)A#5f=^5sq zbQeH+++T=L|K-{BuMR{{b;C&uzj@>3RgH)XJ-YxiRU&Q`sOo^6Wfu>$z2>vby(t8g)e>`UhY84)s2;3*L(v`VkPXme zLe(;8qek4zHL|;xo_k1tx;Os>OpeqIJ(mbR(H<01pN~^xFoH)mDbEM!ti^xUtB+z< z6!7S??y%-JVqk_G>$ZTSEvNVTN4UhDGy-BD$>&gODuxG~z#P2sVl1~2v@jmuhd?|=iP5u_hWrU z=09Sw7h~ARHSOj<&}p#_fMguAxVUEMw3OfKdVv*C*sG3dzq?3%tjp|JsVF7{&8E#o zz$3uCN*$tO)7=Q+wBj9WHTm@>1$S9dxoho>r3{gg7mcr0pD+J;BSI>`?#1{6U0((N zFkdI_T$&h`96(Z6Ovl#`Zdx9jEoSpV6D^f3c~_Otj|059lp(>$`w;00*1+RwkPj}A z2SZ}r84+)a<~c!Z41H=|#VFL1HPIUC%&)(!US?p9b^Z~Vm{wI07H~}xkG>sxzBPoJ zLg~RR%aHPR3Yli423PFKu@dc|wYl?qPe0wVHEy{!?3!5K#3L{?)Zb=Qr3C0tfyE=TF}B&O zviv8EEtIr)yB-~_JPw}$lb9Hj!Uhz!?FYTb?t?PM;l!fk+^X!C6T3^CV)X%DR){o; zp-;4sykhxfl|(?;Q>E_V5XSWn*BflFcMfK4Gt`#?zQVCF)eVF6Nb$sjN7FPO+Ijgq zdCtF&*?l||+on*RYNJKue2mEnR&t^5@+VffozBmyEfgl*zly9(GRQV$(wzgYFZu6v zst6!~Q$OzL7DJS<3k5}n~7B~w;zJi6Za4~8hJ)!&Y1RKMO8O8YREh&8;u|1>A&IYXvC zMPfR)7EfrCn{~0#_b?O}l~mI=66t;bs#MpeyFRf+V#j90^o{O$a9%NTX9wyRrVf%4 z!a{L_eQgtCTUw=)L}#A<+quxdh;zjp*rC$ANd}?UcD9A9sS`OJnAzEJcBLIGt!b-& zBoX{@F#0nAb>YvyCGrfGUzO&{dBqoMlyGsZ43QGmR5D$>M zOo!6KKDtK{>U+drJU@u9mIhE1fgJF?HgaFCn%R9Fd+zQgJHhZ$zvcrjYvyYPCJ)Sr6@m3o z1^aq`75boPoJIz8!kgXA_z0F|y1fJEF6`T#LJ?RYt>FB9T(!b%CnRJe9VWQCL5SBm zXF+L2gbS>>_-PWBV1GgFn!e$IcrYplDLRj}So4^y320iPow)TzL=Cup`ZenRJA1!T zwgQd<)(Zr~>%lC~z$$ydEUhZ25aAB*`v>E`-$qmqq&IBB8am|g0@^yqtFW=N#d7IF zmJ57+cx^Sp9-a%c z^#hGF9DUchl@v7iPy!=teBId5i}29sI8{Ulslxrz%EDY|F|qn@jA|l9%;blfweo&n!y&J1uU@xHG#{Du}Se_fmx3jwht4`S)8RT zr3#CLfIXnu1mvy?6V<0Q<9-(rzVE-1p{Wzl2Z<)l*Y}2q^0R{5iF#W$Z{Dr&@%MjN z??3l*)7@vDkIz2X?e$E}IBU||X`%9N=4TW6s~z@7-S7TmkHqQcM_Mj+UOTM%=QCCH zr_VOO+5KSh!?`!RM)iM(jv~}T`T719@UBEgFvf)&MR%z5&+4iPVHR6eg|Kn#VsNj3 zV}BRF{eOP#?yr@tyRP+nqs5W%i%H2zddC~vf5;o2XskRNuvfT=&kg||nO(_|cdx!o zu|Kzw&O7R{Lr-|iQsuDG0WWA$yV9CdQgf11%4h_Hls>wujTh!Vfv^8SooQ>(H6_=0 z(KgDT(q9~(7v3-`{Ux{m@pWKJwntfX64^9pxmH%VKXpOEQb*h5nY5eJ|GvfFBFMU5 z*PnU2U_(*%y#VgEFTPNejt^UJC@{8DEvreMNe?|Ne5;+LXor6Dm8%;yDy~vLRsWvL zGk{hed4h7xQrM~Y@O}|tUIX~;?;7iWyEdzXYdz8k+Z5$O&R7pk8lbUPlarnF-f0MB z&FHYG<*Qzu@r9FF@7h{Zg(IZvS`7(rp>7-yY0|23Kev%iG;P|p@uD2NUjX&5>;Lq9 z@LBQ)#Qlym4nxc@2VGAxIig*>R8y%)hXjQuNhz&mC>p*pRo=iWjiI!p8UGKy7C~Pl zUsb!&@SA|_#Mm?GxkWI za$~A>L)$$__VZD0rQcxEs9U+;QK2-}Ezh7w8HET%*0z zZvk1sj<3M)8`K2}zjV+6-me%ltzvN#JOnH>-;6D(l~*qIlDx@6=o+yK*nBaLE7a{X&-hDWPCp0fzh%lyOl&Mf$Lj2;kka%~E5e2ohCP&hJztXHIQ> z+H)lQe7~#+$MGaZSXct6pz;*^PT%MoEXht$WPampYmz$B_dUejs}58%J9A@jF~BBX zq_M>odS^}oMRDQ>UYopB-=>5(B~Tj$;*qO5P5JT$VzLh7rW&`TpkF-fD)}0 zNLlEEAjhN`8LRO*#VS9-B_U8sLW1DkCYG7%^zn+eU&zt>AS-3?_)T3a+OdMhAe?qZ z==BX1LVYS~tr1a4IhiF)Hv_4k7`3v(UjU#26ddq^`gGtwz_$Mt>;Com|K0}tciR^q zzd;GtVL!8=t3u1J+PEDepE-(B6sR?(Knz}vxNQL;D1$}dJ(9srVk^rM&r%f;JkTOQeN3_)&A0*9W+%(0wdoiuMM%pnc zhQ}JwZ6D%=LjqRt+X$2UbD-#+yRljLDA3VcWG}UssX2i^cW5JAIF<L(kDP5IUvJ z7S^OLFIu?wmptFlo1BI#NyKEin_1yTUjdCye9Ngfr>wY zD;cVoB16P4;6zD=-lK20A04;)&fMH6jUNBB&9eV4!jIP+?6WZ?qh|TELEVprw@IxV zc4Gf*TGG0CQgX6f>P^S)ybhdVpBi|!ZRP>1;oNos8Cd;aU^zq|u2gLp+$$NX!gr|L{YT3y11g4rdX}sm<1`e2(nKKPOkl<(LH%aGf(3Tj3vgiJTb-gHhW{H`hM9L)K{lZjmYI7F1&np`%^eS)*S zNK-i>ZRj+JN-4vPSVqD z+%4;k3;yZ*q6}RXl3E$AxfwMUax003Y#veSWUY) zWR|1dek`tB6~y;WN%Y?l9Iv|9idArwx>b<v*AQGBmaMd;#e#dUQR=CTZg4s$vu$%!zXE-8LlaMENMynRGZq->O(dq`cK@GYYk_k z&WGGgB41vNS2U@#3rGXk)!Q!g@|UMW!rHH>r+8+%6c$D2^Tw~z&O;2Gxoa_sYL|n^ z)^v^H_XN2*Qh~AVdb1)ql|i*`3h_-!=`VZ5_%3E~d6D8!ou{<+=s4b87!rk>Vyt^LlL|_swluv63)>6W^M{RXYgra5cT=C;+OW=uR zRx6*ZbB)vdcC0Ix4~_?Xt<-1VHOo7WJF<4YXy!{-K)-%u^~(DDKU7J#uHK_x)o&R* zljUOP+m$V9_$~(R4t`8>9s5cWx|P$q37^M_S%1?O zeDM3v;M0z}$?LagCz8*uesxO_alKxyN8U*&pSzNz^p4=xM9D&sGe@hEAnmS-=8nvId9;ige(jM_n7x)w4 z9vIn%xo<-s6}!R=3vr^Z7Z~)N@~=+(Hp5>>?WSh+9S??L3Qjd^i7r1atXfOoH?4n; zk~P`@^Ilgk&zGjO(?u^W3hX)ny z+dA~Ar>A&^+VLdUv&dF-H=bxv-+taNd(VO5c-{aVTKH~9hZt)&FU`^?m;4>txdRl@ z^9ETAjz!~qo4aXJPe`}mSYu)yE&q5yv}2U7DO^7FwhnJZ<^?hWqxtm3m(w6~QqiWy z%_AIL`7lk&${0AX&tDJ;Qk$Qm+Gs2S1M> zzl&t#G^JNVNJk8h6Qk?r&b_ujxXJjZ&*1=U!YxkoxDZPJ1Jn+DxTQd>#U ztsS0zk2FTj_3=+nN5{JL%nuZ{uBbzM@PeL`dJQGPe~eU?qQzKytKRDHC0mA`XZWo^ zIVS*zv&R7B#o5qA`I6SPtcKz?L|)Z1kx4$pP|X!|Id(k|{#}5%%K;|gmoTo&&kJ-Y zkRK0*vkvf$-H%W-vuI^KU-H*4bu63xOkE~@B)nbeEldzmxR};_PP7ANPd?gHGWO^J z)=hHX!uof?>%}(fo>|%MVsRgjcKHRFbXAebY#()^z>8WNX+`to7B1bUlKqq0Pct&V zh55})@JT-j)*mO1{hxD%K^EJy=tLZDonN^~zRu;H*_s0hio}R}v7^g-VW3$xPwGmV z(S2Xc?#4%aNiXv$D31SeQcx1Fj@}m^k^JE#<pX;2YzNA^61x6I^!(M4R>@oSZ^Rksq6!# z(EHI;YTYq~{GuLQ!{YlkGWtr;(#)%~Hld1Z@rv9d;nqolq}!a&QrxDZquOU14M(#B zbl7HPpe#ux8#4vf5Qv>tZNZK6K|P)6n)Bk&4@c6KOcj!t%l5!!rK$%U5+| z+JN-2ZiRKZ)KUEIF=o?{`)Kzwv;p}5Yj-Gp(DmR*+mj0S@4R*5R=9aNh!UmXSDall ztB$UPVQNI>pR;6duWL1WjZ^Xu)M!%ctU!jaO|4G7OkmPndvd+?bjz;x{IwvI!d$9iKdIK5C9y@CYsM*kecvW^8i0<^AV4M@Tng*i$ly(La$U_MS~Z*8gDgxfT*l zU8I8r?@xuA1tq`A>**#_%!AWQ*_3X9UsCQk<*!47c8=uZZF?f#{1O5%k#KIIn1sfe zEmnq~yD3ummH@d970{s5nhA)NbOQb@q1d~}OLI_V-(zM{1+C-kG>ca^yp8A}5&`tV?MZSKB7bZYIHaxg! zCVt`Fk3aGSF6lQfn$Zdq?y2?Q53=M`Vl)zpG^X8FK!hthNksM^oXYC6ta=3!7-bVz z2O}Ns-arUK5)W8K;S|#-P2}iJ?FDpuIVp1{U67>6&T!>YZ&T&9h87_0P{->urJTX{ zKG(C{V>;2T#rP+V9_!}qd%VN^N zl7QIO>he@nJHC>@)JkXoWxH+&XLjyz5AHfRb8#t3j?Z#jk$S1|5F!;lro z-WLKSW@MRI^Z@UF|pf0jYk!;o^Wyqi=2(_;)T+pZ;fa z3BS04|8mgw-~WN%Cg&B&FGu4b{-$NQ}@+5%bGs0bV?TqV^fe z<+hZzpc_Rqw<=koO4Xql_86^x%8{B}a`CQiM7l=VRqisC&9ieM&A}KRv^zHKC zX79gJ6b&;*rOKkjSQ$x9FGf=!l6^)sl90tkMTO~#i8e(Si=Yrp#?($3t@*k_dNnfC zug`|d%X#M#F9W~0K<@X5!7 zmFXYlXNla9jwn6yu#b>CLp>=xvNpTC)w({lCq93oLow}K{)l?P{qIL-b;{2p)0DJp z1E^x^k@|irJ?dcxGiYR5;7ZfhcDUz*i31hw1U#h)_SXp&-qL9n(d{yftL|+Yx;CHQ z1MVl7?4+i8z8?F4nk%vHYR>3h%04~oV5)wm>=v@>NVSC@_tJJFYCqXbw4-&d9FbAu zVUTkBre`vTPeBoWX+sO8rc3ru9uA}q`jjZgS}BTRZwXc$+2r*+5qRNS%~9&h(RUEZ zIX!&pXs>nd_UU%kkKMBzoGSQFZJ$je+iQ7P4Zgr zeKqF~g7{k+o$M*%?Z_>ZM}?$KC+ih;b#v$y{7^yLV|-C}6HMccoNy@>w) z_Bo!>0sMRfM@KewXt3?00Zyy+VQsO#R}5BYv%L1(%$hpkS)2-H?S2qIy{OMDqAWc< z?a^~R{^(3fSiGiC-t)fzRR}w&8|oM`CtP52poD(*ML_v`b34?SVBL?z`aQnSQe(+Pn~2v zenXMW&Q5xk=IBi-}X0~1Hq*oeP7)^w|~K|=K~5%!{?uuekcZ@ zF2O_VgIINi(FoRusqTSf$l15+jbM|gxaL;@3 zMhji?g8C{dqciOA$njuFV1Ccwe(-?IqHP_cXOA-0jQn_g?oIxXMNWS^`k>`_W*Zp` z$*x@RY=t>;tDanLPC?2WAz5d z4XC!*>HAw*a*oP^@4Lr}3o6@PH@^Gi`EzDD<}MSm*Bg!#uTEkV|7yjm^@Su~9C!zzi{M3O@ayW#QQwLT{ivI(b3F z`}?3lhArSA;F9%>?+elI)Fx_@Q|jQ5?~g^oA(q^8#;Y{5X>GM!rZXvZ)N0R<9@xH< zLSfesDz{hH4kHWM#dVNYT$9Ka2aY|vbqFlEpe86LS}aCn6iyJV4~we>Sgx=j&gp~G zf38qp-fmjOf?4aFHs(=n{YFih7g_Iw2N*|c=bvaivMGvOSzg$hzrjGyyq2_BWGG4> z1zE^q>s&cC^Swh^NeiL-T_B6;ip(oPHW?MGRy<%fp^Z)*eE=aP-&VL=#S45ev4Q(S?fU=4 e59-pqKqPKkm`eurANs->K`xnJEdJB={{I0Ns|&UO diff --git a/articles/BAS-vignette_files/figure-html/unnamed-chunk-1-1.png b/articles/BAS-vignette_files/figure-html/unnamed-chunk-1-1.png index 53b59eb65066c1ac4ae4a999604c11fc8ad21319..e91ed147bed8afc52cfb52ebf9057b7bbe557e77 100644 GIT binary patch delta 20953 zcmZ6ybyQT}A2mG8Fw{_z(kUGZNOy;b^dMbIhosb{Q&K=_1f*jCrDH%!ke04dlh$Wn1NbBUk;+Y1N+MIeSIr6)jf*GI?vu-v>rDNM7Hxo|**) zu!E2N3Fc3+3aj%MJ}mj>IxR!Xi)vp{$pL9h1Z zfqhm{th4S>jmtx(zm$C6T;y}<_gi;g0A-+kmf0mU1PQ*gt@B@u<>=vkuogyc{JBj0 z%_ldOENtH;)dv_KEP!y33sQiBzAv<8GS~;QA9uAJZ+qcFyA>k7p1r^qs`=CmhZeF! zD|1KUCY6pFGiS^4IJM$AAVYAcTO7MCYyfy}`fb2NZEHZC59-T9hc93pxR7(9sFz z>jmO@%xO|Pg)amJ4YF_|?X1}JT;rOhPgVJI4Up=8Z(A>(;U0iomGrof3n5EokSi!B ze@8Bax?v(631+f@8PS@5Is}?7|6-Vl=mgMZ)lDZ<<=?heon%FrvTAlMpYQkFMN6zN zy8R5dE&SUsHQp@lL1^&i7auAf-|15&tkz=LH5fWYlS%VxIedxnW8$O7sT^mw;ta-F z{i9w>!n{UbIG%d5tdd0h@x>j#DB2L6(wTO8NHi|W3>(~{_)PFHaj6ZMAOC2;E>AP) zCqy_{Uda!AE#hzT1yog9seSNNvh3Ou z+V$vf*`H%BA&T|viU#}HFTJ4bSlfM<;TxnoeE9Hv2x*98xs>dBwg>r)(Kd!?V~#q; z{GE+O*OJbPmZi~-=EW7TlFRIqY3ZVW{CkzohfxfludMyBbvx+nB`^63x zq9&BU0bk>J$DJmM2(E$$H|Q-}>=v`i$>P5Bvqju($jX<{AgKOisng)N+e5~Mxm_)c zzHr3|j|s=iXQjYbhWWN%^SSI+Uu*R@&zI^2`;beWvcHFC`h5phPcVIbULAv6%bhxR zJ}ii>Z_Ss~QsKyy+@V~)zo~q_51k$SNssax5nEq;p$dxXzY-z*-9(AVU&2Q*?nHj| zc;pyj>?noPctiFl=KaXS_o~8)q{E3HY=r334sktcxoqX;>}WT9cgw^i2p@Km^pUpE z2t%zN#X{=w<|WDigE^k@26j6d1j=dCQA$25O(aQJs8Xe%>DGzUj%I!!s-aYEIx+vU zenemKGq_EomOP>hud>r%+8gHmfyhGmAi!uL#P%xD(2i$B%+Q&=Z-If}_s6?l1FJmj zXCSkxll*KC^xFOAaA8LcPcC>C_2I!jGwMWxVvW|GU7SOZv#~v|JK0~)`z?v3?awAZ}u&|dP~&qEbV_d zZEcXZb{_$n9UL&vx?gcgK8{`$wu(#r0Y3W%X+y6#yP|{OumRe7#(gr`*qHO%*|@Vk z+vBFiHpubKV0A?%O?00pCCP9MhXbE-?;3~VFxWaY{FS!7LGr7RCk3C3l3(d%>I(%W zyh_u2YS&+d{{^meVHN`CwEa0qp&6K3u`By~zCH`6v(u0>n#Y+?CYvTL5DgP1oLBx7 zzc$hk$k*IMIpI;ApeKMdeuIBtF}E5OtP+xel!j|AF9gp_dQ5=av?Ka{XM0Qu2`{_Y zpuBd}2l?x=X`UB@u&qC*Pg@E47|eJoqCW+zfCi4SL-Yf>_Ymd28mv(3k;7ggD73y6 z#RtHX;Nu8?k8ZR?BrLRP%BIPg5mNBo-v;8hx*P~F`Yad z6=V29-!ie}W5L8q`IrS3$%ar?K6^%o2Av*tN%JN&3x5lug>=kE|*S+5WW)+0ZwLwy;#1U$L~CI>m)B-5LP=_|ha2h>P2 z*d9+1pf^>`v=ya_JLO}bNBT%y$l`B(Zr!{aF=$GR$GF7tz zd2Jn6Ody18#mRF2XXx~RcirK+v2meoV#mbKj~Y+eb(V%BIL5PO`^gl3(yG}3>5Rj2 zp-@BpOr;_t#Vmb$tiDp!`qDl*!#)HjNaJ`=mMw#zv`7_`5wA4%5fV?;#MpZhS8EZ= z!hP;&0?Ro2Av7OSWI9IpbvueMoG{;1PeSjrLIh!mx1PA-7X^I@p;&QdJ0dxWF*_+V z07cVUn(a;F+oR&^gQtNErQ$%JC1uQOtBh8RCVJzT+peGl50)Va^1*D(8s}5`IFE&G z*IAx$A4n%1>dBRLT$OW=!@*^2Rdw!DYp+5L?wUsH{j0A?7dQpndhtvUMS9^sk4_;| zX0u|d)K?~V!@`#g_>1vSWI_pha(}!$UY(PiBUiFNAMfyY&s2@q6F|t9VpYc{HmPIz ziUb^+s`3y;0_tRgFBnBk6Tap}A-*#5)MOJqfqH5x@?r82dFn^;k0PBZ!aujb>bb{a z#uEB4;6)1Buon3!MmlP2Gw8g2VS*};C^y-{Q+3a9V)2w1MU~oz;?${U*G<WgkpZ zj$hV~oNf!CAjr+b4q$;WZ4gBleLA~!XpY>&qC6l%C%S_ZM;_$WBb0*$qtEEw)8$)2 zqVVR+bj)h-a%>v;KLLs!-kSPp`~Z>*>I2Ii@Q%>+ehWJKh3mB*>HFZ$o)qUG^_9H2 zevqM6-nO9yu2?meOU6p3q+QLKr?l}iN4`8<`w236<@ZGZZVDS7m42;7sUp>a16v)+ zj+&|PbD$8UNL!61g;S~|DM4sYql`bJj?wYeqoS;CYNjc>*9a00HiRcHMzj-4zM`;i zgicUJ`**+YEO{der$v>)!n_6P_ZuXi6?#Lf?X=i<)T3g(aVF%l2^=$O=b6gs@OHJM z#f2sktT?;@*7x5NBqx@$hrOP)oc-n_>K0#*tpD@_k93f(lb!b0){!(NWa5cC$4X0UWZ3;R;?_uR`^*m2*e0dQFJ1(a8vt%Y;W$o<&T_pKLd6AM(p}KgiYN5>+GRY~?Bs_Pdz8|>uEUonK=%;M> z8v_HTsHKD9(_4}+#>p;YF8(}A7`qfjG)yXO4542`yfuoJ!Z{3=wZ`_CwSAcJ(g}>8 zd6NP1KbO-+e13dvHZJ+nKr{6x}J3g=wvX#S)pYqP+q8RJ%^a0N3@O7cP1MJMt1q< z`gP3iD18MArYQC4&=RRDrEywnBXcGd4x5+(?RRx4V>vH<*CTVZc zT}ot~VwlHBJSzZw-U~L~$9j(C(j{PthxA18&O+ru(uvqUrZ*C}{-d{PAzHxD4Y}~? zIWcM&nOBZZ$>>(ajng1<-DXF5c^Uq%jk5Om;|jRur<13CK8%7j*J>uPz)DDg^#`#{ zB(tD_blVyuNemlQ(X0L^dx-Z}3m;l|TBR&s4~78~VXOn^K{-Wqd>$#23IgQB0Yi`s zJcy`_UgJn%VKU-OVxh7v1ZbN%J~jXO*tcUnn)sd0!_hGibCz<(4|HEPy6+2N<4tw1 zz{F@j1@BwOYyCZ8RNSo9qmijrk-mirZ1;Co^#X(#w-`hR;_D{u+enue=4RU=dJ`#1 zaXO^atmo{puP|{1SqJdLskkB7tc>v-PUUwkWp&dUI75oI83n*lbax&2yX_=}c~h~$ zN))DATVNL8KeaRdebl3;|H6sKB{Ns;LFh9muy}057P-8)t((k4QE(P5f4EiVU`;PRI z-@DrnO{Usee(zcc0_eIH|0Xfdvu`%i^H@%YXN35H@xe1MWx`@GvmI^wQYws0_Cpwt z0=(D(W9ga4Dru|vnYCJ}o9WG!8VyGKg?uL&)8s2@Qpv7!u+RWZICYgoKf;^{u zc}57DU$5L9<_xgCB75|MIGKtA8$&R-9p@9-;8*A%@Bgt^O?<0R81EBnz?&X&4O9A)nmg?%*#HUbj22c)0jdLju6Y(Z^mVtcsG@CXj0p zsf^>1cpSW=YtGlZ#?QzS!|ezQqCWk=5%X3dlk+R7@Ps55@=U6JP@?8#2?uOz_FlrD zT>Xwa{`!v(9i8T1pA8;SAHjvUJe_*~`G-J)<>UKwomVW5QF|KjwIi=t@UtAJpiCBY z8`d7u2wJzmFbh5h@q_cK)`IUtrLKfB52gwB2suSIZu+mOVrF9pkhO~5{V=!`6M0F8 zZG!de9Rqjz*ckX(7YQ98jTJyA%Fy|CKeDVu>+(ZP(UFQW^|1Chi(xk{j>N*F`1Cv5 z4KO{aXGS>>iPu=?T-t~_sjSUGux9>+A7uBDB+Vx?z;`J6rWi0L?1yaG3gY=D7 zls&z2ZOY-$x1HK&i+ZRzI$C31$>1r6YbiJN_>6?z~m|7X1Y^>bf?m&P~Bk!X;Y z`5@B4X+V1=&}U86;LtuWPilJwdzgW-O!Q&*4(DRtyGT|lw!vgoI_c^s$HL%)zpXT+DxLTy|)fnN>R7hB`IeN--#W1%z z-dPOh&21&-ZvXmFl+^hB?}AUXr5-nLJ>?t~*xLL6JNfS9@;9uHqnt!ll`uVZi<4wq zyGcT>Lbuv8RhL@#f5UQD3W&d1r0?Aq)5ZLs;$f72w+F6B3I{6tTdX$eB@1hbTO6mLr-y;DiuFpK6a!AF zbMU~8WqQgc{`_;iHw@Mi^z-PmU#B4T3cWCvOl)87{ArA-X4@;GX(zI&DNW!nxJ`Sm zBM**Fd^8S)QcVk?wtK=L84T&JbXX4-4@i<|Xi$>sg4gY#x5sq6Q-ANmHWl2Ba%T>E6zpM=I|l;5;fi;0V#iDa0hdnavx$ATSWZ1^b9OtGmkHN!aRI^~AKysd)` z;`6^K3LquODF?CfdgkZIL92yb~1jukIb0`e>x}l)l@Er@GA$cPXKO>MUV^e2GsPX zo(vN32MJd>d)KTB&fet})$j_j?hHNwT85KsJ;%6)jyuFNHHz3?Ft-w5bUl#v&veOHw*|2KY#LostV{kQ7cEy{~;~_-BoqKQ9i$kW z_XQpc3<|wAi0J!YH;s;377RN9e;edz&;2W%zKz4}qjsCWOAvbm(;%RZh8Qc*+i+gc zOepWg<&#QG$>AwXOEIm#B zSS?qqG9dKzeCQ-CjLJw<6>^DG3lfba{SGH$YL$=FB7R!&6 zrqSv8f)quQb(fN5Nb=8cIwPEEs%O)$OZX52=NontcoXN@u(&LU=)M&|>YlzRDe} z^(0{Q-=gqFC^Uu=)*3&mvQsm7!eP}?{v1*q2lecCI<>GQAAFym2(a)d+1j^A+#URJ zemVYKuDx6%cpo{)m8x#E1G(O2G-tPXdU~z6 za^GaMLtuN}Rw7Rt(MgWwKy7FLwi#ab$sQg!|EoAvtyxMio%*+PwY>G_?g|36M~C$1 z7$OOB=qhjz0X!8H%3s)xYIKw}AB$j{`q_&c^4#kE>O>&h_zU#Jv@AsS6EQn*0zM~7 z`&-OSV_SZvbwRoWd0KZGURiXV+r#O$0j!`G!*bjMba_NPVoZas+ zO!<<}o@Up&7)bs+D1nu;C~#nvM`{Slz)*R?!7&M}A|Gc1VUeWfXyms8I`(-vKurVo9S z{IpPSc^)o@rWKbLJ(+EmQ}9su_G{?*t=*@GK&%Q(fat_7$=+B3K@7(ESEOhvi@}tr z13CgjzaA%odq!bUy(6xd#7z9^avH`1g*q>A-)eJ4_uQnm;XzaD`nBa!+w!4GN1+s< zDU{=(TyK+08DIXWV8tUDz#f-RWi;n;U}B1qXZmv-!(pUK_Q*V1p2;XFz^CAa>QnU& zphC(}b)WW#+weK>kIt`O;f2(Nt_82xrZ;EbRi)rlMCU;z@d5~kN^{>0J4j$#{QCJX zV_{nQe@pr#`3D%~fJUfu2TlDagTygm-1Fh?$HA#r(a)E+H3ds;XC`yR-YfD zkHB7T*c5xv>qpr2TRlpeEBUxU><$a*Mn-zrUq0M*JiPX{%)TBy~&;P&oCEBfSGH70E(4EV6C`M5I9 z5VU$VBBY<}kIG!>_-;l9p%EddGLlqOg%B?eD_}^PBTC}5R;^v zR;l{de<1Yhg92LFq_Jp4DxCOGp@NixFt?6}=ruTus%B?hR{@@`1VC14TGEdOl? z*DqKs8_1FSW?G}k!IKks*lW!5b1GY%E|)(Nn}#HYoj$0aea%}0@MfD7(}}PW$Z(2I z=?yJT`Oaa)lcdfH`~HHJoFwHLnHn_BhOF0^>9e{{M5-NvH$^YahBZ?stq6yc*EKA) zC*+lXC8ykbJkH+BLRPtye9kde#jHz&65?e_L8i_eb2Q!Vz-Vh9nJz>ctWFX+d-hb)Gj{4nTTbufTR8J3iaG4wmkN`!*i(E~)5~Hl zP)qxwo|+_!nMs_iI*yq{%%r25uNcaf%7MWoUqm`Z!0d!W4LHlrk)`sodO{))Oi%b) zEw>(h_~VdD*TKtKIr1-H$72g}($4Wm5!H|U4sYLUhATJUpDGyoLpn@s#Jn-jRAfPcnGe6u794z9-qK zK9XmmV%Aimex$Fe#PyvxSw~)htN@pojcJEo4`5U4VFg?NZmA>4>Ijc)qHtDctTKo! zgbl1I)FOmG(6u(SIyyDHh_34e(;SIS`@H^|e|g@ca_Zkx(Kea)ZhM6j34j<&APu`!yyTGJaG$o*ofWEyt5=d{p(m(~m15cXq zfzeUh`=;i}1!&)-JnPiohuj=3LS=hMxR|!lIZ?Qj-HAuK5`T(@D(!(^^^ZDZ-ZC`6 zGb|o`Tu!t-O~Asv$Gm%PKf}O~!Rrg&`qCIv{_>!;afB7Wa<6HU%JGc9` z*g`UHN*AD`XuJLefD#^{1P^cb%Y~{xc`CQH;}89iq~Mmq5I+4E$$D+mTNanD@FqQ$ z)^}TDR5~TeZu-X|smt!xjze8_mVWs_*kVP2kMf2o*W%aF-*INtNO(Hr+%m2+kV4cI z)V~w2d4=6%1-db{O&v_#c`~rdb}qi$+(Ap>>iWv9p4Fuf0JlXM2HcB8*)#%S1P6Ti zcRUM)!ThOG9dxZ>*RB4*cuN z7KMryWhbtBaGr6U-FS=XwD3+N-v_Bmv5b%D&son^#BhGS{7Sx!@v-x2`STK6r48~; zQokHSOgONh(|o=3zNXzbf3C4T5ZCymn%tN8!dfQK2cx>Lt_Gkx_fc5w@b$+x==702 z{TR~NyYPsdA(=)^-PWz4QTmea=Ijl6^(LkjHfrJRh$+KQj2^ZL13lIyn>K}SdTA=~$NOctM= zYujO;sp22c2ln9kwxxx3^wWMjuYj|yCB9i?EiNIk0y|I+239Dg?3;CbbS7- zG%9tzm^YjuxSsJc5m1?5$PKhyQ)paqUwf`4*?E|%b|uB`7A#-)(LVnsnA1)`Eph&k+B)eqV|uP9oF$dgq$k^c9iZZO zMQ&(v*o*$+XV=^2cYfZ+#tS~!Zr5%FgeBKa7k=L_Gn=8h}?eEI&Ev%~n2cM=zkh zqu9&3Wt3SGK79AV2tg9{zoV+BXsY{3p)^i~Y*bIY55oWAP{{H7Xo&xAjI$(r0y7(Q zy&2104gVKH6ky>{c9&*o_RqWW-8a^J-?O>b=2EXmvIVh^E>9<_54K;g{ELA+ja_a! zOD>UV`89T94m3{wZ2u^8D&*aIn_J5RSQfuz+aElwkzj1Sjo!pgPjCg6z9=0(mp&{Z z(Ms$1x0WRXytBOnU$;i{)cm>NZ$Fus(*9BwzP~UcvER0ipwbzISl6^24O)+iuD)|e zLyCdwA=SFx%XppJ?2=!zznf-%j}eiqzyFnpYYVVhybxXgrt!_SYc2GIt>bEGKPYG< zTa2OX^rF2zXdzKzugRy6Xyu{2DDK4+C@~M{#$`vi{p#kN6$4CzfaSg2`$ziC0(xh% z(g&Vs=e}K|T0E=J3qEf@dA9uz2Vz{+^zb|o1j7f2FWe*gR=Kvfk?);yrP|s@n(lzx zD|TUF;cDNjg_Ya)dR(U^M}5TI{EDomE#FrE`|G{k(>ZC&?(h}MdUt8;fX(uX>defc zzXLV`Um6=dhM&%~u}GiDq0AGcFE`lrz3kiHb=I8WP`}?^I9IDNm9gx0){r^aDa*SK z!6TKW0`68>Ti%36+U#W*nmsr70G0?$^XBgms}m_fZZ*9t+bxHyBG1XD5>w60edaa| zbquhN|E=eBUKeM%hhw1dU%^@CO~n zC1L=56r&3WztgQrz0;3=4?7!YUi;U=oi5Q4@j*+-#;Ys0XN^0cL|07dpqtYfkDuBq zrrsN$qNL4h&}YWK_5Mj*Jfm@G`W47+Se+fSz?8-{?)KE}OpAqwu-n7p zQI%oxPuj@G8}W{mBc5cPr%dHH!WJoT8u??)0#BskC~Gj!FxRZ=ld*meBQ=qv$dH8% zW878@6*OHHKN~+E^>FdGMz#0^oOg?;C(#fLbW=R04Z8sV2?_}}p z2H*8e%ZQOw_;)-7Ut=2ccyJ0=)bYtw+;iK$A1v3E%nB^A(Vn7K!dcGc#D|N$3T3X? z#wL2r4+j48O*pK@Oj2mt4LqfVT?&Ucg8fq)VU;ibdNVgmX(uh5wOn?W*bW_M?t}7r zL*Lv10}Z48%sfpJ3|ZvIQ|bZyE^yKv=Cy6)a^M$i6eY5=?(`{d_BL<4ZR994xBHdR z@`_4lPB5%CZj%p1Fe`?Zeg9uKm}bWTb%NNxHEpjN|1-&;D{XIjp5JsX=ZUi%aDr($?2bu=oi*XqO723L zwyhSvT{5z`yFW26K5PG-9|8+m0j*%3VRzuSO;oI~qB;@pFykAY7tT$aACyO@J!!6= zhPbozX~32DIw5)B|7py{2J$ z99{F{08K1uOj@Fyu;E*Hgr-_MzVX;lyugr_D0j}_#<=1y%;*He?ykXCUZuI1x6I6d z{eah<*U?u>9~TFswxzor*ILH?UO2%J5m*G0*n4;KjK{GNBMaP4T%m>*VyC8Yv*U+_ zMX7wH3_kd?7+_z&+}Zy;^T&InIr&kDDSJ*dQ1$OIg@)_}P5Q?JyWPmO@+zIDzBIw> zwWQbx&S-}2V#r_rQ%$gISMg^}j%^vL0f9>#gYp90D_b5bc3UImHMI{j=qbQC5$A&0 zAhE7CFX#h=0b3ZqH{ZnB&e8E?=bIxDte_vyk7rQE0#MNqCw7tlr=i&7vcGb>vB^aU ztXuHJoikifb2Sj}en8~MqW26MwW$MTlnOkhYuY4ac-hxWRawZ*3{9$|nV1CvS^}PL zb!Fb*>Mn}tChXQyZ4{_-Pgl>|=|PsV(96(P@DHr#pk*lSyw*xoNCo0u-qk^xbB;%$ zE;#G(aQWhJYF4xR^Q>miO^9x7CQ!QH@4`I%dT8^=<)h!LU)}G#-$@DKSrT?%rxDeN zVa+NHx`g2!;cVn--*~84HA>w3$mk1xNrl>~?GU03hY>l)l2NuNesucx!4@;rWB>=n z_Fm*dgRmCkAGPnq^yWS9cR-BxrtsyJe^)h~(&Gwiv~jIW0stTUL0+Jrg2PDrm;28O z(vUcWIil-j{F41Y-ft51nniov|IbV?Bj}ss5#~kj#^)V+Wai|pYJT?3g>MA8)xr?A zr0Dr=;6LeA(@zz%KJBq_k`WktJ6+^+oB-rng)Alr`1g@8vNxxD`47knwPx zAC0wCiOqoYrDkvJ`{6$I*mipEC0(L>?E($6@ez+3PJ{2f3IcYhSR<{(qxz2&#TMy< zc$1G73Jm~PM`5d{m(;c5ob8(3K~zBelGmY=+4`d0V*>7BVnkY(>t4yeF47%&GfVb) zvbN=*`ngm~{?|{%E8dO`PAa-} z;{W!+$mt{8>xXfzfiTgMybkUV>)Id7R7lF;8ojpxE;#z)NSJr6m*e%RTs{>Hjz`hs z^!mg!DKKm}td-xg!ofW1CdI4n->4$uWvIV(+428RE3AGVfCore{xiQM+DotOlNJOp z08;O=l_IWYJ#Qv z9XrzO=ZW{2E{puG2C~tKq0!eydLiT{U07nW6>S&~auw?Zx9sZQ`fSb7!_SP=xP_OR zI_33v?dFr=51y3Nt05_Z=SHwr%EbFBHr4Xp^YZL}LS)$E;Q|D)O zH^<%wUpv&ag3ou+l9HH6oh>5esZsvp0c#CGl|DUBMV6m}Fv?f*{Y^_8YwRT7d&29o zxJV!5L=P%5dn;sc3@VxqVW!A(q=ixn^VcHm@9ZsNx>Gm?Zpy!77n|LzI4fK@|F;A& zk(Btj#xSXVzEg%7SAIaG676igB;;EF?6J)qhYifojIMG4VWsk0(#IjgGLS~wec#r? zyw-1Mx#DyraX0fB+gahj9+$ua0@5@)5k+?8K}GT$9D(HcFN$P5O9rdNRXul{aVzDv zt5``NnA$MwUXD*C4>*iXVH#D1PkmQh``%6gxSBe595azx?gK;5m3=t5{+BywYAggP z*dd8Tzni|>_P0K;LSQUk`O$gw804;)sW`O`AtvK_g|Hi5yx1t&Z&0+oGQ(LA6Pe&_ z03nTofgXyNG|_>GP32wWN`>H;%fp>3nGW3nrAhJ(whf`*yXqg)gWaj4!@lA%XO*uw za0WXbA-RG48pb1m!69%>{^gsb4O`YW`6q{Uta1EWw!_p$ZB3oxM=VB=gS+5!$nl2Q z`CHrz(t|+Mr+NJ0|ImyVIJaCca<#UA>4f#BEtBl?m-V4DKfW-B|HCBeo?}86$n%8r z*H&IkjWcrS0=$ph7DYRn54m?R|7ak|@pphV1IM;@>H+=NaE0wdw0|~BP58O4O{TJ? zUy*=jvVH!fe1d6yz?=Xt|3?J94YYtic5o=VgEq7+bYqAl;=^ag8rGD}59cP=?K3vV z;xHEt6;NEr&0wx^l#=Tl$ZwLX-I~gCN(i18uZDX&!_2ILHFPJD{at z^kxbFU{~7VxPg0cOZ#!?%=F~*@6{pm`>oKT5#kZNiPQ>-I5AH=FGR{%Qk5;#m)Z{h zXFq9Rss$9SGD(U*37A@BDnC=mc(}gA+`@_7=xK+IFtK?1B0cV)D4K6n!|LB{9Dl$R zq>WJ_=1%JQ#!e8Cc*o^%;%E72Xetofbd~IFSx_} z5EjhPb7gMb|LS9_ILpG`Z|@gazP!t!wgh$z1@Hvqb8XErW$F)yK=PuPCGJMNS%882g|nE+NeVpe6m9+^b8%`(&yi# zS4%MbPdw}ZLU_ml>&6?U^tkZ9Iy}>&jK_wa*q!YmdAcFzC0ZRL~BPyRhDrAndlROWXr9tN@Ux)UwY)7o<(W zTG~ycW<9qnwBg+9>(x90=}dAJu|U`QLXvGi z?CqZy7n+E_|Gz3$jF18vvpMT=e06G8f=unfT+;7~T=sf`IQEQ%B-mE^zt@Ez(~)0K zB^$*5oL15dFnfNo3E^Xer9gMV!(g!_OnLRRR9U=7kL1;zibt7vTe*~>^PJ{Mn8Jf#@4!oGHwrgy13nvLqh=Lr+f+Pc2y$|Y_CEx& zX-*T6uioy*K%HHodthOZzvYu6d-s(U>#m;(Obmag@2zl>ND0s7gq!YN)nFFTe(zQ# zz9HJuR~Q-E7I3+qIlr)w1w6_adBI_$s-9^zki@8|YD4l;l_lmGr?LL#cayKqWZ0_y z;1UYYv}Z+3RY_Q!LE`Qt$@)cdZPw%X1ZzF09DT$o0D)afe8(*I88V@A;qxeBe#8h$F2zEkZ_ zh1zG!As0~Z&`Sc;;uijJvn5M}DLgkgjsH8SqLzlqu=i?YD$IRWXnhm;kOz0&W#_Wj zwN89}Ysm#Z7a_RWN(*dnHQliPTzUPUHNuSVQY9`Yc+^5ym66mX`D@yKO{-Mh~zl3$TKE881vIx>uZejFCaBFfH`TDk~PncF^_d=DcLv= z&_auUx)S0?b-wPkU>S&rP(qghYY>iT0C9gid6s=W=11KKcQFx@>|ooj^W1oY6bK*a zHvT~!M=?#hH?$*G({XQ`+8KI4j#6)9P4TF{-NkPs5CyfmpOUx{8PqhIy;r-}b-uo| z;l(AR3IrId9z)h z=iz6-#y?{g{o%Qw zibxLb}@HxD}K-nJ{9tYZP-76iI!<|9xdM7=ws-DrI zd$s*%5ywaPVAmHAYp?^>Zf4haq-U9X*umz=k(iYPUXzW*7k+fYLvM(7-tBqw5Z660 zw!QV;!RjT4BmWd$cx8B0cT|0ou3zNP{SMlnt-Fa2{Gu{zI$i^Qj{xmkp*-NS9zx$C ziGAiHr;e)NLMHVxyD)h!5}oo)9n~0R&hXUeVm-AGVVokpLNcHrYwBTqC-p|_o}I(r zZ;s4%Y&oIw8_GIo7)2Nb9Jwqcm`uc&8fEW(&z6O%j)p@x;|d+F+j?qeE*?Y|%=cp) zZl`^RDZcS>*|{zaIAZ%GiD$HIuAny)GTtP|NEjO% z7CQqN-#`RYFhoLWKytC?BlCl20 zdO7%m7eooss8xy^0o?{y$=-W!r{d9fI1+gmI=>{IHJ@Pm#K9l?u%%BefEJ_EI3C(h zMlU^1$2p=Ho4j;bc zrLUj!Z9MB9&2MCxXPmmU;-RD66NUnvVeKRNf`#n_@pWZHD9K^RrA|ujYe`(=fj@nC@%_zo4R3ac!)I zhUTMO+@>LhmXpJs7}t}aggMF!U!d(Sjw^ns+0Xk;+l@3t2582=;Cl?I@M$T)TYXc# z=>L0{sMbpd>vuoAxhpIL64H;B!_eJ&buoR*Bb?+g~SR;WkUvf ze^rAtg>i&`z`Xv=b z=HPv(cx{C5EumyQZ<7aqdhLZEkM&^s<8rFoJ_2_Z6w*rm6`pl=Wo41WU#&_?~K0p!Xssf=hX)N z+2weAvw|)(0B&Eg-5wlpNv-pLuDL=)_;Gn1FHUvdglK_Ru=qe7!D%csyZa$JWf4TK z71kNAcCcct96jFY!8SN8wJ*1}PA~LPKVK5Kk^Q5)F)wr(uDfXZmqwq2rctfT3O*&6 zsEn$8KLP62b!DFf-Hu5oIPysB<#HvCPhsEN53*_YQsA7Cs|XTZQb!3|ksd;5_3I%< zU~~J4vJc&y;Ko0(A}rq@l&jWzrPKLaNTZWB6&L7pa9^J@@8N1^`su%(F(P+8&UP&Z z8^$=!C#ve#C!}$?#FtF5$lRh2 zqjjfwF`&G-EAm=snW>kM)u|`>P{&HT`>ZAm+M(0yj)v9l5BmKA$-{z_x1a!^bLS9h zEVh?jCtY7I^UM$%-3Ox+O7pLcsuRr3AgrAUl{_qzpse)XjJRG{h2Sv)lc+Zo709ca zh8z@4RTnf7vMHo_`QU)~Oe$9fX?@GGcLypwX6t$(Ms+2IjT)NuujAK62uR{dzDpxR zZzV%9v~@txym;TL_8ZA-F z2@;87UZ|i{PJXHdQO}kLfAbt^et;%1yfy-72OB@jr1*gRU4hU0QG=K5XohipD+C+O zvZ1%-Vz%aJ<^#xZ>Gkt~ANv(gOD$2dsFw|9H5W!GPi60d{(rOQm%DQG=PQTq<~0}5 zCa(LST+8i!U1)XDeq|u~3nWI+TuD;p!S)T;tpgZu_Ge{PGu15rGEm&TdappE^M}qd zooi==Ca_K)eb-%wk=QQ~yioDD+V5P{jTyn;Al%($ML5=K4W$+To$5LuQM8dy#5 zGah|d)gc2G0hd^HE!)q6efcram(yMy+}+(rjY)qKh1pgUAP3W5y*Dh`?=-dKhdUEXzL?LOqc z?)uX8N_Ux#;k-|dUWD|5H@$bRm14sK`I_n?)U>)`IpPK|?ncUJVER6m-ur{z9cb(; zDA80h;V#&ue>!dw_}~xB9kbuxfp>m;zx_;j1Iex=$bx~weMTcJ(GR)#%O#Ocp4Dbj zvF()0lF`_xol{&oD>DD%&KYSfec z_^Zx$Q#|(*y|MtBSYBU$?uF=kH%2Ul1$BREtPL?~+V7tah+Pe?S_tSNR7swhW{Nfm)p zATYo|OpKc^Yx7RFJBe5zcZH$#a>h$M@KP_Qdar!zHX!%4jK9zR*Xf|q%`N@bm6!fi zzXG8fD(oD0^(EfJxR~q7SnBn@!9#>Dwu-Z%3F$kR<>t4H#fDbf{xeDmkTZ& z|6Kv>H=Xdpo7|#6>E3e zIX71g>Qp+qdPUOa@xCM8VQ0ExoLeo$uheXbT`i^PyG@envR=bWV0BS7mHDCb;}H@I z{jjss7$}mFg!9{61M`9bn{lRFHLLwuHMJ|CaMUwfXtct-!aZJ+O!X&bawg`_tm2dR z9ATgXl3F{xWTCP~L%Ef_@r%c^5zL3&kskEloxa04n3X_rKLyHaeF zNUwn)7>t5wq@yGPN++QP12Hd__ul^9*_rvy%=u={+1-<;c-I1XbKAaStW1Iy@s#BK z94MpRR;aF7@35OOa^?5HkLP!^eEeKJGlt-0?bp`#>&{g|-Beq&iu0rnQLoJOX5W$K z^&;$aLjy%$ph3`Ztsd6c(@kpfZ@P1sA3?TO%J;io`7k}`XI3+JS)T#!s2|d{zL4Qu zAFR9H)05O!{qa+R`y1nb&KFqpeHj?u1!6m{&?3%xcbCz2;BBS*_p)7akFBM})EP#aSq4$l0Ee85p1VI5K5nEvJ0>$7~ z&B)3zTkuO%@U&RkC++X^u!6kD(%Ssfci71z6}DI{ zK5tukT)o+z?E1+ImA2S1OpX+4RvI>Q9*P23Kq^Q}j)`KU)=xZ5htsS>|9k&tMz7Gq zC_|X9A%qiB-=H;Gh^w1x@EJQLx?x!g>)`WB!Q6W48?T>=(VDu2c&6B)PZc0r>EK&+ zb$_b79h_5r7>=kLisHU59MhI$BA1n05_>eyJFwFRtTXS|4M?1q8BcFDJ0>B5fdce9 z({3|G=@rlw=Y&&lLeA5x1J3h40#vo9t;E_rpQ6WC2B{TPV@xHnx zHOKK0+3-woca>ReRv>zIzEQlKg#-jGcy%YA?0MK_pdDIOR^yZ?CU>o^y>DF^(G9&D zq0pmW{7lUK?2d7bCVpQp-n@Pl_%7-@m19wslfEj0^z+5ePb_l5Cc^LMEskdlzQMSb zuSQ+Hwy_BZ!5?qZ)NZXYbf)>Hb>?Vy{jEgWN2a9Z@hbs|wB`zIw${O?pnh+nPZ|pJ zoU{5DEev;#KwR%N5S$xfeu`OFf0!2Uc(ccHz|M&K=IyrAv6bavVZePCkHw9%_+2CF z)pU~WyXI{-Nt(Z0Ff$0*HGib(qPe?)vv!U!CKfxUxy}Dl{blvwO*LL4%dTAyRdr#) zU};lKt<&G>+Ia{?+RLsPWwt1dRewyD{L-vQeLgoY)1-m#R@gfj#9*jFQImd&&MXgg zLKCWx5W+lwbgk%?3s?~lK@Po3xR)T6Fcn;MKQ80h`W+?B*mXu&k$wV3DAj=xom|?h zL>@wfBaBZ9H#5x*TE5{pao!>gs+j7?{mJT8E}xznF~!_}m1iBvY-MJPO?}(0tgUH} z(wm4H1T2bLWNL=Q)KknrFfoq9B4d$UaQ@a3i+^n1gS~@lJdNeOn42jTv=cr_o8gcj z58L_fj>HSsgn#4hM3l!O^V$@NY9AodJV)L|TofN}-PqXQ3ZA`J!Jo9R=*C zo^YO;xb2?ln|~k)8M?md#cThH?YhhniYZp05;nl$Bs_MDBHb_dd-8&g6$qvUOi3AL z_{)i(tbL98B^?Q=K7}(g%&08&fOw1rCiF}v{gu`UNQ|x~pvY1jUSJ<=MStB^;UIw| zvKcFx`aA7V!@$3M({*60M4I*-X6h_UhYUkIGTa;I`ir7|B_{3?HACmPaOXW7jH)$#r`p28+Y9gJ!)=6BHuXC6QlV2Vf+Iq~I-;qiILG7#dl~@Xh!)MqAIBPk* zxRMh36S~=&m2~lEuF8;A$ohSWjxfOA*RVJ}p6eU)`#u}hk(}JOGLntkP^mS=$*@i3 zNLERGLV~CVuDfsS^&&!3Fk2YelGz_PunvA)uvG|t2rlNr<8gS!O)KeUL%$=gT!8*1 zx34{hP#37s|Ji;c?`~AoPOFT@)7%7$KY+F!hRDTcAUku3FmDyjH9(5n*P&Sfc|VZ# z&9h|a(eXw|So+aHa!r@lGJDI}ltA&_%QyCqbFY`W3XzhaBvbDAOepGtAV@C$Vj|?PltFb7IF#3 zAt8iZ*BWBIWaL>Nw4%p1liRAzL3!p#*C9@BMsmvW*X6k7-SjS#jlHiE{}=p`M_?7@ zDSk4jtP}Uo==>=h;Iuu}-qY&LG4IzOZZ>d8S{4=1fS5&igMB^S1B*zY_*(Yc>;Znh z0z$}7s|mJj%(uH>xboCNTo!Hs^u(8d1}e*OgA=nS$YEu3eX>~&#Rm=Ywy+&0ak=u0 z+iL4^YBqGrl@HNgM4E&=zJ#B6*x>BS|3W3|y%5P!PPrefdJzYJ;xWs(HlQT!T*Hg_ zdljq6;U!ho0V17Ni0$Pq!^9|bPwenw2fMGxt8ElAQz8Cr5Y<2_KmlODlos~xRZv9b z@zS=R?%bMg^fR?f^!PKFC!$CA-d#CJhm~x3T0deB>VHgtn>#dFTTLzvQdb*U>SZD{ zM%k#hi8Ny3P4!FkHK)K%%f0J8F3(FZ7oDG$TinEg@oHLJagwcBaXnrA2&xUb0{v{Y6F-H@3Pbwd6PCPvyDIOD( zZsPM5tBnlxpxjAI?j`sdcK^S@N`UX3zkH^ys_yr39tKYeckfThR%Ho5J_}M4R)ww; z9ToTGmE&_+Y)Ep!tybX@s@+E)dk%u&5+iSGo()e+ai3LN*jullXzEP1*i4G$o{u(d zA9t&H{fY;X+pzQPRzPIa(1-JNQ!AruynHp2%E+%Tq+iRjNWT7gS4b@g3J@JOJqUNL z(2Vfqt%;Inm_07L0`loH>6KePq7nWQmKo2pt3AyIzISrCnC_?3`N$zYA6u@GZOH$k z>Y|Aq^7Lx!9cQsEDb*m`cgH)uXFe~+s1NN#%Zo-?tsV?RuX?{7&vS3`-C-R^lH3=1 z9%7I@fqSax?EK@}RRwasAka7ba7(A~W4SnsZrlQXk$iB7V&S-zNLG{O(J&4J(^-1s zpo^f2>{9=lK#}0*3j@s$PMc8KG~Js^nMu~@bbnD7t1thql-iB#Z2JLr=-IP3bTv6+ zk7!wxPD&xAOppqN2-C|AB+h-kRN8g2EE&)fztTXgpg#mkOi%vdvXQJDNqF6y z=2LLLq<1-kSi#_)S*Gg?@lBfG!4E!}P8Bft_k~^>Q!i`bU9B_hYVw5zq92J<^r6hM zB-qqKd^?eASU;e@9lO*4 ziY>AMq1lb{8@)#@FGqEb^wix6F7#tQ@Zx5{7*_h-SzZ}>dT=t3T_IpEG=cddM24gJ z?GA7uvUn0*@UXU-_9n0~0&1k+M5>k#IRRW8R*q=C)Qg3nq{xXY>#tVU!)LaME*;=K z|4;|k`o>xu43}qhjU}N8HOq|x9OqEX;@!h@+JVYSQBLfFvZD4?EFyX>FxkRuqbSZ< zHh}XY{74nmE*x09w9^v0F+PH8sb^e7pb26g9clYfSJXT^G4$R;e+vjOPb{dptG|exUOLfvv!2v#J#73XJ+IBJPSfsG z6jTde6Xm0aeumNK*bgr@(x?lia>S`D-t;LpN)LP2J{JFo4rSc6-;sVMF54|rLh<=a zEcWk+_rDq9z6=94Y)-IrQSGU!Iq`DHb41ziHp)VJ?1mGOGRaeCyTt`-KRszJ|K9tZ zVH!3f)m<{MUNQEtL!8DU5J7vz;;AKRt1~PDu~wxBAz#agZRy{`Ys;2$*{DW#iSXlH zEmanFQiXl794l5T-$#e0xw}eNOCbX(5u@^s#@@iB6NItc>c`CaoruFceHc9-@(d+83`^$<;+6qKENAMW9f7Jan?1ekTqtt(Q(CkkDp;Bid zMya$JaK==ELEGMCv6&^_hBugxe1;jOe+y!%UWvtp3^obTEh$-4M`o6S`h1jjD|Dr> zZ#zcNI*?-dM{WtlPBu9)G*fI_^1-@gzJ69`RK>>xXXkUx_^+v@d^f)75!`$1p8 y_F_)`y1|$gAoE-mq`qU7NpxM4vUowrPZ>hp%Be#~AO>u#3ut_XWxf-QA6JD$?B&BGN4_UD7#2N=Qm~2}sV+&Cmjp3Jg7hfYJ?;cX)r_ zd)HmeTKqF{o^#G~V(v*~aADkQ(|RvpT$PgS(H?gqGReJ$^}UGtjqDhR##4R!3?d47!^l;<_6 zzd(i%w6q%aT7}m%&!WYSL%k3!R0|h=kP<@dKX2jm--K-A-81 zl~!v4?-)HKE`yGP5x^F_wZwtTNn_Mw+>n527;(^^_`L_L6IDp>P0h4 zViUtl8{Iamr6QC<-;ZO1-z|&W6avktj~Ju#m)oFx=)suf;FJX34WMVAkaM1 zQnW`3+NYl;BKnGN+%&hyxkTM5oV9jPp3Xm^(KcRwv8^f0EnPX6>d!h=B%O5MqCuoV z7(SW_v1?SNFp-Gd&#IE49T5jVhY4rHJ;1_UiDqy)nm@RecZ?k2I&%0k>>iv(VKD{t zxo={F$YH@1C`K|Jr9gGQ0pNuM3X75Qnr17W%Ez9^uYV74UJG&e?TL{Y0=Lf)ib zI$gyo;@vnNy{M7fIsUlnSto&vhqHl~|i;6G`=tAV7;?Gp2vO*QB^89SQ8$$wPvo*daQvgD9>TR;Sg0*^C5Y-iff^ zRTe#9qwM7{TWSKSk{2l(wWgAtH83BnuJ%?W2Sq|V$Z7Ho3VRDoNx^S*TdqdQ)6zgb zh+_`KZOXcIiROw*k;fP6D(BFAiZL4(jju|!P{@bjs>stmO(Xm*T3Zh^-`>D!2=)_i zDS2)bcCnzo;P4^&+i zXer=Q-jAv%=0@70I!b3LD+Sv_ma_J-Wh(bvh;#29N=VQ$*IEk!d|X_#$dp2aqvD{W z1Dfby<|i|g6;m>-py%*O;V0*FepLsubQN+(GAa%l8gfUaFWSnRI}Un_W)Z#$8bzbr z{Z}}H>Mu$STAX%E&0Hl(77AALK+2|gW3%eX1|^U%q9N)g&uI~yS|Q)2L$8yep5y{A z;j%oyT8Rx9Q-eVkO$z5b#$}(==^92?LBVGXFz$axs4hD>@gkxS^!?45(zVs$-Q_H-B+B zm}QY_i!?#IWSYv-jI8WMjF9>ZBHT?PSG{zVFcsqAuTIZY@9gA_qg0BB=jVxaeur@a z*@)2NySSM=)ljwL2i+!1(o=(%dNN6tVcR#2E(BxhWwcn<*^Qpl21=$W)7k&T;?ZJ-{u3H{z2YgD_s8FcZF(=@})W3t_(nV=KC zNG<8;%-D8IaT(XzgB3-Kjponc!GGK#vvdS}pufF6`hkpDov%55UIJf^2pr{z#ASHP z0;=4US1sY{mS`Y#qplbtGMA<5Bf4FxWCNr(#L~85E!GBw3t?bWnCUx`rKk|Q>U|-m zs$fYdp}{n#9@$3WP2dZA-M~|n%0dk0EaJ{U;bHQ0U7X;M@}vb1*=cCdy7*X=fqj!j zbov*IwckHp}D>)#aDGmPhNU1eX+q_FT0n= zGj|nIG?oPdo3j?g+8tsb0$tc{Ffqj@6Zi>HURiSFROkipPP*3jS~U`_;orF>kL)M$ zwX|SY_wDhtbePP?%q8&Gb*)8*94-Jlt&A-%JeQ}!v=D`kJ9*XmK~_6Vj{8?P?yWPA zmIyaq6kjRnSSdF=on-R(9NpM`FGt7M<)tnXp9w%^!pbJN%%zbMY*mVCuSj;8s(!>Y zmH06EqzvD(_zd0>>r^DOAC{_1knED}63uct^1g71XW~sa&oU1qh!hbbfUz9JnM@;( z?6@Fy%spLB)BMW1&$xKHT)RX%a=PF(>k@9%^t+0tE%v5Xt={X6nuQ!6H@Qq8Bg&hk zt5uLMry<6Xr3=g;=@IBFDwgz^>NT10y0;J5WdW=MVt8HMS!^C0oycWXyQ(475w%9f zDFQa~E3*>L2{4YZdH~}vKkUuGW1ZxV8DAiSr2RksV;MNS7FYwIQYRSSsfPbSQ2C8$*)HP^0*u3T%C@jlZoGJM4inG?87#j+X%ipG= z(_W>_{@H1nVwF&KG=vuMEPcj~pRFr72yY^_A24}e(-QC0sbET0;+xRaO@wm*8ntbZ z{@5h!Yqwls7NlK)X_fEwY|-QWu>@v8-=4}x3|`Xr+#Y~qY77}>DOB9#Ey!G@p?)BE z@&GJ=x?>}JwvHwxBDWp@n=oQR+>i(QqM$ILs42QS6O<{?d88M})r7EB{R`n_%gCGil04*g{XPhU zy;Q3z>d-2kaR~OsolQt)TO;gSlIvufbyG;=JK%8e3#*hQMjwynV_iN2F+1(O-dVDr zSgTdc$^F=Y5$#oX8GzwV?GIkS7bQIInAy;TB^b4AxFYT|J!A`A@{u^^v%Csjk_0~jCkMg!f;KyIH zi9A4imE}UMNRtmvk7@8lgNb$nrJ4v+xtYpeA9rwgDmIzT2t_0f%?R5zRv|OyJy$Xt zvw13qhTtwJuEDl6^8M${-A;y}P_xS{(_H6gu%4zRRF9{|!GQ3YY(Mbh%SZ{8X>k}e z-K^JX1y~GH@OakEcfVMBCmd-*mYeR0bxeqim-vp8xukEzO@k9*SzZR8acWMJNV}}I z5RYmWoBVs`?@ris$zY)pNc+Ry_LzwPa}7~CIVi4<35VyD)$qH~O+@otAR}^ESh++_ z8dq3jx`)5Q1iPZWCh;ruVL@S9fDvompP!A|qfNmXRSDnQi*sq*3mG;%r_LqT#F1q$ zCY>WMJ#qN&_evPAl6~xRjdbIN#B7=rG-bU&``$?Xp?R>VZ3AV8SVmpYLKJS$MYJ$a^`-J@<>#$+=kjSs<1V~@C`$4F z*z-r;E4Pm|GM;LRe%wBmMA>X5jc=u~Y$+n|v6Y5+UM19LZA`r6ZeY>D{mpV}Btt4K zvS}y_H_G?>g`6z#2?b`J-=Ss2*S@_4@gt@IH!`2*zTLd^U^E!{@pO>1ij9LkDwDbH zXB!7^UxJXcUxH^+q4)50hxewu4(E3gV$#4D_M|3Hpa?hU~q+z&W(jd&m$K>n1 zY8VZo5E?}&)rgFu8QUHDHQjM&5w+>-_onQYxCG&=$=;I}eAxRy7c_}#DTo?wP@5x!elcX4PVgee$-B`s`W6kJOC}Caw>QUq=V>k)kQBFq8o05eqI~(yK!!b{; zE-?eF@kGNPabbSYoOIA5;kA~fdG@eQJlZun#2+k^3;BE>7#P0(rQC8+uNUxUpfLdH zfb{iR*fUrk%n%HsAAIqMy^ps-aMx}9%*)M|1~V9F8gu4z&Z;DZX@+_yDxG~cnSg_H zddFpdV5&-%80o-J^0D|kjiLnWG8CQu}K{b7!U@Ks6thq(aC zr|kQtQ%iy`&P(gV-m-Dm4FkyasBeC4a);P?T(R+b{gZG3loPZ_O%T_xAFaVm!Cnv) z0ay^2GHlA=0}T23;WFT{01O}24#Pk!pG$kO0w+;r;>`0v<%OY>3Hl>|OyK9ukvKLX zA;1ra66j+Rzyfn}#C@%kc=zw;2Rp&9D=8@|XL{$~D6%lE>^sY5W_$7SVK(7)Z_~+@ zYOr#QPF6bd3&pqRw`T(B|2(Brypw>F?{fot3SJ%`A^x{bn8ymEoA39-+nz@*#6Xyi zMAZv&38XqBY^tL%AtniisQ--?;yX8&TnG^6$%DC3#xDyf;-?!73R{Hzg0D9c0(xm4 ztmY%Jvheq#LIeuX3t$neHmjY`vn8|^suNKtEeAc^{yo958ln(#c2Wq?IG#$V_T-WE zFwm`PeEte*SqGEak5+cC$6BfOupnYkjgjiO+E<%W_i9}KhO8_L%U@uakkk51kU;?N zGlOPI>dqz}?<-`RncvN4VQ8XFs71hd5R^QAQd zXm9PTVf^?g#P3u$9%%?7)KnGI(N9F%o*^gDAqK4Gaj{O9LtZ0#iURA|b*>IO z&%<|Gxd)%8eUbcc2VHd+Rk@OtLpV94AkaTDdx)^o6rqsMy z1Yb=MS4MGXZOzIRAQQD7a0{#@r_c8ancm*6-1=o`UlsXGTU;kC0P7>FPj|;Q8iP(7 z;at$Ol-qLUdMSR5OaeRKlBX*+_R@d6XbG@JX3$FLVq(+$GLEMh-{I30>ArtR^MPjr^C7!aB-II5tp2REiIi)TCm|2aCw|f%q3gvVV zdVA8z0pS61l`$WXevgb`X%6Opmd*WRyCpPmB}<+j6Ac z;XFVVU8ZjycMyXYr3+pRMkLGjt`0i%4&?thhOt6qLUnlXv5ER5Rq1KMGu z3^Fuuq)Ydu_4ULQarOE~&^0g5cH4Rc+Y>{+Z|f&Y7dh@*%^^1h8T32q-1ZkH6p1&y z&#BvTdm=i&NI+jlZo$`&hK$~}&9Wd^5#2Ctxc@SQgai~b0&$}neqo@Q)T+ogu5IS+ ze{_mJlps9C`z|kbY0uu7*;B0lS0%$5==6ALK=t`MA~_B2odyc;?3k5$2=5Hvm1gJm zM@b!ZWI@UE($}j)IU0fN|8ymG(N47iN3l)$p~`aoFmjp@K1cHhh1v1>U9ERpe7(M& zUGPDEq>8H_m~Vm3elhcK1j~m5i?8rE+qmT+fmJ9wf*u~NmGsvVEr|KQdNLqb5Q<2x zt6TlfOZa19DHOf82lhw$sH$b7{lZd)@k`v|>Rf^OjtYu-6Xyx<=L$#5@}kDD0r|vf z&A_){G?I1QWxDZn;TV~+sw>=?1_haw-t{@k9>^Sv!;|T>&@ms9e<8dm?b0|fD7=KP zbjA*r1c|SH1`Y!M0FQhG9n-uFvzYPf%NQs>eLCx0YTtuMK8k})vq5fySKypGH^YSr&__%uT!4ypbiALl2^aD zx+W%br%F-bUyE)^vAvp{S7I)RdPW;d z^wu*DjtQP`MHrz#3B*vZ*Kt1C^GXt#zC9A=HCkTN>cxg#L1yXi^ONd%zOAFM^L? z$SCmOTG-a&jivWV#`j^ycS1j}X@1Igly3zd!N$1BG>rFA@Ail+I4p%P?v&P%1A}lk zD(<1LrRa;>YJpztYt~D@N3)ur(|9#92dcW?%T@}gHGED)Ov|C?m+nR$R|E*@G+S)h zW{1&8kX%O{fBIDG7VE+^{A4+TznwLok1VwO*uuzijZ&MtkOPu?^$KW#)-(I6P#WU0 z7Xi^B5VaJQ?SK|mhd>awcr}R^vZ%5(zl+Fihf22f%vU?`R?E1O-(b$>U{UMOvZ_|A z=O}zjPDU;;N-sGbndrG3S;vaXgmE18YBW_rBaccI3LFmhN z-PmH*06aN19F z$NATLb2y)z#R4$uk;7r|l_j8N%Gx+)nZzo){*@(Q9hXP6DJ~nWW+?ne=ksf(ivrl0 z(eo~B9!>o>n-H&vj^U1u0mHnznP3nzSt5lk;Li-x%Nxn(j6kgRGNpVu2Ih~cm>+-v z&1XqcgHyNxdLOuRD499b-^H7LD^4}U7S|q)AG}Y?!wE=B9npT5mRA&@{2_chB9(Ne zi(5Q}Q^4fgSJqRKZ|F0@X-tNk4l>NK!7{%;#Bye9k+EhbDad4Jn)$I5YRzeY>KgfS zwT|dM@bUdP!*zG%*ZVsBC-+ZwyN`s3O*Ll(`o<1Q60mSUu&TnkacL4@Bo$({-Qq(S zqKUwjoU;>iT>5nOX8kDn6<<+@9auO{wKPY5V}}_(2g>KDgj`jVn+9D?TpH`G*HemU zO$VWWg2ZZ@*YoAyXPnqNGo56Va(P4nfbVk$e>)vqpWC9@=E?ioZsGO zHWQ_(JQz@Ag*Pb|pdx1?;xPeFxlDHCf94AWv*oKkZ??KiXN0@YKjsTvfPE|;Z|NBWzg8bS)1{$VU~KvEduy*T-`zp| z%ibl8sMYfj$gF{pt#nVh+r+nnXgK{0Mk z0+AgcJTj1VOssOii#=t|XIGsQO)ed)i%{nlA>2fuU`cAaA8)!V*Y1y}oezLg?d3{U? zL7WF8%;iuoK@4xu-T2R_kV8Rx@iB@!_0K`IR9fBtAmC@ql3-aBQJ_0@zh{soAlk>s z(x27j(_Bpm;MTMSAjWttw9LN>8Mrtrv^a-Ke_-}(D#Aq*rx7y?%3LNfi2qQ*;)j9n z*Db=;8+@ot>Dv6((1zQ`zmABZMuWA$|C+uqYaL|1p7PpWZ3`EP1M#a135gIq3z7&(BxPtH~OUieydldbBtxLUFT9Rrn+`Md~JO>Z(jY z%^1}(2cT*U5f|%Q7I{+jG%ykKY}l>}u?PqwL8JtU6mOGuqy)pWvZk9oZ-yxCtJCOv z__%5&|0(QW{lxqer2TCarUm{C4O~5getH_=>S+E)2>l1uL#;CXZ^wv|crMqeJNwMy z`%+xn(XPb|3O1&U-fz-Eu1=j1qHv%ou#4K%vaU^aR@UanC8qGRoeWUa#At}Gu^(0> zdK?{optsEPiNo(2C%KgG4xKDQR^zp_%nJ|h272kde^*@oTTLpUeU11ko#~AFhal=) z#_-;6uW0Qat8`*w=DymHqr8rJZY}N2ykDfAA9FS@t0Fh`htcFp4K@WCY8Fjp8a91Z zW$sa;6deU~vJy3-a;AL{gI>AnAQ^CTqocux&BBovV!)AXz%wv|?Y*VI+{?c#9BS^j zb6poKv&;Q^F>Ab`xKrb-YU)VRZR4VT-6u(sE!B{;zeAzG$I+CDtIp&rWGb^ zl(6FG;Tj6zs=r!%+|!sKr8ZdlL{gx*D1og@P)O!*hI_%wLoNy8)y z$KKzsnfERDK214^ri|_%bD~W5dka!%l{hWsQ#!%zCtkVW$B%pl>_*t-S2o7oo8SuQ z-%EE)ei(4jG{9*l6tV_tQ9r)9;Q^uNdC!X5zeRa1O_$4 z_{qb_AK5ljGH{ZmXldf$ds{OL=**MtbtTa>i0*^~Q|UlRmu=+J4z$dW*oyn-E4?fg zZV5KeUsZ(=TSL|B{Q@4(o}9 z{VF1MNm;vVg5}4pkh2`FWM&$kzewnzx|1ZR{<`?$+m)wISGP^_{c7T?)gpA8c>lAPYeiCF~Nm$a$ zlVqKpDjn^=^7Gw@jUY=bL*>P0rNUM!s za^b)mp>iu-vLvp*XRB?6NYC!5M4yGN1J(z3$LioJj{-J;Z<%3*hQ1EuhDn-s1_&=C z?`zyU-qCSCZ{JDa{F?oJ8R_V~Hi1H$f$LBp3dLcMpJyw8hZ;ii+jIIAh~-y{o`~Po zPiFxdmrGZ7i++l3XAB0k2Qj&Ib8t0ee{X&8e)YIbV2vSS?vP$j`aQz+#MgN7)o+#0 z*3@|iwMjkW;BI8~7B~DcW=vuw;Bql{0{8B_vi?DJD~Qgs3&ImgKPIYC$)|;1ft5x# zK@8;}KM-Oy&0cs{Ya$!;(tb?)75&Ba*NTFhh|9~%crB@u!3oMH(KY`~ewGg%F+wP{ zYljCKCPW3#$EnYqn^Qzz|Soa=FyDuOWlVdji_H)J;CM1;2ItJRNy7I@>?wO7|r8@S% z8a$aY&w*b@Eu1dilqLn884e2zhqUHx<_g-4T~Y8F9shmJUMhLib#|d8eerWc_WrL{ z?n`ie_vMlrk3r4#HYw8jI-kAy1MgLz1?joDIUiQfuV9mZ4~dtT;{v^R@y-i%`F9Jw z4;TCM^Ycdp8=&hG*jRaa`RJ47T1d+mbjFXSma7*+&n844&ll|rLw2rDHr+uZl53uK zM2R3pUELoC6?q@Vyy7VZ9@J`kWZkcPpI(gJ2Mb6KZB*Cy+(7IL0=B(fqVtvswzy}K zhXv(^ZJI9ROr64B_ODNUm1qxZp!K{O;eG_{C3M zLbOmJx0N;@82L~OXWS%8kACp}e^EF*XkK7YCeAeXUHte)d@BtDfrik^v75M1@}LhKi3s-Hc9t=Z$Z7Y-@PDYhlAiJXW(YXtAd9=!-`iR(CV8X zSJuDIf4~oJf`%JUqZXaAyZC4m#h5yO`Mf0LWLUrKpw^(s3*MMwE#MA8dIj`AHU5Bp z?MG~EJb7aAVU*3e#K8-Dy*1x&Env#(Wmy5{u!ZLk`AC81Fg5A+L@p*QmZRW$_2rb5 z*S)31`ttaXhli_PMsQ0@i~AbL`-f&LvHjMi*WD2W{hYn`cJ(MUbge6Z@$2Pvcen3y zlH_5V-!S1im4X=d^#xOsg?~Rb2gLtm!x1hH()|B>ADNgWNisK_Q&MMmZnsaY>bt=5 zi{Qw!|wY7_eV$W^c!7A z8?0ZMEUEl!zfS%O?A7IxOQDeC>=ATPtPr)wdn?`W&D8rwTS4ljrKPs*9OpG+#v7(% zfme(n=bx)Ox(tTb4TI1wM)6&5%NAU-g#NZ{G5TNr)OvUurB?L1>(P@W-&nz1@b){8 zKt(;M{V;k`>i`7zbX1dVTR@6E)~-)zIpTL;#nsn$?w>nzeU12ccQ$3=`$JPS-@?!^ zQ{rThG}mv@F0&z#@mf~D*4fc9J77xsiuZbX{h>wRc-wlD@$veV&exyAs03n&wE;re zy9`u9spC|W+lQp|%j&w0-CDo(kSjWb0fHBV$m~vf+@S2eraHEFIq6Dpp05$t)KB^v zbrKZh+CqsF6}|rWaJAFa(lY;e;11fO`F(N$8>#Po2uzgNt<)ftKA+xkzPJzQYz;!b zZvVLU{)(nuTbP{{q-|9k(=YkOjri>^8&OLpMWq%P-UsSy0GmBdhVzZFn!T+J+XsO$ z!Oy_eVY*dFR2_*py#Q20AK7_rT1k1j&+ThmbSu}UZz`Ck_$2m<-eS2cpVx+WXRpP({sFyxIpQCaPPQB^a#KKE4lyEUL^ECMqS)F%xK;Xc{XE4+h^Vt8wQEq~Pt=kNcToc`IMqXzq& z-CiPk2yMS2`~_*^?gVPsWdAw~tAH41TwTq$b09F`L*5+682faq z$i7vLL3o@Y->xo{*7N4sw8*zjLAKkkp+Qd_ZPNAQ{|Pp3#)7fw7@6IFxNS3;1V-GF z%hwZfFL0cJKKy8M4s8o061e5F#Lj3ACOBq9Jtuc5ZjXXF!^6K$a#6tU$tgaWqUg^%j=mPV8Y}^jtp6QgH$wOiyRF_bUuwwF@{Lc&K$P9 zac=|N|K8`XJNj_&pHc})5kS%_3YzV4LQIK3((*<@bn@)5ZJ}kisAc7?K$2fKe;fU7 zJB36EeN0ZrVb+LNm}uC2m;h@1`K~DXwE*uk`Ayfo%WfV~b#jOxyPrW2liN>!?D22+ zeh6KdsO@$1_S06Q&V?k?1OtIxl&H5>cC;9RfN>Mf8y^r7Se|T$gY*!J zuoIXJd_QRpp7v7%ir&3K)p#1&IQ#VzgC^M<@E?CRx*8YlkGpCJ0hZIu4woy7ig!WU zBik8YmhYz?2yjo|Mb1I)m^@w{8{KJ54LA7iLAa*lp*e%dmh4CmTZFqrd=6W%@o5*e z@`2S4J-iFlbVE)+<|J^R*;qIzhj0^$7TIeRi=AZP?oc;7rXSHt;LjlGiIN+B&Fmua zw$5;!^_arNWT`CmK{t$ln4wQyU&vDS6Z(ExP5ey2?3OSRZC`!{?1`Bxtzj%$w}Xv@ zB@DdaG^Afzp_9Hn?idLF0}W@0KP7~(&y@H^=DvL(A+B4#^^*iMTYHk;W%`Www_=-24l+kDaQo;JHtxD$c;qi-oS+6K;kP) zN?{y2@LWiodLp0YkC(%7R>b^s``m*q zvHqgrWsu@;XU_juOduVxATFx61K6?V;5-_7|MA>Tc7J<=x2Ep)1zb}}G`vRYSB>}2 zqK`_?4Y9q@v!8iD+(LA3#M5$FXLGUsyo$uNrNqrtU!p=T%|g}_AA!;x~%{KUB^KjGaO z<|lIO@48AaO`A$R1#U(xdb1q}@vI5Jdn!G+%qNfElL3YsqCq)R+MElfT4o z!8`1UtgQ;6zf_#>%UCDvbHYAM_%c}-f$k4jL+!!}Zb?N&$`oi$xb{JjTOjHusUOB| z{yz=GOQc})J+Em4YxB7C=%P-{c4cIH`1d);;zfGgFCFe z$NRT`HVbLwn6S=Pl&TG4+*btFeG6Dqq!^N{@`sNdczx&99khSZ)Kl*j)UY;nWt zH*u}9ee>+ppE|*qe~nwqdQbh_BENcr7y3SGT!KJ&!LE|;o>}sEAH|{j^&NKLZ4)FQ zAx%9sON;&Tg?mM@I$BfkK>{4;!hql_wbRHbWADjZk*?BsO^mNA=l9V8r%D&h#iVO> zzze)U(a|}uuuSJ3M>8+i_68*%VqTdB&O~!}lRxzWFQ5cyG<{;%*s zgvSPJ%Nmzc%Y6$s>_{zU>n5^`t^CR8Q=j(+{9|S?%@Y@_t9eHArNFpLjC6@(UxisT zTa}$7ZB;M((;r(sc2X$qn5{PZo&0MEPrUIDf9fk>d}pU zxOMA46IL8VnAZp{=sMw`esK2+C}sn&HYV9-`}l=ExVHJes}6a1l>?)MQw&QI(+2`% zr{6qCd|0E0lKuYb7wWQLD+pyo_ccrzb;znw>SUG>*I}>zW1BqcQo_aJ{GAFU|33-1?OvT$5otkOKVj`#)#l*bspCK0Mz%O43#;9kS`4$Yg3SD@gEjl1D)ro$%tyYNyQI#sgO;Vkmu$=RE)j?u8;|Ls3-1d5Gfonf$tFiy9rAQ%p_VkD zV>${Z-_poThsrMJKiJ0)z^tiD^Ybqon;I5RfN-Y<*bAHun*tBvnI&D7!jQPg*X71a zySe|wCx+(Mk1>OIY~SVV%3*j3Sz&_Wlby=mUIcC@)4rBpU}Hr!WWUsi&9grbj@@TI zAoK}WGKOYg_;S)B_Xko4LKp^!7e7$MgZ&sA@!5#zS}FRSB=Y(rJ=@;bf!anaM$m>Q z78^!tMgR<@Iszro=UN>)eRAoHUzVpvH2dRb^aar>wp-q@oPT%p}!-?0RK; zAiMjvWMA0rhnu?scAIi9E8U%1eN7`>b!B)&YuvJXoi=X*%%gyqM?!yRbt~xoOBFb{ z%`1IVV>zH%qvHA&r#$gh>9V~^ zi2aAQNWR+tNGzos=4AG`eW(Kl8-6Or1Si{6tSw8rP!)BgP_lL`DwO-gD+k~_uoTE( zN`GoHkMGUwUE&SMm!njrbl`BHOh#8@D$`TLE_kFntH!0AR3B}~7#6&dZMpQSScD{ptAK{O5p;MZmC?sWzcQ8!mjCaZ;yH%iI zzBLiaZQJ^iQChHezGP({70hi4@#)zuLCaRssSx=Tw2S}ws>|l4Ef$pfc2utN6)S0S zpx#S46_>aWjLO!d+~M0?dt*HllmhvUR2+GOxaf54GA)^Iw^Of?m8E^%8)pp+e{xga zi?_U={ho)$<`;#cinR(VA`w1SE6NNG%PkE-7|p)QxAc=9uVzc2$V349a{`V2cG}L+ zliV7lrn!~Y!1ved8-CD82fN!NSM!zR1ZtPvTOP`Lo1r%_dk9yqkD?eqW-!M?U^8%& z<_$7Egcaot@;wa9SKs`L=B&V9Ev{pZJ54ANA`_Y+QgcXSN|0A5trS8sU~wWPLflK7 z+zD8hUxaXGD;=Iu;BklQ=gYlAvZYRxO2!*7C+GyQdKTR_0^~r!*P^DD`(FF6!ne3& zwn%=K2DHB<%sf$*JhUnJe_b+Lb{eD3oAztIOtcH8lQ^I}0J0MA`9p|t$+{Z41uB{N z;wdW}^Rt-e@`+0VPnjcBrBmK>Dp8lc)nav2#wq!&z{G()svKs?^(%@E9aM&dA#N(oC8-d{3II)c`PH4fU)1xedzrXFY30wrP*Wx z8Hc6uakqUbxm_487-W;i8~0bG%si~#`bW-fhl(kBFnSwMAoh1&b%-RYJ1POp&8!=3 zC1P%`cFvaMX+LbHFxCK~53ezPTY!+lK_iEFy#UiJkew{At4xGlbvITGl8!^NaUsHP zq9u-AUO#7Nbu!HvztH?3)oFK8B~N8eS9hpNUeFU{A!pI#itSL6*JWn;g087d%tfw4 zBgCeFQ}!k*%|YtId~PX9FY+h)7x`%nA*WYVY{Htcve%g2EMQy6L`zQ}Olayp{`Fq-M zZ|V2VX3qU@ub3GOzn|yJyye(YX>Sa3AGzfLL6u(~jf74eM(`;FvmB%E=UpGb`=gMO z%LS`O-YeMTAGZ-8b1p=GJ88u2tyv=aYneEUOr+9tIdI=EgVtt@8bNQ-(EBy%604Kv zM&A;L0%495On~c<$R>`MxgKu^;A>b4DRGh4>Z&R$sO#(EaLsT=C6mmgadS;egr$L; z(iFVoX-ZEF=|dLiHJhcnM8Z{OxxRgLW3}rA3(1iUc`1c6p@my=rEAkk>J$CV_F!W3 z)JrJL6uYF61#0WviZO+DlZY3g7MrILL=hwtC`s-^TOyj`r|Y;6s+Ram4v3oLBYl;Z z!c`7pIh#HbEq#u%4Pw@JI0CmAH~NA0jyt|iCO8b8l@-62{2fStv|@C|z}r@Bw7m&x zxR{!m3i}7YfC2Zd&l$gVJC?egFHyEJz|pJq+aqi1r&3|muq*HoeCO=-@VgSEbiJL% zunsqA_3zih3*^I5j3N9(6nH%9C`YJohRXNrIe!@C@x<%L%RoUaN*0*(3!Na%8!mSe z_0r@o_rglT^i&D7Xd6Y9NRGd7osM&;!L$`8>#{Tn;#Bv$y3^jmi%Fb`BUzUXbC!?f z1CF@ThpOL7qp_A##j7l-xK1N6$+!-FWPjeK5I|hXaOj!nnNu7H|CznwPE90Id)31~ z11)~BEdC^Q)Ek?P>u&IJ^9OYix!V(*v{^qweNmUi!R&~B|Hqd`*wGJn_&n`ij0Tgx zgj|TNcepjdk3->|pkeiqi}dVVOnzX7O*}=##Xh8f zSRT6YR<{zg5%Xw2Un(c=B<3al%~w=$F*k4FuiLbqL67~ZpP~=+_5+sq2CRJ8H5awi z6Gd+@ywVh1B|R@D4NYxxGc8YrtD2oP{}X3$#y0b7ua1 zvu#kDpKR*y>{a|4R~OkgX>;&l>2TytM|l*AvAIMC$uJx}HYjX$}D_a67g{$RVIeIt=+u)m4~KQn4Wl9Gf>F97q?K4izJB1PdwwtrJ0bn4)70!wuVBMP^m{t1iL5CQ}12sTOu}H zMKk(LodQN5wEu@^nYBw{2aByevS-W$VVPnC?m;^~UD>czG7K1)__@^(TUvMZhQ^Fg z+-lK57XGlvJwsg=`;ZPb?V@)9{mn12cD-1|*ne7&@Eeg)pv7>=rF5^i+MDwd&DfuM zx-(C^+t^=2qzIhAg}I;?Rm%qVa3$W3_knKQ=#J-@y{0R|%O(Nnym?>z{+Qyno*uIB zO_cbWU3aaVakNuqx%(><&VFhP5J_kbvdZx8WQ6 zA|t0?1IxQcCB&U!CGaJ>(m9qubtAG~i6H4vaTT5t(GhFZXs2skm`Xs zk!xt`Zv@^$`SBaVtdtxcb@3zOvV=8mk zV-%#S2)TSz{rF?-?f%Sz+JoTOn78vbAaK&PcL4rUAqrl8Jx@oHHR(CJtVGvpTIN9I-h)96zI}QVo%h;^zUf0FJ zIaZ{Skcu>9F!!0k}c1mt2IT#fy*t#Z!e=c zwR23ok1+v65Fr@D7=P$;{ByJ{+{HtR`&EPqkLQc7ta#Qb9#z)>`=C{=b;5MyLJs*f zIrpC=7a5;2@!SI8XBfHK|MIW1s(FMfiILad-S-P&t6N*3Mr0@#Y*g7;dPCgLTv@jUk%{ii%Qh z0bLiLX2x!xc|7yrrr6I9;{#ujc!(a;Mn61GJq68Ri{O~T2d`x6jQpncNiV&F@eH_a zjVpN&Wk)Q7xq`MbjzA4?^Cm_3oIKzoA7llw@p5{Lc|1RE6-;tw4WPN!ZpPGR8=56W zW$QWr0+%%(hPFM}g^h0tAkB6g{HpgPlS1Nh8T21Di)EXVTFxLQpX^Z=2zQFiG@be> zw46uglc?f^jlg~j^w+IBK-~?{BiDZ8*X4hKZr8Pmt+)7aXXo3IWy*1}C&C3Z+0LAe z9!$C@b5n^3t~KWDuFRKH{aAv zw>>RRCclLJou~O>KIayBpq`(%8U?bRR3m??#{bK{s=uZ1^z=`l~kRm5=c=T zy1(h*p#7}>Wqp;MKoRb(WRpM9 z{iAG<9|QZcKE=)BG6x50q*D3wXD2Rz>RtK8IR5y!)Op4vUUduJTwhfN z#%j=Qlcj`#+wrnIoo1mBp zAlbrY%TG&3fQo^ZHAtX3Oa~xKRCe%jdAPo4TTgsn9#ogVx_DGkK=Lo0+&5fIybF9Tt@?mbD@-{wb$(HB3AXY4t8 z3sdeMa7T|?RYTWbhx=ugxtG#(UO1hrrmMYSlH5r7->d+aM2M{x#uli|Wqo?1cL3Rv~GUW?E#GwpoV zWzI!V4`PK}AYSzR%B$iDdF?Iy#~XXNkgxq{JJ0RQnA?Ic04#iTb?Qv!T;04 zbw)L@bx|+@A2yIET~tg6pMV%7f>aAAp*}=<2@;B!P^C&4!1CxwK#;BoD$;9^BqV4A zV*!BxhAxN-gbtwu!WZ?eH-BcWnLFp)duH!__g%B@h#r-3G{^u+%6lXnwI6pRGv*q8 zwvh*?)@*>6Kgq*FSnQThMw5Bwt}NBy?{nU2>SgQ5u^8MAiRFJF%nNV*p~3|2u^Y6N zvF=w=&>mw`yY1VZeQz3yx|(aUz^i@K-`MX%nN$mXIUg^&f8U|{kTcm9isu++6nZ6V z*(CkJ#6z6DS%hEpaRhcHa7=7TSR_SW)L;D!65x)^G020T`m27Db)4tmJ1*{GezxiD zD(_{5q0>@@dE2A}g`?dGPv1d4{c}1vIB>O5^o#tAR&GEL9)`M_WqMCfgLmGMt}6D_ zoLOuy&%JhP;N?ulvx!-I)%(I{r2`++l+$=0b^mPNy3d?9EX zpb!Nek?k1J+Z|DI>Bq_C5YFZiO&iHy0Nm#0yqGg$3*Y?uHcYPWnS426F$EjU7F3qRd9$h}XWiJe0SkT3~Ewfb0XI`J?@-2JB2 zbM7-4dGo8EJaF{;x4+AC%!3tDtSbP1+2c3MteyMsc_(G{B@L7GcOnNhZ0ef*=Yu!5 zk&9d~ zv2mT1G3Quqlevx?eozew^E+8FJt|Y=UgYm@HRs%SVk`j4fzJUa4in zf(Ak=q@MQ{FILg3E&f51utlIx9&t`ona$&9$%)IIq&`1K^~;9+0=Cs4u9fmsb$sle;tcO z5X!rB`A9h{r8e?kXHbRaeK(Fmb@gAYl&)>|)?Nx2nlP1tqkvySS#cm6Exc}~*DJ>7 z)OhV@NZL7iLg?)la@VcBqYZ6w`muhr_$UPu} zbYJ6Z;g2Y7lTe4Z7aF|ECK=T1Kh1ts$!8{~(tp|zy3~Cub=UGtQa`=;dmd}e7xV)} zg!I2~#f&2X6uQ&FIIk{EEq?o?A2=*FOsX2b0O}*Fx1DGmOb!>!Msz69H{E2qzURL$JMhh3A zN;X*xVY(b7b2i^z(VcMqqfz6*nk~V${}bpGd=%uW4)Lk0}$A zMa~=v`7WJ;S>EAjr;NEOcOBH{L69qrMu$-+oxJ>jay z*NkuLi4I8?cxX^G@)s#`2ssK^zq1<&>|`aFs1oHx4_DDeWh_|`vyVqT3L!8f8AujM zRCMZVlNjACTfWHgVm3M_PPCXnXOAj(t!Wnp|Gbg-<7V5{@t~?T&1cU1Y*1!HSjQyw z3SGRgY|=pP)kfXf&fWx{A!2?Mkeqd4DV$QuYWR ze+6ZfCl$XH3)~}a#VFS=cB(B)dlE~NP7Q-a{{;EFVrvCT6m)Jw{&}UQRk=yg0C&~5+PG^4GThTD{ zoHhf5m)407l~!)v$56Z^BkS_WHQ}7O6ib<22vU6&kUc@MI;~j%qZXGuJa=`x_<6;Pj$mt{p?a6N&EC8;n_YU4ezri~Tb@GkQWgt+ z1kc;1A8*zAYfBJa=QEJF73pu1ib?y^ooUrptv)xy1z9t0&XFPB)68WWGOD;gh8Mo! zeU%(9hN&rtsy${uX5b)RpBhZcx3 z{OIf?q|`ayEVK@C8N_26Fq&y#S$-emC_V9}oOPp}J>%yJgmG6fNwd*=W7?xbV%(`g zR38{dLp|J4KzrcvXe6pUH%lfwIN+l)EOpAp#yyn-x^-JJ?oW@enXm2}@zNI!s&8e# z6`dFXEKXl`562sZo(=G!*IbSEM4o;N$UM8MM;Si2^z)27fC0@_(kbBc}cVgxYP3)+Tod=_$=*=yp7_ z^DLqx6do!LB4ou)nYw`F5YFGvv3h`GEnz51rSWTbevRgs=-8eBnnS~E- z<=E+@<=o=VUTP&Z30KZ9=ijWu`;vv090mKjhx2QQKFX#ADuvYofrpyTg*$@sOf&K% zp!kuhSi3M0&*g}%*lnR8Xw!%K<*pyuZF~Y% zxL-;;HGzo&cBJ=ia*s_B4dQFsd+KHL)s^imGLB{a$UA%gu#H+Cbd-2K;SR zM-Ezf_uw0EpNY__;D!H3Itj@~%3mQDj}0Z_TZsLVRo%Ldr>&>qhu|p$!_A1Q_?pCh z{6}~D979*nBgR}^uQwNQJO%w=2x60Xwh_#D0JY|31s40oHNJa!7!$&{V#l{H?wd|3hHM<`f=rxHYSX2xp7|jk_ zxJ<;h95vsRwR{>mQyl3Zf6Jygv7*;r3C9X$) zJzVA7>9X%ecqm|s?0m=~s4+(y%?fAZH=E5xN`zA6rd!S69$&2+pL}~{Pakln;W|FV zSkXpb6!KNdiA72a&VdgoONPVA4n>^O6!8W^i|uB4SW z+MMlsGhpcQsS_S9qxv63oQ*$HqlDJgUD<2$`n7A#tTjGL$GDD+hQxZ|fi_0DT4_rW z;A!!%6b2Q;b~`JDeJrIT+WT)%pk6@CdNcQcer)iA8r0Xou0{{aE zeT*lmLE8t??kWca)}pb&lYkdi4^xt?TL3&rNYzM#tuR+QwW+G)+*lVEXwDyV?0RNyZ>5>cuj8vUf?K= z(QttB0@`Z!64jc?HCL##48LmG)ytOMNa|Cjdp>99Ht3sTfVkUlKV^C~Wf|6j93SX7 zKhkM2B{@rB32qcz^37ipz#DKC&$BXa?XM2XZ@e%jxI}^M#6*0@8I*LKq{h%L-dv3U zH@&#PVN?GnfH|Kb`9SUjLb*)nr{wWfua>r1ILSG=U+?xsHkk!f^)V9 z^|yP5`^dU$Q-^L_sw6~6SiIH zCBo4+UwD>SG;BM*)iCtt%S>a_TYvf7+O_j5=k~lj9(ZM1YC)JUTd4u(XkphdwtWaBxNqpWk)Q<9I`&ow?;T(0c_f{ z*TD-Hg(n{T)*t}SxFQ&n6%SsYRhFSBVvOBxI1$s)PbdCU`C{E$auq5Mf=vT(h@8X3V#Y&`sV&S&qZej&0p&QJml!~MaOLyu??i=lm9Hnv}HR4_3og{o7fhR ze!v=H>Dwg9M^HUJGQCN+^Q#HV=}#b(lPaIK;e;J&nGR{5Vmk(t+Hwq({?af~V!{7y zp<}7oN|gHYD(eF8f>*?P(614c0wjJ%;g9@L%n4hbsZx@#{Iml~J3KGf7kf^Gk9VL9 L%=9ZSy2Sn;gbF>< diff --git a/articles/BAS-vignette_files/figure-html/unnamed-chunk-1-2.png b/articles/BAS-vignette_files/figure-html/unnamed-chunk-1-2.png index f230e50d41a7d12ac836399738bac83183533f57..a3b0ba86c92c20caa480456dd5b813acd4f3e3d5 100644 GIT binary patch literal 36990 zcmeFZXH-+$7Y7(n1VK@s1qBq90HQQSdb2!Aq^T6?p!D7eEeYyF6htJUR|NqRKzb+C zCm1@?2?-#fh8hSFLc-km{xh@Y^Q<+WhP9Bj?mcIpefHV=cXqqJdu*V6lAE6!1OlCe z==}W@1mXw=fsQ=qItDzkW*@Qv{v3OutNl0d7x>wG*nj~39QV;N_XmM4N3nj{;^wy; zL7=N3$lv#kgELkMAsG_R*3wKvYLEHC$J1AjU%UF(=`#+4H)h&?NnL;S=~eX18-eH> zGaHM3Pv)X+_^jZxo1vO#q@u5C9Cdt>!1YhJs0--6&+#{sJgxtbc9i^`>eq!#)U1aJ z!t$N->%&497;x-OBWvog(R7x&n%JVOp@t#*ANKzLfBt_7{C_I}8MQc_atrTMS%Yfc z=na~oZ2k0g#k5xP=1--uJ02EQ`jo{_#quii{Wn0R8vzT}AW+Mzy6dkWyUXEDLXv`f z7_Z-av(=|mNsf)bxsHnuz2y|p&txQ7F1h~>bn_}eh0EYOad-+o?l>=;PKh}{Mhk!jv{m866uRYTOhImZq+2dEV%9-l(Zj-l%=>r>E> zD~Tj1GW;&CMB4>A&gIS)apZmr52zHXarb$HKPtTaF34l_;gcx8V=Xc46&~GAp%#Jxu$L*XDZCSJT}1jy zvQccr-&$YpW-WSctaxIBuV9}DFI}f)Lg31{HL+Tz4zk~X8p?nmX`*#y>x+cI=2N}v zHWk>>r2VuJ>B``~ZP#@aSg z^&0N`*g?s7vB^wJP>77@~H4)vhi`65$yI?*~BfJ}7SM987+}d5+0>kP2wU7xb zvZuh}2l)@psw3Mlb1jX|g}awMv0m*o4dhJ{9@8)8wHZgV6>SZ2)-I)Oa-r%@=ehv#K8IJbSJY!+UZsS~a6po#U zFW}EpaIM{@pk#%$X`jHwKgd2Ht#J8>RdGJPMWkk9{4u@8PK_)uzO3Gds#F}0s2 zZ(B1<_vZVwTeC5q(+@d9EQep2d(iGWoFoBn!7tE%m8mRg13Cu+$-JD6P=LT2;NcIo z5Ttz`fw8Fy^=j)DONVW)fhzDciWEexo3AgKEnP3{7`FbhZx$kJ9IA(TT(09MF`_+^ z?pe(fj3^#lI19;2An^uzY9bTC+1Vt|*r1ZjL(lFsN6=nQ9E3*|xLjnyr#`NPL2df3 z!0@|d`4uJs9B1f9uJ6x`!sZaviPV2~PjKY0(jtpovj}(LFWN2Cr>DELRGsxBEN&3-@QHdU|{96SfU& z{>4K{lTQi;VmMp5$!TZ3hLEF;x)XxxO|DA^K5zF1Juc@|G3rlFH>ckm5TIG5O)oBb zJXs9-;N(A!c=4vH_xg+^e^sMnjCxS$wEQ$*r@*2O_BB6?tMRt45j8*Tz7V$GOlA+c z9AabV@Enc(o*9TPc{#}fix%`WlPEl?TH?#Rjo*R#%5y?<*@@Y`zwO)-V))k(aJ_W% zV~yHIk`eN%zw)6SYyZ2GCl?2VmURQTY{w;3d`Si{euh-rS(`oe#mkb8EA294bXR)))j zFpk2g*3WFW_iry2oZtL52BXzbJL(p8(=ycN+Xg?wKX~|0R|DF1nwoLO^9>^;m*H$M z0MFPKV1(07xLcAUYSw7q$>n>=r|^uuBOu<-PlS#f0og4wE6b)c45`f{wg9Hho!t$* zKGIo%BDJG0xZn+B1?#5=>MR{kuQaKd=u~AkPyL!IGv;|GV!{=yiwz{N1=zbED`ea| zs1U71q${Iel`-X44qs-cyImRbi-8kSq@D|lcsSt=?8XRtFh0b@{!q$(@*LVGDqDx5 z0QuH8Q8FeMyPGZFK6zo}E|G6Kjbw~Hj1E1VN5d~|hFnq$JO=Xlu{tko2?Cw4N+(4d z3%MVbfe#TFP~l-2-Ij3Qc2RzJy5TjQMhIE5@^_f0i>+?Fw#*R7dL2}7ZK!KkKYx7= z!n{2q_!W^w(h#d%Sn=$u0hA_e`X88lcK3JTzG-ojfzavWblqx1EFR+-uRjO#4MeJl z?%|9-ug4oVzYTWC?X?x#OU+P2+y(jQTx{h54P@D3n$=}Yf~lU=Ia##28&&{&951Jx z#cL>An$E0tt1&sG52_iBOicm!HV?_l#I+H=q~$z+>e=k&Nev-`H@f=T2oSxwJ*hNT zwQNIhNGK-$cXlEv4B4poI{vq9>PoV%bTnd`t>rU`<#|qSD_lBit?`j`iOSq?DtA4z zpC%NT9l$$+SJ;ixPLroMbpFGzF8^NVgz)|`F}oau2m6C+Tz_u*mP`WjC-}FiYgCmT zmVNfuNF!BKnVhKbhXiH@SQpKN4Inc6`bm>tJqPvaFkewzA_T61n|m628g7TI8C?`g zCgCJiPl4=OStdQ{uZ%my&<-t+#dxSWM=_?5_pcs^PaF&$`d*nDZ}$5e!Kky}$i`i8 z+s8=u5s)MlmHAq9bwkF59w@MjMr-+cE#4BKAKngFZ&)cQKu(E`?3{a6fWapB3VV2` zZ$f|NppvJW! z!HqcG)U90^;>)N)k)8tv`$V48H}~LqZgZ#S(5{RtYvn+EMzcQVNgd?;INWXt&N$QV z-Lo5$qXvH!I*IWdO}ihI?*E`4IQu)e1~P-^4*d*;WvD#!lIXV2cT7_56zTZs=k^+P z>})@bm5;mP%e)r5O)wUI(7Cs#g(u(HPyTH?<>C*+lzJxQflFK~CCL_VV4-sd7NY4x zf#N1hAvL!bpOKkF+55J5*CvDPrYQIa`TdZ+qicYHq|u~}BFp(=mrGEjyx3}lVnCA) z)glq%)iWxrCw;ko!&|?uIv>ImtQ=f;cl-{RLC3-ZK9EQJIWU=h?wfE+XJ~GBAQln!Uq!J*icvxwzU3 zY3r$ag>O?zEM$#$h3w6#G^0NW14M?fMmDFH_6uDcnq~w&9z(dV0vKBT#B#cbomg_o zXxa^nbxEdql3~8dmu;HUZhqnf@m>;|W&@2ktEb(}2&W(QL`dLj^0-4g_GrdD?y&F} z`5NG2-J3r< zW2>R%bAR-D1R!Bn7OCwrk#2^mQ#%wLaUrCm8kKQ0$IZe0g{2N(;o$T>NY&S2A+f!h z`i^vzRXiyf6%MZ!vhsPXwYgihRUccA0PKh#k#bYdMwhBaj|4+AN~=}!(vJKl#MT4O znd_y4I`tCYjWw;!YIA%MFpCUxKx*jvnP8MW=>4w40h}rf*~t!ij*grdrQ#{0&PLx) z*~IKH18f`bcJl;__5XK25q07~7$A-mH1xZUdy1rj#ZVcKp7xbV{UQ729OTMJQUUV7 z2y+@b737HQMuyuU`vl!sP9*5l?ho)YXYym{)NVX@`gHC$)+G*d!st+qjXx(ycD+bbp-TG}0fs5eWkyeRreT0SZ2EgYC*+7zRArD-TF=YQZ zUCJ!jFx#osD4-Lp@o{C3McJp;I+-*9so$1zc(PY}xI+-fMe)Z;>r%GS7mU)4#Y}$C zV`A--!Fw}T+|#3Mbtq^5L=T_{*c=(v7(mpNxG5Z5umOo>OhYKL4NJMnBy)(A9;I@B z94Z#FKzx)Q!~8)=7OM;Y5XjnyjIE&#MQID-y<4Z?EQ46TOdB7IjBO&8bv7-`PoP&2 zlR+n0d?^mte7q?Z+SbTp?r?#e)v(X1cU4()WoJ`b$rxJg zj|UEtP-NTK!8Vm4Hq>?lOFEbWyW@PU;iWT28;59=4yHd!kl?7Hy+YQevOH0c-~)Ez za@g}@L*iCxBuU76UAy{vJV_sN#Y{sTMcOMi=46eMD4Gx9^Wn;PMA-zF6bd1NfT&?F z4t%JBvow-y+OgbQN0Nl()u1H+T3f z8r+f2>!sN?NN+t#+UU(cLoOtV^E)jjvgGCuF@*-NrGlFiNI76>*SbF{V|V{jtBNJy zM;M_W5W~PBKFBb!y-G0Dz)y7~fmg_Y@)EqEOX=7r8$5gttT>M5S&>8^i!A=a?-8In z5_(5_g~1Gxz`X-6=2;kr*AZ>ecqxTyhfVZo9#|8mk7!Q$)C8Ga&0}0weB1wSSsc}< z_Bt?AG2&?BHgHFVt(*jbBD(g_qk?t7YXioL&Nay?p z(rssHP4=SFq-|+PLx^nTCs1i~qx9?MP9+d4)EsEqMo!7$+L7V+k-A2`lA&Pdeqpzx z;vgAaO(Y(?R}#YaK!r6>qTW&j5T`UmZgMBb_*T8NvrK)!PtBC0`5+(AIY@MlPQi_z z5JnX-X~q8gSH@@er05kZu~Bh+?*pD zX7~6r=QGXMisR@P82T8)6(0~+Fkg3tQS9%fu$A}g^gT$E@Y;!Kgbst+c440#v@pj8 zu}N7GrZY~Lc2B8ay|2;<-DnJTj}nd6?^O%di&T;+L&C)rTQSOgppIZddKJ!QS8n! zx?_oYc6`+?KkbG9#U)Yc^g~|ooRp(+%h&|hbVp>cF14!nlb4lH`~3ye*6FVilvSUt zRr~h)v!>VPCWMtZb1!!i5SxN;+J-*24Bhz7cy2sUP2`#x9TNB_Q214wz9;#kk55s3 zkQz1?u0XKY(=d_5CODSc&<0QOiZ#O(-xj&M?y9s>bF;^G*;c-O4A`a#2R7Jr-OX}l zz@!!#oc0LIOekBWc1wdOp?k8+V*>bY}WOQ^I+0L#D>m; zIL!)flv@RqPc1vtEjgf#NIHYKr-Qh718Nn*tIlZHbET77mzQ&~lCWeiuFKdJfSnVd z>wf=KA}rt;tq+s%hBn@icU$(@8Pm|9xJ%bi)Csf45raY(jAp{f_C2`0mZR`!nOG{_3Po-1`1j;!AR0 z187os##*9TZG#;&1FH8%D&$*ybq~HRCC<^K6Yp^psjaMQ{*9KblBrMEUK!ZZadx#w z_=LND?Y#=R+yozDzNMcKB1e^XXZEtKeN|72x!#?b_wewDgW@?W@1t%4!l(Urx1QXe z%Wo>*3pTIOQ28OaQgi067x#udM>zHjY)6~Z%d6S(tJ1kUyknJnb=k1B(QB?DqqN5@ zT&rzo7p*~mfFkO91xi)qb%@)ku-!Jc5wv#rm1T*M=dKzjth)x`cIHvJ+WhyIJks0%SpBPVX$DP9HPlrx)r`kxnV{JyeLdl8d zx5CUfgz!66Q?*XmqAMlT(F&U+^TIfj#TE55&oD=rzBHMtwh!~J^q#UWR#^D`HV9kZ zV{uviTjIRd8a7s0KB|aaI|5dm?f@fd4qO2su=GYW`0yhMeo0M)UC%^AQEie-mriHQ zX)CY~Y;}H+`?gGzotVq(UEOhxsqgwl8gO9Qoo^=PUyov78j1wLpI&Ya!zYXi z{bSB$WGxpzV{<7@C9tFmXs`S7@&w5ei)PN^o%{FQ zWF0*JDP(MS%1=rxF8%cRSYOxs)jz%eSt}VndP>yL`=8Hb^R<)g!y{B`?A3rO1RMr4 z`f5=nWL0tItNb_D>THs)#trMWVrT4_tlK%zMN?6wc+zkq&u17r@%#4PrGtmR4|^(3 z1Njm%N>#B9FG+15u@8J3>Vf8d7AGwUtoihV_t7uiCh2*t%)!2ePDVuFX6>0aDM@c$ zM*+qa>q!L9{o-V7hE2(yjhGRIQ6D=lTGFE$-|u zbQZ=|zcK+m&L<&OryqDB=_joX0KN%&6rqS@togh0&9P`R6r3dk(@t=Ml6xc`Y zbw|b)m}Px_AEYH?Rf9ZSL;PpzjfFPu;T8t^Phs;UBgq6 zg$(um`{d5j0x#O;{g`Q`|IF0*wmWI4`M4cnA8gss|lKcDnLb<|R$u-DCdo0|S$oM>UHFsbl* zoTzoRLFzGwle@G=K!_ldyC5oDo+YQ;g-h_wK_qkfQG1c&8M@U&?CYj)#8PPhHGF)w3ew`|c&` z$r$UdIdROrYMnZyjp@Al>^dZR*0Asb z_1zsuB%QFndsc0137dIVgbq*p@Lv)$?Yw=!tUiIMfJh(dh(mKZMc^ z`6dto_<+S{Hw~saWzEi=j1a$p`i1d6+_ldfNlg5;ke3(`ojCHV=h2e@)97=zG%tS@ z#VQ;3J}S8(uV!F=#So!kF8*}%Gx@56etcqrQWoi76Re<8yhC@XoTG-J=Rd`oa~?{; z>k*uIkU|Kd+YeY$R_L{pQ}Lr$Hh8i!ZFjGxweof zFy>`pu3Xpn6kzy1v%NWw%`@)tA>?1Go#!lJBC|j+azXhp7=4hk^o^G^B6zmr> z+Ch?Z5>XO)buObBzog$Gd|ArBVJPCLupEFY zw-hB9ba{0d)aaRK3uP2GNd*p>YgA>Fr%OP)69{*(UefLaVsEDbfnm~&wJ@e(ua0O( z!7#7eU8HmM(&OmOGJCz?etn8iSP>B4EIepYvE1k;F0StP$aAytCO;WEeoovp`i>YN za(96tjvY)y)ic9u1GslKj9Ne^a#Z8bb)s6A#*|%(A5JR!z{Uc#Q6!fScbWN@Wa|ST zJ`q~WzV%bF)V2QQ?d3kVmD0e{^MpI|=$s!o<5~C1KTKQQ&65Z_ug47P9WU34q92S) z1a_CNN)@bLAZHpaClaWA6x`H8vw<~58xc@Hj=wpB3N=9jX_|!(m!^4S%LrXm#*?pD zu=CScMMfqVaXQzK4P@uWir$*Qv|^fun8{KpU*YZfBNC02vN-Gdh2Pd65R~ENv+3+( z$^n^*KKiCV(EuJKCzgNJuH$VRJqt0_G7$TCpIRAI(P^>3=I~l}Q~usxd|I^AMfv;5If3UMT^SeC+N=0y(*zB@<(9$S0jOff{%9m6Mi+;*akx`l$Jul>6mCt;Lj({avIf>n2H# z64q+_0FN#}1sIVWx&mU{n4{|*WeW-Hnopw2sTswN^^WnVOgKHD-tng-IjHx{H}{(T ze<3f)FKNOMX4pSYo9ufNs0s(e*%JrfbD7MP#R zNDegmWHG9(aO$n6YTT^hWp5Wf;m27XdbfP;1pb~x7x3wHdGQNdtHdsIAOpIo84}6e z>waBc0$&F9qp55}?>o;$zcu4S@ff!Z za(-25wA*Y^C{1Gi?O@5n!`H7?YhY{|&$syXVJ)pTB>>SmG%U$TtFa z&p!q=44<;;&hsj%2r93!$gt8V8&&h(8zsc3uVs9zvwD6lTonf-g`cl`!0saz`Wt|= z2I^qMc((y^_kuN-k4tzcMrnW^<2JESK}9w?rH=t!LW)*4A6KS%3{#-jVtTl2K)gA* z=!GvfY0zs?R;eT)(~}Cl2GHR&aVBzr?!|n_OT$wG{%IJJQN0dT8==ufAYR#Sn3#pp zcRoP!%?|T^hQn?!Q>V%-+16s+YT|c&7HJW6V1cw;Fg*j%QMt}~uX-0ZUnVmN*epRE zj7wjzVx{LK|Jr0PhNWe3x5;kZ;(+(*h4_0FQOL5Q=vS%xgt(A?Sq; zKt?kkWo)m3=p$>$aMdYJja%O(R9tL(Vn z*zkJQT8f(M`xScFoY1cYc6qN5;Hl?LfCo&_$9_S?j39{$A zfb7!N6G_>N)_?PKbuh({Q`bgvT!42n&$Kq#2dbOL44xxfxSnRv1HdVWYk*`HWtEH9(xBTdFlNykit>XS}p6&&d3a%a`}x10F!o;EDcaGd?aTYp&VON+@K^!8Fu^zgduRSpI~jMN73Kq2DfRol%IBhH zxB(K8;mp!U8N-Dc4#g>Aii2Ftne`x}SP7}8493VGC5(7z(8A*rET~)c+iYU|%H6SO z(QOp^0Rc#61D6PBH(m2$8Al7TSj0RHdPe23Xx$y0bAQ8W;MI6Pz`SBDTm~X-Vpe}+ zc6~@T<<)%__aMB?E54bT-)-O$!}A|5_Yq+ zN4kAh0G`@KO{V3{MnbNPzd(RIHbl@`O;Q%M^kuZxMLu-?htumUeUYj<{{#LISp(j4 z!6*rNk3DS$Wvsn27Pf7M6C+pKL?FySq9#DB<^JIATRdKDuNW+3NGS)~%0z~N1f32O zN%ay7f(^P5b;UpOpSkLKE1aCkJe zZ7Z2vB)sEbmF+(TdU7-h=>Zw%S5ZJUV6vlb8+D+CB%=--k(@Qbwh^yaEuTi_I3fkg zFXjeygS~sN4y!?%=7Fi8hQQ~@g1r43zDkuq>FrXW0Btvy$z(5WpGwY~I*%#O|-fFZ=UjIWWJ^ z$)qMUTs}L+UlLgKo|Dk#6`b9_>q4G`>-Ql{bzB2-DsaVwt*5UJ4WFpeX>M7`!$8Gx z4U2!kYe1$jg64(RS|nxw<(Me>KI?eWEhAVDjR?uYD?&HGLOOn19$iOMFer!@pmt|( zqB6R!jsr#r;!RBiPp7z5j&0_s)`06IaG4!ebTovC9%Rz;t!`D=$IJ2N=1Fv1cPrfD zkpm_;bzXO;KaMBCS>^1|KHgK`bmTPKDMw+1JYPcK(2bc0$NyHSnb~n^46nP2mrIp z>;SbG%eS~!yetWUi{ji-855e>^ENTcpbrJ1v0m>sI3;rYkyCC&&EYPvJ9=fJx8DJn zXD8%#Yi7+-AAkU*2~~Dz&6S}CLUi07`a((r7^jUq@I;cMCM87n`oJ2Qt%BdNU<8W9 zhiZghh-5Dg-fra4p>DTdcLgZ5Bz@DNyv@Ax{l=s>hSOV&zK={b~Bf98qohv`Qf z1&Cs|dd@sgvB^dEqkK(M`(NzDPl?@&jK>&5*KU(#|b5Z?|1ho^q%LWsmA zvP%9lit+Jar5{ZBZGkfS>?KtVV7?0~0xD$Qd(|anzA9#>|4uOc)MZ~L+l1h7_|^p& z?0zmG=hzo^8(xfge+^!jQk1GH3(QL41#Cep_FSHIGSD8P^y{GE&6Q@)n5MKbTjlEW zGP>?)t#Lz3jd4aISVR6b9gql!$4=vDqxMP(w$AjnTK3QJ=8%8)j2^}rdJR6SSj!Bu zJ~QwJ01=36ZNEOGFTE88Oo`yQyAeSPwm)2{Gr4W;d?z?dvo9+;=i*lIRKWS(YI2zL z$?-gQa%Aeb=~hb_Qa0!I+6CBs)VfraM*#LRUaohip1{QKrh3f(hXa(fX0wdU6IvaKO zJ(!?HHzch-8IF0-(tSPTk(1DB5<34SOOUS(T2#a`&)_YNwf_4vMZVWF_<7mubvXKh zrT`zw>S+yq;kM_SnyB7yJEO;g&5zQ0!?o6u$|9}6ex)Sbun*bH>&aai1EpLbfC3V zdLj4_q3cIeBC_NQs&o)&(pDq=k#2(Rs*%hw-egH*3+eX zry*N~rcd2A{c}lIc5xBEQ&x@rgLc&dwP=iLutr+u;RCw_-IbEX$^pLB(RoOdixzD^ z3A~Xthy`eZ#yd>`m~Lq9?b_fa)Wojo%N7ZxHA$=;hFqypbI|HP4ve`l$n%sz-#ZSJ z&Eqe%c7wArNMq$8JDXnEyCdvIW7PoR4tHmtI04j@(=i&$=y;XbHeQ5iO{R)IFX#f4 z23=w#Nj=g~rasSnh7wGtsIiuoXO#%O`x^k9C8w@S>j0MwpJ5qGfDsj|ECEV=n|P;N zFs|SeTy_#@yq+pfWm%8Rs6qQ=|06#K{z#Bs>nTwn5A^-qzLadXxX~ZVDLHJ4 zZ=1w%JhGW~H5=EAR#|XvcU|RVaGXJ2bUR>bsz8BQ7rk&?E!FLIx!;Gt)|`4N90z~` z=VfbIW$>1y_cNK;>o^80a2yk>o4(*Vok+@q*d)3!=ZM3FufOlc_lQoxrcSK0Hr%4V z4RkUT@TWEmtqDV#t_?AM>`62Vk8FobH1f>0?9o@(u~kFGDurS!7mRZX5U3^nk3h|@ zy2wX^5he$XG(z16(U2M)-l*K1- z?|CqTX@&(BdY)p+5P104?1oCSIf>Mqm-1@T6{$(B2V=mv0d=Fhm39R&MOe?JG~G_Y z>0;d)?{c54;qk*vutr6UdMGO`(FQgwjDtae8h`O!GnWFSVEQ0dLWiX?f?S0Ysu<6y zErJ*4V7hED96Duh%O}4d+IfYZ#wQ%?+HT<_>o=Cs0F0GU1A13l!jVJJ><(tLz6gsh;sV9v7^Pr$;FJUgfm>}O zoIS&GDM9p%Ge8Dyzk`Vd+AXmBbnkI{+fo+;a9!v7b*lA$V|eZX2_R|jRSks(p|$WY zO>pC8pMhdi}T z?J8=j8cVsZmi@4}6{O55tpdG?YezMHgC9&li0LE^U_KFXB+w;^ z0UxG0ct+ER-v3vJ#oPM-XNSdW2DuvIl|oTtD&yMo!&$Zx5$X3Fc^L1;|I$||(ngmO z29e4#irx0ZgEi7g0YSTiTO(k=lv-DHy)wo5Q~s?>WhR_J+$|Jiaq-?E`VDO9-9*R_ z3f3PT(DVUZ2gNKhEg{UCKszDP76CJX9RRp0-C&#Isqxq5op(0*0_)7x)hyN*I5KYl z4EHn`-24qjs0OUgLu^t>D<>A}!p)E+?v;B$mtE+oAq>?S*;qh~=w-@|BuEWW7Qh;E z-G><%sUpX#AESV;Vc75su$Zvj56BQmOh zJH!yYHwFeeaZQCMvverG>wD`U#E&Fh)Q$y)V|;oPC7Akjy5{dc7m48YZWWKi9M5md z(rH20aoa0v8puWk6Rz+QFjSy^ApprYO1Eup4~_W#vwKHtT@4aBZQdtcH^a z)@08N>FMW)mS1%bk#P?7v+FVW;|c&rEltCt=T3s=!u64HPQYV*NRw;yA2F@!s$6aj zTQ|mlcro@6o7?kYR@tOB@oCmR>})4pTf#zbnt(V*aN;z?%{FV`>C9Gyw!WX8pAW5-X-T$aQH86gV{(cZxHh{*CGrC_l@ zRUD9Vb4E6ZD&3w9>`!^B*0NgUT;Hs!>>d3_h!P3aM~IeUdy!zniFqo!jhR)AzF&L7 z##WutI?F$>`&@Zx698;A^n)uiKIUCJ?F2rtkj{h+mU5Opp4`6}D26MP<$?m;{xQfY z^^wjhx>q(y7I~mIH!h3Hu=Q?vp)5Pk%uXfw8a4g7em+w_f*rApFrz`Y;mePiPf*wa&(gW$tXX)-G9wy zY~1#e@|ab`8V_ItDVetl1{N#%JXpu4CZ zHBNfdQFaHH>1-n5PX$CuV~I5EXYT@S!=}bN-E$9^*P_1p%DArO?1J@=>jGKQ&>CVU zNsh`aIGK416>frriqz?2&NSM}4KIYDtOx)y>|FLND>3M^$zY}WB47)R;6t_7@eO3O z7R5%nKPN>=IQZ0?s!CbE8U=D2pc@geb}k~zg@pd4Ai9Sjujw3PJ5w6$rK1v4#PH!^ z#Uda<3s1@NY9r_CQ<0jxFaYB$@d_-pvdakJXl!{A=DN$&O_O%dW#w;xXg|&9u7p^f zB~lk@mGDK!&l6dQJaET|^GAFS0FQ))vbL}R*gG(IW*|+gCG0t?Arp!@?UF!cmC}F; zp>iaD#IiEBlbnrzbRHN7s$6-8RZ@VbNK_YS>*_J%FhEAoccTR+F$4&4&6npdCM*(VD z?O)g2+5+PgZjO=PUVow0`0ZV5T+SJphj(*sNZlwu&izBa=O^q?QLe^NfuL5^Xi|{0 zLEBc!4lP{CD9FNu78Wcn*JK%C?6&tNgOhnb;LGHhFFspEP`qvlZsfFWu{JFF6wSUN z<~C=qthgTMK4*BL%h75|4cCgEw4K7vTG@4aZv3p~yzrhSoqKFX5T*!D50eO|SNitY zK;U@g1p#q7b>oR#BI!3+146AIuIc`1z7=j(Y)B0smCNMvRJjGsj3am{oK%DYBu*K)07}V7Iw{-Q3tM0F%7o5<%|eFkG5U(q+$4NTto7>w>c(fv6|aK z2+5dCXi4@o$dp#sp7X*?IqV@8~1I(yHh6pQKOZ<}1B2t(jWBu+H3=pk|n zO1urtx44#KT==ZBR~V(*B*!ce*;SFm87&fa8O9~}l}XQjNL3oG^6BxmzoaAu`?+lZ zx)H}b^(IEbw`+WNs(aL%IVH;bn^Nh@jSBu@S?eE3??dRTg9YLAUT)&xR$>ApJX>{~ zrH&EToH@LYoC{WgK6lEVej$cY&a3VZ(fxNH=oC*r*W>%~T(EY#uF-CVn%aNk&wOgJ zyjOs=fIaPoII7RSaT-VZ_Ea31R*|YfEyrwI=*6jI(0kQBAyqZ+;Vz97u>98^2y4rK@@kEzsq-k zw|{C8?hdrCms@&fo1kq_sm9;&CROxZJwMa6-?wDz3rofdLV3w)2LC7pbysUtWO~_N zCY@#Rsns`WEccI`zSslDn>hMV$eE>{_g-b?XZ!ow`TJ^0{d=*MSi@RV7>7P+g_otb59#aHB)XaY4{=-%@_X|#uiO+$Dau9eLi2?@N*7b!` z?}(dvh9y_4UB#W^>G%V5Aob*R(~Zk!D(kwiA2GA`92-8V(M_zt>z-`UjO3?bT<;Yd zfy3I@b8u4ujq=A*_vp+oc0~|Hb5Uo69g)R=4>2#j&<`@xH zSpWokifN&vCWC7LOv;mQYGh3hk~-%+{lJ&?dg&g3NzdHp=2R5dAyr#@j!)T?eLP=Y z96}qMU{wxUA`)+I!Yk#OQDB^DU+0A z{5{7JBBe{|0y~S;ITD*xM3k=K=y&i?8gg_?V(q2SFx(P^6`$L%C$ZRQ}!(zzprSN)TSNnygpx2b$DJqN{*kBj2 zS5dm05F*X8sroW`6VK=RCxs-%|Ic24p?B}gk%i(wrql=XU_HJHPxJQVsRQH62AloI z8LGIz)P~Sn%Z9u(r~uEuIbqUWkf(eN;@Wdc_A!SV}tI$dO>t+FatUON2tcI@m*`EqFq$qWEt0cOiEc zBmBmgmIjdu4ja4L%<3O&w~VNR-_jve&Wtb#zaC*-kw3S@V)dN<4lt<+ck!r}*k@~4?-18@rBNyh3IJ5rT z#r_GvDVNKu*FWy@1@4#65Swh03M3yjl|_039;=e__9g%ys{$VhY$k-2q2+tyJos2wJ;8TmLHm_O!#Kt_dpBbxUp~C?`%EvPVZ}2e#4#u0`ENV zj-~VV&Yl?M_O$%7pUbb~GzvnE;HjkB;?Tcpo+u=edL*o6=$@GKjm?A(xU+NRv+bLk z@?^}8%~a-<;89?9i{ewjER5N9S51qGBeP*FR7*1UJO&@+_wL?`q+F8s*7tj{wqFGS zinY3EgU8UYg{*(wZsI;bb^)gc_+)zGJj&3}exVagS2_mo-i*vy8`1!o1b8rnn8&kT(#OHsu# zUtWV;d3+V9pMpS%iwQL#jx>4R(tyyUD&{vG+N zt-7)PafZLF?15J+;IEU!E`oQlXYT$*htf~*BA3_Zg;|Dpre%`GCNT$?ZMNP_Pn`|X`+mOWp5 zKsXmnw#5@o2c32KwqBO213GTV{YS??m3nbEwz!Cwy+M=IP3ZXTNVZJ9|lJKtP9dXu%n-7o16)*i+<_iA~<52taCH$KdcIo#84DRm}R{z-{>=W>QIr@R`=!O4u znzh*PJ-seiwc*YG>`?vjOyt&f!mBbb$&0M@BiexF8pF%%ifqsQ=b!&!FvP0WEQ;^{ ze(*ck9EpClv7Cbztgbvvx!Zs9B3Ycno+VJgOXO}eLYvO4kJdBuz_dqxap3d| zN>2XBn#vBkScutYE4!bo>3)c-b?T-=EK7g?{wW7h+oAei7z8OMQkNe)*YsH65W*T~ zWiB&n^FO-I0Ns9ctZlr5ZhGekk5Sys1RlM#r-e}OTmOlYP26Ng4I|&=K!nNa3PQC# z4`v?JwSXsb?TW0qJ6LLO2Ldqb)Yn*rfJ^p{FIDY+9z6W4C~LkS_s6$5@fqOb|7h>4 zqoVG*e-T6^1Qiq{Rfdx81`BaWl@uhD?(UW_D4n6Zk?yV$6dW4q8io+0OF;UbVR+v6 z_x|p>Yu&%@U3abftY@h(-|vZi_St)XK6{@t+7`1$bhK4oR!7^Imqi<&C3Fy->72eV zc=@zIDCsnEbCD@byjbYO7>x0SLguT}$w90d^4tf5)GG`PUqn|^4z?zb5Yu{RkNc<4c|Rp%w2fHr%Pue_5~WFhvMx4435e7Ukeg&bq1 zK`n`z)f+`ji1C8mwMcnOxM0&d=cDU8j?(olNYB%)$uTPymYU3GTs&-Y6(-dM&uB5- zJQ>-7O#PUM^c(J~JK=^3_0+8%IXb@)dJ=!5-bf*{b4jNFGaTP6&9B<`b8gf_)v6`$ zA?qxvRt0U6+l;Mw_q?F=(YZ2sy^V^2Ge@$iBA8YMQVjisb3Q78HL`(KWi7RdPp#$< z)xCqbxwYTO#Ry^|caIS(tdt8KhZK7zP~G7%^{l0iI-OjpI``FwHbOuaI@rx|Wl_Vg z%K8z^f?z`gjNZ$-N$vatw#l>$zl&f#9HOcE9GIS|F~N)ytPS$=IV*i}u^PUCjtUQ^ z_z33;s~XzN999IW;Y5l9Wgq;I;yW$S?}%A#oIiz*!9h2mN^)D15DgYlCS(JV^d*H{ zFQV45hVzC&%<7>JYf`X(vlD$f*CZ;ukFRFff z;P9_HwE$s^A^nRj#RI5vMrY^$05M z&vU;a%P)2g6PhMJn+L9^_7%DC((oU;hX(KDB=yv0k>BFosp;(ylKlM*vxjbiD6;{( z>^~)4mxY)_rIB_}XGP$aq6gOWVsmBJGjr5&k_Xye=?@gJQY_41V{9s1e{;C4JWRQ~ z((A>}?D2Z6q}f0t6cw9W(Ng_#u%%=N_eiQ{d8uRB{e73AyH`IZL4(6XpY>uVs=&v~ zlQ#0e{P^KG>(8`QhpDGEqUm&J+&xFRDQikHC-u!T2iR%cQr--MIePQ;fJCW&{`2D& zOcOZ7RH_(JgE9;dzDDD(O?{ecz-!NB13smHns+ZJ)aMqxLel`DZj$Ycwvm!L%yu*j zbicbz!0tMaM(-HnbCa;J$YP|W9}hgBNTg|>{>~Yz9J5?5)AB}2D|n~#0=>8ySd@I{ zqP6y){dA3YBp+w zi(3CAeSRXsEfllOf<^&R5CVt-zIM3+v{AhmEAnHfj^so^x=O*!v6G+X>{8RYr%!)P zMO4qO72O|d%uB5V<@bU&{T!3iOrCoWak=?X*jmY24AUac6WM-zRAj|wWT+9Z7;4fH z_s^vGdF0X8_szVwAPXi@<*cKu&g!yN({=7NzSX|`>fvoXe$P^^=_HiH>uq)pM4b7h zh$m?GwHR#b;xcE4z*RkCz3)6ql&?u%+*xW9JCheK98OCK4V_injD`7Bj;)zOL zH9LEYPOBTtEN+q0sxZK?@gg^&q7Lln=Y0x z_WntYH9*@wY%kcd{CM*Uaot@bE&c?4bUj8gwV5)HE@U2{);=2!54GwjGKumd-Joj? zKcuQM%(d-0?(VI_b6xj7{ML{NTT@}}?mu_B7bEUbpk9nu=T$L_mN*}eL9!vD9LVk* z)H@w`zPXO|aIKdUOj_Aqadjk{#Z7jK-?&#Uzq9f!Jw_Tt&TlVpKFdHVtLrZ`Hop*A)_jc^>F%%VHDF2Q(3!V@)7cyqWy~N8M z)Rs;B-Axzk1w-Ed^7>fEhkOK+xQ$$gjFxoGDlMu=DgFbrnB3Gj*YtL%!l!LtrHW{r zyMXtsI_OD3zrhTc=Z)M=SCGdygLzPd zh>{91kLC#KMxlu8cA}_h+~2osxLT%)RGr(;%WQ-GE_D#SPD{JJpP+8Qu&8rYxK0Dy zEVlHhZcvYDG`%7;y=bsC&m+X?snyXAy#X(+)N|Hu8f*-$k1HuQcx&Alb|iq@tvD1K zTFdh=UEMX{YfMTWU8s>lPS%E$-9-jgXmYc`Cea1Tk*63(b-h2SCgx)M_4zy-3{6) zTz1Yd#FNj!Jnrin2P@Wf)fMTY6Mgt{4hPl_%cK@YG5~9sHleI?qdHu%B5vOsO8V6P z8Ad5Zk>HYyMnp+CgW*;n+eY`j3imxDeM-B)D(Mjw zT8)9k_iNv=k%y6AN_2fqR9_}X;Zk9O5&V-#4Be(wT3I8Mq-R^(D1>^A^4cLUKGscr z6*Ra2Ux_szTx%r_pNyFM1IdGV=Gy8C%(}#5F-2ch{j-ET_=;9=O^)-F5p>ro)J3^s z%q8ze#pajYh}CbQfaS>j;b9BIA~eWh=F)K89i&>07XKMSGs>2E9W=g8^u6Sa=+S=* zsIU`RV`bV(hunwr>I*DxmKFePvRmv8DhoNkOnvp_YZfHBQi!>qf#Rcs>$zg4yx^p6 zd``o_v)nJ88RUB@&ihhmIV_~@sdymYJw0Q!}9wqlGW2q~?|F{ibN zQ!K|8BazdJ8t!c^;hN zDN?#>477@aS3<(H&jmK!=jgY0tzwfY)ab%-g+Z#wFcvB!VoXaB9`|9&Lxn!IsS+tu zVeAwp$>%MRcK~~A1~al+5soz6gUGUo<~kp?LKs*hh)LpyDc+j}h8;GMem|iB%hu>CSZT0!^Hyw@rB@S2-~4E>gGtBX1OqCu zph)!yni|8?z6PH72k8cZF1d?B3q%6!Pg1bt2$e2Czsu&clf>Txo;yAMs;P0~jIlt( z0AzlwZ*>&%koUFf@jtNR7HFYJZmWIhuMe}^{nYA-L8Xe&Y1Q0 zY&yORPP*ob40Z{1pLpE#LDBSkTLg#RS{=6V%AFXtvS_hD(jtvyl#VG&Keo>CMP`^$pUhM=y-=F~tsu>aw>k?>&Xf0&`dd z6FQ1T`OAvBk~vDIRAEhdtA`~VujbUybk_0x9(Kb^R^SEw>#Q53pT+sK6SPKcxmxBu zV!f=^P^~96d8?<>6HZL!xa+p;CGIXA=QEPP;0vdRMb0`JG*d5G=d1rFj{U8&S~*>U zteb@ctUUq22!jmjdGRx!U)B;; zSR>Z@3Z#G9EN0)`_$bO%SP-gF?$)UQBZnsp*PbjuQCd7K2eXHPGoB6q4{6aR>djVd%}t;3!9jcG%wa9)9by6zfldM+QDpb1X5H>Y?+aSP^skH zg_ZA6QcenwfnyJ=dcAjT)=FCekm&NlCSGJIu4o?v)0pXmF4jtrzi~?yF{yfE#VIAl zgUp0lD}ZZB#>YY&JX1Y`kl!md{o(oR8-D@4Ag1J9=Xj0I-1l=nQN!NmZmmo)r`%Xv9b0X-=fM2$R3h=
<-(^I3wO0DNvX@Xh3>B}0o47WOla@%K|8M?iWaARdP2@LkKZ zfHtTt@Z3?EK1T;mr$}Ou6b_vVIuKRBan(Qt>*N%u@O6Jrh7*5_Ifr_LDoYRx*$f3g zb1y%t*_9AThxxEFb?+?jkYy_KWVnZwT=HEFuWgHPd4(v>_);95(U{zKrbRUJ@uy;B z?W1hlCqq@i1Tj8Mk*<=Bd>i=~7avz4q^5(Ns-2b$^c385Cd}`$V_T)9RPk|d47Vic zE5?F9z`6{DPk?uGZfb1eLr&*>eEBc$#=CX~w2Gc?bw4Z_%DA^-%|=mVwhriNz^G!T zm$I&&aWA9`0%BGAuB;XuP@d3;;m~mD+JdrK=z9EIz$FJirAcvcHKZmPCze<7db)LWBA zx}bz3#bJt_N}kLd^JeW&N9_Q`icJQ=D4DXX7m1$MZIF%^UOJ~3d?mchGhXqGcKwW7 z)Ul{V)TIfba!NQZS=>W@h9<>;+KPAFCF?%S`;IVf2%rZXr^*a^xz2&)?;!v}^%IbW z6t!WB_D06Z4lLt?IR_NcONV0-=cLhMpJS~D!vdy$4F_&+m3#0b4g}~%io0l#^kuOa zmY#e@@6QABT;KvMG11|N*3hlIpuf7x3JXpDvBm(XTpmEH(8qve*M8%j)f+9#mEdfZo82yV%KfX-w$a3C@Ojnf;vVU`O{#;EmbQHO+ou-fB;_u_dS@!X;2@SP2+`O>7J{&}E z(3cp9YOzKQLp2*PPW65=+s5wHe@g_s<9iw@@ zi*C+lJaoH~9tmChvEtAGLE?#p*xAB@EqDP;EYT11FF((O>5Rcf_fp5L+_CHvNivAH znK1G8Pmp2^Qsq7oTx{%WQH8N<*;#kGCTA>tnW*@&*AKCQ+FQcjG1ut9@L;qNb3Y); zN}vQcn%j0|mLS&ibvi(1O6&M2ADXk=C{By4U)3F1(nG~fU;)p7{Qk6&3GHA4=a_D2pOqB+jT^<1-v z+Y!H;#Lt7BD%u~$goo^0ZDTW*6rXNZ>*?#$<$5i3jB>Q8v*F!82G-$ z``iwm%R-V^uMjj2=mPi|-BzpfwQf)rPWx#tjWisbg!6-*l(e%|9l>BpXc#EE%9kK*I z+{{1_2W#uzZhd~<$6HL3OhBItun1NE0a1OgUjMnv{`&$Q7`O_OnF`pk+ENnL7Z=lD zc|)8^8PI*DfgjZv=G+@juLgKky6N0aw8rCdPYmu6f8W=~zKa1F)p?HqoYeXEFJhJ% z@eR7L**+W>08t$Z*eDh%&qx29sGdh7r{`Plzklv!P{-Ulh|}vrRR1gqbylxJ5`fDc zvDbILKzu+3`8f~mlFq>p2h@+!I8xKCE)`3`ng-)?ce)$7|Q|;DlQiM0HjM1AVV;61pQl~RAF?mmCuGnL%%?h z^j5y`uI-`ZU8NP?EBj*@$Viw-MOldpEmx5V^fy zW900OVc;~b$7iqq@XX&1hsZQ;zArJs25r4Ufz4lC&wa4H9IOSllCb18B8bc#`sG|O zuEDau4H+H?^Kyr|{E?hRmVrnv9E)IasO}ybuMPj5`egX>9q)f}xmPTJ%N^(M%(!<} z7}iVANljGzw(3+DlqpIhK_$c@Ppc!WAC~aEZdFEdUdH3hqb`S7?TkuRoi1W#ivZ~7 zMEqaHCDB{nk#j#(3j~L@AF&n)T9B8U=@1aZBQO?r~BJ zaoCP4iOWQcUZni>YT=L zG&~vZWV3k$&IpP&IURq+fKd~uR1~NrQ4K@i|Nz6?-{4bRwe=oB2=}y;R zZ2-=rr5IJc+2qC7oDW_I(+y}SMud>w|N z6ATZ&5^ZRd8$}9^he{wprJSjbvlc~`FI9G@56N`79kl?BcWsIpst)F~5w=jj5ABB0*7<{kq#>vQ+O1rkRxQ(4iPd?b3|} z{d>sGg0qk;2!^|ED$0l~9ovCl`cti}Y%kZI|F_X+**+V$MDDK<49{Ie_f!Y-IyI=T z)B<&!GOGtEMD@x~w~Cv2O+d2h{t;`#4OeLmRx->}zd=pLs;eDr&v0#N+Bz{|?iRH1 z*==<~>GjRO3^$Nxs#2Q*T9T`P{vMczEE9jPt$dd70$l2zrrJ{i?`cuUm1@vimj&M+ z1okf}KB{kPEsLD$QL>`FJWL06B!;B7qAk0FY=?kC(S?)DGpr|X@kWr91Wp65FAz*p z8vOWX`|hC<%f4+ct_>_9Zf>{H_)L)UfK&v_N*g&>0v*Z_bDQje(Z(67!Ioi1w~@yx zH=JDLwqiA(VBj?7J7#wL4~EKX@&B>o8gS}h0?IY~)#PEb<$tqixrSFpLR9QAegGyGthfV++c zSs6YgxylU+vj3Xy$){SaT7)EzyKXnq~{`ETGM=VQ8d!KTMUQ!6RypvReq@WYJ<4m@$p!%!C7H~{MD+d#ws^B+Ljm z@cj?eJ|aj)J{L8cI$(o}+USe`kebPYj|2gG5xJD%%70}6S0$$rUtfxkBPv^r@V8_C zhx^7&OoNLbEK?bxG7nrl9KdgKWpu{Bdm4&Z9!qzrL9H!BD1+J>6<62vKCrstc=lQ{Po%4IJ0`FSQn zoJy8S)CXlHEw5JIz&eN=ww67%JsDS(W`CVG1*s`qgrv~5WgKXADv*swL0Cw{HVK`d z#8-mTHyo(nfgOpolT=1D;i_pHIMDtJtp2j5&U zjXO1Xlq`ZALwiaglb|SAx5tLHoV`0t4JxH3f??8d^dE~N$Mh%9;RK7DDr^u+im7Oq zYM^-`NDIDfMnjJq*i45vLT8VMux$t#sKDg0rt`i=xhdw?I8-2ZI{OEsoF66{1?{q( z1x`32tXNm&dkxfxVLstWqc|gQFqPeBLqNQLafXimcN+<=^F}cVAUzFZV!}z_SD@CR z`#(0SrI4+VCM&UP?|sT{am_R0;8i_>rNcRFfHX=$K{3?XT!d_7=`(cKQjE|PWKO-} zm2kDz;B)V@;J#6lfYL&$0_{3tICBY@asJ=_Pk&sU*-aPb1hsx@Zvi8Q*WW>UUzz`o zmJ~*|l2&euzn=_uQy0tXX-2Qa&2515s$1QVDda>=g-x^_i(OJ|RRg;y!{NSzz^#*g z11V>ldq@c*7^teYH^8-UMTcEnvgUqUFIOa1ozQSzq2Q0_fUPzOrw-RXN^BgCj|4`JTZ2 zaeS-R)iw!sx_*<_wqYHW3quWc@5MiCch;}!EbfmKC8r}ddKk7#gq7tFx92NWeLnsE zcHTJ*(|J3lbK6>;)t*Ef=9h!U6VL?dc}4`4+pDotg01w;7O(4nW~0}Moe*ZXx{b*wCs^`7Mu;srBc7Z%LUQ2r|e{yC`nkxjMZ-CqnHF zV3L*B9Ih{f?_cJ5;tVc_&MuIy2JHEroW|W!9heuap54Kxnql~97Rig_=ru;7Z_DR1 z+6V*R;|0lPb~A_h!&g2nRZJaFyS#W7|IN)96{X@X6?GySM{;_^%h2I!4pYvGdqf5; z1&1gz-LGW7sJJf5g%pfE)G9L7qT?$NxM5G*wr@etORRP-<_|nvJ zfrCBxstNh6`A#p+9-X@=NH@dwHT}*bCu1LdAK^ji_rz{GR!w;-$Gs+=gFcH=_4n(~ zB@)!ev{;xTbSCg7>ji_wbAj6xJ1cE%cQ!^bjJBS%oOp*f_t@SXUOex8lgB4;=}pl- zwx1A=o(XSp`QuElI!IIg>fuJCi7Z_1&_Jmw<7$tC>CC|s(YDhll}H#p@UZf&FN4%{3(-ygrvmPaY-b+Yul0l)fC>y+M`ChP); zj1R4Oa&&nb^2&nKt`?rpVN+biJs2r`E=fmpWQdmwH5P{+`|z%7n)D@*a4T-bg6O7( zb5PHRj+orXbz?+s=-E4$gO+&@9LyjsEAjx37$2^xITBYU$!@Zl$e) zA**YaDJIY%u#*&^46!TS1BIrjzZ+FUK4y6LiP3|+4X0P za-K{pd`x2d{`o~ba|GhTo%@ih5jW;u^W6UY4gm|)X{B?HJ+jMN9dA(6 z8I&CCADo=(5p~LPUm7aVR%^;#J?<*dRzV6VQo*Kq(VqIa)i*{+|0aj*$ntuJ$X=l% zucvkjPTxOef7ZAYNVpt1PJ1O~ACZX|wQB!!x4XTt-{SQ~=$nLFRV}GMyeM)Rq+4fK zaxa`J%=XRh;dG2e6dml-2Y6JMI#Guw{%&(ooV6Jhz)QfXXT@VL4*-9BU{@vx%Ff;zlqw&yZo z=UxRH|Hn-O3G?4E=)o`XALsi|W@4F7+Vq`_*{;-f_%+?F4?*8*t|^q>`g3tQ_)rK@ z(I>V5_tsmLNr=?R9&Sd{d>7%j&MW9VWL1^+4gvL)mo}o2M^%1%*WctN<|eN{sD8(; zBfNQe@TAa8f;38=u;GVAz~2~xm5ZKIFQq8|-rLCe58-a6-=n$7s>c`-sp(B>*SzO@Q+-EK z`0YjGTcb2}x;R`Pq}E|CvMBA;ofCD5{cR{_JFDqPW!BQ49fQ^Jupp_v{5N=RTiDO# zg+#3S&bH*`JzK#}0ebPi@b$RX*$quODx!?FL^h)*|5lnknQaeB*3&K1lM5duy)&ox z?h7PEC>^e6on|c7&W4D|3;rfp~NHRA*N+w-H>)QE@o;{Ip zHm^Kezh7~t-bE3=(y63d(}ThYbwg{%)An6J7ps+UlRr0Wney27AW;Yo6P;zN$c9Tqx-=P z2Meq}dyeBmrj*H18420v8d;WiNg-2V(@rqAWZe04Y3L-}a@kQx3dT!R+US_A z$bOl7nDrpsi+d)2MXcebv2y54$xUT~xdHLBm3F_<-R;HtzUt(aSg^gMg|VP0_vD zGfL=}&3fN8aH{YYuA{PQl_+=i&TXpmpL<`4({Guyu69P;3U6o(f4Bo0T+uBeuYY!o z*?$|)`+{9*%fa?Ds0g_re*OBX9uo;?amZC^IN}AG4?P)hhgM7wW9sB!5a|E^|Nkus z7`gNFL@FHi{1nn)9V1_GsiU~p{h3xU4)J|V}*#*fc| z*D9{*(-gIn?OPQ!(aJaATZ2@M&$Jq<63+f6*5-@n$BkQcp$8X^fFtM-Oo&Z{6vCa! z+C}xxOoEezHu@r(2+iB<=1u)qYC}|?%$PeW_;;Hi^O@!dY*`azX=izfYo2aJ>`bZK z({$LfhVIhw$d4z;Rl3+fcUB3GxGfmgo%`!ym6AlvrnFUgha+JcS7AFc-RtR{x)KYE zXN^7iB8A2>(}h~wRntPJ#M{&;6%)L3qO|Jxqx0kSP(}|5mnz3Avi5!gub&zen6Wc1 zQbr*j@sQwy*+4IiCrv(d8!iC>`-Y_woTClAwj>*h%~Tb6u;bcWBKRZm-MWx!7TcS5 zYNQAyE+<@B8F)aqI^gT`QEEzAM7_g)NE@G4(P4dG9vZ$MOW%J_*MNVLG3EXnf6$eJPz$}c8jqtVg71_sCA&ZHaMw|2fi`p|iY#OzrHT{3I& zBriHobZ74PPR9F0t)-&^(%~uJC;5ta>rdJGS9t@Mz^F$58C72#IuS>mC0QC?(k+ro zIVF&qO-muaVXgFgUjuSM_=+b}_Nq4d^-i~)d>o~4DHEpT`K#`3;1)D{{W76dcJ{A_ zlcw?SenoKRu6S{RwwS*mf~=N4lDi0Bbq_Tjtne;Z`YcULp}3(-=9#XqV`EvyEt5b! z=%f(k;e%$l6tO>X*Xpv4I;b zYfJrn&HIy|{v=HKbP4^!K1n5TbHV6M&`sLEas-gbYSx|GHhAAC^LyuE6T-PA@yKbQ}_@oZ~@1k*Xsq*C37y6RS|kuBTt|GIRv7T>D!uh z7!!Ec>rkpIWu@>lIQ^GRPmYcJ7F>CgaZLsm6P&h{Z5+YI{*^dYcu6j9k1;6;xA6%T zfgrn`)^M;Fr+L$tLOlNVa^^MC_8k7T8wY{6$_t$8in`f+ELEMM(c=@vM)5RGFUbVR zGJD5%mBQInPpOxU|4{=aEuaRBed`M{O+Ffb4g>qvx3Aa3`?l^%D$O4JyxwfbXOVW_ zOSo5RUsah^S|_EjHXG(--L0u>{Fd^e{jus++hd(auA?IpA@1%aMKYWjecfb+5g*81 zEPkNEYkxi8cb>ht@S&#}E}I5=c$(8mu{Q_HkF zN_R{l32P9@i*3)Uu2QGV+`j&wY_($*;K=fOaan0ONmr*D5W5}4xPRH3Pns@?eBPis zBI?T}D06Nujy}|qkMg-xP3kI;nZ%O5HC{D2j@Ctg7wTB(`|JO;KOjK=)=BUu z5la&pdGXqk+FuTzADc)0m3fml7SSP|#p61x`PmEj=0|BeMtIWiS{mohnB+_iA2h0w!z zqw%PoRd+t1*#y(nG`k|7A<%2&^}^-r&M7B1co=Nh^l#FPdP%{ zrhC?llOhGKH*5Dv7(R+RPT$XD+Zk*d_vHMpTj*#TZ^UjUaj!}5>p`w1_21Wj+@1?e z1$%kRW+SjbbrwbE&h2Guemms65zxCc3hLKYK;wHOFWzLq*4n8>N=qt*DGs{I6FEfhV7^u3T*E9tc)?5R5u7vKG|k5jLI!MG^LmR8&9F^JLJ1< z`p4Fb{;v{rb&DG82_R)^oGNm6O{IPbbqml^bC!GTEdSEJsp`BHTL;qpp+u`utMnhlTM`o)~ar$K2t9>%#d&qQ73SUZ`RzBNf&@JW4Gz?R>l zDJFmL75Z(|&d);0-=0$`|6%HY<&^>O!h&-=4)SL{pKO@t$Qm@l&stgeV6;?(1R8 zd6!#gJ2N+Da;b~yi&>`aPF)$S+rN}`dNt%4dDQhi{S$_#jmJ{5>&6O<#6KzZi0?& z;)i^Pez-;^;}wWqLxy<1JtsC>1wS!TyvA24uY|LFz5Mt+R8K8MgFkg1LBDP(<1`U? z`o38xIomdvncWbM2S;Ab5zCh!kxj@xJ&+)HCF=?uGN!ZkphJ5h58wf^<3;#kOe8uu zufM#jM+KJP2T(rH!Ig+8x5Kw(-*D4s*b*m;07s*^UMGyY;F{nJ<4809>D77kw3w5L z#AZ`!EZim`E5s|1XJ|bKAt}(kSP`I`vokXG3H1jZ%6a$O?4GX)VVmi#X(n3}+(WpO zy6p}3jaFSkPZ-a|R+WHbSJLVWBDY3@cO@qb_$9N{>RVUN7X|B0|4;rYK*8*rV^~`X zzE<&VWPpL4OB2nD`&X(z^rGMg;}NMP*NQ*dD!8mWXk!PJ@roSb$fq;8P^tQrVp?-z zd_9Q5_Ht^03gWF)l~GK>W0AtW3kJtlAF+=QBoU&F{b6W20(zG6oe1#Ah~>lCIFa%m zD_~y1V!_7vzK&ZyyI#MZVuz~y?VughXB1#?$g?{GED-qoMPMx2O6W2niWki*VbV~} z9=be(ma3A$yb2K86ucWRPmE?w zC_dK~X4BkL?-Prrd}X4U2tV@VELN1p3<)!4BeT`7;?bWTCtCBmo3o`um)0Wds{7QTD-O1BXoLS)@A+x%;Kz%h0k=-$%ah(rUXqzATh{>8wG7 zA?h;jfY)lR0rB~UR!)Ld|^gWFNP zSzg()zbd(lrCDTu=_RT-LsfST@R#WEHyI>`mj9)S73ItvEQEyp0<(y{w9;?=tJ zgZU~BJz*{9Rgx+-)oenPho2K)JN=I_BzmfywT`Qca5~>`COnOAxpFkTwjgawuY=7) zQPugiU#&_1gp`#qed%592VB^t>Z%3Au|ac5BZ_Y4&6wprFA(+-aDI7 zF~yA&=lEK4gv0aEe)~$VC#t(@w{`}ji#l`Ior(89%mzM>U3Y%wl4OStMaT%~j<`_T z5>0=1blc=76N&Gwt7e$F^AI(dE%X$t%&}VJQN%>~Au81%26gTgzKnNvFg=Z6~agb$j|t=Ly}wWVeMWeGsEn z9E4<{L^^a@u=O%GN<7Loq%5q>QpER(w)Et`dz=aQm5x8`=2PAsKNgX9O_yr-7P>a$ zL@fYf?xjUH==4O6PMaL&yTfO3ncG&J-j&XRY?((T5#l-?8mX}l2OFLU z#EnlBXh5WW@ax~%lC}{Z7T?%-M?s^pFYUMLn;g}fW&LfzQa5?*Hn16jX8~V&rs*4Q zrN>!Uo)=%(ARh}?9{*tCM}B#>ZH?6PYIQ>I_|4|47ptzjcaUzojEIbC&f!~>5U1~x zRd5`d3i#N)+o^P5P9@m=9zfsBea&6}^!i_+)V;k+0fy`N$n^^+!e;9i0K0PTtaymkfcC3oq8m@YI)!~0a&u_k>QDPcMovFG756EHE?tz3wyC_JUl!fw*Wf#z zE*7?29HyQ~(r4@BchE>5*|U7%An1$b*wrhOVPCafR7%(GHG7v2z08ocdQLM>dFyf* z#=~417{TMOovNmv#0}<`#+TQ0;jf3)ORpu7c0UA zGKVOei?m6dO&5>yjrK)~-S~Wn_h$#_N1reMY`C8;yPPH9o=qAbec6Ee5mixj|7&XR z`%g>pJcai6YvvXl0=6@a#bvi;+P*|Vpt&UHjY{Z0Z!P6T-=&@+=T7Z&s4SG~zK1{s zQ05qo;)&FBZGA@^+AsO?bRw+#cDHqng?=t%{84;_M zVPESMw+~*NH_G+fe*?Z#j>T_R~0paYj(gnS4R=h!ae@gUT8s9sU2s0C) zzH9x4EIaR@eN&09~^ zZh+eVGT~-5rn_^|=IBLv(Tx%BI2to4>tUCdJt=I|cuwO_ekrf$lz~~ex80!ze?95g z4)`|Hv=DK4b=BiO7k(I9aYKv!(mwulpfwrAmt{hI<>rowpiv^U9(m| z-*_Nx+Uco)kK2?MSV93jW(*1Vq=%w7;M2r`?86zyD;p|k8^RX8SI<(Cf_)1vBU?P+ zVo59^cRX;5Z*9;^sdO z%-h!bJQ#E9t9{AcPUA#L9@dlo*DxKsgc-2V{@>p{>Miv2cYdQk3XnFV1>I=KW0kaO$yC`hH0UKZxL<^1W%}7Q(c_^H; zraYuk7J8ZcVghshh%$DY!VZ`@zt&NYG$x0FU;JFzu)~bO%vA#K)n!XOiGhX6bBlid jICg~pt3RJ~o#JH)EwvD<2w`q9#DU5vJuZBx|Mq_X-}6y1 literal 39151 zcmeFZXIInP(*PO>(u;@+N)w3!B3*hta1w@bkw)0K_CzvRPApa5a>z( z2n4pGBnRFxBONgZUdXN0RsRNFfuBQ_)^Om3%0tb_8w6sHA^wsiu58oq;f?3McerB z*lA#g)TmMJZuY8=FQK60G<%f<3WxmPVqVA zaJK8LHUgRwPa&y-K!+E7wCMw7A_h=m%${dLFS6(RLB0YdA$hgx%pQDrQcNhy2E}RP z&@|36{uEyD;xo(u4skr3t44W+qO=~>av9f3lAgDY#RCk&Z}we$y7n{z6Bj{8!+ZWu z|4{|OJ;5p9c1@a(V-E>7!X8W^wqi~x*R)olTPV1A>@!PUQvB2RDI6jYcfrqa8&BOC zH-L*>!`d6pH0K%TT7UHeJ&6bh=hANsumwBU-M$B~KNfijK1&xOVs_pT*lSL2npJte zeYYwJBzYCQa*Dczfnw@VSeQUuc@<4SV9=SPWvtY~#1Ke6uDt9e4L-9zmj@<-5yXJI zUa#n{hx==SJJKh^Zr1S(VE>i7g?7z29U_~%G6O}Tq1IKH@}Lg)$)JwJgND#M75+ka z6O`^vk1(Fm4_q`~Ky=b1Ph`#IPcWJfbgF9Lo)Mhoe0bkuPR=#! zS>GH2cAT!Y7dj=QH5uRUhW*uFQ`vtu{d)hHuXNtVFFhfs%{>LZ1&I#v9y{C##O?20 zspkh#z-Y2&Bn&6^KkM|B=M{%et|X}=1xNS2xB257cE1I#UsfCA-3Q<~L2IEON`aKo zPXn#BCY3e_R5UaJdCD7wO+P$VhgKbr?{&cf+k>9K=7(I+)B&HTFSY2H#dOT`_;=c&* zdQb|95K3Te@6H$};;bseJ2w@VC4|vPp9TBeZob8$mgrmH`y$#`(KLUSYP)8~<@*)G+wI@@0~0rM$*Vr0l`Qi`r7q~+jtii0ObGm7X>G{($$g~-W$6Y0NIR?s%@ z4jQJvPqw*ZPupL#p0VJQl){benX6e365n_=1Vy(~1b7Dx+F1`x4=;OX!Olt8dPaBK z?>ExjX2qv2i@F|uWAlBu(n2^fmCNMYHMcYg3UmB|;=tU+Ji%-UV}Pgzw3uno0P_#F zoA)=6US(RVq2Q(XXZH$nQad1Xipy4+ZKO$WPoy-af5^`7w~uCu=v9?Z;kJG(1_GG2 zhu$ZYB0tLRQJmyGJH$FCJ3mHc+4~(FjJ;V(;reCM&;IY&acCLxj0FJl6`HKtrTFEr z8q$)^zPB$?<2pbYko3%?T|$*TuFXweky$>&CeP$=R$^2^;g4dRNZgeX#j~pXz3$(W z&!hU!4oT-2Y!f>CawUAP@_0N*>8N~~k!Y9D;gEYIXzAwxFm&qbM4>yDoyK>*ciT4e z7T%AMN2zSX=!pA8uWjP_4>@$j{;_`GsllM`s#4L0Pf&bekbY6+>Z2OhO*Z`auJ_Lj zY5g+hhRYDRSz?T$!5{UX`DUC74Q$NAClxJFvZ>Mv20|z&!V8+4bv9dm0w3DLdy=be z;#2?W;bGP`=-K|0Ei@)I_X*bYZrse6I>TmiWj9-XS=r#Re9o?E)7+McZEVZOrx{Q4 z`jb2SNLHLD;U%l9Srd(Z^a0pY#KGOV^8?}e{X7WNII>ip{5}+3@b!4QKgdsRY+lXc z{FYP=swL=kqCHqnIs1dF!lZ|T>em`VvdXOcHI>rClO?w9me)+L|Dq)sD(Ew8dG<2Z zrP`Rf%U=+4L`dc)w<#=~3I~VBN+md^=jX~slt?F_0So;R_9R6fhDg+f8O4iIZHFHC zVrWn**{5Oh@A<-CFinqF-rhzW@L9^4o%^(e$!;eC)Q^7L0y1#C(IB@8V6O+V!yDAfV8c<_T%jx0r*G(q`d`G^{s2LXJNjD|c&$ zKDBGBEp}{dcLgNgkxsD19*f$?6z>Yq+yXb}-n^|KXwWv_^i<2lGAGS$oU=-5uMG9e z=adA)GrYqJliS{p96qj(iYil`o-)fCtp!zSPxD(q-1~v z4-~AiAu>Gk+L603X0LzjPxICGaKZdpp1 zg^!bBO=#AEjM9=k5$CO-m~7P1u{beQSha*AbS?04+-+?8zQNI$Wz-y0U-4p{Ap5*d zk@*US6}7K>7P94t7rzG`rhZ9GgnAZR6%%1(2Yc7ndo-u^;DNorUN4=c&O9&duUK=Y z55UP0a=JI}RAw^RuLp0-*`nb<^-2kI$z95dZS&$HZ;auuG*}loaqm~;o6-{eAWv{I zsk4pT2uh%ueKYix*MrwgG3M9)yR?gtbmF(*j#i0aDbjli;}NwrH_6YHeA#>Akg_y1 z$i~UNM_IA5nNizaa;AE+)t4LyXK8$qM4^z!$2#1oH%`t+n{#RFJAbI`Vq6q;mV&56k{_h7lI5x*_N^&ANsBkcSE&QIG`00_k($%^*!Pxm zN1IpiM5jkgEj3g|!!C1&F}04x-+^kc<+b)<6}!T8%Z$CLcI&=o+%uk|^1#Gql$u}iqrKa7f5lS2d^W)FtTO6qJ} zM`{kEiCxgNjn#KPWD&6}UwPUqfBMV#8_eIX(fJCJ9i=GrZ)l;dI0aIBeqSK?REYGv z7A0e$o8QhJ=YV#9Ilf90fc@DBx4VK=)X5J`THASj&%DVzFRt%q;2A{Z17Jqyw~1S7 za7cw|B4cNdyWoe7bF#2ZmOrCjoSxPdOy0@TDk0@330F+LGo|#mu&-@O2Uq{HP7mED z?QN_B%yX}^t7ofSP77fHIxGKH14i*PdsHy@KUWneIGEIhk{>vwoaU?z*K`G835WpU z3VW`+wC;#vCZ7JJ3l|z@%bbjCf{^4wvr(I}U7)o`_$wF<6e14kC+X=jBy=?xn*hoK zn?FAMdE~P7%~(F5PU0$0%8@!oZR#5%h9AWVn(sWxq0v`on1cr)-N!2Pxaq65t*q1K zG)^*41w9r>r~Mc`X)!7pexdXM+$&qy_zdSEbYxSmtFu1CoKCPi*%`gmQ?|}VAFZ)y zS;LKe2YCf%D$i%j^E_b|TBJ-})n{N7!?l<%#7_4A>qkK<)OZ&39we_M^p1iW#Vbtz z>Sm+*f6MA|k+icOXjm$WbX7F4f%ZT{WL^ReW&iQS=gW=1>K)V4kg6JyhcZY1hcv23 zg}3@e@1X_ODyZ^KIVRitb=hUW$$aWtNSwR2NUFZODAJ!W;sY_fp8c~M0j+@abA2#Q zvalP?cjWi1F^m|Ecoz?_86`40ApDZ9@pJ-si~O7M>^r}erL%Z{M!bhzFazFi@ud?@ z3U@TJBW==O8jlj49;fc0ISDFb<+=>P8%y00)5f#0ezpvA--2!JPD4@CsoJWH2cZ~K zO#E7V9>rWOvZ&$jl2zO$ie11Z=2ALitSxF}8|q%+asF4}$qY@J5gL)v(%#VDV!Sfj zwb$X<{?C7WjVWmMzcwFVkFFQv!8#$aV%S8Xy2>T-_5Y-9tJapg9w_!pR4YkSx6H7)g;m$Y@J*ByMp<1kN5Ac}cp(+uSgJC5ieZP&~W*@TER zZ-OL9R++%FX`}`Qqk-JQQ@^ACGr933Z9vu%J?5~>>c&&13NsR^JPkjsD`0cufeG8CHpu@(0u3KX~*hTbC%ojr- zDOOw$AM%<~cZxvE%t%8dMSh2p;Mc|_RO2l#+joBSjV|+)a|XN_$`5nbdZ-tntPR$N z>J&~#G=be+eO2@<$dN>4>c^=^q>*Y}spQ$aI!o#^k}f=o*M*O|&5?%CHW!c4JwLsu z!O+YhI@I~SgdRk;$RoPH??Ii~T4R^&ol`D*Z2clP%vhHyU+{1!^efhsR`(uMN1V#D ze>bVZEq1+=xLbufe;tY7ygx{GKGK!3kS6Py#8nFHxs^zl;jbXj?>tn}qS(Ty4Zj4_ zAWgxZ_v&}@mhIMiijPZExmDp1vDL06ME$e1?EWC-piMUDS~l4=QS?XC@WwX8gH5gB z%@FuIZS$eI-Pf;0=1w=O#LUwx3HOdkJ$J+_NXe0#fK%VHRX3k6z=kp4#YT&d&+10d z-dJrQVLLGd!z^s}!h?_0Iv^z#E5jZFdC4kGF6rsTY*)wWZ`o74K797cU^5#cpok3` z>$U&VVZ6dW#K+keo#Q+YhYskOj z3poQWaku+mO>M|%DHAth*|H!t*IAVb|1d}Z`rj2J3Kxn-Qg`yoduL6H*3o2!&!nL` zIb9qvh>Q=OejWjSl<9eEj)sEa`ri#14_-v4r!34)T3Na2UzO4gE84eSA=q1B%R%rr z$I{qL`NClSBF*`QZOB%%zKUWx>{nCwH*0cjS`mt z>u_kHcUdZTzf7?jVo*7@`_0R76=VA%jhgtcJ4gMVc2lfaHMFy->^oQ0kWlLlT8ij| z0m6zXlj-9Sv4*Qawtqd@7L&Fv&@~yqdcwyI9lkwEfdn_dKPXV=GZhf<-fnsZ<=0tz zzS{dkn00i8KVgWT);Z7M)=m9!aoO@d5rcGT=kUi$hWsA=2Cm+lcYJDW?Kg|{t24wL zTxzWE>+!#uw6Z3gu2@!HePe&+^ta5Sv0H)?WW?%6wOCNF&<&eBE%o2b6C z`lp}YjP{eMxa=FMM6a4DwM|wxD($t`a=Azw(g~b}Ifwx+30v434dSp^0_Z9g;tr(-z2BNbu%>*cMKqO}jpv*CM7df9Z51Z)g z!~w@uf?BGAss@6JOd;P2>pQN;{<6`|G!nW}oCAG0ZNylgy8e*8tlWO@jEy}bsFY)9 z^yhmj9dzcwcOOrE%5=K*+K)E2TBzP?kzmb@0cNN1V84KLJ`+YmyD9@j_^+01v&J3c zx;@>~sgF~qLc;GVUPw%MKObIfLtZil9Ak|wKEMbLa_D?V>1V1aK!5kItYuRDwd*s0 z{1!TC6E}%dbK(?=`e-&;E#Bs*S~62^gLuJ|a8uc`#qg!fb$j#TVYG71cfFSIQp19G ze7X+|C{wxzE35uww&|DPb`G}v(ki1thT!L0ng$NGJVb;O#rY2s)5h?4%Z5*>$39DhtvREDr`sUfvK zO-Ahs%va{R^=Y9^;pya&a>G&~!3&{Gxh76co(nI~pPpDJ|I|(!0OZ9oGujY#sl>_8 zuEB+x#-3hKWq&~}t@cP0s!sRo zmuE_{MuBtvHUBPrf-<+rrj$ zljhmYH+7^FJ&ytg+=dj~Vjn=^#&HT#Vi8PL}cW@ z{{G_=k~5jmXK0nV{pFF(n&|U%JC_!uym?Ks@@&sPiM#5?Vp9v={QabrIjHEhjk*Gr zoF?sN0w@xtfXSMO(}36aUNB)C#&~cpJmHEMG|lx64w9}aPTL)?Sml%Ve2s0(PIGg| z;f(a!lD?8gGA(6iv)Oxiy-i|TqSYws>ynC0+BUR(Cu{WZ(QnN{an};7-==N1)a99r zU&}L`ryNkUc1LugBx5@_)!+pZcEo<>=`{>lHI>S2(c0juboeZ}pjsMDu%yRX3!Q1R z8<_cz8|EaJj)vY1EG#AR4d?)JvsqSpwna4ikqMq5){i(?Ic*)hvVS`AXzNcKKV>oA z%--Oh$wzT_;debTZWzVai7v;6jlhXi4Y6hYM+V*GRTP;DX(%&+88Dq|h*caR+x<;75Gaz}--hsA2N^r< z+hVkuZ=X}rhkR%;{C<%3(R%*+w#dOTjDeKX{n-f6fF;|arUMwXbFXW_3+xVpF;A@9 z4XHioyjWk_7)Yj7Zmq%ztcYewazx?P{lz(jAlYAMLoj9Dovw*n9PF$MH9r|SSk=>j zXW)$gZiTo!H~$u1^cDrvkP`d%crr zRT#Ld`_DPm0lkNiuu-uDa7F|5wL(ps`ZETbJnU{DIK%>tlnV(5=~Hmc?e%dZ1!(i9 zro=u;m&F}ARzyhWlS(zTkkP!BLW#Wc@b5p@84~GtQQ!GEIOGR9?W6mwaK9ZjwKN|( z-#&bCUv|#1gn69`Qw19WS-3nWHsJ-0M4kDQOpg$X!8U#6?$=^M-W81DDo`AD3^gBY zpTdZ~SlT||7|{BfU&3X1hc2txCsdIgF~x+F z&G8l4=8(?&mFv^}DWO@-wL)g|)sBPP9(gQ^oj(_J+1RCfPPq%wNpb#&S+NK<@|M2F_WY!ZQ?Oh^IL)*KJ%03zq;b!Eflt2eMPDLw5yC$pHdu?nYiR8+ z`aF)s?|AJ1hd+--zFOZ=5Z}#0RSX~*h+9Rc`{226vKj~qZFzD$HlqV@tAuMU>*LV> z%>rPggkfB6W$f#LurD-nzu|#3#gRX@ejRXdd zwWIiDcwI+1P`)LAe zdQR^{=g0i%`f{rB%y0lA&HWR{a`e^V1tz#G7aKLyi`RgcBk1Mtlg^>mrBi#w&7Ge6 zGr(>LXhZpc#%0(zmEzm>eCL(59)FJ)^S`8ej4ZM@T%6BAX=A_N(_H6bBf-&n*pvE` zf60NKPskgDEOWoGm%TU$5=iLy@f1FuX%9Nr-1z7$H2YxO->2v=9LQkb)eg{(!9IgW z&(T?_MYT0$b|#x*drjGD8JCB>AagtWHQdY7-)7_pqVta$0{g^*hDE9BD=M?MvRZ?h zOT)!X09TaR4f@uB ziQb-?A#Y!5h-sIaycGj@L%^j|oPRG7e({hNoCW1MJ(+l~ zGSGU9=nTU~<0nGxK=3y(23(y0Edw{WseL?D%vD>f>-|5d0l9twA@A~gqcms`$SIeG zy0f3lv53dt0myIv$Qb!}_03h48O|$bHLsiQ5{Vj<0eaSv^$@Ms16nX3S1gv+OS%TiPoqHaI56?#m4D{KdwG`??A*sXN8qqg@4}fKWosukh!okO~Jg z6pM3p4DMScj%6`5XtAix%UQ#R9DgvOM(a5OlBDyd;kp0qjO-vh;zyUs#p#!L1W`GK zhg=x%@`#=viwDiDy??od9}=>0bET`-l`)^iil1`fo+Zuz(Z10CXLL7WNP=+xVp#!O zAW;}og|QsamOUCB;E@)b{xLKb3I-zKb=e4XkeHH=5(Z0G-!d0Ti?XTAa648J$;>Ev zy(zKg0(HZ7vx2yZHZHi)4eZcIpXQ**${-V)o4=QP>9Xv;OzRBI02=w1+aNUgb?>%k zB5mIC+(@L{?e1;?x)QtsMqHznk*ENjY2qnB!xv|miNlDczqh~EMpPDku{O1r(E4Us z;9!1!r(>+F*b_n3=opr478=w|%TJDycP{iVPV9*X^gqzu*XX-PwOTbTEY>sGf6yEX zcERCFf(CtRzMpdQ*a*!me9riI1IH@e1K73;I!KDQfK^Fuxm~EDjCjRflJTaz+Psw= z!IoArFU8;0_JEzgsp;E6bN+~~*wT_6k8H5z@}ns2{+o0t3YdZ9g8l`r^E)E05p})r zj9J*V{x&`(?Av3+!wNf+?aCml#U_TRn>XaxCrc_GJbNq;cB zeYAXOMdLd}>^6DM<{a{bx-5`MOE97Zh%m7>&ng@%hL|vi_+H&rRn_#A+I(+f8!~f9 zhS7?!D4owCW?*=|95FtFSU|Z2gKa)cu}nDxcRT0Xi>c<4zAy5AyC8)JLOXe+<>aKq z3cf6iM6$_yzge@cS(o-sCv8a$WF^voh`%MeVM!27Z1iKXo8U#Yu2`$4HaVuS8%Lwl zf4jVNf(MV__we|us>5j2Coz1{+Jx*YlxwwgQnjN`FBIu?lbEus@1Y*4Q~K>fzud!0 z){1YwZf#JEZZ;se+L^T0oA=eZ>v`VWvHSaLI6{+^EOvf?%;pP7oKxir(YTR`vLPIDmh4si3d zKdCYL6OA?3m)$BSx%Yqmw4!HV@Els3;BKnV&d7E0X$5~zcip3#N?XzTar#guG{Nv}NFTXl*z`LKVz}PvX8#&{BL>2=`;t1qb z8iF7u&14cdU;v2e-vw-Je2=4LEgr0Eb<_g6Ud6zLP=J0Rs49Efx2L;o^nZ5W2pBKl ziDa^w$=UnTCQIkTkmvUOrG4MF9VXFamhzI$1AvZ`SmIoO_m-gnx&fh$RDksCy;=@} zdz|`s?tFm=Btb}EA#j@jCsFd|V)7BLo0=Z`Yk!gRd^7fEqS@U=SpeI6B1@2pmp}y6 zD~E0$@A;Sp;$FK(S#KYis#P*TJ%g3KPRUGDxFHZKksox0=ke^fWg2m~5kSBPd*9oR z|J>1f8-LX}L@4fh?76}Xli916+{qBRs{!@2Dekqz$#`1@^VZ5k-%Nvh{G`G(YSau! zUqL`r+vged9t^J{xgarci1eSx^FQeDfcft~#;qOdc=ug^OPT+1*g!+1_b<2PERs>C zarI4)pJnj1iLgftNAz#9lr!hZ;TwFaOj6gc(ck~NtS!RFc6%VlAMM+O;~NN&pe}db z3w@--_`T^rc^g=X)L`y&A>OM+ONioM-iS>=cS^O~R93Q&1qV`TRvzw?aY-jb*l0b3 zd!izjm~3Kl{f=XzolXCxVTqY^^vI$DhK(KrJ8+`@pqsrw_D|(f+QDm7wRi-{H03~= zxY^CED0rHq*>c39dh;;};CXWT`&?`fe@UhDYjPqt8W|LFt1%zFI_N|EXWfgopYHF2 zJRbA2UKG_~r{`6${i+B>lJ?h0i)zM&9Btdb=4u8Lush3suOJ&BKej0L>$mPuTzwE@ z(99|I4#M^j&Zb66k(evBI=9tfGxX;9u7UaSpO%Y|qr_$)wbH+0xT< zo4pejZrog=#+b)4da+WW1Tjiw|KnGGi|ckS>4{^@2^dd-LRTA972H^_WIl1R&@vd> zyXqzTp_vKJuFAkMPmgFHjwOX2ol`xdXl8|jwdLNuV@sz-fDPvT`ncm*%&kP;)UUF% zR*}!muRpnr{hOowm|1G%wE(dnS-4=UmTXWM#X&%eAXI~SZ=;7Du{)8%9>LB9k>%Qe zz2xzDOnG&8@>yyop3LJ8l~uS1gaRHSB_$3&9~>W=6aD$>m*&qfn*s_9J%++~hW^51 z$CHDuP%?lzs7@sCY`_KRc`nDaGF#rh7VI311Rp%uTTdCioPqaYoM*Nf>*PxrSJ$CvHqDNHqw|4h(zDNf}~ zuSZ{slseWLGw}#7wB{v<7sa3>yoZ;Dw9>dR{t+Ey31|czd^~p85W%(V7j0UbbT!5h zRQWLV$uqSNazV;FEYJxp%kXP(@QBqBs>eIde;)stL9^i(y&*;R$2R3z!NsAV3#sZ! zAMG$=mQbw``=I$N$oEo=tSCE7&e~2OW*-<+qo#97ERfhc=nD@#o%lULc(*|dNM*J9 zGqT%XsWOp_vM$;XxP-S-e07R|NDI$NH=LJ*?|$Yn89RG$#uNbDq17lo#>iRT3q8Gv zgKGn~mTD+Nzz0waGmMj)e$~S^=mfFmb^AablaE@`a7Zh-!K>u8mDq;+*R-;kpR>Dn z_Lk);u(bZ22qpOD7GN>1$-Jw3Nv}>vq886??)RF-Qdw(Fr0|0LNzjcgTo?JuF>D~W z%RZe2b9N7}i&7QsK6<^h+YUaU_H>958cEMsyH^47pQ|q}OS3`iJoEcTHT0!2zq&4R z5kx{-_oP23db!e?@)*$JwLP&(#Ch-Z{O;daoaJ)`4Yq&n3hBG?cRY;#cRhHsc#_1O z$1|E>!K3+2zpoA!eg#M7Muu|_8G(oocM1g!q$=l{aaA)-+_2>Nx`b95zNOxOWHNZ? zYUGUdL>}buR5w2)7;EpI;SkoB=K4?!kO{&c zB(Rm|-Qtz(r>z&J?jcd0(1LHMds&^|`tlj;7P_T|#eKjHa-WGf6_U4-Oeme)dU#n7 zB7!K8RMqSO>^018m5T=k5%c6{Lc;Q@@(kBH7xLHk;(!L&c)gt&xqvLFtB!+g{QF(- znx6)$vB24?GM2Ngm(Pv^#YFUukj54r2Hz4Be19E&!i7Ua3lpWmmDlQdHxNB+Zd z^wgdzcyBpjCUB$IG{Pq~YNqm4b(ZzEvRe9D2J4M$a24&hZC>6z?I97N%;%?hIZ|bd zV}BgW6D>&2s>kBhu3$(puk|JWzKC>j1E6BrkCo((tuvQ!;7E}%QW-Ows60=JelvGly>SABR&D_L_<6q=#SGrVK?i^N4G zD!5T#PO_yA8}tdS;o9^XbfpmLFYie80><8ui)a!HipJt&^Pvrorh<2=r%pxY;5iBA z{{_&i88^ySDukITRV$yD8~rc`LM#GD2DEcm_uz36xQtg|^z6~xd%(K|WTyVbwkJvb z0?u^+(+)qR|M?@JRSX+k#-?aka~dzb-kaOeYR6Zhw%@UMLmnZ9t>g!&zv;ofsy=pj z&rVgIc<-916%K022?XV`pj)b#`0p@o;xagPu@2h1aX2q6P?B;5GkTb1!CRr(i z`D)!u?VYxC&woW~H5RQH7bv=Z5hulS^)d-w>^dL=B`GBCq$fUh$Jh!dwa8hOKV}Mgil$t=Dm33*)b;*YIKQcdDuHO>R~R@8_>j{h%>5 z@SN*T`;qF0-%1A0t&)Trd7gBb?QiYL|k1wO6_b zyw>j{c^=~!s^W-HNC^Mcy=!0EKMO={NtxqH-{pHQxPi`S@D1dn0vDNdJhqSwIkdO| zlf-riejKbKId6WoJN21|FLCxz0izfpJF@B8)m=j}$AEluz;XbLqCZ%d7LxB+ZhZ1c z-!{!vdaqQ;OZ{=$N$| zB|AeA~uMEA_oFDtax? z0 zmb3QKEN>E-!Y#spPGoq{OI@ni(1wq%|9Me;c|-Rk0|r1 zQDpE3(nAsyx^@}CaLAoK1=@^4qd5!D*`S9OuGYte79Y>%JI7M*;%Dy9UJe6p;+DGR zi!CmOw}SCbT;_DhxQk&83CwMbA^SS~<~l>BM?C4-v&&&F4Lg>f=5x=S?|-8~Ey#?C zn->QaL}ik~$u06@6}2u?2Mvo_{l&yV$-s4o4bI1;cymkx9Wwet3LT9&x`2+FSKc>m z{K44N`o>2xGXgq!R_Yg@!c$#ptTr_>C286q0$c1Z$bzxu z>p$i(&Mdf#G*WQGriR4bK*hMG5ty+0p&l~R3VM5uhnq&gC2iC#I)aX_{Rzs0I9&vs z1KioexVDoulLT08)$~nOq~2fj6BgYLZJhN$5r4k zs(^>yxVQ*^3FOz|-hE^1p{Y4?i&Y!CN{b6op!^e$`@=?$n_`nn1fI|zG`tBCEVE(F z>fyRwZ_3_f+4QqhH2LPmN~0|FKeZ|1a$at--dNqJtO+mi8?q?aM2gm(DPUaHKjl-N zD0m3szxm7$f!&SFM+zEuy-|6R+d*i_ZR5+u=p>#~ok&~BhGq;%7T?uIjgSwopms#PWf0@GmpHUN%%(l+b_48zsmH{%DH zp?s1mFZEFW67YxCn+S^<|J@@Wc`Y_KtCHHJ#dx87j*^@|U?Cu)WJD$|ozE4re_rRm zwVgWdJBwG$%Ao7?ASYpbpHF$0Ix0p^PTA?flZO6%uuhVj_m^VhtAm^*lgsF~( zao^B=|1I%O>{t6RY;Z*wwfvE(Yp70QgJyY!;=GLj%MD3}-^X%-U(A3nqgr-R1{`lK zP93$ag*EN^V2=vdzer6B!?rw4;X(|UW8(K#uiwLLb}+oO%KlPPqFkV9|C%FjSsltT z5`>iRIgaz8=-k98pz}0DQfKSCRUHmSSbMlZ|lRNS+PlMNz0!gF-24N z_D><``-l4XoyS+~ljQiv45NH2RueRLGU>7X_YM(|yockrXsev-@cV_F98=v>L?*bg z7)W^P%lkbiqTLCQbM781I>JOU7>?xXIW;=-uNxIfTK)&Zz!K8;)m4Ka=IYqO7(JEX zv*%whvNZnrloud@5|t=EI{%}gAt~DXbPE&u7reu`GY|_$Hv1wU_2e<*Yz${}mm8pS z=}wh6rljoTbVE4R8RTF`F?o~nyV|jI$Pq0Z7a4E>U0Z+^P5mqf0$puH9~?3HAKat)MTXM z6wgjxmm^hhD7^*u(@ZEUTDat`gC!pWG+b4*zwn6SJ^*ML!17ZY?QX^SI&-FO%Y0K=kQNIDlYHg2(nX(@BUGEoyq-zH4{@&AS6B-BU%07^?w zuOOSo#;0YQE89o*DWZZ%o^-nOo=Q6Kx&O9t1t4G_wI7%w3L58%Be4?W<9WQm8Yj4C z;hnRGkSeTA=zk!VhnB9Pb`)s&ipDdKkLIw2Mhkf8@rnHSKH@?f+PpXLVG=#XCfI$5 zvK8Y@TgA;*+0DU%#IKkOSFN>7iuvmNQC}=i;I5Da*|8jfO4+ zYm!`t@1O!yA#b^x`&|U|=g?2uRvtuCB7rDr^wVNao3kGe&>Kj{sc(?*NtyPf<*X8A z3{w)@h~K~|RN;ql-mH}(%0ap%v0><$y<{L6fW{J-LylBTdfC$HoG{q?aZp#boZ@Yz zJD~(u1Fc-sy;Q);lfO|PPE30f?bEkZGyp8v`=5@eRxOJb(EZO8H0Z4O@B&ic?fa(1 z3*S#e*GO6X3*G;f;#?3U!X`?9LnV`5mU?Jh{H;WWR0==Ulj#sya^lF_k^P6r{S!Eh z`FC+Ruc^C4PsjC2qT31A9uY)V>7Zed9x7;pX02yDI%mE(4EFihhto*`!5~h=bC{Iu zk=2<6m1IS3H;Io0w-v5E`Q7SvE?Yfg^$-jIyiFS@Im-*z9f^Ni3zrRGQ1`NhgQ>^K zo{Xe~embmI7`;$}W1$@$m%7YkMCo7kjPQJ2MQ5OYX6+q>L4D_F%DW2crHutWnSTxC zFmL`9awN7xTp9+^>iyFFsR~-Fy4jHNQ2w8VpAD-+Y)Xl=6x_GJ%@ehS?*ZUIEQ(Ja zUDtM^a6i=u2!tP_JqA{wXCE5Q95ygfp29hRVg_X4Gv>|2SU?#9Zldt9@obTLwShu0 z{5e)dharDUks4hW%nW>Pc?Iz2d}nOylzCaAodZKaRaHfv(I@5)(yBMg#q+$*C_Rb5nber zjlTfd`=_D(dG$>I1~u{E2L8;%watIpIj^Kb%Q<-S)zncbD1W{E3qe!RlmURTe3(Mb z*fA3Lzgd6)tfand>1IPBdOSQmDyL<{2)VSC4-h8Dq9DQ7%l!@Dh<^w~4!-FtlFo@u znIAs|k_R?lcVM~gQO^KWvnpqQP`M2h>FfO2co(|IZ+NjxdBafO<~TYjq_#n!akJqN zGNiWC068w6`h5Jh(c2up+(N_=%X(RA*|tPIPE^B(52tYCy&l&R<@rfH*+4DVT0U|& z=hFRf^^y1=b-_AqY47;Wy)wta6ehoB8CN)+~tRjYzEdS7p__3d4nzd|F^5hXHf3+4sF8>eN98g1K(n%Pcxj3_-HF*-UrLofjk=*-8 z@gY1x$aHI!22J$j59&f{zDxC*32Bdp`7|ao*F)!reYkyADArE44xYvY&Jfo`NEG){ zNQlpV=jBI4?jJ(WfMJTbBvU{;dhX+l(A?Z*=?3q)94FJxVCp^6H@A9^|AtePdz?j-e3?HIxAV{>mkm%wyY%Ab+MKF4iHxXxqn{)7wcbmy!BY;wEOtgrK#`hl%Rf1HW2!BHvgCmnBJu5 zRMZ8W7CB9g#&*+j5X0%dW(jQHs)2w867de@_1bGHk8Pp=wq`fX_k@5rC;o4;2h`ZPTJay8^w#bAWt#67_hd)=tWQJQxED zL^cpI*iHBAr;a+Kf^IP%-;-7tJBT~Ijf?8>eXCOm^x?M^FrF8+K4*pboDOn zw*<0|cE;f1yZws<9tb3GMVbZNDttra14mZ1YUwspp4v{rjX{&N2Y*ZjAjf@g{a6Gs z?Cj`b(`Iau6F^5vmc*R|D=T-dQf6AWTja>9d*yvNu|a9iSRarP=@D^7&*UwGD+rV9 zdt%gK4|_&TupJf)NE-Nw&$Rcv8X>rBNa-|6uQgDJckIr?rN6E?`-*0<0+eA28PLf@ zmnP1o-vUMlhnj}JvODVz_VM;cA>bDIB-07M!M{S+o8~t#>~zIlIAZ_xp<@FhV41AA zuJ|C=)Fj*;_%gDAN%*6lDxOLGVB8#}BWL;FDeu+mYxI5%f;~5`VB?ntLx@X#{6VZ1 zaJo>rZ$Gyi2yK1YyKkqC#`s5%!kw`8{*WN4IeT?2u{ z%%7~UwalXpaPEuHd4ie_KQ}Z{49)O9D{Pztpa`=lNxxafhwi186|SC<;s7aF`!)QY zMd;b@s1gOzd7O|lHc9^zp?c~_x9!mt_2yQOwl?ZZavH^A0cfWOKwZksUS0;eDC(q+ zv}G(*A#1r5I5}w-Dm+4P!k0;)3OUOqMr=i)yggT-9N7=Z6y#e6*K?lkG)^tW9gPSw zt$%oUn#eF~>@@y}C=55I1bQa+0#!HcX#=-^G`jRbUNkOzFBpDe2S0UQWy@Um7tMQs zl&{~L`V3XjZar&xi^E|nO2VQAG$g;=m90IRpVXw6Bq7!`{W|Fv3DqTQPd+`n7ib{E z@XuV@Pda|t?SCGg?uLu?n7~hz;TBq=y1|=s5JeZ+@cUzKnCJH}>hqq<#!}0 z7Wj?~*=aAh@?}<*d`1>P7H%O!UP-2=&9gAEfJeluK^c2tepqkITOyTk-RrBe~nGgdW#N8g(c%R;a^apzO3URAXiC!RlS0OiwJ%q>4 zW45LNt1ubU&Z6Llr%%h*aofj1PQY{kjCKM$ux1Nl(#9FahW_(6yxrX`z zsjA^HsCQs~wo03wNI*vW0p`@jHPjF27RwsXo@MC6#AQmfbJS_ZF7UY$2fxIp`az`a z=+JV!Jq*rh`AYX$k!Le6U8OcMyd({X()^CjD!)eS4Glta+y~l3wth#`GkET5>!m3-5l0b{M%4cIza{v`ao^sZF zGEnmEk(@|RT#}qnkI%Gp9aJHCSqOe|&Un>#@g%ub#GL1>-Z!~gyr%?;d!Uy%$gWpC zj=17XRL_rh@g;Ux+}PfU9=uIA-cssek3z+2x~W_3csWmZ0P)`$SxNyr3Z)Wur2k8+ zVmEozth5c9F2_~oa8b+l7*|DA@Dpv#@ZIVBx>$VK`fx6X)jISCP_0hM=ceE69ZzE?=G4NzS0(CG(z+@koMfy62HCK+pPg< z-uiH?&S|cUyqlVr=96&yt^Z0(hSJbe|M0yjVy^`}e!c1GS_5 z)u36f_rfT?9mC&lPo4a2LE27re=T^kapBj6lRD>vH+1rerj*5RKsPyPO&Q|+#n4HE z81GksVO>dZZ3+En7UZHyBk0TI499+G8q|j)QBfMScTlmKyAcIHB~+zMxUf1XZuQV? zX9D8Mwh!#Sx^wh=Ph0ewRLhuHjEF`*9rON%2LW_=j#;z;lUi?~1ioM*(Ft(T#sXwI3p z#3uYb6Kp~M2?gIIH<#Ga7uW|dHWuTQYt`pMLzK-CP6c1Kb5bD{Nh!g&??>?~no7iK zn}q6;L{c1PlN&`x{YDca+{v|7bOBO1x5sHJnsV+p@M7=_>zg;Wy84K9qvX8JK+=HK zMWGHg1sAH8l(e-voGr}M%6t3!+_(9pE& zsJ`u=n@}hnd85(~6L8h|$55i$yqO3Au z0)IvlC4F+%?fHmx;c0Z;(;+ov1+Jo;OYdH-kTJ%3z#c@`(FD}y6@q&8y7KtfdZP^+ib*eKTJKVDvuWf%1IKUmdiujrO|A}@C4r4uAiQMYh{ek zrivrr#RxeCUv65y@u7hF)J#?J0(IKN5T-${WIk+o4{G!|dDHV`Q5RJ8J7M3!F?YAU zqqZ8m2e|T(FWV2>n=NGy6bp5!yXhoHcgqkNfw zLPcrfJ1{r$UT_QuSIH9$a=o?8U!Et2I;RY^;LAQ#Ba=waao#(s+E3i7ZpK&?7Ge*_ zwSJ;QhUFYwe`zyZ=c*yq>_l#4dmDe9p3G7Q$c|CuI=YeTJR1YCdMyS7yVK_vR~y7W zA3$3B)9d(xRzESnYjXLMv;F9c0}ecf>4@%O2?f9GeUtg#K9v0c0^wM6;)74M4zG%i zdLbvck!yNV2<_EobH96Dm+0l{44d{^sWd(q1{P%3KKwEx^|h{gq00Nrb>rU98B_fn z4y2s}r$4cbQw|?M*JbQrpI@eJS*eEAwH#apJtqsK^tL%0OQ`4ZKILlPQ&&}DR>R{j z{IX+H#0Aa-_pjgHIkP2K_K20hygP!{NZVg4o;qrn)6Ew;gY@%}b+0*>c7suRt3O<| z*9-aT$MHR45ov}(3FmcGD-mcQP6jUpj+*9lOYOcS3|X^oSalM;6-53y)h`49Wv_m4?T0Im;hw*GAf z7Y({m9yQMCX5F=oJ>UzzKqZ3yt9w0S`iRg6D<22#_+od}kuPOUpYaU^TrD_Ua1(mJ(lA+o{d-?m=j_?l}cXw3ko9L+tP=lPtG6sk(`u| z99fN=8}LY~gYbO!n+-S8DpXOP+8{kK87?tWp5@n5afS3xe1e!K($3>5# zYVPA_ifZ1KZzf!?Ys^Tvq(9ZLvnq|j;HeqSKNX$Mlb3mx;!Y_SaYOZcunS%v@9O*j+Sj0(5pZKv)s0$_H z5z@@NBcI}yz^8z9pm_0`R;W5{kiY;S=Dk<)7NR@ry9aRss5=Gd45K|RnEE(6ZDb;2 zj8{t_)u7y+U&(JTfetW#dOPe2cxcCwF)rrzYa5q2?U-%x2OL^nl7P2Y*e$Xr1sY)s z=fB~n>~OQaThgcZn&{O{nIt+}AL+FDM%5`s_O&tHN$aKh|4Yj+qBc#?bwPQ*Qs3Kj zo28L4sQP=@`QK3Um-^T=9&aVMkDqqFxHI6R<;wk$i8D2OU7WG&+9>aLN{j?gZ!76r zNxZc-F(Y-@AHi6phueV8yzb)|&G^MxTbmX&Gp>kF6bi%EjSEpznB_r9F@h^zb}@aciqbzpce283p=tep0Kts^FFMCa(8bJh~P0Q z@p&a5r1S3sO0VzB6TnI(lEa{>Y+#6WS~-8|ix<;D<`aAt;7}!L!Ufz2Sjk7I(OB{- zWC9S`gg1Y4#`#4~p)H?Bi0NjDcm)8BhE&$KO?`y}!_f`uG%`fto^gv=2XlAk9e;q% zQ(;B6Z~q)Fb4$z14|(ZGNLOy@-@qN+{5cDk{NnsSCg-iIW%@bB!rN*`CpxXyugmRm zVK_etM*Lb_{CfeQ?D<+aoJy8NrKVVqK>%vJrmu$SOZpXSxSQn-)-}@jzIY-7XE_pg zEfQ6!Kwvd#yPrF`xao{efx@%TP!{NWRwQqS(_NjEf>lHbro$8&hECEat89c$u-vdZ z-|sl+w)Mj|p!52))rr%eKGxA0Th~zDqKoUYn^nkJYK=b1eqh<-W{W#ri{^p4q)kgb zSg#WCnpJFZ#3E}bbZcF|hD`Ye>f9-Mb5X_Uu>;6fG#=vadlEJcY2T*NpdRDzD{Juj zV6flAb~+^E?b~(3fwC0=6upwo)2Y-%@=+9r7HwKz=F++&%*YxVOoCX;%{PJIe#`34__$#wYg4=U|u+|zjn5dvQA=Z(2qER2P}UA z@bIN@`rto!R3N}VdZE5z8tymXv?q-4b~9tew$*Zok+t-7Yx;vcVq`4O9r`uA#S~W2 zUb(z3CNwD1&yFWb4W77hpD`=HN(Np_+v%iJqYc*!6Ld9^5s32uraI9IX{*teP~|cs zY%SkvcvBntx>mhceZ_XME78YybHZsLxw>s`WCHPeXenB|;yBU=l4>$;cLxg9-tws-nT*hFo^UCPKFbA^YOG)jx;KWp~{ zjBVhOQzf>3FOhubxm41>Vesfo8EW&*)opUx`b8rz`cV((&molFmKi&ZvGS;#YVy6( zF?b_7Z*X}NTOat<43X4=u1S67haIEmy&y3|4Bw`##_=+{U|~ofW-YHD zg~?F{4qdSh$W6Dw-+H?^MtiL97c^_Fv{`hv%djM=l>)%%G~hJ<`V^Nczgdf%9*Se$ zXS>lO6#ya%TMqmGW)X?#+<5=4QIL4q9LU4&MdzSHjN7%GZ1cLM|GpB zNGXWxcWMy0es2^csqoLWZE^VyAkU`^CZBKn(&s7g#cM`{tj`P zPbSysMHW_K69zyC;qgEy?#1Ay}EotDE)b5GaS2r_S;Y$jd6DasMf8Y{Zc zkr0toxOesdB$wkA@usJrD7<1sc|Wweq(pr1GluJvc#*<4WIKPn5w`g@{%rsnd_y17 zh~;Zq_%XC(XY0S=eloDT5amrR?e>Jl1{~@#Zu^AT-E8?x%1ZCJ+}Tn3&2<4ax#$BFr%7jDjcQljwx)_AO?C z3d&s~JOo_J;D^u3u>s|P=Uu0SKzoku+pYwbH`f~#ZU)AO2ImG8Q8zBs-rX`<6h0Dj6{rjKDMNLi_8bodf`9jqk>3^&CHv-PqsdheC7H`99KMnDUs0*kcjF*A+5RF@ z0!J~3PXZqLQ!>LD;&=Y2XiVC*_KNDmIqnb2h3eLVe9F5PJgQL`ZlHEItoy4 zP)BoQ3tj6s>-psbNc&--wz|979DWrP<(}{BIQJ!$+)iw=#$uZ8fuIfeXvFIZoT)c5 z;qRvpwV^30oy}ULX~?Cxj{XTC;&aULU7wogiojQ;H*@%6;C`C5wWlwi8=FWVFgNaER1%-Iw=z*VgHMSP2j>&elwRGXTA92V7g?R z3<>F-W!$L&azVM9mnu zlcG>{HPYmlKI9wAn}>a0$>|+%Sbwk!3eW8kyYi;bC{*mXZTi-DXvXs(b;8WF_o?2R z5qB6tlC8fgf9LSr(#gI*_XgHryg3>#F4!sw5&U=e^><+67SuKbp1N*_H=DhxLwp$Z zo_lZ;GXUvY>;PGTb`Eo{+VB&30$&mG9q$UbX6>;hpGZ4oWLF#6_T8PCbl9bljfVgq zwB$9<=^o$VzLtM^`Qh*r$%zsQ$16_e?7=lY*(U0LAE>p^k}ylx%8f2=DLL;Jf*;(` zXI%SkU1_vTF;8#hX4{$jkr)tWd|Yr*6!$;KnbzoVun0ITuZW;H~B8Rt;l>a<*l^R~Nj z`0UK9D z-7ckG{Os9SQ&%47U}bi7YYx!nf0y}D*1pl{A;03*>fp_q9Gw*E?w)bk%YO|388?3- zFDMo2q*(2)*^w)!7x-S1TkviC4|6!V{+b3<4p+6?`92C;KjtCqg_dXnSG;o*HM0YbeK(=ah)?VxN%2AC~cK z>&CSUsLj`wN?fdCB0A%TcNujUhyb+NxmDI&B-G$cQ_0<59{oceD!UpPB(gg+eL%e$ zK)MTI8a01WpZnI})_I-rV5s6$4gxb8;|IZBNTMmHZdS4>q?o3+3hbW3BY^93<`g!V z-?q~{IsHp{BJIRVRl)PJy7YX#HNMSxa(f^ zyXU#UAsPz8ov)ppnh2UtCLF3jM121JjHMy(c_P#4?t$}sLim{{4#D7oH zo8V6Z3^V5CNYmO!{WoVizmoc^P@|>Il-}IOi;S#U>~#;d&N0&I&Fuw*iKp_)v;j%* zy);`6Z7C26Pm@Slg0nBkVh+*8+O&?`Kp8BAQ3Di)Cx#pc&!(J*(zqRyPF#5@v4^_0 zv)aK18|EjKbvIj}>}-ujDUR;;X6odm{(avXC7geO_h@+Ox|X@XnXs|)nA6*9DBg{r ziay!ksR3e-CT;Lgj<=td)5d4WN6f9eF8A?Q6$hn2XPD7e8FmM6x8t$8Dm>rST-3tO z&X91dPYoUG3Pj6pUBoYqC7JnLA8t|@*_5^Mrbf-IAsngXE{IsYK$rchcDk$N3uo^j z)%H9=!C{~_e@-6c*e0nbxH9T@*US>3)R8Qe@5DBVlBLt-=BDSQRM(20#MO!uJ`}b!yd-NLz`j=5d}~>lv`bnv zfCQ)oWqv=kwaCDOY~og7$$hx8Mu+qJvZj)q9mb@n<@VS8DHCi7H_I{c{Y^ zc0YaHVc@SwC70^UoH2P;#@|7d(16j_N~@OtI;0EFj*h9m{_Q9405wN z7a@xA>Kj|#Q2jc-f`Sc(;yHe`1V%-msdD4y+O*m9hL77+V-50@{V2c-|7_z0?>nU@ zi`8hEqN7S9g@zeJAFz6l?zMas1eQO2N7o1eUE@>8KQ{Ki8pBo+^P#OX4UgK)&?(f+ z-8(vXeI@bkgDa?~+ioOr@m>JV9oXm>Q5+8Cya(+;E=~Z*#W~@s(H@ci^Ubc@?nlnh zQ&KvrRH>i6S@|W1qhEUFb~GY2`nSBLupJW=FRpo@7WJ|_ZR{RDj+}fD`^cFGpc>xY z4Y{9q#1}{2HIF~EdV`R^Wdd-6X7rz5%uQ7AZ!aZEy_}i!;KmiGdo8_nLd~n=I}*Mb ze4n&O5CV9%@h=DYuPH@^42ObeO^Ism_dtHAoB~0>P?mv4DZ}K?P@HfA1?zKU=4Kz>`^a+#Ew`s;Z#0K?Ih)c@{QPJe9Z^x1x&R48?;rv4 zkxy@6|4RB#0rr*4hyEvN!}&L?c!`7yR-GfTTG1)uKX2`7johQ`VwzGa-co?RYPjEm zd(k~T5Oe8z-H|skf|&bri<+p>L^2Llq$%Z5QJ>^-zMtch08SA^=XAl!(MF&FVa%T@ z+_nasB04P`NMx2JtXZRa>&a>qq|M{svCqTz-09Vx&$&GE)^&-zVofU z#$o}W-}M)3=-M+*_=a&5b`npOLH3JSN<+wPr$m~;0?1ItFy^E?2?#qC0p z>p%e$eO<60mOBrU&C8$=VI;#a1y1%EP#@=?};TRQ36AmVt@@KN>}VT>_4;0FAx zI%jbfQY|M^wcLZ^>WxOwH%6i8j_+o5Xem;4y?I>ITFP~=B9U!}3yVA*)?c~- z6x=79$hHB8WW$`|`|r*Y>WqIH7vFZj9xk;@(BMd9DR=WWK4(^m)^gVIs2-_y1Ct0o z3lcZ9N5JSb=c6qCDXS4kVaW z0*3;V0J+?D|Cg{y&+Kt|>N?QXk1Wmp+DN&JY-juP{R&oS_X^uqjL=_F60BAI*bdm? zk|lq%vT;uYGlF9d`;aV=h{4rHlbbR%E)c63JUpqtqSkBV&Q?TUog?y zwD*v(pqzBS29X^cJokXSPe%*|nb#?385!F*1tddXrwXE*RUTs@N8jppER9_1gq%q6 zT;NIJH!v9+9A`9O6RO8|l8(nGN~Dq{hZ&cUX~rKSMcB)}E1#Fj$?N$ez%m-2o`$Gh zfP9c9f{XT!&MBE&7;YU}quca6o~#2X>(t3@`ody%;N4hmA%n8GM%6O`j)jXqva^57 z^KjWQK_3ko*FFrbz5??BsUc!3Mr^CONtph*k#pN&`PY8zzCoF7)UD>BdyO69Yk`l> zpsV(5XIK;%%j}^7wrGKJzZo~SRsv1+^I448@N)fiO!BqMg&pRwsSY0EMQzs8e}0Fs zo<>&Hg{^|9z>j~5iJ!~9vP1vgQG~u~!WNnm!}ro)YczbE=sV|z+LR(#nM6;)>+W#@ zjp-V|tRSCv6zQ*ZQiLje8>cp{3j(1iNs!K7?gCO|ETYwEy}7LlrYYnXcy!QZLYEnR zPl)SoXz;2^?e7GC&bDW)V-oCuT-G7vlDG1F-GK&*lcIKt%hFbQbyrHTKY%(?>cW8fI zDl(o4b8PsG7C;{TSft-L>?}>-4aj2;@pOA7Pra~n7B|(O9%UErrtcC4qp09hcPFXa zu>FR*?|};@4yn%BMZ3%IefDeUgcG1wyI#A-KlYj%jlKjfhuv6<=pWz#Ueb;QE;+VG zOtknt@Hp@AMN8CP^B=`E|8g+Fuc4V6zOUp}PwWU*&94j1pGSv2NU29!Rpt-eLWXTA z2Raxc0J5xHHn47ne6_09$fj;$nBH2x+o~~mni4L%in_m8g|w{{qK ziRd0N#}=B4%y)w$B`5cqf9b!lGa42mfE6|J={p?B^5Xv5l6=+^IhXZz^j*Pi z@asL$r_~P84gL*;U=0zHZ?fCP>lI+$1Z;%}N~j`@QbU;kVL30-r%*!hsguLt@0j># zyIaD-?CA)7XEAzll)dE3wF3^FJE2LId@!;H#ef<8J1GM&sad%WMU^ybY4mW)8q<9a zd9jh!`8D)IRvaeqJfT{O`19_oZHr|2r#E=N=2Xt2-43&A%mXv{a?fYFh&;5rOh}84 zdAk!V1V2|N?7*hr%u2$U0_Q2yQ6};7fV^5K1re^`qQkyPGB2%fz#w^`p<8G$mRzrY z|Bn!lf6fQ_xcxr+ozTrxN+7n0ZT5I@TOA>5%icP2Avvtg$f zmaqY1R8dE>>V|?GaK>rf+7hxf(c4f&!eNJHGHV!F8^{DLy^{27M7BX?6=BE{kuArjq-XQ#e_?jbjCGzR*L1u_XW|-pPLk2l1Ab28bOSgNs0g) zUG{d1;_Gi?R*Ks!DIG*7gL!K=7_Wy`%~0lP*5xf{K-BBD`~A79Q;aXCYW(c~B`N!B zH+*cJHdsMUjb%c0%;g!Gl5G^zjMU`(C)s9sK6rQawGR8Pxnz~kd(xe2R@b~NqVYzv zg}YcO1!P)|O*v3-eg$3+oHm$z=(k_QE-sE_qUL!#x6gIS-MyomHAr#{OsXl6Bvl9I zRxdl}Hn8<*l#U(i5j$1nYMF`_N z4E|^!FxjqqM?cXhs4R3eD=2Fa0QnCCJd-+}RQ+qqs<6KhL4(2!f!A-H46i}a-ZtU4 zF&Nwa+JX*oVRg2?^Y@i&=0B6BJ**BsyCjQMy2oQZn6Y*WH$atJ#TP*nepOiPV7~ zC-5Gq(Yqzv3hW06N5ia{HFwz7Vx19J35z^14WKUT70OnjaxxxLnbqD#I3?11M<+D} z2PFyDP#g~fNM$REAs*^53Fq(ka;ZLbhT7$`I(igopa3|_ef3a$DWLYM9(IVLltUFl zRaGlqCKM)^<^~iU$#D2}5>^D|E6eXd5+Q3a7YJUtdz-bQ zx#48or?Elo{k*iPilpr!2Hyfi;intO_ezk=G{eu0O18{!0|W1e}wFPaOIEJ*Uomo)||DED0BP!%(x=N z@$}a5@Tj5Si`5#AZw2Olb@EKOdFS}2n~|cCx18>b2Y>$})P4Kvp?{VL<4toabUC>- zzHXhVQIGiq<*u z#57C2-piLmnEQrGs?l#FlL)_V&jAXv=VDXx6{e#4*FlaO7DnGH7$1U)Z=<5hm25)h zkbncrWb%G0nN*Re;uPXl_gcFS`L6L8{57R^Sbs@n(9-M_BX`GWT|ZWftEfrj_nIX+ zuP|3X9HjiGfq>VE4J!vJ)do^qJ=_J`$06QhIExf4=&A*?;wQ&oa<}ntenswF;R?lX zYLE@5=rt6{^*tSw0@j{z@oIN^^fD%!<-I`J1Cw_3tHmkaH-1ma&bSru;-W?~F(#;j zp;2@8`R81;I(X#OMo=QZ;Go<@xwt}9y!XD7P3`ZvOZL-2vL3|__7@=ll4$jpd=!cn z1y#5N)XNJpe=c3dyGbfZ5xBER+u+8w8IPKW$z{FH|J1@?Nj$>BOrrtn=0(AWYlAUy z#T%+>-@Q%LXdn#lqk%fOoPtV^sWA9)S5lau*0qC{Sk!PfH(gSA&n^K)qpuM%BfI zm>A(?iv;)Lzsl8drdQ@}T|Lgw#E9B@?dz37@s$sB;HgZjj}B^fd*Y?H+QJSm!uYNwP80{q-QgC0 z2xA7y7M2qw)U=IkQvpjY3}I-pT9lx!3)cbMDWQ zvr-$sEmKC8$7*}sykNF_$G0V=n(Otpp10IOZ3nPeIzNcWgUvlEp*q@wSNl|7>L0$8A76UTEETnPEm9R~?( zApeFyKH8-cb75E4`M3E9GQ0oNAIr)*oZ?x+m|zt|c!`8SK0~USZ_OO*+XM%dnwQ@m zok_i!99g3^&^#&kJ7E#YO$Ev`8UGfj1BzLz?C}b2nQq@?a=?{@jh{!ODHSkz0cvFaPmv?Bat?YlI@0nPm7YjvBr76sp*<5-(;m>+=%=HSN-LQFJ{Rg zYyOlV(;hx0Bnm(?o=-k=TtLW^VwSMiviL$`@sc(Gs8bZHCFVW2O6uYyQ zJ}Y{IqL7lXl}o!lQLk*V(&pSeEDqv+epY%a%k7g=6xt>AbU#(1HKCF>8iQKs_FI3_ z7RfF6ikNENS2Ay`GPdN(X(5gKyAAWRNQBRB;N0QSeke{*&i8go2baqCqn3|&VrXCV z)>=0vAmJ=UdZ{2G5>9@BmtnAKXJ$HPt*SE)TjjVMbCaHzH)Bhpf|nME;;YZ!`NNs@x^qAs`m61s3?W4RogF{qE4%kn^2cJhpaG^vn$=J z%+zq~Pl-f*#qL!f%|+SaZY_`x#ZYs{#RL@(U#>EQO&~czbo2!FU|&VVq5$8XlbvZ< z9xci$6a4SZ%}rmfxwUJieJ}``Rt`L}qWMR6t64VszPJBnih9mPtK_G{1QQpNHPV$HADSl_e!k zhHDu5Of$_-HAXV5>jrkQs~ zG#T}Nu#)0=v9n>jZBtvN!1v>x{;v{M?5|es?4ey{)}pNQ_ZQdb`b&m%qk3dbjAf72 ziq_N^ECuzaudCc$;^g%(F*3zHDRUc`z84?V!DaW|yQ&kBi0LmiiCaU#?mJS}?W#HM zHu7FzBl$TwtdQ9QvgcG2Y$Es<|7m{l)n<^_uq$mKeVtK5Tshe_v9JtL)!k8Wib&A6 z05rUoUHj28{=denpd#(ZuW74-jCrIiF=*<4_VaeQAONhzk`ua}tr=vrNfwTorI0Ju zVs;nhuz4)0E1${69W&OyQZ*f`VuKK2>x_=~&i@qVifS}}8u{~{3A=5*k-T{;vh9w>IHEYjOkhVBO;Wdp zJ2fWmua&a@?3Z71K|XiU(vm~qFxPOiBhwg;%dQn%2@|o1AF@bwj`@uHE^Gj9bYHIh zVY4fCOD>4+=q`5~RmBZP^DkCbX=&5aiR;6-TC3a49RbO1xHEn^0bFVK-OX*?Ty5{t z(|zrth~hXIwO_2m*+*)OB9>a$x5YI(ZSpt9#~a>?rAa(a%Sxuu1+-OA%C$=P8Tc-AxvD5hS4DbrfZ(2B)ZKQ`>ugM^`7~rH@5xYEqCjx5!5Yz95^393~A5 zRh8pse=}CNa&1_mHQLwu+wFzY*-ZJug?KpZg!%TWq-G6MstsH+wJp5Db|z}nf7&XP8LgHW7=W!GJE@2eqssPGya3 z7->gZWKUxSnQai~!+<~!xXotSdT6H$$$DR&e%ozLWrI#*mLnSAP>E%^aMk$@Z_<$qq>c^-Rp}yG5-S6kfni5S4?f)7ZkE^gthDWmb%Shqg ze@(dNAACvilfbrAa?QitZ%s96`2p=0cPyz#2!#Dy^)ToX!Ra%T=6Sn4u5y*Xb!>Fq zw)81q40#z62Jmpgt(G45^P=jLCwV8{=eq2sTMA8FlFi9zERhByac0FT{ z*CoW-Eppi@YR&AP(#U+Q!OF9mz}}UxJ|)T&mT&%BhwZUNSusSI9Q_<_MW;RM-4e`l z+5rH2HvEd#_y^~wBYYvN)5~k0N$6^ciHS3sTW{0;#W2RGC8PZ88qVBZ5Fc*#XK~6ER(Q-7{CP^2{7qwWYY9y^#yv;Xskr%?c=+B%_Y$|Cs|?B7w&Ji9>Bfu zh^JrI1Dq2IQ}{&I0wg9|pl)8%H(5Nc>!W)@6Z9ob8;s$p>&q>^qHq06VdOBjEwhU-cFQb63Bmg56cfKsW1(=TZ2MqoCT9Td_f-ea_0zZ z`8`{yWFOp!Z05jpY|MQrx+d!9MjRBB{8=H1xws6u6ev@*0Gp`*j@ow2XsUZuS~6MK zV9-tovov`HVV1$hx}2X}b)~k3*@<=O26U>P-^Q8O_Y2+FKP?n^4sFhHnfT~t$=z(} zD)ask+5=TJJ@=xko%X0Qr*0m192XC>XJL^J6*K)M1rW{ zX*M6p2E)^c2=kP1kB`z9~+F7$hd~{RxEDvu7H>wXIGA_-MD?c zVm5DyC{Pr1RsL;xBKeh4djTU}s0!H zJv@3t&u>!-)mSKm>3v?#{}Q(3yW8^;Wqv1MKF)tA_H#$s!?jD=?*9bSBQG?qJ#t9m z2J(L(8_~OSvuFA1|4{%g5II~ISe{X9RAja(9ncQe zz9vYGliAR$e?_3rT|?$ZK21A6P(`$9 zE!Kf48UF5}iCPcAn`v$Zry5)g`sewobIdnF_UciF5UR5!kCwe6B3ZQGMc41meCN5psH(M zO*!VHJOxGM$oxp6--&)Gu?8fAzAYKwmeoMEcv=1!Rc~YSPCu2i2pL#S{=LzRwufdG z#ecb`bPjz=uaCBMrRApR)Ms2Xb2?Q)WZq1h7}r=3608cm7Z&~0PqV$FwVaV_cWiB_ zuW9<-l1M;%-_siO=OC4#OU3P+XM}y@{c7UuehO^*g9fPq9{IiJk19}3f^gqROos_B}gKIlzV5ixu2EUh0r zV|d2~&tqC?+NcbUrAK=@=xUffrn<+R6-;`Ih@J*gb46L+*VoJ0%T+iGg_tfPYg_rK z)HE8`T2D>86N**}S+si{55tWNyd=_qhvzoTznnAmI&Zy;b>7MC8l2B6IwqW=!et7> zzw(3!p-?;=?ly)BL@VuqDWRu*fitI`nn|UPlvpKpj!6;0=?^~eX`>Xl1pU?+P?{Ph zWAgxNQ`+W87v1&n8^vENgj4I4o9V+*Gxy4aq_zsfRsviaOXuAbROkMz8YPeVfnyj- z>{I4s&Gsmo|GY|aLjf=R<^F2i(0~B!FK)9wnU(0c#(E=mpsuOmN^^O5mAmhYSBJj} z1rk@7AEB+cQGRs75P9LxjbChkUe=tXob2+Ui0Rj-K(HD021a{OLeu@>#E z7ZKys;_gLr{P>2ZN#WLa{_^JM(${QIK!QmidE}3&$fLtYV^cMAm_(??jX-s`PW3nu}hvhut(d-I5il4{Svn%A-baNN(<@+4`DDZCT)W z6uz&nWlKtX>mFO@o;b6Q#WogrcpL4_$5xoCsQU6KznQplCHLEdg(6mj@(sOc3A>6w zXB3V5#*Bg}p)NcIgEklw2#ZPax*#HUA6@ef&6H($q2=oeRT92g4JiAC3{xh$`qw?y zViV0QdWIH5#$HYy{`eBI%j#`eu|tijWO-M$BKBso5hJ1`YFOr7KrDY5b4nWDp;)G^ z6r}SK;~G8TQyfcGn^b*1A!Zk}_Ab^%{WP|GbTXZ+2iIohkDL~< zI!HBmIVdc6XJs~qyyUQ|qN`H0pGv{4W7^&74BEw6hkG$@{c7+AoE%T9465Vgr|M0~ zGFAf2h82`kZc>RL7X@Qngym~}`Bk&MI(z>wcs({7VowMkVP|P zGp7vdewg55xu;VZro!PMUfeFu<;C>L*y`vcdT7{foWX57^Z%I?1g7;uN^@$onIqcDPU`OShvv}QIIV@$vMA}otmT|J8KF5au%AbXL2gni z-TSFgAiMY#Zx1)UHyLw%qe0pbhjB3+XZj&@4LveI#HYP5FeQ6`cnl8f~LvrL-b6;9kkscoz zSi&jhUgPD|pq*lGFKnBKd^Bl!hx;3h&2ez&x>^fO1?AoYX`{-PWX}(90SRl281Ce& zb-I9>kC9kz9MFT64I$?3cJ)$@({969LCgd6hM7oodC)mRuU^=t+wD4>Eq{>cbZeg;{r>c{V!fN# z_?Ll1w5|_tF45RFFHK){rH%0mFNVQSt9LNrJ({S`Co#FCu#PPSe{6{*Q(RRE%d^lX{Ki@IylE2rn&A^Ii7UGx$l7iTJ6 z)J%MY2ZP$3j3F^~xgrbgQk&}S0@C0n$af$yZa)y%Q(5m;`a~*hK8^gIg8sg#=e!+S zIs!G-5Njb{{={yKfuDbYa)IG~?Wt@?krflz zQhgW4^CjIWwfyhZrYUReUGEV+isa@azCy@i# zhddvGtA&n@Ytp}!?;G-QH< zv)rvEb7F=obHjLls>5KobY)@IEzJe<=hnr_Hq;jsp%52R_Ux!}(y#Mz8tV@XY^i(J zK6zUkY!=>V4=g#4bq%SO>7|P}Rq&NQFnY{`^dN2K(@aC%Xdg>IUn6Y86&zV0x<_u+TbqGYtWyqWOr`R z5>?J@qeUBZP}2wuGLK*r784eY#yT5p#@=XGE;x^MkDgdF>}ZhBC>pBEU*RKVcb4Tz z2uJELes4&`x414RdS@P)a?_P>K|7)_i=(}IQEm<6Z%@ysYMEHb{@bTlGmVvf0OOAD zcHuZz0n?gG5MY_VnXe1y%stdL7?@U?kv%VX_{${^&33kt)C96t)qDvDx0KprpN~dW zPIGU43~{C|w+FGn|JrNCyx&jr;C8Gj3>>^y92Z&$Rh8h^OCzQx95}nazMs$Oy|wkc z#JtVWN!Ciu2_)B5*aV?3u{4%4Z?(9O6;HbKWp^GG8K(q_*w{a|&_2!St*RzALVt(9 zmu*-|XBDZFv%ryOVyHQsz_Sq(S3jpg`v&A8JqPl!$KGbxJ=J)Sjgtk zW9`i4STi!U#H;izfsN?kQZ$)H#Lsf(G0Sch_&hhvTy9jpkQu&!7f~t!G}A@TFNps+ zJR4v|0jUZtcd=AZP=(rbif}q(kfJ{(g}=Kk5&SF9_l=<|yK#A5^8;4Qj{J!+O^oSQ zPR#zf*aFR82E?4WSC0NHM9n`Z*XBjpMHs18+zGRn&At{8WcHGuxNmtNzqBsQ-iXRo z>%{L;h&5;r^c)z>P<7H{|Nu^*%vrzz;d1QhM7 z1M>p0H%Ivrzm-|9r?1o&>7mqK7Rx#$u^_g`h21z%2M)(i7HiVxiY82OJVS|F)?v|l zYd>Dx8yN2Co&Mz4;^~)tDG{yLdPS?<_rn{G-UV$D6dl62QKr=IsTALqvncR#lp6Dl za9{~eI1A=b;t#@CMrk%Cpzbb(`qV`|d&K^+ zKlcnne@P@)dbYYcX{#>hE(I7QL}x=5!>FM`k@3a)f;R7(wy#RnD{B{YTUF`|)Oz~M zDVY&3{H__aVOQTxPXnaw*WsJ!Sf&w?ufk)%xTp5vnSD+&h3zUq?p=FX;(2a>dSB7Fv`pya7Up(Uwv8+2 zKM1gDqVvgSq*6h+bS{Z~W)%e=*E63i{|C&NvyiEpz5Il)Ki4eHqW;y%i$!a9m+Z6) ze`8_c{(XDdy@loE1glnp00bTY_v^r0FC;`;xVih5VjLZj{gYtiOMPCcXFD2woruocf;hsgFP1zT5+^(WA6*xU*N9( l^W2o%;Kf)VmDm8VH2nW$T7H`RRNr=xyr-+5%Q~loCIDv;OJ)E7 diff --git a/articles/BAS-vignette_files/figure-html/unnamed-chunk-1-3.png b/articles/BAS-vignette_files/figure-html/unnamed-chunk-1-3.png index a925240f2ace0edfe46507603d77b54013c72513..c8636f8d10392f23001187eb32471b270999a267 100644 GIT binary patch literal 70596 zcmeFYXH-+)6E>Oz1d$F(lcJCS0#c<(6QzYJU8G78>4?%xf+!>ukn0e{ol{`!~JyEdRaggIfuRH%$|8>o|y^yuAw&l1+EJq5QrYGqhSI9 zoeKhiC?1@r0^YHO{ImmJs2ugQHGo&(>)=i+0(hbE)v-=p+Du@ZfPeG;-+>9ghMJVOV*b}Im}q3ZhJ;*F*I?FcF0uLHp=o@P2`6sx-lmzY z$+1&T1I$btq<$;**?GuNQtfu_T5T^|z~0*8-Zz;87em8I#Y}ySV*cK0swJj7uw$tk zDwL_bmAgcXfx`dq_y5(v|JA_%k2Emz*WE$WZ$hcKvl)62D!;hBm(m^)L4Twe0LPg5 zvbOLbp>UH(8%@~XW=IC3KKGZyQ1i-8NRZc8sfQ0h896poeuvo$o${r3PO8swQ{_+{ zQ`|c*MzKK=K@rA1o;%o{$5r*S`hk#aY&f##Y}GuN3ib~qiac#8Qp&_bUpk)HkK8-+ z=lquOf}#|+Hs>&{ zg!6WAOp)P{L)`j9NX%1drUYL}5=Y_G#wtr;nA(pd6o5xX#?l`};h14gSD~>Oh)3Oz z)7Qi6_AY!c%i1^<(tp9&BS38^ojF7P-Bcl=y+E)koifHJV}&^ir!<!b4sH_`WG* zTkwE5ye?n=e&afPYL>My;`*SZO8u-00Nz(V{_Xc9Ff!#PECRkBH6}l>1`}Vw6Cvs2u7I+ zZrqfw5Az{Bb=+)p!S>;fJo>o8J?X+OH1XckSN=u>O}+f(!^nhQmq9jnZyivR+#I3= zPZBhhh?({1z4ch<_J`d^JLtW`3vl zUzcfk)k*ceVr3#BHzmY7K^##WU~>I>`Cz`a<;nW`WqH12F}viCX02OjuVBNdjx^8! zyb|G@+1Aym9ErbjY_i1TTB(xQ`6cAQfQCpIfSc0&*C>z#M9ijphXSp}@J zcVzQ9T*5Wt5TV6vr@OElMjL4oJ|4ARS?$qQovs~u?nn0ilVM^bi>`(7;T1G^xW?@c zN@e{m3JF&9Su2awh3OBH|GC1=qMILSNd_X_jrY-+DyFL`M!7z)k4jjQalsvIE84V! z8U-C{z@7j8v|u^a|F9+L7y3g~WM;RMDav%f$Ju$V%IEhzOF?pW_0(14~d= z8PvBn8QQ|oZ9MvBdUv*rcNVrY{`rQu z`jGH0O=(1x*AMMUSJTzC>7sQ#Q?Ep?8pMCOK!SQDCGlmcOY7LZ;+$96dM;3VQ5yVH z#~_prenk4#@Xqzd@aIYBMRpnGng-r_1OAm5IX#khUdXYx`&i8N>|6R`mfmO6H`i-* zNbgu5!=lq~blpy?hWlf7*!TzSdiBaC(~vwXb-6vH=cITpud=gUX@}&SCkD>@tASd% z0YCO-*Kna!4h%_a;>-h~>&^#s1hg4npRWIn*l@Ar3a_mDOECtMcCXx(vO*^RGZ(J6 z_i6B8$ESdq%$DtX6ixDF-pA`c+oLX(Bl@t6K^+UqLb^N83{(PqlRM;e>nqa<28o8A zDPf}7x$b8NH@yH^tG+Z^SCyld% zMV(fq4R?mC1E>Cw1%0ir%uej1_y^8+yokDJ2oYHQn1kuhc2t9C=9mC)QVH+HE}y)E_Tl z()e@7LM_k6o=#aY_Vk@;Df=OlRLFw--inrC>7FZG$;(&Gaqlnyps$#o0jCiSP+~@ zVF_zg!`S#3F4P@YzpU-dES+jh;E%5D0|YOWA$rzSH`DW4m#>^Y73m%*)i9|K%gkv> zF(`bJSJl#~-e=*Iyx?I{nM&z#6K<8;RW&MRl@kyex4vOCgMW1KQF2`YucX1W>TxOQZRf7 z-X2nX)HrEb7|^Fn^Yo`XVRZOJ%inA2M5*%8g6wjGa-JUVKsdjE#||&%^Q_lmXz7%; zh05;7;q{fn8Ni6o^8Z`gMgwNGt4g@jz3%h#zSZ-(ZB&2Aj$!#*?Q+$-#noQ-*F55= z65k%RKGVS`EMiVXO;E*c~Scdx6l>_h|Fb^jM>QxX@Op>=+t)F^DO0pJZVx*&WF~I+vi2(w6sf93e{(KZ^|yio}g~_^|kT)AK`(m z4Le=!bl#?|tKgtd7sggRYp;(;rOjIA>s3*s_n>t7HhVHwg+N%BMS8ZhRatN#q$Xs-7?(`1M70GE8M> zA8}*3+FTTK>h1O+9~|9jD4#r2@=MG<`QxzDQX{ExK)>F{A~|5zZ0dgZ;r6V!F(>@~ zz$CV;XkBDQ=+S>Zatk`iUUY~Tv5IhTpO|&a%kbJg)$7dH@?epQZPs{ev6tI@@&XsC z`JcdwkJ1P{AYQ%tU_@>N;JzISBM&*H-0SiNiYHY+b~%sgnI;YhumsfWLk-z|(g-s* zclMboM_O{vw=mulaN}BkBcw0&TAMbi4L$lVC_!Dy zt)4ZSS3-lzwF|^47z$0e93V;iH{*VFx7-(aN{zyqH}{1BAq4#ij{Ea_d)6a`a89AV zY(^e6S!ZhE^^O_c&d3DsXW8-Sc$i5z7j#)5zgHe4RGY>LuH}C@+LZxH2@R7+%=N5y>c!RG1i;UuaKG=;hKo^jWVP5!d{m-o3c6U6 zDiI6|0^{}H)?pt>)U&j`n(-I{B9dOD-u*CfqQ~aHT{~PGbX7WD9m*!fakv$=ORp`l)#T%_L%M(E9$U$$5EviP6s+NtK6z(8%_Ez5sPj~ zBD~PiX$L9rG$nALThBM0S75k@xQGb7K-zVlanUf@yG>9r(~@tA9|_u#vl zH*g)xj!dvdF>38`HEiW6s$4p|cKx^#9Gz%VC0lA!-n~2q>ZIIo3c|Di4>fOgq^Z!H z_1_s4NpX1jSxt;b_XL~;r8@z#hdYbOwCR$)q1NAXWjC?q()0h_db)TXf9$2@l5PKU z;T}Lj^4;pAGsxGjSyN!&VSP+`4cAP>{_`Wu1uS!0ZhBscWO#F~&LOZ~{dcZ5^0ndc za-=0InvAq*ndEdFQ?wDxvd{Zo(Kqm)0RLOyzfJ$Y{5I>o)kyK9>4OwW)gh#j;(zBd zrUK5nAhsHC<;2~De0fWi;55T<`@daPeg_byy{QMQ^+_T=3rVd@6zTp_4F4IG|JW~V zRnWUYYkg9gwYWg^ED%|ND{f(v2|A=Q`u~{Oe{Xr}lm2OttfYS!{O>Wsdnl{__dGk- zSpO*l_;a}U|Mlil_zc4>U}Y0aeFy`{j^300JBXK}3er!tv26DUxZs{jjxNwkBb5A+ z2UHHO4z>J-hBvI*-F!)=55);5I zA1Of)Lc2;Uw%%a7@k&tZpLPw$R?1`AeM-^=2MK~C!4-RVb6+hop@sDw6wXB*p}Y2k z8^3-FTHjB8s+GF%$S*k6Z=bQ>BH6*#;8qGD(4JtT1hw64u4L=n2-bbB8NrreQ#`Ya z^@6vSM_y~z5Q1aAUS@4G;rpkeo68eeQ{3rSBXmn`y*}7bZ}Pf;uENEc8wBv2BBJfZ z?q$#(Y&~(=<{qGPZkdmwJ6Fj%EKQEMv*wYbH%#zyMwZA}L#lK(*e8@wOCc0}jRq5u z-8U2C9RXM<{2pu1SUAXX?~8OmQO4XEHfLNx@xq@;0faq`>-Yt1A@&Tc4gMLaiOn=$Wgpq?-bpRI zSDfPB8D1C-=yrwS-vNundSO<}Bhx{RtS}C{bDorRECQi>0xQJRxQwT3)#U%Y-@Wr} zK7?nkqAV`58LLcSBPd~2&2%kNrmAy|GJvJH=>IMCMKU`>*wcE&NX+7?O!BH%q#D>7 z)CeI`Ht;v}aucp&{WXU68nJogHQVMxoE)>KDZ=Q36l-ipVOq-_apMu}6xl3OGzBSN zf@Hx6C9+W?WrJYwo}nykF;WRd9NTn(CFO)(|B|mDw%%Eye8!U0mZRYrMIXt7nt!Nh zwbxxVQ#OC7-K?Ec&Br>hHDHDpML_TxP^>FOC@3GiD3qvnK{<6AFL(B;)!m2?szE=O z+Pz@s_$l`p4AG@>cx_mBVVF_q@LFvXjbS%5i~FNW>S?o_=NT zK%{KT#X=}t^T9LAl{9M3-)ML~oWI`lyn=xL8T~;_PPu<6^sHLYorTC47Nx-Ct4Pu#a5%^~NQe|>4{Y3S zn~|h#$_(m{i%gEpMbR9+gS3L|!D)hC-mguj0P9T1qp>SxBx75t%4HM9@Kb9nj>=13 z2$KaPeD9AL_2+vyFWf7GF0u(OS^*iC{c6Rolr`A*DB|0A?!annA$jjk{|sLhp=Q?A z$c+AYe5Zc|MA8-!NNaTe5pbE%U$lM@Uu`0cfx2{4{!gF7c|TFaA+@2&A|q>4POp30 zEpKKY1Y!J`jT_#CDA9weAMQWG|CQ9;;hzgWP5U))=-Hx;^(hdBdm&_t%9|M#`4c?7X z(WZd_zh+Wt&ueM6&^N z>gsC-a5__c0JsWK4Gg&+)QReC{maPL7vlMEKLAsem2o)hDlt%~u zw0OwOHJ`=>`Q+SzhI?dEacjoEL-72?Pd*Q_pBY=e1!R9^|Kj8d-vVxJ6nnMQg%xca zGZKwLkBaNmU$6DM7HQSJAm=!|%!bqOSY?qlJ);bJrcfWzIDB~L;?zpnQ8{X_f1Ate zDqdo_Xb)pZIU?{*a4Z?ACRywK=a zJac=PGM8#iC&$qaKPD=KAQq3q@gwGqL{Nm$dN_X5*=ayv<;QK9x{aBK#f(Jacx8Qf zPxoxyjuNw3Vvs^JK1bK&$gSY(Mj`I(r@Q0DEkWF$eNLR*B-HIp$L=Gb+_(RGz%i3d zj`B5EY*IY8ZLZDU=IV`|d+hi$@W7!f95)|k@8G=rlI3q_lhk`R_mhH71UdHo zSA|r2ClhwI&Ouo9pTvWdX`51omqDpNf5f@F_~nXUmjtyv*V$J!ga++7?*AF~J4(H1 z?LQIeiejPofOg)0>Ui1qymAZ&O`gR(a~p*jW)j9f*sdAX5PCNg>w_!_21w=bB{C9W z4!>>C@fkD;NM$wJIr`B?6N&AwWghIr`-KmK=bj$?MzSJpBPq%z@fX54_Z5B%f%77W z70^7Qy1AEJp>!r6ol)9Y_S1^`FaSe^uLjz?n=5WcHgZ2dxlJlTfO>e%}+fyu+`6S(ueGboL{ zehoiwRbLrj_V;R1CLcUazb1C~WrK|48jrKzbkUI5NAK<4FmBu@lr4xNzr>3<)rk7S zci#Z8AZrnxl?Eg-A(jUz2dP-SNNRM^(1FG$H=6e;9PJ^}Nz*5?q+K&UO@ocwZzEQe z9o6>42-;XGoQ72*G(8jRhUG)57syErS1BpkRb0U%;CY5ZT0{oHM04U) z-#NppTHBcWjen-rr1(FcxDYD4-=?vUtQ<{hCgOAS%m3(NRWu-Bf`3&ZP3gk&?+wk5 z_b3Aflr%Ci*a%R{x4XK9WZ6k>Wf&jE@S$uLFp{BmjqO46kg zYmCbJVS&RfVi5dP{h!UfV3C0n!Dyejs|Cl{pXR-m;6`X;T;BMJZ0gdn?MkQ5PD8r&K9f^&Fo&t>!i|?ZXiD!wug8484(W5r(4F*rmRX*d zK&4j^i)0iWE;j@l>dzopnzD7Ay%{|9<8LbG>Oi@5YI+$#$LNfUbO3eRpm-_NLocS6 z=A|1SbSfz&^5n?*0Ao|ImPehuN`qChwh=mUa`bNab+P|$BgLQBOCwehtV#Qbo6Vhq zBo>DlF0Vj{_ke0$-lpf=cXS_mAX}#Nc(zhdHQ65SnZJcbGn^@%k&C9oaB^k6eojF| z;Nu2$K=t558A6s>tNkLI?H(P|PGIjqFj%r!{b)}zYbX1vmW5o^!Utg@O4xfUynv_>z5(2^|OJB@f@3<{}@10Jo+70^;2 zh5r-g`#f*uINC$1gxojeHYr5VFHUY=zHfBzQ zVqH3R`uf?cCnMf8&&oG}jj4Z}?gmF}7%#2L;I_h^jW&EM?B1ck)`{ap;VX=SL2p%^ zpIKstzaQWNzpyyy(ymh@5wO+inU75&AJgKwUB-n!N}Kt2{z<;oj@e~-s>v5Q;SJeZ z0RnelL|tdNd#>Bvi&0q9_=xNZovPV1L>Hz=^#PDv{;!#nnhqPAEvmN~*Tc3ZPg%3b zUWr@T>E4l^8~z(Pe=39hDr}#>2kV0Y(*Io=5=w^_BJ%1 z3VHH@p)AHT)n-6IP_ad>SuItkLtmg__C78G&qO-sFk3XE5!-&YH^%>P)h(YZ7+udErxZ)PjvKcy) zFP#DdG5oEvXtOvtQK)f@0!JQx4!FG4n6eNP+Jf zr}kc`U_6f1?T-G2LNC8#f~PM46kQW*kKDop^a=+&lh3{D4r``Oo%h~3YsB9wX;ulSxaR&N8hUw9mQ+?Wb4w_!R{|0NIZhT9*yqFj zpIHE<_p-j{NrHqZEZ)qpri1@m(AKV!Na3QLQM_ud#>wDgQ8cdSa`MsHpQlKZ{2s^W z%btXnbcf5Dm*s;hQYi#}dp$j-BdA4=ft8r3rx%%bumj-!qH)NBZ&yXE!2&? zij@Em&#-XhL>d2>u=wVa-br;VXZ-ZTY{B#>q!GvmT-7gs1K>sfVom#^hlZCGim%iD zimtR-sG4!{-tD;<>F)J{a@qUdup|yd7ROAhRJ~CtzU*r)|Fy(Z-g5r*>aN>K+T8uU zuM>r2{uEkP8aqw67l;S7Jn!$BH}M#1`AZNk@MO}U-}Zr|vl0{N(KHf?=NiDL`Z?&$ zspHQn0P7tn#U&R11K^#KYq%oE-|J6D>wrW!c6;G5L6E@4pA;elZ6N0Gf27bIS{xUAMOHVj;LF7kY(kMIOnTMGD~RaMXIqB77W3AS5#x? zo6YyqSzRu>um3c-D!6UcMOruA)`+`VJW&*JA{IBR3AnSWoySVUih1{rtww<(n{ntK zlLLk0Mz#U6k!2xz5#-9c5IwXC)Gl_;0ZF+@kkH@Yrg)AorUR6O`J#0bhZulenJ06o z_AKLv*T0Y%v69No6&lAn_k+_ozr>qr?1QK0m-zVzfs{T@>p;E_@PcgO;OVa7HR9_h zb&#`0t^<|NYCdYWPCmc{A@&B7X^pF6Pf*5~kW_&nnY;5mVSrPO=<~bL`a((BR9==8 zd=wG-!)r$-u6I^jw&(psQHQuamip^s6afOdlAgD|Yn?Va9~2FTXc|H*IDUt`B$%@u zum8B0)M%8XE#!Jt<fP%bD=Fuq5eb3D13&OvI>f6>AZqzkpSCK0eLIsc=mo$jv<{-iuP;Up$aN@(Qa$j zHm-91&Okv~pP^ygqQRj>QoeOs-s^gb8WzU(B-br)!`nr z)m<<%g`50c%eOguKB~6LC$!SXOV{>HA-4%tW(4lcEwKuMzV{k&Vq_M`_Nlnvq2+pe zl_qfP-Y%W5+IvOgK=uOhzhUl1(=x~-4z6r|p#!<^uM;OYw+G8(l@*=R*g&GmQH-=Un_&||l_>Q01w#cNo7ujg^W;F>j> zezv(8o{NI~A6tXp4Q{8ol}^D5EFMoVr4m1Z9Y19yj{b3aKo%!^xR{vxzp}w*!5=|_>G3mo8 zfo@NKssu{#&@|jMaKl5>Rfo?aw0{q7{6w;H<_+_#J<`AweG=U?yf48Cia4KRbTYs3 z6Sv%GG!`5tK(N%HzilrMU-4mtjg1tFXHT@apYUg8wy0!L3@*=mCwXvI<*V~)s`f=F zLk~tcd!_$4!KuQxMW{1w?E3ntXsqVfup$?_*ZC3EdKf>40!co5%2OHtGh@OX4V8DY zsIdnI1>R#>-6yh09;6d$u+=37V!s}Q0|qu)#F`^M3y%V^dy}H+#?MC~y=6Ch*(nfL zSD4P2_hoj3xJCUiZ@ap!O0#SCr%UAT7M@=TmlL%~vPs;fo7gNN_R7R-Vs0>G64u)c zkcmYb`5N(aCtSX?H8NJ=8f__JotO4QhEAPIza_pM-(iQ9{^{q}T5n?;FaP3i2pXk0 zRS!d49J%c-#F7T<6*9eMY^-wCdV+!nRc`rx;5DQ6oLfcgF+MX(o$qIs{Ic~Z%Bv!m zxWHoUWREG5`atEg)GpwEgg_3&zeyaycH`VKzX|r@&xIAV|A4}6HzgmxCKh5Ru&P)u z`bj?BVJGT+$uEYr*e;46cW{9Ym7A31=%1TEix=6O(|)aE)4X<#xAzinuz5KD_%=y4 zmgAZ6agWJ+fuNvsq^)?zW%kP~1EG43(5=rnokhglUJA67+SVXUJr$WSwdQeRWsKa{4XGEY!fu0mHu zHKiro7f3^w#?11T?n!7?nPx`}#P66m15lMJ&?*+M1jHqqw7?&Vn~3rnp+`PbHd3{{ zpF-Fk3!1j?4JTklTiJ4py!WsDJwuRV6PK0#La#_1hGU`Q&>zAH1S&HrihWq>z^=Il z%M&+0xP)4sqtIfHoa20AJ5Zj`6Ur$=KzVaRhYy<1v9=`?v7R_JUp%?79Wbk8rLQqs z?p=7Y{=^NC@Y_H9%y->nY!+p>!Z4hMGBHO`i0g|Zs1}VU1dAQuaJM!|pmt(Zzua~S z#~6e{8&4kmdUg8jvV;;Cs44+-HmeeXhUPgS{p!IDcY^E1GivGKQz`iu`>O3xC4)-0 zhI_*p>W#|#=gd~^WR;>+1@BJNB!B&UrXzpppz#hH8Y-mD-8re^YcW4`+eL!1Um$O_ z9XCOLS#9$0Cx9Mwuzg0KoWN1)3P!po%4kyL^LzQ#C3cxjY*a$IZ zEVMAk?H&^c9ue5(U8o>_8c0xULugvm9kltcbzI1RFHrmMlne*+#2L0%&4f?!Cwlka zPGZflYTMOR@r8WhJDK&;oNb8GNcg4h_cA?-~I zq(Mu2rb@%qZ3o5^`way7}`AF;pDMwt-304zZZ>D;b zPx;VaV4T~)W#6s5n04yiXz5-#y8E8$-TLEMay&C~L`Q1@kzA7xJiXCy&5tH71~8H7 z9N+}q8jsOu*1toK+Twy`I*J7H*H~lUM3V!3d!65W;mf$s60J-=d4e*>&D8}5iE}HHF%sP> zE5~BRC(zqT9$Z<@ZWS|Lrt_3O&Ek)g(y5;S(v1?lz7OPm6@Ry>JWzBn!4^|I$q4oc zym1pgL$0l-J^It;igMgc7u*XJ6nxy2UQ)a-Kc{_aiqnuvMoGM6vGlW0(YN*cQ1SN0ey`TM7wS3Z-wW z>hGY2Gp(pc?g+a6&_1|m1;1pKlHWCVW-3y^4jX%dmazfbX{MA-W|h>RNs>GW>>9PM zMuc|U*`gs1>Ir1=Gv$xYhToav7?1vu?q{N$rxOtucZ{<0FC1t5nx*FZe)X$&ruuK< zC)f?XzhUjn| z1Mblr%fGjBpI~m*zJAT_eB8U0xh zBqm>WUnQxY)c~#hi)qlEDnFL3tBxtUGUbtb%&t*%ObeG|MQlR~aHOQZWs0980(q9j zyoe%-$2+mEe`aqUn+#eNsB>LALHunf`(|OHD6EwEYt~2Uu40Ls)m6CrCrY2d3QBLd z_=y99FVjT)enf&nyMrK8G>CtFS&F z7%PRGjU#}P=#3%UI)v{ZA1g}!OZv?br&*;g37bsyRF`H_-83*}w*-SmVogz21|KqP z_YE}Y-xf>%(Zd{$@XzT-F9DjRw!XJiiPM0A?G^I)@u0&yAI!LFx0BqE)eT~ zC-qS@Aw`oO|Au^6C8L3@&}%>sVGSU1 zV*kAoosB{d34++ct;_;4uFSHNW0ZMU8U|#rqu55%)!8i9_llv)QK}n#uM_QLMWa-y zB)dh;r^KUFcfY@8EPX^(!u`6cAy!zuJ|`pj9UeS02C?r|y#W^i8dxVnDkg65v4U4c zqx29yLva~k3JKCrX;@UBRH5n1nM61@o~E!vGInr{PW)j5nZ5-@{`3#5UJFCn%1A`1 ziUZuvF7->tlt#hVH$|~xS{$P{3vY1|-CxiAk#TYaTWd`vBVkP%hbnn9SA> z$N`q_X|TiZc@qe)fO~&Gzb^fndHseh*1uUZt5Zyu$=TSX#L^`xL$+Bop)O~V`l|Nt zWid$7g@?fjE)-ZbbgiHVbEgkG^VywNX+K;w>r*{U$X6O1`V~JHl zj%w9Ykvc0)-8h{d7AfgH7yn5wuuV=~C?-ijF?L01_{{FnQ^lgo9~U3V3FL24V1**p zSY_M>U<{OD4Er7lyVd;wVk&o!t2lImN%rd1OpG*uNylIuSCm&u?}{ufcstQNYG zt+Ak31yLO!&DPb6FEO7PEgY%!tGL610p8geL5}TN!7`QMrDw=Rfpnmuw!;36`HaZO z%8HhirrEb0I-O(qHX_=gzp!--=MQdv^=p>XYOaU5&z{%<_I;a1>9oX!yocI@S444(X5O9g;5; zMjDP6wy%&b%+)OjQU8A?{sePn|=}ZM+GB|#>F_8xUH`6(Cx6vSpwXGKj zYGOTr?f`xaM3lqP*C$>wb_}O_zk$a0&Wo|T2aX}}llATIj5(Vv_}yhj^)|Bzsl$xB zu+uT02T!}Zs-dfw!r#q1m4vYwQoV%gG7cXaKY>ZP2i^qwzn(E!chD|IBk z9=G4e#JaW59}XHo-n9PmKX zxJdL0iNQ~>fFNF(Ei<~dRjlYFZ6Y;ZYfYH<1spIB7j?gOZ}*8ONO>me4!J9;tUeSG zdTX!KOxD@&dfw^YxkxaZ+itDZjx0tdAQf?$JlYUq0cQGgLDR+~(zs)R{ug(CX616j z)@*VG)7jYW0c7HskQVE#xPB&gAES9?MQ>d&(11ZcfRZ!@jC4Ez@P%|cXJ$u*U?H+# zOci;8!fiaA6KiINAO=)S;9SLQ#-%*NE9`q9((mDr;&-F56?FN zM}VwH+~lJ&94e-FEn;(#knv|di3{6HA%(p?^M~EXpZi8O>dx+vz5{|8RWhp-wktdf z3=^~h{GOa*vYlBQk+JK4a(Mu9UGsA*E7h1N+TOB-pLo@@mGw~obt{*Cplmgnt8=T* zHoc{NLU@b^Vh4w6feZ`A)q0?p^bWV&Umdzi>GKD8_X^%UrX+&R@|?=^R~IH&h|_pGED=Yu!EBoHmynMe)5N7a>wkkf}l8?Tk4)}Q6Ni(T&f6Bn`|9!prJI}CzG zsm6Y%Y=T~suo@n)1)2-(Wrr16Kas!DCa#PuPt24JzOQfHbmWc8E+4(-cfbw5o;BQt zp4=Apz311OTbNE8X^UbEg|GN4LB}ka^6iOK9p}0Ax!-3Q42!f;>|ghlm3roXQnnN4 zUdYvJ!KCzeVG{xarV#u&GLLzBIj^4Z$IY*WlTX0nX9W5j;=C?q6QjBOmLK7BU4N#7 zb^PVHL{)>VFNAcJFoomvS*Vqy^{7j~(VqbnBUmO3cBL8jb+p3aCPJw|oz$dvgTm0O z7Job+vR*;4BK5OupkP+GQ1e!YQf^9S|lHMs%X+@=76d7q5GDgL1i-V%p!5< zAVGq#9o$6q9Y7|MR;`QoQkNvd5Y=fkSYtXqWw|KNek5l28+p3r<^wyw_FuwdQwq%y z{GacI7>8(VXyRT5R}OL!uLKY}ji7zKtf?0j!5wZ?;cGxu16ZE2I=My%vswEX*zr=Z z-;brY-sy~f)evzCHddO=tB&4zie|fyhmzUZo1ecZVj~yc{XhA4??h-wmyQ&f1#iAz zzB9QD(kySqxgI06pC5ZcS@Eu z_yaE_P3LGrgT{ok+Ub}CQ6#C2LZ`GHuw zU>uj9>3{MP`U)7~0tcP2ggW6U)ij{*Qr#j17-pNjaH%G_!Jg}P)7U4buFHyPq zur~8?1zk7Rb2u>amUj|5tj2GM2l*A3dHULOnv}JjaQ@@ zF<-BGkPpx0yh4g_<9kL@D1plH`Nkbw(SuNC^bESYHVS#v%Iw*1!Q{g6wXBQA&ZA2< zO%u`$O(8o+j=79XlxoOG13hnRqHw1q$Wx0htHedX!MouBd`14BklPpEtNC*Kvb=xd z2Nwmafek^ty)sSWT<)atvU%yuLv$0rP|%0{tK){7ZDYVG?a+zCP3+u9;(03h^V@3+ zJ~~-L(;u?AvY?AP78wAh^m7-Ys&!H{1@h$}3x@+aI1L^$#1m_))z6kEz0)rHrksd-xSSfQD#Fx|kos7P)!zwln$LO=Bmv z!Xns?B2Z>3GMwPuw|9iDuwu0%VZd-|FOrXm)jj-Nld{#)UB^0~!TO^U>v^67u?XBu zt~wtu#uuK@V^Uw%^|o~A=&957&naIt0!|(YzK2QDF0sG*=TwW9xUOj!4%K6d3TgX* z`Q{301?NKzdpl*UB7oK-kWaJTluZ^6F=aav)WmlWI3Cq0J+r|SDboiiAsIF+vIeaZ zImG;^-=A-y4q^%7P>AAC=1w6el_5x_qkILH$}zlm!_5nw2r_GvEhM* z24pW6`%YsnkcTjWlervhQXr1v0#vsMN?OSdH8^UF*Ar_6bMw#ySD3Pjr zWyV#_=AoYemR}AV!p`)o$vuw+= zzzA+6|JmpLgBciDlH8j$$H#!?$}9wB(6`e4t*r^%Tgcio--4mD2hDb-gqV`EMNoiGAT83!w9JZSy={ zOf@u?Oe+L`o;CzS_e!>&Fam@umrMjGH2CFD6hpZMs1xXzTtVXc_2ID`@rC$3(>YnC zHh>Mf1D)PW-5w=t%5^3`5PXis&X?YMQU6{!w@m4S&NvC8sSnh(WY(VTRq}$>D%w`2 z*S8AT&odK<1t;qt#DKk=o;6A(izNVT5XfdaG6*|}-gTLw=(O%pUoPAu@1y&7ebPg$={D4D?WIwb5oE*t%?S*C}mV^*?{kSgRAAM#$ zr1O&;7HSoM(rT1X%scOV9q7>j>CEsp{ZZc}XSBm_R z?P!5+HI6SKvxZfS-<1pS7{eeVc-0b%_MrT^hAS`M6SddkKaxx<)1E4*?o^2_QVWM% zZwXMOjvD5S*wqo3A@??TdGfzlS<#X)KNTTUc_l*hm^Fx1lAC3Z19rss;K4~u|ga&N_k4H zP@&bj6FGx6jWs-{npW{4V(8o4OYKRX5t<@)lh8DRY^40?J=Nx~(&iVHaM8Q}XBMED zs``VM9>$E@YMvViYx`yiE{Uv1Asq4ybbz{jx)E|2(0$_4k15lq@?fmc@sfgZB4 zrfhNF&e(To?CE2^`oQt4f+g7iGStN85c(X8UMOuP1XBUUMhUC$<#*@1)t99GFm?1M zjlI;BLd>v!_iLMx>)NI9bK!If(B|-S#)!QK1yAvDk(SKK4r-bA&oaY4r4;>L3Ynw* z)8}>c64wy)&lfUdcsCT1I$=WYT=#5hBF3=VA zP;iw>KDkM5!;@(U0(yt+tgHtWfWw&1Zwgt3?Ox0T*pin%`F(iH?9bEPOmfxWfaY`l zYCAU1e^QmUsjciJJeSd!6X=D6@Bm}#hnWIFFgH&N$Qj5^ckSthc8;9+fH{tNp_8SM zw)&56*o+17$VJvT&GAaJO2V(?@>E60hZ=qa!u78}V;8(c?BYR8Ewr@J`SGZ6lHQH) zU9S`Ukq4aHKjX@TmX9v{4RseH9N;pOXd|s7J3)Lf_f13nNwqwq43oV}2h;^n|H;Yj z9kaQV*Tfr-lx}_Bzi(*c{o}P4^KiDLBjk7W@oga>9nAZZs6Zal*`d;tkWKp%#vMoQ zc6nINs3l~0R*n+UZ?P9ex@}8TUTKIxJ>J8I#w!@t^yBAWl(dJ62n5~+$(`$mynG`a z`|A>U#LC?(=HU=ru`~Z`H8l{W9Jd62PjZnzNpQm(;GbS>-ulg>6Ni2?$zcQ?8wFiyv>c)gQie zGg*gefHJRNcICLj+`p4Dj8@^?_)CtDZA?v3C58S}pS6Q71{Z0u#VU7CR&j1i!GNT# zqRam_4Bq}0Z)JO7jGRnslhU*a;sPv9E^p^gw}(%*i7~FI4`M2RsvmzQi(nA!>UfPr zU%)n;j&k1kXb!a9J1JGErVaE#vI!iTmcx|9?Xn{Z>>#!Q`vMo=m<{oPKKz{fmBb?h zbg?ceemtrG(jeCksWae1(!o+oKgN3&4YIh3npjEVI#tE2op0D!Soh3{y(vTq-AT{g zv+-79lVVTE*;%zxJNp%#E6;x@>6*WKdByhP&OHT3^-j5$+BMu4YaT3&U&1{bC%i^p zOyaj)))9K1MR}V=M~B!QP9!D{togX^;WKC2mnJ{j_8lYd~7 zFB($$n7YX0kAo<`wB%OdlG`}VmlNzSti?Fi!}Psa^8~gJ`|Qza4fgB3AA#UsWh%?} z<8w23I91&HJ~m|D`1a+?E#uM%?<2R%aVV68xOYnn2eQ6o_sRR0Z=PQ!)K+y(;?tjyA`c6r~n$M4&N zj{~jeTeF{f$(Nz;jV`N<=k7eX*Z%&^c(;{elXd?b{ecGl#jDkc%7FI_CnrU;2jc?# z{9iU>qx_#wKXHru`r*cn3-VF*myD0!ZD%9-9DcuEGkP2L`MlU&RjLfS98PP&`A(iB zkqe|)6rH|=obRL%vigAwC)c^uXt1m1&-A)#w-=Jsy=GJyk*NKkX=$;Lo-=$5Tv^en4?T*KniI?s{R8u8quQ)XR0gq0335)2# zY&8l~;!t$cjqk_4{boC%%PpuIw8zF0aDd-82i<-OL#L&ryb zA9P3;3742To0_qugWHYBS<}v!YgJhK!8Q+MAd7cyMeVX|wOWje{TeNIJbgs~^u1DA z-|_V_BdnQ(sBPE8d2#W%+jv!RIuB*wJW;HLJQV`-S7uCWmYEI2WiTsGa_>@mMW4=k z(OU>IdR~ryH}t^^cEWn@cK@lN42xdv1p8$Ht(s2p*DUn>{1Y}*Ign$)kO)Q#`#rZc zj#j1jt~ZFc3C;xYS>N`?ubV_3J{7hHJL6wX5EpIUtFJ<>x`f;=s5aPlMQx)|IyIgv zz!Osk2?@2SF^XEriG4VJnn|CTrQPv-bjJ~m3e$ne?a@z*0xHA8ex?~y*i z`iw~S_WC*w2C!-zY=|zgU5#;{mc%pdJQ9Z@T?xRpOB16}3Jnw%$$=`n^1O%&$_NI} zH0#ylDUMZfi`MH|;cdN$BNGn;H2a+#64I;Ks8 z9qrOIXV=9!8Ff8fgUiLPO$pA6eXl0p$Wc;Rf;ZR+v^6^X`^dj<)#F%RkzD{8S901O z!4}uq#uAEvrM)t{fxt}$>f-5_oqK>od;HstpoaX5jT}c?NJw68O5P~Hb|hj^J4Z22 z^YzNwr$#){@L;QU0&71tbL(2g(v~+8I3k7L{EJL}G!XWQ6k6_z!V)}J_Qp9pY9}`A z@_TtnntRV&w(JrTD5QBZIIe&A(3rO9D*XS@_11As{_nr|#z^T9q-BUm3nCqoA|)uo z=+T|hIRvF76;LS&LEqFy%ZMS;0s_)CMLLGWXgK$Lf4}GR{hi-AfAWCGxc7?dx}I@e zH-0YVt3*p1nFZ)uiW089e#~@oQatiYb#CNZ%Lga}lfzDeU&_FzS#c|skmYtW!NA3b z--=Lq0*RtiL&Nw7i_k>R^h4v*BH<>#>4tQHXz5&upwYF-SLL$~O8tu}xC;DA-KrP= z0K_PALI{~obwCAfHN12Ah}PrVj5G>&B7wZ$7p91byuVjThIfq|eOE$dl}1wxs?rLS z1@$*M<-349Qk)zwaE&_$7w|$0ve&JXSajZp&jIc@tB9l|a{4B_2Q?IAS^hYySkIxO4_w{tIy{4;3t!QVXsb>%Uv7T_|9lD*z zi^*_o5%&fOq+GK&tS@cnJyqV^h!|Qrq z)HDTbtwAk{+qN#CzvX5KDkfbg>O3kNF;_HXeB$b?KhLCSJ^e)@5fQ0AdcV;l`S*k9 z@~izQSiwd}5nS|Zlh@glTcWx;>2@T-5+%PeV|TafR|rymFc!|zc?dqWi6+{N6@85! z6E5%1t$oX&BDI~e^o>&~jEJoU@>4$}UM2>ZaTTs6~ztw4yk&c4p%!Z~#a zH^71zQz{F)Z>Y$bJf&CaXygdBn9T$; zWz-5oW?Q}9mSDov@SdlLXoJrFneDm-^pOMS8gEfDX8p_Sm1DB=Xee(~neARVrs-~A zAsGti?J!SGpH?sT>VmgQ`dzZ}JI)*LAG_3U*Z|~H?X9s!JDFeaDWkGvf z2ftNQuwd5l^VcM!1ZOBAU`Zc)RZF+=pQEcvC5;!UqA zR`G7048Y@`@nPRFXHGGlq6H0ez$X`Rb@zK;vfhf8j=XQM)^v8oTj88Cs;aAr<27#Z zr6#LB^pX2xH>*QQan6R=nPn}qU`ZUQUsUb4>-6;WS(;(4C*Kb)c{EZrrfFL)7GSc&?@IEs*nzheT`Ip? z((YIa5AS$kn(=q_ZYU&41c|*2zsRQ^_xE+5&quqycLDaOJ0hM7iHLGmGk;8swM2H&_r;Rxhp;v#!<&U7-+l6W&;!kTvHiQuVG znrF_fXcIZrA`p%dHN^g*+lwRnkjsR6Ul(kZwr#M@Hm3dky}790J(g!K7piyZbjEGYAZ z>h{zD)j64cKEk0)NsTWwm;=ds8#O4$Tvy?LEJTZGCKXz&V==D(#fh26+<;Tu=4@m; zg5aeCy=!N+zD$rcGagxE+Ym$QDbHb33B5-39k$qTSTHHYOQPmubG;?|>S0-}r$ zN1b0ZZs_VD*pUo0+3>(u4gGZ*k0gPcY5k~0In8s~w(Z&?92j`wlXlGQ`{L;%%QP^XsZ`67eAEt+(GS9M|*LSSk^WPG`B(v&Dcfa9%W#^=h>>R=_)>YD-Hs1oxGrc|fq)1(T8qRrJ_?>9} z%Lq0Zx_)dph5XMTUT?{OunoRV#vqr$E}HRzbndm<{CJ?sHr2_$H|dl3nF2Qsizwnsz{prMb=+-I_V3HVSk&rMe|8om`y2kdIXcw_q*ZZoM}=?Hnr2Yd zkc0YBINPP8G7eb7Jtr(VwgV#q`;NAHkTXB&6bNxTc73l!zY3p;;4VFWuTj(#eZRZp z@-A{YPK!MWqpw6mR*%t_a0E-+p1Sw&f+qekfgG&9o8U#Z^Sux%hq7`>8^mQ?Z)=>sdS zP~ssg03JkY4|ouZoT3=rQ)3B|piu!#wtjb>y&YkhXm;}A!n@lbWOi@SN%h@rQ6ea} z1P0@1DWh(?g+J}gS*H%QvnH0(TGOgvD>9>KlXpIHJ8g}uKQCP2CgsVgo{n>Syo6RlW85=HSLl(4B0^j15~Q?C-8h%ghX9AYQ6ZN(kp%=5PJ&6bdrF1QaOZP@Sg>_|sUOZZKV zp*=H;N`=efAD`8UMv_6eTbtXX`Y@Kc0c7-dS9ju$DGZf+Oh<;t(VjgOC-*wE~klvp{e_2h%ub@%!|zU}?-MOxs^7&npe!}g?qb+?savz6T!N*c z-UIW_K>gF}niK6W?5?2G&8EB5WP9C=IxOIwFX;3=bC%E$cL>PhYdjZL52M&9AQ-8< z<2d^xn0iW14o!C%4V$U@23#f9t@v{hWi^M}F{VI|Y60xt;iU7)Q%u>g!b6+7YVDZZ zPcm73sDIApqzxidGk5W;9on=pN~yH=+~1r^fQsO$^3;%k>cy##`1j#T;P$5^J{?H~ zO2iVC@e!BQIzrvUu8;TFLjYw(jr>%--l{{ERNI!*(h*W)rI)oSoKw|9~(2%ZutRSG| zu(NzU;`(Q%L-3?!l(Jzsa^0_v%sMMYA3(}6_BY2)eivYuEA~t_6?7EOn zJ$xDH0#I5(x9>_Ra?Ae&<{&{Dsmf6D#6li>`hu)a6H&vS-ReV$&9&ogBDSO9k|tmH zl@?$tB3BYgZ)6CoR*dok^x`74z@|CcpK0tw4)?*MCM18r??+}~c8aCR7HJOECXg*H zpCy6)?-~#C{${@kjW?s-IU(O(KE~B`Pze?(Zfk_7>^PQpT=|r!)%vS@r~x8Rv;sd3 zZK1bv0_C^6x?J825p(&DqT6K27A50lfh$V>T0qB;v~)iTcV{0RANOxft!d+5nnQ@v z`DPZx#W5u&&bL8WIa(hpsQG%FDG7%LUppuBNjCr4WJq!tv`?4zCYAQJh7WrNd?*uU zoFC`c>YG|k+ejvK6iKmjvwV4*sT{o`TrP#%8s6Zv-5?KE#~S+2XU9;#54PS9Q5=7A zW^m$EET~o&TG5XNTf!xOPJCvjPqSSGB5Z1ZhXPSEYPp3P^BlI@lQ8PBj7_9PdgQ^4L}l%i0Syr@GiF(Brl_@iP;6S*t}Im$r?+?psERad-HKrV>}F^w_7PYPAk&6L{PB0>GNwnI{t@?!nSG_Ll6 z_cui&u4~*t2g3%+Cv2y@OW_W%R`OY0zEL=_H^Yty+|8XXMjS&OGdJgM=pJ%ohimin zg0qn;h@xLp=K9HI+`A<;nh2dHmItDXJf1NY{e-00*(qz;6Wy=xhfGc~h!;w$oNz_r z>x@!-MF)-(JN(xQb&F*NA)=Tj1Mp@Ni6;wW$fkR83k6OBIf5P+t>quPIf|}3VDaz| zu9-wnQNl5hkIL7xNfGN-Pxn0Uv1qN+2tuL1%v$yoK3#LJs$iD0H4SCS91??7Q#kdH`cL8VK>up!SBJ!O(jt=-<>;3#Tfy8_C!kDX_2s2`O5qEx>n;xhp_f}gnF3w(>JBZO+()h*C z+i(Uv?_IJ+`m(W5YyGYM4mW_Qv1MsJsFpcFzKjt^9jemYd(br9#_3ZvBN48yenZ&~ z*wFR^Fw1aT?85DTbXxh2pKXv{{gF2b<9~$&FI^;Olw5mhY4;LLLx#tMFyuX(L8Yo+ zc?hh=@qBPST^BCdCoTok1Df%lt;B#CcRwtwl*?N zv=q>b;@IzlS8M~5Ha?Ra3GbvfFfR#h#2?ASI`a9!IXS161?ULgmUMOp}mwZ#K_6t%QK$_%cfpF^W%{iykdVT0`@=zUo zHgerkP-&d}au%g=T4`HUVbbp+SbCqIu|T*xB(Ak4Qx_wtk+lO` z{iCm6_Ls#N9QqDZ-}!z0H6`y~y+Vsp6*qM-C5KZ?a>x^H525l*KDaU~BQ$fS# zYxD<%k40^zI|}Rsz)1rXQ6|~bd<^9(7+$08bOjoYmmfyG;#!m`(2KiclcCmM9&Ndi z{Z6|r5N)Em%fE>`es*&O*RJU=0(Pn^GbH(Q<={?RUPpvjUR++O-Bi=uYd%td4%}0F zt&!EG!3^kKO8+J2aA#)#G8=328bQech&V?A&sKAFY{6f|o9%#%pNsPBqvOT%h<9(Z z%aAx(T6CuCxc{)PSZ$HvuN;XW%HP+47TA?fT+Mcz2a&b-q?X9?SSfAsTNt5&Ysq5} zA)C6cY=7O_Z@gR1Mp5OOEOIV>Ja0CM2vNXor-{5;7Y~5VfAZ_4^y~m;5>UPwNs_>eZTipQBqJal zsfYO(h6vdIVIWc_^6ac+Y)#=Cs=)NoC=i{|2E4+X8)XT`@lQT?bl7husmNXM;8u(c zThuE~C zV|re;r%X?urfISN4}~lR+|~WW2~!8VeRu~Z);>H5$A^LzNSEP!VwckO7Cmhn4>gBg zxkS8QuZZF;asiy3l|R?-(c$u%%a?18+8gn|&Oc1mo-#EIW5`Qr6g5XdnbgrvYZ|#6)+|Z~&`lvap3%vb-S_x-g1!A!Q1F0G-d`H+Baa@H1Y zZ=B`=iX8Wr`C6?P-^O2&^eq0rMbc#8Y9$k{mbl!uWHoE15sWAg^Q`rtzEfNHyZM(& zS^Q8DO5!>|B`ruwnUGdW1T8|!^vaGmrziIhKiRL-kVG(?>VDdTj<|S|M#OSXT!5Pe zY+AXn=a>(}8)A@}>Dl^bzVlY9&Zc}lj3@aEi#xicj=BW$V$NIq7Er=tp{G*6PtIHx zgPRc!NAr6A0dKS5Cs_T)MDa**>ju%dnq2L3vVilj1yOSx+An5kUeb434$UU}d(kpaR) zRq|TdW$m-yi?jV0vRzj=&3F-Iu4EIPZhb02pT7P&@p``upwQm`x8xwuYoNdXdkcZD zkW3jlYMgPtoEZRM)o3)|$Qkj*gA2(_-KX?YM`jJgXtg3x6{PawXaaJ-G)#$1Xl{p3 zxW)q-klI9l1l>t33W$sQUBDtkhK58+WPV0#>|eNV!VXP@L9-$j8KCs-QEJxh;L*+$ z;8<7pwacl}AiBG6zXNX??FEkn4~LaYiNtV%s-6&S$8kX)fz*acEE<5N)e4MrVxyAW z;I{`bbv>0wz9b;zbcO!kFt%oD_)POA09_UImO@*(j)Z%ouVx{f5Q`|(y*}I)wq*?J zDG)so)htooXBnuWena<9lj!kGp30aGKSI9yTpzGJhGf|4~vgR0U@OQafpfbf9V6TPff~FEh4um zk8a^}oxqnM&yHt}*^mXuvW*?$_4C=#d+P6s|NVq+2~loeX*i4OU;1xB0tV|v~>WHx+Gf{uVCdtSuFg)Smh#-%`F zKOMc}_4lstyrAkAdpbt9Cex=1a8MMni7GE9}AcOl~sE( zA`snht~waQ03bmh`ke4_K=gH`Fg6cNe0Lc7F^7@*=9Kcx@Gbf^g-S?sEQAF#L+u?5 z@Ug{=TUXAmqERGB<{+?qmwqRyiVQJ8+|a-yXgu~k7GL(GR|olX1%3WQuaBNZ^!C{Og|H@$X-c&LAnXCAmUJ&?CzRw z=QjJmKs~pi0Z(aWr&mmlxR^~p0MmKL9D>RoFNd?rh`&3$jU~pe2T0$(??yNrJ2THy8-`+< z*}s$gSC$?Y5^`Isf|i}@wO&ITf0WMaypH98(`O2&*Cv1WpvZ~g8+0cUCMmItmrhxl z6ivJS4I?V0gAtW&&`8))*~I8Ea*UU&XS&@g}!UzJ&7zcn{9O5x* zUE#w>VqMm8Pg^k5lTx|tp;hL(m=I0R>&IS8W=2xAjOX;Hm-2kL7k&~Ztj*?~CHVoh z`t)hg?1WqeVWNxSFTR&#Vch7Ad9_CV{R4?0TzemW^QAw(IrX=$bw=)o{#i8!4T+M= zAt2b=(9$(3AOpHoXKwk{B^M^p3M;U^c`Jdtj=kmH{4CPWv=tEEbqe_JyHi`FWRPu< zh;~=DFWW>dL?Z&h-9%(?*4BoVkwR*El zeQx1YbxXC?fWWx;7@8~p-uqI#@oWl1i!A>^3u@#4Y^2dMLxvSDXIk}hZ!YC$Tn;4( z67nW7?)nw>WkCu$xTUtVJ?ul+c0E>rhO0ofEt$A@?8NmB`<9WP#_(21881{DIyl&q>09T3(kyyB9{n+xpruq$aG0+eZJNSM*au!{Alq#qKzCjY&)nAWBX%DLejR1wU#QX(d2wQ8M2c!65 z7_Y)L9Gssk$(=NZRqyhqM;GWT8Zp#K`UpZPoP;65bbOqpv!JwCsqlYf&q#2-Z3Y2x z8L)Pw*|KH^LatQSllc|pMTHwJe55|lDdjL}s_0w-3?!m_mK|eSV_BLTY@99g^g&GM zr@q|C>fVE#&5w#usL~nJQ6$DKO4-Iz+nE0wTEMs}j3MBQkN=mj0@!o^PeiAKXgkPg zE`@Gq#GMo5LcB6)fy6UOq>Ad>wm-WuFahemf3k-9*DMsx_)iJ(3g>wMQC5)`fo)WpFN-6+KxGET94V^i)!`bOM}0;;6WjhQ=Mo%7GRYydwIljvp)KnX#STqp zQ+kG5Tn6^R8@$TB|A-zP{>cjJ|o0?ZmfJKupZ@4KyW zPl`~=>YR+N29FXHk4sm;>jL(C+$DGGlhH4c*R!qnZ zJHI-~dPHe#9>Bwl$x;7MHa0gIaan!o7}7x3|3gH`E1H4%%refwPxnjxV-IhWZuGW4 zAzRK{ikFH1mvr4n^dXV#`h;EkobRWa@Q++Dcg_sBXMEqWe$U+??&LgLFQ3o6u9+-p zH>m^n$>%6w1^ZDiIpkP^Nnp-Jb7oFdj~S{ zYesAy@>5RK`Cjv;fw%WZK8adD3zHc9(9PpliW?7+Zdud(zdyXzmGX$}a9`WAlg~Ne}+wFx9 zet572c>cCKgo7d{j^v8!HuH~{izt;ZY`Hn2MEGx?l3LHx-T8OLj=ZW(fMPE|o?v+S zOYwUUn1Fwa@y7`1TtHFvo%klN$%9?iZ7%HEx*{a}!A12?z2) zbZ{)u#Qi<%ndN|Z`71lx-A7Vm$_9IgArRUYn6u%ygjdJmh{CS)&nJmpLc}UOX#ufu z;x={>XaZ4QGb072B?vZ*FRjS@)1V=?BV%l}6@^YlbNSic&yx1>An_bcC<6G?4uM@-UZD_|x8nLirEVtH;=Q0B~rU#z#n-% z#qtO)9CKq3^qhG?73h0 z_T^$BubY&jj9PyiasDy$QfXlW6&~CKX#5ve(ZQie#QZ9(sTWoNrFD`&Z;fJYl6G{^%5$|9@oq;VYd_}Y%ZM+iP%4Un~0v% z5V47B-kM&hwV*D1M7i<#9q^vCY;46|GSWXl^%-Yqw;_64PfXb98W+dD0bIVAEy;x!8FSZs z$;=idG5EdW*2U!y!BOzG> z^_Me27bCb}7uPPsFQ4&EoKZ9~vY-AAE04wQ%k9O64e-sWur||B^#KwNHhI!-{9T|t z;Fo#pV+kFQkql`qeC}X{dFI~{CEe(05T%=tr-Mnt+?>2yhU(nbgD1|)T; zzHzo@vgZR2OJhF0B5eX!8^%?6EDwG_6xm%J49t|~INj`(Y7l?;XWMqb@#h7S&I7na&}!O43d!efkb5lESsmV<&i?{Varb-phpZR2GtOSZ zYmO9|Q(=rY3siJzIZ5wBUU$bLa?LEdX<)gFyK>{;B98iD{tV|;;eOO*RlJC3plR)F zq>PuLk8Vlz!@=Uuh+Y}N?&$9|Oj!k$2`)b}?o5RdSiM6rmbv1F{eM|KprX>{V;lLT zu0}xldVp#3?KXf>!(#gmbp@S_aVV(N+XEj_OAbShp1x~Jn&{L{H<3u_!NvQxpbc3hm(n=1!Plf(lj$S zR`fcAAlvqKcME_R6N1!TO8Uq}j>`LFv|Sskl={OJ?*3v)t@V4F-$|R7vj5Uw`|3+h zM&DW68i0S2tyzMd|5OazCWyBWf56;U;277w{I>4T$dGUJQUT$DR`+I!&nb5whW70Jb1 zp5xUo^+tWeTuWO%<-*COg42L@rJgP!IfQq;4M+sn{lCXmy7_W>H-eb zcza)Bxz$KF1Q7VYruM=>fuflTKFnhdoEV}Uo~)bKo*mGIGiDm>(PITqti?8gi9P7; zCh?G#@78xTinDczTWQKa)QJjgAiV6NW&Gs`yEly)J)vZ=FYu9B2Uj5l?%(c?>{l*Km0Tk0_a8OCr@TSXoms2 zJDTvBUwq~A?NnIn;k|pLj*PwQrodElCltEa1jKK{@9M*j{I)9&3>~Dze7<=1HqqDQ zBR}#y@bRYTX;#tw^jK7Q#4Ve^(tk|yY)HIG1FGwY(5BwEnL$+*dX*~UO(q_P>ONiu z^VD?oX_ct2?Q+ZnU-cOKH#w^W8t9_6dGmrUEYTG4HrvzJ(~NEHbC8(L`d+{3eh-U)MnSkff%Z+yJwp&A`*HtybI3PRU_4Ko9YrQn zgUESRf2>^;mX4Fuol1f947f0kHjA9$pdk5xEgqkD?1hv829A^cd?&Ei51OgP&SkFhc(R%lov5)TNQ<)x7g zW3_gw+~?@X7rK_RuN3tN=uq1C{}~;qc~9$)|G{a7?mr!AJ7qh`He5UjzIZ;1VRJAk1j;{vrKZc*C98hux90GsY#N~VVKWmH8;_rtxEACN>~NS z{mcy@B+WVN9+NIZg+~W9x`x_e%w9cn?y4ivobJ*jp6z%Xt?k=?Mv>=!teKsW;^QKh zMA&Z37G`nYd~+grcyR{Cb6Fa-hZ0pWhqENs6b>!h+)Wya6Jf8Orp(anrp>TVtu_pn zeoqpjnHgkayNZlahW5TQ*Jb*)uQOg+D?fq9(1$E$zXH#hib^tcsK-95|a8HB5HYvA~`f z#?@~=o+OT|km1(5#4*#ij4fQ$IoOZ6JVB65ftJX5>a@z8ywzi}{h_9L#2B{X;K`=_ z@1QSLpPRYZ{X9ve;J@@?-s{G~aiOf0L&E zD9^Pu^Tik4oq4J?;Kct`2|cO8u0~%KI2-@Eea6($?$R1v+c;}E?0a9<%kWQFl(zBX z8dGxqrIAN%C8L+2Rb8I*87X$`$jxXH|7B`f$}6weUX@tP$o2F77FHuzoc`mZF9H1X zegAsad4MoyP4G?X7oVUn$aUC0lLP+OH58qE!v)Q45+NT}>zltBn6u&16d|ask(Y+B zUvLVU!hZ<^^Xn#tvW=3Dc}s*NkZtwLH58~JE5Gku27rpDltE_bR(I3!7!>}`9`n`y zN+VJ7{!>TpF-SrunFfqiQS3{y4-YyAz(7KP8A}Lg9h!@&f5--)3IT%c?U^t^jrb1$ z$~wTUXaREkvH?J9WFscVze!({q3PePP!vV8nSc7&#|Od{ehzvZd_neIhC7$w;(7PIR- z$8|Oto>R_mHL^)g53c%}+PK=b7OUD9ixbjuS?zTmG zOb5)XZv(aKMTzuzSzl>-VfsZmP>vm4Kgq2_rOPJcabxEx_R=O^d+DSLI`V86>&gcQ zXuPC25tFKAtK*ssQ}%0gKo{4;rOPT~ZIOKgfi0woJlhkxj!*W#GjVjK4*ccq`ak-r zxc3(9t17RXmvq?zi=q8isn-(-KNPb4-!+)$-2Ml0{7T=}s(%spfrVfKXT6=&7ZlkqyOI~U34&JlEts9uL;P>HQFhPDClVjJ zX1+SCC3l^&$yhYGf0QRB$b5dnKh46r;eu4MDD2fO;FdcUqip}%3-DJpk|Nxr{}W0A zGdeu>asbFH4etLYV$)ru48na4(dH%zBQNVTpTF6r4vBjp!-Vz6Jc)l%2edZMy=sRI zZ)~6-ql%b2lab>A81O!hE$Ftf*Ujx8llywf({CGC?UlvnJ2lkQ&35$QPS`n&KgJpX z%yqXr-5SR{z(hjWZQdU9Gem4{9*LJ(1+Fk0JZ$=fOX_lc6MM@opnAJCu*!xY#HzM_ zz5(Q-U%-SN4+&UYCeZwsPZ`EU={H6hAkt16qLhO4qKeZRtS8AUIhOYsvWqGT(d_2R z-82+jnCPSh63{CJsxSICTy>~^D0!09_W(3Y%iD{EHkL-p{(CvGW8Xur1$`WB<|{AO z_?WJ3T$>JNk^s^VI_ZA{HuV3XH2xDN3xF_L)6yVkJ!3mzC2jM-HU+-Ks-%zi5misn zVr?b?nk1_IC=SpfhqkN;uM&BQ+6dJpG!6?72Z)%wdg9jPr2QuHe%o-aM)D20A9`~! z$%QAA^?Cb=`TqV&w6d6uU#hb9SE_HISqNg;GhrTDv`HIwyYI1@=CGVOSKV$UGP8&=qT=MX314%6btE#x_zicOXt-t}P$ zA~vVTkB39iMCLYAln3J|!XP$N=~+zw;~we9?^r)Rsiu(CBA6ztQPKW>Ayrm@sPyzI zmQ!QN_KsCxO$>>jiOfl$+%UnsM;=LRkmiXp{Bo)Tn75KA#l7!J-Lq_YKQ@h*)GIEk zAOKgmU3tt)0AQj&U&~TEIMz^S^UkoTBPQ{E^({e<2Wzitxo7Ort^ zlEQ#S@tIH_0WIN?f#qdD-}|no_zCbhS-%4MDC4xGy))Wpbk4WCiTV+NnxmrYzDdr1 zEuwrScu$)A!!$F^IK6L@EeoJR{`Crp_6hCF!D8dIz5~T`RS^T0GuELh9*~Nj%i%1a zQ@;zijid-rb5!ysLyCB74V(=%)I`Z{6h*MU=Yj*&#G|2|ziJV|`xo{==i;9%kYP%q zTq_i+0_?!~ot-u3liOJB`x{s31^$`db_~auuYYT>+y}uP`q!@;!BM9rSD#7Ta(Hi% zM0>sWH3c8wzZ2FuE}z=#^rYI+Z%pdt~&HF3JEPl%@PLv1fL+l%>6Z)B$Q=GG~gkv)ErhTH3t~(DB$Up04HDP ziiFOxJ@#gK$uGZ6#BV`_F!Yh6=(>#%x!_2CA6adFbumDLv#@~YJ>!MK*c!7>+AWbD z$6ze#b+CG|&SyCTE4GRFSc;Zb?Zeu9 z(vGVDtaJ@+p;njP-#)&!6Fs@%4^+H0F!-TAMrqiI5$TgUPp*JPB|#s-0WXNxhl||L z?U=k_HT4@e0HLDWolxIC!F+6H=izkmBUlW03Fj)#FNvCF{11{~^`gNH*;WmawW?lb z&!aW>I1~7?&#tof1X}{#t5A(n(GVyU^3){vkS&S9Lg=>&!^JzF;{$y&o?K^l!sm%r z1IJbU-B0LI5O9Z>ral|l-r*)wiaJQRFxsDzjv7V!BqtM##xLhGw1`1}2}hf-*g;1; z>MQoFXqkJ$NrG7A4QGhnXq|_k)hMJ>gIRXwsrucpaocxUCKYj-#QJZQfZF51&6PQX z6dMHxyWZv1H}MX_xU}1s3kWetEI1on3R$W9t2A3U>{R;i)6uUnc~u5m4u0PPTSe!- z-g-e2xR~GVF`8F$^~(io)FOuYSYtCl#DfRx07b%kZe-BzoZsDz7oI^ z;RSackjMr-tgA_rot9nPWz4Bnl^ag@tCm9tf3TO8KH*t7S`Z7dA`5%nr?)=*gF6eZ zC^gu5S~L-j@QJZJ(Nll-{_nJjuR21)BwcoaGl!sM@FASP77d3OW>$c@)JJ)ohV^55>+AH@ zi)gv6PMTADMv?^hP*aX47j;_0zWTK*F)B!JkrvdC9mVEPsr*{b^hViAI zxB9|aYpQOBmBYx>9NpaM1&dYz>*$vd6j;N9IiGZ{zhqQ&<%}i?S+t<`6JSVBy)%=j z3Yh_HP!H===J=x)k>J=;8w%T}QKyJIQ4b9)^;f;II1euerC%-cq@xx@T3+rUbmx#? z(2?gBq(S_UhwnWEMBzHx9nbZIH`G>)%y!c+dRTvXOX? zV7s_>zDOev$+BJP=SAgN3n6HU?vI;xw*n(b=ES8Gi5fX6Bb49XzKl1@DqmHJE{`YQ zCTfmGYezKBWg;X(3j=^@9EY&vyhG0ZuZ*OV#sfpN>9mkR^7L_Xf=nV*e=Zhdb8{ca8;*v zJEx@+r=S-fbdV#)@>>>S<Z(p7qD;6D@~*U%(%tEbZ2YbC!pji`j6toPAJvSD@y@3*z#CjNoy}s zC-7@Y+j3j){24!zhNVTQIW~v(g2m@TM{>#d}d4qL+&3%m& z8@+N~rW8YgTtBJIie{D_HTSR-69fxtBe@3QfqK6~F)Tq#7eU$>7gU?BeTbNT|7ZI3 z5NWp(x|QH-Gl(ap7`W{YuiHhri!)D(v{^+{hZsbhTQ>0?eX2}Ys|`<|d-%Tz8tFg( zKl=83>&6DpDPFb%kiDB?`U1l#CY1^HGc}`bn9_1l6x5@HftrMY*6IhT=<-*kvcQ#! zv#Dyi{0Biy*bF*qBBdmfz*qXZ)}Z;fCXlD^ftt)C-+qX&uYdKB;H3ZT>%WSK<@grk zE(Q%h)!YiSBFdrUh&muw;$$yxna9h11lks>8P6Mrtx+eUg z)l2zwyg5F(uXHzmizz$r=SN_+M(b7zXNOYC7_B8}mSi^ZK>rO<826Dh(o)}pX^rV0 z+L?#}sux1g3QEN|0pROix9#}2y>u!#)^?z{k0VhiTRsro&VC}JOwx+ryiaP^HnxX2 z9^UJRT@RDVJP(5gRPaE5{owyJYdBrATr<(B6v}n&YKt-xWZ`SZWImW@-m??DJw3f?3E{O79JqRDvI*(T?_Y^0f4tX*_Z#W}fVV%foWCXxh^XyiNeDDrEX2+~86 zvXO-HMPl6kq9Eo}##>FY#bdyU59^E-hZ6zgGW-SyUm7p(0e?EnT;o;e3yzN|NS!-3Oi5pM)(7;cgJ&{_xr;SxUR6X_q}J!CX$0`if=v5OI{W*XX%vs1$CfGkrpLM{FUrWpg3nib9QhA^lq~)pY z_B{od_c0X(1s86do(;7Dc9WBsTX2)@G;}eT_qc((dbE7LrilGGH*-t{4||on^j8y| zvXAvi#mJX+tREQQ(j*;Xd~nQMaB|>>+teGxHq=Zj9y2;PxRP6Uag5Q5{p|CwDYw`2 zH#>(OeWxv;)6mbj^RP!=M@Kz@BL|?ouR>a!k~hp@Wb&(_v5B11XCQq3{I_maex!bk zd2|C}D|7kJ#LwP$ftA33CCk)}h&H^09IG&CF%$wDU3rcJ`J4{p-Qdj@CClJf6CV&Z zP7q@`C^7pX@C87&vf_fy7!;cBy)uXr`WWd|CJ6d*9==hr*_Ow@E~=BZ9NWhfom4~+ z(Is%srXN9nIMvQx)#+xQapUJc`BV)P2=3~f4SXeMen%``B%Wob*$^?d^lU-~R5)qW zOJw-^$w#;#H2Kz^M$)Fhk?skrz|FB`Xwx#Y^Qoq zWdf>;2Z^A?O4|mRrkC?LcQlS6lrC&gsS;2KFuKoC@lV3<8JbKwf3!ntAc|wb^z`i0 zRFaJcTJl|qB(xxR78%D7-NASX2%wHbm{$*T$umxDJBcPbog2pZ7Z?RBdd=0*u(RcB zv`5SuW(Z$pd6PA2+_10|6xIr=UWg4<3%zx8|NRE z;$+1S*h_X9KQY5cyX-M-aLxv9xE4+Wm`8lR%f0&qVxf*Ye4K{lhG|t01n9b?xX08~ z5kjUNN)b&#yAZM17Av4iDU+LhvYF*|@xg-q616n?;&=&+82X5>veK|9o60SBU9Ikj zZR!K--5Y3*==tfIovfRAU;O?F5mT0llLiM0mHz3<2YOou;m5TxFV#4mqg1T^%y4n{ zG18J4t6z`uRnf~aDKMpfu6fV|*WL2zxh#5`Y68K*%>HH@*9D0^@<|ftLf-!y>?Rn& zG=Qz3f)nf@#mu+x->buq8#*!1HAcmxx+<4Q9){DTHy9@53POxY)RTif|&f+RfsdVgPQ z=gM&vJllM5@#8b_m@b4~Do*P5N^z^`P3suq^LP}A3vk)A1*2arUwv*C#m0YnxN#Mq z2`0bj==9Q(UI4cn0f?-bo9av-8v$8cX={u?xiBQ(F={E}Mp6InDgOCoMoPB)z`ZJ} z;6Sd+b+|;Xi>et`UjM&@UYSpvg8t%B0>pKG&{Vv=I)O%J&tP9eo6RJq1EKRMRoi!$NSz@+2S{W+WH-5uFGs3=Dfwd#dLa{@k8VFUMO6Jq?2UfQ=d8b}w2uwdhy1UghJRR2cwXXH%yU2hQNM6;M>97n z=M%*)-t7;NeI4KCTV=-^!!3Qnr&^>E$&Zs9SXTL`;Y4kM;qFm1aC1L%_$sLn=qH1= z)B~+qvw%zTDjka{dC?72@B6BCt=;_ea(lo1*<-mxssB&})kE_iNL8R~k)`%qwrOf7 z8+Hf6JUP_%gzza?N(=k8#zBVc8i9vjQB~zx+i+BXZnqLcsK|+rr#uGlq#r<+Q*(W{ z^)^K@7WjSTL(tn_9*2aVdIsZNG8+GQ6>l@L$uxSG4O13R@lagNQrPVUqpbp;1Q!=1 zF}L>CeZ1VLN@k<#eOc5rChB-lB^{b|gtQVSjM?Mjs8p%w9v}X#Z<=vwUTdttE7*ql zv+NBr%jyVLs~UuE$8^|{e%YTqX%>HSv_nNQxSC?H>0 zJwk`fu4P%c9rkHcOijza9 zteieMD^pU9gYDdPXUFxTCJLF9@p|!gP;>L!Yem&>VFwZI_6Li;74F5buVZ#w-_(X5 ziWL01&+b?~*Z9eK8Q(?+mVymQkN-nk`FKp0{E+92;rHu4q5XQy_L+C$T-zHPKkJ^7 zddXU|ASiV|(XbsgTi)lRB9vmH4n%7SB71FdyT2O`lcgdRnaE7ij5Rg5opZW6A8epu z8C#HMy7rE{dF@$enl#u7nTUFU>x$x|X`PUrU>>O-AvMEwY$_}(d(jdFw)c2TArC>* z-VR3bRAfc+GK(+!`}y?~1Y2NcL-U=V7^8ePr|P?JpOU&5okm>jQrDG~3c0os{URC~ zbK4p4X9g_!(3?vxT0sOyE1YS%*O6)E%8(?!3#(%TgDUHEM=8=%zQ&xFuWUFSjQT)d za0P4S(JN}jd95%dcje(flR94;@ol-veC={))T2e8+mDLZJ^M$ljvJ|HY6^anRZ!%2 z&{w2$)BcCgp8Q3X%$2L27v{dSXYm7dMfRl*4Q?<;f-{tPTS58P3AvFyYe&KHIEv9e zQp7?htnYf|y$%cfD*rgb$2UqV^1DriRUE~fsN&@1xjx7qeHKF~mk%frO=y)}GOWG$ zXCoxTpxHL3TIhRdX7$SvzJ-;c#zS4x(la%ybf3a59$7#BK4bE%1rTl*=9$Rdk?}IO z8?N95FzMxO1>Zun$<|G!^Otpmk3o||*@Q~Id`y7X%&=5RJ!&4Qd2^5kr`uR zm&KzhxP8j<#eI+cCiiOknr&Cj@stL-{oKv6en!kSv|B{`v0%XwpKf+63>oaaacp$~ zyI~FfjjU8j)&Yl9$>gvo*_?y0$9sa|Nl)m3QZ<3DdGUH;qqskO$$vt=L0{xbP^c`O+EQ)Y} zUG8!U7w_fZ`DU*({c%Aq5u!P1D|!#x6vn@X*rPt*(s}6_P8KL7)u^C?Ray7ag{pU_ zaxs4}vo1Aznm5_cFz5a;13!9ovw8@mQ~x!Cz*=XXmW9rE*XD+NunXKO07cn(;5k~y zVwn##z7{}JNl8{WwLtYxh%t+jilRP>XGutfvi@}5Hdj2DcVL}9F+EzS8{oC+@u8W3 z3!<{7B}qPz8s3xm$!d;U3@jt zF$KTl?D?%QY1={Kzy!8S8^+k&fkns=CFC5=^j54@_$5Ih^I%p9 z-uwYHu2O$wM&RC^Elu)a{<-zNrJHzO3@z5Tx!tLMdXn4)b(E+Wh18m5mZRdXI)ij6dfG-SoRk|lFYy77h{Sa~Hdx8Q2R$#Ea29h9(0b#e>FZ70VaIafv#=gV zF$WkC5zQk8Wub%1qO^|$3FS=bTE{&+kxy_`k z57~}#+B2%OBX|j* z?D+cTAAPM*-LS4G-Ux>o&g*oMMiw=yxTytoxs&_9u}ezp9IE#g-JV|0u6%im{eRQt z#)+ui_fwrMI+)O_+d^Km8w?5r(7HI^ER$&pY;U0&*iF<3A4sf?+lhH(hVx zIdzuTi!~v~Gds(fY62hWG2=FzqkJsFel%ihk3gMSc(y}!RET_Px9v`{Nnx(#Pr_Zt zyTqNbCjCN1DQW|L5}KAGIS>Y(9J11D4#8strcU*^`XDE$&r&M%>+Srqw~ktY6b3zp zfm8+#h-k$-;)YtEP0m89oY{F^;Jg{xb0luL!4>awFR&Y}sy}yn(lez*-cDc~zzHK- z3ifXBh&&qfo+LTi*w9mWg*}aRK6x}_=SDDS_B`$9i%khnDAjx%^*<2erz>uz32-l{ z4WLG(ty@;apJWMMC8R&d%fyD8qxV5ZCHgt{Dc>`97KRG7W0c;y#;iVt&X^ z9-5bEvj4GL4Ovee4iY8NbDUK_Hk@`=ohFm#&Z47Gim>O4O3TuKzKbSqCkg`W0kPm05`mxXQA(|N~J9-MKO z;m5bxy~FnRS(bV<20H3>%34Nw3?3xUe1RvT4MJ{`mWKi|Kk}>%%7D8N5aF@4Z)PvB#Dd zmajeXs3g$oU^^J-a$FyQ83?0`F`rwpsEHbvcio4~p}Z4`#MI6(qHX%t?ylY{X*%Dp z*=>Vs)nIHn2RqwP-eCUO{q__O_t}bwiei=BqH>tu^hYN-n0wAS(%qsD(Q@1Zyc5aW zy*(d~A=?WgMAd#?efqo#R{X}hp)B~iP|sOV>fNYd#;HI^G=CU|GZiITHTL_Ws&FUku9l{j1r$ps@zb~hIu2L4zeGNeufWR&_tF7IkOMxR&OjRsY z+DT2|np=dW&zW*Xd+K+6PG4gnFLmzg8(7!}tGC7N>1mCXrrTs%vl|+jSYwgL#yUD- zIu&)1G8kmc1B@R~NER!*#AL_W+&{f4tSm84llRR|Kq%}Vi^q2;ACCLX``^}p+C?wMwaF$N1*4x$xl z6D{T6v7iF7reJ&9n8dg~!&aP*&L?Tj2a&R?bgL)Eze?>Foe>Bt?+WZ(e$3#5a5*KVdfeuF2H^D;>{quT zaQO!K7SIuyh3SN2OitzfI*+e`J5v-Y8)_~FKOCV2O_#Iw0hI5UVN~%4ecCBT6%@`i zgk}~}+~b~Y>;i*gNT&}@T&=aS52O(v4XOo)!g~)pHyG1|u|j1UO*sd=`3w>54qGnn z_*k}jxD!u30Usje7BtukuOdY_l5+0XAxHHqkM5eyW!rv4J#eIi@oiT}! zJsJ;&nv72O4NGSg|BhB(!#5Qh9g9uzkn&2q85w_4;O0 zop-(Pvdx1(7uH)j9C@>AZr4rgVRcE1r1iuN77LxSc!lmZRsgHGxE~brw1~GlotH4P zy-S0TlG9*se1=o!{v4J?4B-5%1fUv(8iNIxab-t@3^+0Ea!=#!N0H$1rdm}*{e_+7; zIS>{Vsq^?3z`>u0FA)$d7o1O(y&yi^zv%Za`k_ZP(~$J;U_t)1RPagXr2u7!g%WPuD` zn7+WN?qNH>jkjOo9MB>U?}W!vo#ZxVGqBkhaLmOOkbRq&^Xc_l=T>F$;Wpal^h==%2dxRy3_#1C>a5?cX@7InMOF1Q1HZdI^*ET{wByI>8&T1N-{T# zf~7{Tge!&$k=qgKhKv4OXB80oaZC081$@tGC|vE@T7tANdV;^u+^&a;o8d?E%a0b_9#dQidR zFaj<$vuw7ImJ^z@T&irUs`Z~UqMKvVq9tMu;=cDWE{PtS{&fa;PECPj-HwP@4Z`~X zF1TnwB>Eb#j+7CYVzl{r?^Xvhuk4|?PfpPy%H#lRcy^>)^1;C4S>Rw2SP)Ko!t>_R zc!zR$bp|Yc_Jw}!q+FvIBaAtmNocT6JDBag;5p7EqQBUxHnxdmk zcw)U68fh!e=eWw_7ab?0bhMLbmd>xU%scPH;ER_QJ7n9`9?kD9YG6aK+!+1nY;=l+ z5Ul{$mRz{a>C8V%!o&j(8X+3(UQ_3+uq|6wPxk4Pno(*;PXco51ipQuu2U2MueULE z_q9UU>UhP`d90b;l z2Nol)t#0@4U*qRK%f5w|&s@Xu^|Rz*JnjbniNuR_sQb|HxO8sX!IW_tA-U@^t*@=}?I_ zj_cc?)|J*~SysQq{JjrZ>wsjF+1_eHI_Kti{hAhYZk<=S>FQxNaXG*Z;C<+_con&7 zetIh(a|Pa%{=PnxW~mMlu)04qEdef-Q!3Q>SDcQvrH{K)D;Q@M@qW=qzvqyQU^;K4 zcBVrXwj)n|*v25VZrc$ye+W_K+;$++!1fgiAeuayhfzC;1r;gDJYIa2_dX3V4^%VT zTGs6s3Omc0k7v6g5vzwu#N`)2#;1bR*K_j{n$5mpJ=IH~C$ZHw3`aa;T5C!p_y)da&UPr!C^;YfwMa>4CpS-219!{+z=&kBEyHnq=vv<{#ZhpGLY`@k6 zuk3rUAANAOay+zdIi{UyfQ_DV^cniOGd!c*4vY_Oe6X7wMzTbmERT3af46p(#%%c( zGKHQb_<#6X#$#%`5Fe37T%OyI^iXI+ga@mR>=g=4b2=j{R)20?Ue)v*uto=s5C2~j zw|cZrNzw9lga2|QuF>9(LP(H9Tk|A%xECs`P{jg2`d6%?DYuSdze!+9Fr*}DzX^u+ zM8m!*r>DKl4J;B-+To;*g4+%ww1H1j1oPt31Qs4pDaO4^zGZY-}3sB;-l6c zOq2t--GomzPQ#5$R(Auw+LF=RdZ&4!7T*>N(7BLu%BDT$b+i(y|9yIQ!UcPpmW*=t z+~-SnW+3AXXID1i7q`v2p$bDP{AyS|>m3~A`y;4xhCXcuoj#<(xqs#o+NCJ}q}shf z$U_DY(+>q_LNi}YGYj)*MzZ<_WiKrYA;J-3v%S5d!}n!nxHE^Wg%SI=pJ}X}q-lFJ z<_0OS{cPpIK#9Qmb}yrfKW|yY{?6mI+umpjc~>??jSt1HgAB;TiIn#qqQO@#q*&R} zo10&o|9RutGP-~4XFWur!{~e^Cf#rRHTeWV0$68bIr_kbhz4v)L>Lm+e9#p+Y1exf zJ>wOscM&bHLQ5O>GabT3osog3pY!pG zcy`?r)Kf4Y=y}A6q*U$bGTrd+>k~c7DgXA3-ciX>9mRappJH9gdgv0wmr- zOA#-XP4{r@lI46E$@$|ZNYHaSL5cj%T>+r^rPYSJStu@E-90d}k6>MjI71GtDtn}P zu66jc4QhQE^_WJ}m}jw>a-*-nj)XiZHv?e4(0z zNKR~Epaev#@aC?EiGW2fSA50Nag&;G=@u;MCpE8hCwrlvC9nNs&J+_xLx2!y8^*0) z(Ge}~A@aKqVO3pdRg$rWXaw1JI6e~cB>~kw<0>XEEnK`JsLUl5egmd z>%CJ;Zl0>1`wjRp>>Lt=n(Epiot2H`bzN51ltYKb23|v;05}lMgfc`f)H7 z0@y!2Bxy4xS3Of^W#5Y<#NrRt7NK5yF(EDjwX$%!#;aud4?s!S%(bVW`DXsIWUbmb zqG3X8mtbJ}`1<3SZZV_P$BN^fuz?@C6;{y^JbBAq2`lo_yN3lSvt2|ekJP(%Fd<_y z-aAx?CNkBI$eL{>Hl+Q__AGNQQLeTj4bVaj%v7WXsF~XOv|(nP28iGJe?a_(8PwPN zosYTuPmiLxw%%NFU;`#>FJY-%vLtEqf)p4;Xm{qw+R=mP{=4U!c84INLf0ajSB#x} z%{@b+w79u)Knwy^t7PUR!S3DniK9gb%ZG&+Ti}lEb2mF~-A6^j^DtJ;JO{nuEV2VA zz0O*fm|JLWF{e?)M!FuJixYbdS9w-Q|aA@@1mg9)&GpB)oBx5GTyEaRDbJDEq$@QDHqEOyGM6yJFk}6 zy$}Wm*#7O5rIyd1LWQ=};g?RQ1cN3y_w#y1-bgF?XRW!3BpHHYEGf)4De1k>iEY(! zn{&jS0Bx|MUe*x-Wc$B8cF`Z+*D%!VC@kH$#*Q{4Z1jwN7xBCXFs(wEVam21L3iOT zw3S2gVs&L$#M5~d&B*hk6mpsaTvNF5*{|fzhE8d*+0#xD0D$KOmFhsS89RY^8e*cy zHKP83E}q*nVFG%CU6p&m`v5-i$PXigc?(~j2w0TUh|iUUi)_R4PLQofNyg!Hl`P{4 zTVWU?I&dCYP;v!ND^16k=Ur*&Y=QI#AIdM@z>1 zo~M?hHeL~XWuK+;9?7#Zrz_A=MXuk5S#*ym?S9YRY|rGx+prac8ULUwlE@3FqTkfy zrnhIV)X@K5nhPL>ehD#qrVri&73zENbNOBBpUJtjw*=T8j4X=eT(Qb(6Jx(EPuhDF z#hrQa|06^-i&vZ#vJbUTk-P&ntowYbvwp%L%N)S{*LCo5nA7m#G5bJw-zat934nUS zaf|SbJTzQ>k~hX9nmroHw6qV6oO-kP5PQvy*;jyU<0rf7z8bbgiXLu#E;&O*|2*^y zf8U3tD@;?3T^-7wWb7Z8d}uqA!=IJ2KG}YG$@%98Z@(a4ZCVXcHvJ1#^nV=tGy>41 zSs1aA@Lk7ExVm5796VLV!|Y5eX#y>h2^XJxAIoLTQuJ7azB~UQoOaFV{I|FUgbAH# z7srhXgm`5)$K3{5xexnQk6I}&;hZxl`IR1bq9{a|GaRC^z&qh-(5qVP)v`52MtMdQ?@23`>3o{W*ufg3{qyk0n7vuvR zn=ON8q6p_8t#@BKv%rW3QUvAl0fC}~DT6HqSDHTzGNMzanH-CXWH4eZNuZB)9bBc3 z<-K2=--iuI5tjtFy~otwHeiKv@XMw)5Hp_T8l~s~wBk>Vq=bK}x)ZD@v07+~rbeSf z{MNUs{P!a4;rtrqHC$5K5i1i}$`@}M<`KP=o)COUng+8uh?*C8C83cKwL8a~Bzw)}D`oY?YcxUSA8 z9cCQQj^s!N<#YapEas21NRR0{mh{pDAvO)Ly(~Fpx`kz-wZwY z6A(-B0rwN2U3Kkt>758pC#k24X}t@NNWU9Hxa+#W(l3-Lt&MZQrErm@1=|ky<0LBs zpd0yJ3O0D!UfY~&HDO)y615>sa&$}m23Hue0P*fP9QH0->(&&LQct3^+I9tkwu4ek z5DF)_@kZ;-Kg{6_9__x{JLi<+YHRFYY?Z}i$qmkiuapRyT4ewJ6JT~8l>f>9zEv+s z#l5p*ZM)h4%2L@`r16`GcGmKvqW5gZ+r17;x%7&dHjGPIl;sL0T?$Yv%=S<{75lQY zh+a|cubpATeWIl0GyL3sgmaEjp4(Vv%umJvWZc-~;h9wvd}F$vRi!n$k2MAw{ib8% z9y*KvMT`ile+=yAk^b=XQuM6h2TR0LO9~4`t3NAuc&lJ5YWCqA%APFF^N_0oiR?L0 zpga2}tgiX>_(S%^44(OyhIKxD=|{Mjh*$MplRl#4lTE^nvLPY9^l6f4tjv*VTBaYeY=(2NbFW2u#Kl+QgE|hUJJsJsH=~pJDV``#6&o#b zBWJt5-WwzDV(6r=K+kHO!L#YhvYv!rb*#(9DhacFZ4R1X0L$5&3VPBYy040@KN3M)Gw}wqzY>4~1;1_h!HZmCHNH1v9Y~{fIav-gF4C>}rFVY=Uhe(z!9 z#Yv2J=`*aH-DL8dTEl?5J6(Ze+&Xsb$5!s}Z)n-OdIc(! zBQVvsm-g;QlomH;N830@31yg|loQUV+0$0jkFyt>VMzAXE{{1be;BXqO)=1Gy*QC+ z@Gh7NAQ065JGN)XxwJ@jAwzPj|GgpLc>$drv*c1!ldwE6hj#tURtnjHpf51gnA>EGL)S_Q zU(-{JV**g!!K!aQp78ux$4Mi`oLAupz2-spZsS-z&D)qsYZwKyxznj{ovI%cs{3|q z>FKBp5}IE{DMBA_#4ROk+OFkkLXy>psy*iyxj6|k_mxy+GB$_beQ@EGo;g{V@!Re z=?L6)-yMBP0aa~_!%25*#m<8AaT=(MTfM^D?h~D7{WCwx$o|_CL==JwJOFovF#kGr zU-KOKds4>p4oFm+{_LK4u#~R&LH&gQG^$9T{>|eb#+# zQ5sRkmEOfqmT&VO(#hK3-#ySFA($oF=N2PKw^1djKjt27ABd>NXURRti8mtC7+rno zmx&iC04eF;If=DUYR3N!64K%2O;{pIv^8zgC6c)In95RQDwNRIK#ESt+@kgFN|4Ct z3QMjOnC@I>Cv{c(?nQFR|BORA^?yW_4Mb4aR>w_Ufm_GsqTM1>rL-cHQ||LL6}V(9 zu`6;q6r^qWCd`-hSpkxAp)x;(<2h5gUcEt;B{Zk1kC3V6w3Eyd%%R3%yghvSZ4c`z z9c(6uFJmatmNx0DLajAU#Dl%*6zj=3=d4Q(6j`gB z``m9XeGAP@2v@kq)z+|03f4x+SSE%j=Sj|rXz;T=l3?6yrRt@Bas!cs0>bIY!8m#l zCD?qA?ug#L&*;);j8Uy{g2=qX$;trl!ykWSJPUjqHudUpYY)j9DF4fNfL!!K>QAdLcI*E~jKBPO#? zZH!c)`?eNWq?z-p9NiSdb1lM30BLaNfy#o&zq%5{>f`rIK}=ImNsdBpe59CW`loFB z{KnI;I6L?fWSqXf4-6RQ$b+aX14d7r`HsmdZmL(k3i~o{ia&GQi)&hY*rTA!)@Lw^ZAf33?#C9e8+lVCo5;4|R^`GFnCd?f) zVG$0Di=$Vn4!^9#heaf9W}RdH;%+wJ`w*GvUww;EM?j6ze|4$3jWQfpcKnrWiXCtZ zeoZHbWm!D3XLD)|*JH@gXBar!BwJDi>I&rRKo=n(stK@7m05e}`sr;)MCgyOE&LA6 zcuL4w^5J)m!+OiHU0(mBn;^d2TQGW?RQ8Y?%P8a?0*ZVuvFTx7ksHYt$nGkPbZJF{ zt*W}ylg!y>h)7a}+#e^c@V9B=?#=I66WYFaeEviruc=)T7mwW7nRYkz)kbFaPx)b9 z1?6$-|B3H|ff@vi2M|wxuO9CwN4_@mrXVS2AgJR2VFSM>Aa{13(Q>@UYOKE>r9aIj zfl%l}S|PW03h_m`ei2A$zkdf|_A`M>A<#Fn%8Z;c_jncO)wq2qQ-O%xt3%DscQ6i6 zoci&r*gk>_$bXrgZ}f_i%G3mmbHeE>-b{VGkMHZ4+gQ~wY;fsZdU0ZB=FWj;b=Y>P zSq?roSY8q2rGI;hXO>9(sfE#FDj7U>PwlSKS!i#FZP394UO_Vfos?}hPsRZeNT1xNj5PzlP|l|&DQF}1koV{IazA+_t{TJ zA(%sBk!hgc{W|=i6W$$=*1MRi_>+~4q`ec?B*aE|C(sKmm;ma)Kmyt8zPOUYKCHp2 zDpqiV&GCXSy>A$5`U1WP&TfeuTguf)Ww)*@#@vrC?>3o!&(VFG-BJy zu+c`9P5o z^Q~ml$Hh$POe@3MpQp!`9!{AZOe|z4T-&qF@P3`TJRMN5;)8IO@MEF;+s9Fi z5(u|SdT$7frll~%m*JlgJn0&|v%xCyu}_}gfxVZC-`5n=(KkbAgDNi(Pl-1w6`bQ~ zTB4Aa1d*dE2$6UCY8+PgNIp5Mg?EGb7C5;oK#u@EpLJWp_ws5uO{m~fM>8zgH|mrn zlG2KCU`aafv*o^}6}NTcWY0&*F&4a(dv>wM&%5UN7e+}bfW+``9}NYkhMSRk#F($n z^__bcqe5Hb_)>t}$%9Ej&2@RiFkos>$zfOe7{C`2w{H^DSZf19sSVxXv_25U?^ zB-=TP)U{Y^Cm^T9)*?YTk+P~pJQ#15XUd~*h{^e_{254+BwGppU?Mt}MTze&6{0GK zvnF5X7Sw>9fc0xl9Ct?#M?Ver+}NxI`%i$FsrKj;Vo#Ww37hifBO;sngQT4eNi52> zR5(z~ik^L({g|VyV5~sWKu2=L*3kpc?bv|d$->UcVrBqs8-k7}J;LbiB>dC-o;2)- zH5}Ag{Qir5N3;JNeV-3xei$ue?F}z+3v}tD1-~Rm(L-M)8~FDk7zOtO(ve+I0sVAwwvDx@raF9e^BfnX@HZe7Z2 zOtdrQYNS+*U`Cs;e7Y#9R(bpG^r%ik20^SAm`|C<@IjX^Wv-7f73zNz zsx8)q&vYg&PmqsR-71GXTN1zO5HUw=#3MfzU-82u zZBMT0hCBHyhK~8zU07JvkjD~JLui(xeC588*0AE82NwU+0tB5>$n^ehT=yoWl&Xca zwGEu%(0H{uat+p!fPGW!-y$b?iie?!JuI*co!#v36 zL5i#X#2vuwRJ5Wv&df3nG1@Z?i5sm{v#lH{B7rIuR67#5f|^(p%`x}dO0lKeg0o=z zqRZ!76Gj)WGvF}J>hJr5OpoOu<7O}2r4{YLEw#y4Q$kTV*pP%w#$rTmk z3r5)ArKfOy-Q59mvNt($@B3cX3e_NWq5Ilt+O8}y^>txFP#@w;GF(%QKWD;g7N(*- z3Tz1%@K-$N4?091SIAYfuGs99&hR}=7uny_6!xi%^Qv3|Uw&+PtMjF5tNC1u!KC&} zJ6KfkVy?o;?(``rZH04RDsSBPtUStu8fF$!JL;E+AGWrlixDnxZ zd%YrPBsmRl{fU6M%I zw8!$iM-h~RJrAx%8r7uv2<>{$^dyP0jxTZrz0if?egoP>DID> z=haD;35_Oj5wjMh9kg5c&{FbFZo$;+$TYeuVa&MTT zB4aUKb?@TJ3g@Z41TryPzyI zXq_K@6Om;X7k2WM-$>kdUG}yAC9j4jpvMnmyaUnrV-u6+>^?4ruHW&8#)3Lu@vp8h zJDFp5<@G`K+w-Zy^}FYxBfo1rnQ;(QsD0_qE~bKJBX%oz;fAeSoysc0k#^*s-!UMb zeCMxdl72jo^3h*IhN?l9G*+)Ot3^`9qSTRV|5{@;fV`ldnr?+NTKj~+LBKk;78HWk zqIers!6I-!iz=u|<(H3h$?TvT4?yVY{#}u_2V!jXKYkz@FH2UFc{lKeat# zc;>GXE~^cZfSO&uQaZa;7V!~uz|!LO^uYz8@sZaO(bQwiHwKQ+Z_E!JtEv!2QKsTP z>G=;#LVpg`^BP6c#@^i#FrIH?s<06XIc`a?s1;&7$&I#q0=J4-|<&cb$J6 z_~JZZu353-ML#zD%*;tsH&Y7}#h3RV-15xH&**G|+&N&2A6Pl_v=DI?hNNYaw)ggf>ocs`I zNpm}ZnP-7TphABB6#hvmo!l4wB!wF-Z2L4z zc9CqW*2L#po-aIN`g`L4sTlcY_Woi)_*$z#TbA4cc-Iw9A*R@<`P5c26iV$UfGsRw zUL$b>(6yYuK?88Sw=Ie>I_M5uQS*Uz>)#4M0F(>Wml&}e1!tCDV^e={Ld+N_QSA2G z32J~VuXWnXr|@bziCJ%{g%rCW?ZtN<;>UCq5>e+oduNnU<50;F0~lI!rTBiYsrWh zQT+YaI>Hh84SnfTxuIn^@lmp}*PCJ6hxXfdu{E**?qH$m9vC@}^Eix!r(4b|5#nuth|9 zv4UvWXvdgXG7U<_H&47}uAw-!7D5>t z)+CWMCd-#?#b>;MOH$#8aS#-y{>(2`w$sr{bBJixlXUvhG5 zX)AOAnk{jyegbo(j%2e-?4H=y@Y=m_&@D>G`nC`>xU5cgPq{q#({7fSY#RSZBh8?j z(+Cz^Ofo#PP{^mt^ySJsUVBccc?84W^6W8e%C3mppJ3_t=1nw0C7U+*RlKs;(`3L( zpB$lVlhE;~VWbeaf#x?j?YRx#x%fr}ur5{7tQ-?1;V(Y(pEySjy=Zw$#VdHt4aXd0!Fj1<=7ugZ0${*+QYA3|Wp~v7= z9qT`S1@e{tBIsc}(&u;;zcLtkShM~Hm}_y#Ci}*=`1T&j;+?@-mEDP7cKZ< zetDm*Cc3u#Z!oB%GG3|fElCD;fH-{~r(7Ne`_ipG7KHd7aNJnsjbm#l2~w=nZwGGK zRcb-^K$LBT)6=PF4SW6D+E&Eo^`h^Qw6+;zFZN)*(#ks@NzvNhtq;@Eb*(hnY4d|G zWm{x=UW_%K{Jjyf_v}U-Phw z*S+c%olUTNK0~|o5}_5`0vR_BX~+9OusuYrxb~`a5Ok9aI2*-`6YM~Hax`ZRo>fn0 zo4BP~RW|M2E&a8eMqhx-r#SsotNgPjlL3%L*fK#T%L9reZzStSoN^bHiE^rKFnjUr z#|&5!43q=e%KzMN&`6t);Gl)le19^{Z$(FP{sr3^nSKGbSu8{fIJdv}t5&=9_pAx4 zo-|%*lMh{%#tT;_uJ}9N!k@rvM>jAI?2Gx{uFm}9Q>0#_m0+S=%V#;@!xc(fko3#b z-6KVz*P#t+SQbz%vDY#4B;~T^E76uw1*En{L$4^s<#+DrV*d)O@TZT;P46InRL0_B z8GTLC#aamoGyC9P_x0+>McbZ&nqmSrcQ^14w|+^${xK)id7*Kz43~b~c??j?@z$e7 zl}{%p>5!@FWBf+QyTCl4K0s6yXK;EOj+bvt@~(6)uxPlnKBdr&_bAwEGux)w5v@#u zKre#Z3_z!le;DOJhpLTc`s(_Po+gX{y1!2bbB`rS#Z1iU*NvgOi4DE^CPw?am%(V< z2LLJi{D+iJWdDDpYl0_L#|&EaX8 zM-CBipEN}Xflh!{8?(4<%9f{g0e(+9lCn9Gk_o-A@gRI%rFpSw_?=gx0Ar5p8#BXl zSEK}D3N+~=Z^bsKP~^cQZG(oIy*j8@D~S$GL8+aCAcl=&kS-fML>eM{xL|0`{6?1Y zPGwTkF>vrlb3t5Ipg0~m=)XsqYOneO{czE-x01mn2ibG0YmLvUc3n<`rr=E;nF%$j z%mgg@nitVlrlOSyS-bIi>r9aA!ji~Se~RgT4oWDJWZKLRUjZ^ z^f?>x2*v9Qg;wBYj@w1sm(!$x{8e}^NM-+MWk(amuKXP{g&MiD#YQ{JXv$iA#JRAQ z3IdWOuodY_nmjGD;hFYf*gsKl+2vH@V2|{uYVo{=l;*@gg=SA5!Ea=F<>Zo}O`~d4 z{34h8AIxTn51s|_XfpTy(WHQC%4W*xYZyv&TpZy5zC-7b*7He`CY(*^&DW0La1 zWA+f343m@uwJ0rV{@i`oUf;tp%48^39IA*q>Fcq&|Ai`Ibj_M_Icez=!l7JPhr18} z)S^~`(nY3VNW~SPiy79ku=|EDqDn?VcL3B>nuS#0aJ+6-tbon|^Z?S6?>hIX9x-?x zm;0*!4F=l{7fNomZw-p*wdIg4h59gg3wB(^{ z<-LJc;KJ}7Fb7eo_ZoME*p-`CwAgh4QD8V<_AVS2Qr_U8$ys=EI;&feWxK`4i+6e! zu)ZOT6dMidjnsL&9sWdGe8MhODs--Y#v{fGWsU7~OdcA+OvQ{v-;VoT&163yKf3Sr z$V8my1MO2zVg2QhC38F-p2jh3b#k#|x6PFCQuN}oAwsm1#4I>)S-=6PPXrZ5>khf6 zDNeIjI4?EfVCcROX@#)^OXii?`+lvcoGzI+#^8lFkfxG{&!V`ux`jKX#|&he&xsX; zyUpNtj72i4;muZBvyg3>ynPrQoXO)|J~~VC8ixP&Qstv|-f>N{Z&R;D+BmcGT#c!@ zU>oRO)GKoP`#uc1VB1DG_gS#46&eUG%X=Xb#D)c3qBuDXTlVB0(-J2`)W#SQ9~lQy zjdmlYDe@gP#17wN$F2A)*KJYwT`pZ9K}2Z|4J|4f!qkw6-9p1nd!Le>-A7R=S~x0> z-w=OW@=Wj2-E6xUs(A=FJM)u3SG~=__HATMoMhCiys?MNy;LXKj1Fll5yL7OWm?=N zUCfT0EsSbxn&dzr15n(ygDe^OL*DP7gZf#H%7*~Il;ogaN5rH11|-R6LNG1nrQcy8 zAdkoOqx&ivnsAc(=$w)6`0oO=R*-k7desvJPtESkZE)?4fgH$`+VQD8DPF)i5slm6 zBW`flNQr4PuC{It?M1(i>qD}y%wljyIrxXzl!v$Q-|&76+rT%*Kaa-O%dc`jGsaeP z6!K`cy}$N178}q4WkfUE`C5HjB`qYQOU9AI;c3DjV^@+?y%WH81om$!3Ta^{rJF$` zF1LR>`2NMTls=}9ExyjpA+kLA85OL@gd_kX^wDHN8E2mA!Dis2}m1N3OqN0I@KNw zVyQh+qxS~oH*4E>ZJn;ZraPOwfQj*{3{h=8FZkOGJk1WJ(_xP}iPe$xgHd=8>OZzzg|p;^xwGDApkHs=qLbELA#NDS%=%{mPRUanksXcXZLM2=49B*AO{4 z10v%9Zur>2iTAU8$`}qAE5f@HCn7dPpZ-cEEE4eDNt?&1-LJJ0Oa|9ryseq`surj| zG+%tB<-gDFo_N2SJ~F)sTghC>+QQx#Kj}0E<2;?X+x4*`aaVb_VEAIH=0sJw&Nacm zOyr|C)JQ!%e4A=y9f3#8u&fG#dW?a{8qTiDsVdO?rBx+(`W^F4!%~LLq4|$6JfIa< z!jRdtcqkVA1e|^e(54uDM9mayu7+?AFB4A#oMOx@tpihV2M2jC+RAyUsMx2mNj;Bf z7=IQp42l22axydrZ!+gRyWYf>0Fb#8-Mg77zq*3WUTGcDMz(w<uoQx80Z- z6j`0O0PzF94{HO-mjaxPAgAg`nmjt=x98!ghPqeuyN$7h!*=jvNouybh+_=dXvYTY zJ(f}7#i;q~LOG8iVpjZtJ;0P%LedB|-m&HtJ0F^CU=*c96m5z`MnPj`l6`Z`85+wU zZACKehpdL$;cw?($(=rDnYD-n?O)KXS_*RmZISoTNdE@jt?cHKH{b023Klg>*Rf~F z+jVc-x1=-^GNF-kMS2zrvVU9hjen2ZD!KaqHTPXnO>S?WK~dy@VmU`d1yll@C<3B_ zbQJ_bl_0$;O-cZR^r{|34hZrlfOM6r^pYSQEMTb8OMsvRkP-qxLJ1_Z*oalFdv7@M&y?-D`3&_$xfN%GC z4)Wyt+7llHKkQ4pBSu8c9ZA&QfqNP9Eq2AJ+Rgu+Bxi+s2c7)xM; z#F1!+uORvjK;ULywP9XU0XyQyx$O?;skI!-%Z~BtJZYv59CG_rBS8u??MXupnMtaO`u(XV0H*`tohwy!AOReT7U1U&pYQs}qN?aL@b$weqqg>#eUJl&R zo~mq?DF`EHKVrjEZ4OTD#A$Po_Bqti4aewWupgSKa-Kw$oM3 z>yV}TtPH)UMPZG5RZQ@md<6tNxD$2KpTms`CDF;p0sr$nCwjx_y@SSO z!Ml=yPeua1o+&#n=CNw_*e~F#WamxK%m=%@Bhi$5Jmt6qU6@}|PXqs)AfO6QM6m@^ za)QrtiMIVb!EF)0 zjhwut*m?)243b1To=YTJN4~hT=M}g97pSiCQ2@$1*`D(|<_mYl&$)es6T6!C#qM-l z+_(dAN!2h_%G8Gz_f388jPy)d_;JHP5{Vuk`BS z**phL^pyWYy)(r>^-wB>6mK9W&vh#E1VeM;Zwrwn_)4zIlP*gY#k#|%%rcY8g!hg= zS!eMY@o%(9xUVL}h;&1pAZ23v5aH4=CqA<1LFTQ}A@jr`(+IQR)ym7y6CDEiN$fiw zpm2evt~N)Eb%A^(YSZJca})96$+KLSqoF!wuJ~i(GDh7poi{&sTqt_HuH;Dx)M9L} z)<_QE-tK)_vR?HBT|djAykmF?W;yH4!k^m%_-FsrtA6+GLwK-E7;C%C3cOArdry)> zo90@iI*jMIU@8Zd>XZXm%3S*L^=ztdr1!lBqX4c+p7HjtXVa4fkGeI6YcTFMr%?be zWWz7E0baKax6b0ETLip}3G0|c%C1jfOST)NOV_Ldt&!-EZlXHnW)bhsiv(KOnGav= z>;5S0;Y1BkO``WFNauh!KBYa%y&kilH|2t}|+T(kVLz97w_w`8{#uGK5{mAuER2kA_@gg%2AP6tvBH{BR_d)T!w7aUo%rcCA z{xOiL#a*U#HUZ%6O^{>q`xiIHxHpxFlAqTikH!2^0^>W?lPP)j!YZPIZAp z^j8G7UUx;e&JF`EF$d4sELo2!gbZVret6bp`u?SZ+|~AB`}F~ZlpN{JrM|}ytOMu@ zp%cN$0e$%H(`ipfK_1fIg^9q%vhBEqUO;d{%R#yiqfZC&ciQ#Jq`?2hr1CGtP(>r| z-)-P4M;-Ux*BbC&(izZhN8EbM4iU;ro}iy^y3~SnhX=rQi0NgTiAzCSnPkH4QAhHc!He6%}qxck9K^weRWi!1jBm3sWIwVvBbkCfV*6@sY!u=0KF%P~P_ zQV%m<;(W?c176Xyw3$6{<7EZDf^lg zn`fF$n5Z`9&+Uce2Kt5iyVBU zce2Rj>~`m-n&SQXoxZ{WyUrKZ{GEmt97zT@2RQItU*>{{>fpB9jBLQ@(oyMIh+0?$!+?2gU4|34c8b0N%jvu!KAK?aM!;_Evo!Wyeq5_?EOJ=I# zB%Ike##9%ec_Ui{Zcqc*jrHmCDvU=8rM$xh^?IQIbL?xb9c};=1N52o)8CK z(x*uB-jKVDa>OFlu5mJwNNm|1 zVg9ZzBR3Ye&2+y2^5u;AIbI+Rch)!+Z~!>dwm5OxAj2iTN6@~4U?3B=Q3PY%!YE6% zDhYkIue%EJ87oy8BBBDBrGKP9GRQNVkiYz>l*{C?vnw~Kq{5p4Bz3;c^WC^iP_tm7 z$UH=bGH>-(DUByj3gjWB;F?OK2X#VD$$x)JlRR_IdG0MwZcl@3Ze=Lz;0X|QD$Yq5 zQQ)ExKO7`SjkcNUuuIUt0?41qv=dVA6eA6eGXx#ZmR)2Bk@k<&x`$;gc0QvX4R31X zN{@wRe7u#OSA#RVZ?$)_JPoVi-0}OE8 zHPpM{i>#duj_om6w()`g)whqqCXtC2)`km!QU^{fz#{TIOsol&I3Zwa<0tR|A3c*B(~*LY=dfkbr!{k~m9~mh%Z)3lZMBC2%i37xV373Vo+h%)6+mHU zVWmP`Z6dBp8sm~_sy>zPy|PxD)5?yBS4O%%arSSK*ezzbXAFnZ)23Mb4j7QD@kgj? zU}(7H9^e8x;`XdZ^7+J%4AC1{UEnViF$1w!gGgQN177*^~1^g*^!ddxaR z{^JAg7o2v!*||Bd`BO97Uj^h-A4%ZWT{-UEGctYZq*RFS(yG_8#*u{M<3qBP6ThU)DmUQ3yMR~R%+fjRrhU0#Hh5GGC==hu0fw#XVU5>rqpu{bWLVC5$AIY7 z?8kF=d+Y&e>p*=V<=@NjnNphyEXw!2zh}j3>DrWogI!r1ZM~Qyg@UcJkwZVQma$%C z#jKGEKHGh-E*n%xsMW;Y&k8-cxHZ7z8Ex<@bey}} zxdNv;YyQn$uirWun@m;Eqj8b2M$=_tr2FrHr2_!vMfQIuaI@z zo>5t&Z4+Buo>~8$X}3pZkIKJ^R)5$>{Ii`a1xAz;l%Z0~baBo4V2t3^jScAIoLm-> zH;mmwm*|0F`rQ{xD?LF>zpV4_^866r&#qdKD`*yJ52NjqZibSK9PmGk_D=4r*ZD;< zrl7VmlpX}B~G~e=U~OQb(6ZDb*|~7gzszn9v96>hO(Ep zkNNBw>JK_U#J8T&Oe;U~cg&*~kHj8be&Uze(tcP4L|YBT%LOqvke#I83FSPcGs(~YRXDJ7%7@QKg>fp;NpVGOY0vD{ zW}1?4ItPqb0l3?({B-tMcFf70-LjGCh$=xtYr`)KWi?m6tTHs)-|neDJRY3V!>a?r zx3I_kJTkUjmN*fXk^$yNZ8gL9UAVY%Yf96hcm%^&hS^8nYY3Rp?Qvzbhk_t4h2H@? zg%^zEDRb=YinM(+__(R7WvoDOj6*u)TtKvtg8o-!lAdehUSj!sBF=``Dwk!R;kmo6 zd+W3Pdhp62kQ{B^x7e5FbLrB}Yrv-U^Tb&?~kM&Lpd$nyB;KK*_s=`Oj;W3MY0t&JA5mjiFk_2r1(mE_4n zfPx&2BmrpCuSnKAnN3AuDN5jk-LMwV%B)JSaWpO>k}el`Ux|O zOAo{@*%TFhA;hMya1NcO?oAFtpZ~|@7|*#u8+d70=GRI)Kr!>3M-m-?CZ2rtV0V#I zWv`BBV|Z|jj_}=Z%Omqyma{Xb!6|K{JLFy zlgPECcTbb@-i^wvCqr6LX}i6}%U36@QqD;fAdzS6bOvr8K78e63`UT<`+IW@l`Ptm z>OxiYC57~4rl>M^!yAS?hB||XE|c*tE?J7?prMUNUw(G1jk8N`a9?VXsNrsP-urVp zj_cQ@5-;KFqS*AQ1{osz&f>1b_9^whZL^43PQ|O$>n(`2b2boV5XsO{3{W@NYMJ6i z8X97pAu(vlhPqLCcRwHOdIUU>%i_RV24x}jk>;hEWg$Np-_InjUk_$r+b7JQ=&Tsh z56oRfiX_iEVNRhW{`8n@g)f>k3V0i0ZbRDqXIqVH-`4J0Kx8AuP9o?! zWN$=ofHNhwbfNsJB>`CTiG-Gg-&k7FrV#CouLx>FkNNK>`M){yLzeX!T+N9$oy|ESK@u;uqg-@_Qtw}QUGwy%Z4 z!eR@zlCoa4J0;)0mQ$;$PV^QJ(t>C?J3c-Z?LQ~Ab8#)(;m|a+W0i`nG}t~c$=9b( z$;_a9ltwGSgIsknDhPA4g7`x)*=N7k?*(_Cr;H@|_QdwayE>$rdi=@jqUs8fYORAB zJm1>j@l)uX>pt3$E$ZlpD8Kt5xA9>;@M`mT>i8RKPT+&oh^&aq#H`%4zqsP{kvIjd zL3O3sC>ZR79(G4m6Q-5_Kxj(=vN0_V&^>=uq)CBDCM@;zRkp#lUr~;93oKTk^-{%8 z)QUfl4C3|{GiE-AllAHE7g+Hq3FEq}#DjyoFA#W_rVP1?>PB|X_TT~ohui2Nq1?@~ zUQ*_fak_Lm?&!f}xZ;`I&`)0wS%vl|y*|KTWr66gl%cO75$z8e+y)-O_}tmJp6wpg zf_-L^lZlH&)c>9#Ng${|DI+R88QG}6otVPjN}<3f@W20a)4cOegQ~aG zv4`q{FQ|)!q-uWEAK$khv_DXT6E7jKd45U?X{e(u%J8k*>mxLN)q609zFo)mjo9QD zN-w{7eks`dy4cmZg1xp+zfn|T%L)?1)?Xs7B9iy0%Mgzsjxoj)& zxikNnD19XL*FQFeH}rq}%H~`Ye{>DGhv{hI5F%ucv^7S!2*$d#w1Ak_c9GA7BQ z!C;G&Ps^y}fD<1a?HG0g3Xpv|)aT{lwL2L^li zRTsXy#a=0vQOMViG>!1ofI3VhzPh8EFh7k2dPGvTMzqVn`ln{CuTJ>VXjZa*QS5EJHa^scK;JU9IiI3u5hTKM#O z3gvwN{Qd%w{Wbh$iWpTbotSyL(5q4Gj-=v^jpk1F_|D?DY>~`5xit%#!G>@7rLKfu zFPyi`8Vuv&^Ml6C^MX3(^7Q{^EWjgPQTW_4lRZqrZBh&|-QUDSN;FWc<;g6T_5}qk z#Vq{o8(c8G)Fbs}2aqct`+oT%4Gn}WEsU;AB%>~`74$xpKYFx2L-pdCx&l_Ey)3iJ z(^ftoF0bJ4c6pw6l5MEi%7Lojhxp zhbsB_$`G-&`uwTDL72s3c;MY5(A3jhbP%))si@@+E%;|2bak3dYfh(}tnc}{)6?@s zBR)8=@v!=#hieTu$D;TjYAQta+yQvwS>gsZJ%JL9mlrK!)OlUI8#izW*_ei@ug)9L zAvflBiJ`iUr&ZV9-`#%zCWScqdt!S!)o%n0uV{#*?!CwDtB4 zEnyf;>c%N-QFgIcg^kzI+iOE)-`-{|J}Sq3gLd(n?NveGv22)>Xt!quOOvq=_6B22Pk!S&W}4Z6S0=_@dpi^gL? z*fa0OXe=@l?$HGVq4&{;>8hTYOe1=TB(j^>d4yhw(wb9KCuW;y(I!(UeK-t1X@D^S zQ7ScJ9@dYWT?7kq^Y=(ky(f(hX`rjJD4LzZwuA|+3nuhDac@6sXF}=c>(;L~*2W{w zi*u>H%RT9@b2+*}k@yCY9auMtqh|zKLK)C_l|wHVta%R*#?mm^l9Cdye5i=(n?>r^ zcd=7ndEVMKV@sgEk~_I}0}=hfkhto*UwGieXkGv|Q=&%mQ#pd{P19#*Cz`{zEb*-I zrw9Ik!Hz>mIE%>6aGB_#nn*+j2Se1cD)7@AkcxO$bgQ(;&DiV;=}OVj@r78fFLH6= zeY53h*iiUPL%BCpXCiToq)ha7qIbv*2wP1|Ds=41n^ni3c94R>WdHmU7)iS7v-*`1eB?i#ZSsCCzdG%2g<;i2lB*x7KM z_J8gog=%V*W*Yid8sJd_%SQAAlNp61)&89~uZ`Oy)0MJJ^Xv zZ}?U`+{gff)IGPsJJ{F#7lO9{jZMcPVxvJVQhI(2iGoLH{&% zDH+vx4na$Zf$GJGX>ylaloN>t^pe72BXPy6L~BUpd>3+PSqEd;KDT0voHQf362v07 zV6de0jr^T_xJhG3Gr(Fb{_rkzKkT<$0KQ$sZpp zdCOz|-*-6Uo>QnvG4q_$>|@xaEL6#x!JN2B1D7}-FZidBEeBl$E=O_CNf<2hQ0&yc zS8k>7{QTI@o(g-`mf;cUTZ4e;gT3mT;6I03O~A zhV*=Wd#W+`=JG6D#<0S}k68t@AANVG76%>A(xGR==W=2L4JDXNg9d_+s%1!o3+q6c z;*9o_#1uuMh1e0bcPHnjGI6z^01oWKMbBDsU|oJ}rhS@Ils+iT1&idJ(UXG3MrGyL zpc)4TvADW?+{w*gNZ^j1GBXEPbN?0P=)rYv+MRZ%yB-yOZjWXLF>X*;zm%;H^Cr)= zdme?PMHEDe%F%b)`~qjE&_5BSk#U9?&-Q@tizW*;>X#%e_rhR5kf}}zuOTmTRS*r3WC;7~#Lu#(_A%iXB*LIEB`1-ae6Rj??xhiAydlWyc zEClq@udf85$(4K!SLQ=?!wV^uA zaka|DHNK)}S|m{@a3dr=ACc`Rnjsgw5r<3Y$*1+Xl~FZM_(qpE>5EZ8kI8YE~YFYhX_U(*VHy*kS)X@YFlcW9_j@{9QO2xNIaS18*x|RO!j*1?e-wzFnxQQ(CK|5re(w7V^`3RZZ zXREgccSR4WQ{Gr-Qq~Y{b(eNu?6BM+)9eGsVGhxk9}6Bo3*Olp zYTg)h!#n7xEE#kQ2pfBSgz}0YGF)7IwB|ejv}(fw3gZc*YDA$F%kb}caE1JV30rHD zzaf;NbxZ=*3`w@|#k>TUayQUeY4|0&Scdc=;)l*T;S#}|pz%{CT66xDQbad=*s|rf zpRFBtfVqOXHP)0|Vn~0FgI|Nevd{j{4uZp=E(F`FsHYRdf68Q`Sbmv}PHG+BBV(XA zd7+TRM0NMK%cF$rJ>-%mq5jWlVxA?n>YXS=JtvWbcl30gwKT=vsm`J2l7p{v6s5^mEtOG8q zS*#L}1k#PEl;`kx1Ns150J+7YPs8UVw{+X@Pv-teLmYdeDnVT19MK-=^h?TB^jKC3 zB_2{~s%0mh{d@oh;|Ifl$u8%a98Dvi_B-P^l?ewWKfZ+Agn-EM(EYf9L^AY+YC;U! zDR&hlf^I|AcbM!opHKT>0FwXR3xlos`m`6!%;NwmA&GCH1{sUS0mosHt8X@&m~vsQv;mPAmo>&svkW zcR2zKW>GJ#N3Vw~iwA|e7*;UINcngUL~u9(EHl{grYvzq*MS=VsDE;Wu7ZEC$XmJq zJb>nq0D-TAW|6~r6tv?Aa1cTJzdiEquk1sS;)`fxoT%SnnB)Cq_t7g0*I}FXz*guI zd$A|-**jcQSG8n~k)b&1^d&;h+YeK zg$E5kcf892im#*KiA87Zl=Gh@r~F_r$EA`5Mjf(Iw*5LxM{bR+&ywC78`bK(tFE`E zd)J~uzhXaUhGjZPAksjSLIE_uX)!o(G(c-UC*A_C`u~qd@b|!4z%GvuVfdQwqmdYG z=pfM6k?a}e%U~iNZE)>2Q+e1lR{eR~2Hprt5bKhuKsEF1}%aTkoVZ6UWE9_LH-RyRN;_7ayc&8vgxGk(=9XexdS5UI1NrSW@v4zApxIE6=c>taG6KSXwmS}J7(PKuM2h7tUI(7SKd#_Y)zv;l`tT(1xQ*O-xKYA-IL zTNVzqP_@$(qGAKdkn)bn6PZ^Qsnx#JD_nJ5B4^^ zM+6fK^F;fh!yL1i*I$N|F661ZrR@1P^vGaxI%>o z#ib?_?Qms@p!<;Ppa>fYRZA#}5%c!F0JuX*7RW4z&B+nhI$`YT>X(mXWq>K^3l*ZE zCSY7YF`Hxz&X9D#ep!h>3$} zg~InNkxNs7^I710yy9G6(7`Z%-H~~p%~)WNQSP7RPFq_o8|C91Hr*f^T=7!wej06H ztVoxhxNsaO5iQP;0!wr;;dmB71T6|trrdW+XIE@YkRn*(EZYOz+tGnLtf?bjp|`n4o`h z*if$im_IU#TG*F9LcNS{i`U2KLe=c!05%-sMrz);<6+X>>x`gf@l?$_mcnWJm7|3QYA>LSzM^^b&s!WaqO;)YMcX?!AS_m;zUPC#9(@}=2d}wA+(iHn7+g`6*wGiZ zr{1pg#zd&P2A>~Ta=?VYjX`Ne8s^*lU{{UphSe?w+#H-`;pi~$BI?GtNKcJNJKU>Z zHAx|N;~z9ryyl&rXaIav!C4bCT@J2u&0GJ_i6n2y(FQ&BQ}6wgHv${O2ki5AU2AB- z2JlAC`Ho$fG{uK^8!8&P=B;g6CZ`};#O9ZHi9qw*SXR1WCAUW53_{E~AG_ncZqdX$$&(*@e@Wp8 z50COwjJwe&U))9~sxd=#qgdhS;}5zNT9gZVzP;}G4PeE-r2-Kokdu<` z5%7+A%$<2fx|k*jD3g@zLki-GYQ*kA!e6EluC6XO=iP+2YjcKXOW-|v6^?jx8eF@o zYF@I1nT+=jkO=aFRNs%}L7r)pRba2A5X=2r#aq&V*k?opN6A+rSLBmCu&1$3b-1<4 z+Jy*ov4Plw4~oQ7D5#_Z75?{#`epL5IX}f`V8GP4nIw3RF5;qbg!<5Q9YG^PVQ4HJ zqC}q0Y}E`bG|_befInYugPV3nUE_%w4`(%Fuh((Y&f?odNG@4gAD3&d$gr0sTda-v zy>;g_XYT0QlC?-_6@G8G3dR`99_7_m36#g3`uF^FSC*|keEr6N%?E66K0G7dv)?8C zXuW7DmCYkO)+yf-5~O>sAwv>hl>x}`Luhlb6oE{6^#0wkDv=HWWfgCf?#qFW$Rf96 z5soB9+aC+srNa&{v)V8P6S)!&7IIznhgE`H zYMBXU<<}TtZvCf6Pp7^U7*S*0P@XNSY;YORh!}HWUK0-_n~~VKLui+@Db<{gHG^Es zR!1dbwCWG#cSDTV@+6+$V*%%OW6X+_ZA~aHLM!9rM{4KSPx8|*U-|l<^Y*+-Z$)AT zwcR>R8WM?kKwY(UkKe#f+1h*bqq$w`)U2_V>tl6=+dmiUt(bC$*tx{L7@XaY6* z_AXvML2aHNeA({34hY$6-TZW*atU-!*+KAbl;Yy zZ8N7^MbNbO#id@Ogm0w=>TMMSLL)kj+LS$I+#W?B2itP%*>fIXYs{Wp1BV99 zv1npji;<0X#cX50I`7ovAodq2CaIjj+O_=rt;`4=7B#jlu)VZcD?+lCY#5X7`e$qb z_YcO=($e~5tLk?@04-CwepM3!u%7RVy%%~3)|dxx?9;;Ia?R;$&)|R?jeuSt*zrMT z?f*O_>mYU5A-V@AYEDvI3kJ`0bHT1#bA)%cFUl`OQ&*T|erH1=&jwO6w+>c7%3Xdl zFi&3%XD$qu4A0ER*fvOgIist^-+wO%y{u24#r5_@ac-!PTbyi!dwaY@R_6{o>+;v0 z!?5PZ97FX)hD>gXPOvSo$$`Iz)qZYZQ2T($c=@2dKuIzA+ndt8U}k4k3B$}CcU?J8 zc|CQ%NNwjVT<`Ef^B3n|Dq4A#cD2HjCAMxuf_bs>YUhXwg;W`Ry0Y)jfR|ZkVUcfu zix&I}6T1_JXT@ES^xK{~y=|53f(oQ{){oa?#XJ_13BT~=RuTH!Y2OyyR0*Ye7$ZFE zvl`PzYSPZSNtGC{_1D+a7a7AYzL2-LqD0pQmDl&D>;Kk!v5D0(8&3SocL}_Vj1&`G zWt-_jCBwHc9gNHGNzTY{ytaK^zKsaEL)#;)u`Heu(}IQS3I1%OifbP43_p7KdP5!W z*KIFXCwzIb!_Nide+taj=KHp(DaWp6;A$ifup0@iM>yl>89PYm>fknYwAO1W%6*aj z(kcJYu9OkITy2_}Hnu&FJT&i^HG_yI>~4p~-L=d_UEX>;=BSRujNSj3QvDztJp>Oj z4UU(ZJWG5txSjMXGq5D%M))(JZEte4ZB?F$R+));8>7mr_n4c1M<|*H=Ff zYN;!?j75l_J!zLxESXq)rYqrd9lS<@*pKzJRwbNsep|@bPyRV^XLYB^JuFBU!=&JX z^GO3^=rkub+*=3Z+g{LaJUnHaM0tcL2c(=IBAWK>1u`5_S(>3D-MWRhOrU&1hNn`{ z$V0mCK*b8jc6flGX}KiPwV$o&=J$JH02bkr)g6V+`DLfZCskl(8mN6qf2L| z5z#aL3_YQJqlNM7NY-0_c7gP2u?}Wg>W7CE4`JRz1CKr|Cb?MJKl`56+INBAfmJDr zpZob2?Y&i&>qakG(w$mO?PU=0gp37o0XjZ~T7KHXBO^9&bF8=Id~y$m$d z8K9Z2YjX%x{iHOMmPL47JRt&ya(QineC`3M$T?G-Bo|TAb8Jl3Dq2@)mHF(K!jIK$ z+&>J{Foybp4pckWl_WziL*S!c3tK<@!|ML@_Lxo9QFHYkUtj1Gc3d`o?i9uK0L-DK z_yiz8VEp43k#Pk{=5R#`@wr2lj$nIc(0k73i3>8$k9-$#X`F#g{)hvR1Aqqi?+0TyW5 z!M45TgVVsHUw6+F_aRm@Wyfwyv>GCpjTG~vUI4}jw4ZLK(7d~1$mjCdCkGL8Kj_9h zeNnDCpKH$&4~fM&L+LLuc1>AMqxUs9&>?ae9_VT%#XC8J^wN!9R|QY>Ev3)8{uns| z406zHkt^L*7Dwx4bk_VxfZNi48=2^DZ^o?k6*o;k=4?xy6!FDs>ct%GysetR zvFDDzyN=^@&CffT-51&=qW;4|VpIUty;`j$d;r#LQ}ZV;%)u>H7xNGjkf@O+*22k1 zdI?-$xiUTxDUwL>L#idn-5s45?c!1f1j7*9%lCe}- zx@D0FaZkRa{1-HB7vEhpiCaY@MZV?5H$e55iC>UI5;bRuZpcGRm!DOeRiDC!*6G#p zxtA}GyOKkO8H(9GVG@Hp?@54V3cx+$%=)@yu~?va9^5#;PD+NBO|A_2)oUSbfDH6s z8&YGY8q%B9?k(mGADA3k!=EFj*#59grhLcm+V_jGh8fSjnO3C!kg71NVk(VspS03F zrq(nvr-pTJy3+F{P5bn3o~_E%$Raa&k~q;yZx`8Rq)lZQ3PqC;mzW-vKV3(7Cw;N$ zgWCE5aLWwn1a0obp~a)*Uc7(P(6ohF4*XTViI%F-`u!#qXU)}z5NZ0~MrXH1(MGV! zoZ-JN4*pnCUSvdvaP&PUrfDF+K})Z0qV5-S7&(ceZoI}Nw3r}}l^KwV7;zBaXh{9m z^8yb%=89*C1XFtxM0EdEWM(48M9AxLb-7I%3y%=H%AMO+w2xc=6{_fYc~Un5+md*LZu2( z&>gLQEpo0gXNc^7kz_th$hh1yw=nE^tUg(CG*5#h>AdK)BBoSjn~}o%-H`a1WA`j$ zP9F>z9*d~bCdmwqE%#}YKUHBgd#q(FdoSGhZ7^sIrNoKLve8R+o*^r}=MlQrF zVvdIetnsB-KFgk{P|HnkOK?jXwn&m&odm|!gZ#Bi{MxxfizKZ-e}mD7cZ@71zs;#N znUdz_ZO069^-nMuaQpY$P3q#&V;1tj0Dfm6%FKatokGj!>rXMZ;qe_q&cd@E^1PE? zc+9Dj_<(%u(nvPd#2uYAoAC&gVxXXEp-XYv;7 zrL1|>(7kIxnwMa(&QVm>RiF#s)l~HO4-XG*EPZn^&<&fQ<>4d(F}kWFrig5xQyug% zH7bNx0FL8O4tydTXC+ehBCw6cdUP5x^PB6^lPW^IytVscT5wgya(RPY_f(@=W*w`Z zRyZV}pE6LqyaErovnc7}(&@YYZGkZaZ%Uz`lr~a))__$}-yJk%xq!F~n@f?eX5X?> z(aLX6z+kib93|~GuTXAoq)E77yb=i~>uqdTRX%WqfU_uGRf@QZ?A8%Nr{Rur+Zzd8 zR3?(|E)rYAB`gY=%&~0`D?&p#A$(hkNu3Qth?N-`37xGMcjjgoK|3DpKWRKU@DQUy z5hF;{d=&_(Rb=>;=2tF-nRo2f0qF+X>nFj)M~mCzbA$M>%uyF+G@d$~XHx>+Lh;z& z(naFwB9_p_IJ!B56agfXm1t?2vuLr4$=mNsYTHcB;;_;quZ>FZX!EysORffWFV&@0Wp<6&TQe0_00z_#%)ac9~Yz-U_w!>h~ljN3Ws?r%>$( zPY?>xERY)ZitX_qOqLs}0j0~vvsxz_@as|jo`a(y?@6WzA_X4gg=U7#9lgU7aImb@ zcr2R`PAzy07>Nsj2aU{~+fpUaaFh@3VS11#!P7pI(lWR`+*fBv)pPmFHe@4D@vYzR z743Y()QgC#FR-Z6K!Wqh#&pQZ2nx7UO)K)E83r}Hnr|KpZo2xO3)cFKgWLLi-JuC( zPwOO#m|M8fjzy}N>#37|W?0H|T=ala&_gI7V6;(!SQz{(0VlUNYACa5*vTbkvDbiEC5(tt9k2{ssQ1+4p8pVV-f3bDm)$OkRu zq4X=rthj3*f;g-N`3LE$P97Um@%A`48CKXvGkg~je7pVY;4@(p_Z&OB#p%vNmm1`A z8<(HKBS>!yUYcsVhjccU#VOrq{Paa;kB07yy-K^+CJ0PS7AI_D<=%q|0YxhAA{&*!VW{<>?YRROZ$d=5Ldkb*#dJ%}XGdi~Ff*MvMs zC3a*B%6+)C6mQbqlXxlk_oi5!F+ob}Zy49N<)wTpmN7SDUhX$U9NS}9m8p29Us&7 z-@FN;rd9H$e)s9M{j)R+-wFGPoQa${cAbMN*T4rqU;6m?{an5XJSZD(Xxn?~qvJR7 zbS|*%4h#wXzyJR44E*02`2WugU>KwD%8-3+(icA$d*+%si`$Dg4t9ga`>HjNg|D)H zui^nm`sM;tFJiy|4Y8i*Nu4XUIWa)HipGnOhM*S~hSG-T1TI=(?rUMJSRSkZmdl#t z6Ud+P`1Ur5wT{YBs7s@7d(@`B@S%L~Rn^!6WAc9(QRBmUPyhKu5N+R8dGBsjpVSWl z7Io>i3-8mcGGx1->W_;`or43*^%_cl_TPEWS^hq1p8YP1iD^yPUHM;q>}@L>J>spj95j;@Q`FrR$dBkR+BcWZ_}sohEr|<1)lyRFTJ( zz?ql+A1(9%qowyB8MFo*x&^f{3-I<1lf-hMZBO2!ga&nDF*B&)2(^EZh6)+tWIEKE z3ALr^n@y~}U=>*#qbB=q9}sx8bW6C|OJmnqlnYO|py^2e`++y&ZJ@v)0EQ2Gsak;B zH=j#-1$dv?l1+LLZlq6N?lN2&vTr}e@+;MNOY8ClC{%-ij-P|%TU z6ZVo2IhneN^_}0V^G%Uo!pkG_AV{UE+A+6|5;@4-UhT9f z`dMhF$s$Eyj3+=L>$toMVmYQ_Fe#vu+s=6~9=lK-fw2{~Sx`chh3`FezswE{HjErs zm(URWdn4@M9xs%DC17Xp{0-JZTcN`!SXPP>EPOB)_|q}z2seR-mG&Lv%L6yX@mRUZV^b&cXX9IODXrrSl zC{J+S^~4Qz%(cb-=$RQ>bSE3tDmc2gKG1KZ=YG|!l9f1itK7lSWkqKjpZ!VhzNoi_f?BL*PVT{|@?(_olD>mNB+Lh9)1A-(_h8K&?bcW?$O)zf+qv7*@p` z2-bzfCL)$D7;=rL!q>Q{4iuR={Tnpp!q`XFzo%;6;Y#JN3k!|&HG%pMBO33%O%v;W zoQi|lBM-ADm!k;Auk6c*k7dgRi7sJ}ylz2w(VX57bXj)xn1UXJ+Z=^-qTW z4(lbf^B(vI+F1fqdmANjpdw?q{`vk%dS&a>oRU>q(WH^ab}DrmY1T?vp;+c_FVlcy zB36sL?=4)9*raz?4#sVg_PbGgy$E#}r^3aa=yF!WH(#aD{l+lp6)|4;Q-zvj&tAxotUZZZpk2VAd8P7XF7uT3~l!V!Q**c;F9ZLi0 z#OJrKCa=GdSC5@_gXRzfJz6`w)eDg;T8P}!3O&ZkWJtGf=uW;*jL~aoaLW%dWy{Mb z;N?#6)2Ph5Oa8u`(Z0o`NdSS5eQJ=4E0C4``&8+|4hRHPn*V~v91U8$XET9o%uG*S z@Jgd#!_#5y(4qkT!EO(;xxdmMl)2&Rk+VFCYE;Pa-hIKBs4r;2RV>6g?37o`zvXFM zH!^N_lB@5+^)*vl&ycHzUtFE8_@bc4m!inS^M3T@-MoQ*QS=l)TM&oH$+O~HAS*Qw z9J)L6XERMw|D)uY6@7>)66zyOa~&a0q&S*FsS@#mG`z#`8e86kW@()kCI!}MA9>bS z1#U8>P_GnqWByh@c*x0Yk5o?sZ#sA4rGJ~3wKldEy$cRR6# z`6p*z4avy)eV;Qq#>1?|pdl?^rMfBTGI8xlvN~&6uSe-~gweSLmJf4iPA*%lSD)wn>!wlbsnj@1Uwn*B$6U=uFM zSa(AJQ+g9i_`?f$(umR@Lfd{h`qxxW-k6bxJU4Lpd;^FgN`Ig>`_E5tBO2SFY?HyQ zG9~v(UX;WzyknLa0bQo7b8U0Tz!Lg1b6E8mMa&>}8H*A}LV7M(5wFiLU{gt@`x)1p zjbv62dF0i*$izjxzA$imQ=($ekGVCes59D0nkIj9Wc(K4;UP ze4V%+44*{!{1@o!9_5l)!V7=vm2$r=wFrH9fTW~EbbaMIHO3F-^=UVJN#ucDMN-ieb-#BM|Pm(Z24SO(65;M{zvvA+*Wmp!$}- z(Dx)0AU;6Da8j8X`M(G)H8u%e%22mZ(zspJBaVl9zR`rEd`|o4lNel8`_l5#7;U=r2|H@R<&w<>T1 zmIJJ4#|UYy4&s6!3bT{`?40PUST2Cqeplr+%F?f#SlD+B&jV51mxaw}zVh=fz0k`x z*ZQxQLkzJJP33NGssXKG`QNM6kcDjbQyDD*$b!Nq9^Cag3(C3q_`i?pdA=aftXPo+F6=0jpY7CT0~+Y^#O+*uOaP-M<#~#*T@%_q2%z%QUz7Jc|;W+leYytXcjW z(pq^z#LSK+E;Su%P;CC_R(smNdxnl{i4(B~q+Bl_;QhDnVMF8T{{{wJFJ$`%!v8J= zCSR+ce>bh^a{Zf(>-kXqZx;UFKAiM`HT?Q|d^$l3lN7-?T{^xjxjEPzZ+fojH*f(X z@GrdZm69ld_72dM=u@-}Rsx&WWAD?Izg`XwuL4gQ1#I2JzCbrbB!w5hhy}s}OfOA_ zh5@9#^70PQi{HLPm)dTAm@m`#Esam{eSZfbIu0qfb+Acj{)mw9f^c^H$ez6h{H&K; z08thrKYusAB=rTDRTtop13mB{#_NN-#|NOf!_)Al@Pa_xU<&9!6~Sel=riAryJ)8Q zx;!Gy%0UlRY-Qn09Xi=OKM4x^8%JV^BK|i4oBQTiUYnr5QA!pQE+6q6IX4X{Ia#7T zn6~fjWGW0QosmTlCmnV*2nzts#{;(nzWdj(b~~hAJX9Nlttd_?5tSh@Pnj03@uRFd zaA2y+LMkTNvoUwx2S)qz{#X8kJJ<7svZ&{*7fl5-i#PR8qF>oH<&XWn5Z`$)CmwBo z%9AiZQ${8NO!m%C0#72@o5H}`d?~S}OTuj_-M4=>(Kxti3xC83nmytOe>kED9dNsk zek8u<`~9*3#?B&#W^+x5+=NSlx!`8siUPQb>v!a{Om&qE2$&*!CI_W^inaKVvZs#W|5#4ceOs;YH ziUZe}3|<(h9<)U;OX8+jo+cPB36`XU&CTHj83|bFlP0Z8cRXlfKfb?x)26jtCw3@= zzWP##P=aHWMu|6O#|5+{bG;M8ua9K!&?LGzq8TwaHe?^J_Nz5@UWX<1a4y;EiZZb! zTd6!UE+PlM;J|Bggesg_TR07BQq8Wy(NygXBrEWTfo9d9Xi1PI!8!LQo`6vKZGG>c zsB^`wlGX@MDseb5vJc#GW0~GZ2w1k8olGry6u>&b^dv6dl!%(CV+8R%z*~ewPZO+^ zvZEE)SYRhUVOb1c&wTPPJs#k#dlHL;-hT7H_Y}&97_SUIhiRu2x92X(%_9tkOL2zXXiS+; zW5*kh@!s7uhagP8w8Kk!n(rKp-|^C3yIkL+kTzO>s(optfq}~3IOcnP2dj=PM(?1P z(DDFUTm6pkmw86#C9{*6hF=VBrldL4BJ>5f-H=VHZOZU=w*_`*AeVm;n;k&D3P;^E zPxeo$z%=W%Ge|WTa{T2wh1&SD8yu=8xvJ1bbq<3wxE|RY!Ki-iMewhkrA_}{#O7VB zvrB?DYhf_uGdR!i@4T??rZw>8!+?%m37<(1;_0N?3-P~Yw9!zQ$^Y5YbxQ*C4f_;g zlB>h@$*RnBtsW~)w{-M`IC~}ZD~si^ly4K3SSbqhh3{G}doncT(&5J>t?zd)cP7(h z2=~d&2e-!i=a3>`%S;n*jTIEpWm60QyeT`pk_0C)Ndl;>m$pJ25Az61XNb6YFH0&X zlm=^p4b6Y~9ZxsuNB|4Px})d3Vh z?+`CU z_^3OpqlOcfogH0y;QC^|?lS4v&0Gx{QkFr~lE9#K^eLYliC4oin40$xSHZusC#QRH0;>ZHAp)Wjm0 zxA3b@X|zMnp3al=fdnXQP49ok`SPu2J1a$Sk;+t7#4?^AH7D!)V5UG_GU(Xq5GVw# zfq0FhQF`Ua{x(5du#WxxIA0&RtVS}!I9%vJf2I4=i({(#MJ(BVaI(#h9tyMPKECg!> zPi$L#eL`z(fkhp@g)=;BB2HYHO;P(L2=XA_A|!{XxTLzJY9!A*^Zv{A5Hl~hDM~Aie>u;W zAg6^9ly8~eF+kr}Nv$3yYm_~^CLn8NvRc=aVy5h6?>XM~eJqvD%e5-R>tSy!qs{)> zs*?8+J$mYC2(5S%>EbC$hkB}M89WD;fO7Q)3N-Z-`~rni?95HSi6+-+Zkd&eeug=t-2Wyk?UVvPwEp>KQkH18snpCn4 z5Z{hzM0gpJ`^05$WGf{z8z;)vGm6ZgaCDUPvnF+=EmPYsC#yWs#+#j3xWAf%XqtHY zR4Ouu{C%7+YUfxGE#4791J7(Z!yl*`@-@P4Z78nu4RHR-9!DOxNhj=H%`nZ&0GS7E zrPXwrh^rn2fD=ONlCC@TQz~&+?Nd~^Tv_b|OQX=pR&kT^m~@EJ#mtbaC4rl6@kJ1W zyvts`FY)*@Tz(x@I{QxmpX(mHI+8qz%Fd!;xHKJmqP<}#^8zbuz*c2&vyf*Lv<0)|@c8?^ORoC|v9m=V{OGVpZ~&Jmls+WE)F;YW?8zW-(S% zB81$Z>iOFKlG5Wvqgc(B?2!ony;{Nw&U;7Q*A1J#!e*W;{`&c~wk@=j70!pef?6(v zGR@fclGdXloLS*UNDMRJQ^|D$I}Vj-Mbmz}FM?OA76-n}5O`t5{CADWOw>F1St~)G zb>~IYHGQbcuOqM+RJE?pM7Kx)OZ(yum;d@Iajwn&x}AadMg6&AD)it6O$%fCe<>Zl z7TKmtrk_8*$rH55G_{KBf@?}H#hWZ2Wj~lrn+~HhM#{DcG_}6nU0G&MTG!eo`D|Ot z`mim+|AG_|NkoeHQaWbf9He*lnEy3o3_HUYDKF9YKEb1o{nIao)U0gtcCPQnKoBGR zM}D(3IoD)C!2z^=7AlyJn_%+Z2PHx^THdYi(ic`v7cTW7C->uw!`3OM0wMuf2}b(T z@E#t{wHdHYfyY_L@zN8`ai9%@qD}Hm(h5q6wU>DAVg9qr&86=$Im!re~8ZT#^bgRRP~jQw{HnUP3OQLbn<)0s?W!NkNKE!5lNOnLo=+!Nu62-FWk}yZ>OZGe3b0P=zPw(Z zZGVk12dBeD`yRdt2gzEz{g#25P#>y?qyd-CX$pm5?M=#MM z%)=`tFV5$_y+1l$r*Y#=;fHbkQaaJPe0H61T++0$-F~f241rm=+!R5L`^)5rZvtEx z5)uGvyxkb7W;gp7(_il9=R-XIbNFLy@XtCS*HT&EfXlnfE{s2`@?6p&-1q(gZtOeZ zQu^W3(}}xBC3|}W6;*lpQ+ZO|Vg$jle~S2rh?lr%9P^T?7nCoj)$~L|)q=U%04Rov z4*~8xSJKb~(C&&!^nHJ;*+V0!=MFQE9g{EcQ^y0@ys$`#J*s zL=DP^>m*+~uR$;2_vxuL-*u}D08(VAv4pdL$BpeQ7n?(p_GD8XLTs za8DMIrM)EI-+eIL|5~lJbc8^EFzHD}Wfmmu&apHw(iblh9w?CRgq7t+!pDyBwsA_Z zw}I<6LffYK<-aJmrvb<+tb7Kjff1KR;1nOObEs2g%M#lzF0mL~42FL9N12~4ukh4cFd4eKT$9hBc zwU+Hj#aJY!g5_&g1jG}o0lamfhM9%iMp%tFHxnI8ZHMGL%q>qbn|2kc4pu7<~vaZ4V|@;H0aM1Q@=;|Od-1DnaC zgw3RZgo$&(=0qDB8_;5!?^z2}PEi7G+rgqR1{!guGGLKc2Hq#Y;`QI2vmNb*~_FQ?^HT4xMwpC5m__9O>QYf;6WgyJ}Jo6D|TQDvOr?; zA)bXkW%AfJ=(310uyD!np@fafTuk^n?_miEj7g_nz0wmkRuXN7Ai$+&s0>?tEb^eB zs*Bbj;=Q6fq@o!OE>~wC;j-h8cEMffTQ^5{0Sd__I(wS+o07hay$F>_!=yl@d~VVs z_L*J+yO5%}kDK8}_*XYua@MXy`Qg;$e&BU|0b$rsdOG&!m}~fF=TNZs^1?1V+E%Ih zl9cx_J_8y@Tr@ZLRaeM}>9+nt#s+<{N0q~Iy?X0r>JD;zs%jYjWz){C^hz?MYKk{5 zYhfrVaLyAIcF&H<>*n{QFDA)15}|RnY>1z#?AsRDF^u+>yjFJT*~_?PN&HY1%$@y^ zq{7)lCvOYswVFhCz$ePjKur}$Q|4&P-fl|$Lv)Rpy6MW=4@+BrJcxKUS##@j#gP0S z%G1(YPHk_lnkGD@XA^Q&se$yi&cDZ=2cFIRqQHK9PdC9?a6ZI1tK_22*E>wmnj7nH zv+vQ9h)$bitA?U-D%C2j6r$}vQq`T~2@Qy4Zq3Pga2j|g7k20gzldmFt5rajbdhgUMd!UQ zlf{!$J16>8Ipj+w;vy>N{kgmD77kSJQJs(<7K)KqzTB`&%(f5)0)EO_+(GNd&P6Md zbE%kzf!#kk)@L&rdSnwAdV-ldFDnzF2PLiu_L95S+A$$NwGVu3V?um-GnCG`#awt` zgp!PnvB%oxH?!4}S7B42W1>ae<<LJ9#qC>nPHTz*n+A6_pC5HXAJB>E2$I=AB4_s*+6%FLLj@WBT?%PQzagLpvOwIj zebvxrIHr?$)i7kK#ZoAEQGZ3&DAjb%Xsi~HlO4gyS+w)*+D#q#cwtB-vrQ>lT3_?` z-DO0d%||Pko}(bQO9f6fyHqM-t(e4$^c+5qyQ6rJ(-b;?w9noV|BPK%_=Sv(-jMnT zAneIRS8PF@IrmT_SBX2@3Zv18YuQrc@2>qyDzq*T>!$vfOAgnG7DmkN6T?579hDDl zgGhId#O-rp=2kVh*+M4)EhU!mrz%7|&M%tZmAy?2=)uz} zw&$PIAPIWnJ$hDU>mR#;RHDUiL!pEvHlNV)uV#63at9XbCqB8Ve?Q~LYuB+uf4Ly_ z&AI$VpDYZQf9d?JBy!T1bk+>=qwxqCq!mRR;{z53)ixKl>2^rlTd5F0 znPtu1a7&)f%{H%us+3*6Io3)Cvk+vfVe*-wp&apdR2l_(#OKfTU#>_u+o4A5Q=e?&9IMMSXtfF+sIIn2Qm04r< z502b~Uf}H5i9}a+C!I(|R|1DbD^Yb@UU_}p(F0hKE`Wrb%se$ySR6ZM!yYJAoSUvc z!#ifT-ow~-0VZUjtTe#6l;xGHrq0>Y$r|#gS-y`m28v$0b^0!vE9NRD;@_K#uxk2h zh33$l!z4I(f*!vQ+2zo{Ee7Kw*AQE971?%%^fa@IeEp@}5&I#Frl2;LbIost^gNPb z@qj`lk2V$RQ>8}|p^DJuiz~;U)k!|jc$nX}WHhEUjv7QC!uUWmEiOOkBRE92_9(G07>{^i ztv2t*Q4?;oefzp>6M7huQM~%fMukK*mr=f%PuV3?S+mcl$&R%S0XG27F8lqvNEg5fh+{w|61md{ixq1vlHd&36;pr>wPZ_TQkr= z=%x$bLAE4_Rrj005$bpzo=?qZ-cPP91o{Lx>Ib+Ps#L!$5cu^`Lf($!9|T;9TYZdQ0Ry^Nq@v{WcOROq1R^09isd9iJl4F zo}#Abv=WnFDW`iByaT6Xoy9az)Jh4{v*7aIJCMafZNAlz!Kus@@GsMrH0T6A%F;M5 zQshB>vJN7wblFB;3VMlb^N65+%%VS_b#hdu!_60^L9>@O}5&$LMbg)n9ItA3YG|A}Q zLr&vOr1-}NE&gV+IaJiFQx}kAp5d)Nqr)w24R@9sz zjia!4K^WxjzT$k?#R{N##dop$(J6g05iuNd2^m51d4nLR5s+9?S+=|Py2fY+l*HTQXnao}Y!MrSt@=nv^BZ&(BC^uqnm@cUwlv|;&~(&(G>b+eC8fU-3JxPFZ7x7*9HZH19xi zu|*F4Q-U1D9Q!!Ehmo=w+}cZ8$uos_{2 zOFkEl6pmPyAYj82;`nvWb0W9xU>ybtuv8i-^hoe2^iJfq<=tIzM~yYj2*uSth?MvE z`98t2npuS8%+es&Oe=fm>>0KiD9XlMXl~cf<)Wt2Mw}&;f_1C7xa?%2)1U9N(w@O9 z3vDLvH03JvE~;-zmQ0l%xo4WsC7I*2gOAv6mFKt|QHr=M#&mpX0xHZQrU31wvjn#!9Ge16uS5YOETM(YJNJah;pVXN9fa?b~lxAVz%s`;{BYyTEi);2J zM)i!J-gP^E;6eKD(=Wgp;uZnVneG}6{$oXTS_KC_dryGRx(4-L*(Tt(Lx=(mDx;Lq z0jOoV#Ge^*dc`J@Msk1Hdab%I3XDBKJDrxMhx-f9|LygcHnoeC+fLrCfI^?g)TB|v zu*1AMOm(lkch}wn7Wc>$Pgt6QR;*M--BZyU=0-c?bl2vSpi_wIcI`FrJO#QFEvwfL z)d;z^hPeI9IG?Hnp(MssbkngF0{|q|e*`+{26S+}D%r|$wb_a6`R^4Ho0`LY{8?_j z28Edj|Dy8i6M4+JC_Fb&VD3xp72tAmb;ox&Sk^okom0pR(2p=)?|{2B z|9I2XWNn*Aw0WirA4dZraY?I?pAc-#?}X@jGSvxZPK5I zt$!`1M|Y-NAZ@0@BrMVYJ^|uM--b+_Q%K_B_N?Mk&qyKPJ}RDksM%t+aKM3rarsZ- zPBEJnU7ya?trf7dZr>6M&HM3Yv!-)NH`J2vO0oOP=)U@+hUEv6<05F$jvwoX9bYRT zLCPszDx!hQ;pL#!$D)AHCFxjuai+t>3$Qj`#{Ijue?BA%p$&Mww^t_XE1uXm^QxP0 zgU}6c1KeNcG^M%;bL5QU@W3|A38JQKD|nl-rR)z9N52D&vpmH7X(b;gJa*VUP6Ud8 zVi0yXVgziw65;^5G#%RdBpbOIZc!>LkvT|T*K0xhh)!H!+3~k(Vg_Csba64`)+rD0 zC`E5}zX=+qg!-%sm*&gmS~?716-nsayxm9J6dYg3W&b=gZ!L?0C1u)jWZPOQ)|a7nOAy2v;oN<#0*W6E%|nFqe#qVQ1~*{RA)*(p*E5H zt>8$hzwX{C^3b@a!2El{H@JdKZUl=Jv;nq;I;?m9wI~J1QNq|m*SpnY6yGNUb^9pn zW-#M;o|J(n-8PTzi%kh^5ZV`Ys9gEgtjXhtP3ynqhrZ*&@>rr+%OiQ?#N;C7xgkdyEf1I1eyJrG3JUIl%9M#V( z-D`iyz{!q1X<)b^B~E2+Ymd}N?9JDp+6(#WO0AAePSd)-QqY|gxt0AzPO!<6%p6~U zgL)ydV_Mb>ubJC@DCvQN?y|97f+(QFT%wqf>tKYP-e(wUXyKV8#(m^$h@?IQ5qFfL zWD{)aZKC4#$@8(MaT?nn-GxMfEQjA+seox@7eAW+-6}osg=CnyU*RH~QHe7zbztWU1sriZg3+*APB_d!QSc$?1 zpbZ0r^&Y?5*pI0`No*6Brt$M2d!ZHuR81))eU75BMN@XVik04Cv2R~Mcu;cZb4V3a zz+f`b#Ee#K0WKzR^weFhQ`~yZ*<|LAF>x3CUiU^+b3KU95j@ME@cjKO@qM3^6`169 zL!-B9-LDVK*~jjJBu-dolCsHr!0q?zeNRE*rs2)~2#Jx1L?KR4f{xocVU-tq2djkDw;o$SN)VjmNiq7%4qzWR;ia4Y zZ4&R142)is}$=GylYwu{jpZc0E}97Ffh>RG`KKk?drV@HshGe2hH9^hy@C%WlZGcy zBN_%kMtE~~xiF^?FN2!?#15yqeAl8&A@rB)ugeAc66Wwv8eHe`0~oI{RY#~xm^e8F2VHU;qj?K*pr zXD~o!fLpt#Bu!fC4OQQ1Ad`zt_vmON97ke*5p`H6HUp)47aiE}0JL-mmde?jZOt8k5(bPj!wjXO|){!NmL%2UNCLUW*NWC^zb;X~e;-KUL zUuAeU$`y}Lp=aEZZk=x9Jqp>GP)v_|`WY z0DjAgOwV=rW@j;m0XBm(5UsgmaJi7Z=Hhy1AYOW0TN2r?+t+{kOBR@MFW(D2Y>vi8 zb)5OWEC#RI|Eo1UXv{!&qGvmP4J1U6!l_!4!gCPprAGKxchsp^6n9+hH?z%;@Z0ZF zPao-qfcIaZmC?>Ugw_SuNqt4k+={u@#UP)KBeS+qk4>_6qARWAS6#s&HIohc+b3e) z&gC^~HMdW&LzVy{?JF(Cgn#B|Gs8D0?gz@%HhymREX|Ug=P=koU@l;@x*I#byXyf|p-_e4JPQWEQ@q<7xXVdvV1T+RitX?W0Ih>aPly3hs? z;2fPoE`ZXN+)kb^5bh5w%0~YTDOl5l3|z4UWY)9{4A6ZtyX0(w3f z%c@yPPnlFbB}-(Q3h6|i@-C4%Vf>f=O3eC>;{(P ze<+s3HO0~dKC%omwNhwaz7~tBCqCpLVNJHYn;RgOce3@`yT>ZGtcpE*M2+JzNM>*O zN9RK0W?(%BD0HhYV;!*6*gyy> zh*zYcD*|O7|C3u2wHMtI$phQ0W&0#7V!A9-V7$fLbMPTU6=N|(g5&KuFrVi+bwC?- zP#uC1aUu+%r6ao%U1RIf+3&Le9dQj%uU^~(n%#W@fOP9Qtc(s|91VP%q7{(C+aBQA z8~t~MS$ zfZeVOF&T0m5F7J%`R^G@oBn-(=UFW<5yyvx$>$lOX9hYMb5r5%`>}60Gkv7q)&Fh~3?cC~B?gFf*Ns>OEd0@5m%7r{A(>qquvx~ciXO>%L6lFCw~K%eEq+SmDa zZ!8N)Whw*2?Ajs@Xy%TQmL3HII#@?C)9m?GOvfcg2u+F*^qsAy|-8NV0sm{)S83`|O9983WhoY`m(}ZT1RC z!u@0@D$O_$)m9AX4rd^N;W`t2=16r7BYFNr>5rwGNGIHk)aAZ1xgo_QJ|hB6z&#f) z;4loIqC_Gc4$6+q%8sjIrq@>b`b;X)#l z36D3)s~KQC>cH_fNnC%ej{KsLxIXXr=LaAsc5loM-I%_8i=9k9c{(rmOWtglf2vg9 zP~;_(B)}$y#*-zua`D^LF|ST#6Z_>_@;8})GVHF1v+zZw`!58ev#>da&)X@a$j9*; z)6;i+MX_WZZjHkXZO5pkX-Emf+ zG0syv6?)&uC;5erhS`CbD@{Fta$WOhkBuYts@iXE$2-~Q>dK0{Rg$`p;D&PPe*PWS zM-PlWNuvobCL3EjqalaA1C@8^lsr3_2?=OT} zM*qZ2(^BSy>)b$>ExSy!jA)auw}bDJXx{pZl$5pQC7mf_CBW60sCaoMZQS+b8`<`+ zXstQI7Ah%{b@3(&U-vrdb-5E6Y*>V7xTi{AziOcd51Jn`l*@>QY;0|NpcMztK1a+I z3;40nowr1OYKD#Z6=cHgb7tSnn6SScA!Uxv$u@{=9ub&*Cn|2vVEPj5UHk3pgZ-l< zp#|FnI6OHf=Jnfmo|+!=+XCQHhlaO2mtj{#*r;(Sp0lU?bN4``$qD!pgugV6Eul^~ zx1-^;#q`Wln}5+`pK5M_2~*zUJ1P%{^;S6--6QVPCrXb`abURBB4nSz{pqyjeNuHq z3BjWWg#N>1+|#6wsHk}9=_AeGnA?sjFS&P1di-q#@uRtEmY4}zxB|lue3_$r^w#y3CeZ1cX>TeTdnl}?*- z*&pc*lC6MlhR49+!h6vk4|{&bYe||3``!)->r*7({^3c9v2r!|lxr1NDg1U+E`~q{ z-x6r%C!u!S$9A&wh#x+7e)yF!OBQ4;IbJ}GpPc2<>1X2~*f#XnakPsnsM%(se=Z+K zG7h3}->|#u$iZ`*-u?_c0D(Z}JDiBuZ%C_2%1OxO_t>ip9hu+5Jj(iTCB?9A; z(-!i0i)(X!oaR1j5Hb#OR{vZC&($O(Zeyye^P#)_f%a+Wm`@>lg5gN(W!4oJy$yla z-H@=VydU$z!b5&mfkq-)nm$ycZBL^;)VQA#Rl(uRqTyGdA7Ek|Zqrs{i;Ah$w#*vg zXPo@A2|3ocz6k|0Uu@|sRArK#i{psYo#iZEf|Zn%IvD9iqKe2zbq$4TcjYrGx5T6Yn$4B?f*sBTZc8-zJI_A7}A1-Fmj|)ij<_% zl7a{$B?OcPDap|wEdnYfA)?d(=^B!XiuC9yotx7A-t&2W@qK^q`wxc)9EaPk`?}8a zQ|Glvcfq}xq`hMQJQ!cT z=SaI#pSGk3EJ1(ObE-rtaGQa2XrDCMhqkETaZ-%imF->7`K52oG+3eYVo6<=76iK{ z*eZ3)3nV3@Tq97DCsh1u_DbLL4e^h`Lk$m3`51E=o_CQGk3_o2$? zHdl__S*K7%^}WqYf3VOSXnX^G|46xY*jF)VWhd<76!d^3qtQHnEWTR#pjGglEp*^M zD&n<8@oOE=V5>x@2uKUfBVGkMy3fNFN68LZ4@H7C=rgt?YFA+1VJT2@gxXLW-_YDO zvUQK^cg;;VP4=5|<~4_IxpJ56eKDhMVQQc}4m^kwX9Jk2vm%i=J!g>}6k=&CV~J=snuA0o$*ir}~L{YV9auW~aS zy;M$N{Q9RcP9IB(;X@`0-eLACR_|M6{9&%8hKb$;DsNjxQp7UX1oN zjc;bpN3nHfUsBM=XtlFboCpTAPdXPcYYR4#U^yGY%-)BmkgY)dRd#~zQ1%PM&RBFg zf7abJekH(me&V~&*~^mLEsm{FE!x%DY<^LX%V#EhpRNwZ)ZS--7} zQovZ0mtO#l+|A4r!C29uym+`{1bdkZuY_!#wlq+Lt-R4m)d3(%+da@Y7!IBq`F2Al z;Jh7Ghz7aW>bb8(?7Pt^C=LGd8m@ZyNd)%VKsKgYdE1ZOu|j+s@=W29I|KJs&PJxJPao~lKp?yE}3Ytxr&yGEtg3)W7W zz?UwP`fvLoH&PdJFz;+D$HB}HM@V}iJ_`G|gzz!;#T?xZ^;$Ul)R>(BL&W_A4oV#MkyH?jF}P6{a64VOQMRPP%f7X}OE?3F(p z&E+%YSU)b8WD`wN;2y3LupD!}an~KIw--3neth+)hk;e0C(yn2!4ovT@%35n^y1E( zqEO*-?M`xeEreze~cY<$aXy_9G*>=%>lThdop;I?P*mN*EJE>11-xqA(^l zmNXyy9Mz#@Pao&RY6jNn9F_^#$hy@>?(+rFGR&YvQ!-e1fj;s)9z5jh1?&n|ppH`_ zKXrXZ3gg}(E#9Q2xL?%i{DL$_^VWxgpA-(j>>^}o6RpIc74M`xX71t=+gQy~;;T@5 zza>n5RgfKUWIQ_Xv$hJ+y+l56i=~CROEGi+v>u@CGW(#x>5bzT9OEj@zz>;DYxXh9 zpNtzx$FCy~mA}(N?T?BMg(m8C`$CmOt5^8_-D{O5>xUlCX%$n=dVj&`zO&P>76Hl# zYdYVBZY7|o*Zm>ZlknhP^Q!e23S(p3I%XN=ZVi>oQxh4xn?D9Ul0M7Ym@&orS?V0! z>Q=y*yx+Xnyf9n6bS1(>_R}r!Y_Dw|?F)`}1DDxm3&|fhNd48CRBD}#glsa+;Cx8%9x>lTfMSy461DQkBan8A>ip4&8;evNnwH5&m8iMp{aPX<_xhjHO(k zI0?nv!+QEL5om>{_D3=IN0L@~$md|VO(aXQ4Tc3nCET_{W!&^jUAXU9oC(z4kdmQQ zVb%&_-ZwTV)t2}{J087qJ(dt36|ea+12k?U08gvBl(zz|1 z`?CD&-L= zyi$+m-i6s!IhU_tnr@(!ph`vVzuu6jf@gotfU_^^((<3;rd34N159%h>FGX~7?^Z& zg7e;S}@g~A7V zi+fXNTM@aQH-_&Qs;UCVZHCOCAf_3Ne67;_rGWVWVfKMt7n329L*WL)}B;GEP}C zj1WVN-gNgxd(${@GuNd~E4vz1RiBw~;uJ{bR@cCLJ!{X(JGT0i=z}XZEWz+w^SUhK z`SjGQFFJ$}h&I8clr7`3ja!AA5--C-Yu3pgQx4{Z@t|nI(l)p8bks}hiNU@C9vPLe zXD`BN>JE=DegT1Ha20Uo;MJU-g)F|(r+kNY|Q~?^t1v17O2^#)efJ^`H1rUAJTnrvH8m%Y>*RC z-%y$8YRYDaxq9*kNA%`LABpp}5?FbxrrTC;NJ@oZ6E`A>s>f}?sGzqHpeuvgbClW8 zuSvmYhqkX*XQ-U!8jr9S6YT?GE*)5gBx(yo>p+`BW6 z=&Nodwlgkm*-i7$3_yVfxf4OAtMZ;}%@6=OZ(cY~@`LtTx8h)v98b`{pML1gNeNs^ zAhGIcTQ|@Zt+`nXI;gl=t37RqGU-aon_nv8J8PI(m%jM9R}nk6EsI0*FP(cxoC{%k zZq}7j)gh*?{}MYjVR=#3`=b^p?ca0(u+L4FZ$V-z^&98~7TJZ7I{yJX?SOs(aFg8F z;NDOWncb^qsB7{$$lQ9Ifw2tcT9VY;Hh(H2x?lRJv9if6WkDHiMP?LX^4e3DaQ@RF z^0*YhSGFsNoGtCa?POF|*2{AfBy+)hRX~g5(ny8)!L6RfeV?Ic9#KKuGWEcA0aGgr z07oMMC=e-RSFIQnfO8C@>aO6&+Y&{7U1fr%nZ#B7?aV zuRjIBH+S5i`C9YvaJwnk;ij2MpQ+=JrMitz9tP6lsZvEXW3}O+ep0kUhD7b_MzZ4+ zuKYZ$MKb;1a(ZQ*sAmnQHWrZNcC6koB|@E$_`gu6VKM3W}pVv#|pO>)Q`20-M(E+_b0xye}i_P#<}#iy;FbNU9@fwV7uy~@WEr^@m@ zfe`Wg)GOhM;Zq4e+;8>N-;qq^ePU}zT ze(rGL!zv0;n1YN#>gNals!D&g$6*zV)IF5bPm=s(nCwuRqK zpiRft6RtI3$##~nR21VFQol<vgm8x-<7b8_kfwuK$;8tW7F z5ooU8t4Jn`pw{F;v&NX}$&uf73OT`%p*saYfTgx z9mmc%SL6WU5(fHsd(w2mBoM)!LZ`Y7v_S!=m|cb4)X7z>cvR?`54T9_=Q@K zWoymnQgx!gjvk!!ugXE(9)0K~_;S{qN>2!p(mj60dASvC=i3$E8aq@>mY zG>g+tyZo2K9O>w2>k@Padi7*PNffCqp4qcfb!bhsyB05?WR-P;n6pn%4IR?CxIsDH~YvVj;Wr7$)@kj zf8v}^xuSkq^_fN^5Qd_n0q4;{-{ql{hEmnwek%_3qr*X=3iy4mWOZ7)ID-tGGq-%E zjfrsdI$4}|+FINa3@2KKJI_N&TTA-Avz<|Jw5fgSo@nLHX|B=714(uw%rdxuzBN~E zMED?0eygnJ{hV5RlQYA=@P~s!amiic=XfI%pv|rL0G$Zv02f-?wpw>Fq{u&g+k=6} z;5p2f>mzw&(TXxvu@bkzvnMmu*&Mp~NJtAJza+z)g@g?<9cjOEE)u{SH{SP}M7Zy* zPj|c@IP~S@o9t%QWc4NMw zKJI;2rUIy)2GK9blDmrcuaq$&eoandcl@d@Rff5c1YOw+NE~KL??1ur44`O7Tbb*b z4!}~AuKF7abf0^h{t*p2)h5bQ$o$!I313vXNxpnG>FFbBOTZsjYa(gGvi?hnm|(a3z2%csAUI;_Zfc!u)LJ z_Bk=N7)qqnC-9)7#)t@~7r}f;LEnpo){|#JNARyaz3k1MtZ;3xLzX`^dqxOhSukq7 zxwXT-Xz_ZRIc9xG?Um-!Y|89ppL_@wPC4C1B_F|V_aKq_5y>@ntoZA*#&!p$0t1*E zt?>tkE7zF&m1R&p(CWvalC523qCS0R=C+!uss&tuAZ%GabJWP_6oyZ6W{B5J8&T6& zEed9~j^Ny&o+dlt@D~~zy=wL3_%@CL7mU2NeU1t}c6kKO1$G_G+76fFgYVV9Tbld5 z&|rv8xkA^H>1qTw0+GYJKu=8z(df0>7boC%SdV7QEVCsFW4)7&p)KF25WI*XkukeP z<}D1Q30R;g08ofXTl29dkt!yqUu~e3DUa<5@O5?xfT0yW3oMV~w!DNviZ9zFgWfhb zTu$Iy_#+_tC`FRE&(x^67eM&87-ri_GCKwEyFsNN&GeK@dWo$j`NusK{_Gh>HMGX1 z{#OVx9(*3uUmh{h{r(lQp|SD|fV{tc@FQntv^J_}xWldh+Io&E({JuN) zu(H}EYmLW4H(&GCg=tRAKpJY<)U-DmeCf%G96aQQ4%a`sdfrmgho?>DT9HRPE z0bgt1W_6(|f}__HdLOlLDsHuZj+&sS#1)^G%SV!;-qsimoan&k4KWMfunRZQ2+L((5Ee*%D^hhIrUm4Y3suCo`^YavNybzvCxVP-Fo{Y z0H%00@ipdK!cml~bDi#&gSFfE4qMh?=_9#Vq`*Bic=0SOF;M(+bI)Zc8_h=aF0VXk zy&ZSli(KGnBixKo&Q;cU1&lFv=D@KE99TFPI9wxjwzUpDxld#ht zPxHOwS|BYvs8$qv)$JH{$;Rn-Pn?otHLU_rl@LdbN@i=nmyXsfrOn`8JIm-Th$7X= zY@pETl;Zp!0BcvO0CK3npH-`?O<)9KNODOQ+3N)~j2iBbR!%lDOiJVm(c+{BTugnr zk))kUu#;D3%YkH&cCar7$e1KrM$F(!s}S5QWG7UN8JQ1RAL=S^vuwCGF(1(TMwHH~ z;^dtoRI_pAKHZH`E)kE*_GWF{B`#}M-{@;|9SZ=YEm4^4>!s#F4xpK5`b)QR80x?oOVe!#-ER#i zcLmB*^cD)>4t=);nbnzQKy-AeObJ3w;G4%f5&I6-uij~+IU=%bS|QTUzTLPW!`}S; z!hLzvDYr{=ktszBJBkb`#w4CUJ#MXU2;nB8` zTO8zR;{JTRpx#Qtbu)M(&)*7^{?JRd?NbrT91` zyn1D*p|61Q=9I>%MVnr|{9>%Wbd~ zdACOy2a>c@a<U=;-e(0lo|%dxvdx*UEyuMBey)8#@Y&hY1_HqvrL(#{8V3`%pyJ$y$dR@kGTh- zpH?OOKyAzi4icx*N4}C5>8>=hqpoA_VZJhDG?O=LP9~!DdnOOvxF1YwZWl8G`s`n$ z4v>;O8O=UVZ%7386o*nxCs+!cfV6W1NrixENCN2w|7QKF`3J6CYv$LCgWF3V_xuQJ zD>oP5?ug(93PPKrRB+&zpk29zO1sUwMOLb^pBDh~+5E}5B+**wrfUz)_;oj3fM|adH^8vV}!j+y1DN z<}=lumMhetq#nihfr=*MfBe4BMYqZ3=i~%*@c{7z+;m+4W5@t^vHnNs>(+q_}6*r|^U$ zS@#@<^+g@_+Cm?goNsLn6dEAx7p`L9?RQJsOCDU#s!$?y;g{HPB_arfqI?wlv2T9u zZNz@J-h#uWJro@v1qm%|HrwJ%c?(m-UJyCx7+}NowVMN7dj8V#ntK-3yHE02Wxg>q zh{A)J;J_*%2N*|CY?fKssyoM|pdm#Cq~(d-@UGuVac}W@1lMoj9D{$zs5p+vC2}hH zBYIk(V7b&ny5yn7h|nB|-eHJq~Wo94?x zo_;I@UIHafxXhw^21(eL#Pnk&CnGS_v*yA>KhIQMNqXaa^13zrgYL~ZHuoq7N-Rrh z-JDK74SitXt)j{%133<~0&fgu@sjOyC#(drzB+5t|%P1^yM6*e2?~u>sY`k;i+QrH>zJXhZ5xMR_DO$s~ln zXsgFtYLR(OYGNZNJChUfp`~U=&>6~NHY8Q z8F>r0O&bR;7{fQXE(Wdfax))%9`YdCc4mNIJvqfW`c7aE(Tey%%^U$V9GZ2uGM)u6 za=2&Pp9Z*uBW;rF+b&Gb-Qe(RFTK4L#J49P@d4EdeQAFnhp%oO2umwB@RYM|Mzu&S z(6HIrOMS*s0qN^@Qt?F+xnz9e*3Z<&Dimc1tBiCYA<#PYR?85G?eqvnX`mAxXD6z}?3)0Im8u z&sO2HqxEMAX4{BLA8oXp1kl}H{>JRTx8K^cebo}kG$Hs~52$n#3@(^jB|8DOdhj`A zOU%}~@76Enn-7~V>g>@IT^Hc_-_AI??XCj62+^OS0LU=vZ^bQs9z4|`xP907NlEa4 zz@w0?mWx@l0L4=Sbi4Wp>bG)Dg4&@#K*KxcAj-O#Ig0yU3g5)PZg9drP^lRn-uchc zNe3)4WlQ~J9?MAE@;YiDMIPx%>Q5oV0jDfFn%$c<7x|R|l*|U!hvoN2E1D4q`r?D@ zR?<5~jDY5Si&=2(1R!}$$?@xFi$o7`pr=^uQ^2`pLV8Fk5VK(~WQ>?WWn%2ks$H zhG}LxI&zIdLuffgW6*FXk|qA&+p%s~78r&f-bWsI$pVqPA{=rzGb807qU+mf7+qAK>@{T41IR&Die* zq76-7R=2g}gWtc~Z^5Bc9lAUyNVh6q0d0waE<>kk8v#&-7>e@+pFNwwLXc4T7TglywN$b;s4PXVKDoIqmzxFXg*KkKx4Fi|ATs+ln>2y(CF#{Zz&83RZv* ze6y#X9e_v=g?N~#7G2t;m<}WLdk1wVZ-gFg(#t_*Ucs%d~qo5A^BL%PYN6!qln2v@mx5@zVvw`oc?IVY5*F@FcXV;uNn~> zdmuj2AzSAGIG!Ie97^=vu(!@5Th#H1oe-R;6MMWS*%LjJkhiTNI?1u%tjG18%sAhcOAdnoIC3;OdL|&1O|##s7LgR;Ju}@R4)=2MLx! z608HZ7YQKrWo@QAW*RGXAiW-XM}DYwSZ`HVmIj4Orsl*eq%1Ykt%`FZ_S z6idkbDUJgbi=!65$7Yb92O+331EXEo`-~W_w_VMxl zHLP*v%av7&qz=IMf6nhbA!-5$G6$GX zg<-F*Y|}uJAXbpG2>U~tPg-J8xolOE9wNpZADJ7dnqgTnq#?ABSuh(V8_ND*)=X1d zO?LXm$kxjew}K)AppgIK0+iMysSHbc5xI%S@n06{SRL7U?IR^$OF#UwbH`VJxGJX6 zfWGHT01D7Q-mMNx3*cS-jiY20+UdVO=RV$JS#BK-NhIayY+F}BR%`OW?d(~vVt0-E zmgVw+7lKxZ%lxuTRN?q(sM-~kqW`P3&W&I-f^1dRJp`$&7+* z1+GrB5wN6{s~Gp{Pw303IjSCioYwlJ_*1hqadh*Q@Ee^xiT!-w2hj!pr#ch=1=!*M z1ue}zc6b^YWcNq#D0D6}>>O5XJ5Cva8VAk2`+d{5Z?U|`&VJ@9a{4{Xr7Bk>cyHjn z<*y8Je|C>_ZXZq$8;Mi+(O4=_eg>alhOs4W8g=Mtxq@Z*h2w{cSNvOH$i(3NTI3tK zg-x#Vz5{}bSGK=q9#nwxn-ikACF4cgR(OsDJ5>-EOMm=rg*3xfvb&9Jn$28s zL5KQ|ALU*>;?N++?yvTBS%EwG8zH)BT+W)MaT&~fSNl1Zoodr|!{fIwLy}T$2(lPJcai zM|rNj`n3{47yzGoKn`q%pL!Nfkxjz}l8mQy^1w*wZ{^e?Z`!v|V9+Pqu< zxE*TYD3dw3j_mmZB)=5H(_0&04Vh@Nx{Iquv~~gyLP>ogXW^q6mXV}4-rc1{&cto* zQ=Ui)9w-R}FqjnFte!dkd47&fTXP&#k9@AS6V=lPFjA%{gomKIRdS*}vP5amEw z#E|-xzWu(JkH^?LzbAbnH1gd~xuWCPdMC&~zMtKoz9m-TaYLcTiXMjIZT$_e6$@Os z_nF%IDR#fHU?n~-*X+FaxedRaIqHulqW;td7a1@YDWo@|kfo{)p<@Q`FNK$hi9UgPbSLUF@X(Z|#C&+LZ2Yqiz6p zW!UOkjaOj7z8_36&K}>Bd7htXysQGA{Vqv$aGAh+s^63WZYQm~TISPzGpTK=fZ3lx zsM3qk7eU`HXcn`1oG%v%_`LN;?$ss$H1xemETqhGqT#}o#Pr_3g%mvN4ZuSnvoyg4 z7||)ty_~nt@y8H!QOEH%+R$+qACv2HgC4$K6h6v3D{a$Ojuu{_Kwn(9xsn5r?$rxf z!~3{nMl;S^4i`NfW&-NGu)vidxJ@1NyT=CQ)~`yWZT!^oVq4oO{2gz*3V&h{wl+UK zGa2^xK5|9H*lxF~9!UOBx?Oka@R;aHSYF^irXapg%bS)YrdIR+z;-}Y5yWJj-9?!k zXVmG3b`tkQMWI=q@X&X=GGO8BSqPw7{E0qrseK^o9CoHtuCW;OJOX2=2N*UQGFg+i zSEduzk8E5l=e{;n6bNFbo=U+SY|h;WY$GB^$pq?qLySs8^YDAvHiV_xrd-|)Op5|G zPSfX1Y-#G_r|x>)-KwUJK*q8Ra_CIN&r2-f} z9x!wCTU1r#lJ9$;$tZkdr3MW7?{}u=labGJyqSQ<%`>gGXcx> zJ1%$&ov{Y#|)!cKvKY$DX;OmHf+8-0Car|_=N#RMz_m}P~Bb$pNUuXQ> zZ-W^`mcL88Gw`9z+O(|MhNa~J*=)KWl=7o=t(VX{+YbDI#&G3_tbJ2lCT5^Y=R^#8 zsbEoMQ!Cdubt-}yl~QajPFK|aBjVWpVnEzwV#}4J8Kd(8os2$|!{^{WaI-J);b;d{ zR3|@X^!Tx?&y8F5zwRDso4W;04C|sC5$h*D$cXwH3)E?7aCww{UDuX!Wlz&!M7YX9VeA}G#?tK50GQ(n912>1o3M|_wkZ`(R3+)@X z7-E0Xv5t9D0RKVi7O(4A{(b)@m2RM0N7^Qd05S@(GFSk?Q=9wzIDE&-&zC-7I-@La+Kb}{pOs@W|@FW?(Q zRg0!R%3}O^`q|40%ZjD^@%Mpoh)bw(yVk37RM~p-S>XJ=3k<1DA1Bq^k@5I=Y6)*c ziC{1j!ECB0AX>e@cUZfAR z*~`Z+0pDGP4O^O#HKwG$SqF%Es}C_*)6jrrqN95p9shMNWq?{LPImxS2cmJhHrIo! z6GQ&#x+t6vYpUECy6XbpOiaA@k)+?H4GhPts`4`PtjK+thhmaMD(nKwzI*zxJBJz2 zOs%A8NqA>0V$a9Bm@=Cs%(mLI>r3RN-qz`VFKR@6mT|JDP#!R}h;F)CY+&;J;a^E_ zw%x)zZT8du5bX3v#JtvD;WZTyUOfTnW4U>x&C&2?je4?)?QpqOsm}*)B-1v8)jcg8 zvyb|%CV6)ffcZ4uQ#rYaGFTGWEy)TWW`Fjr%V}*o!t$$V$CeIFhxnWncn>;z=X|h2 zpKBvk^{u=Eq#4o-t(R!jq22SdvQ#u0EevfFXU-#ANQ_%m#(z3hwHNy`2jQZJ9{C;-QehTHy&PFGB{=b(nOY!D zV)UApu$4^Bu}4qH3wnK@V#-j6=NdzQwGv3~^P`6*xTGd~7@eEc2z{B*E6vi3AN#f% z)5C{(L=x2lD1@Tq6N0Pria19kd9-d7Xv;$Q=`Z0jb>OC+PolclNY=TJV8Z!JotX3; zeF`k|fr#&nPw-AaYP-WTP3cz`g4mHN&X$H_khy%Rl6wO8;-bG-v->I!#xov}HQ%Y? zB+%eaF@qy(u*kpg1F^PpXSL&kEfWeGsSCnsz|wK{Dw(nw(4+WVx!6?+qf%T2{T={ z;(_I=iL)9JhYE_Eg+0+p-9!~65muArC|ud`{Z)+ha&JV{Wvvs7n+wj*=rEZDtHUTq zvX|$KK+uys#?Q7YQ@}9uB6(yf2=Cg^?7VZ$Ly;i&iF&W1Gh8{DaVCX7u`~RdsOW|J zgqH2>IQtC_svyAtcTo=kW6A&x7n0%mf&pW&07Uy#YPi{SaC;9+{aVRpw=T^E1aPUg zyq>kxMwy=?rRukv1~Fn)!pq%Q>(s1EzLt`YbJjYS^pCTFo%0JJcc@6T=*!_P^{g+c zbvo%aF%@to+c?DT_+n?(Est0ls1$?)d^QW*0ECWwz7KWp4hOV}A}2q)%w$PSm127& z?-9?|c_{w(5jAhT$YXiKRoL@p+TfOyjHCSvd%<%Yt+R9uAi4J?Fb_wN(x){?a1hY_ z1{C3DD4!jC-D_VRfc054eG`71H0SQwSg+AB9NQH#8P7m05`D&D&2MB_ zg_10Hd2nvRvEK3-d>8gqJS072JZcJkwE{)E#5XM-p0Fj@|Bjyi#?PyO?eMk3@w=R# zfim99Qcvk;+L)d&+s*tLAPa#^Q^>Eic8BD^71|;g|Kx?G!~N;|bvC=hTgRc>=+`}Y zNg`9aFxik2-UuVft9Wj=sMm`;2*l!i!3a)l4Cl`+WT4fzRQxchy(!zCp zRj(R8rj_>~=@doC9)oaeTlnb11m-WZR1G71~lBrPO}+65cznO*xDBL)8H} z-wk0AdGfSPS12kUqk`QJW+=tK@OC`q*l;i*g_BBo|L$0R@p&juJovfDU+nX@S33Ov z_sR(S;1`qo7OYuT8gr)=nQguAGi`@~2+3rgyUpBhA>ggHCbfQl8qZ7n1?Phq<%08| zF*8UU7?+4Sd2z^WD=F*V3sI%LOUdx9d#&tioK-SR&tv5K#TJ_W7qjgv(V8ayCOao8 zM~;@2Kt5pX_^PkCm;BFh3#%Av*?kHr>t9Jok2MG3*uX0uWWFZB56YN3w~XM+ z`^*-2O+-zS+W5>(-H$!Fkq9!wg+IHgP6;H&bM+emWme;M z#(!YUqW+`(Cq={@tl()oo*J{|vrP?4>Z}f0PwubiF}_;rM2?YrBsy!9bFTR5`x#9f zQ6#=P=yBJjDIKx)JME3inxZ*t7EPmZw&tt*&Bq_j$eLL%x*2`q=5;iXOQIn?i_W<# z4-&>aJDyAQDLj&{vy=i|3OnDMK@KcY$!mW|A&XD(zRH=R#2iulEH+j`$QdNJ06It; zd~zbk0hW*5EpA~FIRtSwu=k91AUiB5&}L^+Au3Hn?tIa z-DS5Zha^0%CxmZG=YnQCC@MGiSX11#K?%q z*+}{p7zdxm0&9>i8L@9qqz$hW|0Ruok51|TDo#KW3&^Yyd6);l!_I+ui1w}SHb3|XaWY}qxFvG$ z=@qoJug$)2Mt(D$@AZ!t`yb9Stvl7S!BhT7Vm&L;t!Q%|+V(8Q$UcsWl_;RH`X?o{ z#RN1ghhpVH2}|&I;Wy>>Xih?~%XD;1*c4j)X>UPfgWg-JS$dWv zYE~nK17S?~?L_fNGP^4~1HDTRo{eh9$w}=U26{cN`gXJY?3q4A6eIL`BkZ5C;3(7g`}LR-&}L% zmnREi3t8HKV{u;~wX(P;0%qaV@}a;*%ECWJ1+ldx@RdW0Pi@z^5TsK~FK=)A{mSiz zXe1^iDacNAj224Y&BUGavsR?;pI-E>eM)3& z2^s5G^A0Vu$gA%ksufbbDJpxDa%EUxLgc?KzNyjwVFCXW{-owRu6woFI@&$S)V$XO z)}{}c*0yhk(k4phnTm=d>+ z)vS!K5*~95qpYe>nHkYt5d?yPW2qs(Yw9|dxyk%3Ed*n9Zf86k-HMx3Oau}Jk@CpI zaN++H1Eih_q?9XdzgFf}Rf(Csjwa(+&1LO1j$Lu4A2VP% zSVb4C1U_dyD|slPTU1ysO7z2c$|4hhbkeLvLjU!zz-W?c_|nx*Cvu7f{#T4yiVY>| zv9V7oD+4XR#b&9xa>a58&%a@vF2}cCyOLKN=Pg0Xu|2M<@E!oP$TZ?ui>9SfjzKfVkWzl&q+uFz|o4b)gBnIg9{$3HICcXmOQNgRkoDluS@Zq*V85Hmk6 zR2D^|0!rCx)l_+rfaV$sQ)JZTgjxK2)QUjZ@7m6+Q)BK>FHMOCfXWKp>((-`Z(I%O>Vd+=N9W7`168*o54rC>vP#hT}9LCg9m-R6AGz)DCt-oZb>e z46Tlhw7NO`_;O@O!cEKnmMiC@^V7c*>%dSwVBKkX`V8a8LNI=)PIyoqO~VBl_{;ek z1B7A7Hxl00yG%G(S@ExVEco+%kSQS5Ta0uXUonOpHmFamF-x~OfN=ME3cV}B(CbF2aoT&O`9@f`x|~Uv%g9d5QwKw3_88; zO(zIjsDB$Xy7ZoTP0@g#mC6KI>-YHGu_QOaL4pA;rfS?d%slK}6=sVAqd4ez3GJC; zMLWG*m54C31y;|!;CD`A2PPNLeRz2Xg!eslJ=0}Kt-i;s0F38P58_(G)X6KD|8S9q z0)Z)6Vqi+5j%Xn>PZ$BR`Zo`{pp!!4e|K}l_68?ZF=_YN*~6WQdeku5GbxGWjNzM{ zWWWQ}E>l>gXb&L2xJ=<%IfPS=5onN{!4%s|&3P|U6>{m6rvij6s(xo&?3N@gwiZa< z>Ag|}LTPuTM1V9FD>)ln_nh%1x%`EVjBDp}VPeo2a2Dttba`o7oo*EbICSGO0l*yC zGwHF`3Wt?FP~|7RFIEwxe)D;~u4($iT0ebQGRG4;w{{yMd`fy;n(qH&;PiNqt^2nU z9bu~xdOVYLt&bnn7_=Rhi8iF(uIfse51R@LRqc04?rFV9Hw{dh$9iX#15<|95nA6N zdoZa_u*@L3X3BPHwEc{DTA08SS9{<~RvJ!7i0kyRU{)w!zfbyXKR$OH z!kO=z7T~>8QcnY4{x!0)%Vo`GlNoX;mH(fcCH$F}-(vhX+>YIl%-hZAOOrWOVS=Sr z`BJe)eWu>`Zip&j?+ATj^on*W{3B3q$geHy$_W4p`?nE3Ux@?FtSkz&@wtI$-qdqa zQD|;Y#g#n}a4#A6Yq5}uvTX-C0~BCH>kf1kpNA)Eox5!mx!gM%r!c1t;*_BingM0Z zz(2%62cBzzOT4+=^Nu$BJqOgJ(t)aWL&_T5?{v{iq}JNux&JCK{NJB%Y5&`MX5A6U z`)aJuhLTVowUHhu1lI&+E|1C5tzLdg>aSs4`_Q*bbmYIYiLuVxw!?TbAWNR;lPSwY zNpJ%>KusXb>f1rr>ntjhqnT8}ypJj9& zCV?wT0tZHKW!f`%MZaHgp2gH?sEPyf6f)(r zC*RoS$L$Be6Zm4OcyoEhW6!{zbgRmu(3UJna%!u2MXaX4ON0FY1Oeo6h0wgR&5fzR z-dW419?PeaO+8~`B9f%|Tf|3n`E;H}4xDMd+|N^$`=AoU2}*K7Ck2yBW13Z50!TcB zm`*|vHfNVs&8rK@sH^!AfYnU{sd&pY9SryuzIR`1l+S+e8I;FE+UQ&Tm^^X|eSzZs zhaq@9E-c5oRV0Awp`s0KwefA!mZ98Wzz}4<%R&XbFkeUoo08wGG>~H-m~#2tt0%!7 zP!Td$9u`ye$1T%loUIczQ)TF(A&u-^n>N1!%%^j0*tS9BwdX`HJKN=TZ^8r5k+iNa zyc#%cbi+)785`ap89Y0WPPwRD~V$i1Q8LepBG((bVbRwXPsoLjji=_YT_ zI?>ew;i`UP49n+qxmUdnV{3H9)jO*YDhK-Y2_->!TujiGY ziE8c+jXV(jh`m$@Z;^h{6GsOx=tVc}_cpj0#mOs|dk;+@>;70_lFq#{z z*Qz%J@qHrqw+i8Eo#+pH3) z1MUW&Dm3vNysvn+`Z4(Vj0zF4OM5ZT6sgb@IR6vN)RHIyghTJ6sXJpTdz;&ji5i~% zNZUFk=8PP;z=E^LJz=p>kyY^djr2!?ss4llMUU$Od!~iWexm~!ixao5Py^#Hsu3uC zn~s^HOT){kdgf6Kgm{g`l)%IdB4GSGX83n1^FNZHnLfvn@&r+Ao56WbCTJO?VXY9Z z-wShg{}@cO*8b(qhUU5Jj!Bs!ejOE2wRtb}QV@S|uM+*L5d|Tm@6rg3_^!{4TWoNh z+Ki)$U0zg>GOr}yKb7>@O*F=@gc=^nd%$LVAjQCtrEA_p{Q@o{Rv@PJ?SFB=f6Sw5 zx2!OyA>V3_q4N+aD#BAzN=VFB`)Z)@ok^xryMaoPqPK{xD;R+80n<-C#p~CL;OH~cCD9+AxfY#sEf&6xSDJfAlp^G>hMr2^2sN= z&ZiUs#ITa02kSHOwnt}U`#;*531xus-Ry3>dO~#|@5{!LaB4gNUD6n!MBh5_5I#Os z-7r&8?Ru|&x4H16Oxvj*SQc=h^lc3#S~6q87Y^vPwk~Z?{;ovk zZ_FY#X9u{4@<)68%;ck7INHoC#xA0|H3JQ#Mki}Q*dm}wyKMrq?y<2l1`j@6cjLk>X1dkh`>1^bT+^d~siuLem_ZD1ow0Dl z{z}u+Gfv||L)D_RAXd4bE%7}aGY$3_^D4WaiddBMc_v_w8Rdui$)!373jz?5YeDCF zD&l=t!maJ)TW}8(@v1aoXpimGBMYFbUVh0CX!!tE4gU%e6>gwL4BfUkeN)yMUZ(-& zbSE6LZP1L|L^4yMIX^mwwf;XueQ6++?-%wkmShVtWi44MTgg(^mQg6Q+4n7BEFokp zg9-`R%Qle~*#_BSn6V}y`&efrk#!0)!&u&X`u*Sc^|v~flK8?RK<&v$g=Y72f-=f1yFz6CKDS8ZY-ofWj?ZvBF(fL|P&yIqxfU4wL; z^}cqeka_2tRB*s)J;Q71nPjt_bjPMDE6shF&^D=6m$>)uQ7!aE2k zA}%*)dZfiK^J-rVKP3)Z8T8h6G32H0zwfX6lh0-6ZvI7m+DtvzM}sV7CJ=t2^4RGifnAi#I3s^`u8dv}E;x8oUIntYo1whMK(uKAFZPfO_x zynb1{)V9!8(fjk$&{?wqR|O+MKT6P>l}hK04-WG!o{?ZAb-^`k!4DxxNwF*Jh5+o{ ztqK_DNV}Va{kp-IEcu^j3YX#3>dbk|IA#Uz*m~#20kwRO4hRU$4Oz}SP@NXqg6pwI_UgqkH zYPU83l1{!i<(^)`hZo!9yfrA0D;45?ts>tf{GNhUC9rrEw9DjOz|9ga@^#i?CQtRR z>vCuw5d0gI8mhXOHFlcy%wPgo5R%e`mqw)GOPV!Xb3PU1r1Wyg;qI2)ZRH`*gj(Gj zm3sT$yGu&W+@Dw6eDE`9W`mkDA}5&=W6!M1+Qc~tkr#2;D~;^CIygT^C{qTt^6}~i z48VMxogY3v=hS>;mSN%$w`T2$k*dm_EkM2UU!i5K+KI!fA>+)c=Me#&GjU(q9H1zHw*ms;jSLA zZH;VZdK1|y@Cyyy5vMsVV;?+Hy9t+K(cl18LZUDj3(d1EwRwwVjeARo#er5h6TEUz zr?ab=@#ggHeGo5J4%YMJ$EIb1FNL{^!!MtE+@yZf7?&bWVWzZ))Ft2+|4j3UvV^|( zewA)#by{)&U&$7%#JU>T53m)_rb?h+$SDl3ulGjqQO%CTgdU`z(4^7VzuX2&W9*{I ztDhJi0Fl$63GMb}AaMQp=CVR`kgCu(ZJzT7>o{mI%zwAheEtk6-vh)UvN6fZ!?yo4&X1%_`tl>oEH-^(xAguzUnQf* zVP*X=qf~q;gW+H`3;6E;RUoWQC@WRtfTwuyV41`6%^F<=^KlhBhx^91{u0omypB!;EzpHgjJlKK2^Sk-mKj+HCy)kplvx$M2-G; znlNg?ptp9#8rl#)PR%v?TN9jYW%SRWCcFl9p@pLo)n`;U0P+4bvx z;Gy*YgNOJaF&`=)aCFmyXt`J>^&EGLfQItX^J*dculFBF@7dsgu+GB=skDF38d45j z;i?=dnIl9D7=t>Z&rQwWWBlipIwP#%Qa;)^`kUY9+{;#{B}o(g8}z|@T)4Ey)FmZy zisE)homXOP+he;~t3olwviQr22DK$%YrWirhT26;9|?i%{9M?QwP3c`xp&KC>KuU} z)ZAvMvdoFd2m+B`!#0m;8dwS|p(K#oRM0b~#!V3B9G{+S@ry{z z)IUhl#-!*D&XL!w6EgA%O0 zxTZB9RBJ(BV0%aPc>&E@okKKrvi_&ZUhxUwcbLq!J=5jE;(M6<2=Vh z7t$5(_35kL6+=UHyFu>5uct0^48fa@;U)mw$G^PLG9;l_~w$E#(xc7-=xIQI^;)wS7D2`IVC~U*h$l4(nB#TBHDx} zX@x(%@9X%gkfktY%b=IjU`83=aCYQQkYeE6$`FCF*0#8M12Uat^l8rD=?Z*@dfB%b z+A};kaahyBHnHc}a`C2fQgO`j-d02EH>cnN_Zz-z{$f`Q=GVh-2`TbhN;bK>R1Sr7 zjM^7EZ|zLmyi9$t+nEc$Wycv!x4w^%oRTKEbmT|KDx8#*l<|xT((;w`l_2wz6%b#} zS`<+4;8aT3*V1Xanjb*l>MM)Bs4iTxQAv=WZ-jREsCDsh{BK@@PYWC2XLdFu6}5ja z_!Z|S&;eVTq`cKZHzR@BkkbaLPqoc-TzYEi=;(fK>dCKiji^e#g!yAX9tNe#tO@cZ zbA?2PVI=Ymhf5{S!w7<6Ec#wlXLP#UGah(bq;E=WCx-9fCgRzqamja^+jRoFDKpJ{ zV8*etv4XF3mE>aoU_tQj;dQYXIlnAfIYy+XyMRrD#8S82d_`oFf3N}bBuz8}Ec zHYt8h9Q_2gYK;w32g9TXXsrM_l`t zKC{vX#8NBsRNk=zDifTTW^e8z$L}cBA21|8GXbLwg5_{TeUmH%v({nj5o)}H{ju$Y zI;M&FL1TnClMWwJM-yD?t<>Gh{VN6^R1E(wSg(|J@j=5Fvtq%&vU|wXhG+Q(U&+;~ zsu?}w(7JC|`NAT&Sd#kQP#%9ifw`R|7d4m1y_(b~eVgypGyX=_xP5)wgQBP&kKaE= zRuWqbZHF|DWwGbnwYlGW5--;@#$#0 zG;^ZEI=RhuR}39INfH&KnR60;WoeHMDYD>WR{3JMrZs^y9 zAWwlGqzXf#(Z?1Qnh(_-Ixj{$Ll!GY6c9xCQLaUG(&r>9V}I&%Oh?_de-iL$y}ufl zfLG|bpfYl`xv&bkcM313GcFYT^1iMZ&iL=IGXeWpo@QWsVRCK*%X?Sb{_dvLX55=K z)!@zSSIbV7wF!L&Ct(IcXwRb_|7E!G{M?)|Uc(aL$;G2jj4tL|FA42`Q(z1s-{k}M z#Y};COV-;0fjKuqK+FCqakEqp&N1C`5jFf&Pdu0L?7gg8&3F+O7(B7chv(tfh zqRc~8`9*FAa$XV0EXGWiTpJvNxn*sNQuZ>>ZP1r)kxt;2DrN#BI#cRrh?#8E;ncFN ztIe;vRxg9ss+b}_=m*~AfAU(hu;Z2K6JHrCj=%Bu$JEdJ%&V@nc@J)15w!xjz3pN! zET-7Gg1V)QF(!`(APT0?4!JLz4vIcc4_IJQ4Jal}|RU#PrEjjQad^zeHE8zzIPDS+g1sYMLI^zOP2uCA5 z(xpsP2#~9UyJO;_7hgsG7gGVp&7VHA->KsSGl!HAZEe3Q znzf@7mKz~7S+#3WT7)Cru*8IEs2yXySGIyKAr#&5nQg)q9H_FeBQWpLnCRf7jX=P#%@TE1yr9Q3}n8l*8}Y^gzD4O^rPy7p-R~!}&fR-MrlPYmYT&3g5r!FLBrq;&InhCtN@MsDNHtbOIkmeGVZLJ5vDjF9A62&(tYO}OIeG@hRzXWnDhvz75sBFKd`MEy8MR{ zr`?p_TdCeDzV=%u4SvnJDx0D~7*WITo@bxnPyU-Fj@05mU)KA#yga1r_|K{9`_z^9 z%10zy6=YA#4V^~IT8dnpPjoj^-dXpDWYjhCiQrYZg9R{w37fE5)z5!}nX_G10!Ypl zanFpLBJAU;$IMYjAF<0y4s>mtux(UuN}3#Bp+(J@1E-J;AQ)p)8;7X8~?^j;o&DSzEia&vZob8Zf|{?w|a`a zKzIsv=8%qLYyE=O%sR`{#Up8DBVUrOyfV^Gn$w@f>dSyK%&xMT4B!XZR$G}I4wB!J zh+7`ndkF>0&xYSVC*JGWvn!v!*m%vR_V5o_a_^A&X5;jMCyS3=M>Jvw>TBdRP>N^X zF@D&W_9wjPYv_fRo1cgAVZ|^9)ym6oxU#z%9;p;a`YVXYAm}ocOVeNE@>wM1c30Th z+jH;b(v`hy5#r3^MW1tp=ybJevuBp?J*+`d?BT`X^^j(PVcEp&3(woHZSw!hMR@cx z1w;;S!a(0TZD(qE{Rjqf*!`Lj6IL4M8SeAqG(NMBjw-$$zMKk7_Z-eeQ5+4Xig0F9nUXJgL%Ei^mby*9 z4c^yEwky|J;j8G}M<|E_OVJx;f5we)bQH|F+=!*O&7-WdSuPt38S@&_NqM593*Kj) z?=SzO(W)OBuV>LFp~aZl*VO`6JC^qUR|}BAt+`Ud(!rX9_PzuBP6ni{6n;(f+8o^B zJAa5K>Ki<)?8(%iUWZ*m`8Z*3hc)~SYijkHVsF$9&KX)V0!6=;)L-h%N{}Q+ZQB-N z9Oj?!kkXoFCtnE(abIwaEFKS+c zDvGwH+ma~6o5wp96^3dBUb7r+DOzkh+}D??9(Gf0ed*>lC{*ZmEq+uUb^rCiSV_WAB>Q5n+s6tE@?A zLJs)o$ey8tf9V8S{k}ps%X-8WRvt!Z`+4VM#spWxg6*#Dp08abaAWwcM+llZrN=HQ zneZ<-%R4W`b+6-^IJ%9YW$zk{S*r4+=#$WO`N~=od&Yndy(o2eMHUGVi;X#^T|B=` z>&P*}H8}k_1sbC*j<%Auc_I63-b{JVu{sBK6e&CSohw3or?{nq#lBb-Tmno)#xU+N zVZA3(vm!OeyrN$eiVJoycR&npH=z&QGu5Won2bEYaElQO2lu3vbK(cobu#<@Y+>sU z?I|iT8AEv3!lQ;q5;A>`u&lD`JWhWbqN(=G{g!t!C>m!5Fay)rl{4Anai494ZHV)B zP7WM3^0M7JnfHAkAPQLSX`pp=B?rV$S7myi#hk*Z`Ld~TY_$n@Z#u1y*zoQ=|4{R1 zN7M=Q%_RY31is3bLv5(Z^qej0?c0{f%Ue5iEDoVfGrvWfkGTiQtJU#f&%FCo0sI^!x#q1@oagmk#qK|JZqq;F$KeVf|6Gm?ESz zHicJ9!`)CX*aHs4Zi*P!4zEU%t+iK;!iYE|L?qm{o`x;#SI5XynMeFQ(`uRDhl;pFey^#Nb4M2A!vg3c92=;H$NP=pzC850-+g#GfG9mXyed8w6wYe=BDHzpx zzuEjSI7pn!TSM+kg}t{m2slLKo_>s7yJSV@CS&1OMu_@o+586PYLhH8Y7x!LkFgfp z&wl6weJaTG<&|0g6mQ6iwY#@$2wIn|>FMxX=`fE!=%hDqx1*cx9gmMq>-gVNALz2N zEz;qW>jx64F~X8MbQGe*)~C*z2;oUkSPvt4JDeja;4a~pKnb0f&D-zr`&fO=P$8NS zMZ4|*O_O|hMBpKebcS?9{`Zz0snV(C+psu3j8{$4SpyUF^{;=V1fS83l$sLS%2iV7 z(b^e*{;#YFFZhr4wm<3zh~s22(~h`y%CH%J_ZS#}lufu_7L9R!{SdWf;g(59p`GTN zJTb|bhB;B-=dNGSgK?}C1WJdFo1o=o7+={P7k-FI&1pgKyDLrm)s5O)ymo(j+~GuX zVp~&dBC`%8=b3HcI2X+e^9_=*usQXJKwp8XF@>XY+oU!Z>xGI(k#6KrGcf1zw5QSs zRmP;mz8BaqGe+#N*&vmg?)SqO*vsxI_?(ZI?Muamt$x*95G}n7;>Z&MvhlFo=uIYZ zsLnw^s!BAmEge3Sx}ZgUO8NsP9Lh`H7G4Av1I`t4DT4BmqhFT4VR5?A4~3w!&JiL; z8?EN}kOT1&X(T~3;!4`59eH1l>gyx&(C{ekv0{in%7C>k`@OF7+NLGxctIP^)S@qA z7DaW8BawfQoJhR**{%9(Iprm?UB&BQPP_fZmDCQssL|m@4%f75uTYcAu3jSG)T5?g z!}fAO%4yJ`UmPZ<5wv^3_rRIxjhbM{QZ>?_ywf{*0)!-9>EP=>v2b0paxW*Wt~;;bl_Wc;UgekQ2^Jws$sbyDFM{ z0uH@N1Gx4_e7{A~AdQKxXHojcLle4xAmexIe(FV(4?y7Z@^RVkGCxqgS+gU@-2el? z&X{T6eCgk_3c`X!$YiAEk2VM6ri{so$B^`Ij5$qpwADXj$?!FQJ6~dw(KO7iag{SK z#%s$Dk(;p23j{VQX+YO(n!f{ePRc$iG$w)E+5Xt9kf=TV;dd+?KJKYmGOrh0N!KGy z4K*FxJm7miqfS_?v4%aIH#M=g_1LC>x8T#gaN2aVdU0L>^!^*9DB?}?o}_KhzZhjB zb!>BL5W9C(B?7lic+htM;a7c&;N~1aZj_}V&%5=A(R8W6R`}DaViup!k+FL+tFgR% zCB^}5pt`OqmJEs=UWX>BP7ht1FKu@@>Y6?KRY7{hyNRq0tW3v;u>y>)h7kH47P-&d z+afaRQhWodTNt<{QM4UB|X`~~i zVad5uqw0u;TMzURDU0w}A|2rAnSc zyRI^_{+^enVV22_@H=a7#IcIR%)|~>t5U{0(lfttHm!BJz38{pXi?)%CIyr0Ar}YY}w25t%e+Gb+nX!d>oy2o(V}2f3l06~&r7jR07fZz4-5XA^$pcvL$epJf>&b>F0 zC&ncTfX3mQX%saGZZ0|s&1+dS8d*H9#eDuqaL$L-@BD~h?@95B&QZ;0ci?U5!56aj z5l&cYySRyg)fXt|$5ng?IS*>{+(;wn0@)dn(sPiK{poW@$bc%R$Ke6t=YRD!|1$VI1>QX+kq`l zSKHhSSJ?MBY!28!Cas)b9mH5Ctk??E>7Ud(6}RevS^`_Ja1pLN9@N^8fzq{mTuq01Gc0F$#ovGW()W%rsWhz`ZC?cM+7bV+dr8kmiZsu zrsz3A%OPQNmsi$fz_#y0c8#c+FsP*;up)^!d+^T_4%o2Phj&wM!au(P*>YW;-j<~U za@k`}dT901xdS_V#pgb82Ua&`%vEH^>W_VcuHwJ;YCTC%sS^VRPdp@5+_Xi(->W3$ z<*4B|_-#i^W_#?@1@&LeU=q%fw7jP9c`=bcd@|Tt05NXgGtnSC1#!`qe8E6=;4}=T z6S^vmTq%Q%Dp(?L@r2zo?Xt{6pbyYscon*H zFynjJQIV#`!_q-|Z4#Nx>W*{5#>cTiU*RMb`9}{G$rmTy$eEq5*RM*oeWD$#9`G-P z7Fa$7fU$Ot-c$d6U^~hBv2wg<@ln-$z$^nm&U_fOBaII2YZT6 z_0CJBf&DtvPTiXP7&5Sg!H(R;>gcZ!ebEza1^nEQYs}`UTDNF{grBnwQYA_tx%w2C zb{|5=6PbdwDXrC~C~x*8$p_S0mjyns<-`Wm*p)1|9C0|Srn0Vz_Z()!_^~cA6Y>15 zI@h>nwAvzHx2Ry3Oav>&;VwUNw~NG0 z%tlI|KzEcaj+dJ`#u-N2M@jp`Aa^S2JrY}Wd>khr@?RBhgAL0j_H0<-qk8IMw@dk) zRPKEE^8Ws_0w~`Dk}aI*Cc?zd9MR76!`xXLIq&dRG!Q~*OKD6eRrGlm)Q?rOf6Sv# zr|O*>lck>=n{YD)h|ui?K!WS=n+)hO{pa;so(kw!pieT`=SOJ^VP%CC6pI@{p@BHX zX>-(k6kWA&?Hbgyn;t%650~os|M-w6{WpHm(2f@|iTis8)Pi9eiJ*D67$H$ui&o-B*7nEq^$l+kaYFrJF?L>ZybEK8xH%_|w?Z9kIYa_tW@QaWjK zk;p`Jo5*l!&?G!HJXE-@-7h)tEJhSD8_0l!v?rsB+uKS|6UVNvG(Sa|vZcf3?9^Gz zEFPmy6?RYzY&^$H-&?^aBEt>tcFbf=N(%Dv70u3aVU;gP&{W7)CGggF7Pl7ymX954 zT7J(NYyK=>yfN34*_SO4Wi=(>$Q^h_6N_2+tImpClf#IAcC?<1A0}uEooAw*4jd5J z+kKDU)!Gp+BXp9dPb(=mUh6)l#xd{lG@>jtqdN0tA21)gjO7}vTfjFMg9k0^IkC|2 z9!V{g0Ps+U5pL=eX4a_pmNk)Vfm$lC>wf!j_x)D9Y0D_F!KrBMD4MC$0rtsrH{3oc zU3tfvJPxM81JUD+q3Bxpi0cCHXp+HNm?}TbY*^!CEkP^|G~G`?P54)U7&g<{zAfkw z_c?25XyMC4{p${f=rCeI0gMM5s%SG7tKw$qq zH{sE`6e$Vsw;tJZFxC{@Wg776OXAxNw!boq9RL=qXoSiA+scN(8r>)^WMxm}{L2|S zO@#!5)BV+@9udEMcbVA3FP*4}8%bnJWDb<{C=U|IJ!X!%t=eQ2nIi8Fl63Gyb&V*L zqP*cLS&%$~Q)GM9pm{5Y#Erajuio}0c%)m>U28~)9R9ASim`gAQYSX|gV;R?8n3~M zi0>ID3zoe1XDz-J>TvuPNaW-B8>RiY`;(}NMkTcm5m?WOLz!uS@y>nAUdKw;ZAji0 zSPy-%aBQ0D$E|rNEFza15xY5Jfg`78y~4pND0I$#gUa}$4c#8cdt|xOTyCYXl0+HY zLL3W>WBLz(tmqQ2H*0yTyQ^CQ0K`r*4it$ad*QI#bWL~Z4Dw3G+MEYFBq@2%vL33L z0g#DwaPAQXNLm&^?%WVq(uN@$(Qho^ZMi2<(U=)$S?2CV`3P|{PkJY&e?Ik)p;#a2;9FdE5GflFVm4EBQtKwNwWPFU& z*_K?DB$L@AXO+EY!(owWcT2~oQau~ls;_Yb3{wBD5dILYD=r*;=e(jWL4R(;Gl@!k z2v~^6Kg{oEYyajNU3&WYMgiC?ziL6d_I$R5n{Y;*O#)H%9@XJ~(z}DcVi@GGpSFc% zJbPTzQp;w?oFIbfqwFA;&pFil3WHyEEaJyM&P*y`+b)6)(k82b*!;ELE?`ud0Zh_9 zmw3&t2dz7T^3o^+FIeS5&h7O6-9iFO!Ag+2vD?@hgsD-^|2FhiNOej=2Of@(trHkw zrC%3VYUG+sF#1$ylIyBD_PL@{n{cD+np50l-9fYI9~T{j%rcJOI7Z8HG03{_f89aE zA*`fnJ>YY(d6JxtY`)D6wOM~&H<+2A7)qaGE2l9qf4lZ`KQW(7C(IKSKQsaXOGZk#%^Ob8 zz$5AP^E4hQ;cG$;W>Fja9&^Mh>bMFMs1~Li&uQO^By3CG7I)lA*Uq+h&mL?vysb0- z@?@L}Q=K%Wwt~Ro`6iY>SCC}r;6V-*9YfYR+2Eg7`4y;blyPp8&$;0-2e7AM?%F zVz<3+&Z3CTc3AKfy4guq>pk;mr=30fL}sT`*UR}ho}auOUk^97kV8J{#PQB)Db(3B z<-|zWv>NDLbrdMavePbNY*;mqT1mW2y@rt#Yn$hka6KzDJR?|SR_tt86{^^Ob4k;g zH82v%oiS;fAU2Cg%B8mdZb<=T0{hsZ;@r`Nl8;npEU6F)d>VgbIeOaFGh4#a@=?GjHQ4Uen*mbNg3j;2NA z3^&=(VaJGLH^-eXE&o|$Fq6qV`7A&{a^&Qy0Jok z@JSUeE*1lGIwUECWU{(bY6^HGL9MRgC~565igLe{AE+&j3fqY{sj)B3aP=D`m4}A= z4A@o0^StI9`uO(Lz)HukePLO(7~)MyOWwZVvZx$yi#mFX5LwB?De;SbdBp(5dyXs!zYt3!n?khM!`&Mj5HzXbq37 zLHxcq)yZJR8WT@&u5f;ByCtQ4uQ>y14T`gU9Zzp6weV2T zoraa7kzxz>M@#&}0sV0rk?mWzAt`@0UFF6Dwtn9Z-`r{j8T=Du9w_y7*p8Yr5qLSpm!wg0;CGf4|nwSy9uHDe+NvgYfHv5e@ZSzh^5Z={1C^3QR zLrYf*vmYCv?xjl4{MF%|o5XZ@p2K`@(`>UVc1SJpYWXgZi^=TH31qdv3=i#LkKjVK zo*y#|PrBS?8;1aEWn1g5h;0OD_n4Jr`n}%%wmO9f9!ZSE2eDH2)DP^bz4h3A zaG?!QA_LU{(x&i%#skZ-+|>=(xXnPGRdkTp&A7Yhwo<%IL20mI^ZeaDbLqj}G4NS)nl+-~ceXIYcmgc($K z7#tpm%aa2oK!#^=Yfk_;LYkXbIac30H23d5%vi&x;Abk5`Z^zjD?GVltIucPuQLLj zg<2R*g&=x zrP7Vh<5w-U4FeoQjwWoH<-s??c3d>0_`$ZCT|Xnq*R{$AQq?OsQyd?GDO|xB^O$^z zaHi4cC!a$k#UGQvU7>tL=WEvMO$IOI|KN}1o2Y?Oc@0Q1zg0J0EwstE0ovc5|1gRk z6Ioor&n*JIj&j2YH?BF|$F7yGa{y14LQO{HVl$MvxCjYR(^?ZHT}E6!i;BbD!o9-# z$wk&Ws#=7Z$#JO0a$A<<;XWjNXfvApq}FCCWGR4f&V?V(y+6MV8Ys@s|7dy9m)gC0 zXEPLXeOo5szSXl$68FkP;%mmxP#|oP+$>?{frj%miqM>Vtq+#4$p{!d+Yt3-_Knzc z{8eTKx+FaMjL|BhMeU4LH z)&{_jcS|Mcb=VFr*&xhx=kJ3Du&i*PjGeNsy z#801y4N;A*9=y(F5>m$7IGM5V>^%|Yo-TtDOqSfxBy^ynz0yo~j@;uRTOlqFhec1^ zMY!Mw!IXu|Bp3mXeLc&}h_U69Nw!_hfQl+~1U+h){aRp=$Rg9WHyu6f+MsB0?@+L3 z?^&UlP6EC3p*5>KuXos~Zm%qm6&Qr{DKS%7YmpesYIcE)P0QPK760|&VFvrN#J!))9322 zLIfWAH~Eu_DyLpGF^(A>+23%h&BxJRLm&Ir;%`-S$~vbmkN68O)`N0d3a4~%{Aje1 z%qMZoC0|{hVYK}CJzRE$L3?7$*Fynsc2Tnxk5~H%Hyfn{Nt_mI%W=5O331zstBmtg zkf-Jr7==rcN!i2J*oinN_of8if=~MX*_Hkw0@J<`w#w8bUsn#%bUsn5W@u3Zqsfz- zD@Fqx86Hy!X`~)|-Vx80>%a{J-+RzO$E?pIoE&;6_z3Nw+K%nM`N}A?k(&lni>D9c zd{Ca4?V=#Zu4!+>re>wOeGWBEKW#zMIs9yp157S-&WSAqjXWJV7%u7Ue#D2qwKH`B zP+DDM!;E`OVxi7_$lgW0N3B79TCO5jSVOsjA+$gYf*_+)n*an80k7Uv!?}k4OF~#*4uaFK za~>oiI{F(r=8%XJSOvSb#E6#pqwscbefXWCVMITZe&^ywA{%`6cK`p?0=NeTU=ngM z&V~}&hml%51QAU>qS#W8rl4kG_`xO72j{N{OjCaeyaOk6&;VvXG&DNDYswt8-?32O9#zE>CC#WH1e<@Fv%Kax{iU4B>g<% ze5)l-<3yH?lFjsdo(|`oy^-jZPHZ8X%Op_vRy}Q+(|Ej7FGX*_eLu}?YiG>TE+YA} zO`6Z?Vq~Oc#r%?!b{VBzBOhpQj$#go#PP`ljj~W9dKpAC=-Y^;{wj75Fj38xUuq9Y z@2IV+Z#}Ypw}ziPHL~5}MvQu0Zyf%w|DT2qdE6TUQu}q+ra14&1o07k?iSXh#_xJo zP8&P){>uPi?h_`IAcpMjjU2#GFJFKN06;B+*$thc>`FDSxmx`2JA0)&(3F@6L{gzo zT;+uvbB`~E+2!%BO1#@z2c4+D#ZUK>P$A?RBHcNukG08goxL*}r(R*eby?!ek<6F1 z4%l}-&@wOITwP{frz>l`pi1ldz}A=e4YuNm62nACpkrne0x=0ijMc5fJDW}swhn;U zUZlVO^mV?^xO70;6EjQUz>O2m&eBNLR^4>Fy`Nen2@7kL+lxN_2%V@qf9O9z^+tc@ zZglN#;xla>&DokJj!@;ADW!Xpc5kjaT)Ag!bLgaX(kL{VE(a1be)(oi-$TCXORo)o zhLQqExAg~`s{QmH!^dRq!(D}y;VY-jSU`qILSEUkJ|MSQHys_v!z<6tk zHP7$AOo?Z4uLH&7n&A)jw<8XiRn=gO0lzN4m7az z=Ia0c%pA2jE@74bvAg^(aT~MyNhIb)^izY;Hxz?F7y!WYyVs?K853iHu5L^nY(unY zjcGID`rU#bYESd#?-EyAWC}}PU{k@VOEZ!d7QM+kO|do#kW`IAuy_1n`SX!$!hOVu zFdPi422Kqje-!;O3b2+yM4-NJ-Hu^QMcS}z1qTx^%PLzq#0H`zuoK2lzDK%&pezXD z9^j%TPxP2?HfcfWHfvFvb_tojM{vdgfyWF(i(`uQz1A6N3N5ElzuoFZL$+Ph+Osw9 zI%^&pb$AKBMWmL5amLSU0xY}kfIXLU?XK}G%KqFZw+^S0_uiq(rEXn&7uF8jy9E2B zyIOdCj=`k9grOps)Sc%}f6TPk1-W9OT>wyob?q54pgc=tym+IcM{Fh|qh#a{@z8Qv z!0v@|eG;ckeHIpJANtUZso4tshqIJEu$Kosz7xl@z50GL_2VszwJu+42|s?@y{{Q0 zZr)$^1%I}2o{rkzPUFPAo)wo+po(llK-%`#1aWWfY*%rJto&N?Twnkrpc-TZc%WT$ z;XqZ&FlYO(Z8lIENk?RZjd+0xnWU~#Km7n7qJAMsAM`9UQb|RR7Q@f+abF?Jk<#u# z_x(gBm_UNT-Z$zXAgUi&>xflQXKR`yX%JgN&Q2Orjf5Y_s!93SmT;@#znV7k6c10B z+uW~@mu32)TESisrjz5?Q0_4n{QH@nSG;kdzXF2+NxiA~Aq@WX`u6J4w(xFxT=-}z zCI5+6Y_Yr=*!Avy*v=@rkyrJ{1_QFNu_`|;x1)TVtN=20{3FMn(ImjN2p zCY4Ly&-_(UG*r34&`E=y*vx9LZH8I^EyY+ep|rqd?LBPQW+KN(L;E8*$SF9}@4rZ_ z;u(Reh*nN5c&U<&c3!?HD&eq0)iV3*?>7f?oG5Zh_%hKbjdFq{3Aj-{!3cXVX$zZQd=jcAwRUj2V{=O#r z7XRr4Am#ke|7RHjl>Qq4dX5Gl!jli0Wyr0Zf25(dSj-$+zMBsOi0pTwMwtW~U*92o72f&TfxyCY4l;C*qazs_^_CfLIlv; zuP0lXG16cTU(~gVN?V7{C!-MhnT;GjD2WT93`W){+oAi;GGx(ZKi64wB~zv<@VmVC zwH$+vn|*aON1UJb2U`ZQ?Y=_~c(DM#e+k(Fs(*7xe#3FMhy6^S`g0zSg0a=8F+#=n zdlt9-;R&wu)v}*%Zz-r<{ymCI#(OcH5y-|pkSmDShdFaNqIK25hI{*3yiqdc-Y9AB zm&^zdIvrqI{-KiPHzq|1mNL5&1lsuIDg+8>)YZp~oNMv;$m5d91S71Lb zIgs@*ntl(N^;Fwp#Q(_kF@yk83sQ2&ZObZk(2K2cQC^Zy7h%UZwP6m0rtYpW8dIKk z_G-d?i`~pgg6cDA(>A0*oEs{kBE{}{B{BtPh*HpkNrDqN{Ga>p>rP>AmjH_KhB47m)x;E z7n=3PLc@S{sU0anmNHxg-0khsVz5+|nSt;dK#A|&+!7DbTkP`8!AXHU_ zMp!e`-fict_J48DJ*Ap5ctFuTy>CwYW4BBK)1J{vvKnVpbAs#rY+4QkjH*cHA7pBZ zE!-0DJwhhp^l&aDEbf*?ZgmB&8|OuU3kN|Zm}Q)_FW7z4{W&QguU+PFCC`M{+u)S5rT!Y2 z9W=0|*b;ut<9GiSnV|3KjLEP&WFW(RWWhUSip#)N;I2igvvuzrtvfxczh3K@ zFe=_EBQnNQJU7bQh%$ozJ@<4}$o6UMUAm^PUxyc0-GMe|9coJ&1^i-v&*cY7W_G7a z^Ol!Ttw+aYf<7HrWFVu@jO;ih&~>4!d)2~dy1GIDtq?u$?9`1A)1uaA{3;YKUwOPq zc_ezBk_hG_Ao4H?2^bE8(4R=9^X_QqKZLO}CBHJ~A4Q%1IPV;7o$|0a&m1M2bM z_X-R_-Jk^X1pD7&0?P7hx8m56c?wy4+_sdj>^FyCriIb$y`3Je;jrRbO&yD03V4lk ze;VHRHF0StTVC8vZN6aIca0&IYvF_%Rt~)by+kJ9Ri=@Qnor>;a_K@K4<`yVz8?sg z$hirwM-UDcNA}5~&<^YT%goE{q0GT)3+pLrTP3lv2LOjMkPK>_@>GX?`)jHd#!6@8 zEPQGMSxotn-?zIS(1O2VO1GUk48aT_{?lVhUjV&6N_yC@8U7EQ{5w~wG(ZQ?=9$vk zo+%)ntBteZ_(6>`>#{^&jbS1$#8$LN)jl?wpYd_&c|%TABW;r{io zgMq;Do@Ccb1wVL=Fp*v>&sUFt)=`c-)%ZQdfO3q1%Edn_dXSBK{~t;a?*(BYG-rk= zVa;sM;@z4Uch9NwygfvXGvoJh4+(TkhWK-AXM}qFbWHT7Vvu+;Kx^QcPCmSvm0HuTzJIHGzf`GtKhiI~tmx`3EExFtb`!JpN z=@%11Ezn)UHZ<8R;X|{2=VyhwHM~q**a!S3B}u#K+=HUtS~K6~x~|QZ+dQ6c6{W$^ z@`}Oox$hYb3HU>@@17`HZed3JO)tW)XO06_hVn6_Nu4b1Amn=(bA04p6&Q76r#*4E z^c-u1Y{{d%ldq-@5@QUmR{|dHJ8P(-h>VEiro+$?En!9INU8#wJ7~(M#$KH2xqVd&r|VrdGiqTN6iO1^S?! zwWt>Quof@!tPe+yxKRTsU>eiHo=pDa;@-< z>i50hBh2o1G1hV7GPX^PQS6Yvgk2c;km*<%@dE2L6s^AdYklD$U8mXQN6x-08*r%xS`d5(*CTkLzbrX3sv z;qi9Fo+#25ZdZ?B4o?W<@n!>(CBFOymIz(0m+U+2d-hsj(Vt2)Q~~BzznI;aVa}?7 zc;h_^D-dl;#;w<95(WV#bi_vNJ(2!Mf$}&7Ti-=J@ro}C{*#YQu)8tjlY&yznRn#+ z{93Zq5^PK_%7ucp*D#F1$U7iNiwia4?&<#01j<|S6B7z>;% zWF{pvb#gdFuLN!EF!tZ?(~Jo7_GBq41Uxh3ZrpX0fwKlI8nWiIcm&-OU{Dy|digAK0VdxF0 zV2FWk&R%|#jK|d@Bb`rw?uyd5$$}2N%MQ)#FU73azJ<2-3{QN?gTGWk6z};aKmN-o zitRn;Z*;d=wtmCF9H2Au3CA}xpH5z4p?b}+5VVA+6Sl8yBzsY(mxR%y6_ntvbZDIdt zD2iA>@F*hfh#N3RdX=t%VgdvO1?fnasvsQ#Vgn244n;u9L5lR6(3_$dS`?*MC4kgG zfCLETu6W-6mpgavr+a7Ke9+90*=z5$p7MKsPua0u4zadHTb4#298L!RQrRC~B&~*+ zy`@E$_G|g{_?TE=U4O8WO~HB+dh2cKZ`p)$&Tt&Zo#HFIR+-n?<}|>-Y0<}^M@rYC zOt6}-dLOWB#Al%&kh-Bgl{JQiDiXAT8B|OHAJYw{cbu!9_%+Z4CMm*R9-r4^@AF<( zl{&bjhfr568}rg-WMdgj40sguA74$*vavZq?fnEDm+afZG6kXDsZAAQ<)xcXW_ z>qD7o7KO+*3dh(`vzi2p1V^mMWu;c&GPC|xW8r(Pxbnzx-}$3&UUvCx{$u*iTd`E( z?gfvUQh(ce!3W;Ooz>WVDGQ&?lI;vFve_*en^q44bayTr&(@twC8Y~R9EzxT*p|qW z&f4v?!4T#Qee3F@6me)+_z!BkiW-Sct^cpC;NrsGx%#e>VBw~s=HTtmwhS+(TegOW zGhYuUGcB)tCf#C3)opFMLNYzI)G*BNoLjnL(UQ?h3Q6onIl)i`OF#T0P-@m!*#Y2U zd7ipgLg6GMmT|<`k$R2|@nwTvd6|r%K5(K%wFelQMQN4R$$u=g_!urP@<^A}v($-o zhw;-p&3`@V`&Gm~zm#nB=J9~q@JV&ZLcs}i?6L`C~uCC8J_L3;YUo3Xqg?c3D3Ffa8 zr<$L9E^ft~XqyNydfz4F;UKkbxJ(0bG!u$x?DS`59Yd^^Yo1nA=5Pn{)&m48Q-UsN}Kgovz`Qj3GYkI!YYln&->Po4+^~RoumFK1rb`G$N zXi>bS?x)&)13c$BQhe=%3aypFN{33f>eO#@-Ujv#gvyzxz{qbFF!EbAuu=OiXKB>G zep^cjttY8}W0ABfL*Ez`qeS`2-LdaKiXBdlnK~$K{VMUq0Xi&5xc8djyHgcJE>Xa= zSWTZ^49WSHLON3o%H1e@i58p1(b~4>LvdpQoD2H|IRpDY?m}vL0{W~w=T|`LfnD)=; zpDY8qQd;dp9|vc6*`-0n^Jr^}@-&kes0>HF%hx_Px-mH0hL+WMk{X)dR}3~ZE{5q~ zk}IOzy2E%0 zX{)M4YSu%~`Z?h2rdIbF4&Bkb%P6A?<@4BpMv&7s^Xu1C!ghm8E$S2PoBBJ-95OeX zDGwe#KV-<1nXFsDn*`CEejn|sY3?ueITC`PuzETCKHA-JC|c3BNt7WwAw}g<(>o=e ziV-^ndm7MaE1T-?gTI8HtCC~3jqr&{hMMl!nDquq)fe5~m?^RhZY$y5PW_kCAXELx zw(ej73BY~PB9s3U)~Fp+|K?6^-H@++r##9ars)oxrN3W&$Ic{za5e8+Ld*d}1-kkI zm`qjMWyVHfAH({w;j^u?%aY4SmG8I}If;M@^AXP|yv{y>Bg;W{=L+?_xlLnc4Kg$i9*Wb3gQ)?Eb3qf= z3SByQn(y0*%Cc2QpA8z9N;nS=+V9f2-;QP$6|oOJH>@I?_w{Bh+ORpQ?}mQ`BR>2@ zm7m#hDF@HS$2r*|V%UY7V`9PFNsoXCuv4OVCdBPZX4|&?b}_D*g^M7^--N3dEea&I zD2uBNTrsby4$OQmGwObPkQU2d%!&P__I7MB3 zs@Bt@Y%>YO17G_ak>y|ra{8c;;kv0bT%kpuSj>4172N{EKR7X&XLF+mJ`H0h=wOfs zkLlL0m(2sptxVKyoX87aie5C>-J+}va$@Di+!yck#&8k-B8dA92;I56qj-j#ycOWzC3J3isz3sq+=0KKvM}$im@9~b(8V-!OTB3zD{s_}D zSTXAgdXneHG*@ubEfbsnJP|*%mEU(KtI;;sIMU2wD)Z^Yb1uTqiU***=gdptt9&wL zU%$*`sQp}A{em-Z**Vdy+&nt)mW|`~qO3yoI>H-)P2`Eb4*YVK zl5atpE!)V`RCb!Z&iOWbiAXk(K6kh|zoB9NlF~5oO!*c7c4X0uzkK0OpY|F^j9l>y z{VJP9?D!RM+K(7qiXlPCw_>@U^SR|N(bil^Zgrj2| z)g0$Sd_+nW>F=4*6w58nXd zz1GZcXUgnBtX*`6XBm0=+$~D4&I4{!sU|~!3kNQP%o;DcinWdPP(gzEfwvr1Tvq!Q z_$bosW?`^wk6TU-gIn{P9~z~LUyY$v@D%JO-JK7DChP)S(!FsBEya#|y{2V5jD{kNlXo>yyoVp=VJLzI!|*Z%@e58rLtOCGmImc4+aj zxk#E3XNSDvuj~N_5J0ij%T(JQdHZPnm*%T~`M841PSx+V25-=A7BP(ltiCRME?wAT zV>qT+tyy$}bK=f+an0GDJ4-BMY4<>561!5=xD)%cXxNYXSjQMa*N@IvA+n#uhP{Qrh!@o*K zlf%E%4DyG>#)ACIeh@>L6nLd1H77>9J<%4aUs{Dg=d0+V4-ZW}m{|u=?zPzPDi^%L zsb%t^NrF1ZhGYA9f16uY182(e2l}z2ugiVEJ?xpWd9xJ*o34XOev;;IFLq3K^^x?a zgJvhUMlE*g$Ec%@eqn_+`KaLG+yvsa_p59*#18_a=r{+J>>{=XF5ki4&d%H`@pNGBXz#y3oXfPz& zQw_lS-+CaZ1JNuW>T7v08>sPEnR^-RXtp+p!mU?KG6F~lo$-0Qg%w0;{T!vY!}cxM z2Xl^)*mDo=0f@_a>mhy$(9giw{8C?^@Vj7^^jzh{d2QPE{sqLUc7!)eE-UUqQ)_}M z-$|TV1eo#t8R+$@2YD+DuofYL#kThmVu?yYnr)!8Dlb38o6bVF7vlhORetUPM}*7C zU2Cm^QI->~r~7zrOWwVIY+mT;%V+g$`mdPamW+{@_@w^GRsKy)v*k(b-D=+R!hxp) zXJ{Hm|ECr}izVgDMcrqs=!JUS@Kknn)CIB!pFiD#NrhLcseki_-4 zM2hC!ihQs1vS#-(9x)j<(*BNx2Zmdgi}9yQHpyl!JLb);`x9&hHqgr(AN<)thq!3Z z0Z@n%5W29ETbA}0evNHUC&zG^=vWc7sElk|@Zx*>~L@nO8%`?CY z3QU>^dJ;@UyTCd2Yw=h}s7|UAD7qf|9(Go==Mf_s6Qj+(z#W=8)R2<)$&HrAD#%~2 z%(r)pQ?$r6tKUi!)IHNnuW8vCpM#ItVe;^xndoaM^93Be8>()W(r zbpzMBL5|gBkiXv|rP{cXn51Y?d5+w7sEJFv4riAaw5!!;O zPbeX(1d8Ufc#DI!;g5#0C7Jf{Ub3U1+NB0|@9m75*ET#qJwA8+*p>t_+$RZKS@}Od zwd#2{gcCZg`34XL6=A1!Ttw3!?wvWib)8iKWSWRMxCYNOCdr|3nMPZw;dA!;RX#ZU z47A^&!L$~B*%UJ2WNS?SbgNB>(e7zJXT@bXH(SMO?hRSl{LvBzGGF0Zcbtx6BZx4aDPMpxU(0b7OOq(rGU3vEQ#_&xR{|;@k@h$EU zO5JU~yTFFG3V~A7_lej3s`7W*h}NlJ8nhTVx&*D*u###HqIKnKxC&YVluQ$4x-=#b z+e_9bsj3g4MWsPd2)J~UF51_jTAcWkVZ|*gep^7x_U|ti*bj6{u{Mi@y=JO}L<4 z{Z=ntUNGP9!BxNSy!x#f{=&m8ATw6xRrz-{U=zR$ko=|VIRD|gZi4a)sgT<#zdTje zK?kDYhu}+6_8X0w9OsV-EDcKi&`|ig3vmO{uAKk0m!YfH)EBT8r;c8pbjGaIM=n*cQ&fWIZ?G1xV$vBEvn{-<4 z`fuUZm^_(cirFAU;%4MWpnT-CH?YE27 zU0Bh!Jd`Vz>)8oU6WwXlz zTm-Ug>V*B&!NwzR(Qy+(of4gwM)!ptIe%zCG;nd>1k1v$`{zIxq*}}Pw7ut#Bc4od zfywB5HmwSI&1+5Uv`o4PdR3);f6xRs6bs!ldZkkuoGtpRaf*#RE@0Xu?IWgMvpRR%s5cC-J*)SPNsV5pSM{(d$_@tUPvh>sh6~b`OMr zR!o_~r!T>j3AdW~fq>Qh&8p3H|5e$5lU4l97$CMtJm&&s#{U#?IiFFw6lNp}iXzKL zK@#ClFUp6lJaaEC+iOY0Wje#`iP3o#)(z{IPJGiR?#Km4PwP~lbbo67fW+3sD!mUI zCDzu@>fa{LtQ)RiicWRTsd^?8W%GI|BRZxBv^_2yEwAdbW;P1(0k_=SFdyb~2sAJq z>H7$Bp7OENpzn0-Spz9CV&zEjDo-Y1WwV00U7xN2b}2pNE|A81p+dV-i~Zo-wGuOY zu5m_`y$M=!QctS=1Y;6FME8gZb$htZ zJ?FZhmhgOx=&lN&dr{tsMbEzYEXPukpR;#o_3k=A-6ai?jCr?hPtnrTA7v1QEM5nN zDT6uHOo@Tm!~#3+oHnI+n16c!+E-k?KCdfThR}yT1C5iuE!Xtf9i{1mi&Z^RU3VsSrzWs`g-@3{nvExp7xL{a4z%8PcsS+EK{uf?t8&4p7l7MU4WmZE zl+$lr{Qb7SL=VJnTCq;@a100bGV8_XKOI|EZ>c*NC>}WCnyFo%u_n4}R8BZwJ&s7> z`*|9?ZSY3n;t4yx!!!;oy9Ud`kwSsOs!YzR@wmz99%M z41$sNb}%AgMz~vmjd9dayy{fSwZeqKTdGMm3z@{2<~2ck$sUK69q$MuI|@Uhd9Ny9 z<~AI^-q75nDey7pfN03I7YE*Fv`QU37=7yaNc8^1lS&tly|hu9zS3|#^E7WdWTV9L z>HTSOxo0OYzJz!WNS~EHd-h=P#S??<7ww)rxb3{PyOM@ZEzT>dE117;7Oq9|O;fu$ zqv^fVo#*6+-ANk{x!RuPPB%o}qgtXG6CKAPTQrp%v%`Y8r3(eJ+&bVsU9)#qd??v* zRkP{&;82U<{$w(*NCO;SAxGpKduM_j$4V3RjJ3{%)~b%)@-mdxp)obGJBqyR77Hc`we92Yp zm2-&d=I6P-CZiog>Sj>ufvt^fp0%=Dns)4A2Gj#%j2l%|(4d&ugOIDS1P;?-`qdC> zZE8qm>R)X+J3HIzs9n*9k^_OR=*;?cj%>Zw?V||9^B!oAgC}CTQu@qZ@X-3T5V3fR z*zqJXMUCdNIT-fm!ZRGSLFLi1HF@HhK+EW%r_kmVIMIwA4$DUmkzgy6(I$!PzJ)5| zE3`g(`i-XRqiJ#Sr|4bCV|ha9O3W#{3Qqqbjywu&S+#%p;aM=eh#PqYzt@l;zC>mV#9XCvAg444S(zZ z5WCL&!>Gb)#cEz$mXnJ6cj2TV3$BwoFATR#+wbiTNzxf5ZcQ^W8lnih8imLJ_8$}b z?EVdvA`0ZMb7%dyuW?>MPhcs*n6YvWwUk00$8B$JT(Y{M44J3E|CfLyCp62_-*;EZs|)9iYYrS9c-@s{u2l5V}vKtwoofenv@0&fRxWkV9Vop!cH zilgzy3aiW0m)u)JkG;WZu&(AM?bRfauRqZ?piGXvg$D$0{BnSg)sJITKd<5z-jGXr z8VoL<;|%pd8;&Uyv`LGEe{rCHi*wky-X7p9V}dlhZIBzc9r)$L)BOlZ9p3sEH{rcWbh-mj+xZJuXiM!aKkj;T03msdxBg6N{wxAv$6qT!oC{jmTfe@q{J>~#+hj_G-<=0i zvs$wQQfFR*w@BVgV;K4DOlQ3?2=hP}4N}Ah6{c4GgVDV7&vEc!JtznZ&xi%t!>Rc@ z;j&|Q1$_0$R)O|uJ`3) z!ieE?fEQogW*^D(rE}^HpuacU&rWHYT*+?yn|NGkQ7f4&g~XK$nTKpYcZj-IHUN`x zz2)xc&9_4E$SZO=l#+bt2qI$e)x^Gtl@#wIqo`eaND0r{w{t7%oWioC9f_bwJfwO~ zLGMcmivRfT2o!sjzahjOes0n(=V3A&pbwK?NcDW0%5h^s*l{M4_x@&Ww#S#%rh01r zFlC@Ht!o0Qp?X8_4(7rm>Z7D_(iI^f_g^*W>1b4hkz3vqp&pFAH^%2~``Iz9#gw*b zR-9Wkwk4Ad5wTB}c*Y80S5{kJn~E;?`V!`aQBMk5|8mAcLwdHtvn}r18#)Trx{i)X zSDMQ>@!E603co9?uPB&GWzhN#Yg+_4p$FrjAlfDNeF(%M;sG1P$tLeyYq~EZjx!?- zj2w{m^uAj2b{lyoRVL4@|FlX)Zn(uecJadw(C3HBbK$}S-Priz~-h=x+hF{Nv!e7bHtyM#e?6?x}T;xc|+mO1| zX|RlO^1;>5yU&}TFc|7*h}$Rx##_Rn+Ecz8G|0PnQDOLX6R^u2-66)iCYxJ1Y%Hz= zJ0{}#DHv)t6rMm{fV2(sIzleP;f6k;uzSA$jMFZW^vSCv&LNdVZ73F`RDFM5Vnbv+4@Ykb(SGHynYX_H66tJ}M4m-* zW`D$KC=;7i$*?uImvau^UCYyCDV>TW01WAVIU zY2qYq+Xr3q1cOrxRzcz@_)7Ta!%*4mztBCxEJqNC3*1+hSvxCTU=x!o_WlA7fJ zu5Gs-X|Z9a>6LJeQN4c&30)|yBzVF@(|?5NOPaoH>zyaLu-1KA`T%bJS6p!4PN5;S zcSy@j()B(9abF%dkv}(Xok-3`;v9wI$<1-sqqOy@FXJp40u)b-ZuEjz;Xta&POOCv zI1MGI8*}-PS$16IMj)IH^vtQ%SAMX`dk+72o;Xyeuo{a)TwK^rY&vJFlU%m~s_rR5gVm~!tST*YYpR~BUtYrl}2XdlLH##bm~uskTzLy8$|rP98vkYZGA5Qqq|HlXlZ=Bcy;9X7{EewK6Z6uE_f z(_Do;!sSO#fX6)kyiK=q{L@iVAouoJK1Xw$&u~!ihNs zCuxu4%Gtu>$^9m9syjfpi@xiDA3Zy1C`?Bu^-#Y=&FSo=rP?7v1-$UX;0@6KG=NPm z0>g87a^I}A4xysaV}6(OrLLL{NuNUVU@$mn6V1>r4cekMaASE(RzrI~$V<%!#{Ckk6)u{XP+vmX(W27y<;-TV#&dTnJ2ip5ah zLq;f{y|{51Z9^X~SSI_$w6%2OYk9eWGdO@|RY6oi+(p?8X79|Rb|Io~0mJr`&I{lG zPNJ4s5zj~OqwQA(3^~dV0Hvrv;saxie5~Mbebk25X`(RlOhC!iB#nhyh>oIucH0Z* z_pSyu)!>xaDTE!C3(b$$NQEaBUFsm)!Xd2ETsJGCwEFBfS=Nr*^1O%$6!jrgQq-sY z#yBK^9;0l6JQGYZqGmxV*#^?enmH#~5D{|MGr^Y3s@Bwo*`gOm#|^3Laj2O-aaBbk z_GU^4PU8&mrb7%5Pz_F|{=VqeF>zZapp}0lroi=@#F&?tIS_~)Bv=v{MuepGxDoX& zq%IcZ;fyJ#EkY?N04X3&a)2-}BAdd8>UL8*05H(DLHU009Eeg~<|crTIL&U8|{&@+8h8(QTd$-I-y}T3;A}n%@8&d#I z(EnH_s~w^w)C|3va2mnh8eOuGLfo&)0dQ=fy}iW{aq=DG<{|yz1W4OWEh^iCdD#S- zVY&79iwH?$3GpCjm=0~0JaJ&jfc!`R%P6AKXDA({`X_>HiBEtEoep~}ld zP%N#rlku!;~k%l{>xW_Ya!5^yPdI}D7@u}K>g7lxV%Q4D>q zJ7Y;pN^RJF@gQ@U1l6b#Yau=e`0cQ1KKW){fpvQMcs~O1qPGKQK(gONE8J!^c;w=; zOkWuD{Y~dYDIfk#m%$ly$%IBkR~#Mhz}i-L6uE+^3mnvMB&u7Vzh#&tBC*+amCA}Z zqzjHNIl#3&e48QlROy6Jb5E5jF%kFnmAuYHIl5Y3SVwwL_xek?;snvD}jr1$N9AHwoU4Cd(7RrL*7 z^Ram#_9xBLeSXoEI^Kw!1UK~2GM+4jXS9je)aeZeh}94*#?KJnosgAA*a18OMCs(% z!=B>05I!X?%XTOUod_$>9dBa5Jo{+#YDUq}Q<6<}H}61Vjl1H@M9=oy^?1 z4_ms^t3*7{BRb*negh_lN?n_c!c6L}@%DfaZ3fIdYYe z91XlA;`wkYYPZaPFT>^t%gN_^W|rd)Q8ah;CH-Yq#SV(QcntITu!+5W0bY^^5it2F zeqE3I+is%Ud}6j0@8Js-+l|hd%qZZOS(C>C;d3V9Z&Y_lQIl&F&8WC2+^w|?A*+J5 zWkbj+yW>2rhKL?We8uvj8|_HQT;7cYO_^g}06-p5xx)L9RonNNZfZx(aCgPi zYzCDzSQ!R$sM zEK+nesfO-^Jj2l#PwtE3**_0ky&`ADCG}U`IeR4nRep_g3>uUs-a~06l4)^|C;{+x z5X^{OK8X+~0`1yq{NsE6ml&@9owpHz0)s4H_WBIGN%IX`59NC~yE*Ni_enjvem|nQ z)%+W97l>m^1$QL0RK#n#FhZi zEHItw=NXgUMZh!3>M~sV`ium^&ad6Q(0+EduUypWFG?6r5HJr=O-&!R2}(4r+9?E+ zUcW?5ItALWA?$tu#YDUyg}Bc%byli(u_^aQl#>SG{zy6o*|NL}jiY=np^uD>m*CBD zWc^+#;6h#kg>T-lN+6H8?R2pXjcF4v_HK=L{;bJ?HRQ$eLa#GzD5mKZnH#qt|Gcpe z3PRy2iy)Hl0fe!bx%$%q3x5=KF26(os5?I=qa}_wbz;@K*AS)kij2ay(a_Y8Fq(O~ z{GH*;nuHQmh<%k&zp%C>5rrx?P}LhZ3fdbf&=(0253+<0;R^MA3}F-FD`F%U#ZCnT zg7-H{_u`Gup|&YDZ9c9{Ky$BmCKj%jAwGQi!o43VLHU@%^YBP26}ydrO>p(+cO;qx z)=vHCqAOHhn_6^)MPlCW)No=X@c_j2tJmL$CVmTs8T>KWWj z-8!6B>e&SK(`P3WAV$uMt6rM^8xdM&y)h-@)FP;Eeb&XHcL`=8sl3>lU&}CG3PF30 z3w&q1<$4xiSd^|{(*1pQHVoV6;%vMeA2x)M27V8)+z%Eccv)H5|~pMAu&~MkAeMJwgG8J+$Cl1_jcIoo_;Vf2A5m(ih^sRXpq_ zNg?08x0Tl&o`s&Ssm5GyR8DQ9MxSPc`o!*HeNWu$QfX1oCw+ZS`h(?;{5Dt?Co;Zc zy8Y^Y?A*hLStRyx<0ewuJFh=YfdvyCXWWMK^P3bD6#iZNAsl9X!`;^so`D9-h6skR zUO*+kcnhN+?_VVzbQvBk7|4M=Qpjbf#-t=-nb!&ZNEK9Z{^DMxu%|O_!c)pjTveXv zkDPJw?A@!iNHP6&*B9>3fvnB4w*Q^Dn6#O8K9?l-f{LH@mjnuW1$`%ai%}*#9dda>GZuF5qz87Cd-j{Zr?dE@DoT&@j}pU~vhC`&RqC`nXVW+6OdDe>UQ(rW7-7w1@(6?!~4ba-g8txtG7o3;V==m=hU=Zc;Ge1$^N&60*X=cvZ+JUk_S!c**{ zmvClNLP~yE;}54{d-QUjEh(1fs*u7?@#NQF85_jYxP`yc-mDo3$86z~7Rxm9`*y{w z3F(%@*!$?70O|i(ehVyrzqe>w0PvI)Tle|(tyJ$KFA|2jYQ9!w-JZRG^6_l{-F<{`Q=p`zYjb{^ z8>L}K+*E#3*RqRk672sHJM;NYUcE9HCh`eE-^S_r24M+P#Ryb*-ki@Zpp$ zc>|$|oCTcxR_#=I4r|i8Y}(KWj{FM}K~uNmzI_H1!b>;CDsFpMa7$>)O*AU)Y8o*lk0a)pM__upiT*oBGrfU&t1^{4W;3e3scWKW&!C9&o73jHSK;3cM zX-pda^6NVG3BYidfJ4qO=X06XHI#5(;{4DApscpjU-mNL363RhJJTN4Dl{GZdid3H zlUS^&_-5PbNyhNdRvt=NxmD|&39l#P$fn?AxqP-WH3;8UZ0Lhl_}MvZkM#s@k9t_x zyj}->Sg@!~O4&?<6Ft~3+ol6F1!ro+O-7S*!caogvKhrT!d2)&G! zUpj^qJ8fZ;P$UtrCbRgu6);<(#P6_&r6%DYr_6#?g^}N*H&(XC-NKvzhZ%-k$5iFv zhn0yB;d*7_5#+mnQi@x^b~KpShdICn#=PTFbSTK)*;YNM>{e$H^bG6WwQSs*79$8o`S`_~GC^@AT^_Mh5f+R|HNv8LN1$?!L1=%MEG6lB*pn+k zOxPsPgiYmE>GB__mO7O?xHx&X2J|JX*W`bZXCy*Ej#70moST0h26qx)vH67%26(9=t>6Oqw2P0X1(-5#i z&0j{}kiYd(dw>8!g-Ztfd0UU;u0K^d@~uA`>3798jywQ8&367V)2gxC5+?c6#*l%; zrak)3lc%``taNvj@O95RNn$@7`VUbRNg-{X`tJ;wmiqs*kMnIq0FJ4%PaMn-_vOBQ z{ydq>@qh{70;1^~&N@ja)x~Pmr``(p+?8Z5Df=}U`rhl~{IN`Ozko^iCow|~`A50A zt+jGQt|M*os2C&F5^aO>%)x8SUuS4@jwL0aBLke^c_4HyAIl7qQ@`&T2#)@DwXccn z6a#&+7Dj!gZPlnij1%vUZ+lIH{FN0ZkyaXoTJEm=i?{w9Y{geHcq!O*DE)b^vfv*o zZ4GKs|89JB84$Yew1FoMNsiiR)wXdDwWElL8XqJtAOaNQ$x)DqfzM5N9o2{u@6$pZwflz)m=PX`FU2MDqqZ z!2g3yk%?>GS5-f&NYt1mYSBRL2E-?Bo=8rHav@c_FDJ)tjE>>RmSIDwX3za*PBX^p z2&6kYOA2{owxe3|#74vYe+a^c`!N&NsjzP9QboOE6qY3TRnNWVyx7k{Qp%GBcQsv zcY3t=yj{bUipw`r^|5*v2~~%vH-H*b z7L(KJloRZcXguS#i1lqQD@3DYjdEWEr=9wWb!w0LH4CY<9S=L#gVo+H{dtRd?Tmup z59N5E;2+|stR^>8^q|dPy}Hq@HO3g^T}Z1lYX33;$_)lFsI)XP)xuVS{(A;MIUKx@ z?l_!Zk{8!HYlBLAO~&ziM^@oMf(x*3z4pNtL&Tn0DE+;cibRknnizc?iR$GLQ*G*_ zz13Q2DCk>ypd(09cUu(E%2?#V6G}ufDN`A{9I=Z6F@K0fLQhgDsJf6{basMC{X^Kh z?4+>kMNNxpgpwjpb@w!qQsJO@pbVf1+1~_^=4{ts^bKZhh zjNkhmL9l&~A9adqY`f#9L$Z`HmpgkASQ`Ywp+BiK^iu>)y?@9HjbxJ*i7i>DKl+2D zf?qBR;lbra`f^M1psN0%G}(z7BPQ_D3olxn=UBT*k3WnNq!_!e)|jtperbn{0HshV zu}~*VR5uaN5m?(DR3b?cw*07Fd|LuSc3ZDGNUl#vWL@~+v}~rD1L)j zFHgod^NrVUD^Sa02`zq}q+)#das;96$B^(hCk7XOaa`o9*{F#dqoGtUMY|BM>Tx2B zzIran{K>oF^3&OG+iu@U?7#I|er2q{xcgqosvOtTT%q|CfoFf&x(?POe4tAksxDN28pBuDCH%O6e`+f0q?zw6X4w~$J%;V&+xs=y10WR5dYcckY^ z1_?(#0o&)oL>nC)rO^$+qUDy+kswI7+3L?teQAlSKb?(TIE{+Y_pxYq9nOmTd&8~W zbr7|C#L`HaOQFSLbiBXMcCc*G55I2WGU%;M!SFu_b8A2FQwn*ew8W6=jeOTciH8?7 zvx7BISc^{~fpDAnCh>qna#65xn2y7BraWBWUWeJtj?|FOxiJKLofw?>MY9~M;wB?> zr2l1S@yGKxLKls9BOWCjPmZ(@DM@n@Np&{K{MmVWixF6~lfje0bgibDw~LhmExQY7 z4eC?p)fj@#x{IYtn$<)&W4{cdG|Q0s8#p`yO&^IGxR_>aNl~t)1{4g}!5WHA#sqic zcBBWflc$-U6!vD%!58)h5nFaBK$+UHyC>?@-RHS~59U_|m{z$P!$cHyVTcycCH7v} zOW?Mx;ZOqs>tu2foH7$vH&a(fScU`8J_h(kF=DJbp~S$a$!+Hxzf~^namBOZI`!|u z--5?0^>Q)EQb?tjIOCE)g43y8bunTZ1fqj+)6uasYOvgQ7X12c_Zw^o$y0w0h(tvB z&zE^#hGVmK)K^5l3#$(IW|PfQH0awm6sAQ`bk zTWJ*|0VZ%$VV?-dUf(gQrWIG(stnEH=zhC$e-a$0%u0~M7JXttn4zgtrsAq+7f%%z zIh6>9rCoRTwLw$y@mbbM#)bm2GhK6t0LxKnwFKeo;{=oyrt z^GfREh~w+7ILW0`^(d-4Ub$_}^*c#;aI4-ZH^4X?KFknyO+qtvmf!7r@yFp!7Xp*6 zLR6hiLo8Tr89MtfzX}5dMF&rU>SO=GH?YRibT8gtf*u`KCJ{J~%M808HA9&m>D2Ic zA(f?PI}gw=bnLhuS@Z>+N{)HP|3+(n`x>U=>;a@ z_v<{O8ktb2-O&r@VGW0u^x3|V7Y!zi4c^;(6m(g!Ce6lDyQu6e0x^A&iNiJrL1rb6 z+^3xdVN@hGFTzb%ksWv2kM4v*#4#lCqkg{D($&1vj3-c?_@+nu?=LnvxKO!l#gG4j zat%-&P}?Mc3oUszh3xeWYYI_0mU~k#0PqLhxA%fs_hKO1 z$XPB*Tt{*)D@>Q}?IxLvJ}eS?LsM1D|IbfFaQYfdYh4^7;=@7=B7~UYZZapw2fhc_nf&Y@E+)v_rozR!p7WslhAWd=&V)H0h4-va*NdCK zV%QRHD(jItB{A7)PO?T+*stnf<-fCP?Fc^zm{g`*c zn8X1~`QNYq<-q@P;Qt>E&`Z06WcuneMpv_4`c|4NbygUN->jZ73Oal6r>XMRIfs%t zi#vQey^+QNd#{r}3|3F!h!>d{${Jn6$;EjS<#8Izmw?7eDEEx3rGWP=nSS~q9W)?W zi05Sxs&izDUqN|Djk#lmrO$Tf7~2UctWAz7eIs4(tMwMU^79RSHy12L--yef6P6O? zK-mh*?Lm6KwI}EfYxs2-$aVi#O79>~m*X=&$s~8b9$Z7w#*--n7(~xY)dIYHok*n!=BqHLUQFzB6)FsoTI*&-@UG^X zf+uOD=o_RZxBOA!K8ZSMZ(w;p^55I#Cg(m(;czO>L;=*&x4AFZEf{wmhVd>~_6{9~ zIi{(F724(jF3!7cn7&5D?3I|ma{{<)xjcFtGs zIO7mqP&=*;z5|J8n*$25vpooMQ729~6A<=^@!HP>XB+0Oh*-&c;Cm=ISvL+JqXz_0 zqqB>&)kp6FzV8Wk`8?PH!qe7z3suV zx_c~y@!p?=UPzcWR+j zkZ5=`j2O3!wY6RmXP$K9!IIfu5T`O>D1?YXnnC5?<>wvYiza=xGU|kNqF&uO!bs0% zkfxXINpncV8jXuAyylZ}*sdJmhFX#OR>0OD@N(9xAXn&II<%RT($q0vqtu`!;q!0B zk5kX%=90hL=H$*yWCxv7j;yz4wprS?X{(hg)c5Y{a&aEvz1cDEHd~%yg!3?@fl3V8NsrSeOf~2kHW9Hlb8fM4 zuw?6e)M$_!R)OO@xap3cSv`&8&flJJo)X1=jUny~$6cVEHa1E)kXYNd1u`|IayrdRm$zHTf(ofP#Xu@ucA%as)Y)Q}dH(9LjoU&Sj%MtXE!t0VgUw7T+i$-(B7oi+c0Rl0t2|Hs#DYst```*W#fsINDY+@d z(uB$}_RkDYD{DxFyYCO0_MtmRXWJG?SylhW5~Od-aope5k8DL#FV^?PUnp%IeWq+# z=-a#)x+$W~CV(0hJs(o&Iu)+J=(w{y^ZYxNUkInaqT0oa!nTcchKr-nu2Ip?Gg>B~ z(yFSx_>j0hblCpQmD2qc!+`Tt{MTM9vy){z(oyT3jg1y2-IHBUpVg-?#P&3XoEbdO zys`wRm}3nLBs)1MG;4Mj{Y_qx9eZj;IKSU`1~mX5h+A5|=nO{BE%Pp)*t!K<63*v# z{H8MKAG0+$$}B#fQq&`y-`bg#uiu(&JKelp_oQ*iOl0u)odMJJ!P46=n#@^jdCfB! zE}rprVI5W7a@)&opV&%&HeE+|Qa?HGj{Y2a&H)?28J)1Vx&*eSivib_lfuxV;0t^! zpENIRcJo|P424s8-RIw_D$zz8GwJh)t*3e^&cYY6$Tl8CWXDZT@I<=%dS89QtU#Xe zCM<^KLFbW6p^`@2{_OFwBnGP1K?@DHmd~Aco$Vc0qSb$Z{zCo;GomMWHZ}A6w4*`R$;8~MPLYefIvQL)lSV||co>qYY zL7bTMox@Ey*9aP4KJN!fkx}eqS5xx2#S_G_i$$43DJJ_GKP`(q2m=u*LugKBacfMx&ess<6U0|3{ zQ}{YO(13^T@raAS>dLdogo6ofOf*h&0M|tZ4 z`)*aaOi?vmTZr{R3M_4!e+r9ixx)RC%n?-$vU_^B3-mzDeep;46?d~=Gk7VpoFoox zTIv=NY!0q?*%}RFS+)~<;sc(&da|xbJ#W{^-JUr5;JR=kH1deGnJv%C`!`N3yyBxJn68kGYH-fmUp;xBk@5%l3r%-zS&!(jSc;){x zTZd7n$!DC=suSktRR^SO#-C*iC8g-eFXrM{sJZX|;uwMG9C?wwLPgdnJ+i07;38km zX1c1w%0<;-{puHICfzE}>H*%_Q`X)}4rFT;xb{XJeUiu9wK>)u+}^u+LFFOUO4z|= z#WG@lp0-lL^|`sWa{rUjGs%k^*{VKiEo0gBh6}N0y@QI-U`l_5LbO}rCT!vRDfaja zuf_Af{EaXy#}Ps@BYx}HQRB*F;0&KZ^53l@~>_mM_V6HhcTI*@bWh{Hg)Md{Cg zU!L7rX@?xzrg`O#4+ck*vzF;D)!}Pm#@Xta_cbtWm3fCiq?t#)+fsXMu_4*9C<`MD zgr$gm_CHDhAnwmT0grTJ%gf3<(7dL`-rkDE$QP4he7fp%??*>z2HDlIqs3SfJ>9X- zv$`4%3y(S{D@ySf)F{y#^5Zm z{s5Q#)`oUDUGaqswea`q#LIsjj1y?T1hsh$PBQ{=t52m=9|UDU9l@f}{#!hV`P_`u zBA+~HD1LC#yyp7uSp1m*X4zHEM1M^UDZfOQ2Q34iGjZSc_x$W%h}wJ*J6Kx2ORK&q z-lnU;<(E8P9R@upxn0+)E)RF_>D-q^vG1Lmp)+N%R@5!Eaitd2E%MvU#HZvH&qlx2 zt%&cBZCQO%d|!KLfupDUTPP*8Og5ZMuj)J)Wq>fG`>RF&Z@-TU0}*}0xP{e6hu2$; z)&Bh}$Cv@AZ4gN~>j>}e#X{pxqz!lfc>=;EE(0h0MT|Uon#h9NMq-9na&v$7J9dT? zk=t?tE{7Ko3}tdZ|p8b zuE1go4T_aCc0yUPv**a((zw!V=cI=pRq_#JsKp3J7C>Y3l~oa`9|^1}_` z#dBrz8qv$tSn(gA? zR<>UMv`qC#hUYwyMB@J6Yb{Rest3IDyS!F^XOrqYvDZwZ+mc!F@oS^M3r2A4fP;OO z>$2*emYuHDTJx>^eIrGz>otlgz-XzCe6F`KH*e;A*Kpt;#yiD{ewN)4>~Revf6Tlr zmkPvh;sDxSK8PUvhJ*fga-((g`ZCBB$*PjQXl2DC+Op^k<|dTqPVD9s(~!q?3_@{lI=8qYQNPo9pRUt4BI0;O}9s^5oz; zd}e$NrZlct%AfKZ<4`Z9^+soQuqZcj)aoF&>v~I3K0MzM#lLdObEHYBV^rK zT#$l?X29$|vZm>-5fh)k3-aFhKdi1SAUqTtBFTmZgN$beCuhPlAXtzWyn5~0+qLdX z_jkz;vAULPQrC?MgKJ)H>q5dT=g;YQL`por{LlN0mTeajh1x3OWgs^^UmObw$~%Q3 zW_GSmj${gP+PiP~$e(Nb-FeC5R(nUzsV%w+Yq_yxHU!Cvv_?HuP!ub-_ z-M{*zEj9tYhe|`H88B19+k2RVU|*lg7w(<^QpIQc%LUce>{pfn&uSizRSm>e?ZFncN3?>G7f=l%*Q9Rv z6G<^2l2%x+}PWH zHW5>O^x4$X4>V;su>H&g=PzS9oHj18U<*XX=gxv#ve0`ZQ@QllU8it78NN?$v|NXE z(x>=mk1iIf7WQ(1`m@uhdw&s-!)aCo*uZVTbn|3<=<&5M(qA0?7O)BLp z4PJDijPQR-@YIhbY)wI1J2En&fx>tw$7g`hbos#WnlTMqdpowre475+$F;%#4D97> z)2G@1lR9Uzj>zzen_rZzgkrL~I%;%&Xj5c#(WN_RdrpOG4z%9-jqjxV-znllA+b7h z^4`(75e>rZ`~*`)0m$nFM^82%;%Fo{h;@CipVBYOIr~wa=VUxYFaB@V4D)%~DN>s1 z@ZC6s&W^bH+cOGd^{x^+5G3F44-;~P&UpMfktSB&yNfBmR@~+OBz@<9PqP31Or@JO zOkHI|^W~Y6F+uUN+9b`*JqND|%E!bNufA1%Q1)`l8i|hsYvuO zrKOQ4?iTx}Zoj@ze1$-WCBN*xO)BrlZIGnMQ2nAu@ypm~00htIT`o~pJ>=3jjr z5uV*I`{DQ4B%?M0LJW`ObF(nO@g>1|dSi~1wMvfWm!6IFquI%t4Y+38k@44O;|;dY z{&8LOcOyK|S%Xral(5Qd#030yDhFSBf6ao(RgH^9hmLfZIqBmQ~^%9_;9QD0`Xw8kkS*6!x4vn zCE{dey8WRuh~f>c1FImx4PwHn+00=Q`8gUkB)!$6oBW)%Q`4}i+Gs&(Y-86w0fYZA zzbk$zmR2{n@xv-+i=Ut1I*qa!g>_g=gnC=pmMd%3D`b_ranpr$^Qm}EodYSc89mp( z;-IhI3hw@8&gG|LLZNJ|L_tb^q=_Wp2FC zP+)SE=3U_ltDwoKw`E;le)tErjz}a#Mp|k!LjN5xcx!7lhhf!1rWn&vYTc8v)pbuW zp7Fm!)3!{!kNZEAG^>+z-hbP0+cp%w$vZA>N^XX4?G(qq?ncz-AS4}R@LV~4ZQx(K zqIWy`)tUOS+)aTksUX7bt$I2W0qg$v_^gp8zL-}8{CxzP6a9Z$Jm+y~pFDYt(S!bL z?0R!^VYAT({an@Xr^=FL4$K{eS(HsZGBynf$lJ>N*KB4=I9C*=krf3G{^O|XXb3uJ zVYI?`M%s=a^zz!vxsH&L`R|lXVVqHv;r7?7M*eU07L)i_`g-5*67cC9qC&-}X_UAr zd3N}{*tE*%j!DAnk|HT_)3w(UCbrJ{ybL8d9y^iz>t_(wL3@Zq*XGc#(*btY;D}!@ zm6E@?W#J*#X6Xp(DQpRqdBh^^PncyE6NaYWi1WHRwfu`4h@!g$*j)eVjiKwYtWj(g zR%cE7(RcEB6bX!(RJfBn^++Q1B+^_QFZMPZC9U2g#H!8+7J0y8Z=!K*WkzO zA#-piWJ8PO$a)UBFA_!Bp+}-!02MqPpUb~B#^-eRUv5%*4!`>l)Z`%7J~XP&(PeY< zdXGOCSNWbY_5q~tn=%ij=8w9$4v;6m8?NE%FI)19q~xETqawYpHfAH zGS)k4N<;~`XlP7dOg_$|LYFfHgTuwaM#9hR>Zm%f0&Xx)=6Lrx!70HZ2S%M~F+~;k zUrxpUzyZRpx2K10s9!s0b|?arHZnH6IGh}^!0=?`geIpc=nomOjdVV7@$$XQ@fl}U zP)T${HnJ)yQZJvcW;3WKOwR0wQT@IzeyDcQG;RY?1EW7(rcRN6s6563Wq_y$YAB* zV1U#^vO`bzV)mBrl>crEvEZcCyK=X6E!@z18e8-DEeyscBFn|da3mJiGp`v=3nm{G z(kiU{kB6$)4%Obq>PH@Thjz)UXq+oBqb#x0zR@gZ{{2~l(>_^FY9H2SH@M$QQ!lw` z{83=|X%bVQ9M>oF!Mk1_-7e^FV`r)J{fu3h#h8#E#Juh}E05$0UwDNc1Sb@$!ABlj z{e$F%BIgCc7xu@nErsBXUrr1kv|ck*HNchSoVB~723Eg6^ur5H3S4nBS>KR&dmY+W zwY4=8o@%(joX%fZg2Sv?hpS*XA1ZWq%P+_~g*O<@TI-YvofWnjhP{vZw=jM@6Fw>` z0d2#hV4Xc#79}IH6QGC%(|9AVu{vnKqE*S7mrMI7E8DR9dQ5k4!G5s3lR`7U_-OhO zZP;R=YFp+t46juXN(QBCz`RT6R9X8_JtS5e$K3^$m1)Q5Q<}4_xO6UkW9VLBRoSStDRK$Q!$wLNYZpwtS(3<39_;G;}QrtKJ0&%P&rh3e!007yHCUnTNZl zxwk{knI3;Fa!}@_`F9rJZ}=;wGj|yrIb#>qaELl7Y_4%b@IiZf0|Jguj3{`nDHopg zsBQVLtUZv|qskvf?lIG3pgq7-c zg9=ge;8z5d*PF96_$K-r_Lq$6d`WMg6~kWi`v6eVPICL)4%LhpC&7mlM;$nKWtS(t zBy{I$RfN_exIq`VE!2lpn5TGdKKa8xZy}rEsl7AwQ6}|||3J=-+r9&Rvs0?p_|k>@ zZKYtK;Bam6LQ(ZEBS>N>w&b^Krt*1cR7mc{bndT@voJ%nvs4kUe$qo+?JDnbzao0r zR6d7xTp|6qvc7~Q567lFCNisu_Yus(i_EzAR1zVg~To3oLZ`|jd>V*qTWjC!gH^N9`4m}dgJAxSll68&|9rd1B<4k=S zs~$-fg806BTKEaL3E%@Rf!lS@y!UtQkzIJ5;wFrsZ1pC+;48<+vpP4AY!D0P@^^VV zF7J;odcz-=C*WiR+|`;nN^xR15;nQTa5VJSz>U4v-;FQ38i&|@t76-$G5zxf_ld?> zI(qB*{b$B6Bb5tJq}{U5W~ycBulrh#CynzRKX?zlQLx2nu%ppiX!HyV0*V#n?p~d3 zF7Uw=$|n3|L70D7z(PJESM($)u=pw+LlE*SH~0;|K8YwPrXwhvQ?6U%w(9+Gt;Ymq z0x8Ihq%_xd#W&me-VI~{9P!!7S{OGdBmOBd&x5RbvcuaLCRG0HZaw%`DrH+c9@(w^ z{3CvzJN#E!9aoZ??(t;Zx@1X?8vpedl?~7C^V^v>e{2<52;T8!D;RalZx;I-U{cb0 zWr%H!$$Vyje^u8mT^LM{FVBGFv6nhbiX-K)sVQH9s*`TVKcVEJ$rD$BS-*ALY86B7 z`bPv;CV?0ELCof%gdb@KWrQ9{<@KgFgd9Wdx;FPDMN@FeIGsh7o^Ss!cZGI}QI?x+BGWp(6jhrU57- zenn_3-{S2OOD@V&gl-sw3PJ_(+dyUpiAq=HxuOET1g9J^m#($1Y>%!z2Afook-=PP zc2=h`1Qq<0ni0xQ&T48Wx$SLM=3gNhhzDik0`xMlv8I*k0NgE)9OLKGsWjxWTTCN%^gE=;K7h zeB)GCi8rczAYf?C3|3?T!16?Lk!IK+rpV{S%ae4)8S!vcwvia4tylh26Ye#6yU}!& z!-~^sTjq*i^lm?tAJ1tE;Fu6ps`np6R6P11ft-7Uh^NpL8L7*6nqVL|ADN!2Kyo@U zelmE5?G%6GC^t*j!VMffmj(S;9L4AqXTl>Q2Sv!kicx~Vk z=FbgRjG9)y6nohEno1R&={FnV@L$J1>y`wOT*}fpSzEc!JOn!Q;B^Vh@e>L_H1p}n zLvGl#My=cMTLC6r=Sq-=sBq$FFGPrFZnVSWpR z$rIK-GWDRK837#sBqbj9n$D!Ox~U zrp~nGC!R?f$+fw`8+W<~SN$$WNjPB70e2C$%TsOhgtv>r6i)MP8T6gnCA*Y8YMtB8 zm6f z%u`pW9`oRs7$SVbMJ4yYYqNPUBuglBcksD3De)3tUn(*>2mp*w(ct zevnW~epNRUW0tG<^E}9>TUj%L#)kV#5s-_~Ckaun;kdz#A=5-1bs<7>=(eG-Bthu!@@;hw!s9CJ_qhBm@lQY5TrB9zDUclwhAs!HxCOPeSza*$Ecb7qOI#UA z7mNFNwO7K0d~(s^Elv&C)qI^O?DZuOuQ8NzI3Y-HeGbBHb)^pc&0_f#8FogD6hjTY zTnxP(XWaFSIGjAKeh@kxZrYbfj@M>1e=dQ!gEGCGq2XPgDh&=!j8$bbz7(WVQ{dKJ zphl{ISny;93E~Ul+gno~U&_HM}0uof?YHA(Ojf zB6dQHbf;5}{W3XiV(hs~g|G4?+!)71h9EjRQ{0t4bt{*3h~{l6!*tdC$62kvH_pq* zToH5O?YI_DMvxYm8Ly0O2^Y`A-z;S`y7#<%?2la^4tm@fN^@J`1VaNqnF@YTbD}Qq zP0p*>Mk9siPxP3pwL1^*+<5*%54F2jSL07KnKruMSJKFw2|Xo}%Kuz>>1)y;9(b4= zdNyT3#jpzt#l#nWPABsSwlpJB;bjq&7HY-k#ba-2yhA|`6v%cu91E`BtKGdSaT%z) z(%8Jk{S|EW@ul?*52|DdqI>~w$AYtj$^C($X_+@+AIXr4No}S-@aV9_Rw5N2nD4-x z8}dMCh>p!EO;|#MYTaZ1Z2ip>cGN`N;BP_1#D3t2r3>-Wio?=@AJiQ>o_el(?g;c3 zGVn5YH{-tlE(7#m?2R_tS?Er}&SG)+1)ke2&W{$LmQ?-PKr##)%B~BIzMW^h;$PEJpSU6eySRn7%5v}d8MUmT zh(n8X=Bt*Rte`C}t7}fIb<9AoY-Erz2XXPE*_#7WLdADEJSS!nLM=t?pROOgtyy>4 z%9$kCe!*Nwv`visxJGO9bwj;KPM)G6WsiB!=O_%M18uu=%(T6!6{j(ei_B9uYCcyS z8N6#0suY3g%gFWrR**Q4&5^I0+UoT3n{QpmPTzfc(qIuPQKow zMUS1uO~vj#KcloV)$2s2Aug!Q6n9t?{ua&Y;}h68g`43Y z*jndd;rFV$S~$9C?$Cgka8t2M11Ks@%s{vIpnw^XQlbHT9nO8~5HvxjIK399!IH8@ z18Mp!u2hz{^m(kht3aFR?fiJ6?u}77pMmTgKhqGMZE;;K*EgrJATP-;=d4k^l$bH4 z8C!=X6pB zQr3_<)!oZ0>9vZdj(-OoCbBYO1@v~-;t{?$bK(guHU2z>-CLvx+;_#-U@sbJljrk1 zQ&Hwe0}ns=`Dnc{C77B8?dEPwVv2xtpOso6L{QRO-b00;M&-#mQ4LeW@7W+__o}C1 zdhJt^NyqyMM(+Fz5mtdTt~qnH#%Mw<^a_I z(mC^z&1wG?!H4xnA#pW+j&qyjB~xb!m)=Pnx#x<&L1%`96;b?oBu&L^!|BoACO_;ONGKg@!k0uGHrJ9Xl+wd|6hZgeAda;RQE8=n2auABy8(Jn>r{S!O&0$C9$@JYEu*C!c zdf;FVZEtdLBD5J24V5$um<_g4(;HcPkxb~SZ*0;Q#wi@R#wQYVOfSUbF-kD=s$byx zauojnX?TFh;#)dBiT0H+Sou0oA3soz*}O5ebIZ|tK>_`YSc2^7OMB!Dtkt{S$lf^o z!Or>UXFWZZc}d8MK|udJf-hKBy)};$2BmX;Rv!>ESX|epW73j;)y9ON(CXAgro}7e zqv!pAx;oW-gA<28gzJLPpLQAmV+y;oZ_sW#oP$7MuOXx1<%XX9ZU`(DYK8s!1kG09 z#Hy^;T8vsGe-;B_;g~XwLpO+3^^f__lIP#zai&#BHXo7n$iF#d#%gUTAAq z@1D4$T*Y&DW%N2PTWMnS8^ot+`uTykpBvfaLb8cV@X72>EmhC)P+_q4)E4@~A0XR$ z+)!dh^R}=vkZts4nO{!ZSHwV>G%Fv%PS8`ZmH5k&4@6S=33+9OoP_;m@khTonSMLB zur}OmvRTrWi0~ObMu?e;vnj?Jl_ef$E9MM2hqNT^btm~jpsiRm{yEhjJTj;o%PNRd zd{h_i2fme7FHTbT_`di6j-dVS+RvZPoM(#xa@f~^x{pkHDXtPV?!tNs9wBL`s-`_; zQF*JS^Jg~~6@j>)0i~!;-2#lp8HBdv+sr~xGYCUk^3;?i)6Im%`Sy@qgzNHk$Szwy z?s65YEFBT6!EZO-w_7A04><%AS!-x*@RW1VXd!1akGa|#+NpuaX}FLVy}6G7d3%&UFsGBB|sgLre(4_Cr>4hJhUNgs>iK3 zR-~9P#P7ocrDT0iLJwLG{=(L;NwZCVMmOtTXnQGdTn{rY9u6w-k`|%${%Hou<6{jn_ci@UrIH|oiV8qWwu3jPe)n#de%iqBLs)!*r&7`tcC{v$zHjzSk-)MsG?Stig zWII^xpc4H^&t|I+Df(QyhUayby_ZVNk|8ma!|TN+#k5LXA47KkrmkpVAeIUd;a(6F zKA4h1_lRkcUce!R7j;3FX;>*VV#+jcvC_aHodajec@tq$zDq)11CkRTA|wUR6M{aK>n2U80?!B))PG z$)h0Fj-{MI?I!yJ_rWc%`3FTW^eY3og>z~$r}q)Klc!VRg$U;F)#?V#I7X)(P6!ia!9f+_MRKTOk+wD9Ae6M{@A^ zGdVAq7- zC1W4C{>7oa%{#RyZzg=H^8RDT8Atcqulay^QBv{GGjePXwD`f9_$_4qqJ`x~VQzSW zkWfwMM3HM*n9BhH=cKDB!{}iqi!Hx0cUeQgSg_TtFAlC=&A`a|5^Ki+oyrM9c~|>{ z|LFKQ3P%9wO4{POhcFRm6K|L=9e(Yt9|R?W96_`;_LpNL2zt{t|LxzeUEYu-KFTMk zq|3Kw@8>!=J$}$eF2~5;2bWOJ7pr~$K4j3+vZCyPr)G-S@M~0QA}E;Le*t8hi#raT z0nK15!^o`&F^WjpiZ_=n+Y#Y=1X#wfwfV>%AV{TQ>#TUw_{f-f!2SF?=-DPZ4O5bRS&+A1BL9 z^EtcNURmiUxw%FBfv3{R`IG${Jrk!X+KgFbq1odMJ1^Knz7v_W#+sjBY)(hY2~8w! z3Kpcio__cE1J65}UXq^*D8W8{>W4Y#5!1t9F zMJFUNMj91>%3^v{amk~t#exTp?oGj+vM0m(zMx2{5{W2l`wpfo$CdMm_7~P}+#KX7 z5sjL4E}8WUHBO`jpB|-f)Fy!4yJrZc%K!LKd$2m?71h2#$|6&z7Bxnau!VIK8&n}?Bzx?neqbH&z(U0cup5Vu&mfbe+e{Y(pWV73pnHz-%=Nonni!B=9$vo?lqK$MJ2=f3P-Tc-SCMnGQIKw+}qRSXp2 zeX{GKs#tJ%rz^}W9ET4JNLvi&Ov)|?YYMYoP|z6W&MS6&fW~;zc_^u`9pD}#9=Po) zKc-+I!=S=wm79AafimVA&y(Sy?X__2YR?-^&5;MZ*W-CJW)3)A1O{LOC@UH^0c76e9MKd^)WRKPS?$#X?4r*1xZ1D`aj|`n!$FmAd5WlRs z_4X7+4ncZ^ZRiXM7%A4LIPu_z3k?!TFG4wW0xw(jWw)w#+sS?cmlv#I#%p16$Mul% z&^b$Wb4vHHuUJQc5g326un5uGEfF@i2;yWB_y#Y-V{oHtXLj7afQMBR~t zd$ZQeQ@jm0b_Iyf)Qs`!Q{J(kTO5FK3@V7xWjE0(YhU)Zw>e#Yz*iTEKC2$9*adN4E1?U`qD@SH@UscCHD_o(xPU^_<IxIPv#0P5;d84Z#^cv>Coj;e_dt|F{NrSA0t(73pnVkuH`j zNaqX2*x-*2J!-`}6~d^Dv^C*_Rl-@7!bTKY`QR(zxQLLzi#PK1j@A;Fl5`bruPU1O zpk2;Lr$R?Y65T~kjV2$WBTVf2_MBp+>%N2^ri3ro^HQtyc?0lU-ow{TJk4%6fr5!V zcrmfr>wh-r;YU*{z*c&M@(-nbGj=#g5{2bBe4;xjB>1LVvymam9`(fe0BHlBJsmU=Vq4H$7B%M2zu^2TCcXbMv3X&dUzmz+E&~n4WdLbdc;HYobwYzKQ_>*mq zAJjyAgHo(0Ws6ok=~+4IB1E^W6*&*^z6rfMEp8L7Q3-jHenp$5JzG@DQl94Ae zn^%5Md6^gmiN1D&ELe(0AczLl2vB)H^Wk{$Y9iDv^Vp>4C15+f4=liFw|k4X#sf#2 z<;}(B90Y68wx#VYw6%U4rH^&uw}y9DCh+LN*oQrXIkI$!Q6m8)~C ze>_o*P^4@SjoMKpDQr7cEGRVwX6{C+~>u;3lr!xYkLurTThKk94)I>8$mc0H?7Gcq^U*D zJy)huT{i(k*5@dPOG2VkqiXW-a=~4oYPjFHRGknYcWNiu==P+6-`Y=$?p><)tvZj6 z1~6;H&j^3I%B>$9*0Jx#2G^k5gD~#?7va*+i*L#Q{Ph@E=`t}6$9C;!S33{av?0r@ z)JQScSGA{@ktp$jM})IU@oIII%mCG}oLOSE_$||g;$J9&uP~P8JNyZ*7r6a|!XI@P zw6|ugk98-qIRO43Y9G5GgBb4*cX{F2C)P^W#7_X&k}~?@9>E~9-`bG!qa*9cOcG1j zq0~_GpCn1bSyE53_@3-Ll9mRhS9;yl(qeK|PFed*W0c#dZTs-6<4v-1(o@|V8+YS6 zYI592FdoX;RK&AK)8p~vTavCODuphWHp69>bII)3%WJ}HM=*p|QXM~$_=c7Y z0)hnBm&GEb9Ph{8xo&kA1hXo)D;ZO- zwo%4}-Slv@efV@juzJrP@6Ern0Of%NHDiD!IhpT}`PYL&apK%pj__J8iN!B0WmM#T z(bH2alFgX%`|KXyTX`mxmVAo7P)VzDR~BLe1K4U2(5lcg{e1(oMbM95H?aK%crrx- z`Kwp7-bssIf%e6%ZVqNTg4G0MAF^EK%N|%#J5;P>tw*@nyB0XMa1($4Vq}h3bn|X_ zCGsIMR_Re)$jL?~RXA~#>k9OtSJ5Si^GZ-i(M;k`()d$n;?F`(o4xIQN^qlf|CkR; zhDxMl&t{IY5bE1iZdK8}X0plNPHUgXP6VwlvuGa+G-07x5Fv0F)D0(>TYDea%{jIO zG7k-Jt@b3X5URKxlrzML8Mja5MPZRD$VlXS z+ht_jrQEH9<&qNDS4PO7r^Eh`??1PiPIJU&8sU!O-_a*t!=?fw@OQP0{wx*T40&L)+=udOEzGQEFMkUlEHeNJ_x`9uP!ZxKN2T9_4Ayzf4j_FH z)drS$2k(i$|2FsETSXHt#owa%(nEn2n69P!vXA>K4qVMO=>Bsw8L2fAw6hD(18WN~ zO2&xMT~J`?Fb}K($`m6wV3hqJ9f+#EZLNxhs6Re+{DPUSrRQ6QasRX6;X{ur8>+Du zWNVcS$rNibuS;Ldg+`?g?44Z~PWD!H|F}Q$san#!GI**o+2eNQwy4r0Uzaln4nx3K ziFgcdo--B|rPP|)h*~|BP>9`gw8)|#8C<%9dJdE%3K~yu0?g<&umHQ;4oj6)mXl5L zFt{rpkChv|bR-Vuzw%|HqMHQ4@!q5{4@%@`%?rY7)X<{HZN!;l-r6_F46mVK`dCM3 zo?wT^&W?Sbn$qO;n@YAMv-E_byvm*EV$jM^%O`XD&!76ghGV zsp}L_cbV{MaF@fexK^?6TqLe<2EAE^`!N`j`}4i*3h}xEc=;cWFk0*x)2jSq7di4- zpf*wyqTd6ZC&;gRx`A&?sXE5>GeT)rL;@Xr^ZKv2H0t>Fxy^|m={4IUYW9N<1F(p= z+9P(S*jQGiFv{IESQh{pp9;VL!cqhsz^g{>7JSowt@Hzg%V* z=^Hun3qQJcw>U}tvHi7gBm$Q+E6@6Rr3=$NZWF5f=)BDa&V3;=@R)b;*u3bYTs7Fe za&7+PTq2vQdNCT*Y>fmmjM3HK)EHn2Mp=US+Zq^+4kxbO9)wE+YE=v>ih zgEiU*v*WKzeWrHnq{l~i2MrVEt4azdwnaKp!*xem2zEvY+6hHoi=aLfl1GgXHkfA^ zEHnhYk6$U33GHKa20m}9H?TwEZzPT5U-M_*78z{Cz50yS2bmWRg_p)AWTiY50HnS4 zI^AJ#rhdBxTjCiS{l@aqm`m#Kw4b_>Z)mk#}=D=UWBN=_ImMd0tk z)Qts~;Rk{xLBu=UzbtRX&6oLwbgr=fv`djHIZBsop;KvLjgYdn+JDvkbgg)X#xF%M z^FU-|aK+!s-1Vjcp4qGT_KC`ZOIOz_;ea$P$-j%f)RVaumP0uVA*vNggnESXeM|5E z(Yqk60}CGn1wq4bb=X{Q)qP+ECXL=B79?a{ROY=smtJRybwmwD(WylSk|o~HU8+Y@ zd@Z3{jJvZWbit!*!`Kz75v zqT5rV+T2s?N~B08MP$!25CTlV*`qKYJESQY3D;)p3G>aQP}j2by{;-CBLkB6LfLgS znUkmPBSA&0h%;N-lscwK+Cw5t@{@)8s2R?}8nIklGLRrgPJW=>0e3p+0zX?VFmc)$ zh`|}&AU{n9_}qe=8M%^UJUIGeNbTEi1g|d%xql-c`g~5d0o6}F4@Xf=y`O9k-wl5~ zX?Pj!JS1lF_#TRojQyAt+FH!1jTA@XB4e5EKbI+2QxD5;z?G`&00Q+<>NIE=TTaN4 zJ4y=GLz6&^z}lv&qkG!GS~Ke6zFe}PJkHjONizR5@9o+dbw_la#%9d0EG4f_j4;vR z{o%5E$x`o=JkF3)567SQ3{gLUO^?{njy(DaIBRxu{qI(QM*7s;KnT>T4p+DNq!+h1 zViF)_E}fqCh<1-`NVY~3T@=8)aWo&|=N2*YbIDoaQnDB@J$*`a$m2m(fmqbs(6?Z7 z6&-Te@ zWXsMxUu2K6w<96@*qiq`==Z*Vy#Jr`8PD_F_kCU0JwC~W(|xZ#S?65Xw;S(~=>_Pw zn}ZZ@I!gJild$7A`V}Bjh$-&#ymWA@*Hm zw=fN?vN_5-_bi)67JL2u7GfhL`=qs3TcCCsdgI!br^CUeSrxpLHZnnR>kB_!Fz4Pm zq64sR62OmSKi;b|iSRB-3#o6v1Tc_EiBbM^;-KefyV~?-DgLU;*K?wa6C^rXhEMOH zECzBIuRGDAXS9kPOYN&|yI3_%z7h?H77)Q)m|wvYQ>V}nn;qe{bS7Zii?dwVvFAIN z@)!x;0v&RKKK^+;Z)UUZ8yKW)ye|7}XDuy4ADlhNKE4R)V%t6YXvup&+Bv3B13a89 zoJi+rL)+`);n|h97fr>h#Eu|AStc)lW~yjs=$PXV89!7(!Lqa5*BqTAJ+2BlatdIx zcG8W;i$c|uH!q8bYtLEw^{l356WcywdQDufp($(1GqSh!@~SjTP}OK@z@uFJEqJTwhx8LGoMm2 zH`K`CG*OsbI1_sbJocn8fD;yYCwv#K2j_1){Y`Lvr(?>quNHupE@dSo; z%x}|$##ZV7-JDD5F<4K{(k0r923Y*JYq7y{8meG8j3`bJpC}Q&K*df4B$W1X5v-V3 zRD#`%gEze7!2~HTu!!C0#*P<9LCk(Rw3<8zUZt|R58C)Ucl;vUQt}GWS_RW`Xx7dc zYA!O`iT=$$ju3n6gSB zF-ql3Cm4i$Sts?6Rb7 zlF4!R0>SMWc!=2#XF546z>o{*2HA}wmsU5tFJ6hQsEoGw@t@KZB=vM4cDZhA%%{s! zJ#-v%O-g%53)R@#*-Kn|M?ps#&j|SCLC^M&^WP+ciHygsPwZ0r9Jj7$*zOWXOOTotVgk%P6MgK*|<1wKK86Ak`?^)41L z_0tzbX}&qXLXJ1Qu(8~}n?6Sj%bMJ|Of)9tx=dkxl0H*ZY7;}KC-(D}vAHGWp9tO*ls zwTW!0JkW87)v^Bd+PXMgprt+skwm+uRZ>qX8ptJ8$?#>#yCGUf9QaU-i4|^WdGV7B zo`bga@%Vf4#}*Db%=XFr=JIS?Kg=?~VqQ-95uLW!P2bWUDzJS6;Y3D{zef>EeW~K9 z>(?A7lQ9W!6>L%~s$`;#ti8FO0UeJn>64x^5+|=vMXUEd%^rDEAJCYo41N{ncyIFk zh(=8bYZT!Jgz@xw7bB>!-&ku?0Hsg~k>_IyUxrh9!t>+^NGp+#O1B^fs%15+mAEeD z&TC6!ABJ^zT&wB&X-mPB0>8|^@7d5`b`Vk(|H5liL;|{H`)h7CoF7ES^a**n`}69Q zDK4By`EUon=a8P1NHf`w-m^-Y=E=mh>v6k|^SR_Al-K1Q?sIC3(!~Y{uph4DFX6w< zuODC+7^}2oT{qo3tIBtwha`&7Jth{qEEA40E*BZw5OUPC3mJe#vllJ|#!b|7ur^Ca zG^XWOTlbOIg#N*6n}j&i0g){y|orAzoSreY5lUjV8%zwO9J8 zot^`@_%GkTpop|s5-$B(T*}^d@6pO%D zjVt$+J;W2;rWV?8Olm_O9h^cl1@&{&DBUjiT975^hIjjJxA=M57l;UJ{w{&dW7_yV zgBl+q81>0VdYFN%?Nxvwm>^Xi0lA*lT4VTy{-5#u+aRPxz4(q z;b!E^VQZwRxWiEMDidrvvfbNp{(UD{63Nzr=+7mBb#L^&Ld4E5MhacZqp#6zreds~ zwN!ZGWh+1or)9~2g)xNGm%!7$Ek;MMA#Ijvq2V3Hi8lw6K9-vzcU&!Q?5qY*^uH)v zsJS?Bz>HKKAqDD0CU5#3u>Xv9mm3z9^`sLK;i=p4nuiD%+Xalj7~S`hW~E!i)Fcti zZxTK&4`j&=3q9imMtpBA6y*_3As?kcynVtUyWBkuedDeH#JB*xk4^kikV_NJIO>4j zBtVzw&(agYD$reGE#b|};%5yIKW4;eJ9V9YzD_qM1|)BwN}0sy&CpodGTYhVPDA2| zfptL;4C2p*4XrR%U>^@l9sTKD0mZ#vufCBt+>#c-?9q|H#OoV#RYH}{N&7VGpDg)n zBCjIdXs$Pf<`%6~w1w1D9ZQ@tuZc1_P+at>rcd`P&6N>o18u{?n(EA*KIE6y@d5yX zR4@U7wGx;k58ASLrGh7mIT~74bG6iYycvA(45S4C9X#;H@Ag|ArM7fUFreutBQ>A31^}}+?9J6f5>3H zWjm(5YgSOZmRzOZyaSdKkxh)e_wd|S0UxP7<%ESoDP_#;Z*2_wB&rkLhTXNvKz~N))DI_Z)PDChGPQ>hN?1xC5R&$t=nM>+yoHJF;6;7Zc!bp*Nkh3m z5-*rP(t0Wp72BwvhPm(p*Ro!Ze4E2^EzBJl;QtDj>T0~WU#r)zwJ2+&r9Y?N+FFjBMXnxu zH*7J$jtg3@Dm?LjKo4AO?=Sj8=L00f6dw7vz3p>?dG?2sO}Bq z!w#JvuRl24B6i2SGk`x7;T8v^t*FR|d+r1%?2!1y^@%wi29;Ms;9#jy#0palnJX2R zWmFyCrP&;uYz}a;O(D*I+(welL;N&$Sz_O|zqBCB!hJLYD_nDQKu0J2ss`S5C(}4E zbt#o7oyB9IKAYvdcMN!s4NR}05u`bUTpmd(l9bA%%{^0x_R~qTvz(f*47Z+!O1&lf z8$iA{2_|{$_dT!WTN7T2_k~My{f#|%D7}Zq{eatOmx(C<`GSc#@(nKlJZ>j-f``NW zPwk!Z6ic)B;8Ta{qY_QM_ACY_V0bmWxD`|Td^C`>Lx2Itd1>iTBa}$UzOZ?nXQG^@ zP4b$w)HF#Tp6js7xhUq&fv+X-V3;n(Gl zlvt2imS zd@B$yzITVRh-FEh6(&`D>u7S5f|;6H#F9B9)6^AIx&a@_Mk!;S#`(2zT-K|n>%%;W zywO@2WocwD>1gIz0Ea`~6w{C}Ia)cUf))@u7b+Kr*C3&o-j%7~G|%}Br$%qMU%qYk zYWY*?kNl<=IhD`UkRe2LC)xTxa|F2up=0YPKX53p zgih1nC+Z!C?!KBssivur#f5*e1o%LP!=b2mTp?XQUl`F6=qF?L6?vRN^JJo*^_;qUG^Q z@P-EyDL5r5yot}*u)}<4A0UdnOhhGqbvB$%Ya)o=gOq~cLXjY4HT9=l>j(g0b5imS zRC{N-KvA<#ZDo=|oQ7&!Eh-P)w?ykC#A*p&vzvCmoWE*X1}em7RgySl#(xfaX>n4z z@C2H33%}y_b;4ye?XoQrjomI}gREjwS%RRBk7U{iU@wJlaoAoNh#FCLl?(Dik)ub3 zJi|8OoA6zmTsG9q_d6gKO2(;0TW@4@$ZX`mn#}1pg9sP6lgiwN>Qi3W=w#5+Yngv0 zp8lNFN+DKZXt?u_C+d(Wlyl*#U)c*r+&E5QV2%!|3zY!H2&&kS+)5qR;TX8-+YS5> zmo&8hVVFH9so>mSpw;RrCUJNT=8(n--#nuj>*)QWF}0FyRwQ7_v1?DtoM;T?MSOTa zIv2xVb6&W+psGD9N&zK+_AA)`jHW{WSP&^_DQA|(6lSX!7dz6s__O6kL6XU*{uq7$ zD|4lY=f)C?>h_^Z7e96rA^OOHxLxL!KCn^iH}$K?7sD?ugjmS*p}%sL1-3@M6Itx$ z$$1wdPqQcClOuAi5||~8UDe*C;_^aUJp)@6hZP$HR-mfCxA<{DKk4!lFYwHmvXl*y z3NArbrHb$gP7&6nuJFy7c2*4=r4A8yZovO*M~FJkN5{FUMpIv|-|dh(7cTKcsmHzD z-+6_Jv{z56Hwop@@M(F)oxKE8XalBp7IQ3tYbDyYox903-{$*N^OTKvEoU9=ZDM-hMFni+e>{#KG)TrO zK%J*yr~_FYq>De0ip)?qgWvsVOczPMxJ=9%M_+A)XS=yaa@={k18|NWvV#r{r55cOXc0! zBm9_NNlbU?mHf+TZO_oWbya!L;$~kVnzHAk`pEp-$7Ao<`BIEntTEDF`&r${p}erK z50t6-L-XJebU7vW_6BM;{qU0G(P4PUMLZ1Mj&&IsDs2^I6SbY5+;!$aIbw%R)4Z42 zUexP5nhWN2e8rjq9zJ#xIp-!`=tdBvj#Tt)m7L2I_5<|($?k+(5tBM)g+#{|hAc&3 z*yEf|iJZYKiHv+%j@$pDZGUp(?r%qL6T3Fw*!4{4r`tUY;k!c@+jZfEky`=VKF;yQ zS=b-M1@F9ZA6!yz`Zjc)+5y@P6}fK@)nG=lky4YBEtWQYsjMpKyT({oze%qGF(msP z{V-^h85DqQ+1YA=H2~P5g&4^?hv=lqrP=$l9`CN=ZsPSi^GeeAA=9vFxZiG!(UnIf zbgS#;O4pO~pJG_jbNnt_RN}vVIP`X%Aw?BDBgXM{X=2hlT8EUNk1zb>*a6Rl%faNJ zY49}2803+|JWT5=bt!bqjGLsYYL1*sVHI9Ww!tqj#EK7k=&ayUuj)~`wwWrzNs~Y_ zPv-k_t$-K;v7EI>4|fStO?Cse4hjq(SlupG0@>IqI6M3%pX11tho6m1SeaqTL(b(K zV+WJ!5uW}n7JeI03c?lcB!4_d-$*h?3A2mXjNsonbjN*DD&m?AT5&;yAqUq7RS668 zw;dpP_8SyzMY7SIJlJZ_F|%0}P*T>;y?;19hg0u!oe!Mvzkx^5=46WX`vq%D+L!qr zb|55p8h)&a9=x3zV)<7K5ES=zqUtONszU5wW{Kv`xv>7y)FY$|5z|8my_B{~OCSN| z15`6yZ;3Zc9|BcG95+~h!sIn~+`GOQCU}s8x>Xl;aIUaPDFGXM57;_a=jxaGSeAMUA6*8C*v>L1O~2JTZw(-Cd+x1G9FAm>OV4si$FVSycm>Vwgp+z z|2A7>VvoAG6Ab~A_)l#@y|2F{XF#eYq@Jsp$Z%!Lf8f+nbP&42@d~=LiDQ#QR~jlO z`SMTNbut?%iW1&;i4qT{7=H-yal#ZS*=g^TtgMtnRW(eFiZ zrzLj&+zJMe;6E+^0GLskre5taxYKIW9{g15;REF{H4kyz17G;8U)j(m$xPA-vHSDb z;&#ogByGnI*0;yzy_kOHrK}TAou1L{#u?ckmdS$lwO*AW^&vz#0NcJ;f{Vw7r1}*{ zPy2H9!%8EB3vq+bn@{cA-3Tqee9QBl_^_V@Zfh`gU$HdCh1rUAMsSi2W|ViZ8!d`^ zjioBLc&|Tm^w7M3>25;tUmYrhGB>NVdY_C&ep=oq)_&;Ol)MvvwI}MLFw;6*ojutP zNgzwmk&RkU2)m7cNz5B(IDYByA6P(d zLYW@zQVkp|{oHe&C+R#WOf*?&e4<{5b-EC^nPytUMH%EWg#u-C4z&*tZtS>@QLxjn ze{l3k5dZ71MBwja($&UtZ%KIVQy;x%*BX!cO(9tB+Z^x8W;wOpH+~-<`!M8rHN>Xt z;7@lRPD#a<(E|~r8U0%P(1!)hj7~%Kg%nq64?h2>f5cNH8Y0R+Kl)SpUa|gQcVMEy zPx4Da-IqmA-cexjpo1!)L?&ua~hj8)CUfMX}W% zi`SAGq7KN-CgX9YN2_e~iz4CFP4X(W9ijIe`Q%u?$C>D4h)DD&T<=}C-|w@dqJuIh zCSJXRI+JZ3$OSF%(PZajjQwnZTY_w-55-JP&LqwiyZ_3vA2&x-y!2vYjBr%8bQP+o z2xvK=lDQDSknn9Dmn)efb=?TT#@pUb*`6$OSrPs@$+)~=xK1eEJutV${fpn(C6~-+pTP`B# zQ0rm$nZ?~Q+?b$yL96MalJI?E?VKBd5y|#2}ae8Xba8j?Br~zlNv$SoQc& z5hS+8V2_~5b)=&v6IwW<0^s<*8(+C!(@v!x8h`DQys}k5r}L<<7tUgzmPOjNdH)0x zcFU%~bIqabBndi$pFOk%P)#7muHT<({{#bx7bUzjI0ayJOt@3H&uY875F6+! z(gu>;izepnKdVtl@YDxXiKYk0))C+zodbrzT~|D)J&q2!{oq~4Govv7D1~Q; zg@)a12kJZqkQJ~GUYt^3b8&hCspg5y`gS-;Q(BBj5B|y_x>y^6f2tyXX=qKFJ3-NN z3hSd~d^Anewl?|`-C_vtIv6u1fa~G?de7SArfYl<&9VyBP?^>c8K^V-n$BJhM{eD| zd00uK%n`Us&SX&~3(7bCZTL$8HC*{Q@JS2mQ9muh0oV(BD%#|q<-T2isLxbUIdFay zJ!QtJT1yvvN7v``F+;(u6nuk?QsR}ZU{^i`?PoHX%@N6+NXd`gH}xIMi%c}c0~>ft z?&+RrW18i7}lCcN-^z8x@)lcM{~-bWKc-SqPF%9bEBD zoaw17J>9`@VwbOS>r7=?Mlkvsjt;e&Kb;F{fUIiXjRob==?eaP<4ITEMxJQDZqt_ALM?D(x$1O1l zd#dzo>FM`0z7(Zgr6A)~p`YIjE>fdFZWK*7xETGbshI$`8hTImy(DT?qeDO#-(X_MX_+l2|NUwdePs}^rv0!@< z3;BMTb3^i(Y%*o?Ko)d*3^djXqNJB_(bm>O{Vn)+pUSQzhxS5gid- ze3kfGv*Lyibw1~R8~l%n#xCp^t|&{YPx$3+M^`;IA`#mCoLPw4|lYEs@W z{kYMy;P2m9X%O~rp)1{9qC9#+yRldUHyWGUaY4&5(16w%6X!`c4&;BL?a4QAM?hAH12L=1TL4D?BQs0yb?!OEmB`eF-H& zk~>Mxs$(IS(!k&V3O;`Xw)URpIRY78OD&h{vH{S=iuwQuAnPXchfVOqQ&R!*!-aHx=u!ft#94IST zd2FcTB)o3i-K>5=ycuHhivn~BT_J}T+W7X&Z1o!6V?kP%m?nSRwK@Wy2H6 zhe?K^dx=SG&$aZLdhUep(`$Vvt5JkpKgj*bCu5JJ(YF+MVhi45hu9tIJ8V#SxZL*v zVLm`|`GQqfjGE!?(@)Bon9oM1Vz1r4rD@Br-IC$(l(+F>yr3hTiQj^er0ZB9JZG#fU zx-tfWli-8a0!6&zoWBfw^qw+Do-1F+ScywHWQ)&*@+S^Y)4-eFC&3x8m$$X__7Is= zfIP@DWmQd(Elyb+&9Xmo+x)Se@GPNTXiUj95YtiW*Ux1#m*u~d%Pd0FU9cy?Cv@)Ld+-(M3CanU#hWd>x& z$Zya=isf5+jE}+%Ab^nj3#3`jr3&7~kQMys=_+A)O9!CaP0Z$>>goIM<;(7EEEOF4 z7wr8U5~0dOl{xd{G;S{J*0pI%oK zykHv=74cSU;OUQp&&(`GQ2?`(RA@-Zu#O6;mx3@qvksScId|m^Vwm(jEMcsm6M>u) z-2dI=+?3m7PMUB_dM#FYF;JB1kwV-JFNPu&6I?(OdgHPVT)CXj{^vRdNqDQ=7}u$P#AXfd@8OGqw6(?K<{kvsiKXCmde(>x8Ogw2dmaa>tXHB5a*wJPrUM5D zlPYwH90}8%*-7c?iW4#BS`;Sx0uO*6AkR3!DvDg%nbA~~4efk0+H$w{X{A418D-nj zqMI5lc!q@9uSw4_ABl*1%&Ck7e~SLx zD^4V%R9XD;?Zm?A>2RKK&Oa;YXeaY0#hp3_kBw^_3b8E+ln8BYnVtDslPqU z6{VW3vMB{hCUD6eoo4@)w=YROv9PMG))>3q`H5To%o)pAJq5oeJ4`Ng%*eAs2|4%X z2Hp^3&3g_lJ!WC#{)pd%eT%wtpRf1Fg?QW*{0|oE zw*Hr8+s1uIo>7k#EPMk(=*SJv zD)bqOA6RJ?tr>X0Kcl+P1!!*b(qhumG8fY%e_M>Wi@f{a)|5$}m1$CGk&6NC3d}0f z>G}6IMDkBetq^Qt6~w_n+(zq{t8Ts`ek6tlKKka<@~d}tGc6X-DyZ4@PNU6Q+$c`k ziW!qjmwVB8VDD^G$0EAM&qMN26!u!`w~VR%$Yk<)Ml^+MZ*i9FW+K&eWs1U)WJ%%zdI|237DvyT0W$G#GCMze;HK4yi@u6LjbkmiCm!y{jZ zo@RpxRry4$(e~uz_mrip$IyX>%r+Y@MC(aM#wp~z$I_(PQ;C#hvM2K=ui*03`sL-$ z4`d)#lBD#cGIwMD#^|@wsV;w)&4dGL{_e0HBplOt#QLW~*l0Cu^KAXZpaL^m7aoFg z)G#FYmyO8qeY-bD2H;d7)^6t>_e(aOnwj%_0{B=xpxfk97FE44fEC3Ljf`NkT9WO--@@19_%3IdL%oihalGm^I9%HI^ zLEsVEJ!zyfT{0miNW)D{Od;~Lihj?UNMP~ax@ew4-kBP&=d zzMDg7>Dlv-VB|28-*kP{whDd`Ty5t6j?=n793<=#icH!qT#5jjxKCJ9qJ79j;R(aR%wav+uHYtXhs;0M|)-8GY1s>(@?bQX@pa25s zbO$M!(4|Ps9d0D+9SdoP*;hrXm+g2GPW?gIP>k1!u1@b=oaj7y`B@_~FsFXjKr1|B zJE903&ofW?2fm!aZEq^#xvM*!(|WRyJ8VGA*2}$Xrr;Oyc6<2YTWKB`n$TDLUg_TO z^RnQ74|s4n)*Xt$qMc{z;vym%gF%rzkFo%vjq&@!nEkQK((5P%niqM_PJX4(v9ZXP?Kie2CD`?fty}Hw;4DU&@Ub`4}X?<3dF1r_gteGHrBYP=FC;pn?4oZsT>Qe$v_Cl59ZErgLXbnW&0Z- zt6BCpefGoW=GE;1(Wh?XKbHodK3U0Gch|Ksd4IHtFEnBlz(n0g_vD%0zrQC0>Pp{$ zI2yOS{ib-20pOH35V6af9PW81?^P*~$yhOWcJomdnNvpwICoPLhPnZ!`qb`q(%i7q z{?RQ#{L$+LY_^SM$AdM=lC$8WF`t(Cu4bwL`)tY>iL-8Ur6W^c~!TjJ(FsSac z$Y6J9-Wzo2CFhk?fuO?+S+=hUEb~$KntN`RbQorCRuvKXC7tJkh4A@D&^YL`j?siBJ*YUlt~5p_Q=mW z3f4FEL&tbmzWvd-t1N7(Z){m2ICM-*^wjemei1HTVJ?Mv^4H1|VN6jG_^^VAPQ><> zkkx}%f*s^`_2R8L9z9259MaDe#1IR_0<)~O5P^~)OGb`)mu{1xGmvfjD@2OCMjgYm z93GRO|Dn96!>;|rAiB?iGo_m*9)U<_{^x~QZOd6|TwsTkUOG8uw>)f4yehW6C133Y zf*%gB+~`0z)AZ>rh%$=nT@ZKLLO!0=C*>GQb%11X=lLgNTZ1dj3-KL@da6^@yaW|a z9agD;_Kp*~LbykO96t?ASNDCfu2;@>42ulp{26E3Y}G2+#TId~TbKqM$()=SU@crzr^ zJ~-6D)L(Ji)9L2uG@Gho!do~JH^X`y}4V@#Z}-C_n}w3k{$s(D|Q(kWB4nw}CqIp|+ zV!45CV*PCqeKiv|Gk(UmG4aZygREUGP+(uk>vGQJ4BMe=S`3zammh&9_HqGOhXu~B z<7`+&t&347{`QR(nwQ9+h6p$fZVWkUy$NRcS1^>aNpqDV+F)@R_KNhDHWuR&_o>Yk z+_YPyMi08a3v~G=It`xN;?0waBwxHN@6Xv!wsoGMhG#$=DodX(<%`lJYNddAjh?ry zrAOA#rt?HZ?kRp3m{Y;NGgDjf@g^lal&muTLywoopu}KNU7q92wDGd{kp^u&VFnW0 z^%-&fcMVoc>Obo!UJCoJfA#tLVTaPSGtZn`i*XADZZW<$vXe*06 z5CjBGmoaRiM8GyrIufg@>MxM_-qpx6XuVfK=^qbEm-G8Y|-=0aF|dpfSk7qSH;D+}eZAkAMkCrdj~y;9%4&3;!77O z78;iFSS~Z{EfMH{rq2fx{2;v_nZj6msCj0wxQ@Phx$~J2d3bv6T+6s{)}gacdPrZk z{c^!Ta@f(HYdVuI$(CT&boXE`*T#Dp;a>WQxlp4*xnj%lXWWE`81p~8>vVI^TS}fS zmp$zbj^)@$btH!DOZMO68c#u>2i-ALe4&}iUB7NT^wahTP@I!Yp0m4h3_Cx*o1z>Y z(J+zdf3evXKHfI&^lefB#q+NgfD*5clkeP@czZ|oFaldylY|R5FI}ufa4(I`d{n3v zW3X3L_iDM1X>01Gmrh$wz0Jj9q*PuVSPqF`T2#{MJ6K+vSjag_0U+avC_o5#aMfa% z3&ejLOzu$qJBu_W*5)1U7w1p?r+a>TfSUJ|SPrxpei3RK8Te;=R7hWsIh({EnSZW- z24|dDvDjL(pSY0hnX|LzIJ9D)6Y|zNif256J6S1ZrM;|ry<*s6(-aePbr%v0*>w9I z=ZIpUnjq!PIPx+G$2u7Vw-aJu%U&K{KB8j8UcZyvR;^J(*mwz75|CY@m9=OpFaBF` z@b@%kaH+YBo}ZLFa?jrhO1oIM4a&}|ua)s%teTm-EoM8&|B=8)@5Hnq{dIFM7zb5kU79^RL+)mxN4uF?+SWx@b`H7**(0O702m zr`)1FeQ#I8H7dh2!!QvI`^sS5lZ?6?Ric$4!zWyC!Pym1o5mvoDK z?(ondU{?SsViLpdKT8YZE$e}E&thGirG!BTOO*CZ<$V@{Hm3J1$G)#Wb!dAAND~4< z{i4}_@y~&pa{zm9$U?_A;H&YvSU8CbOq9$oXwAey7e|FPdWzS@Cuk8ChtHZ-e)-5uEBmNd%8N*qZ3)RJ} zowvjoAC*!e)~x}2P`dAj^Epq5e>cTJ5%bO8x`-0PSQ=lDqdwgWDmHBq(5COaUv>4o zdm$doPHdhVgmcc$8Lym%isvz0t@ti8v<7tV+DyA$|R{7LfC8fJ%q3D6swwu=Xg9cmNivhwy5CTLxF1QTZ; z>>+N-(xuiSVc%iqyVMmh z`Rn<=?%Lc*y`yWn;_}Ng0Ha-BcAtiD8WZVJ(v~2QPWOsFF5}Tnv?t?RA+*tj@pq!D zHe+^qN2dYP`OXk0hsIVr_&7rqqdV=_j3OArl+-$FK4lt0mf#1P`A@)5*^K2z+i0zp zr&8DUNFZprQ%`pKcVt>lXe5G08EnIB|5bcQ&=VWUyK{~9xN>yvM(G7)IuSH}QETHP zExiCFBrTFhciNL(gHK?oUOJYM;PjzW9)259$uSWdpK)`zErXN<3y`N!ihjL?j4Z7{CR*x#mZbMt)N@V&H@#0U`dNGz9pq}g2OuTRv~0y zbWvJn+R`9Uo2Hbv=pYwLaybUCx*pNhBV`!uG`%Q38Y`^fy&#;7RJ0(Y<|E`rPXB2p zbzS_&6vejytkmOE5KDQqS+CZ%3iG8nf5V9bGu@rIl(4Gz52F6p1o*Th(E|xNvbmd3 zn^9B4V}7vcu$EhG)ckw?7sTf;M@QDkM_{isC_kgQWw^HW&cb`-GfE6)M(Mg>QOfnU z#!RnC!m!QLMnB1vV);B#Y4S4uF;m`cx%#voyMVFO(S=q4mrPA~$ zXbwsvM6aE7j0PXG&sb!$G`0A?up)NepMeFmLqvAyX8%9T8)3^~D*jdM3q&e!e0F@X zEa(B_QvTT~jOKmY_14N2$F>rB={%RmoY{;vhNJEanI}9G)2#zu;ECJf+-@yuALPkn zf~<{T5nt{!D0^I-DMbFwV8R#-+TMNJDX%w+F(_}dY?)pyB6&%&rQX`WZ@rkc`|xDF z5RNy&l{n1h4+ZfrCgdWRI*_|!8%nH zbD~)xIhr!mRH=}M{Uc~qR4_^b)f+ndR$Sv4oyQs_aKOf1AtUCF(0OaJtMmVEs>5Wt zX~~BvWQVX&-E7TcLcaKk$%xtqVc34znZpz*cituSl^oR3-tHeGtA^|mR`y@KR5ySdPWa92!?0F)E^nDEm0!k zr8y|?KzAK~53Au|cxGI!a@C(6B)t3g>>xMKP)su2wkvXUH-^6E&$m^Z!+#gdLcOv48!EL@N7;W>gKOi9?g;{0b>Z&kZ+0e+%OW2eDM2U1K*OIFX!VM*o72L$L( zS_2@HOlEd!7%u*HZCJ=6noYxdC7ew0RD$*y0*swTo-W~b^YhdLC**o7TvaiEDvz0- z+f3}i!r)0vzi9)gKFvL7|d?6Mkx8SIER)-`W|E|({2TD*CC^Uq{MyVOE8@=ErcRV(j3S$ z2xntnxL&-OconoXQaiYuEs9(ip2IIInHublgzHS)=HsfH4>rO zo)@N`M%DLrcwhQ=LvJmh$B>7NF@|j}j+^-~g)J?Oo9R^-{rMVqcvlSj`^kkg=(a`$ z*8Sn4!pmdj&^B*ok#dw9*A%o&rR*m)C4Gj)oMnt6Yvz%V--rtSRgEX73w=|@Ximl@ zGfVkg@vnk%ia~hL%6iId8fCv)zX&32a-qf}@aWmBo?*%m|4{j|x*xkR@|^O(eml=H&2 zOqJ#t(DE?^appPY7V-b&8rDfeGSi$zD}+2`M0G^iy{We<0_XivfMmQH#Ac=)I+8{o+QZ=yzoigm!o#_QUR<_>R2^b z$)f(rI{qp8`|Yv8@~UDvM;&4aKw`)ez;%PqhAl0O&mERM-s2~80wu0eS16@9q~oy> zPi%@J1ILZJ_G4J|s+YTCA2}IRT@FxF%&{Lk!__w3axtvZwby#U@JOn|beFh+rj&qR zTLYX`2TE`1$)9=l;+821H24dcsxmIJ4YGQW7_ZeZk(H;DCzU@Xf2-8v$0xENULXLT zF`TZ}vSR+oOD}9zW!}O_-kNRyPqD^UeUSq(?@fK~I$_;%$!ZjxLweV&6uEz!w@K+H zHTl6Q!B4@56w5c)yMY9=H%njp=a0sgt7+Bx7BTeaDhL=HMLb)4v-?CG2N=>YayGj( zU}?x(Iu_fR0r~RHKMHpU^{3oB^_a{FHu@{^b^OJ4=|VxvpFyo)u)+9DA}Pz7(?o0GK;}R8C_Tpm|67@*9Iijt_5A+6B?Eq z_I3jDYEOha;Y#tnjVRvq<8K+;Lgv8d9>$o%bmzzCxGcpbiD-Wrk?D3w!~S1=?TGsY z7a0N%MpBr$Sm|EVZ82Kswp?@eacL`el$bz^#a<%|u~i$KH>}ePxKJ{<5J}Z3`Mxl( zXCylO-W7Rlt{RuKMVJ?JNiF`?ZJ(BA-h$mCy-8}gXRXrqOh_gtcuNgM@AXmWs@HI$ z>wzWzo8vEvvkC$W+%&+n#q=6eP%r#uXIz*njn~ele)ld6&{k%*@wil6GIEr8bWHro z&TS!?r1LW^<&@IyYyO`V?N0U+Ow2I;kE$u7q85GCDgb{P)8n1E9k-r?h!@SCn}{dZ z`TK|iqiLU3vmft0<5aIdM9bli13(hrE2i+iwTMH$jQPQL@$t=USoYU*TzRO zWNHt^JXHnN*20vIzjsYxNla{X+v~TR@QU92sSfA#uhQObwKQ60MaQ`PT~!iE1w;wr zPrk<@ok!KDKzWlSW{t4U8{I2{gpKCry+%m^N%-!n*M$P>2j$V(LT2B#A_QJKnJ=Ti z2OPL+srMc2CnDX(o0XuFpVD~^=<~}6A=ZulMlW6P>Gv@n+i7}zPe){`J1Cq+f{JiF z-Gc7ptfYhDFD$dKZbCfQCLbOuPX6apveVGqmuu}8LVkS7b)JVfN!%s8P*B4e1lx)l zCeL!e)&NocNCY+~c~c;3F!3N2C~dK7{u&q_ z_IP*hePdPuPpL07o<-MPwPwwyVLtF=GET@8=eL#|DmFTK?8Q147F>bz-mY_lVxCLp zv|+`DFkS*rr~!kZk4`MKj7wZpn%8vLm8gs^XWa@_SDOtd5BN%rw&TKi!g%$&Jx8ONzU#5scI;46xhnXfaJwr#=o@F(^d znl7Dehxe=dD%HmpiCBk%h6YK3*?M7O+{!~&bO)r4-rwT1iSA{Slf!~ltU(!_xplWl z4sg`$ZBLp!34&c{!qqSLHt5Vxe$y=l?)5wU^P|P#cP(SrLzBrU2nA+Z(lZ=XHr0{; zK=Xs-AxH43dvyNhZoee?sAp1fyt(jDIWWuA~a%#I@5!Zy--=haNPcyw?)N*79h zmt{q$t6uQ^Zij=wQArD^G6Z*faWn9z^tVS(U;Ur*zB8(+to=8D!XRKBKv87W15Bg~ zNCzE9;n3oMG^t7x=^%t&ET98|oKU6BjDXUW7D{NMFrg|4p(R0yAOr|C5K3}SK;QL# zyZ;aOe!2Iov$C?z*?m9f*-!cHXNR4H1MY}FRP|rot{?kB;h&meo$JBBii0nkULeVV zrjM7N!9I~^aRcY6)Kus1@+njgyD&xeoqgC|G$R=kMjZr-1MOo}UsU|P5NI*a-m?Hh z7VWul{Rk{9sC+b1^E!}(lF35^&TmG2{;V+WVxm%Y#keS+np95H(-<=siKCJ$UTslx3h&u32>fEik!&W(mKE=DG z+tR-Kd-9??;1s`zBxae9+^`E&REUt~JR{$%Og68i-al#oL)!#WVmQh_^}Qb*wHf$l z3KJ#uB%VL%E5jyT+l4u|`9qI1af63&$I^5yUco5txi|Mg7@Xp3VCB{BwO0AOa?h9# zQzg9LX*Tw@r>ED9y?vI@%F+P`;KM1$EbYL{#O?nSMT0fq&5V3A$wVXb`Isfx|ElX= z=27rtfVkm3YlXRwzdL~Xj>+;|L&$NzUG0of6ZoO>6X@+?l-H#Bp5*_ znkP5T4(#X>LC>nE69>_emonI5hbw26ox{1#j-QYh*5u|Mr+i@L;%{3J}?zKIRo9 z{zFLpvTg=8IFQd~bZVc_-@M zGNuK!BGti-V(nLMZ&$T4m%Vqi&e$0rUFhwazDY03^8PMPgk6o1ze(H^ooohc8 zJaNI{XRww}e!pt7Yd+Fw{b{*O`FInf`*_{q<02Dc3Suwg>na!0{zE0vctKqLdd5FX z@3pe16$hux+EdN@#*6(LrgRQ7gyfZeZyHN=AL;Pf-E;wf`IG~s{;`*La3!(+%4qrW z3x0dfOS|p6+PTe#k8^7B+|vJge`NiKc>v%yyFZJOT%4;tj;$b05?&Zn{z zuF0NZRA-H;OJnE_V z5#u@t@IFBQ0DYCcQyf&J_cZ?8Ec}E9CcHaIs4CH>?t+~>op+Z5P-KojD73>nst>9% z`&H`HNv?@i7QZ3VhjS`JwAPM;g<4H}7jl;E%f$_#$FpxA{w=dW62Tf_W3E~>5f)giU zf6W3MBDyi!w?!5R53%6t<3c5^&V>KvLms?tNvsrv>1^3_oq2~f6N-!7Z@_B$!W7OO z<4fNcCOqcI-hl|;B6+7d&iYskJ@R)s-bKyu8 z`kxSdQS;Gcu0cRXxl`|^<0-D~6T?R~)D}}bI@wW=;5%<_^}Qf&GWsG^-^Bg!U~d

Kn~@Ap`(z;(8N;O{1(#i^(cy}R{Q7((~?ELN!c!3TRHO_dwW^mINEI7v&u znx<|A-qzIvziHPEviy)T5MmS%(ypf4s||#kew>8u zo;nBS(w4JIk$nVP>ga`%nJ)oU^R0tMZ-l-lHsB8$JTVaEKH{_HgU-I%Z}Bzf=PCU* zzDHZWwm2_hCo!_Xa!&w+K8bVVcDgd022|7zX(sjCbeTSvlxgNF;M7G}1S~(lt|~Tx z&Hr^zwg6}OxkyZB^P&Cxmvp%7xU>x`ZjH*R`}TZnX^0Yzwoid~RP1)pZJ@$Z;QX3+ zIY*jMyUsrPNH>EAp(5BWj40N>vFDV7s;sziM{NYQPYuHxM4%pO3|7Mx09g}TFr-6_ zi#+rGyZ8to{RxO8s#?_FMo%0Zzh+{+&m7*)ynu+fQelE7`jhv^xR~Vcj(LB}(iN!W z>u?F*Oy68l(uO(#h9HEsd5>+B7-}E{abCPEg@4_Y_@HR1d&U63 zGmE{H0O2-=_7_F%T=ZQy>%f6;w?D+ifGkvMuR7fNTyqT6ASvoPMOR?a0Sw4mam`&Ulh zqo`)DJ#v8f4}{|LTb8aSrg6AJRfysH6v8bjhuF8_Wj5jDkS^Mh+(OeUrXKm)QRldPaE+tv}|`EIIWfP-ok8IrS47`m(Q6GL+{m=TbzN< z-_%V*;Egl8bCeg+8--ofHdSh>jrF%3YGsF9XW!gsV0Qao4ElTO%m2cuhlHLsjD}(x zzu1=#!dm}c4ig>M7VD5^DG?g6t&T1&LMFG>?PUVi{J&ZW%l{<3FX7jC7;yXMa}lX` z*ZSoh87M2SOg#$}9vUt4aqofmfA+Ji){SswUa8XH`KOnbNjMm|GkNoqq6WOuUOHSM z>u~ru{LR(!Z1DN;FFFZN4U5(as{XZDyMLJ5GQ;F)qucq#?2!ou+Ta5N>^8OWq0F>O+25gk0H6HXn%<-9Jp~KdtlYQC!b_?!(6Z@CNE+)?!)e!ZX(%H z7~Cp$|7Li8Z``{f&4=h&mU*V6w-ehck454^77!){d| zO(E|1QrNX5$3fsoeDis0&X|~mJ}%E&%V&8I$D#R?4Pvgp5)ya2WUv)J(no;DVb)9% z@rDn}vzzzfxsmOyxn5%Wx=xf?X2!bTFRLYCaKvc+rKY)QcY&LAC4B6UA}`|G;R!4N z8yCJxPi!4uhJ$Gyh1DPc8A?0Dh+`FaiS?GKgR`vBsI6!NJ@cpY9Px?ezKD5iT2dPo`P}Ba9iL?#4T{V z?+U!6^aAZw4nNCV4RBS=&HdSSg=w56HoO=f{yU*7Iq&khQlp{mu+q!0+yJZCp68;( z5Cm74ig}~5VLNZ&m+hZ$CaXbC^&MI@_r&;y`h84bOQ!rcK!|BW^pE z4ptu-icxK$b=ScDOaUno?7ijZDOV?#e}~YYbI+yPszJbn z7#yNh!#4s^BNc+HcyUY|6o*R}&|^m#S@V>NrU`42irJ4Fzs&rzl#s0&Y1z;Lzf6|V zv3GA_Q$`^T_5lWsv2mRo+ogBlQ{{Ribw6&<0DIn4z_|Rnd-ST@7G+jK{^@P`GteZYzA^)~|8>E)dbHP<@l&s>zKtIW zY%l>uPU$z|MfT>T@zp8Imd!)Ca$L?C=CCYffPU~W?$5H&hrlW^y<9MRU2dB@AMi9T zlkDp**{QQzs){+o0X46G8i?oJ|S=0e%k4h9v8y zEf4Co9M+=5l;-^ea^)CV#8M1CIi^3-p1x8IQ*(%!uGl4&z)-G@1KeEDr(@B*%`_ph zc11?8PHQID6FQdqM)?6yokriP$SsHY@26rvKx5tbtd-iLTofQj&5ilu;IT^utEL>F90jzXd8K~2$k)cqe@>gx+HXG<^&qXYzY@~q{gKW1+ zqYMKyz2$sB$EZRE-vgHEEq?}HN~)>jb4+myWw+HxmG47*AVnxl6Mx8*G;NIuyNI`j zPGw}TTP@rcA}het5@k!WfVvNPpq@``uf%4tN|5WmA~_imtegr=SzTitN!j$zbqYZ4 zOIQybuL;&CkOV#SSxvS|Z4sJ)xE1;9PNRYbZDrhrU7Ulk6So}VQiBEB1B-@CQ!CGH zM@mXCeuEyk5|5+~8eq2lp^g9#RuqsX8I0Pt=0OZ!-FU%+aHwkbJe`~7RDN(CRYvd2 zjX>X-OQT>0SHvV4jleo8BcNV3zoh*%lDF9&wJc`h;#wJ!l}gE)Wzd1hEXrpv5EY!O zQh@7_1D9VE&Ch_^wf^j;Zd--PR?YfK(n_UA1Cth32o?{=PZJSi@Mh{}G;Z-@yz&)Y3kB!Uf(O?yK&nUtD>atoC=3G>I@O*i@I zw$~e(?|{f8NS-`&N-TAbq=S#cgh}ULn-}e=l|?Pr0H}YR_;^pJP_mKuHBYc9n?eLn zD_oBEor1Qpvy1@b`dx#rU^EbXOQ<)8MdfF8%dO>((>TSX968w?VvF=9Hz}>|xiY6J0yjw*`9hh%n~x+Ph+dCmwo8w-5PZp4NA^K-(FdUT1?+#Bt9tPB^f|rRgNVupPn!f zb~Sq=YwZ+|HCJeor)=C_aI1jhO~;8IV-wT!3+WR^(7I9|)@h?JFZV{azvaqJ>-%U~ zzGFUU@n9?c?2mQH@A__yDEtxh_L*g4kcG>wv)@LLPqONgH}g=(?+m1dZN?S#piCpC zBFP2b{@_LS$0}&nU~ui7enHyA4tj9S3tW~mh)*+&ETQQyKL>ORlJ$m%-&v(q=#4)C zn@rz_u+l99zLa4-!QjaCp2Z9zP3#UU3D8xVgpZubEr|3sw8|^#3h*}eGx7J@Q7hHy zB8w`f%9fSg4k!%Q>i%psOcUVh5cWq|Y@$6B968~RS^CF_2St{K%r9N(o$2wwo!J5O zt?y%v55Uy@`P`;rn#ll`Kri4&UCoU*bDi2{JB*Y>II2eZ7xn1BqQM&sO;m zQC_suRZJK=iW4hJ$R+i^6hJCUhR(+h0$Szj%(>K{b%W65LgtguG+^qo*;eJXstoh{ zD#*$|ur8lfXXjIa$P^QvfE!<`T-Dk~2QkH#9SL_7(`z-F#9g$cR{PREU|Xr$1^GK} zW@D2=!9C$TWp(7UlK`IqlAj*lANssxn>KvAefJZZ;x|~7z!w)0R4mF_#%r4#gH%sm zlIP%(tfDbBsO{+6fD7)Xu|a7rVatVS*PE)Zl;l`H_m>s(4SUW@$^!^}`k_Xj8cc;w zj;WsQ^^31A=IW2j77W$KnfE}gQi ziZ%DmQT6fouO^jnv_+735G@JJ&}w@^Yq;r35D4Yoi?7y&h?zTLdD0(-3XH#e#Y0UY*fc%?oOOLG_E$aF}2ESn;1%dIH9yn zOMdrR6?Q8Ta&erpoGVw%SuC*E|->Q9kn*u~-#1BLsSBC3>1i zg3%oJxKfP|)25PmH=PboZWGNiO@Ra9{_q42fgolRHMP&=w@>k9PNO9l<7XX718;1z zHBYXaGRl_PtKGMd%)5&iKsaC81$}L8v(U;i#8Iui9tC+jRZzSv&~jJ0Qz$tA!K`m= zmYJ|T5j{QWasd^BvS>qlltvmOqW;_mFPUiJm$_BJS0RGZ7E7EMQ9(5Ai_yeQs_~d_ zJ*Zrn4T=qnU!PFumEic~2AN$#CnoC#nXJx)d@+fy8r+By%cJZ*5|bzodYGC0 zEVXSOiTFz8orjBD6|bGze(kuiWg+l{P>f~N-m|uud8p7)Q@}E1NTTDhP>&?TZ*BXp zyOC<`o6yu!8VIjLlSq(Jiez2B-q%jj8K{=o0cg<~5uCxU8$Q*nOz>dl;&x+y`P1y= zeJm430tZ4W74CeC6G>%pn+I&Fd#t(!hduOmYtYV5_2`?9tx{_ahNT?r%`c+Kl#SGj zk!J5h?F`0Jykwn^)a1x;b-Yv?TAS&sVg5GiPROZ$M-^CUy~~PEDm5>2uY4V`*wL@W zp`J$Bnd$S{35HO{h4xL3Y-Up2VqxN9+3R|%bSS4Td4Fbzr?J?P=|QthR{=F<^6W-U zat7{2mRWV9cpD4DtS#y(1?eY`xQ9c1=AP4;P5dE20o!HwiX|Jg#jSQe9O=NSES1e1 zc7Ja7?9rrF(8PvPhdSY1I?B(wT~Z?P)HgzdZq?Y0>bh4~$OlCqkEPx@<=js_ZC-8f z;r8g(n<Z$IW0da4>Zu`(*7Fb;0@p8J@VW)5UOm^4$|bao+GXjJXA0dj^Q zDSo*R85gqSWSCis)Y;Dpi*+ZZEUz#v@}&$nS#3(ZZc$uFptEXQWTQl;gy3s`F{-zH^Qwqmv z;e|2VR?v$9?O=zSiZB%9Q$~0MREY^w$FCt3@6n9G*S0Apq%T)b*pq|O-Qtyz)e(LA zegT`b8CMgRe7d&vmP@e9;?O~ThGxWhJj!(8V`}o%2~rLvoxfZVcNBgVA&#e->N|`> z7ZP&C>y+@;7)|X-*IGg<%$UBQyJ3;{|Lhf|e9IJ??+I*;->Nw3VN@q<(OZ8`v|GGR zI=|Vqw?@jnJpx?Nt9zN4<7>~Z`LDqOV5KMU<8E?PoiL#rPM($CPnZYkMRt)Eo8T7K z=(s-(ur68=!%^(Yv|S6v3GSGZOiv4Teg{on(j#+&`{-~e(_~XU{T)#Te`p}mJ~925 zg^uDCyT(?16UFR83CiI6U1aDr<3rFaxn}g9H}!yPQB0z7wD=Nza<%L0F{fw((_ZW7xc62 z(6&ovez^;)IH#X8w;IIpr>~4^HsAFJJGW5FovXC22QK5n?6w`hE8p6nApS&M$0hW# zL3i8*<~AwNOuwSChpOJ5iK_694Vt_ME)K1`UlEcuyjbgLwETE>I}N+as!Cr zbFRkalI-k>MgadvbhAnvzkqzQB$<~dAQ@L$Bs=WaJi;oYD6(@`0MnrV>ym>hmr z)DC8)Gk0F!U2jT;xH2PPDUKs`yd)Bx2%wCRksqi71E!sFtD|96!8i?k zv58A>nL&j%z6}#rcsFz=ojJ(&Qp@AMuc%2jI-ABumpMb}31YpGT_c6yx#|s-4x>ZCi zzGH7+Ku=gVsz<`RRbvXfuGl0&9yzGOMBMtrH-R-z73&wQ`Qcc?zqk!gYuYeSm0{#jn%zx8%E-#|*V&AJn2t=GjD<2$! zx$b2n2t5K@TaWJF0vOlY2?a179Fvt)u{it!gOkQHkd>Yo%0}{Ng;>uh^JILB<*3I-_>7M0efw3 zcc;t=4>GS@tGRii9za_>P)}kKtpeZzVOGz92-IpO`h_(EFO{~|fx0I38f|=Z4^z0` z?gjnRlTej$Imm`MN7l$6qTRfQ(zl(=`y_2A;4EU^5Mmxm5E(=uq+-~zYuWS;cu>UG z!xlP}&q9BR9mrM7Ty-yz$ai|%u0T+`fVZ~Z^z(s)tKWf8BXsJIwZAGkF~1=<7RA=hu(4;G9ZNfjFN;@vr8gl{{! zgUmk^sqbf%W?UU)@!l7=2rt90sUuqcbWBo)ZGc_Vrcf2i$nUbj*Z^kR;a_TGGKB&M zL;)-ko-9oPt^wZ&B#`M?`PAPPiq!csyt#U;r#Sd*n~wQbpWZUIa`xZzaLE&}uI-3 zK;;H4JnIe}WfVDeVE}!*I+EEP!hv|bZ*NrQ;gt~d+94#rn<0Wt85bVVCxGdycN^Cs z9)N)X2ujl|&HRYD6W{`dfc~L(`RcpHynwQ@FFaW5EyyL`+4KwZZ!C_Dwen|{ z1dk_Ed@JYv6NBBg^gf`K3n(mf)ANJ&c# zLrV`GL%a|0^IiXQ*7H^CJ5C}vC*ScW< z0uduXAgC1?3Gg?g2_Nvl2Z@!A<_+Kz__eQ58w7liyJ|i30D;)UPyc{pXV;&CKwKdB zjqCRjY0Kk2{-&PwC+kDW(jP=p|3EGzhzfrsW|-kIPZSzre=5Ms_2Sig1}&jVt`}-L zNC*#?l^w;GmpllGGA>c1FZlX(Mq+`(Kbg7$ekNWunQi_-LH_z33$LG|JJ8Za^V1Ts z3Y*Fko5~q&Pu_2Kc{h;4;OPJJ`~PU*|7hUOs-{a-n6RTB+_G@X7#4Ns_$vp3QN ziMTldh{5m_BLqkHD}Mh==3|fQMAB?c?VSk7H=x0bcMSHfJ$3QK$YNA5O1OtO0`mx! zOjtP}L%rqMLqV;VhFz?2NO#7MDyh___f~iS-DhGYaq%$tV(pF^Ud{3o&%s*Uu(M!* z!eUcQ^TXbiO15Hd{6)*hSrZMIY$5Y^7X~g`WJf@sq`Aim0CI?t)B!>Tct5rwY~I{b z6{tT^t~c4ecN8avU_-`ZERbd>f+WG_e(qHO?s6_sB6#8GgVnpZgy#fBqth zK(X#PQ0+zNY!Ji+)Q)0B+F`z!#~73P3n(8O;&`WsTN^G=uFXDJxdoQ{w3Bbc?pj zkZDG)Bz3qEJUzyq;bLx26gu|_tXetIzhq)qvQJ||l{8;&TXEuCu&H~TJU=+TVs6>a zVebGZsN8Sf{0ral9BBw|Nd4+ukot6I;OR&azskhY-$MnP#D%K^OGb#}M^-+EQ(&qEEBPbk=h-Hq|t zdu#GAb(!YmuPFH?`d1W)O0KS6A=$D0yENso+$0^!(VN#?z2@AE!E55U3iJNm3vPT? z#w5NNKPk5zC*y9H>8&J#2ItWEH32oJ#(?rviAXAh#(`4J1*-PDtdz&d%C~Eg2j)@M zr$z^;=zd5OlF8ERVDIL&lV96GHZj8zPD=tf-3Q(z&xFK@5e_vj53U(Kez2P?x~TWk zLZ~}TJMQI&ClE)q!(87AeSPrSezJ-fSQF%;m`wvswuO1X@Rsq8XZ zis2$U!zK^aAxARe-8TSv>ylEd8Il zAlP?OPA5HW62{qtgx?p*b}r#q)43eKhjLX*!Z_u3g~2&pj>!wE zd66pdl!&F5Olm@D4-fYB4xa7?<%Vx2oQZQ$Ick6K_Qc>8Tfp{*jt86tmQKM6IFVVx zN7>S%yode&N$|M~VvcmN8PR+)Leo_i`>SmC629=)@|rWFrR}sQqp-~owm`_LE>-GC zkpeLq+%|hNYQXuSZ-~9qT;RsUzCY5Or_#yN}LM4MW%$R?pt- z--owPyqS6$g+576``5oHrlOaX%XraV|I__O5d63Z_jKU z>tkN=w6eetePuCy%@k$ZFjngNY|DwT=OHz_bQ-zohZU&-th8b<5(y&zEA<81E)J5F zj>RJ!FB>agZYCPUFh`Y7TqDTgpEi5m){vW4BFbN}3CgjkRM)>Kh8&7xl^nIM{ToMX z5gvzBh3NQfE^Yf~om4R7I~5DI5~kWQi_Zyi3p?A*swDo%uEeg_Fu2C;poXsi1ZGl; zfr5Ag3yyB!9$6s=j>`#~z7m5i$t&T0ZpU8M7j~Z78mSn~AarVmjjKqUTr{#SDtimm zGGLCHW$w&F^%>nddO3CyfeYHwdSh*q(LSm;+$baQY`psC`uq8zs{7?sHnRu|Vd4si z4XwubqbW|Fovy8Ys4I($x#}Y{jOt?7Dd-EnTg%$5rT?B+lo>lj*JwY^w9i9$YMag| zD)l>Yy=G}>d=J_a)0|RT*@NLnQd|`s3$41LQ39Z9ynTl*GIUFHOyrhA`kLjv!ud@) zS7A54V?UID8a=zzy6Vlt>E408eLdi6+JZn@Xjps~=K@&`3v#-5B~rloVTjjoQ4LdV z*dk-{N>g&y@VeJk_d2)n<@OkFMHgy)zZ!;85?28RR+Sy&Qs(udg*0ar1U4u+|7q1$h)NV|6>_Fc|4K;WzJ74ntkk$RXbd3sE{+yt3 zGe+*xTR_ugRBnv6`YQ3m=BCAK4hu*2mi$v2mvkb^=O229t=L>Dx>RnclcPd!co5J- zG6r3Sw-RbgI_BTP;Lz9LA{gAju2TeYD2+ck5ZBxJ=tR2xyE3e5)uq-%aiQ-mb{?s} zD~?UbXKnVJ%T8XWUjDFl$6#@&;P$9R(@|Rvd*8V_*Q0cR^XPRbvtCm%3F9~y*LnLAo-r>QDJLL5 zBsdlIYp3XF{w3=7KtAi&fQHCT-sU^G^%Id8+l8ch`6vW9ds(5D0>N$mK3|;3U#|Fi zRyUc|-)&v1mzV$g)(>uT<3zTXjF>-GkmkhweL(jiY|rDw<9cI(;^noWYZ0|FyDrj< zGzZ*NA}~M`FkYN*0<#|02Rg6_`8PU@I0{f8p~ltnk|6D|C=Fv|_j&aS1hFhP^AU!o@yf-SuEMr*2g` z+ocBTF)}uItMO84DQj)Yx76~B>mLnNNz=6){Mq+}T&asmmGwm*SlHkzgnldy4)1$3 z&&mX9Q^uJ@sFq5h3SQ+qIZUx&Xlxd1E+*-n2o1{ zsWA_S{uA{6U2^=r8X8v%;&lDB+9hw9t~mgePydmKGS3UF(fkneIJvbOJP(lrcQ(s- zmoBaFHOu(4LNbW-K-lzEMOp-ld_@{@Vvms;bbbGPGrMOdB&MMJTrck6c#B=J#sXBf zWGpM{VRK{-gODbrPxr5~XlTM#X@$K!y?oBdO#qsK2dRh@>z{h;4BL>}qnZ24%gTGo zW*#%v@3_Yc<$Y2kgGw2;bZSAdVHfwVQrLH8);QP9B9!gI@~erh zRVFBQV^pYAIWNQdovtRPmMK^Y=j1Kqc2Iw&kKWfkrW5#Yv`KKBlwDu$YjN*C;$4I( zr^dj-+#iNmLIk+z;2W~?(Ce4u?yhc4exw@^WPvB8k;-?2w!%HQlP_=hOFH>NtG>RBW*6)Sd4`zMq1fF?>r0QE?nR2HHh;Mf+T5Xj-KY(B<2)+rvcM?f!gSPE1+b>t! zn;fYbc2OMx zI2k8A)dDQamXKHLdb^KU%&1hQz=9IdzUF%kAZbYDm!-abd9unXiiKy7qDfu?J7<1U z9Z!QvdCaJikz;hY$(djUo~5l8yTOThW}gOCN$O_38N^AMsh1&R#B7vGy^#`Lph6-q z9nK=+!mE$}@xo7_HuO>KNM7>TZ8|UgRAXBCM$a40T|35If#tcx_VqRxlfXPwH>5H% zc7jxiQkXBS!kb>KVMkJ;ik+m67{OYsC_#xWwCt!y#m|bGo}bMu(qUP4xsNT0d^tr{ zjKXy_*EC74#BOzIAYWf280_+N?1FzxRld6Jh%ATv=fvq5R4_7C+bH?`biTaOvU3T- zrYbqf;=vfdzPWiWf0yQ;ZxS0;UTtE(*rQksC=o*QyO=r5a~#q8LZ;S2;x2s`bF;f= zyXRa`4+zlp7)>CR7BiKFCXuN%NfC8jPRJwlBxO+;8CI%O-6W}t-=-6%mk+KgTn&#n zk@&;NtYMn%ErXZF%e%e9HfHVyREwvci*vA$5GzB?s(KI_oU+*_0DG*7BueKYw+)Xr zGM7ExXg4;lZYJ6zb9>m$j*3PxAsfLI$hlm@tglkIf|zoQ#)9s-QlP&@I33tzo%_FP z;6mdxv?}yd6V==YN8;PMD;gi~q~tO(*K;OOoHSIK7%AhGar~HdB$J;B&1Jmy`2v@B z^^y$~eQ&NLLfZ96_?pST3Txv!W2?eam+If&_5JO zl()IN@JG_cWrFd!j%V5R>9KGh4q9s7?9Yam@T6U`babSO4G(#!li=bukX|WUVN}`V zxePXi*LC%M#+0Z{{umD=siSztBT9eZFopggBxIcRs}pH_E|$i~)OTvu^g5Ld{A&v@ zp7m>RP%I3dRF2qZG^Q!GWO`4sCm}KR4tjefYwbHm6IF{cdwCt7@6Pn)*BRpiR_T3R zRu*{ha?rnh$mbosx@BJ3KDWAiOI6Bz5j-VjB=?c!kcxiVn_43I!k5Ql5DQXgl7^e6 ziItxn2Xa3CJCk&#((Y#$rz+psT$i%21Q)0Y9SFh2tq`!>^{Gggg>`eFpjeZTwaWzk zVg7f8(UQAZ3U7hoY`>G3i$Qw3RwLz!8^`5@o@32WV$f>3sO^b`BO6|3owHNsJfj)l ztnc|*G1il3RCvHx?8CBr930Zux>C09f^KP1+RQVte&eOR=CU^HR(TPMjbO$X%26Un z6G`67ZdMt9*T^v_UXIN;Ob6X*Sp>L)ExuSzNvF8Sc^gzS3Nf%K?bJ26`f*ta#oUn! z3L|4EQc^j>-&OE;)=i9&t!NtwE_$^tGG&3V_g#DtGL7;EwQGx?*B1;D8P|4IUC6&b z%Hqx2?1T5-k#gmSyN^`uGaYerzx%GZCrnxa#gYIRFpW)6Fkd2vV!zGGYnR?ucM;(= ze^YXa`U*)MG(d#)91^ue3Nnrdf!mNM-bsSNQd%6XmAsv6^pC5KoJ|f~-XapeDfgki5i4 zbT}!@Y;(qNH0Coyo&m$Z6#ss}6(k9+9n+P(BRh4wv%0xxmS(5inlSYaqmQDgkaJY< z*JxPpGQ+O_SXa~?d(UT1f4pz#a_F=ARtxGr|--C2vB6;u7;*VQjWx98JHqFt%$2KYlMtx_pNPfAHcGbGwJRov!svSNID9;@*YGuYT zJwHspgf%B>_<>3LJ8ZuDVL4m=u}~;k?q-H3offck)`^BzrTtRjRYH`}D-g=C)y%=s?h zy&LA=rBbo3&wj7;6T1>V5TlbC6i39;+L^H#D@vUTW+Pj^VH&p+cHym{;k(l;4KPuI z*;(ZGzLn_(l`*HvOY)rZQ27_z;<$j1fxoh<{Z}L$HuvcrJgWaBxms(vXX`yn3Gk)~ zF9M75i`uUHP$Fb*F#m_?hS-?q;o5Fc(83S5Mi@z5hOp+{fsH#yJ*?4=I$3Y#5tgMR zrZJ5T_)9~o`+s7C%4a5vcCEhD_7d2C-N};Xx(pDEQ5_}o!shAoqy8G@s}D-Tn%UZ3 zbgNjqIu$x>6kk>N%GYL1;EM6kfb7i3o|hIgyUF*JRxBZVc1YC6kq&=HEZkqDe&S2W zQ*CGp*kxY?Y@cTqa(2>3F0cX7_l*gI`kXx@gB#H@3VOF8CSgQmW6A9j)~OD2Sbvc; z%G)2WkckZ@Z5{8U8HK4V&nmuvn&Nk#_@0PbS(+>hW1S-C+l<7?Y}ZtdhwWJVV>*Hg zWXjTRG#L?T;jpi1q*}}rce665=kb+W$E6szODCKAroKV80!s-bl2Gg~U!tG89#P(j zA8F6ddEYRWc4%V!!XBBc$(vU8H0((U+s*iPjqPa9E1T^!!G{9imQ1&mBb2zu*kN^} zE|v`kz@MgR-kut6kw4`) zyIg!-E})Vmkiszqdtx!1w-kQI!lLxqM!!aD?4uoVZqr+o-kjVp3+CF*zq>KDHmfh3 zo5sBoAww54HZ4#^bkH&N45C#MK02{S-i|rx;nK|V02g0{WPKi8gK*?oiJWhTL&PJv zOH3kkC~gz!5j%s7vIA~`Enr<+<7r7k{-1k88HE7ymBRVJd?Jk|n*4EV)v7u|2`=yC z_;oobE-Oox@shGBhdfag+ZR$%Xcte|Xg4Gk%*iL(3Br3@s!nwqvPc5N)#b5`pB!#z zK=8)dwp8-FAWjG)Z6d-{jnX?2;@Rv1tqg(^P5>eh8824q_n}0h^2y`|T!&HA1xBv; zxigY{a%+yMa_`3}9ocdF8;`l(tn~TfpBUx?n*uITk97@_$ zy|NUq@|)j3x(c8(0lCr_P=FD^nBpE`{UyHUUU)5x4O+x@QY5~+mCtHv$Cb7|^<}W# zyLPL${Idd;F~s=uJVMn?c2lRB_wp)8+l|BS&guHb5ypNYdz`b!EaopH&O;RDD@zqu zy_2@7hc^|T66$JXk9^VwzNcCW3+bb8at6Va;%K`}3AZ}+u-S^}XrHS;aNe5K=E z^V1o*&XdC6QK1DV4Ebx}6s48vPVS&<-2Sx4ka_a9VaKfl-f7WBe@_|>EkOzBIgr7& zpSc~~JsC*T@A~=Xgp3@9n%y^b@50N7cvK#Aeiq6z%aFeRk1pou=EaV`!7tk;nFp}JvY zT>q8-R?Fo68v&7J({p|hk4iH!U0+qJi!sA95m0ApzV7xl?}+#BsiD+Xq4 zK^72q%m^)-v;0k3{n3kIeZy)cc>RKjb_L+654j)|ZV#W3FeIOLVT#FqbN0g8yf5N}{+$@isNx-u%i{F;R?^8b@| z`_AU^J*-~gjw1I=Be);TO;kvU>Z`2x>aspv+wOm_t$8f7@KeOSI)xs>rfZ29In0A` zvb0(#?oOU+Y33iR9fa!Z+B28SwytBOEuT2*GR}BNJC8o^X|f;W%klsBEs_#m3nlx~ z-)O}O8N4dymffZcoqKjnsw$!3^m~W@`+Fbw7qcBx+J`veEWVduvOuu0r0($KQPCtn zeb2nO`vU(iC-|qvwx)~pSCQmf>C>oA5M5J-mb~YfjK|s+cOSH1$3LCZBL1(D<(=%r zEm2hu)4n=Y<8pbp;lB=#G!o#HDj&-WW?3EF(~^iPD9LH7q!O)LWQRJc6;O9pSa=O% z|Fg+n(AJ)9w$mL&$&>QI-|lqeCZ8o%m1n+pxD9pHw^>nr zFj;L@XJ?4(qs>T@L#u8RR+EQ!2IzRHApg|KP_c*1;WS}u%7=x}{79I2NM@Vg;dC4q zp&KnSP@vaqY4xuY#vQqsy^`Ku`R=m%-VM4`BN%s@*}Z#m-auI(FW2N<=C_~!sXnKJ zQCDSA8ID#A_7BWZgW&D8ntVh=@`8$|w-f7)0MDQ@|F`|qjpocSc6ah@FzLm(@%Yz= zt`7=##w2u^>K>ea4@mCLU>eR_@$4k51m1KTC!|L88)AA}G)=j|uFK<8#DnI48{bIT z&Diil*Tg|4S=B^-C%iuVB4RA%Fq%b?k?$3NJ}o_*FL$)npBZ+yKtYd8oS}(~D+Ck2 zpYprPtS>FduvP`WB=*l|RD2I#+oe*P(8rjuHkDvnKrqwM!9iJ%S_iSf;+g?C%Y}dT z>${L#pB-g-&qOYMV4ogYnbj#b3)dUoNr_x7uyI0%G5%YUNBN9qL^%=;SkQ6Ybs`mE zqZ$St8zBxh6XxTKu+tL2xsb|Lv)0kyTN*w0jn&Z^}T-aYMsrjvX>${*zpY$uhOC%4+HxmdMN2^A=kU!DjG*1fd>z zQjj;e8`Agpf#0pOo$P)CK(F%t@x)wc`)c@%AW#6nS-`cZFQ@t)2TadfJbyP?n2CDd zuOsaUJ`}G%Vv!GLKD?H9o@Gaa_`n%pJ`gJiAd4g^$j<{pBCo!!_GCCxw+TZ|-pGnk zk!KenmPRsGycRw?*_TIi#$LWu9@SSk_M)P6c^G zGKkG{?z`zM#`*@S%-CGqyFIc+M?N3LEHU-5(##FZ8lS7d@*)t-2JsgdH{yKj8xdxN zo7<{TaJ{;&iu=@el%eAycJXBT*u(N+gu{8N32l{oIjkn+O6e-Gq<3(@>dK4f#Q5Wa zn@iSGHqz@X7A9U(?>9fP2^z9cTT?id1U0rTzM za%04vOjIMtiQ$Xp!0dVMz;dkuln#=GG*FuMXq=E^#xYl?(A36>pT6+#rdBvLWEDuf zW>fFDWyBv6IoMyGzS(7AUQ@?5|F&Pi7N4M22$}y0-33_?$%3h&j8AuhSgIHh7v;eS z6Jq;w>znnKmKZx?R}QbG-F&f@Im(|xz7hl0Yv7mUc@#B+hd*w_F ze;Eg~?dKnsLh5SQ#gHtY*d0$(IExn03(*5*(GE=(2>sbL#z|YfuVr^-b4Ap+@Zjae z!{kfP&76w59OF8*?Pb0;TO#&(*JYtSf^&EtAH5V7Ezj2&<^oR5>TD$6AB!R%>N>Wy zXnC87%1r~Wkxdy(*w6-#%M1}%@ys=Wqw<)9+E z#3y4AL<3W+Gf?RJok}ly8kj^T+%KWlLPB~#;A1iJ{d+B9NxPNUC|-E*%^WC}=+EV( zTWO&tRV{1mm<7xUxL`bL6DGmttjDR}bPkJ|-{#Dx45Bmm3JXl4?qZyqlN)b#Rs?)$ zC~Va=2C4gGIbn}e!WmfFiM4bT zmPplD3{aVWk0|P4Rr}(8PTseT=p}H<996GY`TfcXjO(Lya=j(@HL}mjoq>@WZDNWH z%o&014XURH5KY=8G!N zASM3$^IGaE_CNLS^<(xt6ZE0Rpm6a1*ZXI6F@uGCFg39=NfsoPo?n^4T&rGmJcxQ- z3ZL8@VZB85T6p;6OMMEHXlgu$&^z~on>>0t?x``KuC9~my)0WEIP`uF1nY+^MXG`v zbfoz(p1f>%DKS}_u1q-fsYl<3pdJX1DwDrD&5eOwR}J0H+%Ue!0@>Eg%R&v=;SJQ; zR9wG(^iG&98h;%`m(C3XVs~_dqt!iYo#Bj77}Xu+02%e8 z%8U35?Cp<*xx?yF@_ycmxTm-y482{(XarM^$y*f;P1Emt)5&g{P@!KBysHnPe~9;F ziY?+D-kf@sVHb7tmm6dP!P*6$+2??3k% z5#n~mrVJV~ts;(|78zDNhqF{^GvLkNTwcOm;80{ zUUq!dNozF2nl#u+ZqK+9=@sqO{5d38;;-<^}lBt}6m_Q-+eCT0D z*FnX0qx6|yFzaUVmxIl(br8um!JZYuiSc4vBMwX}~4x3v90li>gXk`0$ z@4>>A!LV|ww#CB;%oosWS8LI>49N;R>_nbvI*jU306D_tgZ0Buui@69&r7@{TqLzu zP!YtfM;~d*DM>a_ISV^VxHX__G0l!_2j(zPS5TY~Ify<}ROwS+|61bNt43!#8Ps_H zdOLDgj9RfyrmO>~34vj##u<<5I6hM;!jAnAKRnpX0)nMkpF_$msS?EJ%rGtl*D*_1 zR*C%a6lOo4%tNh_`^sD=wye#HiT{}k#c-Fy*$oyGUJ(7Sl9gziQ z6sY9M9uTvUm=gDcCsu4a#AwB^e5d!uPJUf{Jm>PtjcmNu5n z0(UujVBY1sB4H_q6Tz6EjFAlQwiG${EO0uQa1<3P9Ay$A_0HJv{dt%8RRzNRJ1HbB znZ`ej2+5?bWm8_DEjkX+GlyK@atnsE%Wr)DLKiJ{sV)s$vnf3;)^nEE7z`-iRrQ=V zRY?OcvwE1B^Wp2`WghP|XDJk&CTT1@fKxXZeRMm6hF;L_OkiJyQ|GL{&c!}cH0`fMAq9X+R#Pr&8Kh*Z!!U=qmdv@7N-9aT;y9p2SfvECMcpX$Ni8>boNrd#< zZP~X0Vs}O(z0P(D%e{!PX{K|)uRZqv=6d4Uhhd2PLh_Z0)xdNov z=ovbyGpva3WwyLlEGEv~cT6kJSw)K|x!}3|>(oC+Mh4l~jpiFQ(9INi{9{Qv8`)7# zDZ9IZiTvFV-igFR6NxUMGm zOx_<%FDF+Y;qKs!i3ujaBw7$8hPVqV3OObpdsrc{4?!&FE8&b9b=5K>htYXu&OMw3^m`7zKKFhajMh*qRPA~HjCnaf@Zske1TzKt6 zusr9VSIk?1oO}AY(ux&6z5OT7U7@9PO{Be9pUI^~%}e&Xck9YaJS|0exZ#3NfMq)h zy}+mUmFc-mTn9zGo=P-*M$`aV1}{@8-AVXWQ~V`xWVPCVG#Q1DC|e-LbqvN=>zq~9 zvm)+dOfF=IJ=iKiKIBak6$qw)1}X#DpG zT@Q<*8&v4b-X$lDpFU^ILbTa0`HD01|12w7Z}F#ndV~RYA#B4YGo%t*)#`gMDTLW5l)Q$s@Lc8HGjeG7Hdw?VM=pyjh^5yMB%EKYTCzbw0t zz>Z|~a~q>xIJ);)gfu;+Up!ZaNzbv9{~l_RTa?{R!O1B*x^{JH&LBe{ecudlv!!1K zKYpV@wcre5KIqy))|$E{*cIyL6J<5zak?tZu%)w^B8we#Sp3u49(5$yn%I1Wz}B!% zQhp_?DAeWpR|z$=E0xpZxhjWw71P{JEi?(EE#7Dli!q&IFp4bk@Kt0$Fz)e*bK35l zrop{xZpwH`{KYBTh6$jTci)l~CxI(GW-LB!=2rN(-z93Gx0D8v%gvz=1*}u&j_Mny zb4M0-N0IKGYy4-<>lco>x^(A#%o1i0@17>X%% z2L^BJtRqh3)1yrH0NRDnI`wql!amcd*!{+G~0q^!= zA*UxW*e(ZYLX7G7|N2Az2$Tl#;!UR9sVV#v5u3-FYr|9-aX#gA*u zG)$d86n%9N+)sRTy27Jw;bi~*5Vb-HnsBkFst~J}40HBQ-m3x);c~sd%d%iC-28Kwgq?rcO6`a3)?mi`e zy_i`_>_%;R402b}l4dF&i_O)I?T$GcQ)g)gybyl^^y|cHbH7ebpLk}y4&k9y_o0=F zLrP!2oBsu4P0SJUL{gB8rs+RVB` z#$-IC?{L-AADx-rP2@6E%aBA($)$W_H4t|d*XFgn?$sOjV7I$46_x4{bv6vsADw>K zv2J2yL@i&S;LcafpcXRxG_)yHV<}t3d^~JwAlamAKLFe5?{?^kMcrXkMYBO z9Kv?4=uGoABA4ANQu(N|0`-To##Ct&T>*4B4@{AJ z98%c=!dP5|%^MDNA8JH=kArPnnI+>yNW;K}7-}_;IS~trSWSni!CU`1zc`URyL{>n z`|Tl0(|5||zf{lYxPkFYPtVYn)`Y->r|WsNUXcr1sv5T&B%gP6C_UUgIwq~6tqLhCS`7z=_$M)@i=zKVe#JsV+_-SpvFH-C?^yv>U(MR8k+9~;a)At z=`seKJrAVZ8e0Zuu0hsxY^ThKr$RoI+K37|JwazSh!zp8{rR{K#XQao@RFN(iqpbz z;I0gh$>Uz6O`YYeIqk~($)U)6uY$UXnsPL3^)sfy_UO#jJ3s9*u0*z2 z4

YqeJBQ!Zc?togctVQ2l|l``DLGK~fd?Oxbf;)6yEB*>uCw>`vKgA^4)Gk0E~5 zTsknHeOLLRH1r-{}w6VM_sM_b;Ju1WEC$ zta6pp4O7|^PZfTgg=B-(IZjEp(pT5lJ3-}Z?&JQD;FoP3NdW|DS{HbVP#2q5>szKI!^OWa_|Zdiax7=5 z>^Hw>UgL}zS6NPA|4I7m$BT>Ejuz%uYXw^njK~60E*?g|DG>y(h6Scn{^c zX#BJwbls&kV6h2J!Uym5EtC7^H_EsA(Bs(%7cOhL2c&d8g$PT}T+yYRhcYR3(^Z^4 zyJ!I>{lK|B5g{RxL1Oehlq6aA4@}NLX;$Zjg|#v?Y+HUs7as!>9P!cj-1+l5w$elO z)V$E{^xVQ6GR{O2wv#iKOY72C9KaI`j05#u>g-@X=IPM^!lb5A2G z9883G{j<%`BTM!E;vX2?K5~Z-QMru1dTs!>Htm-LNy|mwvBe>-BT<+j` za1NLdYOKqPvqEXV0M(}!&g)J6WVIj(+N^TMlrB#5praric3^1Hr(Nn>ExmYbS;pD* z!N=_ZHE3v93cmSXniEdf)b`z0->*0mco(KW^nwCFV+Z-X=fR|qQE0)>UG zsXnqsW@)$c1sVue0-0V=q8$6rmofvb94) zqP(Gv5B%^<=}mdtc=SH2o%^mo&Ng$PzTN%R*}!anxUy$|(u!cJV1r)M`fz^}^HkO2 zQk%n?vvYKA*!Q@q_3U-CK4coKKGwU-W&yle31~L@G%$qSrH{#T%tg@2b3B7IJTm_> z);d!N%TfK6_oA}q+2P`~q8}gK9?Tyke_ZFry!{W}wk0TTrESFgh!uVZ$9)G81#)Ug zIzKq-$kqnn2F@F2{G#&nGqxcgCxK!QSq`!~^Q}kgU`Nhh0_RN-&W*zoTjvJ%AHOId zw__I8O2opL^*FEjjl?#k29d_YaxB{NZfdw~9(cyJ=rcxFn$4HL`ndi+&FbvVwl7B7 zx3Hf+?SmPXP{#P#JT83_o2$_0ECT?fK_Elj325hMiwWpNz<0$N2ViWFCA`PM?^1Lm z{kLyvN0sta}8N|LnW7MbNnn)Krvp%^B)`kmeZ{Y>tS%YB4UYFsOu7 zRs1c_m^}yRoJ3#Oj-*#NKk=nK)Oy4b?)n5d#FaK!<@nQ27r68-8vvgf`4KcE9HKSH z{Ngl!Qn$n_K4UmhyU@`~1*vb&(KBvez*SL-q3dI$TtqhU zp@V&1IgP7;TLR|^iZ_0-D}gf}M(kZHx{2$tZ}f_}w*NF^9tMGDZ1BWy|qr3Oj@Flc^=3zXU#>cq-8q&JpVBGZLLSW<$<=+W|p zzN=CEHTVfGxIsqWJ94a5C$I0hpoDt%stD<7f(#CVH7zbp+A>KkMb#qpAr`zxgL5al z%ahh51=#$l!z7sP#jB(VEk9=#75ZGr8Nq-U&Y=dRXJw$pbx|k@r1IeSbi|u}Fs} z0SM6xuZY%Y-&4y+lnt#OltJV`OyF+M>y&5q>d$ujV5NH^j^oRqk*X*~Xm@(WkY8*b zSzGnR3XnOC>*McVxraFX_21o81>!Q-8qrz_hGwL=FiINiPv?38zmhh6MzdzEbt6N4 zR;ulO`KbbP(IzCN^ClIeG9vp_9*<1WeO^ZkQM^8+R{@(#uzj)n44XDq53Qnqpnf2e zZidtcUx^$v)f_3D^iya#qYu9{pLI|D(2O1DduUjdhG9m|8#fGoJ$f&4i!wuIW!{WF z9pC{bfTeL`Xd(-Pi2cC`J7tF=(h6c{BI@qB2AveL3bQl&-4;ISO5Yv(^O5Ys2b(5| zw#7YNhz3_hm;d7A*US1UhzSRgPCjp5_#%%FFQSz(niE8QWu>&1TMU?$1*WIk=33sQ zw+No{;{{tQYi&!W> zsPaDJFVX71W}GUbw0T;QVaM^8rpUi9*$Q(x)qBepE7<8YY-(Qu>I6r(0L3eED|0ja zp+l5M?@|e}oJjsh!S)H0f6XSUzuz73Guz)Os9o0Z3uxy91 zcj98I_C?@j{3H1P1D88^RS8mj9aym7gKPXubsB~Yg0^u<5)8o>f~sO6u7M#JV0kp7z;fk0kAm9pm_&Mr5WaUg2k8~=5KK>k5g-G}V)O0035!BqwR&Qv?7Ty4|-b;{_jjMF3oDeP8J%N5Y& z#C(E%j~EZd$seqCpN<0<(75hi_naLFwz#H9Ck7Ej-cpw@v>z<QVVA9Ytd^0qS-!GpO1rc5%6co6}`JuwK{AB$O(^(9RZ@|8eQ^@b;@^UoO|n zu8+I|F1soh3pa|NuDb1AQc;m#;u+osN1Hpz=2K^hJ9ZFd$ImFe1giw8`gOAmBt8bjuUNIj>N^0f!6b~b48>#Py{q!~=xwIp3 z8f?1$@YEB+J?o|+ zE^1IZcLcvt=ezZGgI3^hvIXb7^yY-oSTE1(oqn^Sz?;+itiuj>dk`m7g{KQ-%074? zWmg%NxlI65|IBjEET7t19BtgzKIN-$r$H=H(TEFov5PDRrLb9d3i#&qT=eq5BWY|_ z9KclpSje_AGy5?4Cb5O|QKO#kTo|IFu!aM~hb5|SyA+0bA0XE8wW;kVK4IY?aTx(sFoYa#j+xvLH$ph?O`CWOrovG`{CTDVo`&`64ffPDtx<>FD zD^eK=MFk+uwDLkvsFZ+LV3o*WW?RR~Z5CQ5<1Ww&XrN|FhnacVoGi{ASC9$E1tUC) zupm>z=VlW!lV_VaFh;YfmQD72o}j>&05o#&{;=fZT~4zT1G_7Lnv{E5QQ2_%x2%3j zr2aKGB)lpEe5MK$VQ+jUm`k^J(thpkPA?Z~_CS zNLs-A6mve<9OhBUOj}R?T-RZWPPt>USOw&5W9ljV2kJS{h0cxJbR?F1cHP78MvDVA zaiTbaLTeAbGQ_{+udfHr1QUehN4mV;nXiAl^}75nW)q{0^Tgf6eOboZ^wK*MG`34m z@0*66%By;O6JJ5ih&dm7EN~j4#=h_?PL0inVA^o_(&x;e)nx{6MqyLhYMKgv# z$9@BkcH}znp^cb z2@fhULS(k0HP+7)CC@iOK{ib%!YneA^QWrO=-m4wZhxrHYTvq2wV=og7bG{4p5ZDA zne4eat%!m<9*TVz$uz9{4j;X!cEGujk~X!_W)yd<*m(0`Er_X@zgS3I-0w)i@}f8= zf*DZ_dvkWZ3_KxWDdeqXblG7)2Qfktk~sivHOU_V2(wE&kf&?)0AoYP;3>92K7^|7 zi59-_B8qre+`|0Lv(vc`QB;PZBY3WC=eWfbn~N2 zpt?CtGj~pPw|(r2#>q2y%WjjBK#S;_?0~#${Mi8Tp52iq5D`!}rxU!!5-&xQ{uiOP z?KU0wsUNb%U2aYaydnuCcyBZ0>jGbqO6s8dyJzBYW@O88(Ul~}eJz9vVV3Uh^K@Xb zl*NIszZsT%`LPyqi0838KvO45?2XZx#{xj1MLAy=KM0y|nhpqOh+gaZ?-`GD4v9cl z56efeK#u=K*IP$Lxqe~8FhjQ@9ZIXTASoe;fJ%tcDJUV`4Kqhdkd}}X9Ywl(fKloQ z0!lYSOP6$g_cNZ~THm|Y`~Gp(^5{JGbI0EM-ut@t-VXw^Y4vcGbg;&J*kJ5mu$&uo zZevS}AGSR)r4kdn3Yde);^4Tyj`u*W_#5Wnd+toTBmwLOmy}q|_hLA*MSv|!*vZER z()i%{T-7GJL;8roi7**J2ksVEL|#<|dSC6?7;ZOJKHfF8(vfW3{E9KyIeMk&xsNua z@`nse;MnZP4kucDhR?14mW>Wv?J^?oXkOpXBY&sc_Y+Ks`jXp(JxM9v$ji*5Hq4#A zAZ`CLiLW*7s~9JYyL5Y>{%w3Zm0{oWgYi^j{vPW}uu+uA#dSBZh zC?x2~8?*VhQd>X8VFlzp`@J?sSRt$`%4DvUkeMMqVaAc!@Dqk^>TdScT@mOe^sjeS zlyfd*-}vGj$9r_9HGP7;1kc@lY!$sWda(i4-zUTTk~iQc z_jZHmmY#)Y#5TWjS8@>lk78#*oQbmmK$2`k)jG_Kc%z%$oO8Xd;l=)#{bs>Fge>)8egSu3hjEI z41Fx~McH#*H|3BTd<_C22NQ|;l~@$`-kEMJiepwKEFdI-sG7bht5r%U zlQdYErdix$=#THG=tscH^ZM?&I|?v|Q~u2;x~sfC0w?B~iKm&BdM|xn$UvfY`IWLw z`UI%NT2BN%nkj~T)Q2D2EWJK{mB0ee?&{pFzL&r0FgMq9A@XGJMlZX(_0N^g$S(EN zw;E?$yrI8Z7B$aoa938N9*8p)ZZKcX=+6q&#hW5GAvvX0Q=_dH#ut9x%U^z^ijcvc z%^yrdny*7Dz%D(5_}m#83`>Mn(tK;P5%R) zaJU$vrrPyPesqo#D{XOEgoWQ9cmpUiEA{ndc)C?TkNO)MJPsOmu6AMF-mHD?JS%YQ zjpkXpIkz#+$gh|=%teAZtgeO}bAXf`adGpO-m=_B%gf^LVPebDAe3c=j`@Dfnc~B~ zKQ0lEh%Dcj452yK%x~M&0~9XdZ4~-)Y0V3Np3%J?%%p7w1?i=FG?wA`H5Z7i4c%fHXE(X-3yUPM_!^~G?ZPmZLUx5-fIQ(cjZ`G~g6 zH$_+2Vf*kPGFHP`2r5NQ2o}C84MzIVmNLZA%<4Ln&3;&6aW>I~AhnfePWUnSG2QJe zc*fT~8fhcj#gI|5rK&I!Dhhnf-bGDV&!&kjPF8PS#Jx^WqI}tSjiwjB6A>H=`&h7I zGocR+qcfePFFY)W#FxHv{6RUYJ;lqdq)W0CV((CwUlzWrH9vYk?~L4{drvcy4qORu z-9ar$$OP3t1*ciyK9(!&r}_(Y|JbPVfS*7Ta1#juO^l~HN4{|xTE{1Y-%vEF)Fs*5 zxi}Z!p86QQq z++NM67!9C_&TJZ6W?#b+8``J{KjZUxZv`Izql@9dOpfj~0B?k-548?Qg_krcrPT@& zR}*;=OsS?(OnGL?Q4{NVcw(W6TRdJLnPf>UXCd8&<8kavE+Rv}H=Mbw6yV;F$3;5D zhWM^B91EL6_$qR*(*iPBYyX%L%y06+_MP|S+@!%IDyh7 zRGL8^I>&~KpV}-B4KZGCTq|wCV$b0V-1!)N)g`b+_jw7Lleo0wQWJQ0c3MLaZQy+6$=QZM=dh7@p zj6D&yJgi)y?VXstgJDNP-cpJ0C&8GvRA_zk-K$uoKJLwNBsJV0-hwn$Q;;f#W#KO- z?gO5Ee_{#+kfQ{YSN+NR`knmsWKB&@bIR7v6#WvTv!w7%-{q8Efm1wf>eH~w!7;H< z(N7b&Zw$s0Y|2KpQ#(DMpEv!d^P=@DyJ5!vGM zUq8j3+EpxcYslI>^dgq0GNCXb4WP5V@wgTof?~&Iv@Bh;J{as}Usf5Rg$wZ%4*#s5 zm?R!d(syk5QwW3=_Ef%k=XTH0$>ixwXz(z+CZ0Wk715|heU}~IL~*Rxi6Cek6qqGx zt6oOu*s@BNRVT&l9YOWAD4`mQ)*GAGg$2%nLeB7mCbpzf6hL%o?r3JJJSJ2$a;Hy% zk{Fb}Q4tmsYA*Mr0;3w~$^8|_fHsc3vTA?oP*b?m74P#nB=Yl6GJ__1vxjXX@Y#1V zY$8TM((Pmt!+|2jCL&pU<~aJnk|x_%aMbNt=ZCbi6Dl*k?O`?al`jaNN#c$Aohz{uz8v>9Ht=*0jsEeyDw}9 zLdl_<@J(2R=nvbMhORyA-V>!6m5eX&N*R5M*~TScy>MCU*j#r?&;}`wat*iiyxuf@ zV}0rCO&(@yv-+0DCtAu8+aUmC+Y~aY*4;mSNjzmKZRh6Q)dOKP1DDv;x6UhG9Y7bj zPK_O84j&~?k*u*G6;t>9IHbKdkC{q}D*ha;`P%fkKadzSa*B4d$aOfiw3!2oUx|p} zemR})e+5#@w~4-0o=NF7O&&qq(y@O`;#96A%mF)m{tRAohgbmL3xA6Ev?|(p?~(<% z1^$*BUkj)TUx@>O3gla%&;rG5Cs}vD_Yqq~FaY|ZgiXp8+ce0cxdFR}is+awX9m>kR~hK|LM z1woFyAT+~o8h!l}h>A=b8Ln2XaqL_C+?28W^&@|h4B{)-OrDGmoc4HedvmPk_?t*H zu^v*1JeOPbB5)#DQ7iC@ZQBPhU|vWet_FO7|26=l5DUg81lwJT__L=<0<4lAJ(UXH zE?uJ-TdW`U9+n)liR1%M9&i_pO;Ug)Kk8Go`vn zw9<){3lmRrFs_4p{hM9ej_icz)FY%)j3Yeh7m{`=o8;0>094n>P5p1~;zKbP7A8HE z7rVf=V~R{GYrqeM{-SRyzmf;C+Tw4!4AprNy+VVjP zbl;#7_}|LlLDDl8*T%)i`ZGcNjO!jR{L(i%hoj?$0w^x$#@EBacq_;(xqu(<2a}Rg zcw76ymMrmzvP%Z^{Ao^t01#AGD*^6SW`FVP%j>Ilk>4q4ya|o0=2wgO$;~I%i}MO_ z&Zmx+6^>idiQW1ibI}#?y_E#GP~@RQzm!*P&Kn^hfqU=i-z`cqfxJikVgp~e2!$=B zC~%K%1vu6;SQ}LVV^MkOzhC`8kGUE1m`1kwhfO7mi;H+%qb)bMW!LJT*X9|jG?+JYvrQV3wHQex~i~f%zN3lQu6|tRt z-8|{e1MKtn(lkBhUsD{@3TtN%J|`O6&V5vK0f@u@eMPD^rs;Z4Y(W8%^PWl@#J}3l;bZ)0UPwb2D zle`g25<=q}f8Vu}1h{71Up~6T2aIvbtYDOc2e!}FQ)@y{r!OP;o<9lZze4sgd`K%0 z4e@Z?dyfGm*`y~fWZw~(P8ZFvgp0CKmjRg)Y|D|C%0R-0SMYjft^I|v{B!84&Rd<= z{px?!#Rs5TXzf2n>fXO zT!^qK8HD)2<(|NdxnXxPTq^E1cwO$1II&|e5_kJ%lQ8&Vmt;E%b2Gx`DV^Er7bs*v zZKUWE3M;a?h-`6ygkM*ziiP&Cv}qXecKfT54gAjwjNy>M7TSV1t#sHErHBr^dx!3i zq=F77m@fVb{FyE|L_9&%_whUx_wka7MJu#uohbxsc#bD%fY*+0H+c+S2x$hh1p3L0zi^jL z;Pokiu@g1npR)Q0<{m)l;sf}&q@bJ+3%4RVE|CzJU3JDms!u zs*oV-ewW!*yhlCky>ZnpwbkS}r|md1^md{bIY%9DyN`jyUJ1=NJCHsysf#m%Z=*I| zCYG`uy6%s>t~B2?9A&hyu^9qy{muJ;Z!?dO#Q9*<6mcBFi5Fa9vzG%N<*r2h|NegEa5YQx`eY=*^# z^~WT@Zr$K3D=z+d_-~XsfK_}SQOn0*D9h?j(JQi_4Xy#MbfDuc=hp^8kaSgnICzT% z;86lf9zumrSgsoS338yR5&s6NlO%=#V8P-wBv?8O%f$rFgf4g@ml*4^hKE^ehf;1Q z>Iv6$j7PR>?JnX{T`mKdYwb!N8aB(&zv&aY#2HZMH@)se>FF612Bcx7rT!Mc$i4CS zV7YintA=9asbr^ww#(lP9@sH0>(AXp@FSTjj_p%5%wGj*2nl`_N8yhq3IlfM z#W|OhCt$XmE_;!2Ce_|&Z-!G%S4be2W)P&lo#=rS!ABM+d+2j-EDI(RV{f{3F4rxB zeQ6}BP$BPKs@g?zU;3s(GNOEM?azj!V^m`cPZQ6ZX?jU|l zZh7klt!Qh1Sa;g?YTtbzMkpN!mA!0lOj`Ks-dGH_0W*inJ=nLQh7Dr$k?!S7b0C#l z^&unVV3|uWN?q~MmpG?hwka{k6MidF>}6~qyC@in+WDZE!PwuseZiws2_~biBCk;MK%x<&m=))fg1I0^s28oTny>>kj}!m4MgE8AKSA>w8hTb!qT=k9SvRn zmkUsqV;#_EAU1P+R7D%^VL1**1ecy?YY^zcrwNF>ZUun#M%RV@spw#Mz^3M$4DdAt zq&*@Vzsr5BLfD^mB(YL!n-0T-`Grx#HeGIq&W?eCr|9RTY{NO*mVe*Mz*o#&Os*O= z?3~+H#zIAWkoi8%0Ogo1m9?I1R$tyuhXhMs+6yTO54~LM6R(sKGqyIK3jXLBU^+ zN-e*C!2wzx@QLTfi9QJ{ypRg{keG_O)_-q}Nr5c$q~*dIwPbY#B#?hc5yMJ)l`*Pn z3MoNX82euzK$p>RbS6Rpq+iKO~btmA{uWfCeK@75TZ$hwxasjt3Gt=7UzWk?Xod%00L zy>zOl`niVkUn?rnCZVijtNk$s_Oe790eR&VdO!Q z6i6jPO+D|n`958}+cX`|>(j7T@%ulQXn;rk7P}JDR<;`2WxIU6MD{SNK3T}8%lmn6 zutSI3rP`D~ir7Y+TQe|MDS6{WbI4q`KF8N{q6?)C#b{OCUZcC@>*&oR&y7tT2%!2g+TOT>2eiizzTpho3jcYcob!0k z$q=`fd5>uF9`JomRat01<88vOg(HU5~ z8MA?E47&K$?%#=g6}17WGqn{V6yO|3W+zt59x7N!S_H9dj9xknkZ6+IMBt(<9y=Lw zDPl&FLe6%6345oyo!}s^vqQ$vouAor;vVG} zXCH;5r#`+iLJH#t6E%@IkiH?#GPW_ryN@^BH8cQM*l2>7a!^p38<>WOq}mvL=YNtu zn@#62-MdPUP0ctsW!Y-VfIJe|2yrd>2$O+ETE;2c7UwdD6>&UokR)+3emMNVb6+DH zqNJXXm{W3ODIJGzryzG(QYeplz8(xzd3as02L2;%cR~*kBn9FPVl#L?qD3t@49`1` z{@L3Pvta#uf%a~i9oAN!2-2ykPftmw?qb4ytoB?~HQ-)6XUy~Q(rbXZtdy6H4?0

vO($+iNj;L;g!K+Hb2bkt=|1gx;1igX6ER{k%`on!fX^HP5DoFG#Ng=dDt-H=aF9PxV-J z;Y_W-+nk8q%28oV(~ebo1Iw7K`P%-b8NAuq(NWHGxNcZ(Xtc3m1ZKgltzlHwz+XzZ zb;pi8yaB1p69sTKbw|Awf=$GS?PI@>%h8{cq0k*=wy2JcL`ynK?Yzx5(DTv_Npr{- z4UzKwUC89Fyeadh5c!7%s-;}{^xz$q5*2=@a9c4C2BB1Av!g8?6fg6?+~EuJ(Nl|} z(`)^Af$l|;{-#cFcc)GV*do+N;1Gu^JRKYE- z8hv5%WWG}^z+Q$WXy9^7ig&u$-g4i4+~bAdak!8BKQ$xaGNnsr;MRpOc)15w-K}TL zc9}}^Ty}KI0a785=neY0!?p$kU%5Hz;F#Not2wZCK=0CnpMZ!H$R^yCz+J` z#?hc(pU@&0q_QYW?@#_arizrtm|~`XH>w+nV@!P>QZ*brlu>0U{vtUpal;5v$h_Lw92q2=92?DNrk|Sn7x<%iFzVBz0vhaHvPb#(*+J$ws6Jt=px`nZj_`*2;|-$LiN-A5 z7}}mZ2&a!0UY|Ehfl}eG<6xgLhp!P&s)etRr2yVFtCD9Z3crV~zBi6V*)(&B1rkvG zPT8*wbX&JAl!!Msqe!Q`uS92W&YL~_OCd>M^FFpa)Qqlls*AQhK^DO(xsf+S#m#S_ z&yO!|H4I#Wgq1DD<{xi93-(ft82^1j4b0+b?VHL;B~`k}_5zu*Sg@Atn!neG*t^dz zIuxQO_YKkfH(L8~@qFbkAkpea!2dMH3;I4bzj4Qcb&Ft&)y|UE;>4l*7e-}t;t17f zcapCFQ++Qr#Fi-A&p5!$@ox5w`sh=GTu8 ztr#_8-qyl+Ycy{Jv;YeBc$WOU-ufSikAb{_)SFNw&6}$}* zNS!#qb_nI-q{gUz4Ue>S{JM*Z=h>T{(|CyPS}FT~XG-Vt)zPJD`fW`FVa_m*F^TIV zbL$vt=p~!F zeU6Uz#E(!Jo(B0Q^lFK%PuwDN`3wnJVH26A%~6$}Dsa2Lef++bVKWYmiDbAjTo$&; zr9lL0n6kp*{Pi-B;%40(8l+>sYV7A@HE)7F8|C{kY=y1g`MlK)=a(Iu>Zm zpvs*7uy2u6PJ`1w2T&UJpKbzSj2wt49qEQD3%>AbIMt}a0;mpko#MeWdz{oUOi#+z zyB1V$gIs$DixLMvCKpHF9Jeu$@PRh@wgoATQ_BA(N8A3_p|W&a-;+sFz;+V%5ZxSi zbry5+-1oV0@e|VDYT)QnJ80@<(O)b>v{u#zKp3#uMsp*H7G!HN9)p=QhRQ5971q;4_fLk4{WGLmkuhRrj=k!sST%;X&YGoBMN}(|84mBsa*~CpC_7rPGZMRtD95r~bz{i@LaF#l zH%a^;%8U*c{vgQN30EPBzD*12izZTA;T6lemzo%ij7#$C&+6NC+M)C)kPN}&Gd|ml zNvTjJ{P~aE0NA4AXai&8AsTPSQN}rGnrRI@tS+qI>dDdDXWox|b6Pndv(u>Q&Fd3& zJLPvE^qTI)!699zspGz~X!TRKYfWH4tLMB}+&W&pFz$mAA5mt7Pe~z{d(UN3i>S3X$*AS$N+WkNDTAZqy9y2_H!jM& zm!7#Lc}`tSd+XY~F#pCI7pg+oN~!(pmq1+u*Y)chFs*CLA(w<$P2A3a%pi)-k8`0*&y84;L z?mec{`5yZD@}Ak7M|QTh|Lzn)mXO)6o@Gn^=c~Z_xyC?TjrB1mvAx@jyWYdq zIL*)GA>*VbA~RtRHz;Z9M5mdd9m~mYc(&d!diWVKc`b%rf222~pPRqZ38WynMr2D7 zx@J7bB79*w1&Y(bzas^iA^CoB>D!K7#Rcb;L%%npZ+E&KF;!)8f&P|r3$aUvP{b=f z;US4-8|Bjl%4Me*MU$+hu#_kmQbH(|K!P!X?T%G^Yrg6-H<9Zu1eH%RCucxZ5~{}I zU_LDEbwiU+XQaWQ(KU9RrXxC~L$lS0p@&oFExrZrg1DtF;@Xt`u}RK$ZMQX>UaTlx zakiqM?PoR1qKpqVe-g1v<%IqdjkX7dI04s<5JmP-E4w1FJ8aEi3L9YIjlk1-j&x2M zx>79n-ghG`<016Rr(ba`hVHn|8aB`=ZIeF>lwcXj3E17_G7-tyn*HbJh(RYP{|6Ix zE;hp7^hauky0RC3V+4P(^5I3lb*ym6)`Hp{TE-_$NAl%9UqjM`8U(fFGa>v4g`Wo= zaYkIyWz1#fC6}EDrXMlB;WF ziS<%>-*AP1EK*!f5?*i5` zxjOPH8At^7bdYnL$QbUYEWG+Gp@^l! zH4&npelh}+Bxnr_`xdEccITN2g}HDXo8HFf6B!OO_VWEGz6q(#y1yGY@X)u)))w9a zry__U+#sH!s$6;s+=9Ni?Qz43`)lR(i+_^a3Yy4f*zh>Y(`bZZKBYb6n+n)2@Eyi| zj7$c=&@3RPibASm)G@Jcg#fy+)Arv#G_;a@!z!AXa(D|F*eO}^M$|+qzi2PN(J8Y= zVi*SGms{6#iqFs=ZCS?-^(R0%`OmgiP~D)9vT=$CAR4I)*!_s9F&q1|e%!LyZQoUP z2U>36^-V<0PD}f*I$dzdi2o~)r(iSg_#pI&r3G&*b@It7><$el!y5&U3BjBkj;^wM z&_id}HWA+U+IA%VK16blM6loH>LpIG?}r79v(*c_CCcbx?Fjviai61C_?(i9M!1#` zK?&ZNldq8r;cf*=U{QGf$Dj{!CEd3-bO6KW5JinE&!>pGETooMIgQMXkq^%se}bgt z&O8(7;}xW{U9tNJ{C}sVvhuUh*_88gMLTPj3=-Gpb>uDiil=u`E`uQ~!oC92pqLvt z%tb)P3>C}B#|ishE5yKf^(UstPHmE2f?$WaGFdad!aE+AuC{_60SqXEf30TmIAW&r zcBrYdTy0s-?WJ4LAe1zNWIoLupU*rRJ`x15`qVwBf~4?fbLMUPRw3c&(|Z&@C`1bg z$rg0^kp<;S-M3F}2YJ7U;el*6^ZOl#Ut2dts1GH!bYeWggP;}K@)Dc&dk5|PpvL= z^o#fr($|5A@xB*JR9jx8UAvEHuPfLogzQHj_AwCP*Egddo4Z{X)eJe%!FL?QPJ+ zJ!*a%KJ^Y0tm_Ii0)=m7x1RC1t!y+`$$~fjBa)^+pYOGat^>8gi1!Rn@1hY3OcnJk z7f2VM%99O<2(Nc}>HU0b< zxA0e_XY#@0DL0chiFx6x`Qo4p2zXK_xTkvj`OG}yyLT@}!*A-zvA(|0Wu+@&2|imW z!E;fTzYR&%<)^~fq5^|+@i4&l*u}l3NgnQ%M#r_id%itDGM?N^wIvh3T0v8sQHf2M zCX9ugC-A+Ir~KH-Jj+orm4^wayK{NRyWUQ{MmCk0A8{`>SJa%jPH(pQETlTNOKiBV zhuZ%=zJ#d>u3lCdXzL#MjfnpXRyLL~{hA>F`dRqbSl*i~t z=@eWyHDg^Mfz~qcsZ8XcE;B^9zSPr{^Dc3Ce&^$h?R>EtB6$Js+@;rBT^7=2i)+{? zMt-K*$3qhxpaha%LcrYF6-;QN^9lM~ir+#_g?04E!onrbdp!b|6z-z5&8iX@o3rUu zO&ZPTy!HQ{2=|^gn5+##8X)eLSSoDU&FCTx$0ubD3W}i2;~VYX(wg}XGMgQpJMfW@ z0q({m6O2~1Zb~zuvY^4ujgHHZw&xA!(`_lGRW;DplKEUY!xUp$K(oItq<(``J3l63$L)(3Pzy?Ht-)-C&sQWLMT!34wsLFB!)GTKH5+BG zus>*Cj%08bz;#B*&rib_MkyXJ>ZFG`zZISoeG3}v5H>ZAI)*0;PZP*1lYw+n9Z5l1 z*PaIQP^k(z`%L_29Xs9juTQ0}%qGn_*RBnJrTvOCF8|~+fne{HdE`^16%}3X&eDw2 zr%NF2vO>O79J;Ck4n0*+F0g0+Hp_$DFh=Y9^-F~kNVi7kW#m?I#p|qp67vH zw?fJmB$-OWFjaG1HA%Tl?cN9tHN&$w2S+xDB;7d}HYUBxHqMWRquVueWO^XcH2djj2R_lExyJZIr*D}!0*E9902=g8Dh9ZU{ z)0{;?3%jBdF+JV9UCy^t0C`UdJNiIW5s?eB1>%d^u0Cx$rp6;eFmu=g6m5AXkpo^& z>${&o+h>8sbX2xgYZ1-9*;ixB+|(T+s1+r5J&zo0nDiWwqg?kL!ihdy1xO(SVtZkM zQkU8NOR7QHL=tUd039Pd?U&F4|K0{xv-bQ^Hf?4F@8F$ zM9`3N+t1JHHgC2%v`4lTXhw0YnU<~KTLd{29BrdQrvo`kj=^fV?L@xlVNR5RYI2nl zJAYb2u6K5EA%=w3Xpv%S9Gg$EQK-0s)j)0Fx1L!qS4#UcD0{s`Fg@SaCSjX46QUOV z(Hr?`mG`#UxlfZWB!+))8wQLZCKmzH+gkM~+0NB$VrSV9x~3Dt@Xv4sVByTULeZf& zK_4oeY$LzpjCFg7)@2$Snu?DIZL_^wTXQtCr`wVy`>WXan>dMd1V_x}a{0!55f_`$ zkv_`Bz4nCd#v##2crh^=Zyj?5JB;y1hUM$=f_@T)I@2Oks`15MxR=E_zs5Q zkykJ-mhf-X|Hih56|;`wsw(}+!LY$5?7(&&nPM(u>99fX3;0ytnSJsjN+7E;HNNb^%$<5KfEw8Da6F0`kV zJdi|k@1;ymXkuJ->tnyJP}6mF#2XoS3^QY0u$L@0iyS~nSF_(v>nJfjS;iDh?BCQY z-`X|FACj0Dzl<8*4DNcNwP5f8H<}?BZEq-xSd(A)U{Pd1A%09epl+BB*v5xi89qZ! zq1x^buJv4VX>F%N+92HVv9 zp95KVbR~od<4PlIB-ThJaGhXrlf?|pH}TV;v+NO0+Vmi6@TE@*$O_);y}h;uc1(hAQ$##v6%7;2CxM7AEyF_`!@^Wl2M zqLAM~;DUN)4c+3mt*jimdl1!g%Fmzs4*GFQ5|*#TXtz-EhVA%X* z)v2|4#~@TRtUL-~+19(X*MFu7KPS5W^jRUiYuKs)eDx+T3g>wyFvJSH{YIhWb*uEr zk-`RJg!jE~r~AJ`)2V8mHthc!btM^$+Khky>9dTNA+5@z4ibS`C%_t#1=Mz0IhikP zgSg4^=#TsKrSI020%o3mNRgb`;IZj&#wCWR(b#=E^z6F{GAIz^-is7u9-zx67P9Fd zZISc5ZAZVks|&sm^oKWjIJ<)Q)0TdS2z>TL*(U$wO33O1!xPVwX^%E8-ytZRP|uHn z;-Sy>;hV8URD?YQ)%?@@Y}lNegQ5e0uU9J7e-}&i39P>~c=E{=e8o9=AiH8cwa`Tg zNZ1@BEOf{BmswP6I}O<`A8Yw)AQS=owMsgBz_y>cO4eMEf#%0`pa|O;UsyLUImf|i ziV(E$ifQ1J9C$Rc-1gCmL`Y ziC4xScd(PNl21^h*=&3B*n$3qk~|v)TV#GM9lt;`wAA>w$w7f)ssd+JwEwh6o_Pk& z0ExueP*177lrCjVCCDH+z24ymY-TAC!_3sA*=0c_6XEPQf6v3?3(NU2%YTcnHe+{Q z{I@qN!M@qg*S8}V{D3r4QW9D)yeB{_)m_S$U?yE7LldFn-38$qcwVq-Vm-OQ*|lGe zq1snpi&@euuu53hqe-^InL>{e=}mSTL;`|3?!){Orkd{%7k1ZV;M>SrP+Q0?KmY7_ zl#I*SQJ81j(hJ&>lBv15L#M`<%|d=f9r@F!FT7%A2WiSoMh31aCd_k-r$_t4$Z;e; zLU!l617aj=z`K#%N2_gJ3tj_bz<=oe#s0ky@$#4CxsEILUfJjlpLEody#M6_Xiglg z7xG1^kg?Tmj4{^TXq9SSNSfS`TFDBV=^MI^$A@QwuZqvrS)G)VoC~)&aAD z=fXFOY6ID}+;uL_XHLg(6ON6(7N{6Sk$ny>E!IO~EVYOHxn#o~3UR!v*Fsg5zrI3s zc)3r7s_BYn4Ln5eY#zM8YNbzlk(XL&-d?mLD~;?~${|22lD(I4vWGW){pnk@nh)F3 zn!6t>n0agaz0X2?c0_EZi=K&mpcnLCfZG@-;=d{_pCx{t>AY64PL(@v>Okei6Pn1@ z%*V9+5J}&+`KV((HbH4;W)Y5gAd?-whq;9{ln7imR7?XM9e^no-&Nl*bfx*eiPXb+$YtM2aoXe6X7c{jTvl z-?qqnwKxdtFCEftsrNl5k2C9?A~w-2>(-?>AFeBkq+vfBDD*z-I+5RRNRN@RvwCmr zT6eKc+jHEf>OH-51uG=e(%n06?AtsRDqbK96NZ^v^fwndBKy_WvpAQX*W!YTMYV$O zF8z|H#?St+>r4*5_q^&6^y`mtp99o(!S0$UmTjIl?s&qar3 z1%<-$@dP;K78T;Yb=H(qE<4|ZY2CV`^urbPQ#N7j$(xaH)x>eud-wbNFa0;?qJLg? zC&)w%C{*(w)QIJUPt8Y;8>{na_|`qxqY!7nGcPzi^2N$x98oQghRf}mCl!woGVD@B zhc}mxmR&AwNe1dWW&6bqaBb1+XsOtVq{9PZ#k;md`WVEGZ^euEI}!Iy?`v;H9X-L) zVyF?l<$F!De2Go1euSy_(&DAR6iKbGWtLMuBNKhZqy6x>h8UYfxjNgMZBM%Tz;Rl7 z)%5D&BKxpetu=qk8J|ehfd1Zyynz3;RG4^T5CauYcg%D`8Ri1E$$1uhQY2p_6wH8c zPO!nznCwv0J$M&&5v+>8DJ%@74Zyz!^c``_o0{px7%dx)BV(o-t}b6BoOF+m{MinA zRUA5#M22GONt%08Vi|q*oe9nSAUQ55JJ-`HyP1E}T{-)yxXYTdUxqz$vc6UeZ$ofX zvLJS4#hw3iww&Ej<)}GOhJ90jr_?wO`OU;H^!GMm#ZH=6|FI;A|Krne{9;uImAJ3c zmqMsK3hSFYeJQ!0C%Cywpxn^iK_X+^XNb6DW2!B4@gRd7tSL*e+=7 zDZF5yYA#!0dE|yomt*AO>V~lsXP7sw@1m5wcoyayQHHK1@z(iXg8@1X|5&MW3=COU zQR%UXJ#yw^doV?Jsg~-{*7w3UP+NbnEi6o_t3{agZjMOOzXKFh8xagvD}n)%@u6*n zE~`zFy@BQEajnkb;r_j8kcr_)uF2Uw#(Je!i<+Qs4u1Gda=#(-59_+>OL!H!{skpt zc)ayL3Ph((EGMQ~D^_;~Y=WWfZqWn|^{d~<4)65(I8xXu;==0dBNu`<77Q4EGHne3 zfMLN->FD@z->Q**(Y3~NN7a>4*{8<+9;`36TqF-xM}icue%dS3Y8?AKS50?Rz-f`Tc3N) zF?#%;*w@B?35)f9ynbw?m7N{4PCVh>f6H+w%kaz5bEJspKx+Q zELB_f%swZ$V>i*W;!VtwjYzhGyS+@4$c8%JXjyD;Z}#e;DNE-%KXkg!>@a}{_J54j zZ4Sf!Ae$PlF7oRJS(r{oxpMDKi7l+2sRyT=QeI)}?L|&bY_2b? z7G*vy=v5)<%FR9#vV8UuF=vI1(D*EOe}kGsK!DCbDsMYMRp|g$ldHzp;77bXZ((}d zA}d?|4_PVE2>S@RPj%D@-S5*t|9t8d=Ib)-NXX_s|lxm&j#^1 zRtEz(1o-tH`+cfW9O+}1-!WSRv;}nRVS24Bo^jZpjE1l*$qh#})RRl$e<3bjo|PYm zWnUMb9*sI-|IN9)twE@XFSIfnl&Eh0zB2AyK0JRqVN9P@${KXPQMXGWd)WWckF&0zR3Trc@M)$Fh}+m(T@(3$4qm8D*r8SbI&s0X z*KvORXLVAb*M|!4{o8@MBY4|VTP#>OX85;J?^bM_necGG@8xp&gQsUlvMIA+V~o;S z4!VM+fomDlhnCz^4+I2QCx`qx%xZd!jXyP4@Z)Zo{JjI}f;%)m?=9cxSvb(yuW3;yu(x#kGH~jCrNX$Q zrk4vwc2caz6P3_v$Nub{a!RtNgg1O5F*eoZ>l`Tgg-eGi^2Jd}d_P8=fz#S!4ouW! zS8lHp_=DG4ZRH~c@9lCxg1k7YtWaQNVLslOUcRap>rJ;cRpf9ox>L=x?8~+SvrG2p zt|}ezBp;9A48_EY7X&rPmk0&>Cm0#t!}@#ddjyG{Bxn*bA+PQQ+5x@NsrkXzsGk|{ z&C#NP9FV+~@K1DB&>`gvp zB1+<@q&KC+gYQ*EMS$QZ`FQlIk^I>Nd9qe^9sF!XbNS-4XTCwD>m| zd|#q(dWg7Fp(Y_HcntB{gQ$sL%^Y=SWSVf%;a1+HYRBe&wpz}it;OZcVB;Eiu*$I# z#IZ4}Edt*&TS&No*st%^!ARu7xWDg365lWBm>jk(iFkQLCUrp4fN*KS7$R8MTu&b~ zuy6dMfVy_@5M!Q5^}3jX_9~$e@p)p_9+v$Fr^^i&7Q3(&QWQ4N>a)Y^KfzyX5ZV1* zQ+fQkSq=Jj1lezpd8j$Wz4rR{7}G3^t<4ZO2f`f9cZ_v4ONfcR zOw9?_00-V4;Hb^+#zT7g*EFL?^KV=k5%SV(50t+blond+;$eT1=|3q`a#JnR47)5VvC4hvsjyY9?wq zwJx(?8%`y}#h*LNLF)$8fxZ@OY5|k8u)u~$@pru#*A)<6ZIc2(xzNxsgMPBtg@xX~ zpD(vOz23+L3sFPtQ*2O_id^|tM9VC^d}qeM%83W^R1)4cWD%g7KZs%F@D4SEH-eiZ z7cQ1@B^pU)l281&-^4vrRX1Sr>mB*XtaiRwdIPW7K&DY_Ct# zXc*|p+ConxdIH521G>KAHl>djY;6xuT9C7Xg(8SC9vI z)UbYJM}6t$IR++ka%hcN@-qkrU=w6->0Bp>%hgN~^=dxCioYl3e=*wLe5=%-mS!64 z>tdyBZ&n3`{Gd<&A91WHWd_+P>U8%m=-aoBp~G-t$Q4=asyCc4Ur`pdP8DV6_2?pQ zI~qeH1sfC5s1Cv}_TOh+F+Ft1je5p!riA6ZN;$qtb39${{Ggy3$RkH#F21lL7f4ud z=68~<4p`1N#GIN9Tm#?PE6d3#b=Y1xpo{QSWHa<4NPpC~@SVms^3%xECt@p8fy}~2 zDNpjCQMf5t8cBWdiwQTly65FSu$;&NP(omJ;p}0;@z2Qqo~awg=68~5?2YM5@&!>` zw`3}nYKd(-uZyqOVErGu-+Y3b%CmwRd|?b(pZX9LLC>|!fc16f@<|=6HI`XNmbf=T zNF5Fk_|sPD@UXZ+!Y^GCTO3LPdJa2RTC-Jbjr6e_uULcwxoRwN0;Qu1GgEuEK8G3Z zO5rSJ%e!!r-D1|x?+a8<$p2lImp$&}(VhAcS)Z)vc+H;$#juaJere;EIy^FthcKWjyMQG#rIe+Zo<8U!p>_Rp*5*kClpBb`_so6Hg*5@?IO3 z+SKwL#KCI`)rBQ6fKTJ?tZi4cSI1muPkLNvPg+Kmis$j8t()^SU(q(~r#SdJ(X{MC zKox<5_zI;Sgni*#=^brO4V8KC1b;+yKh({Mg|mQEyhHJc2BYtZd^AI2hD{M}YI!yQ zzOjoi2x@2gILBh8z|0Aql9WY-2K%*;&x}g_1X&lRwhon&_0R#Szsi7g%ChToH~Uqk zFQEn;aU5V?qx5(CvPG~-sJrw3kx=nhsYHiVzQC!b3Qaez zl8C?HkSH>#8oyxo)Kd1>{Dc!vRFDPuupWG(GjC}lX;7O5?uotx(OL7m8iWQVIg zDI00B&2Hz<`d*>~O(BeYP)cfEXT(LA@ePN?$*c+k76?hY!8XX+XvmW&P^Y9{#!&J z0{YaSbOa@3=nLxR!*kfc-7j1&Qrhv$JKS4hBpMC}?Txg>b=HCZTLC`wt;OT-{}WjH zFZPD${A!wSwUL7?*CxotUtCGsH{NReB%Op~Jram6f%&X(T~c~@CcQ}|I`AUC-T{7< zvsI~$mmit^0{Pjo{Y{;Jti7;FqW<4Qvvaux_VuPw&^HF}H=#oxNgvsf<|Myqg2AmtGe3xa@vXaFNkdItr4Bp{$5O{9bLE;UpY zK|ztwYxI$#^cHFY5d{oYYJdPiX+nfRC;wdWR%Uw4s3$oTZXJ*dK zp1ptb+k0k<17WU*Gx9LM z>fT3JKmI-D)ZZEsBA<198Uu$PHIbAKJUkg>p_{`j#sAZv?ZvDqDzK1GNzmd>8aHJHW!GK_a zr&qAR!B&A`i&_q2$*1hZYg*FIE00Tn#1f=>1}uM1W!U8o-=j+4AfT5&j}Ex_ZSmhw zm0+!uuUK-vq>^`C0aPO5&7L?fX5XKeC1JTFcH|0x%YFlrR`STF4k^S>6ohTwzVZcf z%JuS?U}7hb$(X& zq>-DEa>rJ{RUfVg;E#f3s*jvg!1hvL7-jR00u#1Mmfyb_)=Z~I@r{l?1h#NTxt}(F z*WeMhJxtf*r!Z?;dNltGNr$Z(y7bI(un*sI{Uhg(WWbp$eXZc1wN|&&;rcfBAfjT* z)9nog3;#ah59F8Sd7MkzNUJli_ME&Y$chvf)Q8;7Odfgsta0t#c`cdf)_>9hr&e2H zda`h-7L`XM4-EtIRt`jR36^B5Q{SGS;h;AfDYc~Z)5n9qywj!2&*~6RUZEV4?saxY&*Vk5MVcD6y!dw> z-?h>Cs_6k6*`=e8e#Lt%_m!0VS#yr6#K1fCJ3mYn%9^ASUjCLGApeCGG|bgyKij8G zjQ@7Lk%=m5sa}(%=}gp+ejQuAf~KF?vs+0#lEL8n8xBA)2++iVRG{07ijJ84iOsgl z7l+PdoT>h`fBmgYgC$*M#wkt@XUjmG3THTN^C9aY;sp@d7eIbCA9U52!`fTF0t7Up z3Ex@!(T{eUOe~Z$MjupcKM5uLQS{)C%D~P3`2PV*u*Z>@WEPUJ$)j2y7Z%&oiMK9W z;8(_oBf)O#MaGAn26nk3Gu>ki`kTQ%>e5~M5qhFe>U*X)DMo#hqQ&pzff<4NB8AyH zR}7?BU^Tmc)KA*9f+Yf7f%G#@8mZhPgxNEt8W(|vRt*W{j?($`3Hl5*-V*G`^2DWX&aJ+C#{S; z$BXg91Y_v4$BNafPzTv+SEPiV-Q_a(Kat2MYEsVTZTd`DCx8Bhf^|RKH0S7LpgJdl zsJB7Q?Aevk9#+gFbO4N+a@fxWK*-tY``JCkSN|taba4p2rY^6>Fg|lE^Kzw z)8di60keq#O_{MClbs0T-#+Qh`%QDH!9qz?;Y|qnHS=q_W}V|fboxxWbO!~JtRvqx zzr1i-Ho3xC@J!oMm-97aK#_A(#mRaVzxzG++|j!E|Wymg+$>EW9$4CM=Xw_I{i$nU4qabrsYCGmm5){+u3o9CzH^ z$Vvh}F1~U9on3I4WPATb4!}Tlah8W$vzU9tMmNg;IDP8)xsM*K-?AAqYq@3SSJcYT z-g^HE(#MGZFl9{Pgt*En^UA$AtN8af?AlzMNXey={JNR>D*2$M(+qRidXK0e(~iFe z+6j-x?Ef_-JXSzYOlbmceG-EJxMyj(?DX8eXvgrWv;Q%bJ+a6!CiR=KDKd4YXIx%C zEAVgoRR#b>*uOv#4uA@vH`Kf#*LZ>?0Y2;gbfss!&qZ%OZ?l~R`RVbiBOfk^YkZGW zY0uoU*NpcUk2BR1tYE%Lf9kDTD_ZJV!GE`KhRi^Lb^IR~S0reA{L}Yrlpr-|#A7nj z6#B`74LGKo+4~se#8gDJR08wJmjCx9ULcnC?7{^eO_STP$Zr7-u^giE!NR99V=Egx z?tJfMD9fTg@ND}n^e)!{=@g)V5EqfgKUv7a^bv#}AL(h1>DnUWf^Z-jqJ;0|*w^{S^4U$VjD z#_22mfrTu#=KBpX96Cev{(^A=ufJqozx|juH_kzi@pw+>2k|(J^ z61Bbxdl0}=Cs5%P%gZn+)>?l2*&`Oc83M9PKvPR=q=o&xK|I|GNF9Wt3+1in32H=z z%U)yLW?BS4q0n`tmjAY4Lop|U@`nPZVRJw@9G7A4b6&wi=5gWrgy`jF9(%EKn(tUH z7*8GCvNJm-JIrx=FBH)pXEmj`^d!8vrMyQdx=B>Kl$)R6z8?ZCrJOM505=V*_VR73 zUoFzVYj`feV8s^5INdZyWQ`;}E^*F~r-q3~A+AqI(nnoq5iB!XA75uRQElwlFGj$& zb(0c83D{S!Ce{DKU-Z2KsqkP_$0A~yQpO|AF*glC2Z4F1hkFWu@6u&}gzUn#yEAM3{8*cBPK!GG-fM5Hde3m6|>Py07Tk08a z^~Jo$5o~+nxfhSZmHA`r7=lb%$ur-z8a5= z*a^X3jW=dX>cmCJvnpJ700JMI+rrsBYH4?oUOORB1q$q#BFlLLWtW_z65+d%bfjr% z-t+g?{2~}p0+*3e9}2dvCg6olIQvgm=Ps1xEV>| z!!$+7VfMrB1G{(+$0qN>!<)*Xv^^9n1Wy-~a^J{nDQZ9``DTiiLcQT`|Fe#W14~x3{dh^cC_^UE|VC*qkn67hm9$x>ESo0 zw7>t5z8$nu67QZmj zVeP`8dCc>wb?xQN89oM8W>pI-Ai()>K-kPX7!20ttF`I^f;kmmeA1{6yx4bi$Q6Li zX+D56lY=Z_lg@$}&dYcQYiW}&XOK)SCv+czrptSQhmH{7`|O5o#E$87{7VFax%s9m zU4{4}!4_siA^X1zrGCP2L1Qq1irn=TeWJf%D;&HgFYkd|WqUi?BXt~uQ{Z(9J#>>C zMKu8ho*Dh;-PP<*cuH@H8L%B&`0mpDd2Vky$c5$A9jiYA0R-b7;wArcU9^d=N{JxA z0r=;Yw3tv~q&F|;7GO#vMRn(oSPlSQUvt3VDGx+boA9tezZ9Ak5vKH~HF-CBBkM?$ zrj?=Ik{uyVZDh%i|6D2)Cec5SipCUnb`hA>zZO)7G`Zdkrgi!-SC=zXlO;6aOm8ha z)3#8oiC~W*AFx%RL8=&Zi8pFv9K{o)wD4d^#jC3+^4-N*OUyOE)aQq?t-}7BvA4Nx zkw|oYqE2c5s0W#gKbOY(y4KoD;SY5VO3TvxM!5<@r=&Pgt zp5|4;{WAsQ4iY3?$}9VDna>l*LkOW0*$n&+WUARDVyCfbJyI z7Q>d{=AtFLDubBN=HkBNPNRs(qd$@(`;2>a{ym$SVe=maW0)}d&yC-L4rhV@tEk_< zdGdg@%kSSVZ-6!MZ@J66(FqVIzkmN4_p0=_%s@flppVeL z!=sPr+*E9&`5iAq8L%o*4C{bI)Z9C*czjftr1`sP|Ihqo%5PzM(B#vgf{+$+`8vw4 z$f3x$EwRchAC?nl!QR2g7Rp)AZN`S8+hf{hsxTnwq~-~hj+b{ew*WKEux0ncsV1Kt zM|DS?fj8dt77;mIi<{5pC zP`8)1d(rUl z^FbQd&Rn5~(fNsv^nuieKU0BSXCHtDWv%Zcf#P=`&Ivli%s-3+mY3}P)ml+BFTm_F zyq~gbYAGIFG0(QS47C^>#5u0+BcDqVYz}4A5H}2>75-Q-iemGsTxP_`%+0AqeWq4O z0EXrcU}%nR;k)icm`uUI#oe>$2xZ$lXTywv;6k3}-$MM6sQ$1rG>ogZ1#K4`a+DtY zP^4WzimdgFW^5&bJxonJ+u&=$9RP(IvGVri905QjDOtOj5aAiQ-crPBY3w%v*dF zeW6*nKo5~9Xp_Ht*GhL7B!#Ut|P@!EUw?;kh^;3>C3(wHrHM-S$|kNC)d8# z!*fsMgMH|i3J#GkDL-T1zqZr9*5wdtdy~)KVdteX&jpTS_qh2^pSy=T;VWq>K^a)@ zD9aqTtSjpMxU^KZ(u@H1KWu(fZmI4gWfv`3P;k^=VOpC(h{Xa1OnPX`qn>-yjFDsY z5NwuVNW`QBwmmr_O`)K>=AZ)_ZqO=R$3}C+9>qSF2ddE{3o}KgxWPK( ziFlO+FT^Z=wJvicSmWaeyYp#{wAnXHYdxRo>CAkat*eD0tMr)806#dzI3a!cMlp-xvZ?*I*(oI0@a`v>F8WAtL)C)_@3?IhQzAjPLFjzs79eV> zE$?rCDbw}!KL^|Ul0pBAKQ#o7{6cX9fl~XQgSql3bAEpCO_?4R8;^{dH>>TgExLv; zo1dbpUN%XryglYzHNxYEAZ-t+RjE>};Q)HP86bSS=OcJ}GLM-=;RlACn%Gs=o56*5#w)jR! zogDyM7zror-q(>@e_-4`z@r^-RgwIK8SqIc`G>v=F8_}A<|LS;&&?XB z)MA=zSlR-f3(*^t?e({ZQ~k$x3c;qr4V6j6xtv;k*Rhd;4dGu+Z$l0Qp$EeGHqE8g zVRtL3Z^3=K`u3n4TxHLFQ3j0)M>gJOUp_fRbH{jEYoU9tUN7 zYZ`3{FMniP{`p21qJX10b3z=8ygUx1K9+DHGs&Uc(Iv_&YFuL` z9+?Xvws8UTDhs|H&ue#K1D@LCKCSWMm@{Kk&oy2Q1(`HgfszY+YU_V~;SOR{5#B z$hA2-yhuXxvZad*Lze5rW=0E(B(#KdWj&_mnGnV5(FN|}8J zl_>im!82eYjix8Hl)t8Qfm@JYx8REiA|8%X#qJwD*B%{pakA_L`y}X-pB9w{zH%;> znD9^Qfs~WzxF@QqmSJlo17G(A)yCjo1T0Aol9Y^8TJeYS0D4mVaUo2hONadca$>vl8#YSoy2jHwr_&q zPIrF%BK{Rx{%Ksd$Rpc#KLZ%-;D(C3cA0SofgfvW7xUjLbT=lym}^|4aGy~qr6)B* z)WAf)da?Xf*h8(dr($glwUrRoxF}dcY;oV_c>Ky5tgm^yL;O-pW6r&^;~w3uwydwy zSJR2Ruay?-n_-(sKWg*xjMbpSTtvID5}+4Bk#bIVqXH$cead|~1g;jZbF_b!b_(c8 z!NXgFyuRaa2K=gcHJtAZtQRjExI2?hx=5%G*VWfS?DzpxBL{x;fN?5swvADfj7&8VynXW_2DL&9XBU4q{l|v1(y$d%3nJq zxY*5FOML!U7-=&B|Da8Dby(>7=Wz{?{d_7Lq zdVv`Lzs56%7<25YwaZCX zpB8x`(L=(B^OYV6$$w454ZZQ>=C%H*7DbLQ5>%p~$oqjn)_Xs_BpK!yY>nb?owLpR3+O~60Prk~q@{I!-K}!*7+2v=FM$#kbvw0(E{9R>?`66k+6LtWZuqRrvyZ z%5Bq2xsNYtb^_d2vSnH1r*;WjXxQ%MS=>`u?lNjcVWN$k@9?b3SIVmdO|j8Q)3{fe+a12y(I%Jg|R1+Amu<+EVeKa&+VXYLZu3?*1hm0?d zb9(QY;)S33P+wrNX8P1xsNtHUbdyZc0wOV5%L^FC6~ru_ySyGh(ktZbC)6O04J_`^ zn>je?cb_nGPb~wGqT=r|wIc)((Dg&y`WD?+U|JLG15XPap}CDuR!tgHo~stjsmB-- z_tEQ1TPtH#==XoS7vrgE$#z4EU3Q+u*2if|Smf}`?$%bmBF z+a`qYsfj8eZ9{AO5JUYb&}om{HbWk?{)G?HK^|yS6Th*~khvK^CSr_MpvWyxD0!-P z*KM$g?_kotwptGTWHqPC`|ERC{SPCOyx*(>Q9aBBle0R7@uRhJXp1?4kt%eGyE+zE z)DdG!)b%OrBkk?!!KvUKZJm4JZk+-wOH-rFj*YeXrn72dgOV2|V<^VNmbBTQQWSy$ zy0S9KaN1hz5I3|LPBVhe_o-0%X|mWrVdui!nq?QZN}^Fae0jGuGM(K&yiAwO%(l#z zJDbQR6=8~`3_TxB@sw~pQ(M*(hA#{*BMuTh_UB|1EUEFg_`TjxOo&b=UOi|i>uz0p zs*%3M_^km<(kYK2>Os}j^HBiY0zM{D<%Js+*?p~*51Qr;h259hv(@u*(u}1H&R6Vz zai!KK=b}Dm8@C-uKc#6$_@46%gEPd`Al0!>MWZ|V68kInJP3&aGuSc%hzY^t>(+A4 zR+)4Eh^(3@Yab=Hd3jJ3*Pze44)yH***d#VB`Z5=PZV68Z{=*5tS+A{(44t8!%z8n zHGJURIVPkWVpey|->xd0Hwjhf)p7#}%iZ(SH97c?g3dgS@{l_hw6OacDW0$36j=Y< zA95?3-2qU?m0GVA(hL=s+dcHjAHXpGS}$#GSgrc}haX086jE{}J6Y-}<%8Xp4&**s zHh)_c@x5-ypcq5#1$#jo$|(BW^EUP&XH9#A#ze3_kUA=EVYN-rLx26D#z-K_eo%Cy z%)r+HE>le;UMr>dGJMYV5wBjCT5dcrX(J|=MNYcUid@Vzr!aTKeD2@^xq7I>LiTY+7AE?OW?Do;Y^5t0`=7KT{|C) zvIFW5h*E&GEkLb^elj77jnKGvqB}AL7*tavWBpX9Ub+p){XwX{E_dTah?bh{rbNkdmh|Z%Dtzy4(o8DY8cH^W z@@LNXG7K(#YLary9xD_A7MF$ahbaSEflfM6%T>wW#dEXzXL#AAU-{{Enzc9yHK?L- z8-ozEVH2s8p-NUQ$StN2C7_Wp`#jmLM#=F^y@H66;M0!dR(}DPT2f|>AzC(j(sQce zIkSGysW-DXxFGL6L4QWlFH1(!;0Vb7l7Au=32QIs?N9@G;o@BD<^XD=fH_uV5&)9i#Yn9 zecldtzZP&-@qWUC$En4A84%oNCz$vs>-gdG@dcQsZ?2G4Kz==R%Jy$fsKNKd(74S} zsquYnB%zBFF<+7`mL{@OIH`dXi@GJ4}-Vn!oYARdvf95;E+zRu;4H*vN~?jM<7z=S(wF6c?O{`vM~L3*p~S%jf*abx9R?_5rRL1$21vq0wT z1{k5ghz`+(^C}1DAZ8O}a;ypggsQiwcRk?7=H6e>sSICTT5a-rs6Tw4xyGjhTyEeC zg^NSWpyXWe?Yi!@)(v4({I^rEz6~ov4|I$F)OyX;`G1meh*_aU%e1C$MXtj)KmVZx z(X*4;}TOD8_go39sD*KEaGf#4iGde!w(fhsmGFheJB}}Kw??Kw^fNP7! zPgQ_qiW^=xa2}glv9k;z#fUonr{t!tT5z8>x0OxVSw9-sni!`Ns-5MfOD6ZKGv{v{ z&((#b^QF)BL&NVP*UL`t?3cWRId#5afccMS=|Zyk6K8#(>gjXhs{v^OLcu|utIU(x z{3+6VnhNs_IS7>`lx+UOuSPI2Y2q^0w0N}d)z|V|#pM7tn8AF_CI`jn5$rZeUVLvYPcFTID}&e?D0~ez17!g4=}|&Y*Jbs*X3K zNmXuA+jTKtRx+X)zuUHb@iLKuy;e-PvGiR~LLVaER~VmwBBXnW*S(TaULg)PJ)&gY zJ9*fv*X~DrA_udrF`HJZ45(spSJ;ckm0d7fuZFkop+gH@Cg@3|cxN{WYATH{1d!uYq5iqK}bWn6EI$_)#TQUh`{g@XVLT^# zlc5v(2IMy<_{VLf+99j2c|_}qRkl__Gh=Q9-8={Dj9iW}#Y?*S{IXRyLas;Ns*&kT zl5VU}S*c3b0E@L(8lPO~zQPQOd{LU^4@_;bVp459)dv|KLx)e$=C-C-Kt7+@3x})Z zbKF)i>DqNg*hY`L8HV^Z%VA3)gnI&Mv&)dAW)D4x89zaq;xayPX};DKP#(WRKW~L7 zJ|)yB24v01^7$DCF7NH#f=8s0dCClwVpN27KG*P??pP-Q%ksbigq`T7TP-f$7X(UA zrKxS>S{_+!k95=6HfF z(Qc;xY)MaRmQjcez@UsLQ*gat4Lx#y@)Utu$N?h^2CD-M&@3AA`Le1kmS#Ru!c`Qv zgntAute9tLjgXXOT^*f`CM?;OGSs2uXC~BJ`ZOR=$4+Zdy3Ye z!=vIcr=m@jUa`2z+iJlCW3Bf9BE9mvG@!rV%)VG;!&RtbrJ(AB;AWzK7`0bq$H6I# z2Ik7=uxer)--IN2=48ymIUC%y$#syKjb>#m+9;$fU>RWEa5xnY5v+#Os)J8q{+-TR zwPINO6zyKAfI_vHNudvc!4DcME_o+m)VJ$JW2SiK9D3v}4Vx$Xn4R4u+~@(w6D z@Z*m@OL#oMosGI4{9pxPwgHHy1CMZth248jiA0HE*B@LU4xRRRyszk}Sw})TlNKOq z56WFmH)VQ2$pjT*pLY3z^dRM@>%JC1^@D6q{~jxRQg*iC#O{-`i20(9{P>?WKdTjOH|R}l&}f{Q9s3CYsozqp|%^~h_FesXf z7(aDn(XJ(SiblPlje_UYZ$vYVw-s+Ba8ixh_ fZ+s$$f70mGCskbdPXtOH-VeQ{f3r-}=E;8n0WrKp{=ce z2vn&8NgzQ8frJD!N>nCMH&aLgqJSGhKuiJ&NzR?v_j%v5*0;`I=X`&h_3gEk#oqV5 z_dQ(0@A_TW&DG;>E~rmTKY<_!b>zqIPeRc0R0vvnYSjvGM{wiz4EV9))KQo3!B224 zIJ1f1$Lho%{gNQaEL-<)N&ef}a0vPWI`aLuo~gH{gy)-2r(nmmJ}Ip0YYo0PxWD|k z&6ZWaEdAz_Md-x(GogWNSB*aWdd;deNafFhuX8?)cQV5dt=NS6=I2F&-9LYM?c!$_ zPuM)z6Z_13{p!oVcD-nEauYUHBut-#3Deaz)8liqw)siqE`_SPn^R$c7ptqK+x3I{ zKmYxo75Lw~0$Fe8$;k6qw!)k<_O`AsU2V=We;M!=*Z7RF6x!CPZr=?-!^_?yy_dS3 zVHb+W`U!0~T4_P%CcieVpwsMZ1#(Fbu7)GJfHl<~hReypRhrw%RQwOJ8srM>K}m1u zm%aIsO+cl*OlC-N>XtqqY4{1<9FI*tL}o~mqb3vD?BWkv)>YiChdh6p)G__T&Fl!8 zV(cp4f!#@z2EXNys9lhq4D142`BS(ej!B^tDy$5-3@q=opw@0b`~j zHV5)~6r+ZIsd|d!$8{h4^A`vT`PLu^$`Z~l4rq$WR^w4x>+(^jTii`Hsi$QZ^8(L~ z_`w|0?}nD5%KkL!G8c1{7Z7!Nz*hcM4|D_~3Lm(l8!bJ(?dblY^mB`yNgoJvR7sgl zhm!F<@3(u4Y1(T0vjbQ9x=V}s8YHtb#r438Z!CN0W=Ho!(9!S}mQd^T{5bNqZnR?R zxx9{S-w=f#^)m@=!ehR(Y?PA&d45-HdfBrG15Ay(r}n>8oy5-2fuSU5m47h zd>DJn$Y!W{sv4$YhJ52`PS-ULCg#g1mNgoD7q`!w*1xAMB2RYn)}S(%9keG+BZ6r* zLyMAM5Lc9xhK}FYwu@px*rBTl>ff; z0A+-b9@U#rF{8PMlFFP>PJNv=(Mbzai<2(hSfYH$t9+bWIVt*j_PA{5M6pj^Y0K;y zM)iTnSNuu-gUvTA^(_UOsIPZ7pTE{Twh>RJR=}e!Mzajk^Z_mW} zUJRk^b@UfDEJV(jZ&1ey;%KzlXiVib2s;2d3Jpb zPNp)nR{C(1xv;S|TwY*Q&7PbjjzMb~83ady_*N}>;B0JjbIcYymj)+G{ zccC>teV*8G{hFRKX|*u6I+g!m21bntBjnc9Np`PXjm1Q9-Cb7TFwsdXO?!=m+lM)liA8}R zgV1lSLdWl9_G;!DqA)+S+OK)NCgsiVD?AF{-;Dj#Pdv1?K4FZD9yG6+zW;;ZrTxCO zT+P-v8?JmET-~ri`bS=KW()TR_Mpaex-I=4VuK1*jF8Gy)PcD^+HSMl+LtHI1aRhl zjGukvtMLK*dctg_1XSHpBOh(Lv&zavVu48mJEZU{w-Ixku`5mE zJsDo}iWZk~b1u)9xq%`4X4tITZD@B!KvLZaRYhD+#4lNj!)AUeKLIAV|Bt@YVNcTf z;@SrLl>02QDHYP0!R`$V^^j{ai9>*?{)~L_w%blTFQMN2ml18pdK7HnAC< zlPA7^2!)Gxuru%OYChdnE8=uEq2p3B4o{AZzeC+d29p!(tDAz@w80&-~c5_lYQ~f}T26oz$Qz=$YNMenX3V%wety5nv7~I#C#>z#G6kb>($SSU4ME zD9?2)#y2_4@7w)Q;w|GD186EYvO^yHYHb#weQMSVZqE-LI`3R|rjiNwsmIN5>}300 zU(t{Cd29ElH49k{e5Ku7;rPv+f}q8n>9ciZFYtYcn&glwELrTGm_LK=B6Lrrjw*!^ zq%F|RH(@b+GIYS0EG;(E`p@mUw#TNlrwLB0K<7qMG?VMYgwb8Kj=18a(OJ#C&CLO) zi_Z>R?hM>xr>R-ZFL{4+lY3W5oiOe&-@h_#Jt{FX*B@Q0u*A%@CA6`m8r{(t#l>PE;#TS-_C>mn$G@bz&AD;Uo?Gl%9vsFL zTLr&R`Zq|U8dnPk8EKg>cf)7)6NA;SVu>-l^!s_uO|RW8JbnPG0(D3p_DWNU*Im1a znu)~`652OTF8d(e$XH;xcJrhTSf=%?? zweq=qQE2mdvzxh!v9L{%!7f1+7;7PQL}y>ilPqtJGKj=inHAR27Pc{LKVPRz39q{Q z-@<2puytKSUp@X1TWCF$t2l=GR>eOYCXSac@(y=%YDz8*l!%CdSJt9oT3+I8JbFa6P@`N+n~g@jKVXrYHEA|{z`=UwwE zvJ}@*4>S>SAIl94g4~AoafBUQre+`ZCQkAfa+QKR?eyl1l_veP6 zTXYuSb;Aqsw_n~ocXQjY(AHS?3v!~`5=C#>Jf9ZtLc$k!J{R__4XkD?M9F^bz4UM? zsxF^TV`5taWQOQL^-11feMRnIAZ>Gh`bp;}=Nqg0GD`LhS1TK8RCS9dWmiz`k?mO~tLcvKu!S5>+Qj5o8?s z+4LfxGQMH-7bMappZQ6uk*6j0uLedO%|JwUY2enk-VsDBNpMYZ%`3=KyoKAx7X3=; zyvb?c{xiCV;?HSD<2YO2kLL^$z*NwpD*5d1Mx&DFvFX$6)onrC+tQ=s6FTS8dRcBa zTpdah{~+0PQ5|AW#4iq!e#HUY0~=_CMSj;QWQ`F--GLh%UUE?k6jN72X)^FvFd~ zCG;wOAsttAQ=~D3>p8JVW6avI*#e$JeqrV}wHX>#sY5*{ZO&&)M9rKRE94Gbr!josoSn8$Bjl6cxLh)0Uub{d)_{o+z!-7CVh<<7e>-;IWA1$GDRR!6mO|LBQ zG}N_BG}v<~MUk7}X)6*9u2mX99i67YN8uviKKC2KBn!L~g3s>K z^#j+`x=H)$(#iZh%V7U?`a9c-x~nxl_-NjsKaEy;vV_sPA=|%YwSM4G`fyAALdjVp z%;g60!Esvo0rS>pYKla2H&j57#N zb__4q_3GaeEKK`C^#EB>T;CKV+g6_39XI)_Ppf`LbeB@y!VO0-{Dry>WFx#{xxJ~BUF zX+~a?H&}Bsz}r1aouW5IPbXg>CgdGAuusT#^eF>3gT9^pnnc;(qycVz6_=tsC*zcC zs7o$8uAaGnP51iY#@SwEdHe2DUaM16#4G(CkD{nSouyg>>-(-HQI&svpdv_u5C(t^e9Y3d_4<6Zs%0wOZN4%3+B-9zeksTF_(H)X5wmfN#Q~f zcow+rSr4^7ojC8R&6h$D_3I^;bE!lb^=eyMhI4DWwRw-$od-=`^GBRGn^4<@FO|8SCQ;#shh24dF`+NPMsGlG$Dle2&9j;~Z-3^y@= z=-JbOoMu_~88j0|5m(3G@7$n>9z@R@KsyBssIr8vfaJ}T*k7!@mOxq6gm8Q)z6A+` zExpCZ9q1$ZMdE7Uy@Nf4(b==y`m|`gpR5Pzrtm#0T!X=e?y=T|^WJ9~+<#~7(w+*p^Xt*~P&vm4g@21Zt%cRZV>m>o$VW?skyN_~2T<&MzizaPF5eDfL5gl*T#qUVR^tPJG=?2Q79WxtdX zp{|K4bodlXY&M>8YyAubVgh@|ga&Q#a+O*ZODtHf!X6Zq1!0K~xL{){m$vU7{`Xuj zG8ndLw9Dgj1E{q|l{28(VklQlkTjt4S2_{H;rj+=O>8p4r+qh(*O-rP0LFxC)GfyZ z)5ZQOqXYrMawIl5d1ARC!4TyA$5*Dw;vI+i%pmW7ftF2-uZ+zbLs}Se6VUR<3a^%Z z_L^L8MJ5>B&L3OZs@aH0-%hL0-@S41CLWm7=Dd5h66*IF$7Ez4NEo<6 z-G}iL5DL7+`|Y`D7iZndLVy*Qx203EJ&A#YXqh{FlP_G#(KuZSo)LC6Mn4ouTf>=2r#z3v1H? zWCYm6n#xZXBhe_#4{UeYAac!QlhzH6?9S6hT}%TXZ#aE*1^D>;aM%k~MlAI+8@eO( zLt&2E2NM2by)~fCcKEe89Z>FD0^NA{8H#=p_?*_Kr-(8osoT-X$whSu4(=RuO7H5k z?N4-W;GvEl1k(1|5=-hAODv(p`>Dryu>g8`>tdhC9civ{?hVz!PS+znFrT z9%;2-f&&uXI-S}dtDQn#CdtpI%S=#ZFD>@DsHDXbtqWfE9lQie{BEtj+5D{m&BNs? zPDDe?%QccNvbmkTrh0ksQYg##GKe0aWIifV)xLg8adkkm!oFUm9MF`&Um0=%E5B_O z7!x#=XVf8Q2I&P_@_afwQdJg|m;nsk7y89B!yVn#QFmkdCIP;L`5^8nAqzV5%34CO z5OnL1&g0VUOM|fi4)nejK?3?_fqN`Uf=Klzg+e3&8MRV>Q|ZV(C-g0g-5} zGj&uo-&W?B4VDHF&h=_m3+nBUWB1||Z;fBAg6KPeMBUR#6f~!ct+rjSBNOB27n6?Q zTU-aHXyzVj0abWyP*a?&C}Xhi+u4Rz1Icx5wZ8yV8hpzwMC(oX!8uB`0Jl>xUbGlr z|B?0ZQc6;U#4>7CI!zeSQGlVszys6AJAjvVI~?ih^kOYyE;^kaDXVUBSpg-U-Fqp; zAVR;qDooG zZCU;!lxJ}x3N*_a<&Aq12WFVc+la#S;ZPE#j-v1(dJAu-9mf{~3or2UvAhk`_1`+Z zfwDR|>=Ef*cT7jGF!nr&A(54jiv17QLdNv(dCPY8=;qL_m?3R!vhEmGQ<2{h6(!xP zEWm-TEJE%h@$kAjx!Av?A>}UEc`Kb`fodlIG&|s|co)Z^zIG)S#7Akd>BqOUzUmk* z$=av`eDsVmj9uno*{g;i9|aHQk^6E=(9?RgWh_>E8{q@S`5j_!8o~7v z#$bLi7@psz18G@r1sFj~gWdkfGK^PQp;?*T`5z$aGTrV%JH>-%KP_tl7QC23I3@6g zZqfC-3qE;E(n7Zj>vA;0ISdm<->h3g|LmVf2{$Dm5Gg8GqbTD!=E3{^=j$jgd__%= zA2#7yLkd+STKm4{yySn5RFPe$wyskXDEVHNmF6A}f2Ez2F<~bkOx2q1L2iotAaGOc z#u4Wy0HZAfaLsnEnbcCCVX$J7o8e?X9*dJr;qNZ@&04M7@34>iy+Zn4f}0=g96+TU zbx4<|iuVD+9t!DpxSf`QcjMh;X@g~@$TLzAr;MzrQeGk*dZUCbyt;$HzHPDql9zS; zITta9oyj!Xbc3q^W0PSv{uurNX0U_IbQ^j$TGooV146yw8v3G$NQw6Xlw@a}yqm`T zinzm|wR8a?(FS7`*2UEg3NP_qZ8P%Qf{8!aHDfp&WHl7MIv<#UVL`EsmzE;tr)FDFMxHOR9&YKdR(Uys?lT)(wf&=}rv6=dF0RFVC zY82jXm{;49_Kb8U-aa%p{fJ(04y{hz7Ro6VD*Ah7wNwp`Cv-PC6UW;*9K69nVaE3b z))k1~>t)Ss>Fx5-3bRpPC(h$WaPL;3V>v4lEJ{2a-M(vO)@W{4ih>}Tm|x1b?Y$e2 z1B_4WRWQY0k+*O*rO%t_$H|n>FCs}dyv-o~I)FUv_uB=XlL&L$`X*oUZP$Z$^2@Bq zVv2^!3g-Pz(E4)jqy^w3WD^MBr{0QEU&ccrr%dWI!|E+<+iIuxnNGUrpP`1Ixo)jf zN;9g4Jd$v)oh+rr*Wd1xkj1g;1YX5-_yx!~>AJP|Lnc#0Y&P+!Fn?>il49r*<`Dlo zA}`gskB}tyg!%M$YPcjN3Lv8aPBuD1X+ZsQiRF%w56CaQmj;NHUD(7NdoPpRHrrP- zj1sSZ>(r{TCZIvX9OaBp%>_qFET5f3wZ?ol<2KxS-_Uk-221vM7Uz3!WEX5t8Q;J2 zhV}v?CR0pnp8CO^6ic$XpD>hH7>p&vFb!AgMD^gE(2LIvDL$P8<3(_akD}6%sjLug zM?sZoQF#1hU1EL&`<{}-*`0ApXSSihzH4?Yzt|T0NyX)-I}G{>5i`IqfKOjt^uxbI zDok(q`abf4t;oe*-DQnBw{b)2U8nvE;7J^@>oNnPf48%T&UExv`#L{KuOQ+7oIWY! zvhcjVGmcme6CjCR5^b!R@z^;O^!4Tgo!t)ls@NK2HEv1Bl~t()qhzGBE^ggWg|bT* zUgMQ-A?yBGUB}DSao1P?oDYli!d$6CuDUK5PT8v*kK8j3nIk@luUV z%@x6K>oS=GcUe&Kb?ek^AuB*Yaf(+GXrd-Rk0|vfc*`{Zy!K#AT7)bd#$b-s4|H+; zR92?b3-2x2{$@~X$77UsU(!GRp)13OCq7z6HfOoA)$q&6I9gOA)3EiMeU}QZzbNoj z+>E3As1tvB69G=xzu0*$PS!%Pj8SKP-ACcFlmfqE9NA@xPy}87*UZ_IcCVCn4gYjt z5a9fCZ^W6|@j})Mt5vtd*4Fj;`Q9 zhr29-?Dz1`SGCSQcI^d?hUe$-<547{1==sdI>O?$eb({Tu(}Z={q2nsO%?&Yf zs7&*jEE}~E1QioIRzhyO0bp5Ur-#5t_fK(sa`F=N1VKvqq}&-oPwuoRgwl z76w*JWo{$TCi9$LbdL(*;0~qZ-)X%c!U633@?SI4xlXqdskm*M3_&_KiLb|>*#5PE z$E+ZM9Rup0B|HOs?$hO}YKBu1@S9K{{t{A$zVWF#M3&dUT?wEk#t%SL;p~M0O@mJB zv=4ydKyIS#g&uvx9qP{9f-u9d+a|Sx01zNEs!;?__T4>ao`(_Ld+$^h_R*n8x2v$K%Hjs1DvA zse6%5xy1G~ff7&IGSbfTBD38+ojgk%>{@6noNUOim+{FmygAA3AKbhN0w=sBXw=T67Lf(-?kd=(5d0A z*!Uj$8quK77OlHX09$$zj}xNKO)JQgyYBu3h5We~0tP<5>-jhpxn7saZ+Gom*8ERY zGEtADgB-m1SRRwP^1MK%IaP+*d9j zCKStf-)+*5DuKZ)o>>a*$q(q3Ct&Gfr*8T9F<--@TXlQPNph7j>rl{e6xK>$$%@x* zuTwLOdmsJ|QnxydquxmAmZyMTSep;yfXmS_Vp;HelR9i5b=A1UmgTHAlI1w4~1 zQI3U;DbgB|P5N{gEIAyfVX>Tf$As#-BumMYUlmghiyQChksb8cG60)hnC8#8w?j9Q ztXER{a=NM|81{m2J3M(fj3Ai)vzhWy;{V7>`K);PRYB9l*UFu*r`fjh`x%mnc{atl zobO}ZF-C|31Y44OOk>sH;l7SRjU;L)(%oNQgGWEP9))vi3GLlJhtBTRf&c&$pPJEQ z6PBwg`#IEBH*Of=)FQ5+e=-g66T}zt#C`d-;>p~0NavX~w@?u{xitZ(lrvrrbth5h{uILD==Fvn` zh0U^3jA-(X-zWe1M*a@PyC>+MOKj{?Dmx288pkIVyn>Un7Ct(Sua`*wEtd|R-aUG4 z<`Ic;D&_16S^dDQg-@jW$HY?Wkx+7$qWv(RCb}o&qVkDJp4orv?Lx>BkLAr}4tCsF zUeoN0PeGZIA}`P4ziiXCD^&&}5YVIhKn2ga3=S|m8_kICzGvuW0Nwih-Y2PIjGZHW zWGKLej}awK4^PbJTm?A=aM^A@wr)lPz+4AvJjl_G%O@p`=jDm@js{992Bj%tUrC+K zE!E4O*=~lThayCFv^7FzX+3y3h63i|8K!?V(FuXVKQ_;$VsJTWYcpF*gkfE%r!b%W0^pKt_Zjy?c zQ-UK-Of_9Y*JwXd3{cixyOzz{^!WCERm4o!=qPN|(QpaaAQO@i6emzrt4@onFa>X(|X69h5{$^T-V z$DhIXt>)|1B;?Xk?)=CBe;@6;jkzQvm3}!X5x+0YL|P^p+3mc&f{Afb0K(W?avCI`{)x zIYhWNp5H4>iPsPI&@S_5nVI;+3*#UautoS6%NY-7P5cpjRMomA5dFTMqe~yngv)#^ zs&>}|d2?!&iTF(X^owtnLLuS1OlL~{CFr;S2Vy-MNO_bSMdKrTk9-Snhl|NART_6* zj>x6ERHez-4W^S9X5y1gF}#6Y1!iM=S2+qWa2YxCZ@YBoVu4qSBQB{?`INJBEfjLK zD*=$aB0yn|>1a8(t?tqDQy`UV2xx~~P>&%u8hpzFFI;I5S2@k&oikOBo+iyhKZ35arHFJzW6 zZ##i-^(x3OT2rf3FOV@oJttbWt*)WKhlws>hs%(GCLX+v@-pRi(2dd8q{%dWtluA= zA2UCcbYf0Sdrc)J+&8Onj4VJ5Alo3o4mOQ9hnqZH+nU)paxriyBiLCG%!%n8AB8uT zCslZB2h*OYay{0!p9DIbb^Wo7VzfU)zR++$wfLT@-jQ6j6;Q)hvlO=PcU5QCDgyr! zV_nqTBwiEEyhO!W9rI>hhxgsKihE}U#$UpHu`lC;Wq4OI9H91Q4J5o|)ZkKv;nf2KWU1DR~bpi;Efg5z=UH+L-Y*yw^2UtntR;=ta1Fpwv1z+e|@TEQmwt&am@Svp)Yp+ zh8;**V)=~xWOt~?3Et}!jaxpcF827kAxH0U0gLQySb9PAp+pmZtH5i9J|cSs6Rl@6_W@V9}e9BnYf zdYvPb+*Ue-$4cf;@?R;H&r{)m^72KUfo{J1vqkBw;kHw%wORE{} zN(tF~kbYyffMVnmnL8Nir6|Tm>zcHBTUCK7tgtw%RNBPP2)ptfuQwc+tyPB{=RV+nRy7pV8L$zJ_K#~R3kv`Sr;@z^p z7SX*rtH~O?TFM_(6h1$|yfz!YPJ_SVxXs6XQ~Kf%QizPfyG-LxDOQH@iA=jQ7p?UM z-F|2X92(h4h#FP-ZB#dxz24nih*mMgQvF#v-}(E25IBOAkRI_uOz# zuDX@rH_yfXj%#wPPjlvVyfE?>`$>w17slb-wn3BX=i`oHlHdbRnlj_4>c3DvdWnfO zy#7f@@IJe~x8?k8KH8I5Zw^!Ws*-av+pV&+`n1$H-G`U()eW}9S5?09Kp&q!$aMPS zj(%bb7%;I1*u75z>)D%|nQSD zU$jw-*(Aw77^RPlL%ePrFXR&AL9KBLZ}7`@bpXEmglYzPy{^mJ{7#v}Z%FT0w&{1G zBdlkayY>Fkz6;1e*tT<}k_iiR{2gx@l~jCl`Z{H zv{Ge?I1zfU=;pY`qr&>l_Z3~NwZ5Iz{+~pcm`2QK0`U)h%P5$gZ2ED|xeuv5FuBDH zt$nw(&U|{Op2CDcQ>2e<+-EyI3STGtfLfIbP+S58LUhb-*r7&Qf>dB^GubPfy-a+%$(p}d zp&-F`561YotwV~i?w`+hS}*w?|rMMW1+&o*!w$v#76o05C2>nrsC)2 zvU&Y;3c+R50aLkk^LRx!OOG!jkb2UsiC2Cm`?|MUUrJeYoi8HcPy5W(AWRpDkM39p zxLR4qz8O~M)yg*lUBnHHj_1OgtMp>vn|)+?bDsq+m_F4%|KihjaHt@UA+^8luj>XS zUj|PL@)!j)M*6g`sxqA4me4Af7=MJuAuffUt*WM4d1*Mm%M=$JK2XaElaz1!CvM2w z1BBX%Kj`D1JmnfD5m?$MU$2$>>34x1as882egZX_6V4B^>dicS)C#Zg?l!lVlUIKP z==3eewhVLl_rs)Bj(cK)TL6ad^Dd)JJN8PO{_}lbZqW2$PK&bQgo@Ojx64yeCGshG zzUPv{v0ZtvLHXhG$8aL#VIHkCh)}!v1BV*ART>xR_jz%AFi-Wr()p8CseP{(kt5}C z384NBtuKsfT@f46YCrw^Mvg8O0<|{mttzH|oX69TK_is(Pda-~h0XmHQZ)s8efQ}% zu!r5pwSvq8R{J#%~*&M*)%y`%JGX5Zy7`bjFct*PP}p zYd~H&f2_{RvL1Ny8A^=hoSK?l3NrV>Rhcwa&oY2lz!kC%y*gFP07>TzStY_NAJ3;| zMt_)ZAzM(~3J>M#nn0UcZx5Z8Tm;9RT*+wf77s$)xv3Q}C`|LBRdXqW>8ogZ(QVzA z{n<<&h`}e}Gk}*TZm>@-1L)j`66uMlPIjFDyg0a$sX#KW?WTzQ9qKnv5x&RwPV|q! z#$+S!GO9Udq)(64`%i2&1F!lC@6XE-qCMTs9DML4i2J?yLES4LfoT6y(V4PJO{4OX zYnp@ZR#sd>_aEKF(|8(EKu!owo@(CSqF0>O2AkZC&DmZ|3aF+4*}c1oiuZ^mC865w z=0lu5oSNEj{nmr@v-lXC1S`-S%=PSn6e2 z({-4`-i;Ehe#He`hl9R$ath2H!pb{ZX_H^J+-Fx?( zSCOxfhL?tvVre7(4fKb}elj2UsukG?jE7=hJu+V55s7_rP?tFAmAb(c(}x0@mt~dc zWQh+}mwNpbP{Ts9%G09ghugZ(T?YkZd!#jD`lr0_WP<<^9O5>mDJsP-=o<;(amZCr zPL$Yhr_%c4KkWbHKvp?rTfz(6l2(5QcIenNjPcUryP_Jo4oxHXaJljV zOokC>aBH6~$@V9xpj#Sw?lJnwqBA}_MzOgxB?YfS-nMsXYn%^S2IOa%6h^l6B%)L= zk*zQ~U|}oH5GC%b@lwB>m@T(yISpiL*HKV3G>N@4(gklv;f%aNq#wycMU*_E2kA^JMhv(jZVh$Z=& zDVN5f*x~k1uLsi8x}IL4)F5-!2XXHfkq(meC+-%K?oAFYFA9@f#)Wm~wV&G*ZES8m znC`)|o_g4$xm%qvSAU&CG?UpU)N9*aEB^(SIH>Red-+s+Vf6>r8qGE`B~H8FuKV_G zS!*u{_{Ij>{gooweQ)j2!YyQGe(rgtCj|&*p(RL9*uE;dU*MHs9>@0~L>nEP7?q8QBC0l;U}n-SQ3v+cb6Tdf+D`J7Dx- z!FAIJYcmgQ)nEYj1-*CrO0{O`UMM!4O)2l~SM-w-nLED)Sf}-}>)guDc96uR9h(Ii z8Y^sAy%?)@cLll+z|xXzly=FG=PrgSx8!Zh1JReWW|mT99N!_ zjj3|9Pm8~czOP$C(!9qB$d_%IBk!hW-eD#2lq?zie))Cc@pz_4Xi|8XP2X(?j>y%}loTyis5qM3#Ay}fU z+(#t%1!oAOp>8P!dhT4RDbgJ3g?JWLHnLq`Xy`f+?Min2Fzf z{nJ!_-|l8{gl0?s=LSI`_Kjy`wWP^`x1h*H%T`t)+hIX~GE-iI+^pLUPTqwa)dlr` z--wzQfgPRpbcmi>!1&Or9IewbB#0v_#U%Ix6)>N8@=DJXGY8^))KrRh!p-9)(4N&6 zHPgQ82w5XZicw6+W1vJO;K^^WiNAk-qQbOolQ$=B z|JWijQ5%+x8LE%i`$jD~vcCP;e;CN`H`&~t%OLVTy+`JI7gUFKyoKF!2Ko5Mn6pG) zZtr@B`QwJSJo3qzr|W^R00Q*!4*#2R>5uH%BpcC+o8f%74fgVPt6$mXw9#7y~NTm)A*c*^`jVf0UKZ-DojiG zyK>iSBzsTt!K{`D-u?BXj>J{tdWSYP1VA&9GHo3r=A_9?`2@bNDkq%3#sWt?>+BVW zDw{_0CUfV9mXr#tFU;x9eNxQHqx+jrQ`LR&EN(;6T@v1Ay;^vGbXy)n8x{sK#^8z# z2E$ZgU~P5H(Atj7zX8g%#GWY;l7*;A3HL8n+eDKg*<{ybilA2R~4PbIgoVBb!9i+u_mTj^E9};n~tr8O+(1=%}0I z*vn|3FZmO{9BtYc#wJV2K|}O|yodKC_mR7(5z*hhQ0Yo$f^S6V?Bq;K0AYnpQ>&@_ z@Q^!8IQU8;#>hYcG0+n4B!6eOa|qS2DDq|LIu<2#>vV0o+=ooFQMI1+mV3KbWuE^q zZ;Yx76EnZlR`0u{_!(J47=2-io^2*=6w#szpMt_$sI?0?yrjtp6y{FAtxjbQX)V49 zG*0$e%IzA8P*|~7$5v~ zkoDX}!C@{xEhCG9IZbvHR>n^>CnLZ_w4@!8<->7grVkOTJ~u}Q(-XQOZo;}9qGPdl zB~yr_75NP105vVvd4hesBv?q{Z9ro{3>Zzq>pS{wfWR;vF4kjKkQ^h$Qsrx z;sZHzO~7YISefi>FhBs_Usb(8egwDc6)FD2)D@x9W~5$`q8GBLdJFd^O>OC0DoMBj*MJgEB`)Ej$pNdnvi=aPMV zm=@_8R=MO*7nNIKmwpki6G*&})ZK!iQstA>ma)Nq8`ixKbaxWx1X^%ZnU-Tb66Wyhau$_;!5?g;dy9kJLS{s@r|}PYJok z6Pr|TR(w3ALRaZ)-)TlpGId;v4dm1-2aw-Dkcz4Q{6pzLqSYy|CWl%LlXL|UQ~&OZ z^L-Y3J1uO7B{rE)Dqd^3f9F8rhfma?c-wf1blE1GNnn^l(5g{{3{O(hF+*ANheUqD zDrKsy8n%r43Cya)L6>kp#+Q&)KEc)IC$RT_(pq}vn={Iu(_d`_p@cqTac^{Ux!RDd z^&2f@dP}2LrAQCt0`uP=B&XJC**1G39OCUCCoKiw!+$YWWjVP?VF@#H+t>*}eO59= zba^iCR z6s*S(7(Y8z97SY;hf`Y3>Rvz!+UR55WBk|3ru>?k=C-{|+O$7`qpaBeY8iOCMOTvX zZe9WY*1*VgaJ@28I!ZRl8SJj=DhmR{Rji4QMJUX>f}BBpD{&?hD{C6Q6Bm0XRL6T0 zDwUGXuh&9Z3(Uw~0KZ#p1#(9gu0i8hyM4N?N^!r=~U2lT( z)_!im)qqm9dEW`+OdVI6MX~FZb-i3~a2zW+(VrK2`#&%px+e{T)sz4)KqCG!@(c(Z z8=bkJt}60c365^*3L#p@&P$^}QP9;yUDYC3p95d%Yet|#kB;)S5BdK44|`q1LB>hEM#$a+{nPVc^VOgEgT`!1Ojrli#Dj&8i+!1%Ku z)b_rTa-wC9k}&Xxj=viNWu<$vmjN7XPgQo4Ci|^=`?cXs(?A+F{hVbo_Nxxci(vre zkKtdL@&n6RiTkHX9%QhVA?Bdev=y9ZqbDmYB*C88`nJ8}o-|X26f^q^cy)gdFo*Qy zYm*b)q>|C~D&pKSP%Q;PK#Hlno^th-$xY0D?N7#3UGSu9x@J5_-iIA;e5{Fdr>_S$ z0V&>U*G#AbE$FUx7kNB?(7lT5s7t3nkj-Om%xyaz0~Y)I1Z{>1$qi;p(~_9a)EbQmB?Qowx#3Y6WSJ9W+N-3&QLd# z!u=qYlAKDA8N(Im8eBWm$jeBIj#L1Z+5=7l8UTQnmD}{U@;cHDPW)kLH75zTM+*Eb zV&?w>O&|}T6Isql=VcapirVH+G*>rhs6$`759H(4KlL~NAKw@RQ}$(s0b;d_swclf z#z0*`Af~!BxFlegr?e{bu3f0v`20y3+@ptKty@!1Iaj9t6-SiKSeHg>`y0>K({9Uk z;ec-ZR`~y51mMN;EGkPge;rK+AfH&I0GkSq<829j{lV;nL&DT-BqiO)r`oN?+^+;< zC+ET9w*S&lAVH1kQt@7`<9@6x9pTa!bsl2-5WIHxq<*P9tA z`*Z1srpnE$GRG!n6<(IlRC>l>)1y*96Z+DjP^!A^(uaV`%-byL2r1Ud7aORKsw=Bj z5l{@*FB7@5QN)h_P^uvG`1@gv^#`$+Lu716*-kX(+E=EUvs2dF7;3@RUJ%|xt-WEo zk6%hr?hc65UO^%$qZF6@J11vk$m-7ct4%b+ zFLGhIO-C!X^E(g${;IeDkD|X51s8osz@3Tab@pr>!5Q1>z5z|8#=o{ESZu;swB(&B z@G+_u9ZXwnhZEj7=;wC$@|Bkgi!cd}mNa!2CXlUM@`-g%cV5?Zg<_W)h~B05`KoNt z8;ED{1xWez?Rux%4?xRHMQN>^gGtRZ1c%?s4tzMP>yae^#}e;JZy_sPB#fbuxUa^2 znAMrHzwQ8+-2K0o~Oj2H=^*8JNP@_0XdlC8F zI&UFX#yX+m8q-z*?#o42SNw8zSGk(qcObr2i`wQ3ZV3Kywi7*?hxk0z;Qd+PTtI=j z&OwhKR!!29hGd6TNn3q@?g;+Wl@i<=&FRrxnA}juW@#(c4Nq?XADpZ!PRe?h>IV+# zJV$JRDSJX(bs=_+Ug{$ZO4@mRwU<&{o7PpSenU#!02c7*z<)1x z;yIZGIQ-@4Lr4(YK7IWJSq=YCo@p7g>dF$Rfelt(drP=4<_h}z$myU^h=Y?U zP#~39t~`nF?3v@|DVxi#Dbcb>kauTN0V#I8L_ojH+opG9Nv^teD~`OKruUD|4T~%ELJW1R{-H0sGe-4vNV>b zM+!4$Mw8tvQ53^GXzaUC!!Tm(%ukZD7&1Hu7x!?DFpZmP; z^E&4~=M4S(Jc*%952I@UL(K1nK6)*W;ZD!gB>&Rneg7RfsFd08G|+f^1=koBX!wS4dgP-`3{}hu?Fh4)bhVHQ#UF zTH#{Em=9c7386s21MJ2W?;a#}LYt!2Z*xYu*b%sTK(`O=QkK#%sm|kB(>BZSD)kxk zTT9?#f#_y!--=0>q}!kk!Op-no9Y-WhCiBitsDv{Vo&vVt0plQ?In2e7b>x&t^nor z1xC@qHRo!O#Aw7`WuP<*0b%UwzZq7+g_4wa0SSoaf zD;|iP0c}+ef|>PHwV=CGxo-5HdkO#w<>W4_IcWUl*rO3P!;T@fK zs8;Li!Vku0jZ~eA!t!u`ty~b(0A{NX3^MA119o97+Jkvf*fYPPKCHKDJ$30UmPBei z=UVJSLTsC%h#Gx@iko27C)j$bC`Y<4m9qz=&bj1W!@rB)BKVq=CJx2PyCy!o; zh${G$UHcD^hPWlIKFt6gH5@cDeyZ1z=rQAzmU|@_HD@o(=4@bgORm0p5Z-klYwnH^ zD83+gtw0elBK9zdOv>7AVk=QDM$NMyyp=muWyQvp15B;U|N#^WVAO?8&<{YAGwGRZi7Y2tQ^;Q*^@NA_0yA~}j(XSJ>+RUg4!7&la{Yp{zYb_ zusoZuS-E{!t*y#4hj6+P<@UZTSm`EC##h0vvd99{h92s~+p2K~iIC)V(ZNiz)TZSpd$INsl+=5JjPLdmWdeq-n;=-2G3V{H8_(8%1B|pf z#zA!~f6rRcZ2TBSAJ)&+Dn|HQAa$*w<5au zG3{XmoAz|Lm%Wgx1S#S@#|I{)vafb~|lEI|avU-Docf=yA0iLj4+Fl4w)m z|I$8~V*8U=8cl=^s9>URYkKlJe%5tZ4<2U`E-pjjnMZYeOX@eCF zX`T|iCR+NnQ#!IFbAK75tv<9lwte)%^Lik2VX9O09N3w_2G5kF>e%<)j10O1MX&7j%q>ef$ z_9+bxA&!v5adKy~e03-?Rd#k82bzz0IqtJ^UGu;L!L?u$AP2;=8ZNcm}uJ3uOq z^PCM(BoPYXpEJFjcB>vCeeDPyci=u}Qhwm$=;eYb;MV~*$qQg@xj8JQlwZ%XKS

tjx9xmHssqGzFAvt56ZkLl5cNJu?@^+a8mo;o_CUl?41l0 zCTx){oqOXKrq_|dY>vmpfFT+tj`cB~1hQzf4e%#cwUalW0^ zyM9a^y|-r<*2TFiz`UwuR}|peUvs6=wKX2Wzn8xqol4WEYe;Q{f1kmwgpJ3k7mK-F z1|;E|E@s^+F}Go^2S$Di(V$Xmt?cSTlx~vs8fs#Ddu@otg|7Q?mnge2O`~+UV~t-< zZp2+4UEo%Op`GajhZ?WC^P?(wgUUNTT|-8}KM^fFUL)<O9JAH60h$b|T~0(3+a6 zLU>aO2=${(f=R;zVGV;m5;%#oU;IDDrG#BI>rPhyi{ciP`}d8NyTdkXyO41yNHDHc zL0Xk~tT~vlE#a;EsR#2Kp^3GW%Y(&*(_fOfTW0qJg!s&)iX}@;@0g8>8-moH4Fjo|MVkV}<+?W|>&n$o1DBOpS7edBOSYWnl3*imc zfEV~rQT`1noumS2F|@AGRft)VS`3_@_I7(hhjU$Jc+P+X@jn^Q8OtTLc6Rv)@IdF;iGI&B zdSqbIviKw^S9jF?MnC4jnMx+-m=<2k)j+!ALtl&w*0jfEYf!@d?(^br7fQMV;|_#@iAJzq`r^P)vpE8F0Pn?+0^T#?nhcuuqc~b%t}BO=56tI3RO| zi#jIThi`(M%oLKvM*F2~rk2WTwi;<4 zSFnq5jH;5`0A3(-ZVEw<-dSlT$mQ*jS~Cp5Y<7IfY}n=3p=uT$sEctIpR)m_OUN!! z?ih}63E}d3yiVjj66$)DOII5J$Ov6vR>rn2JoI1+VqS4@sY@K3dkRdmX`)3I95;Ok zZ~?U!bU_ft)<;-=1G+MK30RQZX{@NJ20H38)78Fkj$MLE>7xx$;LH-g;eDscZ)@=G zT|eOH{9+5Irs};o*>h467XTtYNEfj)@%yvFSi#m%1KK@>PLlGf-?DFLov8TfO*cau zmd@%d4Sb=e9l1qK6xQ;MpzUfB@&D22$5CC{$VE@t<|9_5h~!an{`lU2RJhG`?2?UZ zse$umSOex8Tl?#>S7A&Gv&7rx$l=_DV{`&q8druz+ZZ|%v1?AjfekTf-nM6pESMu& z6i251q0l0Zi1{>}E0~m%;U*1x{!V;gI8UbajKh!I8t_kDa{}ku6k1A3#NVfJVe|*6 zDrL;O%}Dexo+&`@71U{xKu>E@uee0cs-Sa%Xg%aPxBgl*`p7rEb(2j4eDieariY?EGE9kDEga>CHZ<3X z9Q0<#c!@~TAOs>h!u^hbKj201K;7uXAPk$FZMtE2J_W}$vLPr$7$pMPFhfhs$Z&)C zg*II4O=L(GOab+k_f@qZu=GOD!rr@BxYiCTI(M7{pBsv2mN58IW9E*@$?e>+k9WtV zKxDI{@dJ~qn4?GCFYyRET;<<=@6ya~x{q=4cg%G|FtL`h_n!tT{eHot*i!8`vEo?c zKSn(Tu07g!Q}%$VP}tB`*-|#K?aPq&T+l2jbU0{XlR8s9oyYE<-e?<|q7H1lYjZ%y z;x3UZ&#?CH&rnlD4PULtv?_TNQfhTub*4%`^_#|p^0+S{+Sy@=s!3}z`^zp;KKQzr zyjXt2E+25XOC7%pYD34@J#ZW;WvJg|Ydkq_ntt5$hOoo#I*8p<@u_ztM)a+F7UO8P z=dQY_^EBuHBu501zbJfiy!CDMpZAQ~U}?tZ&cs>A`IrvdQbv`}0XmME67t`!7SiB@G<-eW3k zn0#VK_Y>dmg0snEBA*{gn(+@g{bqjJ2kE_aOe?PHW*UK?ZuYIqqFuk}r~1u_e=Vu`yIpnrNLPoEk#`qYvfIaXFQsLkVqyRIy|0x* zl_Hd99mElJ%Ra)EFVBbZ4_!VtQ@DRzW8<98l!9aw7=rXL4Hfh|6tsAa3D$DyqBft9^(D9N;TB-Yo3wA*G>Lcinia#yVfe@5ib0%0*FwZuH#L8 z-(eDmQ~pBMwti^5zk*(dpFT9l5lRGKTd>@;o4@Q#!P4st(o>R_r%Ovok-km=2N$cA zzLb`}6lr9|9!yx~1lX)f-m&?_fI1(m^)Gwx z-tN)Ab3LVxd`hS5-TkdDb6mwqT#c|UT z+Q7G|(S%?G%{1Ee`pVVtO3i~0A+7v{b-1+5!)Qh9_vs%*6_<>^9-laN*%~*1vWqhl zA{2@Uv|8#Ofd^IYMy75`KRH$DHC66 z0B4}cOV^k=q2s}HzKf|8TWs>!dTzOA`kNwQZ-8@%0+r;4tifKY`3hh5(#H!`@o2}Z z_OAqtjK1dV8S$?@RM|`eOzS8rqnt5KznNc7Nikhle~p4VcYlJRO_SyV0*ZbyP4?M6{5L?6vxR~{sypSQ-MMCe8cWhK}yO>_~I>r)GMJ+}}gh`CwT$SWX zg@!otglRe>*t}(q#&`Xmj%{6F|HIwC3ts8o;;$kXaw@)g8?s3E%e?lHWL>{a-lnQw z{kVMJo|4!;=lZ8s_l?6M%ag%wfgRBY23wV|zu0m57dzmhty9*uiOm>}W_)OTy zT6l+KMOmc37w^;!Jp%G{fMv(frTNAn`;v`4V6REpwYv^XgDoXbjrGNNhX=2-DrAp3 zKfJdeze77|5k0w?@cTe%!U;JkgZfF-RpsNkrgeNQr2u(VoiM}`d^u4PKERGnP6eqEhaC+J$zVb*<#*^tniki`At-C(U`yMIeC+u9tTF@5>&2-?W63z8@twmiafrrqfBMy(}7+eLU1c#ub}= zPq8ZY)2yD)eY{OwJ<+)CCuUfEbctw%7z+PlGla5mZ6R50tSU!E+{>at>l;Juo9nzw z*7n$hafSY_PCR(#d?M{HWVx>)BSH;jdHZ5eqVMI5paWe83@m!Va!td;ccEuF!L($ zG^JhiW>)SUS80zELkh+oOmK2cs&eEx`(&s) z9(rimuwcR9+{XEcj-}V#Bi~*IJ^j^R-#bb_#%@>L5qYA&uJ_`R{cKLE<)X5h0(45W zVx|{8Ea&vF5YgLx;TPjPa`=b5h?XNvh1^&Dvw2a8i$l=`Zqy%?m&Zen;agapGd_Y( zTxt*8X*2%SpxF})=&TqrO^)bo^8OF$9T}I(OeR0Fc??s>+KQDrhnA!}da1u?JF=bw zWz3h#kLAnYLC3lBa)f4X{!ZPQaDvxBATkqgPj9}J^XW?!;rk4FPM24LCsfo6hvj!M z|M^mI;{=@wRX)wKI6fFVvjl?YNJazz(L6}@;yw{{y?ggY-4=}7$I<|%7SSpZc znEYG2Skr`hWOjEz0BR#OWz6F2>dUpbroR@3GWCW8m6BySzkQjn5Zin`_fP@;UtAZH zP?Bzv8d0kM$s1)#eMO-;j(L4cUJV}U_?E*IBHUjW;wSu|m{Qc+wYw|6%q1$$O4XULB$8ib(r7((-#7A98c)L^+Iy@1xYs~3i95Sr z^UaxX&NTt-aV2xBhsZyksKfvFzH%JKa*)<#n-Av)bT5r>m|IYztf*g-H?Fl=?5aDn z)3`H4{L=io*vCBaPqL_XLk)(jld5fAu2AA?qqbJCj)mmhpJAs`F&@J1rfCJHncd$N z5TsDKQK>2CwDy2KKG;n9^Y~wn=<_owFqN}mZ6*al7Sum}97BjN`HbY_;X0Q{H`96~;bHA56$!Oum?tPkwi0b%_F21Dn zae?~ezZ+uFaSd_mvH6hU?`~9={r;GWAYc3EL42URzdTO#F)=h50d?-zyn`!J-VJW8 zk}}mR0`|GS0n|>ytt6Qv<&NHV(dSoJ1p*-M7b_+b#=f0=>CN$LVj*_O@^~G1Oon8N z1X0Uo*hQON14U)8t_4;~d`w&{3_igfvGO*$am*7DU%W18Vb+I=Jz+Hr!CQAk$Bt>- zp)s^;5jei2XGT?_cpkI#4t~=NKqSd+h*zQ4&8vQQZ7mLU zg=4Xy`GabIr5l!rzg3^0Nefa8FutIo9v8H`ktb`HjM#+b`)vEOwIIXV!BN~X6}dn< zQEdfg>nKhv?p*%u z2y4nTV&^CI4ggCVWwh*{0cO4%xUSgICg6AW5m5+fFg{P?d3&5`Px0_=Tv1{b?hiBP z+d8GwXD_nhY%vV+c~zaMpr$8NJ}eSR#$F1yd^;DX|JRE2<>SY|*hRZqVpafHFAl=- zC_oIAAJxWgNIpr5UAU^(eag4-HZm3es=xC@W5iR{g5a<}dR!`Yt<1fS68}NM z;(p%0po=@jseVrv+cb}CaaYG6jP$9uAz7D`vymfIM`*j$Se>R|7{jkrdQRjY6f=Is z5P#ni!f|h{PPSVY#m?<>KgET<+*b+J=QaOlNsTEr+16uD{Szy#m;bqPQ2J=@rwC)v zMyt~_Y3i-mM=)vbwHtOr*A7cM*si- literal 29790 zcmeFZc~nzZ`#&0-&}ziCuOfuuwZ2OGI)FuH0<~7HRlxxQh)hL52@nuNm_lgLSc^g} zl|d$FAOR9&2qc7{sievf5e{<_FiP}55)eZmA<1tizJ2d^t$Xi3cddK>xa)V;QuLg? z_t|IfXZn1eXLI$q*CFI5=AR%C2;|}KzdMOQtV~8AmjAeV6}U5+e`f~#SoPzPL*Id) z;9A_zB7q-k;=d0_L?A4$=>HhyzL||cApVIs{M|mEv|Cv*@_xW`=tDrGqVsMwr+gl)D%>IT&ArHAdtlq?raG5bb+jD{5Ai z8&i%@h@)>watDoxkH}eKE(!B)B#q63o_@82C+n}1G;lA3^Tkzp1O)}NX{m=54X{njXHbRCsk@~kCHWjxAs`ggri8W% z-6q{-W;MDr(K&Up;y(PR%V2{0P}N|(Qw&C3h7nmyq>(2Oh=^6Th;}daW3$m9hAO{w z=Ot{)cZ%L7Wt!)`uzb16^!Eo42>P*Q!HCS#*}Dn48VDbGPB-&xw!DX9F_7$|c(p$0 z!bA(iHve|)b90X!a%*c*qpBC?vI4gsy81aP5*D8Cy{w-uJ@Mg@y<<@qmZbI{h`gcs z2gv%2UA^&@DH&`X#*#Vx+-vHX zDo5wc^^%JVf_%^w6CD>=nxYT6Hay)KVua!+Gj;GOc53(LDVLXnum8m0#uTrf%_*zO z1o3l>PAbExl~c>;+3ZBiU@~v3Vz~STPl~;XcqGmIXQ{+TZcQp<_;{WYBxldA=iO+H z^1>yHtTwA-Hws0S6YPxJ6B6b#*Vx@Ceu#65tYNlghYg>2V6g4PtDoS@d5*Lqciqas z{-#&?c^;7q%fT8=|MqU35QQ&T&f(ktfQGP}o` z!q)tJy`%X)^H@E993A$)KDLQnrP$wCmC~(k72Lv#66PkaL|DQ(;T8mRn%f7?C{B1#TG4%6 z@_arjFQZQvl>BnLC%50*TQ!F5@X+sPOy5YR@=usDJL?_uA}WMC{WuGvUE_C~&j_2t z9=@vH(kGAmdZ5O9*YU4u_9E>fGD?HqCBV}c)r&G)1j@mr*K_T7HB4|NS6c4bvmZe^`onOoHaRbrYX9gn`3sr1_( z>k&YV!uQqHqM@%KG>GK#+HHQ4pI{|ZRDb=iX3t28FVu= zBM;@CL>N=4RO@rAzfn3~y2J=PB|2!NOdV`%O})rHxgo8?kx-)zJI3mcgyIzDJ!*74 zCoJH~%_dz~_ae)yhgjKN@Xz7ud3IhxkLc{RDxK@QIeF8$G~MA*>stxw`kh$MO*N92 z+VBP8r5-ze8dC?BK65(K?uI1OqF2iY>MO#6L^qqPWh49Mh;DoRSz%LdcfvF;YL*E{ zkM`(}OwmkOKjOI8-(W^a!>go|pU!w?HD_5e?>~0$nsW$1J!-qR_D*kJ-i8ZjX~QV!jZ(hsC6VE39rzn@Ka>EI+V*Nsuq^cLr?SeG@Yh| z*N>P;wqqG3A5w&yVnZCyvq}{W`VAU-s8}XMBkPx&V074H>Zzk6B>C&bfMr67*GRf< z6Tb9C{5{I`CmfxFi}IIU9n9hT(t}3wi%G8{Cq{oQK04wVp5-{VI+-TA(^%e?G8bDc z!9H?4%bwdFE3n~yXW+>ULH4vKOM5?JO}D}jVo$k>s%#+t6B$#e{6OAuqqzaO%_Z$j9pcB_3wSb z4!y865*gT+WV1|2EB}!8VO4CI`}xH3*lS3H#i5-qOc3-rZSn>8Ae`d7Si2FjY1$*K zs;MC51k!S@8-b zSioAe@`>S_~{j`2!xwF9Gc>Zt*w=e z^9t-Dr?q>w*3BhD;u!6pKz%lQF=>(&X)&cKE@5eJ@hY0kGs?y`P-~T!c=vH>m&d8Kwn_`_Z@&yaSO1!i&l@noF%epBlwjjxG zC3-r$1hX=n5bZkecHp$!v=71irr|3*vFLnL#HSA*+PgZPmS3!S7Xz8Z*bPXdET+~v zxj0$M<>pUV(wMn3j$vqtS5CPzFF~?+%i>s1Nu8j^hG#uI=>S%GE`&Az^=4gF>VhM- zltIGct8#1@s`@h(snf|z@5u_X5n^DQ;j8=_Tm$9jYlN4kT(0aHh^QeyVNAbxW90ZX zdtYDR;5Gc4 zu`+JX+)Y!~5=F%hw^dARzqo@2W#5vYw7fE>g!tFhpQD6%__y5~NwdHFdl}G`&`3#R zDo>57P1JVUNK72Z+N0UD3f=hqZl{{WHZm=S*05N+3m$O_#y-%DJXlla>7slAl>6DO z@`<*ohDF7*MPAGvVfFfJVzziSZ@BLct#7ngR6UW>w%x|7N3*zYFyrxk4F>ztBlKkw zo1T#>&8q47m*B5=5EMR29d*9_QFo3a_o;1c!bM5x+BfNm3QVt3;T9hf(wj*bM6HFB%f-aVw& zE%ZP>_=s%W#u;JU1uZ2qa4IQ85nHn=9^1WRye91G)pz{(jC#@L7;o;i7m5K~sRVmr z@5*yJ z(Th3HW^-`^YxL7w9QpTnDFmi9QdC*smm7yapUFl(9$f3Tw>l6BG=hBnbEvKKj+O+^Hy zH7y;6)HbnN&8Phy#AE!pslm{iV!Twe_}Fp%fWgEYvCL)$HhdB^qI&!yb=0~^`}+om z6}f)hb{%gZTW>4eKW55~vwuW2*2J(j&S20K=)uY+R*mV*z*2DDy=~(}U&V7XQhq(7 zS^r{pkv*fdM0XKIySnrsFUcAwR*)GKBJ(x(qMKcu?bvNmKXu>(@##7uSTjW7J;C~9 zY~chUBk)S7=fFUSrDy$?*CXey@i8GU?}QB;Gy?t0#$vX>YAP;9j7S9*);x}`D6sE$ zLarrMx~Amqk<8w**kvRy&&>^CJ>|bg+xI(nVx4o9U0OI~yR8D|LD0_7>cJ=+XN2y7Q9&%B00fux6{eao)SW7&qxKt;9 zgS;aP@%4_uCyA?#;O+1%Bmjg?v#r)$Tv2q9Z-<4hUHVV%~GFJNT zMZohZflu5(yebST_mNM%_$@U*lc2k=dC<~guAgoE<|fo`dus+xq0~0499)Ljd4t=+ z-2tA=DfZ`yMIk<)>YKG+u+JhW1r$iMn6kEZCBpyf`r0jkFlbMgR>cLd&%Pha-Br0s z-*S9&=qhUu-KZl)Cx=mF8tbZVCnRd22^+^&!tKgL%lO?Or_C!D&vCDO{#_0OXUqIf9(J! z6kJ2wOt22WY0lvV_>q#6nm6|aYe$`5Z=BH^IK=etl1B5tJbuheN~44nH4rnVuCxM( z1g^}W_w$(L!&Ceh+5k)Dc6phDWTpPw5Z~aXGrujes$KE!!cky}%3vo7082VA#r?ya z<&gI9Xhh;1JdGjQ=v!NGcGqUqFw=W4@1%adDX2YR9FA@B^w)gDjS=xM-qju<=m+89 z1F~Vrdna?XzDJI^sjqGD#ZNnbXlKoNyo9eq^G;pug6EIn1mqSum#Q1v@ZJM&43Ea{ zuqWtRQx(gm^xZ=1dML7dTx#MUZVbpF5!cY&24eJEA9O`9B|i-*48c}vu51c2ykafh zYrogUfxBx1A_1%gbL!3$2gcUReW5H0<63Tcu(WvpG5w(Jd%gja=qb0*vAAzZ2k;_T zF!z8p@FOilWQKG34U19Le!gl`j3uIdzNBx)Y_j@*>7%Z$ z@rX^HJ{tU7(PQ-~sD_#?vD<`bpMC8C_3^~z)n!3MiffCC342r3xv^zUQxFh3-sQFC z+K9=q1E$Lm^s~WZGcNEVs)Y19Sqn#t;x?{C#INWYFI{e*T);3%bKh3?qKztp{zm-1w_vDJa!-O0rKlOuYgjJQ{s$ADg_)! zG2XkhXYLAgQ#`u}Nu4%JTEyC3R0&7dOgg0)-db%2#C=O75bd40ZocK`7nbIJCI>W4 zE#8H%hqDN{7qUNKba=6K3_f3`CDRukkrf1f$tfv_=(^Vh=N!?K18?XRDi)dVLF$Kz z|8Tr;T9IF;p~b$Kybo7UcQEI_HX)r9y#9p>W{F-VbcxSvEG5*t;X2- zrb*%XA_RkO+wvM%#d@e>prM7xJ-N=NwofO6{2Z3{s~&j)1Cx2L=VFJnl@W0kP#5v7 z3lGSAG^e3EV~10?dftKW8I!L46%M3MId*;GQN=u@=$T!rH{qNGsu{6LZc&H?G^d-m zvqK|_truZ=n$qq3(joea{m}jn@y$je?Oe0VC>k{|u4#jFuABfCl%q6%sO#sufzF;U)>0w|yS-!ci3ARj@Bds`rW z@zWf_?Fp}EK(7TJ9x@ygOjhdYkrFq+C++A=E^R#ztZR;0{<)zPTA76?`osZ1mrU*6 ztTY*lPoa|VJT@)vl0<{cnwg+(d|4!h~BhLH?5@> z_*7tQE4@bUYPu;R>s(TmYV6h=&QhsH#kD7?oaY4;8;3FK#IIztHshS?i{L9SgRf-c zE~Ik~Y%~H~O-T^3S!Dw4ppF8e$w1o2<9s#5{q3xQD-@tVXV}du1{t-Gk=l9?x#fMC z3j~zmnw3jjZXwq{&1Up#=Ix0|Ysqfr2E7@5gT%hIs;;F3pGG&P{s`m&)sbk7dLlqs zPvV0;a%Nk%R+}P189;p(-vISp*5w6aZj0QwGn!!Twb87p7ytu;OVd{jE<8-AR$3gs zgFvvpZ+A29bY1%oF!N`YsQj>@bBmWw0f(Q|xwW~&SFAmC$PNhDk%M3)gxgddv;*v~ zyf&j*^($GCEcZj-Q+)@F*>%XzY7%c{FC*zzM+0RW`eU0pB2)Z~P2GX=(797bIQv+A z)PieLkCTFQ)S&Y{RSTvd%K1%vHh>%v`R6jX{R{Y*9Md%FT9k)+30@~v`jJKloPKbt zaeYDm7x%e&o1c%TZ|TJqie-ptMI}3A$Ez4v0emOhb88cqV5#7C4Mm$9gx?nCJ0H+zT6U zwQY-bQ$P~dtVuRPghr*mYxcwyYqViwq6~7=ppSJ;SrGbcx-6ISIU@xa_WVCGO#!FU zq3F;&7@bxYC6ENM^J!0;J?m6YV&^|flwq8+W1{F{4d4@EiZ$~w^=M!w5qiHneeLFh zO^&CJ0E&rXT=UM8dUKn3ZIzJI-G)Hy{OV&1Q-@16xs*7k@N%8Mpe`&(FnF|#6Renm zIJDY6I7UE(x~UaDwr1t(VffdrUs(VHztz;on3`w`oK*Yn+{QBy0guj(!Z#vlp3mD1z&w;(;<@HfXalqcy!rG~Z;Xn`t^bg7Sfu8r- zzJM})fV5Ai#jU;+5{Pzi!YoJR=VqD$#WqDa3&)r$9wutItwtq%tPX2zkT~ zsJO|BR{A9n(6rCK?T2ls-c8z%MD5=^V+mOjlz@BWA%oswXwL*RD@`0@9kPms?1? z#xEPR1t@INGU4ELX-0h39N`?kiu}2gndBjaHIMw9#^~q%ME)&Vbkx(Ry%#WF#`)*K zoHDmEI80^o(j(-^nf?tjSxp>gU$NRxPL=sdt79QgsF_;snf~7UW8CL7H&o{kZw)DItd5z3h5M7!`63h@(8_$IW6fv>)}eXroC{%~3>-gCVSS zzF_K|<1M@|h~;UF2i!T2{^ar~x~*%bY<_e*;J?F)UZf7 zxv~v&aE>&{d#HzYv{_d)P<}%FAwkE2He!2-Nn@fKSA545x&eCgPoZPDH6mw^VWx$- zoJwsYGfd$Jb$3X-YckqW`xh3X2H&aY6G-1G0Hcg&!;5)5`AA$H0&zwBGaQPS-CYZ| zV5t44XGy+Xk)1J5{H}#K^?{wjO>H%H8j^7yJCNdzu?BrAVqVOH$>NKfIPz&vtM(J( z60#2I_Fr>?IK;aCWVmrO6(BMDr1F#O2V4G;K~hj_dfo={gH9uF_;u*g6|dkrXwb*= zIQtGW5-g=|e0w9pqWeEa1A&-Q=aD%D9>;@*Cnw%NKu*nDRktO6`gB>>Pr!6kKV~JT znYSe+9^?v6@;6({1I~gR4q}>FkBU?aAEgo$98{zv_(V_;u~t<9=c1O~=%aX2%NW1> zXyoi#LVvp~XTLsgVp7}IGJ$nQr37*Z6M`|Nq8SAWjFWTB)X$_+`-sVH4tlZSLk5L; zK!JxCxzZ3H;vp?&MP|?(olG0)VwUw?R3BID+NJ9XKC%~djFF{6dux)Id`*^MHs3hTb#SbsrzjW4QGJthyc`m`M84qy2?gZd!8 zv`-HBjPdqG{CpHhu~~%U6#Wk3vB(?;*>;1pA-0W|uANd$x5`T_bV-VOB*9aV18j$p zZsc`~+~Wxod;=nLo6Wc&#iYo>6R=LIr^pT<&*MWEvtTP|Ifdn8v#ZGhk>j{bSgMT3 z6X#k?_?zPFc7uMr95j?g_4Bo+3H>$4@DmFQCGZhFxHz=YNZ#XS=OUDiu&~EMXngAl zf6(57=vAYwRCz)gRQ|M@2SX5xI^~mFCG3qqC2Mq&u0l*sk701v=H)r@)o#Z+Qr~@= z)A(iFBM_R<+cc2KajE;_dBs*pG1$-&t6O%4`+ZYw8TDEhmk?oO**YJBx)-b~-DlYNb zsGr2U!}-NbV`+pzr<D0|HFw= zD2*y{+L^Dr0lV6J-T%85;1qNdNqhDVI!2{cTKN*6-P&V~A;wj#1#mEQFg=jF;!c4N zt+w=T_1p7NQpKTq;k~7CRrf$kI|= z29~vd_UX*-j+>BMN37WxLsd3uFIGE>wf9}Ffj7lhCx_s3;oXo3cTZGmqXBHJ;^&+g z>A0fFNd|j^;o>iW4^+1Z0=16p}`fA*}D>{`#SNX{c?WpUN<3s z!1py7zAq5M5?)h*)7a?BP_v@PoeA&CAU2q^!JZBH>qnt_)=jh@n+y`q&8ZZn&=dCK;Kh~PHpDgc-*J1=6t5RB*?`l| zyu2ubbv}$LVKBOinTYQMCZUg#dyS_%E+FiQ0FHku$ZgTVne>#T^14q%`8gZ zL2by9QjF%=kW38K5bii4G7kXSY<(9nG&q3Wh##@ryf5EM$&UevEa7cw1afMwt=09O z>T*z}3E(gvD^8atsBgJki_)j+FC>2tP=FF+(=#M-gf=3bCfUR5A;2><*nx5Np(XF9 zBUGGaF6|aK*@hnmBF7}*ex63|w6s;T6C`~VL(0ccq9g>!7Vk47xon}&B?sSa!CQt1 zm5jxWl{30CBn~TD8Kaaf2*hdwFgO!6MoQAFP)JlC27wq%62RH!`Rg?26lIQW#t7bO zr-0>p$Z;cqR1CD`ysj503&LWwtv0Nv;s|9el|vOmGbyhLltA0sy-Bw|!U$A{#wq3= zUr25wP=h^17XUT$q6%7T{zO2-F6^A`A#W?!)&Nh=hCKa5b+^rb3h!EpBph-lfao1D zO&@g}JFBF?Irj4@KHR7WBjem7LXn-|q{@kWSFImaPAZsB;KF8qC7N0Xng za%h6tw7-4rk?-{o)4Mj1&7PR!r%|u$?Rr?`dS}ZEP1lg@K)?@3#L!p`bq57YN$Vbx z=&%dbvkW)i{;&-*Pd?K}mb~I(hw3cGd+0A+pe93sg{=Loi%Zn^;6E<=tU>I|v&Jq= z&)AHU_ckJC6Y9TKy~aFgtoMj#zZN_8d<|b&yQdZn8yN+l`>a& zu)G)(GD_dsFX~}`vB`j)5s1z=E1?MB6>)`kG-YrBDsD;jJG|A+&m2Hh;EMDO!a?qc z$EV2{hez2E-!HdnH?53W|GjQX(a0 zu8*9yo1%Tdj4`eSW(v5sGlhQbX`QeqMid~3Kxu?0K;U;mK})0^7@!R>tsKZ2h|^;CLoVW`+obpwDIk?`NI>yJdSSoQyYmNb&%9nfeIZE%#yd6 zfwHIoDXmsSKg%tGh!k3!!wYtr!Vh`Gxg>}kV_}#@rb~08Vqkq~ine8e)c?iUpM)ET; zgbwLrfbLNk(SThsp$vS`LtvI$Tyl~6?(s*5W#+9;G>^K^FIOiVR`fwM`IE++NE@ft zg9Q`uMfvsjd-NTC|Q9Gfy4PJ z#2^0-aw86(sbDgp_<16fN0rlrXboBYeahcC@m{QPHk328I2NnGpZ zJbyP`{CYu6U7pADbL^TVhT|o(E!O9nt42=y<;IHa%#?MmhBn5E1~H;R zy4B1L)!hWrON$P@24;#!l9mfUXT&`*_rm}ZHqCrsW6?-`kGL^*0Gp<`QQ%lFuWn1} z3Ew?+?3Mln1v~;hHpR(a;4%Yvn7afp_ zQQ}tHn*hp{aI1tx+@G9ES4j^SD+UJHhw<;uRvXLxpSn%`OjhxOE&?A5Y(~Ee(xq4L zmmKREs!;0V>Ble{V%g;Ksa{pJo2^4mX#DZH3F-;>{b98?MopNzQV61UeOG{MvP)0j z1@U_vRD_(WDRT|ySPSo@ZhChM-U0=hKM|T|*z5q2UCowu;u*yuq*Hy`+$qno4o>+F^Czz&BK4GwzEDtprYmukyqiMs zaViuS@_r}y5@=quw%cJ+fp>ME%#Y$(YZWM{aIHy=QoyjSIRF>>j$PeC@^Ix2`(vVD z0gZVA54~PQIdu6GRj*qr99EQt&_@r{Z_sBS5QyWEGgiK`(K}8X+|FN+eKTeII6n8; zTxZ+#N4gF)SSD;4V&U_Oj)q*aajM?Px;aOUy2c}&DBV->F=v>wcJ7m8Ioc&dvt2r0 zowCHrbN!b>KMlmF9W7Ity`5K3>*5r2D=fBMjRScoeiaCW^wRXCb(xU5orfJ9VJBZm ze|{^`&pU?`?bWD%im))9+&GhQ?n3<ZyK}ayX&gEt)*>DT$B4m$fH^1slmdy>e*v zlVe~ELP(;l>)Gr9gEZLHgF?4H6qPt}E77*pLiYpJ9~T?={>L(oH`6~ilKatI z2w{qx*@bNLf!D+UMK7$)OX8QE+GUsk?{eeR8>?D|pRIK+C%L;NOP_P|t#IlZC%(Al zC<-Ko{%59kQG>KH-=LQpRKWtfJY{Y6&R>HF`?yo2|M=6;J3Z(By4rL4;+D>sVEg2# z*>~_EUMvak%Ux?o^0kKzb!QUb=PQHs)DmL6a1X7x+VCOtP6HY+WF8EkO~0QMjT9F9 zGN^F@rLEU9_=2JfhRNoj=hi249;SLJwp|$x`RMQM?xpPRoe80Eq%&NQ9|2cW7oP5ix*7v+~H9Wfpmb(n?;z47E;6uH_4K9|Rld`LKrv2IM=by<8f;HU? zR+dp@!NGck8*b3Af*aPiEJDx~dkj+^`V(xbXSqd4)cuj#uf-Q#RoNrz!}p$9>0T4A5F;aL|*Ga3E? z5Kq@&JBKOnOeoSu4TmuR_Hrqj%0kPegkP^-GKwNfSC|T^ZhBnet(-Z_q7hBk?E(C`CndCJB?4$;xsDiiXYa2jV>?_U?IjUTyNp;o=Z#4>c|b-M|F7wyWVHT2-(^g)7L6F!Vw6gVZ;U zD&p`hErzZnP>SPT&L4zAa$;?%ac(YzIanbEIvz#MBis(&BnEMk;$w=L zYbBUzkt{`WLY}@uiq5+E6W@JAf6f&XiTcI9v?WuM%w2n7Up)~Si&HS`_!ZPsHWIID zj~CH@ssBpZ)cGw4_%p>%&qIgIJ=E?Q9UdH)CX!-3v;q;o_tP1x18w&pyLqe8w*<*y zjyxby7M7Pt+Iz*^#T7(GAj>5NIji)x)CFK(eY`D4ttw@0a}SIVJ4-T^U%vkx!yU?N z>XlzQ%mHSWpn5%KJb8TUA!FdI;@yY);Oem~$a?S5U;JB!XRktoPSw4vmy>H)A=^Rx zw>mlZi-HE#PZtLiPccUaM@mQRT?mRBoBlchpclddH}B&)U}sNwGbfdx@^Q@<-j8jA zoOV?n1Y5lUB))|;#a*v2J)1p0`qqh^GNN^mtoO?C)vnH%c z)lDvbs0miok#X!Gus0uA)R1bgPV2`;2>*(Jm908gs7>P9L7ehYm-zB>%A!dZOM#zi z$IRUTSr8P)kJ{E0_JkWtsqiVcrU8z16I8uSXnM3!_sI1;GQ4)c4w*JQ=V$2|LDAq) zJAlP#x}UAj^XBM_HL_zdM)Huxuf^kkz{{a`LHKv%2o^OBBtL51Qe=1G7OF~+LD6{I zQ$E+5kkC=*;|SKL1sFn&aCpOb*=hFOiOF*~3aIv+A38?C6@4g5Qo_Ic^3l;04aE%l z7^?0o8L&$uoWDMLg&Jt_`i#xd*cfZIxiHOXgWkLi4fjL?M`OYI?SLb7n|Z$G5LfV% zybnnGM&q}M5rCip3F1@{;kU#f_r{M7=6QAgxxywN&D>eFmTcB+gJDr@F(J1;7@m%= z?)vvQC=O_^q4qQfMX$cd*?VvBqaFPbe5@&joi|^*AAh#ni&EP+BTos&Pc*;Le;gvP zyLw<8{o*vMT2u>%A+ctpJE
^?D0kvaQ=!M8Ns0$XBT8eRN2&6npxD~#d0f5#C( zBB!xTS%)fa2JXZ7P{uG~w#J@e+2l*)fwGWs-#(q}WuGU=69L1xslG@POg ztkWaaaFL#T0tU7k3{A3!+6J%nv;-ZsrOwzIzf07>S5M{YZoA%L`htS#;vvm^|7-}& zt0?TczEAslr3rLWG2Hd4bbgXdDtJJ?J^xKcDuwT9@#+j1OI~MRonSA;R_dnf^tlT} zs85u`>+hm+g8urV_|55B6KXJISO0+xv8iZ#cimm)J0JD$Ssz+NK5B_cLTyN4G)Y3< zVepwvmjhPPZ3|1Lo<9>$`RUFConY6ihVB!cO^Q#T1D^@2=4;8EAF7koRrAK6tBH4` zJo#TABb#g-Soi(R=-*mm2>X*$K)P=9EA2g|^gi(iyw*r%;Rdx$Z;;$t|BRM!317q0 zP_1!}_HEw9)4AxghLCcczVnV9N!R~Fds-@Yi!VQ{eha_MD#5ybr~7b}5?BoC z=2N2H-Lm(v)-TMobNwgD-X*;$P4_ss=BuY6d-J&6^ACK9Wdbk=m5jP!`B(SD5n74w zPuQ6uvN?f2eugt>m#sWy?`()?+RsQS+IkSNK7hN4_EV>Un{(bUrBb8HTuA7alw~}rC=(7LF zELb`BORf3)-8eb53&(0&|TbLseTMg zA<4li14>bt*h8U1mnw3d5)?8xAt7N@&i^m&JX}oIU zFq-%MiMsl*s-GKo`xzRxuM^aS9fVJEUoPVvwH)=t$BdLdEF-mV@BeFnPMbh`rcHmV zZ@3u>0Enk3-1O03kq%h|)v<+HGXAWIqz0mSjo3b0_pz1^U*y}at~n)5T;Gcur11E+ zDEm)>7za4c^*{`8d!e>-P~E!+W*Fnv@{(u~>EOp;eR?%`YFi#n3&tv!s^$}@Imbkq z(!j|71nW6=)J)~6Q&KcFrxb|jBqcnpVuZ*4SgV+683u%!1BxV?;34e85yBb#^dy*p z!AgX7M{b<)68TG~{4CRkebn!2y7~oy8d-l`LDzq~gGzrk#xm`YqU^BxAQJn&tyOgt z&#%fL+1>kyP?9b|Q*Yw>SyWO{iiv0d2eudnt>)iY)oMb^sVzGJGMh`kd^9hi#~dGh$0brt zz0n!*id%3tg!6GK-S-gzSacj*CL~q0)dP0ZN1=T-$HREKr7T%Pq#CcXeFjU2uxP(A zc2;^9b^&!CeUuPto4ZSr7*tJ2s0Dr^j1>JdC{P7g=*_Kbk}E*LGv{tp-fdp0lUZtaXsqQ(fj?`UoE4 zU^oGqaK%ltHc;XP_BaQB-$*_SEl1^tEk%PDSVR@n1)pS__^p-d49;BCkWX#v&Lheq99Sqqqj)N_irAoHT3 zm|Q#YB^a-LCuq5oiE`M<1*W)l%M0{x#Xh*=58(LGd;L~cgOtdsoYPUdkjk9$LtBjF z(-p6erS3xbQ$?|bE#UalJ}AZbo$?MyC+mb8<~<@#QNR{w?jH&XI<5H;50?asN5JWs z2go%ZquFMy?O&)n$k-uMRK|K4MSDciPu_;=Ip5rdZkc$9JvQ&>xU`NvzkLv_ApK_1 zW4E6ZnK1IKww8ISQN5baVll%N3~G;VV5_@rASfjAKg$`4M*{MH5~8{-92>|t&!{CH zQ{?9Haz~ba2P@qKYW>$$6Rwh3n5ezgXn)0T@GhiN;bJ`q!F_oalkU8|W5lIvus6ll z;ZlnUpcbZI50wrESR=anVr|rOs0^)us`^&p2C{o;7*U|+JpM43-^jp7ygCGWm_4*? z-bZwb_%Mrqnn_Phb^ko4iH_rcVn4h9IWg|eU?LB)tA8cszXGcFmSA}8v)<6)24MiZa z(%`WP(w0@3H8BMIn7O)aXoD<&+b?!7A$rxu>K_FBxGa5x11)&fM)b9 z;AlGns~mo&Wl*fEWFz!8*%45GY`VAWJ=+_vx-SR3WQnc{Gcco9BmeK!=CYjR`Ju~* zn0CJ78E#qMhS%B%?(g3nF&^4oQ`SpgC7%L^MEMW>fW4*TOQ9LoOW-D#RfB|;|5>Nl z)fa7R;`XMz9fYQ>K-TPF6M%7>UMS*jPK+8fM?2{S41*~fA!^0&Cu;z!l-@1$X?6RsrfzL+lW`J?F=FLMa7}dg=IEd}E zx^REx?#e^Hp8pA|CSN_R>1skpT8ih7UQZjQgxh#qsu$KppZTuOi8i|1Q1F1b4JsV2 z1_07%)F(~n+7aXdwef&|@oMBm3N{+daZF;`WPI7@=5g1WHuX7qkFwyQ57iJY=6>a_ zSFVTbl3X)6!Q4li`aBX>NPyA+g&hMxl2p@1eAyPIcP8VXd_fiF>$P}O3Q--w-X-<*vzv~V(zVIPV_;1&cx5; ze*(P4p?aQ^?vrXU`Gf`LaDm|?cRmWBO{AVyyoXT(L%OXHNc3Bd53M;R&CaFQ?y>Yk zvsE{qi3z@<0AeySykfa<&)_KfUTS)Mz)SIZWM^XQBUj=oiQeId?kV*J`tnOH^N$@{ zM}3KbidOO)vwTdfpO0d$@;%yZO8>)1M z6^wECKLDDt`b7}ZKEb=Bf#XlCnqA&mH(gV9QZx2?_Kf3&(2{aBE8JrO%>dgwc?EVdS-B6od zH|RH88O#Ga>{H5*6C0SF{woa|l`V^^}r)@$8H*6y@>-eG$?JjLC!lcDx1tB|6Bx+d zF}P{1p&ATv9F($ONb)5OO=Jn6(U7xMzeEgDg)e^6l{T&YFYdV-u!`y#jE;k6S3;jt z-Ta&iV+hq&A*D``ycdam@pV^pTOe1k+!occN&oWDE6tI9rLn56X!#bEyecCcD#Y?z zIu0auleg{6XGouX1Px#@cD>=9UK1TMKtIDh-5MV~=G|Sfw`ueLcrW<11G=hte#5*& zI4O?8E{&`*M2B4hpcpv7#GJDfdwdPGbzX}$EZESeAndntg4)t8#kD2T)}H?j^obQtVX{O^W}Y_#?y(${2F(K*v)ww}$^Pj8C@*3U5$ezbYV zuGgA-uqRb{R5kX9*-NQ2b=nEVN9flJQ9TSkhcZVk#@N=#oE1w*o6( z3+q75+7sA@atH%(D)hq(^*p)w)8&Zi70ZJCzX3)x)TSkjdouEfJ{o!%L5OQ!GkcQz zJCbL8-x|@Lqz@PFb?DRbO?4t#tuOnLD|=$qpT_U=LB-V-Dq!%F^ub%`grSt=E7xI9mWqV6m{Y;s$O##7@&rJ@qn%~=dD7IX zj%uD%k_<|(hmLlZ$Ldl_#o89tz)2yY}<0bOf%OniQpGce5R%vYCR z_zR%c-wb4Xu!qxd2)0z5pC#a1J_5u;gEmw7HhR#)35>a0=rAk_2M^VpG%`S}^ke#X z7cp1YnjyOf&if>ESpozTQl(8;?*NLyyA3rs9zq}X!!2W)zV*6cH4N3;NTV>OJ$hd7 zqegY{PAZxKOLPYk`3`z~FDmw<(ZDG@nhNUv5*(*^%7~f}O+$*!JAeDPCLC)G1fiUlVU zVvM64(l@y#PJg?pNS{czBUw|d`~^*^@!+t|U}X9~Xot8gh)cx{{h^0Zo35C((lb|p_}`79Qj({J z`UZz|2U=uc>K4Cbnr;GB*#2il10b0H4uqS$GYn?(*Rlo|P?UwB|FWXhJ`@>@@Mjr& z>z^2Z#&jC&n}u zX!*vuxf5fo(4JS64#=ui1OECH6R_KmO|%Y&vTaHNyii<@f}yN(e0^VWkaRf zwviBYv+AKkPRjTAVt5IL5-Fflrlmf`gjH6-%I#89-$Bo#x~u^FsYvuquc`5HtQH{SgO>Sb3;gER~`36^;7w zW#CyTs2N^Y2owU97@)WUDx?^+INzXp@Vi&6>xF|e`}Ex>^+iU9CZEHi?fUAZn14H^ z8^p*T6f=PT13#rd2M@0Qmv1zJPxfbg{&2)J7h`yzovVGa)8H;paot192YGVOkkZzi zL{M4!@~l3TK!kqoUbm$m{i2DZ5;~Mc>H3=wG|=wM*YkGk8Jo-#r4T5AaY@>e-L+2G zJxhf8)+eOnK#ISM%X5KRAjuN1Z${w1!y0`h04$SUE#pO7z4JqqQ(Z3^7wPj}shg2L*61eh$K{Z0E`t_`>Lvh4s`iGgZ0639wrQqD=axrk37-GER8~p>s zC^+V(6#_?3%#t)WGfye5ZnZUdi@r*`_8DQwr^jG6h)ePKmoympi-2BbO9S6f*{gss3Ouu z3=k4Pr5&1r3W&h5Q4&b#EkL4xh$yHKLMWjLXegm2)FgKW&i&sv-j{pd{qXM1U}TK! zz1QA*%{AAYzgcMmd|J}he5Y7@+Yze%{jvme0e3H9Zdfqt8y`pisjfR~Qun6%V-^2o zBPo0&!xKbcLy@&sX(a)@XCJPLWlYGF23Y4>4nv=w1~=;iiNip3YBe=ffMDx>lr!IN zs2@!{0|6-tXgo#W!2t|-oQsj zws^8?LQ@^*qqgOhYYyAFh>w)gCqWv!f*~$y(jbny9ot@BEbd?$&Pc7&G8o~N3ZPtV zZs&M#mnUm9G@0bA8}tLw;@1gcraC)!X)J1JjIayE0!ilCGJusqk+;qCenYmy{j7`( zidi;b&G4tG#s7|)retT(GbBH_vA2U4q}nQX2eyo^QAQ;6SdqvLbaO;{TRCAr(nOAt zHz=})o5K$Zlp0fut<*?)3&p*38iFo>4!x zRsXNYP2i|&E?{#|r8+ZD_R5`T_Ns_t{U4CPL~hf_Mjjpfg=i~$yH0i1Wcmgh*XU#c zF6x_4A!re*kt4}!Fc2Xr zaffgw1aBl}cn1Ns+Y91Uw>6VrcRvpY{z14A4Nh1_v1|a&o}h$+w31NNCa7UCL+e3u zpOC;x190pL{6@}0<N01wl8bOD_BI zbW*p2)P7pG76O``frnh)mU_GHVt1zGd;>GPgV~ueJz~$eN&6a(QST(6^3edR*g3nv zUq$%S_6uG-51tCR5^h9WjLWW{8D_(uqeomkL4z?^mo)YwyPgsb9B_p?R+&Vt|}j$cVif-{R)%!4C}kJrG(1&%Tm+UW!9>{qpbJ;#Yxo# z{Vm>65)Vf{U$Fo!R5s=?^Nokts)fVPlFLQx0}Xpeb2CX$W8NX{4Kg1RnkU&+_VH^K zfs6b`qVJLm5&=)~$kX~AWtN2VWP3~ScDouCAIaD5`^2Ac$vR&O6~TaLe{;MJcT(f?nb%=>tIeyINrlos8~uhD@|)Av5P)&d z*hFFPY}3%M0c4w&aSufx;bd^{t%on6WDxA=^Ns6ji;>ul z?&X*PJq&8jvuuE*x0QZhU%=g0-KCxzi?yxIUer31v$(E)C)_^H1mNKH5mweAP;3A` zGr&f~5v@V9o?0Z6!QT~{R7{^q8$CZmtD}HEh*Lp)OK&Nn1O@LPwEbGIXVkz^7`%Ei z8=If!2JAXEXD(kZ9XjX_30>js290`_d+VijGAQaJsuC1dak)VDT1;F--~KG>9ezqC zlJDyqb_gQ+Fvw4`<8QagtlIabxv61YyF0jtQffKf4|>hCNNDuf2!xpt-1WyggmsfBev=ZY@amf!b_9R?$U>8Ee6)J-?Dx58J zBP#{+%S+WC*2Y!GLI!RS#ZmdcP~KA@rya4d~9_ufFsk=-l&*8LGgV61N4F(03t&)|sTW9!i!4l8spV_1NZ3V%%5SI;Dev zIah*$5h*qx#!OTzA#OgSWDr1MHcG>kzG+khm9Kw07U$cILA-JcPllCJLd;rVt7$oo z+sITZD;g@5X-&=c^E+$;a*%6gY-`bG#mYtG?`1Y@n~%fq5SNQ)nYr0^*sQ-IRe~*J zz(<{J41iDB-~Xh`3H*Eh+<)N!J=vK-eCoXx%367n-NSq&(~EDpH)UAuK zp^ZQB<*aFz0V%ZzT*UgPY7WN{bK6xU0u@2q{=q70eiso*`~1Y$KB?O}AH1;vNX_+F z>n<0tdjsMzA*jq0d;T(!c^wi?gSdBep(|^4B-@uaC~QQB#DamDj4{4>vJ!2YjlZf- zDY&tT#_|6`tp5gm|0_d+f~GM8+){r5a!a$xU3ZIPX6yy$*K!U@X$p+hfnWtd zWt?Ikb_)`dhk=w;e6$}0yOl0hrY;Y%kngALbg0>$(*Nui-fa$WX8$p?3mgti?k>p7%I>pz|B@LR}9cFYF&#QstXG2;p z;fGrd=5VRDtHL^3D5}Yh44MeJzWg&r>F3u{M#JLAIQ@g1QlF@F0x@MK#XTchY3mGJa8%zrC;JM^jsn`(0y zf0dkfLLxe)-l63Tq?7pAJIzt3jH9^;g@|3s3hv~rd0cqTNu1oX!1r4CRwA$K*`_Nk z{zhmXR})}47>$!loi6L?gDvg87O6l?!5pd=bM>wBQ6R?VnB{>U5Fn}93bYG|4ku{< zM{d>WXoI`!R+}botU3Muz&hH$7|TQnCj(E5BO6UkP4pMjVMZt}y92ctw3-j@UBm5G zhv?F=MZ#Cfz9nWg*ut&?;I8<{AsCYJ;5(9|reatSf4JUN&BuW>li=jsWqbp@@m@f)1f zn=N0+G7@Z-sspmIMQtpA?>9hT&p~oDijWHmfpi6NQM1M9!G*b3=1@Ynq_Fh6o6%4B z!(wO~DK==yC}LT&96o0DPF6Ow2OTkIheQOlHbgJZB3*hu%OnZ|;a$@HozUr69}ua% z`jhLv2zYmp_vc-8_iLEj2WMA!z~JYSrgxN$iRawOqgY8ME6O6Y`tk}O@(kcru#l-a zDUL#T(6^M!H`uCW*e4Sse&!RTH6|tengTIhKG{j2tlli(L}We7ZDUVZOiGvy7!wZ; z;|su;c+em9RNQYhXe<_QIQ;I}Ovf@?C_AnCOtM&+8YLa@GXLL4;H;SfTS3M2e4ojI z#g^m556L^$%#HSQC0?PJjtTuz>7Ip{-LA*)%e)nwRm3`Os<}2`^#A0JUlO#O6EH$O zs0W2(_>IF5hDm69$HWKF$)E!^;i$>+KpC0oBB*vCG^`HHalX4W%8(66 zxbv;+kib95a>)Zpr3Gw;FJpb8p2825y4cKztQUxsJp|Mym=!ZCpZT_6lELn1gWI;G z^fXs%S8F#s)90TLciGFMM zzr|xI)5+Aq*-M=2E$BYz@`K4aw8sH~WQwi!R`rzq=CX zx^?&O?nC0X`VP9@8NO~AJI)1WRfK=bMgtTR;FxQZ+k3W>^^kx?vK)Z~WC7{OVRt3U zx~X_=Rvwkac!T$Kq4Z#Ua&XvN&XTcQ)9 zNmo^qNLlrXz!q%;(S$)IG_@G5akt4Yc@;py`;ldwpf|a$V9bvSU#k(Prr?wb8Qh&n zf0t<5RM{p6$NmBK{|IQvC_&^G%$1sz1X#h_dzV3fD7&VzhDbEZ3T9l&Mlh`T8a zvl3~&?n|1-h!|!=MAYRqfc1cV0M3THoFhd+L#x$Rq86++V=K?ZKdcLHQT#nQR}^R8 zNJP%xV02R|Eg6AMxjH17&)+kahwpr(Roo|oDABgZ$}evu`;Pu?K?bYclNGhe8o;g| zsYhzZOpJuf%09ku;OM1NGf@hE`BMB?3_xfAIc@`yRn7{6!az?mpU0(nr*yy6?@SU=dSh=FRy?$B+Ul zHIF$A!=mJHFJWe1L{Y`%)f1~K?t9|+q8+0J61Boc(p$gqBAzmy${ME^B=fi!r@t)@ z;R}NI>EVviJMb~~nbyRUv)16w=XS|z1ci;wm;7NEj zd=s8`d^t>@Y*(1lq`;{4@Wb9KxXT%#f?x{Z?_6wvtYLJjXxf@g{#J9{&pLsMEWy?l zjzIHNn0*^eFUGFbzr=l09x3iO$Y*Eyqx~VC+?w#S&)3L$MeD^&2#Idu>SnAjSy?xD znv6+Z(VH8bEYCdAPBvduEBy?;|D*fnxHddve5NvW(crzRiFe?p^YklZPSSh)c3lZlja< zEx!>Vyy#(-&^?VZ=Ht>_Wd8Fio&Nk;0_Vl+5*ORb&-c8;3k2ET-P+BgGJGJ+aq#r0 zovYFK#+Qx_NKR|jo_NRTkc8JWXBTC7HveR*20M3Xtt^v&=5{jh9j(3leow1>4Ya-( zwJN8Q$zk5PWM|Z z$yU=sE~;(%1gri?!5|ma|H@I_?(c`oJ@7pO?$c+Rk2G4Enc}EmJxdhBAPJ|g{_wdV zHu-a80D9fnCDdy8Ap#M<5&jRm^*(OoqKeFkCYorEPoG%ymcsygx;$xp>HLIvQsqTi zk!GDNX?5wZX1Z(SQB)Cr^S!Jb=48K*+dkIVOGZyI9)`HPbpjAhEKFEA9Cvh}CoGv$ z+~z0LVjt{67ZWj((-ops@)}o}-tVDJ|9XuMuQ3epLe5{*$6aPL^6t>(&Q+Hf@o|fd zzL}5=A|#`+*>@=-my5a~Tj00rmP>waTgkooVUpTLgL2}T(+f3!xkVL!hjivwdLW)w z25SEi*0Z_Z_8==@PouD969>6M7J>V#-}2-cY5FGl9!$C0Y}~w?6a}wf$-e$In1qCV z>!#koVPa&BZ=xHuM%a69ovG?mxD0KU->lyo_IDEVzO1wtUtRpcVfzzGUk;~NL0>!f zGEP_=KrKQ3*n}Pt!#p_Ygz2oIk!p^T)a4veCtYeZ`|my0i@-GtGZ-=!zZ5bMdh?|T za7~}?-~Ae-)q<}2lIsH@A#|4Rf?XdopwH#n0qgwBkxY4H{>UpcMje|H^@xhpo$TA>UDleZ+gGM0h6q)D=h$ z1+e!s__vHry_MP;?MJ1?un+@3`{3XT>h;`^;?oE;FMXFDr{6K=;gCPeUB|i;AFK!` zXx)Pm04)j;PTW9nI*EmyFiw9FVnJW#cb6U{df@_(NgGoMeH0Pb$cx3l78e`f)@|0h zd3wKo_?+5M@oKe_cnVt<2~t*Z*th|9-|2zlU(${wBw~gFy%5gKIvE#QNyz4_JC&69ou~vo z_v~sK?;P2WD}YCt&+LSuqzvcQvB9X*3(uuDz}C8&F6;BzZuFU~@trQ-(PjHh-74|W zhN}4HzVFI=sBLTQUz4P=s{-eK`C9fN#Asqw+Rg4P?a?PCjI9@Np}(N=b2yHu+ozvM z3vM)#xQ2E~nQVr@E($YNmUY-{;kC0MGwG=#R8B;X2juq$e+)X|@GITbGk9SgI^-Ec zir2;IJMq%^;@WA5>BjkL!>uEl5}FF@4DP*CPDs@;^7%a_p9akTu6@$R*b)Ll;QDTX zMzGdj8=fr+s5xJu@_gu)pEDPIBa#%!VfVC}^`U0@qf1^DZkOW8U*5ac?tb0U%dN`f z;3I0@dUUdC&T?6|;4{C9_mW_T?(j7G{xELB@uX?ac+a^~t25^_3-d>g zf+aoW7Gs+(TWs&q%HQ7?S&*+Re1^7vVEJ(urwv!(cSLVw*2#~~#-_W!FGbWiTTyri zjweES5W+7(A+n3)39*KaLo`Eb`sA{VJ?zoR0Ep=qXv5`w8sh!pntXL>2dzmfQjINm z?Q6(Bv?`M%zI1jc|M8A!$4$qaQh^aK%llTd(!xC!}5Cp&4d%Jc^Iq21? zfMXbKYKTmbW?2LmmDo)Mdh^FyNq=olFkRX(120OVYmeH!cBP$Exk=k>Eo#vx{+g+6 zJ^v<(uaQ?X{ovTf{&AHxjEDib(c+~+&A#Ovgs7&d=I$^(m7B{duHk*G+JyGW9K;Gk z#XXhq2Y&9#7?sz(YdHIsHaSOS)WQ8uTuXw%s0+vWA6PkRl&=6!7I(;=W;$Lmvi)AaO$}%*=4ZvO2~7P z2Rm!t2~Pic*iRPS=6_xOW=rA~v}8=Xm)H+@#6`8JqLM;P#tmbh8P6{78IOym z$_Ha+919-KL92{ZO?GDAbJHaT%CE^=cc4zdj&F!-OP~yvqUSAYxvTMyHHmUNLW{k= zLIonN0BbY?)WJ-yIX(8NI^bj%oWWs0P&VC1`&BVDIo z>d|+Rg@^W*@Yrx?a&8j81fQB~BN!^U=NoP^_4sGA_AgUpZygF|@dUnsJJSO+#o7Ba zUG|i%cMMd_;>uwKk{RY#$f?Qp+8W11ckgG=-r2yt{qGE;yeJ34dS=uG^JvB&)Y93T%(2O(Z{m(o=s4r7Ialobk~sdeuDUfe;_}h}p)Edu_=C03 z{~uiDe@{%2xSyxz{BithdcTSMTJ!IsAC2{H)3TeGY&c@{ z7y3EgLtGSw6V$jG`Rg9gAHX%ZWsZpzpfd_6x_a~ZScug;`7BFHa*>IU-r^= zBI}+-Ik)@*87s$VtUoffAv+~27bWYh!9$KueC?C%WxR#>qr6bIy#42Fe&#I1;=ApW z;lvM-sC8~t@v-nBoeDkL716C2S z&reqzQwn?&1eFnyDalzl;=hfot2MDqKz*#sX<}O-W88iJ@zq;khJd9yxvvMMB~&OiB#^}AnQ(D!mN4tJ{^^gqUWa#l26R?BJV zh7g#cu4KTr#J*lU(wB_Y@u5Dcj1pDB&0`XLcDwM;8XPe4J~4RpuBpYV`)VpLmiOc3 z#shmZV$4O8noE!GdESl6hUu4d!axUa(79MK9}FQ%R^oPkq*|E$(1p zqlA!tfiNE0lr@v5On4!OS!ibx(LJU96v&#J-P_>9A5voz&oPnoAlLH1?B1;xOZ7fj z8h~8o3;nO~hw#>|w;iJ=66(D$p0`+nIbxDnXV=o*EW>2H3s=ceJ&0p8EILs14Gt>z zS5u}JhI>nN?YxTahmaV3Q=h(xcLp?CiWdM1y>Ai~v)F*)ePz_wI{6cGo7(iI{b5dh z%>tTf2V>WdOcXjq+m+45C@&4}8hYWMx&QbjVLm-UDbAOBw)odf#oB?Y3MRf~^i~@~$MOm)>>yF)!u3UNAfDfxp=L zzz>x;{?q1T8WS$HzmlhJx90PcOfILh@AV2RjWXz#d)^epYqt$wd@T0ER_)m%KpxBv zd7@k_%A+`guJw`kl$g>}II!Mx`8RZp=6syJGpQD?27L%F6(ZHN>RA@?pnKQ&#jFCi zZ|~j=%yd~O0j2N1jU5M=kz#gsWq}6)<128E*c$55r-85S zfGEx@x?9ww?4?UJu`;TJ0~M3r_s)5{@~;h+G^JBSe*+fnNlhvN8{Z#-xO%`RjR%cR z(3Px{pQf#Hp7}ap#0~85urmu|65(I@^wRyk)HzvTf{*UM3V+P^=hiVF+^#i4%f!8Z z2k3LdS!dB6UhSOi_1ce@M)5GfnxmO7GPu z{HA@=;6zQ4Hj?vL_+ACr+OV(=*iZwA0e zMq^qX8rSw6`_DPK4v_^_skT9Lfdm82_Jml*j{f@Zee-^2ar?fxVw_?gE5!DM8XK5h JL0@ux@Nc}m)^h*= diff --git a/reference/BAS-6.png b/reference/BAS-6.png index 5b195ce78ea386fabf409ab34bb45a2ecebd5428..eea99c8fb49293930c875797d2c600101ce13b42 100644 GIT binary patch delta 8263 zcmb_>d0bQ1)^3K$ubhCmoj)S3<|(Q+$L z1QZn{2?Rt4VM>q+a#4`N0VE^=gG3LIfH8zA$+r)oz4!aR_s=(f@Jsetd#_sf0Z zs`7O%7U-0_?0}R}N947QN|}`N;=^X^!5>#$eWP>8e%a6dKX+{kx%u5nL*emHo-F@# zP4AYEKkRyXHCQ$6ec^yS3Tc+S-Wx zMk;UhN|`|N(@KzFA5R}yAE7ir(Ibu2AO`cw+=ekP?wl*{*>cNz4EV_T1E=bqQu;3U zQaG!Ubim4JyM%^y%#A)U_C4y(hUjQsjs!N_`j^IykzvxUd~hFf2?=f!(m@C+VK0*cJibyVV~Ca zg1d0=wpO-Pd=PNrZ^tX){NZV&N4FKeWR#t&-Q?OH)oJaLPch2Qp%_7^6|U{8lN3XG zr?+W6r{U^(152JqT2O*V^m^$T`0We>x_rI!p7@N9wLyvWcS`a+Wn^W&UF&b^&2^I= zv=T!r>$OV@z8_7ZAv>To&|Jr=e9zJ)_=8Ir+t{g74*k7(d`PdCx@4f`!xhYH@>WX< zM-YR|-0Y&GA#8469TFDP-&7Z1$Wn_CD&nmWB6{%sgsbPg6gh2JAmitP-pb~o;5>7B zI(JTuxMs3k=;R}c3Z%}Rj^1$gl5b@#Ui7SqDVY)E&HcXNE4Q`iZW0>J{n<6Cq>}V# zWa=kITvY#)c?!b9+j*!b-ogZV0zeamn0WSl+)68J$9=EfrKRzW4$b@RHy4V|>J#0* zZ=l!K&lzSWG**V&u?kR|nA;a^IuO(tSKyeQsCbL(;FOY2D7rISJ!AFLAyq063RArS z_`vFb1K;*c1y0+`ycG+`_U$xo@thHS<1-jVLwciIhJqW%iZiUTr&1sf zA5TVEj&pj5;y1nC<)|7LBmZUKDoC^G5He$ykSc0Jj=)fkv-$>dc{T?`fY<*Xy{z*1 zS+%5R>UBc8OhS)i3T=`XXaFI{(OAY$OI`4T$E zEprB~2rFecY+4en2q1i!7UAPJ1%=_{@o%S{4K`_4oB`%zt00g)^N!HCZgzV+LtbR& zMmpFze-DvWXWK0=%N`7UM5zE4gu%WWp~>18#^qKzveU^P#HJpxk6yhev++bz1lj0g zVB@iS2bY!mF0X&~DhKW)%}IwV6;>vRQz6`?15hgYl|rg?=AN6|Ci<=+Vqb*d;q7zi z;U5O<#t=X({6lsnq9hpqH0E-doh-SxDXI(e?Ce#+ZLo-ea=*EGn z-mfS^^5C}n_?19v{2<`Obvm*$E){dL$OW5x&C|At%dk5`;>*1Wzh8+Q7iNq8z2}Y}_7StF>wjhMoJt1lLm1J)?p#+LYjw6J zd%!sZ^0l&$xV3U;d5aI3v|klxTDJ!5$?k424(S#?8j&OqjU>C)k4P?5G}MNdxe>>| z-jjo?Z&zL|5r;lVuXo%f*|43#U}SlwP2{X(E>cWqZ^i(?+vmVk2mPch*($GAE7u`E zyzDD9X631jH{3u#SSsH@cS zZHNp1Mjlt1N-nl3WxJQuf0)G17o(szCF=^I*YkEUY_FN$kO3q-A>-UZ1s{&sPLn+d zsk)AUvnc)`rI>kujEC0LG}O|`V>&rER`Jur90`BG)Y2PTW z+q9&fAdWpWKyTioa^0k`UgCcRWY=jxI@dJcr+MuUyj*Hfnij4wl$c6RLW*EG*T{Dx zkhZqiX-uiQd$1W^DyFiHoUMw~T*Vbcs10OBc!Esp>acX47 z#v;iT*q@`#q-j$0{)~4eNCH>|8va=owW+WcWLKSkYGjDIT31M8y_t<=czCzc4e;-8 z@m6RH?06gu3apQvM~1ASP_lf_b!~NolsSW}FNgBd%Q^#x6Ld`uEmqfZu8(Y}bgqA6 zCpLb&)(2H-?aIs!TQdj^!Dm`u)F^ZRwsa6m5J$AT*;~;jqexqwQ|baivNzP8y4=YC zEs2$OtFXwbJn_u`z0`t2xdh2Tq;N2PVUS1Fb`9e(Op4MwaY}a{{S8`-@tCUy%$S!S z{H|Be%UDv9D{ZPf6X=u_9EI(_p|vP3qAKch&?OiyXNlAG) zH}o?x$PR7qYL*(Pj>g-Yoo0^{Q~z|V9@y`E&+)4hIG*uRM9wl?nzL0TMl3y+X-T&< z;j9mPt_5FWHSt2#u6bE(SCI|~EwtEaMvgta#ICk_1bRFVE#CWI0(*%cB$+#&S@#c^ zkD|$;byGTi7$C%C2vpwNTj2_-MR-0w??G&7EX(7XA9|+gX(b`4G~G+lc7ssT9k|={ z$Z5<`{Up5Xup%3wgQnr`w7pVEhwQxL=tBRzATkkb+FOd(2-Hp|Fck?Ec!fz7BZ0F6d20VESNKblzS7+=_4=pPz zF{^2JC@6E?!x6Qeg2xzrqY_lQeHy=A$#priu6Uj|qQ2q|mFoIgTzm{C9Z@_gY3;*z zvdq2<9-K_5xi`FZeb!O4(4b&{7uMXH9;GX1uH-)cLvY4VeDOA=CZ^|054KOc*u7MD z=z8+r{bG43-@wGOXbnn+fFx&ncc@OE;F`I5+ba z`r1_Z`-WE6DWrA6J;c=4I<4fHo+-Ye{dyo89~s(PzHiJ0-nq5!VW!fj;DKdaf)#J| z4j?{TmgAUyia6|_k}Oc<&o&mu*=W z4~()u*?6}W-#mJcbPb#v60AC)u*DjMYeL00m&MyV-I*Tr{^CKe87J>LdqFmNqI z#Wb~#*=byNedB@~wn|-DVQ^tt`K7FD37v>Jz96PCOqoO^5)0t0`uN2h@9o-Z9KsR? z3DQOaPESozA#z;wQJ9Q+(Dg*0-OY-=I#fkkQTHc-*bX-KpNG-Gc)! zPP`gLG-qZ+@85i9q3in%&%h~Vuc8v>GYZP2PO)eMzk}z(kd>)Z6p#trz|i=)RL}MQ zOvLrb@U)V2HaSX>PsO$2eMq7~ofyCUN~UmN^4kjJ92WnX>K$^k;#bh^gyG#8 zb>2p{@9#7`s>Kui6+9#yYqWX3Jti)3{(vGglmE-QzPbX#5AH8q-dk|aoD~EF*YRY<~!Sm1Usx)9l7L%!F4V&FNS&SE~iFwXHKZ3MTW1! zNn?{wHais-gruQP*f>3;cBYJSaW7w|kIg*ecePC%ZYI1c<v(7=V#QYvL{c!Wo#w-AE*~PR?4Cf;do;Q>!;xnYMd8HVsm^IhmS}VjqM!a|CsF(wdu%_t*sc3b^4}^847jd|7YeaaV}o*FjE6 zYVHi+rReJ?J z{sjEO^!~NMT#0s_m@pk}bAU1V<_dKR2bE;_7}*Bhcz1wEAg0VUf>>fODQhOngg1~~ zun(L`cb_;XmDvW3j~#=ZOv<8Gp#nVpe802@;gQmMHqBeqwPsD+!z{Z6*=$pV0ZN=< z-mKWCzvMe6Zq7YwD1`05SDhywQ}BX2W`9srw5dES86lw!d)(}RD1_OxZX^Kua znErSPEtt1C{+MECrWo%F-R~wTIuI~lc+%?HLXNu-#7qbE+b=XY9D??Rb; z2_Wx7=UvIWUt=(a9~?Qb&pW*t(nuQYzr1CTu{(9{nP{J>uX^>Xawk@}TGQ5lIld!> z*RKa2UPW~=YopJHDx6?1y5X~3E$d(cz4fS>=sPfU)ZRA6zx9W$GJ?_iiy;i3RJ?|r zS}ad`txCd+84Py*R2AeFtsf)mil3_T+_Ri5vHOv&WSQ~TtZ*B-DpR!}&)Y3XZ_T`e zcPD;iGt-3Rz}&JBJJfKzcc`CguaF~|UELzr9ZcA{@cFql36TI|6wVf(e+-~Zmi;w#2~PVJeEFv1YVsW#H#a?Tw`AAvn^ z{bDXdJd5KEzm{!U?L?q7OR30XWTgKxhPTg@(O6v@1_JddxHYH5kE{!=N?aij-A^Sx zp-m(b7n3`BSg{Unrz>|q zdzouII?+yNMf(|5K3viNi93T;mR>~06BCGmVEn8_N??J+w0j})XqGpP-pCFQfw=5$ z4e0Z9T0-6rR{LW7IIVUI6{IsXzUS`xy%&kfya|`A;yCv1g$wo;gv$v{or#iUCjyUv zEsri^svoH!^ZHXQQ%s#bPkx7g8i1q)57KYH9A(aSW;a%;B=TjQ=f@9r#t`%^; z_6w0H@~FI^VyDGW@RE_=I;r&3DGY8<@QcYCW$m?c4^|xR{`c7e_U_d2$$67ec^bn2 z1n&lwmY7CRba@o;@zPyIRgXDC7m-U?xm>n8^#G}t(gzubbvrk9OT?`V8DS=`TrodX zh+LsZ`f$rTlR#`o2C5~)FMM7?`pLVx2_YmkKboh!K@IgNe`^`*H0}t$$RgSG0%r!pdGjN|9X1;ONZH%*Wx}O^ zI&r(_btkG)rlJ%QFG>2#zZjR`8DOvCSlz9N(s;|7!inVMCnJQ)74;}eRyw9BU%9Nd z&j;F)kMrfS{WiBW(0GX)iuwt%)A*Ajm&~{RSav>d-txNyyX_`rUp2hW zz3KA_v%e0!o)x?{C0ss63Q>$@ip^Q-_zoF+MgOPnbaT+V7&1I@@ka@iV_&(5JUimm zB_(3o_@r#qO+we&{oTUzYSFHGGF5KAhX|=dxXiH3L9R+tRrR7N<%?_h(W74xEZPcwlc1m&>S9g|( z36b`i&W@Q7{QOAJWR+K|Mr0}RvpD;(la+qv{K8Hc7rBcHf-w84L=3snV}p3vXngAE zYcs_JhKwnFIUVHe>rym)(I<5G?0|^jTHWmTkNtBOTP=7Y-?pbNSEwrtpJhfu3M)OjHoXnDGWP&L5XXKs+hWWOvmPG zGz9WUT@x-0;m2QS>hmdxn(>?QjYCMjp&^2xv=oIWX=D3>B&g~QC#Do*{p(v=Y+9GA zBzE@C9_1kE2(jr)(-L9-bZR^1xp6S7PHFZ|mRKlA0 zVg4(Sr?BNmq=_w4DJB8GkH21NB7D!E5LbYJ zzNs^Qe3#qM>VV%9lqCNh4o-Av{o57Z;pIR{YjFl-)vsW7AJhCbH>gXv;6sj9G-ryT zK$nJY)~2*=0AvaG$T7_#M;2X}&O>RYEwVU66WuI*uklTbZmxG8SaUMiUp3dm5%s(% z{$V?MksK^{Wrl5ilafibQ+E*jmKotgeN@tsgj z(ej2Dw&tmCl+{h7IWqIM!tMP0W>#F%ol0|HfqaC@Atf|lnGrl2C~N|l3=+JR%dis- z72?RE4pn!e@ChKRBbI~|DUM|+5)aDh?4x;_aa_kPG^zN7;av&*fD1SJo7%&b?r1>E zMdwdzS^`PV2E9;s7nNr28uxC7n3sO}Z3BSmZ{M0EPV`#0x>Ztkl>&z~uHvZ#W6K>? zx#nP&Jx-+II#5iBz$;W5-4GDOFUUqOT4)WL4NEzu#i*udYKP3)L&=)IG_5}D#LSd4 zLQC`aBrnjBFD6tMp+Bk~Z-bJL5{E}-M7HC?fr;tsC9?S!J$;(djS+x~e;X^xkVR=M zazwtWjvg`hQL_UG?+D8S$0dUQ@%(_ysNsW=3w5)doHJS%^+5urryw&aAT?OWa2n(y z;le4-w~AbteauXA1&Q08QWMzwLGD;R)hxbFkm#g@o^fxWw<;Tl{+&0jEF1vwJqkUW zKdXD!W`6Py%`L_vC^3i5?Q6b#xSFhXK1)lW`I_HyR9f5&!I=&ogq`^LY*v)g;-2hD zKzL?qaIrGMDVJZ_u}B%Iw|Oy>I23zqFBa<4-Tl-$?5yy<^)3y*IX(A9Gzy z0GA{qGyyP&LGZSg;eYccEMCw9x@H8i51( zKd}fhjhcHF862Co?*!SE8puzWteg-SypK|hmdHg9+miuNjh|g63|K&m?1m=|^v)_( z`|CUy+G^}d4lN%K{!s|`Mee8cDRfaxuGv$ILOA67YMw2-IS;P?xiZ0 zl@pGtm{L4<#j|5IrwevHhguTvy%8YQ(Zb;Pze;gf>?m_s=1K*2;b>L*11-|yYud;E2>&)RFR>HF5&hx1ge zngXo~$8RA`#EV&G(`?7&*oND;g4fS)YJIZ8Kj@b=8^b=sr_T+qU+1@Q;oi2GAGC)| zzPz%@sCWP6w9tR7xBrzczWpqU^4Iw)yPvx>f({$rTqZOv;FSR#wckbMY{cyKI zo)ycFr;{eLXic8dGFX|IH|r>j<*NtW$b+d)@v)7ty9Bb_X{BX}LZLVdwF$jDb`28l zTL;Bx2Y?mIeDCAcrMk;+b2dx`usBX>vw0Ll@G>YhVM;r4FK0D)-pLMK!8$#q9lv%; z8~kkT&<_auZdIZdcpfcUX<6~b3Kn=o&GvtqDDeuSf{p)_bVEb`Srlmcr*f>Vw@%mj zs!s)()(=|M`?Q1h%)j zq5s>8_=n8?5k;o1EK<*Mr|pvSDYY-H29D(i1hN0k%kT~FHxw#?p;pUohxclg8?iX8 z%idO|8+sWp+Z3f+afS8Rhj$tFAOsU0pI5GIcVBu1&3_xICm9=mr#t%9k}n-q+JZ4B z-jHtCm&*&^Xa`^t({3$CbTjZNV<{X?Eo%~EF=Bg^Y;5C#~lD?$dH{=H*SqKhGd(on3NHz)L(WopDsFp1^oI{(U%-eX%PDX7sAHxsn*3 zrJJMrpwtE3kZ68X)xmSghDZmb%mqIn7L;#F&6^n1g$`I8^lOTZQa+C`k1ggZebIL( zo#}Wy9;XR=J=$QLFstYV;+*8;h)q8}eXndU5sN&iy?5Itc-b`Stv#uS_DzXJI>^z^ zi%0)0SJG0%5Hg(`-tbn_pj}A|WFD5D`Rys>Tu%M5CFkBN-<61c!=MO_oKB_sVecz0 z{DPEeg)34t85H8YYkRNyoRpREIokR+!rZN;w>xT|bYpT})lm#@UI8*OHq%$1yz(pSUcwP;&kB)-opTW8kP zG^WdMY>^t|h5r@-)=)S3RXT#QR7qv{cFHG9a2c;X-|d_8R)gb^y!U;*isJamA{T@a zdq-HMrYxe(+abr>4lK?ZfD{CO)xHUrGsc=M`>WUeu!M@F(k}=3-)I23Wdx*xbMYRA zM;ucHzZS?}@PyId$FB0Twhv@cn!xTL9&W=Fv(u=;QcDt+6hjz#JM5{;a-%h!eoRg_ z{2bJ?%b)voDsU@Ut?#^fmghz%hvKCj#tGAc3a}rXAH)Nmbp1*pRMH*aWcALW%PWJ*mH--7 zw~qNuC+eSEGmfiF$Ah8O{2MH|ZBjz6t-h3SYSiadAKjeIl|JOi#ot6YPEirR< zyqkPhTI|@T-Yb0$xA8D^_rvC<;D`!CkY?ZnUHT_%NYiWYQD4s<{)yL26M3==@*9D~ z&K%F2h@I%)T??iKIq>R?&=R|PDrzPFYJ|ep8oEQC*a5qhrvf+Gi5$%qS!wyDWfXg z@MbzdT7exwbwfu+XxpJeXr`s^S4D#-H9xQJrGxhPOX#Z{$!G4}wk8$j#>6qCL3uTS zDkyTW8qw|f9Rc$Z{|;Z0Jn9X$9HZZZ2<)T+fd|kLot>MtBr}cCumaYRNvBH0b>y)N#Y2UD_Utla~ef<=>noNlF87{BlK&ZWhw6Z?<*C_#n+Q zSWj{q;`^!g@B547DSZUP@MGTZyy=V^`sO8!a;KxJ_K`iY+Yqk$HU~7ezR#vIhudLt zHo^rxi@Q?bH$eB-ETpQxUu8}gb>8fOS|hfBdlKt z@B#iv4SzZW@Q?ACPeh&wD3`=z-`IL#8vo}~$Xj8V;v6BIkOfa}PmKxMw-hp&4Iog5 zhQu^7@*5C^%;q_|t2XMwOW?Tkl68$P-Glx$Wu~l{hbzYqE?ZG~X!mav!=8)FCj#l{ zB?guuEvI(bJfz9{E^9#u=({D~1W5kCU<5oEpS%Yb@Ls^~oA} zEJWYy2(nz;@tJljgItzuOsK0#m%BNeaH&Vy4K|!v!@0d=3^eY_SzT(qWaMPm-Thn~ zNBQcrW>o3dOKa^rP8X9%G{vh+!;ezW)}|XiTD|6xhCFD4!&oP2r) z6}cR&>av+NAzi{UW<9e6Q1gkAN>t=>EmW5omtOORh*x%@IhiY<#iU|3Kru($jC(6k5=Y2N0h^H)7VFAM|D9=YvD}zV|`>R0UeEyAnJ!V?N;ysvm6(%Z8XCK}iN0wgg43Kx zv9;3tn!~SFU%x>OT%ZuGGdI}ZJ3*ZZmu2P-jVkic8segJmyxh#!5voc4%bV;}!i?_K0WA$A zvVlgjj&e=z{wt)nC6Y#^H8F;^j%x@5Lnsq{w^ApeY{x*ny{pYaRqsh~*#Z*`Lm-&C zE$t04IJr_o;(BSaD)qGWg7hqnMPN+#BQxgD^VjmMd1M@R+5+f@m5@q$*FCzQw;bRTK+gGjO+Z&wk;aHWot}{ zx+p{Al4VBN&pEV6gB0$&)ig<&I$nB**GPwa9cv-Q+@)cMVr;3IyDC-s3U)+eZcvZ% z$xqK{ZI1&pGN=@k$*WE{hW89jh_Ec5^z=XGSdr|-b@@x}(|?EWO7ocJocdv5I@#ZBl#oz+y$?vOJJr^H6svl39dnNvs$j{xD+qdg^wf*v`g&N1jRb zqv~XmRLr9rJ!zYL5smhKe1*>TCp$|+d3d)>)j;pxRzay}^GaP^^4+X|;b2UCT_tCo zltSVz94EzTWk2Lic9UMNg!G=we3EF}5|5e9?V@Q5nr&Hc>JJikJYt7FVh)8MoLI{4 zuwGGHXET1Jv0mXN?abhpNy^oSrMD_qKKjuXXL-v+9=Mx6X!Ezvo4BFAYL zLD1*oNRH}_B+6W~!c}#lM&hL0iM8klc6KX}Q0rcc4`I2ZCFgcLaaj$Adpg-I)?SdV ztM&MKH8cS5Ji2+1|82Pm2}w4JqgWqeyKV7t_0o3`RL{}HhK{13AFPzjWqLHzuNY4r zOsZm*F*g%Y$fpvNY~!GR<7Qq60K6N+tj4(?TP*NutWOT-ntr!fMC%`C(+q6KTl3{} z5mJA&*7R1=Ph3p_WNt>R9i*&v&#eh9odSWw{oWkim?Y->k-uyvsbqsd=c;%8sMZ=o33qsfy#mQJZwL{nsZsblu zfd*7&s&a|pA(YKPWu;!+DnDN`_(0^z)AZbGNDe0qjVOzh{F9cY1&*?fvNIiUD%$oL z#&O0gXpOT)vj~vw)e$c)q!BgRf0JjBxjRMCD%@*=Q|rI0X!s*o4aJS8#R*899vwS# zlMTr2d>S5oQ4h;$ML6@D_W`eWq0@32w8otNEavH@Tap zmwL(n&6GyDdNCS}=*Ypt$kSjNdRAlk9Enh@ZK)QO^{#?h8;nj7_voZuk9u!-i1cJ- zTy_m_z71|dLlRVnZ@Ro44n<3Ypyyra&q_`qoE%T%9AwbUoMaoXcV33{ z^M`p>G+R$TPo%qyb%(&e5SqO=S>n;Ovd>7B_K zo-=)|d-J;Z6t*>|(Ed2tQ#u2>OuTF~BS|>}i;cRTm6mGRJnMub>C`fTC;vDR(68frY;3pYb z=lnbUiOFQ;w#^rM$-dlXeW)VXNm$1$4t6y^H5buchc_3u){~`XWS{MM20Kcf-tNR| zax=0%v>Q$NKsr&kn~9?-3;U%yX!hFLRC7N+Fba&rhVn7sRkmNZY!9n(DCAvWk8FVb zFxij0r=Xx(&VPWNr4pw8grj+fjno1*jY$e`A5PK{{L~R0sY^Mwkl4@mN@erK9jf$_ z1oP;*_bcv9zOLmm-k=Fd#E`N$r@3Zy{4ALV>9!e8`RGL5xMFmAJf`g#(HhF{toGK4 z`nAQuYESZ8vuMjw^*P#vd%~%3b#=SoO}!rLNO13QY*3cL=9;=LTcz9%|0=9 zKb<$Hs1-@u8Xi`HRQd5_EY|6n8gCsWn6vxx>q*lEdPuIa_Y_ae%ZE1fVZ$MsDrX(I8hI zK`d2pJo+sM?p~YkU}CyWm*R2tseXWd1KWW>=C7I1ER;$Jb#Co?fmnh{GyeLyPjI&C zceu!+TZrQ)>65)cz%BEc>TDP))cpvoJ=Ij?U|-+FP)x$B`wFf!)0=k>RKSO~1}aIs zX5xpI1yM@Phx+I;&cPKdlLQ0cRL`1;Sgd%OZ)gWNbs7%0=(eC!g%9#;o)kLxG@d!D zdI`(hE6su3yBd9`16|q;al*jH2Z|`^Wmssv!pGp|UBoG9wg^2dV`dnyX=+lOB-(* zuWpAkbv}lIMDMT{D;m)c4#{S?=vc*sY}yO>_0bVM)G6$}-^N4R3Q{}?b^d)fHF@P< zASAQ?G9{Ng`Sh*yLPIU&@aCgsS%+oZw-tvh>8a<=sx-Kc53QJk)Ha{sHzp+k-BWe# zbUOIXhXq<^>Py5>Uj;^m^$Zm3w9K+u;f=?$zvsz(jo{xVp91>WQ$8f;OlR2674WB? z3w1&JdJRX?gw%)70j@*u*Fn29_JQ9ao}#Y4>#N1;Lo+=a`pm~#0gF@-H2g!y zi^5k^KZavLMUH-rj+f+Q7*03bs@b1z&DmOCXeAOF_me`JJ6vm2)d_-Ukst(&2-0MJ zF=OEVgf7pw2*B#1&Hs+7`XroOZYc9@X9yGfGs}V;O{3@LprKidtU%!{;!VMonkQT9 zS;5^g==g=|)gRs<8LX=|!`2NwKi)83St8c+l!KxNM$9*XFnEv?vuZ8q;jWIUo%+$O zP&aLI(~JaikJm2`yAIRYsH zt;Yp@6N!Jlm6H=;F(fW^D$}xgA$9L2)@t%wW6M)x;c2LDpD_~t?ji<6%8)@e1hNKx zSFPs%Ph7Au1eMC_p~e_o_-h9%IaLE?iZU3pHA~|ywY}pw@LlAEHp1S0=tulaeqVvg z_J%bF+B)B;x-;-B)sluB`>~nTv1O-2gMRsZ$NcHe_1gM+6y~|KN5d!Nh-4mq~Q`DI_hD&1vNip;bL!{)^z#z z-O`j+$DdNHTMHnjV+<<;ciUNj)Pto#)$21w$Q@$n(k|bg;}KW z&T`;hSOKLDIMR}inY~}7G%e3xWU1+EZBF>QOsL+CI*JX!yl#is5;;*bEE^*(;B*XJja&)Tcmz7`eqP`obP!Gwy^TLLpK%<=KIT|G-%XkC@B;rG t?|O&K5y)U!{p`pC?dyZ9)?Xdd=oz@D+&zom+=jgP`6t)?j30x}{}*~2(5V0b diff --git a/reference/BAS.html b/reference/BAS.html index 81f0faca..9c0ca672 100644 --- a/reference/BAS.html +++ b/reference/BAS.html @@ -271,7 +271,7 @@

Examples#> [1] 12 12 12 12 12 #> #> $best -#> [1] 8 3 11 10 12 +#> [1] 5 7 2 16 10 #> #> $bestmodel #> $bestmodel[[1]] @@ -301,19 +301,19 @@

Examples#> #> > confint(predict(hald.gprior, Hald, estimator="BMA", se.fit=TRUE, top=5), parm="mean") #> 2.5% 97.5% mean -#> [1,] 73.02758 85.91377 79.74246 -#> [2,] 69.21028 79.60766 74.50010 -#> [3,] 100.88762 109.54189 105.29268 -#> [4,] 84.88418 94.51978 89.88693 -#> [5,] 90.13514 100.07147 95.57177 -#> [6,] 101.20724 107.84868 104.56409 -#> [7,] 97.92546 109.40844 103.40145 -#> [8,] 71.70785 82.78229 77.13668 -#> [9,] 87.25943 96.20461 91.99731 -#> [10,] 106.01639 121.41578 114.21325 -#> [11,] 77.45482 88.11221 82.78446 -#> [12,] 106.64729 115.23668 111.00723 -#> [13,] 105.55094 115.11600 110.40160 +#> [1,] 73.18322 86.17009 79.74246 +#> [2,] 69.36439 79.59588 74.50010 +#> [3,] 101.11460 109.66757 105.29268 +#> [4,] 84.84951 94.43877 89.88693 +#> [5,] 90.44244 100.33602 95.57177 +#> [6,] 101.32558 107.83860 104.56409 +#> [7,] 97.95177 109.29246 103.40145 +#> [8,] 71.68970 82.73094 77.13668 +#> [9,] 87.53001 96.42320 91.99731 +#> [10,] 106.69764 121.83622 114.21325 +#> [11,] 77.65029 88.34817 82.78446 +#> [12,] 106.50609 115.17527 111.00723 +#> [13,] 105.44690 115.05009 110.40160 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") diff --git a/reference/Rplot002.png b/reference/Rplot002.png index 5e3d3d9e071a68bae2f2e0d2e19347f826eec767..371469829d22c3ac8b733c940dc911cec28cf5b2 100644 GIT binary patch delta 3182 zcmY*bc~nzp7Ec-_S}U~b5tSu$T<9__wT{S^WN5XNVxbn2uo!}ZAcla7AwbBYXszRd zmJZaiq!!AOK!QRNAS8i;1uG#^`v^%40T;j*LWGzAF9hb%>CBvY|J-x#ci;W)y}#eR z_j|IdYS;D8I2*dd_lL&hmYWTn>x~T7gPA$!jq0=4bv~hQNnWjfem?e4%2%#G;o@KC zoY~LcOuNgka=m`*pl?om%9gherZikJ$L!v7Amv5cAbv}R^U~emy%pfW0}vX2;;giu%-zz?Xe5=@J6_L|97(iyVwA(gF z4W|bs8lo~$&J3>dVu})&+>M}LOcv!27l}+RDz_CH06zw_a=k(XNde#Yb@nX6vcjNK zR=rFc@=m%h6eJRygCMwlF+@X*3jA4#3FsQYE$!<4)sL{;3Y`UcBq?DZrA4)l4=a9z zk`pR8*Pe`01v0+zHp7_=NQuh4RXmd>NQVkJdCsguwu0CE(U0|fQjFWQWB4X0rwv51 z7KVI-6$3H*8n8Vji(k0ADhPfJ3MDkSeg3eYknMP5QQo;KX9lsDWIGFr0bf68*n`h# z$#dynO(8i8#TSRa$x`&tIKnVq@JUWAJFSSdfEw*-uWzr-k19h=Z?8PWstyt}oO(g9 zG+1|=o@qu(CMDqFfl@qsKhFdJW!EMxE&;>=BJV`@kaaI02b%3T`yGE{24+|m(!y}= zli42UFwhb(m+Vkj(Zeh%g7k<~aNu|N^}^3P6YgB$b;J~Z=Qf6Kb1 zhdNZl=$Dj@7tJ<6CV7#EAkwqxj3Sl+a*`o4V&~*K1>1~_tTXXzMc7q{{?vQSP*h=u z``@lu6TextRP2Xt$*jo9F9?W{!+L7i?@jhXbGU-RTDWYqO+s@uue$eMBLW$1gbkm`oa z(CGQn7q#mfArBEfKS{5txwf(_NaS2d>eKhh1f>4@k)rR&|?FGC+(yeErFV(@N+J^PD!AcvgS%rdhsnD{eoFp ztD^qm`KV2d4)`QdyDJ!f`h`;=*Y7-@v@Od#i2l8l$Pnk1oR)lE!hTxa;31&YEsbuT z2oC=v?d*?jXkCc)E^1;awPq_NHM&0=Nn|>sGG;3n0CO9v#*^UTKN*`IpBG|m( zLUxv?Mm~VMu|EaYtq%!jd%bzZYFg9$z~ut6I1BB`>D&}a!Zc>eduY-rvQiAygX@^f z@|^)ewYq}!cf6Jwj~q~oaO4VujLoF?j_}k|&V}c+={i55;!EtY`+Ght!ZeJ??5}TJ zxF<$)werUN2-_pD66C*|;n)LM^gkc$e-6`Z$oui@hInT)*bSJ1*y;dvBNov=%?CLo zK2zX+_=rrPub%Xf?A{cePq)>GF9z(OB(M}gO3P^nenp`}#L4gAHZ6#@)#}PqZ0(?hav)u?E-BR*(u24HhT!RKXJTzC9CY^F`&uRb^SRz>wH z7Mad)pS5-ajE11WWSC-zfP*soYx61~Duy>KTdEas;^YmgeOLF9)YRfywP?3bbes6| z8-Z)5v#iA^&QJND*t)<8V#S&O|IAG5+iRSU(d#W)*3A7HN#GDHc{tcH=6##>y1^UOe6+cy(2Qi3rWOMe!3tr+gV zrpqHk<2UYS3z&St`?poJKt%S-k{y#zI+63UiLtC(K}yC#ijC7k@D0MP5K`M~d^+4# z1^wiY*205R80@;yanM#qbqgg)^R|LxVszkFOF2cjQFd}!%5v1u)`{4*d^7UDBa`N> z>Wat7?T8rLOVCEE9Gf}r*V;o9)d`JupWX*qWG0t-82NGF(zT+M*r{r+nuw2MG0W00%EPP=vd(t~?Kpl-rX;~_Fd=XVlyOce z!S`sIT&xO@Ey_)&ljz`&<`C3Zd5f|T)c7c_1FqK7ad6t((cpBF`?#WX>z>Y{rzL2< zWn_qZFfIHX&Q+0b_CyYcD>9QVV*Nz5NCe`8!kufkZF$8m2}N0#gwc zgO}T1Pk^V{KR{yxY{UAP&azplZg&p&32=$5%oPU&mCeVb^EWMGhP+cQXY$!X=$05g zcCs8EckjtK3Wx+>cuXW5X@OnY83LmimN_eXVoFND-(FFY0gA!yip#*7nZ z!98I(!&p$CVn8AhJ4^{^nH%r?USXlx8Xo&3LBQiHn&ylN-f52FI|C1MlcT0en~jNb zQF~2(WZ7!A{fzFPG{U%Ph+bPQ1+{irun3dj?lD-Q7)_ zRaF2O+~V${o=`j8U1L8Qm5RwZ#c~68G|a${yrKCD+RzM{G@ME`P0b-O{bbtg-8zT9 zqvm9?jmnhD>maRfpyp8f?>PKTR&J{yaBkFxV-jDcGH-VeUnIvH3xn2D3%2CYuNo7v z%}@j_ah<}`)KQpe`YmmvLYA*mnDDXA+%hy?-GI}N|5Zkw&2_x!!|@uIPM4wP>p=#I z(oiW@9pP2KYc};$6MU2Z2LSm5FY56&WgApWRzQ_Kj@eC#4|l06iAGt-7pyr&kulDx zWogtc_k89E4AOmKO~~OQsheXiubzENwe@R^kZmFE3JD?UG+NCHvZkazfTcfU;nJxE zv@%vfUD$GnRch9c?-(h)G3dGSs(y>!ecu_ z4-=es!MB0?0wa%ya^Y^L*FYF}>HA)QSN$QFLJcd=xAE`6W3ci+4f>}Hd$x?i5Pt}( T`MN)TMHPM^a=-ASq;vlQA3(^k delta 3252 zcmZWr2~-p3+73mHEAeViU4W$4R{s9B1?vI=3AfT-Yf<<`NVs4KE+tx)1Z!9llEGrd zrHYo;4G3*jmWh)9kpvR5D82AoAVD!<4T&Pg&IAJDup}h8L+|Z5_nbTD%=yllneUnR z`<~~0zUS7a;Z2vn09JeN`Sg>x+_F&<|8B-{e%FMZf8&PF-Wvap-+r^LWi z=E56*uQXHkM*b1>2dJp`3IeW)17r%v+6aAvVdJF=%asDHryo_M=N?Y21ZNfj=SZcDz{Y|AB#Yu}f#@D{K~PCUzkgbWk^ zQJXHFl|~Lj^TH}@N5cjj9perNzcV$W|Jy>Ap<6@(1#@dDJzGT)?BzgU&?$a6&P-Q{ zxO>nmQIx62FbC2XG-)CdRE^xH#zH?SlL5StX$D<-|B(L$8YTI&-j*la6X-b@g7AaR z!T(dqL%(Lb21IgO_Py1kBjxTw7WC!wp{S1l_jO9ovLuZdS2Z*X--4KA#sO0@dCYP| zpW!;h>$yMDj_(0@(?^7#OZ^J;@vLeJoe!d)s)k?PgeyqHW&-Y-z9x15mnuXWQ&uA2*ytGt|oj&g3 z6yJzg7aQFT#>COcS{X~^e(jSQ+UZw-_$EdH?J7vm)u5KCJF~0qc?a#afp9Q5ASxxL zDBJG2Yv=gNweXu?%6q*xNuYsilWi^@A z?%imIe*^LRTAj42sjXu#Q#Y#^0C}>lI^+*lMPlMH}3#D zUw2PHI5DS_2~?*phSxZ9vG#Lp275?zvxE05NG2|mpNigr{}Lv=lGhA!2aJ(>pWQLY zGsp}4?(n0!Dr&?MA*MaYIXFzj19_rps)jdi9S~U?D3NOZg+n`0VIn=rH3(o0aU}^P zNz@wdQG{@<`ccFTziQnTYxUkGoQr&E-4;5DjTd;Wb@EqB%!>32mUq6~1g zD*LPR*c6S1&TlhDYWIhFETv^3IW#+%9Ls+`PtQ=SN{s$}t6vdQPQ8k`%JaqHBFD|B zOy|!=d~*PB|7#GCqAS@yOikeCo*Qj*LSx)iOrW&W7Yw9E$Xc4N>qiX|8flPwdE@x? z_QCAk0Zg-6?RbFwtwSeQFFJXEvkxI?+vxS3X(GAxyFHi8$G_<6iI;OWM3@h_zQwAG zSaS0K(=7DTD7Z}YX(18_3M#po2;m})b}%NrvpZnq`Cpgu)?6H zYMOulRC_M#2(s~Y6lq)YE!1>YoI!pmXi^}*w99SmzrA?%4E`~Ru;tvE2DQ&}%zNLu z+Pr34&@uDSS?}mo_Jt)AOMflVFSY(xo3ieXg*G;)S9Nc>6+_j?(3J-t5m;ngK>x64 zUiAD|x8Y&KY#}14P6lp_CR0`Uv`DXj$4(j1ayoYxCk<5@HUY2+D-M!_4%y51WwS!jD#S*gfFHtd)pDB0tX;|y%4dJdOnMgI^$rLlHuDZ~Q1 zcqm?V+wuRc(ja*;Ryg718Tbz7F?H=^T%G`}rV~!QK~^|G>}Uv%5mSKus)o(xrp(SX zt)J#S<|h?Lu~inVw%|ctpd!DC+giE0+%MUia(mLC5vf&ZUz>y$Q5w7}#dp=V08`98 zO1pD2CP}lz?W|lq!J8Vz&B1WFp@<;XR6B0KO;GVz%C&c2mUPZ;K$g_7!W-GZwBNzp z#hG_Ak_JV8Ur%Jr9j|6os7KwnS#{HFIczvaV2&gGF;;BW=& zuov35HJ4Vl&T>xI;}>EcTe3BYz&>wEpsUc8VcB$!)fj2(l7eki`w;iCzXDUYN0mgV zkCgHmJ^9Xj4mtr#m2#qR00+b{p9xW2al0nCh5WeqcE0qLNr0CmW zufKW0z0Ao#LOp}VLR(jfh#?l7L_P^wKfg)-JRlBb$%%*Ck`q+<$cAiNMO=&tgXEcw z-nL%5WT*)%YRY6V5268NB@(k37lQNFZt^SeO7Zs5;%dF{DY#zkEQAmFhu{$6m2JCV zaL&WIbI@-wdg=&NPYwo~E_1#rHvpLU{GANQGq)7W3;()+e~&4i<~jvpc~xIj>*|B; z4eHXaBGBq*KGyak$T?oD97mf(j^}kTIrn^|5-F51>TwvKjscyA`J+$IXaxF#bh(*uhXMpT_o%NCEb1#_rSUzMft($tN1^}1{%`1MsvQzcTl8|8UPS5oar$@wfY{_4MvWUq z5=emjG9b9)sLW_x_i;VJp2;tqu8;_`^Kbb#wb+omX-Q6{x`?yhnET{-;;=|mMXP9h z(3T_9`Dm4Byn&3r=FAr>1f^ML{IW@cpSGLALGC_e<7k_owP5$lAZO@szfmBuA1Xhy zotSmgII|bM3UdqqQ(W7rGxmASu+=ro0^XUEp7MAuK#a)?nlT35HPu2I?LDZ_-*U2J z($slTDD#q_<4D$ZzNxK2^`xb*h=0)B61pO7j$L+UyC4z?b@zIwOQoDCX92~@#&*w+EHe;#SSt%U;pQ5$8cQ_(7ch)H|~ zl6IeVxO}<`qPx={1k(c5FC8MVBAq`z*$a0=%)ZeQ{6LX&YBnG3Ng`O7U_>Hc%^m!x zh<}}UjKNGE2=)IDZrevEj~^VS(LD8=Y3A-+hVa3Kq)D5KhQFo+?M*L-SvBs*pY`Y) zQZI*r1K^hd2Z#`ceqlPVM$mvR|FuHm?v36Q9!j_;kxKqkeW#{p??Dp{kaK2a%wxZy z8Tln6dYHfN&&)iZo3VQVP_Q{nisH1%d0#ZdF{-gtv7ckV>g}anPC5Cg!W_p(sD)Z} zm=gPBD1=7mKSIMmkNnXGwbMGx0c&$It1}@A!*%T<^OS02T@X8=LY$mL?{;v5aP04N z@pAe}SDm3e?`=ZlU{=BYiW*`b+so&n*V>Tp(v;)+H6#WDi;8~_Vt*d};0>Q)5SGLj zR|{#bb8}%SSaP?59<0&XiJy0ABRTP$9%Cd>w*!dNIr1T=smL5KxICrT(%-G|S{S%N-0VK03Zw5?KSPN9@ofh;Xw4w<6*Hg-)5RGdBUsK5*aXj=$)3tURL*B<9HnI z0FL1c-hS)_sLxVf;Uw29zDvOyihf;xNUW$vck_{$S01JE&o8gh(AE8{EiWO4fnEb| zlipg!ElktHwW(V(c16c=tcDjo0!nu^)N!(hOj9xzcQp(RQbUr65cBVUH-9DFu^@ku z?J>bt5!|u;VDmD6HkK+TiJ0JshwhV7n&RRRd{bt!Zh*g1fGIa3lBtL-r90 zkVcq?8imn+murD_2m0MlCNPO^-JV=399@>DWVVYpeTK5pujYpdp9K!_Kz;2T^~F_L zaZZsAVIPg25}~}&S3nwZ-JJt2ZK(HTvF=P3fM*jSP=*3AF&hvj5w{K2f}|*b15+MB zhw8zgK12fke;#Ob67ZIyQ=4i*-n4kVINis4M(Hnc=9`Cl>Mj~*p+W+G4JDe?riuv! zDq43_t!OISz@E$UuXZ*b+DEOhXSyE!bWeK23tJPFyEA}vsPGx=on-smp)5?AaSVy# zLzL~?6sn3wPHOpGH)mj#B~B4B;-kBG&q5&Pb-gx6*S{XXA2dPAS4y}4Uz7xxym{``MQ6y2KIYd z+kKGF-%}yPTkf3Oq2>1~_fFiaXAC-_=}FZ&*QbSe(Mhh+ zz@tj)-DynT8wJu%`E@}|*At=8ZE(CLEtr3rLh2sByBzvr0QpcoA>8EXTnegUzFdEt z=9GOU&9xp2b8HmUZN8#$>1u_o!np=Xc`#Y||L+3OI5(W)NngD=4Gr{!&-(muz6^gE zbUD?Oe3E|V8Zq?)hcO5?b=_T8uq_eRDmc5~lMoi7S0|PF0!U-M{`ONsScBoe?soIH zR8OBmbWR>P+-}+A#8k916x60n01to(tXI7L!&U;`Dl1^ZDJrFXSc;!-K68E*J7T&@ z_Lih&DsO2wB`9ZJc{Q4Bik$n%xy&swU>X>DPDmDidW~%?DjfS3j$B33%fb!Y4%3!@ z-hpOn%UEI{*pqA|)v&oF`+_R=zm>7_C!)E=nGsjF65~-PZ05BiYA_ax*q5o`;kXL5 z#x>uBuShx9J-%t+9_;};{vrw#tR0T(1F5;!NSr+u^SJsX7)QpOQ%gUa)o zsAoWxxEUrAxaCHRd%0q(Pqd+)444ZziFM2O4DCUFo1zYmBMMSuA^Tt3C~SiKcg>{i z{WgqbF$OQrTikhFgOwf+bw`~J9gfnqiUG$lCIt5gs^lW!Es9LW&xSxMX7tH)DdWbg z)RYyIj?mVzO-08kCW6p6cUMe#G=lfa&-R-*VT|VZfjRZCvL9WCuk_&sL!s(yCOv7n z?c=+fM87G;?XWd?UHnVg`Ph9yShHW~Q9oLdWTXXYz9*GR^m~f_KQCi>Du~EikCBGI zBPqy9N^s67ljzr+DF{V)Nn5v9XjBI4(M)K^>}{Av=WdG;II7M-K3I817|a*D^Jpc# z&q(pFvXakUp!eI%X{o+@E_0!1HUSwpW$4Jf5_Y!Yp^cFXP^#ltP}!mOB8B1hGR9kh z9g`IFh;j5QDTfH{YLQ0*AjU40NNuvIQq`$j6VYa5{|w7FQ4sSrE7|#lVuBW;!Bx7p zk+t?ouuQQ%lNEo#f~k@O~_G5887^{Y8&->`ATg2jfI0w90NIm@B13R zy}N}H3jxn#ue+1!plr#``KVZmEVEPp3=q;%9)Zt&SDv1{w_4W%la8IxW8YXEkbeqw z`Rj^{ctwV7Km~e3bi4SEV)5XPTbd9Sh6=Av4P~w6pS@DQ@Q`S{4(sl-E1v$d3|tJq zgl~VY@ZK+V0xEovVn440L&zRv_#AIpZt;DhZYp(;T=AdlxA4 z@{@vjKTdahNh{m69m^x7Za_%oi+YPEB(l8wm#Ce~GHpMq8{=>b8);C^d{Sm^Bb?`- zC3djM;DMa)jT>7WxrdZNhpzCDim41~&yB9vSOzOLtQ1j=K<66e&zDB_67}N2q9?J+ zkrI&()8D^8{%lW@LHFLLP$fU|rmqw%N!((`{I~(x+%ej-K=2grcGrO%Ilz&OalDC) zdxVZ4jl%3C$xu=StNAaHrepI~{C#K9NtDq^o)LQ1&90^ag8ljl1Fqa}-xnFqe4H8U z%J5|~`MXN)zqoL|?;y;oi>?&aiS@{hT;FWZ6|Gntv1;)HZ&;q|vsuen7wcYFf7HK- z_iH8YreY?j?=}%s;mtKAp79vn_C5!M+BPB|Omx`}S_niS~%S$!HPaEwu+ zX|Ojv)hIZLCguHa>6)H8eyg1JJkpP|U9OAM!8}VYkscT(Bho$!d57l*B;G@cmozD< zKD*f_geo4OD*V8wMJ-mTiJGPoX=UE)Gm~-JW|%>u=B- zc@>0=Ej6f;gP5Bi41%>5f^gs1rmct%c~&tUGtj#u1gQw;@1Yel9 zmu`dRZ~`kUYy#_9d%5)6)xeC#FCnX1)h{o!A_QbN0wRB`{&TPeJhb~x-8x#ou6KZD zmbhpyWj$Lpa*ex8b6(ud-TmRvsfev?>U7ma%Xq+(a8p47&H1O}q`XcGSiBF&mW#Ph zC@q)Ww$447Tq$psCC`2tlUTiVn&u%Vv&D>^&`cs<-#1`k6WFMa_Y zG1L>THvx731N zuMOmX5Df?G07xxhG*nEFHsAUru4wEc(ReGG5VykuqwZ$Nfyq ztTx;%nW8}p>K>OZuxIW-!5||D@Oqn;8z=|}ktlNL+AirX(TrJtI;dbPieKN$q(yFX zb_3CXY4SxieiovD`N|!6n!LnGZ0$=2LNJNHZItg~fcjmW6oh>L+M$85y>YYCyYMKn za=Wn0-^6K;11V@Xxyq|g1MPRZDzc4mIWw~S4A`Ud61rQ({B?*n^OO@Q^nMDm*Zj1uTIj%d8IRHgmVry2!{HJ!Rs5iIKQJbd4fdx6 z-IfS!PP01BN}fFA1XvlpsmNf-4L+LdE9h2oLf700hosonTW@mQ<((14OEWTWoj5&| zy*o}vMX?zAdD61B%DtOy{or-xD=dMuWr$_tZ=_8=$trHmrj0{~#gy)wafI z9uYcGWPzJK7jTp2KV!t{sPJ}6nk6|J%FgKVe*{*mm?hIqo_f50Y23ZrJ!&1gN$ypb zHaF9Zsorn(f?@A60kttNxyrZ(FuuJx2WOD*T8&`}#yOim9>>()slO6oCVJ}`t!5(o z!3J?|(zkDE1deR!`6)9z_ty`Pl7B!I_LmF#RJQ zHzG6!5@{1fi#tR^t8Jh)8xa5C2cX628xNRgV!TqykAlNC@>&oDcvO9S)p3|8`+9{O z{pXD}=VBVG+lVkrUI8|3f*pLQ0Ok`7F|E=^xRY_o%{U!`>@q8{}RvcoJBo`SysakyGSq{fqn zNBHtjiRBe#5ZWh7i5f2Y`{|)MSYDC1y2K@CBf8DL64kZ~lCvKB)r()FO;z`F2-1#( zFw}q$V$QF57tgOrBMRn`=d6IXAq7u|CfW+b!G$={Y3{dpW0unT7#cGD&oV103qsrV z>_W#q-qQNme2|BU0OWv5Dvtw(i-+UGfpL(qX~5+ulXc~A`D)Q>-m35bI@Mlus&I;=AT(etqZGqIQ7k`)SC(gZ zNeBDr%K4U%GY$qhr?#M0^%WZ7cH<(kdVy$f4{3gIDH8@Tx{#^^;OnTYyr zi+^lN=Lm|FErC46QSEfE%bk%?u=kff4lu(ER^8-wBsCEH(G=LOwN5m!W4aR2)b(&tV#{r_3Yd@>1C?); zAI07f@9f&K5_gU&$WXf)(!nsrls%cgk1WgnD~pn>mL6{Uzo&W%AAKF?lY(i3ROh*g zVkuDw(vo+C2pPNvf*s{Rh0lG<=64o7Gk&utZP@{nUF1aWC3V3+k(sXBZh(L4X0Gdk zkhjQT);{g%%SSX5l2N&>@S`R&T-F#3gxXiOMr#*t^3z8PTVcGMtgkaR@rLgHLUF7+ z$*q=j>Uac-mSHCW^iK}K*BXr3a&J|ED!N6tvsjv$h|J$iF=3lO)$o%+6Ofd;AV2HO zzZUs?gIhLAx&H}hG^v{H$}$Jvs7}~MoqD<>pcH>W?eI-vff<_EW@$^n;QF4Nsf~8< z1C%Zo2sR)IAMTA{h|uRhHvB~mEH2KW#}34zMNW9KDVf!M0;sHTPTA_aEr+f=*BI#q z6HyT)`1mJyC%(vnNG3wKov`sCw0&fDO3CoM%Ng`N^R=i5hU?UT3>typph-ptOl8CY zgHBRsAkuSmOhqz%P4@((b0Q4&6J)TWPX1ML^rG(}-Os}4-;F~=+7vsATesKiFVraq zSq_laIZ|VPG-y_zdMrd?}W9CYrOa$Ml@JalYiaI{|dlAbz!QWz5e4v z|Np=anr|--mA%%u%`1y$`#%v#ZG%j51c7bA-pR(&|nBq8rZOLHvE_k#Oxd!#}Eo0UsxwF@ri8(zoes3 z4mk#Ei!kNZd&5*kHr&oR8U8Lx`X2{Uhy~|!q_eHxR1mlsoB;S2c$Ze!-37q$1zpN5}=Jenz9rthf&k7vWE4J-9C=wuo^O=l)i>E{Oc@$7N^lp5aEuag>Uhat)W8G4oC6TQ)>ewZ4BJ)|yJG zwDuFPQxYss$|B=h-v_`VO!(HS+ab(BcY4yrZ&rNv#rXv-y%7t0YfdWiNb2jO?xCd^ z(xHQ!7KKHu3voMN3IpPM6uP2X?#NNg4VtSC7E8n2NbQ_?j%Xq-xS3Ef+HL{$ z8Gd$+Xbv-S}}w9LiGRN>7^?kxE)3Jt~91EWx!#WhAXZn{#7H`+yQpTFl3Yb(5F zasqh7iR8A9wKM0kociuA74k2b!-m*6Z<;lBK&A+HK}`7&&HIzRi?0P%E-74}nmjm= z{y`J5PHp3?Lm*b%`))K0XQanULza88$nUWWHjLOWLD+*@D&~T+n;-2K+cU$wpKipu zCx!bS#VBA6<@?_YSUEjXB>SSRRSh?imX41~jq6MVa_QaShz`_ot3!G$S_^QKJrL#-Jbk!<@ep>A=nOQg{2Q7J|8(2Z7$l*Z9EhIM=1AZ_iW&8h>PRzWroq0fb zO!o|f<=3Pp-=o87pTKZA5g5O(^O+atv!S`g>Sz25n;h$`u(c^up*cUzRWB9sFWk^j zxfY~@6OkEYsqvj5l6tpZC%^DRh5M_E>3O{~HvY6wNHb$FP=I&Z%5H#;S?>;|=iAoYfU0@hXML3>3egYfbgq&b@gTiky45OLEkcn^>kF4Gd{7 zdZwpb^n0Yw`Yem9>I_(4Zm3wu z8Hq(P>+c*M`kSY~9DoDPVCFwp#44c*uvoox^P8Y~G9N^R7^}A2;@d!s33(Zy(HZ3q zOxI)9xG&gG(20d5MUJ2N7odUDSE_w^^!GrXIx^l{p$0qvKfyxSqQ|HcJyAU00cmzs zthS2N6K$qMQ#P`@U?C6NBwjnHOliMWh?dy5%^C^r;*;Tg6TT1Em2Sums1Q0LrVJ%U zgZkz1rQT34d^dHd0~?bE_h~_eMH^YC8p>@EUb1ajhrqi2nM_X*GHDJwFlIoDTPUnV)&KPVoC?`^HP&U^mmYJOoR4S0S{?^ca6r5tfoDZY^tx ztu>9VGvS9JcP}qHu%u9Fp*x)Dw|Nf7SLN3SE*{{!AaPg@)9LBl`3m7`N(ldIAn!Ea up|>J}xp&5oJ2JPQ`}oxV={1n{%`Pju*7v4QO`Kghj)rWU_LuCXT>KBQMZzHf literal 7505 zcmb_>3s@6ZpZU2+5C{q(nivwbmP#ww zT0x0`iU!CP4Fm}$gj%I75~Ojsg#b!vWH1B^lR!ekj{SE3``>T(+5Mi~Z=PpzGLv(1 z=A85Uz2|-3xfpdIV#Ts`%K!jav3Jj|LjZspeS6w2LGI9=ORpluk|U83yO0t&=EGX) zNU=0`PkbH#*sXedqJC8sE&#y#H+y%5#-6&NQPCe}lkp?-eWuXD(65$$HywHLQ1Oa) zzGvirQxpBpn#zQgw(s&T$1QdL; z9COI=^2Sw#Ru(VPR(<9*L^XB{_O<5aO=*RC{p-A{?vA5Dax@tA)>@Jx1`(PluJeHib zY_JHI%$8p>R&{dxu(eoy#mh0x*XC{!kTXf^#vB|?uz>UVr z8oM1!Yh#lWX`lB>^GF3G(~$l!Ca9GHI##LWU`x?}NGRru;X5B$?+`1}I#EgvP1s?q zI3T%qk(&t+IY~IlgN)~i3im0gy}7-2)`lvNu9|!aohTY8XoK{e>foNwP$fM=4)I!$ zG?FyJYT1mTa%wkz;dd3YVzeCFj1gQ*Bqu5YpUjglrDOfv##;)BBJQ!ii{-Ythm(T! zbM2sm--S<@&viZ4Hy9stW-8>4+Ui7l9^8^c-!cCK6x8|g3ZSHmZ9TmPU37t7r!3N< zyt9_Qszh%vEkIq79D4xU|3118&{lg=*_&{+-GkJ?Q zb+j8>xlQ)ujl^~Nh-KBMw^yz`2v`!?wvOR2Y!2(yBpp>z0)>>_@G~gdZff!xvZQ62 zyL${-UsS4`A6aU+6whr{P2CEyQ9 zG99fgxHaw*qqW;BWAIU?A+Ds^Fv3}+@5FEZX}A687)i}?`7}ACd5X=Nlvw#R^q6ws z#iwpWj=V1CdXpaOSNcKm`@KVHl%g7DStbr!4t0>t9-%wZ5an-FS1zx zpAt_xrufPH5Sj;>MOZ5tO37BJ%QRVy@4otuHF-wgT^0mhDNRiTOIX*tTR9FGr|Qo= zTTeQ#OObrqXeiC=Om_XX@aZ{YTLesW8nT)E9EaqKus;e#c;N6~q^&H?@ZM%$5i%X` zA5}7^;^3ZmDjj|fRg9Ng`#cf#SQBzv(~{|=loiY#Jck}*8tb_LFozXvZB#hs-z3JtV0{AxhVcUZHhI`+6XfxC}bkhFM6hMId%cHB-{vCYC-rGES%0y6P zk7tVSy!HY+(ltzumZ!6?v%?kxOG^4enA8Og*oX6eH`b238MU0FIe~V6FIR@c(gXXX z4-JcD368n@t$etm=2&87RvXVCYSEb)EA|49GL<8)VFe>!ea09&x^~-t=(tQ%2zq0j zFy7n)u8H-b>HUCaaeizlP~(ge?sp>loN+j{Phs*$iQYjy{Y3Tf zi8%2j@1q9mr72|-2iauT`%{lSmZ6-{fN(#R85}t04;FEV^@XX&!-4a*DP8gWxagu}z7isj&jV0cMjnN%EnvGc|0r ztifOoCH=BtQce_4t?R#uj8e+sbi3c55^z+OnW&O)fiFRF7;Ndfd?<^fb;sG~Znp9v z*b_4X^u}5chr?a+wArx^>8!(v=`}OxCtf-F>Td{s_R2lp;1;oMTzF1|?TtEmlId$! zx1d1%AFZy0A+zj+1Ka<*0s{}j?>xOi(#d$FTTc5$w3dvDOm35;yn>bFn4LA%zl(|!QbZT{e?a7Zv$i5pd|2=-yIXW$VU)Q!Q80x!0|S;L^$aq)Yv7>h|k1$^4kjS=l%zQ;&yGW|?IVZZ6T4E&RJCdMUanYTdqv@FtL zKqR3=lfp?F&B=S{ehTp%1tLZDKM> z57EH$oKp9(g3;ep0&(~2H*zQjv=-{Bpi+*>60+$1c`HY~{{EB@3{nr4`(2p2mlKlI znq~)ZIhRh^8gi!&SK{$+0SIy_JrM{HoL%0moPBWvt6_TD48>OFeWP?xZvh?L(v&!C z8)@jOg)EwT2pH+zc4TC@{c?~{{KmQ2U9QCvL!OH02`b7t*g}@dLuwqR@dKI-zY$ay zKx)YeQkkt zhLX|LYKS7e*$_f))O2Lw(n2j|zrH044FIRWb{*hr{T9KwzivL>|EeH%F@;YnXAR8T z98RWD>erxL%78E7yc~G8MOVWnW0S8nja-eN2Rc5-ZA?A!vasgE?@?1S|9=v*h@&gn z9XJO;6|QotXgvcIW{G5PPUSSwbLMxF49|)gD>`hQdq?u@GeT}so+C(cDH3>ONSq{% zH!T?|skGp>^|}6P-UCMR*l!V9%*77b>8~lS4KD_aSUQstvqDtA)1w z?K-^L(tL>Y_?!`7Ton#`j3x^XT+a$=Fzi>fyePs|cM_t2I6WY}-4p?;W7FN!TmXXq zq^qoNeX5e$*WwMt#qYiY_{b=w43zJABW@(1Pf8?d4jW534&F_F^>y_~VFV7wsJ1mP zTnQVbKDqiNE!ApyZbV;!(NU|Y;QzrO9ku#jaJt;BOMHdtI5IORxOHNMIz3IJ0=r8- zScZTVQ`ySdnqJx_3Ajs9a%r8Hi-9!c?f_NoMh_6bf|L zxh@_laUpsHKl!H1P%e_{@R12T-(or-b z;(iwAq%J_9dhT1u8mui(wr5^K!i+TY$|BA$eSMl~B9eCw-8sLU(S%Qwj9n%X1;OHl zL;c@a`N#%!xWzk^V{pqrU&qtlM|<;Z*NsjW;JSHkzQ$#fPi+65+cspP&R`Xrma1Y+ z8Su?85mAs7tBS(o@r}FDM%>Ji0uO0sXW={~do4TI#^wis1b{Td6| zmbkk>aILt(a5a-iLc^WtzH!&-bI?56eV&Yme}%rgi(LwIq+GR_+sT`8YS;3lsk%8i z+GA`|ElS4F#$HBRGRB1a+Pn6O0+4bl{{6jrLG`oZdxxlPbc; znaWpx>;%{ouUb4{C7zY=C)N__&u4pb_1Cjoc^Th7l$_siCXF-}T{UwBOkSU+JPq1de~6hY zIwoCf>=-?6s(e0~3Rj|6-<#UjY&wnhdp10*7drB z<6Rvjy*Z&ZnT5J3DEZ$KLW?6`r#|F~Nxjlzd%}UO7D!#F#~N5)lJ`H$r|Ho3K%zp9 zNT3gex*#?)JrbcB0(cMex8X9w9PqH0K zK0G#g!v620`5zT?$NcH}@J6K{G<#3Q)QG9c$T3+tEueIs=_$rQBeQX`Cw| zBjeiqJuvJ%?4zHXWf@PHi;y*Gu#%(x8==_Hq^V1a!(&ZH;4kit6I}V0OZo?^FnE9J znFBD9)5bIB$Au?;;fRb!cP(sCSrP13ZoL{AwG!@lP(s?sK#4>jb6nJei#)@4XcOT> zgzsjxip4h#8Ymg-z{zn-=vkYJu+M6)`C-OOkas?7;FE9u|Fup5E#{uG4rUIh@)ZX6 z;LnXZC>&gYUTx=J`Llvki@9t+Cqr;3x@I^skAn;^;9B{9x(p&rqX# zu-R4%bqM8?ple2x+0ud>qa9m~YsU0pym?;nITwN4e2%Y0VYb5NLK`bULfK~%vSUFG z4yeql5A)fGB7$tYPj^G+q5&NP8oW~H1oSp$q847V9(4(-nyN9h&vkQ+nIi=MQ5NeF z81aXmO$>Z0vJ;y&{Rqg!aZNxW8NLrSS6Jwi{qQ@@WvoYXWqRk?mBGRqn^&!Aoe2e% zhg*OK5hlO}L9vKClDiY@r#;agFKVBP{-g%vsdO(wMV&R^^2na)dCdO{G>-C34jm@}& z`+-NE=-P7o2RKEKplyAOJ+~AYk1|}g=q?Fkd zGPKR_f;FP6k+iD_mg{!{)mYlS^X|F#sk@>RF9J*Y#la_MiK)>yEdLj#$%A(v_2%oL zo;;19E;yjCkO-GY@@!MS-eNIaA=+*lagUQOUe+Ph6Gd3DTb8J(W&6pS=+l>d0lPG- z<=pRxY_l550LvZt)(46meHuQhijthx&20enPo-0CSjQVy9w{l9PxY5|G)_n92Ufl3 zfhE|-^;z7&V+gSiKxjVu)T0fWZcN+u+biQ7ES%%k2zUjUK4b$k)j+E)C(m9vvTAL^ zM>-sl?S_>|4U_lAWj}9uJ6Uhl#pue}C)1U#H(t!kpx5?Nf5U!w$}t?(u*2fi(K!fN z!A+bXAqkVdyxx{^VU^6~QQJB^0CbM8|F6BJQ(1v`DM_#cr!Q7r;%SpIxl)#>?8bTX z;>;WA|_YV!qPSbU(qaP%_Cf$O&A=30hl1VF@7Io`Z`X3;Sxi-t8zM|oL9xHzm= zA`xfq^aK)1fZ@Ty`;;^A8^|B5;m|znEc!pPn(h^~8OUH!MOr95mEaE~7X2qj>-Bm( zAd9{MZi}BjAk@*=MWpEpc(K(`k0Q12MW$|dbE`qu6E345JmMdA#bk(gSGB#&y;3Rt ze`4dlofYHgz07KB+Al+6uINxBHE;4yivzEcP?F(MXe^TL0F?ZUG<{fvrN__+IVwB0 zjj!tcaWQlkd>`bLC8?h1WRO}tm>eTH$~PIH#e}p_fLnqnGG^9D%ixH{frHqHWi_96 z>sZPgyrzXH_&JH~1eoRQ62?J6)uEug9M!*)3eZ2|G`|CT5P=&ZyE?Fa9V$gJFNM%W z+}23)dK5hd?mf1~8epobF%HQ`O_#u+-v<%0;C=V6K>u%37@DZb`xYfhVRgF_JPp=z zjGG19fc}St55+Hilm*+m&J5#eb>dTdx1;`HfB4@ka>ajhiX)+!P*96ldeWqZQL~&g z9H-$A$KW51nt!iM!Y7*+Rv9Q5n?-MZtULa*YD_XtBAn1u!<%SlX`1+>^F7u&94QU{ z8oelWz=j~L*zyYabPQaJ7F>r5?(~`e+!R0%47Z!o#)-UdcZa|Jy5za~Cz_*6KVn3e zJ?k!k-Un3`NxwM=q_LIvWWm*ms@g%Us(GSxG0E;VaX5>;D5R*qGZ-QwU!@P9uPAt? z&o(Tci6fc6Ga&v$oQm3RT1Zp4eC>*EpEE-)PD5&X#xjE|x~^ zsQu``Mr5bu2e*z&tA-m_w@N>JFSvQsT-7tHHT-bScwPUR^(daqOX|;eo*A;%kq2K- z>bGkixJA(p!arK;PRk}dgKZs7oq$bfkBY@;LO~ z{DG&pA95xx_kJiGzlUB;mM5iD2Qt&Tsy>-CZa^1#E-EaH+>BY{0&7HDk1mqZPq)*C zITKoSx6{x;bWu`BJPoJN!p~VFlS-!{Z4FcYIET1w6!FoB?KC+xKE_8wSXQgX5tEKA zcHSS*hZAzkw_W;N_ooqx1jdB0P*-5g@^^2M1-I2xh>EXf5e1T2HbG60AKT-ETWk_H zWvuEAD}SaIu_Cd-c-q79{XZDquw2#m&ye6=q~8waxrqZ23m31DlN2LR7g~6$J7K4L z1Vy7g9zY#6 zn|Y8F32Qkszl%%?$P!!ut^sueh8RwDC2w&jtg_>}0@z+9yOR@B@xxqw)|qY{^b!)J zX^`aa+nTO)OR5Y}>Z;kbm_SY|Ry(1)We+3{x1c@1?2b7T4wH;k@hC)6ZJ20;XPDd2 zO+G;y--}raFrQj7cXNwovcW)3BGW!xE0CTPY3S@iAteu%pl=y(4(NvxRKCXR5|Ftz zDiGjuk@rm|{&ov#mg2Z>$i8X>A!j3DQep)B2V}#h`ns}$dmXnEGL)rePuWHi4ekTC zGUWrq^%*BIX!RFuajKzhY*Q~ZnWmf?$v=L&gP^Qp&9qn71;+Vlx4jLM9>X7mLuyY`C6v5v#4pHZma;7?G}&a|<&>n%0WX^sCV|lO2AQ ifp1@i{@sxhHs|h>bxg28ei!@pr@i3^cJV(;IrlFmb1!xP diff --git a/reference/bas.lm-1.png b/reference/bas.lm-1.png index 267acc660cc7d58b7886452056370127e6429727..f3aed6b059d91f24cda0836922fa99f8ef3b69be 100644 GIT binary patch delta 37768 zcmX_n1yq#X_cb#^r&3Y^5{jfqcOxMPNSB0kgAUC@DBTDsEz;c~HA;!V&|RaHzyJeC z4)G1XzyG(^EEX`&t#i&j&%OKXos|tq&4$$A2m!2>W$zMh;DL^+;!F24iX5PHe}cIQ zBSV7;BkA)wEXel4N=lf;w_Au;$Hn7`RwG$CqodEhzGx%i&8v$Rjv?Y;v7o~jtP|=e z*kW&#JZ%TEigi-oBx`=&~qtS`(Uqa?=_x zONyrwn-7;klMst$D?ACh!4&+ofuOh3#X#tNd=FRu$)`^eXjWTBUas6j)3NepG|{6r zEB0SBTgF$tU5dFfKV@2NQLp!~6A4s?w|?q_wDYXFOp1__GEG7a6&5;R703fg$cxR( zo_9l&8p32K@y*4*2QEl~s~Kl0w0g-t@il3+$aYcnqnBhKIZ#hdL_FEuUv;mR9{}7c zGYsCA`=ttfqI=epBL%t$Y6K4PrQ|;La_rQi9%3IBzaaK%#yBYI%Jr30pGWiR+#nQF0UX%pY}J;{2RXize4WY}57*8LBB!GA-4eUH^r1jZ|cJT@$_FFlDiguvxo<{Rn##d`T)%8i}Lt8h{&Y znaqa!hlJ_F{eW#DpvS-heFhh6?vR8@yk9?<_ZLXT^U3yd^*f_mfKtPc>O5uyF-{i~ z@iLR|P~O`!*+M_%X0CumtxEEVyfu}T@FjM)AcErq4MQ$M|1lK0Zl;Lf{}? zNDwH1Y|vc>oFF4Q^HUPGvq-rHGT+R~WRwmG%mH4o9IKP5xQcha>0 zOok+jpa7h~GuOt`;l0`X;KtLF8;~2wJQOFUQ&!6U3fp~r?fHb52>5m+od1nPYH|PM z({;Ocyx1M0C%Pd@s{%ZjRgIBXgm2$>{`Acd6cn9ZwYT_Yl=SkhKd^!$Y4b7YD0u(% zl`uF$;|DU!>&rUE4n@plz<*oCZPxBW0k&+iB|&!PG<`FOG45uTm%hv~8-f_&6ClSe zautBJP}PEGg5}Bv4q)8@h$_>gkc-bZK+6w*2yOY27KFkL^17LtpezLK<*6s zWxs}D>$AAVU+gSn>fVC9!TZ@TG0fh4{?-lZ;VSM3xdw#Vu5c?p^r%pp1n-{D=6j4l zf`nY_z2L2n9Sf{BtXo^QMg;!F!zVmbrK`3}S40dfB6vjSX3@YIl-KdlE(0!xS-P^h zO5lPOw{&tG+UnMu3;H?V7UVG=S04NqqE~CdN5Ri%FVKNfD9Z}hYA;Ny#S=d=pegQP zjz3=F0ll}vf9)6%E}^!m_C7p!l*g(`xB{+mEi_MN0Z_BB1LMD;eDn}32rGmkqIA}A z&#Cr(P!-O_Ll@}3?_8lnRn7VtmNotLJC#$&x0tvk^mTrw6{2?*vGe>lEhal+?1TBy z)Zb-=PQ4cgcr1F=dvrNm#AbOd{1ouXv=B6EUi}Pizt82^NzoK-Q(qUAecRxn4j2hW z#=DKQj8Rzd4zDog;z`nqV$Xga7}?G8s?3K{qr7MqLia}os``!FFd1MGpY*eN?mktD zWcmP$tVCLGyBBl`KHFJPL_UH^PhukX@!bhgfPjU-@$M(Wray~LHLz;0IPnkw67(XF zB!-Z>t=aA0fbE*n<~5ibC*JC?t}^pquGlR4njQQ~043p1g~Go>&j_F) zHTIrGe~d>UA}9G&ua`-9KE+XeB=cK)>@YQD(rr?2Uwj|2mp3s#ZhgP$C|=uZkQ<*W z@{w@GgDBV)*@pB$EE)QSXWXv^oComgq!WJ23E{aFb!vD^rCmu$IAy-K$-S!kJmUZC zyxnXvtZ!+S)?=4sw?5ba#8tu+IqNN99^nOVOa{9{PR>uTP(zj%ySSHUmI$_>R9s6UDY|k#)_kDb8~L54@+#YFGQe-<$X@OCAp`afOJn z{>@gu>OkAI>o<70Ud$30!eL?dH@NMjqGV^hHBlEKb9NeV!E7&96xO~ViW_$tFSAPe z8|?mUM2I&C4|3nR75L0Iw~7baht+x0_XD=_wo=lVO@o=+416};U>9A1y%>U{J|ir7 zjo)qe>v>VS){5L>Am!Dj&PbM|9mD3jak@ne0T*gZJN{gD`i57Tv}d|5)ZmGyd$TRC zyPNO^$(O7cFSrJd5`q*b4DL0=I_);pAEq$! z59RSW74i7d~67Vfz z1><<1f`FU^n`P2Fi?{Q?J!LX}>x!w`JFCa%m=!@?=Dyb#=+qi5*`(gu zXhW1g2n9#hidfR#W~xP96bW|=+73B+^bEJL*ibcWCuGEWE^06sQv3CD3J*wg$Q1zW zh*x?0L;WJaM75sJT{nE>pjQgY_ZD#$c&~ZWE>ZH~q$sErD3%;L8qg3FdtXwFt{l{E zNo<|%r7&8k-W|O+RWC7}Ugop_EoW?Sc2MG`7}jWiJG;4QPv+N3ou{52P9;(ePq!;R zpYt6qrYC$ac<<<3@yJ2%NX_`i`+%3yxQA-SDmsV!iDcSGcL=qA;ElDD6LR>$2r2`Yv(WXNq4mM!ntW~9wQ>~?(JDlOhhOv*rv0p|0e@6>7H;IcoU4a zTfHXXauS@Q#&W@=lB5k8Ljse_?I#v|n1jp&5=b#y5te8A+&OE(vswWyn#s59LnfK6 zBuu3-RFcewcA>3=3T~vsYvIF&gms4>ns<$dw|)n|DYd_+a?jpiWVf7pGp|GUhX7Yq z{^nn=))DeIm|#pTAf$LRYF2>3c4y!OrvcB<@JX4i} z=I9u!Mo$TQI(&+Ac($;(y|H%CP;94te72KT#5kHG*@ztLCGtB8eD5gTr}Np6CHLX3 zZ=p_!O~S(vjLZ1h+j!nzBeloc^Kk|l0d_KD%r|9;WGZs0?K*8{gN*Fe_Mc_^b?Yoj z9C^M>h897As&|s9{_g z3jKT)GFj2}Cs+g-EK+Utq7#QU{|M`@gscgO6Q8Q#SCB#`2NlT&ZB8&16=z8rfWuj) z1NzCLqg}#W%c5eG8ht!d7p+?or!bhWt6M6|5h2U2SNcw?6902W>fc|1L1%?ImUg>E zsRO1KmiOHW+(9*d7PNhG|Ecrsp{S}cE7c6ZCE|6_AZ*7wgEXo9 z^#63(Yv^Rh8CTe&qv0~7YtA+WxMa@%_FI22k1Yz3Xmh%;>|^>q`l)Gw;`yf`au;|b zH_n!kC;U5pOjtPYC~pX_-d8^he*1{`i4D^EuB<1tx!s}qAT*jU*yf02@+_FtM=`>_ zJfX~H{qY=dWyXenrby*@*C3VKoV~=Jnlda;_D(*SE;3(5*C{3%_d%jOketYxzc$dT zlKM16GE>9_SKLsrOD50EL{N&Vq%3g1@Z@7bXi-Mv%Pvj1^3Z~4T`CP6oq}av$B|T= zt_fsonRuRt&fUuC1vWh^P8C9C`N$+@7EqMjhdW8k^0EY>?@F+fXteI$B}k%CWM_Vd zd}g&8HO+L<50O&}wI@!D1GK5Aw%qQqmssqU$-T=vVXTF+am>5tT6FdLF}0~+Rd)1q zixR$9s>r8%FoTyk5|p5qmm@`IeIk7qc^W@m|E!T(bm^(TZo@S%61X9Yd^-&(KW;9s zA$j$ZiZ1N44w1di7`Ny=U{c6J&NUa3Sf|4CBm+l+ov2_s^s}0j3Xl;;Ax~S1quj{w zL5;2iJ2l##yO<#LP9ck0VVQ&2T0ycRr_FF`iet%I%;&n=NfTAh`|G{WhO2*!7kX6i z&9>S)=?9-OD|giz_EGEjhJNxWsE+0Nh}-1VA_bhqNrVS397x_KS;ewc;j&snG75TWykae{X8a;6rtCi@`;7>S`#WLuxG z%?$WD$;_L?ubt$KPG9C8HvxhZdAdZ9k*$9_-G^V_!ThVG9T{5K4y%9#e(gM1lI}&~>wCRZbPF62_DNb}5 zJ&+UZRb&KOrqb}s+4>_gt1J%t78?+~Jk2ocjt<}TVZ6QX4$h>20*qc@JUqAup`Httz9fcc?EVP;U{hP+v=54jj+Q zw-$q$dZ6EN&}N-rqM=TrmJfbuUoG&2px?lqc-C)y5(Ud~@EC{Ga%! z3YEjDy^b!ggZZ(`1@O;0n?~YkhidB4YkIs#M;DAgE7KjvrQ1I4Ob8CRIlnmU)v0>U zKhW!0r6x_#!xlGX%AAWGrTSc+_fAU5gGct{qikhsY;C0W4)tkB#Qj*Wlp{@4?mxT@)G+Lsj zC=@QM+ju}H_)twzQ7?*4=wXzZQ@*y)y_ES~mDn==boPbtDxVnRaR4h)aM8o>)7glJB5-gl(+j-gmg_Hfo=&AiBG9Oy~ zvfm_z+0zuY#;~emvoM?!vYw!bbW1M9E-=xg3_aRRL>y7X<19E+;4EK?y02bnMJ<=#e|%*5(k3+;On@Txzau!6!7VP#ni-)0nl!qAT$xu&X4w} zEB5Bax!p6nLz{s%i{jrMuMFLX$x+JKugA}2}vrv+{nAyYHfZ=qhZ zatVEPgc$t8kTwE}=!f0Bb~&{h@erCn|jbfVn}!yc@Yw!iIhTHBKNoM zRy+^G^EMl7+4)ev(Xc+>_8~l@B|j#FmxZXrKs@`0H(_s{MJ?(4^xpS6 zzmeR?eFk9sZJS(ci;}jc?~Cn?TRmG$*;Se)wWw>1XN@#`II1EMTnYb&tZew=p4{&u zkQkloNWI3X2*1)c#QKYI8PvL&DUHNe1q!h0zY^^w{kfMYb&YjmCUQo3nUP>wz1wd% z>LO?!hJ(A`Qx}>kFQ=b#*kopHP6iQU7z4U>G4LqZ!-TyCRDjpe4}qEd0NuQ|aSpp; zxW<>nMZR;PU$1XcueES1wY*fXJzdm;9pOryvLGT1ZN&@`r*h7jfn?hYIY7^{9hu;- zV^NWZ-rQn#C)|b=bYH>qg=*;>F+!v7>)hXc&J3nv=8|nwDwN1y3Q;>zv1c2(+m3oUaCMaNjA_~Xr2X~gi4l<; z^#g8sBWxsOh<0n`80(4FN=VeC)AN+28xrcjU4D@s5!MS@&GqYO67EQ}afRj)KXJvY zD~XDYz2<`3&Mflvg3t4yzhHM--Nsg*%SXhDve+qb^QhgT39|yJet~* zN(U>i+o(P;iqo1#XLSFK;t zmt!vOm?I@;8{bqkToS0~k>*F=dBDgUiSy=tv4zb3w`oxGgT7%OvzG z#qoT^^zm9YIr!Jkcjc$k>W=7#%mOe?f0{ zPTZ8aIVnS1Dqu~me+_ZY^gMzN&9s8_d428tOTYSdWwDuQ8v+bi%6SaZ6ten<8;}|9(n& zbqx8GT8z5|pr;iZ^yX-^Km`YH{bb)??urolaEx@e^k&oQt)&cyJ7}fVho`9qNzMLPnF34y zBg7BiJu>c&>=;cXXiw&9kwogH3|4?QG>`_WKVvT?&DwU2=D4seZjfkpaWuLv7yyOX z$7C2ieqZIty`S_>(NWLiEh5(xr^O)8B*}GjPvsAF+!C5CL5gEAjU+q8{{=mf!W@-^ z1`^wu_3uE+=NHs~!UE5%Hd>v=5P0*|I4sp|KI~WXrzU3iBiH&3hV$wOhU1X*-Qxnu zvIxtSN`I0uDX@2`CzqV7`lt!|Fja;LwWQvpf4Jq07@XTJuZi8+sm0R7iiZV7R1aPR zFp9c0R9n{2egL&Y^sQLGH32um(fnf0^!@;M%0aOgrfjk!NHX zV>IeDZjkUPMG2=LlM$9d;vUC*c1cx>_wjc;%@$XOx1p~>F-USL20_lu!<^w*nyjBP zm6JfRn;=h;u}zLo@wq8%4El1u{Vrm>tr=yN4_K~~M8mp=+FuS-!?y2s5uBBUO17-= zwCP#z0e9rcnh-_s81fC($@_OVl->lv0tnvpb1Xfm$>*%~UoXq{myE>VbX5bl z;X6!->Le}yf(Ip>8~(yzVDbcv;F%OqTKs#9@?&=Xa#(SW#LX(ucF;jzK6NT>vkdRx zTXMSTVrRkA=8JfePm=2C3;pcgQ8G1{`oqP4Q~xS(_GR9)7d5?|IZ-_1r}5gcVgS(@ z9SXnZqpGNdOfMKFVZETx1~IUb5OfOvla6&0kK@A%ePYoNbI?kwoX$%^wtVoTihr1A z{La14mUqiy^8ZK&I{2yhC!2^)iiVI7dPjP;MPE|=8W9_~u^F+sM|zxt*^ZliVVEp+ z>#ST0S_X^bHD!Nen|MF!@2N0ARU;$8$?QKoX0^g+OU!>G8O5!X8;9cNrtso$3hn}X z2SdXuv{M^1dW1G_uIE{+{MSN={JGdK#0ox$c_sA{K6-T zXKK%l4tk8QJA+8PPpg^+FNCHdM5H`a-<^W!A8t3^mO;WWl~RHXDn#W}BBXp!I1L$Y zyb=dPJ{<0ECJu7S?~Qe zXua?4jO16~AW9^?$&|Sq;zNd#bC%c%Kv1j-UI8H99_nuNCV#B|J=BU}RQQYtV7yvR z3$mzKGb9^jl_ygp%a>BzQcad0VI1T&mEgc?Cv$)7eu+QgE29tp6+PA&-^F8;k*jAU zQoh*v_+FV3DA7>~OFmE5`IwO z(9Y|jQ;Vr?DOm)+{gC;4el>mLWNCLyEH&<_#4DAJ9-2+X?^%kg3{)G0b^V6mmQVf2 zz-J>sTsb4M{r5NjoMz7nieI-T`s${zKl8KJkD_U$@g9oY`9W_mkNvqkH_^&%rndiA z%E9rOdAaf@yZcW9Rvq9f>bL%g&$m}YEqmzM*A5aulwO7>?WpH4r-S|=r&Pvuo znM4{l&(QDMFt(pB?^Pf5=M6GV^ygPWluXsF{cMZfr3{FcX#p__03A zFMVWe$yG4sP~a7kU3GJ}kMGB^5#}t}Wd&Lo^OH^s@gs5nEjr|+BlH-{^jlLBo~iz^ zizDWSv9Fonx-44VJZ~@*QLy-luWI3oH9QPGGPm{36kks9sBA4nQl35u`VI;>Kd69e z+d5nY(WEoU?{GlawbeL3Sd1zal8s5fBUfYM3}pFmXIG)|oeJhxZH~{iWJ%I2?D9|^ zZ6&rm78d><6=v)t6@z_t-UlBzk%xnsj6BkH8zS24xVl00hwU%DU;NtXmb%%LxjCQVHE#Gr ze%E24#uCDG1_SW^?Cn(vd0ig#uLNG7Z}JVTd$t|~1g5IlEPs8wbNK4~r-5|fl%7F{ zUBl|i)t-0P&8&68m7>2tI`%TCYj3;!#rU1h&-_poI+6W=rCi?3x2KSEV=SMee6u!v zsm;if>(hR|w3mjBRX3+?y=XiCh3a+>>tADy?6OK@8fXA%>~q<}YTIwBSx{ZkX6iBV z^?R8R6(tVlJEU>I<-6j&J6>W0>uQU~Kk1o9Wa^5ZLzyinq}!ULuCt1VXV@Zj%RGMZ zxdt?x{mJMw7Tzri^mYP}?^vOqr-OPm$f%i&%+!C6YM^(Q56%dlA*&MI!ym>qGmnrEe6 z1FR-G+xq)oNLr=S$m6Fv`u@@bTAEr8e|1fRTN1JZkc{-F=4ZK%pv$`}xn=X{rsfWw z)+4xt_cw5xdh_A6nGdqIfB70?NB?igxq5Y=)znq5{3_75t=S**LH~8-OCOXlcmIad z>QvQ=;e;$am?_viCq2g6w=rxQm?k{(2Culb+;lt~?iE@IuyC!ApazY@Ll3U2KE_W_ZvVle6B)De4{C9^%GVQLdqPKb(% zm+H#TmkB0^i<{D?;l>G0aEasKr0c6NQt^@xjoKWPKk*pcVTDUeOJpE2$PDmDfk~WU z!If@iCU<1h%WD(Pt}$`d|1@Z#2+)Yx9Qve?%qDP%mWm#dd&|foHq3sA@`^v}+6=l3 zyz07fs{Xo7O!CV_mUoyvaEElq?XJvLzAx1dUd%?vUy%#)Id=_gDrKq4UP^7 znwpnTDpkp=^H^ERNo%4SQBWB-)$y~s=~!u;u-Tk-Pb(#_TGB~oayC*9Az>?B$0zRss{SGz`a3*(PG06-eYKp2 zoSSZaOP4~EbT<~Cn>wtQj?lRV{Oe5oz@d2mWO(PgKq*?0r%KBC=H+vc$g73-0P*@{2=}jU+j3bLeYPi{tK>vIi`5>PH*gY72xTRZ=$_?X@V5<-7hNMzWdPH<}r>fM{?h^{3$uctn4 z9F&9+O^ra~)usOmdU=b_Z!D%s)Xe$(aDA7*Z}H-IXE0^1^PtavHN~}k{Yh}NzJJtb z1G`5ZndYaz|3<~fKbbo^!o>KAi<8XxT8d1gWq0@yXKFO~749_=*C6b0eQ;q!=H{}) zt@C`NUc_xVfbk^zn53epr0M%*M_|B$-Ob;x9d^Ld&8&cD;WmFXV?_2>;@}N(d`qwA zs~QjVtEs+|Oyyse?kwD^bW1&Vb3+^1WxrjMI$iWKE7b9&;gZmzTR(G(?)^=0v@tAk zIktAe97$k#THv9W2ke)Dl>Vw#veXQh$%S*dI&>B_9ELGgKi}mhH z)CKpu)f&H{IN{JsO~q=w4%aWp%ZRXao@}@frxOwH{qKM7dHLTxX|BTn25!6Dyqk+> zTYV>kq_)mzgB5IZNY?w*6pves?q@TKu6?1>h@B3mAF%gb7)1tWB!Z32*>C_$vzp%! zQ~BAMZ}?N46h?DpXK@-RKEM3X>PYl@2xo)ytKE%u@;piEb*h^p7G?hZ39S!m!AeI4 z9xGd$uHY>kvxIT=JcB%uvJ*l}DLQ{SKZ0?to@L#XWBd6Swd#Ua^SRn)?=hS7RL9~| z3`2zz&opr(yX|!fA z*y-wy?6@Vx%p_-g`nGVE)o&@$Yljs^M?@;;ko6}bdO1I3?7j_k;xLg=dk0mWTiOWvljr6`=pOzp#b7PV@^j#0oUL9H5l z7iW-#dhEEV>`l|xH?d9mZ&(6*MjwTc*UmpmE#PA_{yFTrZ!+r*1N0bqncOxhz~Z$wpXNMD1ku-JLTpy1_m0)`24tge=m3XS(vQO9Qcw zSdP>>rjYR47uStKP#~;XxwfKsr)DBRJXma2^N?cJv6c~-eEU+rX|*e@)=v5F%fz-9 zVouO!wNFHn_jRp`^&2S&vhlMyhe#mcK4T(6Z*X@0o3c@YHNDv=KdBw(gEZ@JMKZz`5Qqn_7ASdT5}Db7@-@T6C)b6^RtcWr8iAF@_!(W{XD^0QdNP>bE|(J zID%|aJN@zivE7tA7iIbER(~c8cT==D92)0~-xu)lxFFSI{8LGdn;L!_{j5^WNinZP|aY=Keax0hZg~*Zm=Zh3^-0&kFMUBi-MSF@)9K!AZKNT%ue{VEJmQ=cb#w zj=ubJM0RF3lqmh~zThRBI~3Y_&*ZNQBeiT9JE3W4B|w4rX14iog{ih{WRw2_%Z-ss zU6+0z6FIGqZ6(3&ag;=VTxm7|J5CDjBOB_p-7Iis4Rgl6yXH&q&-HZako$kn`kN#p zLjPv@+G@|dfja6mZfM9r|BoZUT*Hq~M^6c>B>6$gY6em$XD)tJZ*`t{Ko|R`xuHMwb5(yE5%? zb9eWRS+J6OT`84=lO7cq`L|akiaF38Nv2GsGc8MuDS0?DmpKxbB_%5Akju8KqcaiyIv4nH46zYYEC>rugPBl2aeCN<5*O!WJ+o3(Q;Z;QF3Lflw*pK+H6sw z53R03Rq}PFMrDLmBlX6T6F-#dBI~b^Sm!lMCU@(uJ+sB-mLy3dn1J9~>Tbylz`jtoHf;LB#BkdS@Qu3Xj_=UO+ zZ1zTq>IEk)_=Ret$%%aGQOVeksU|em%@(H9`VRh{%^$@#N~%>(CIYxGl4Y_2p+U>5 zt=*xKI9^F#%9A>P*9d;X-cAuW?6hae>*#Bg7ndy}B-XZ#h=`i1=6xnL)=scL3UUT- z%+Iy@)D{7G)vM`!f6M<^3u!?L)43FwxV;o7W9TWh=HP&&F}n~cv9-y`jGC^=py zY+`sn#{lvh6BlGUYrKzZ?(l${t1T_dg>TRtSGGiH49(Q6PL5MDPaLe1T>R)H9rrP$ zkUP?}3NOEr`13m*7JH))elXg`V6VJbQbNUNYAYDt$*)}}MmtM1a^hw^ueh4xvtk)$ zD=Uc@B-eNz)Wt9|QBqd$FkE1{%Kt+hled8}7C&Nl!E#@59f=9Ryo)mQH4!GXpkMn|>`}L`KM|a`eikQJb+9R6mY96*qu^n~wBK2GFRu8SYK8R#27sbV z7ALp{-q$w{h8{=Tk`g)v&uin<9w0hc8P z0apkc^}!UW{;jo6ff474NAsumlC1%)c0JZkg_Vb9 zEkq|$z&L*3v?Wop+0zFCp77x}{nmD1csCs0O5Q>{*uFw9O6#LDeHvj{w7)@+i#eQ& zZN^jx^%_FjyX-8c_kVRuc2<(E_@zJIqJW|4_hi7A_fYD2c;#_ZA9)@cY5>a}wK(L< z5jNl{Q~Y+P%OZ)YTdE?xex;xadfwE7w^u&HmD`cHmqRrqi!zFmA_^xTCrM8pxFhx# zFX{194w_2pH?HVj8GY_j$E@a+EMITNy6#XaW+Q-y`3+V~4Gzh(k1Sjv{!|^0A{Wcu ztJPYXwc<{Z*QcisBZwhR$XPughf;pz3ppV-&w~)q5dBSZF(w zn~(Ed_ZukO<>{?TK;)Aqc2Hd4N)|~#VXd|tqv;{scfFxur7owxZ(}CAQG}cD`c)4-2j%bEhL>^{m9$-HL~ z>e3KIf)4DUIvd9x9uwOTO)!#~-kaOVnBx$b zHCH7@hwO3v=~SD&_eLh31BWd!1v~huzn?=+?CojW{GhbH^*(6n@ zm#AjV^uDY_SIJ6AsjQ@e%CPdgV_XI4+%A533T#_VPM`1kMCrxzUlp5VV5VNj3F)xP z87@GmY3wWG>^(!NDhw6=mNH&->(CiOIG8uzoY6u6C0fIpmP!Cc9bUogXqB*Z_XaAhc1A<*u4CQxCI6E` zm*Xv(S)vv`CIhyy$98`D9IE|@*LUN_@2P9J; zRoGQ3iZEnCdG^XaM{>_8wp2Bt9!F`_@-zqauOs5(=kdRl!H0GK;k1*(Z&@V@ew}C)yTtdFS?1i9>}O30 zO+%&xWJm^!76kw&|2t;{)B*HwA2Wb@w|k^X7sqFdn7K41+)m%MxT%yB{0KLFE>e{G zz0WB7oP_8!vttfY_7a|C=+3_7ZqHN8tf)#q|ma4A#6vQj3UJcXy6-O7#IA{&uU3i^k6|?!Yv+4R*6!=&$~S zjCyXv%0s!Du_{8+OtuW)6tDSpLW1cH^UU@%}|^lwMb zYXvQfk);2+t`xD3iPftc^sas1UsS)36*#xsjky9piaQWH!Ar9~zJ>)sSDb%h)E*dp z4Ug+kRc>7B8BJwM{mzPzxA^~hYYv2dHm8TqJqhfb7%e`~0h49~i)j|E&K71vEXaTzUa@ecjhF`T2!LQ|Q#eL1+b)0+-UHsBf02_Sd_giD* zU!`iISD+M-A#1#vD7k<3cKXK8RXbwkn1( zKoQrih{~iCk97gJaoEvb!cl9Xo_@Yl67J>9?u)RfczCcGoNH|~42)D&13wsL@O%gt zI-i(u9b$?G7=;&`Maa_p$q+807^XD)yQEp9VTp+0sn~5@88bi?Mi|MqEgxw(uxlt2D0SvR2;~4S4?Zix-4zb)Qh)G*q z%Z*qYq@>z98Oi~<1^dA6-6{;6dE2{d{uQndbSpas6@$Nw6-62tBOq<#^x zrgsQiuT`3+Y#~aF`c#zp8u%WxDTCQ$qMHDw=hifLER+%=Xd8XU#`)m8SMcvOjp5sY zSCN>j`;F5>f0n8}Dj4TBy=|9`1#P(U&En|(dG}wBiG*8K8D=PkS(d?Etg^{dB2Jh% z?!(wcJO(jUuUm&Lo?&cGl!-&xG;a68Vg>nou1z4~f2~YmKih%F7@`=VJNEH7aWR*74kSgSF zcDnz(kx6Tg*8oX}7{uoT*vlcimmSm}C4yf5b3>+|r$$icIn0}8Dc_+VyaIR41z$D{ zc-;a_nAVLs_g>GeFm!)(MJOX^5TXGq-!T8De;!;6;REGh4}lmVuHWJLLH3758%4?4 zA&tbQ2T;@%pe%+sKprqk#&{Q@$VvY7C9u#jdtxzz(TDQWd;ce+gKN0F09Dyp5LX@O z;9lc>lro}V2uZiMzZF&8L2_J>&Rx9%w}Fm=e?GA;g8{FbPjTa&$4&oRl~*NKt{GW# z?vpIzo6CQwQ0u34N+fr>oi!1VY>wSd=);equ3*z4^^rhHR8V(%DTrrWXotvvR257< zeHQQmow(Vf*F;Cg8gc)roG>?@IoIz^c)22d9tN*h;r17?#xc2be=z%}AqUsFuak)n zA|A2j&Ef7ny-%Iz!tzi=?N&L)Tf|r*WvjKI0$M%^Z(51p#5My4Z%c)@fiiSL;OvhY zw5Acry&y&MuJV_vQU4U~ETR+q2 z8NZOA^!r_)RjL0Zp%@DXk}N#Dl&G1}zvxW8xc>fYRkAwj4P_0ZzY7`GK8!kt3oHS8 zWWAF$d6IsOM|OD2h(L3mT%q=@8BS*a=fxu=quY*F(?HRp$p7+3nY$;48`SqZhKTrcaRvxf%3f zMljH9NQBt|Ry#&DxD*;F!XVM-@#;rk$CoXEdEwi&q`zE2(V4QA@dIt%HDPq~onko@ zZ+N=@DZ8?~NG+Zr3?@(Uge{3`uIL7ll~U$lct(L(eEK~6_^oUZ<<%>Ns}J+{``nCO zDY1PpETIDaPpTpQAvZnC3z#jq{Izx@=Mm;5`>fuB38TVmio^3U`LR#}ly(ID^F9&% zygC2B5rO{=S@jUh4y(&d}10dK~SG%RuqeS2Ev zv_BS^9d&Wf*|L3pwY-+O#tR--oLMuHwTe+2tIxGGWAw}mw`%6spku!J##v?cVP%Zq zM%Z@0Xg0kt^ZI{@Vl%vs2$}(G5ruTyXZOC!sBGeZ$6;LZ)p>CwQ<_zTZg(>5aR{cRLm~ML6RDp3)+0Ss+jawzPLdBBNibv)D`{mZ3$*t(*Kbl%)JBc- zl4JL3rOs)0oXr1DMy;Qa_h(N~n;0Q$qVr<5Ms5;)oN=EC8BlYBe+5PjRP5tgrO2fx^o#Zj=g0;TCsOAkJNpdVwZ&AsyK6Rk=!^49sM9e&%dozUe1?u_8c zgFZyb;pVsiQZ=guL!Lg2h-{Ym8XO8}cY^8v4kUA=Sj)r#lnaO;o*H)@j94|3xDmE8 zjyXc%&1S`kIcIIGg*OwT=k~=hTVb#-d+9GNCh5omXe~Yxfk_)F6v)^M^pXriY*Z|G zeQGHr-SjYFO3?E*A!oYAch~L3)8%V~FoAAx-@I5WSo|;=Vsn#?g%Q_*c0oY|reT$C zzlw5>Y8zFg@fZ7k43J6K?7A50PrIy2ONe}Q?HEifD6MygxBgnfYiB5*33{5QI~vuy z>I#6WdP3XbahYJ$!^=3~mp-`FUc;%~`Y$@L&ZMD}C-tz$vS>E=pqL%@U|NaIiwaOD zBmnzN6eWPPXaT>l0NUUo9p1~Km9bK$!tj-l^ykyqOHefaiGS?u=^5gsEu?AQm+W}u zw4ER;w;T;Qk?`50>0kN~=WqGX#=t~`9ZJ(f38|ZE%>TzligUY&8WXZJl6>JeBg@$l z1Iej4*Eh=xrzgw9nj+{<;rz(ReC9~PZRVB`=epJ>(ewy>&hH%f;?ZFxf1U&riARQ# zh_mG9MdB02A(%-b$C0BN&9WluZpUcWx}enNuW3UjpHfrb%H(cFJz^Dr17ZjIdbY18 z=^w$jmRznAZl0ArE5=aB##c?$5tq*N3C+G&;Y5O5B;Eo`)-(Cm)#8)$G7?-Q1BH+D zR?MYp{QQpHtQP>=%oA5#sRBQ%Or-eB2`LD#E}y2ej%13JG~OBVc= zI#T7o_EDjaw-@t&&EA}E1CzekI5jU+PmjYL7%S-5Z0KQsqI=tZ0oI&8g z&@(f9^?ZFQ`w<6_=cm-Yf>QE|C9;r7M3~i3l;@W4{`rxTD5CqSQ|^3~PE(R^tLzbP zb>*JuP2wB`Gtte?u3uhnl)629zQj1;l|K_4%6IH@F^o+Y47d*R`hFNu)*QEe`J+A5 zY6Sf={1jG5LNLE833%#WCx=JHIjQho>Ha^?-ZP-7ta}#^q9TI<6%{3vK~Y9Uz(y~l z3?QR`N(nUqktQ7s9S(xxC~Y*-L_msy2@sGHAcTMjkq%-Y5E4MDp@f!%7IF{1@9+P= z_rv{i&j%pvbN1eA?Ny%j>~l^$XND!z)(-Gen4wVObvQndxdEG<# znmv*_eBTl%bY+$D6ZXAU-;)@w=RjZlW8$fEi!f!h3Y{Br4)8_M9FpG<|BR6cnog6{ z)mP5U>*k-Jgl^cM+M~MS0?i@t)m(`Ec5}p!GmP???@STs^C6Eo(;B1Zt!X+X%a9G1 zj9VCLACGI(fMf7#BfO^a@yfVMSwOW@Q4*ig>$zTOu)k`r>EhSra`=pPh_9yv+X|Dc zX8%CQG5iQnFA}how0$G|E^0Ln{Wue@EJfo8NozbG&g|D3v&Jh5Gny$~l4076s}pIT zf{RTtSK7P@*it>r>QKU*FkvdwmSE>$i=8nYO!xRpF_w~an19)Ys9!=aDIXSG2TZNG zubF}-sfS!QvhL~RCqC=4lV(o*%y{Cf#Vy(?zydomqeCkG3`63y05yFtD@OZcm2z2{ z&%J4}I%eBvvjR9IT(2qoSzK%f5Hz{PMMEX7_*B*OzB89(B=+v z&ibFYMuy40pxD(PV2EjJRLwXyj9~v-P~G-Oy~ql4pkZC@*3pr=(`e@&dRDLXp73i; z;bmdAM%{?*TxJf;hhQ7Iu)-t<(iG$U^9OwPy&ZrVqDZbE4hv+~`ZT*O214;`rcA6M zo1vBbj=H+|-B!8LL&`_p=%m?*2{198A10gmNv30>GEUCf>eiM^p9LMB z2;t=K3B{Z--i?0lSR}V-QQB4dXxT@=eSL&Cb`)i0=9i|hg%b~92EUJt6^UG&1Dz}SIS3T^(gluG#Mz|s(* z42w`7`O32;{1b@QXl(%)90e#VmVe1$$+Okx-_3lc;Ms zxkwqx#zgI3Uoic!*7EHRW<4`6PUa4&Uu8Ts*C9zq2m@CIB6f7|&|TsK#C*K>a}-#A zKbp4;_VKnZ!ezeO7E5Xe>c%;nDNJ#b;6iewA-g-{{Jqo`uG)4a|51AwRzkGFZThf4 zqogon-^(!<1&(bDR{*+PpWo(dtZhN`wO}CvUx=s%x_VwwH4C`=W6lniwrm=hFlWu} z9XP8#>=g<)quD9-4KX;+RDE5ediyv^rXQ~8>D;cIdg&vZ!RtSx=>fvvu~M3BM$3sPnn6MS7hWav3D zb<9CJdH$UFfZc+@MnZ!#kZDTm3Jv6T<9ww9I4!V&Qz9kEz~Q_otfmSB|QFZLiDP=iYBg0`Cxqs zmSOTJf}Nbdz#kbvOY4fB@g7QcF6xTnUo8$G| zB`S1lpMp@SCRh>41^{u_ArKufh}rS7SlniwB^;K5kgw{5xHT4NNzFC%swmk&jnjm@ z%y)9371o3QzRf5gE0^hIT@I@cX%9;)#)?5!IXlc9@Tn@&`&n4Vy=ns5OtfL!Ze^r+rg3-|3uBim7Bmjw7t3ddpYTYYEoj0ddLTd z{%6Nu%Y{g}@O@No^&g0%Cw~5`Fh|uE;XseLE3n6}voBU6wHINsB;!8Y7H;FIfY0$d z5jdY$KG<-F=XmzCK-@`S0ggd}5I~rs07i^AMtA0K4Hn6m^R72PeM<5^p~W80C>B%K z4EA1^3AbcVGkc7BSao0DLDbJ0FMU2Tj1^{B;)|oOn;}M=2kU-pPfDVMgk%{x!nk>P zJkUhfaD2iDwR1+|1(nehHy*7^nbuk8#x*Fj6d;gP^j>8}AeWdu=71{G%&&7mfsdmc z^qLogC3*OI&$`s6gsYD1EBmIhBj+{c$0nDY2|&Vis_WqFDvB7~SCY0vx{Tigfpi$f zfKq;v4-q))U&4%plB>8DqrH~O2eRySYU>_ZEY^ZK=GNSxBtw~RL-$2r7Lq*6-<~g; zHxE|0dJ6(cKPil`zHy|!F)9$vTqt1|L?D}u+gCAqCAwFtLG|c^QRU1^N=f3@&N1=V zBwv&PDioEe(Yg-;sW{sta_eS{1U1#4_<`v??u)* z-S73Z%6S|500L>ueo*ZKi6%}w%qPcxD8}D&P`4$u&VLqwKscJhh~1W$zKIO;0WFIx z;F7H#5Ht<}Z7FN7GNh5Qyc3sQqgL#rW{8Mj2E*^V``RlXbG8i=KmnTav#3q_LP-)7BF{ z^hBl}9H?UpLrxw5@L>;|m&`=wvJg7ql@^h{t)u%O(aznu20~zmmfKqg0HnmXyS1?_VRZ3Ak`SC!)52+{@INBbNy1OltvQ!b<#fJFB^mo>ZT|D5Bxoy+)dg1 z8L^K$!6-*lP`BW5%QPl<$49k#=cjNx|1UP+na?(|B)ybZ{&ls0Fk^#ozkTHbMNI8r z-<{?%(H_%R61z>-M&Nb2s?|{;pEWN~PGjLo*?f2Q>Xn3F;!%a*a$n_MQqLZpKiHIeTC6jiv{!CYf* zO`|2_E(@GMo5cOG--4W|!yiY7$4T8T)70kJ$4EE=;kTL-J_Tb-2PSnwSz2M+WU!6} zdt*5LvmZhw=-wrkYBq%Zc!Dx5&Q`Gnerm^nfyt588yj4!EoU4W?cCL4fu4xFCxvlJ zk0ZlLy(;$2SS)}u#enu}qA$iUvl_KR-+d+r)a9zNqzTMpix)7XrP=o)-PK~j<#F_v zA4>nyVGxKF7 z24EtEL}%3nu?bLVIn~U9^(xB3@ngS3R1Sj};7>8oA)Be2+(m3tQ@r-gQwS%8b!m@WY$m7(wl-J`Tk4 z&6U2@4$Nq#G5B(#GO0ycugwo%SlE*34|9rd@&HTk8R%-qyX8Gsxf@Ivb}%s;FlLuB z^)REjopPre|M0zTj>tTm&GK{Azrk&S;&T%TNcK>ukSGKKgnwnqH{(V>eYYewgxzQz z-v{BG6K2qt)hKFkTyYYN7*xS5EcBXbXI_U^>=gtZdQviWDXMxqXq`65R6g@d*&2PTY2ZF^#P45D&U?c_9W#2NL$O4%Q@w_-ejy3p==H)jyx3qv67jRdPOK4exk9}KI~ALMH5VwmS;)Te zw}&*o)OFzXxeI{!RoWgj-tgXsJ+%Cv#w1%Kmcwq;0v177RLZRHoAAb_qhM=e*pYe&92M34BpRec!7NI-K8`eZ(3pD%HbMr_WBaJoRm0>S_t_LeR;HC+ zdFd`>XtXz8+T%5k$KtKjKJHZ3EgpCAMG!G{n?>`;ZY_22jA#&Jibg}}IL$I(_V=+9 z!J+ID3Ji-Y-a)d9<812muAUE!XXaAGG5wfet5JuN`Jl4h5zAoR9yg=1h_in>-WbI0 zRF6jz>g?}DM$tV%`l$Nd2{0Bqo+Q?c1I%aM@PE6&;OOWnTe4_FCyjsp;)X$E#W7}9 z${!agDko`$$Hh;9U0(JpzWkS9BgYB@Pf8VpHea&0ai|CJK6rqN`A~5$GOX|V?x)vs zlDoeksj2AeStrp4kB0)9m9r4Y*a<&-R4k}91IjZ@hlC^;Pa#_|AWl@#!xv>EBa1b0 znuVJndBP0F(v+31g3TO35X7bv1t}BQKr9Ocdy#pYY0T3U3ierYw%)~2GI&noEA>L# zkKKqzze57o*5aJ$f3s;6u;v=I#ABj}b@wf%LxH(!Ff&MrAV!w-`kFyVt)d}}a3m3s z&Hjrk%UGmqNk67*rpL7 z4@TS8ZNccF4GdEiDvr@{`>aU*VY#(%i;qX);jJE zk>JVc|A3&qvs>?KLScA56KvVYW{QG}B)v7?o%FmpXn-nOa0@f3621JeS=A{PTqn44 zr+~S-8?nLg>3Fu=BmK$jyn)aj6(cim^??!#5|aM0>iKt33p_3x>7a3b6)W-&xGIi) z|A(T+to`1F*|VPx93e_r%~;JO6N5t8<|StU(1?=G9I3zJ2qK+yVhVE*V+SYQjjXIQ zL}fCEDf=iQl3^>l&K5G@@E=ry-21@PsvCr0$3lsrJw>IIUNm4ywF(ms@4+za95ii9HJo@Am{AM^>2Qx&yZMqiDa_0U zxl_5vgimcNNz6s@);$oZEHJLJbpIPy_c;PKS++X(y5cVJ8(`fjtez+c)!7F}+i~BP zG1@3xOWa3Yhb$zqxDJU5X+PnJkMzg{lEC^`*ExPu!a{8*ZxM^4-buhk| zop2PxeanS%x^SZj68-TeSSr67+vj*P%Z5lC*P4I9OvV~ng2n8+Fjw}=K7exz_R0WV z2N<0#T-3OpMNnO{9#L#!PoCq5#V?(qV8NQHp{VXIS|LRCvK8kpR6;+}9U3TZQMOd~Pn5US0b@@60lC$<_$dHICut=3n;B zP&saW9DO!~kY`dhA(Wtfc zxO3c%;5nusWd0oJl#om<&$abn>5Qwx-E)H!BukiLA{n+G<@8xK**D$3B<@l;4#|7S z?ql|Y$v|!Pk3peYVUVm~YxJb9RH=o-XN27t;Jn=Nr*~2Y6C?8adJ5NjX z-0JIc_HxhXjePQ)No@~hWyaU$H;5z1vw~s=H_a}0UcBW%dAK1mphS#%7uM#^BNTeA zK6IYLx!;^*G-#GOjf@f!Il)*aKWK9DUK!HfmiOJA$HkzDujK)b2*h?>%z0@u4mXKrPNLwUH+VBqS_onEnBy(g&^r~jR&Y)CGUm5P$V##I%Y@}?GVQabK_v3 zeD7pGlETac$OyfXx`NG{`pGnQHE6vBRjV<`k^6j{Y|6&6@WfN1%3IlB>{Vo(hBXkBFg^s6 zp$W-2M-WGqpBBH-BTbCrnlOFR#&n3_NJ4{tzM6=fzRzl=(cSi z6hF?6IC@9tL+;?%rbwAuaa2X_;G!GGsN_Q6!0a;0fvrUx2xIS{^nJgGS>aCrw4IE; zPj3#;I-}}T4jMUE;dwb0IY|6Mdz@3RD17uDu`&$Ko`H%>WLrfVH2WQV20LrDHNd0? zCQCx1bv)}O7K_td3WSs)9kbu#o_AQ0V)?b38_aU3zFd9rFCC-3M?|<)CR`nWvERGi zuX4f0?n|8}XI5N+zw8K%yHa97(q$??$fwGnHkJaE=nk~zkS@TK7DxPq${`S1e{9%x@F1APfEb2T1b>@`@_m^8&!;nWguRM;_ z<8e_%by1$d^;yFzkJ^||Q**NXNMyBysjb({L6}mucHQ_QpaF5*+12PFC}HMPoG|=@ z|3o=ktZI4TEu?X=CNIpCO~T+x8a_Gw@gW||y*l!Pco#=AE{Wz)4@J1OF;8Hm&rs19}=05yG0%#KRdhimr*u1`}@nBcyTOJ`XVeefGuMFWeJ`S z=5*CcKr^26H@hZDJCvSeJOCM^meb`uv8Eq)K6Zs4CcRG#=YB?9`RU+EF2M%B+r-2@ z->dgcMZOu_Fd1b$P}?H}aWxb}q<%K0_*MqRY$h?M#RpPA+~7m9aW>W_R9)cx!n3cSZ-8mkk@RXTOF&0EsK*YIS*1G1 z?omw`dD z`~UM=#PN0}9s{!ikXZ;~ou<#r>tJdJ(N^YO7GtH4xk%B6oqh1DfTw;3nZZWOVhi97 z&wxE8lC&!fgxV}0!Yvhny#hljc)&m~iY_}Q0kof}@0fyPCR(%kOL=>K^?BSZCb)Ln z5fw6D3py@%NHrhq+x-nGD_9$IP%^uDZx@q5PJqHF^*DfNA3PcvxoTkb4gT@!TWp%K zR8hB=s>EJVUnIzZfbi?dUS;%p3e(7SWE$l<^6PS`KyV`wVEu`@j|xE9qYT(X%vDPJ zo(V~ADKi$jyzu=REQ%56)(ckQV6UZ`cj)goGnfld)jOY=>-kaot`wXLW1p zrs`B#@W>#><6l?qn&;wrCNmQjXK9_~zTiqRGaKqop~Pa~J&K_7K>&!O$H_b=?sh0D zi#db2RahKu17_j`X0n^qFJX60j_x2~sn`GSBoW1?Q2sB>!LFRqks!Z&NeRo)u-z37 zlJw$#YN^*U^@{CiEX(fEq41GJuspi}mNAV|(hmXk?h-|iQq|B6#tr`{|{9fVtD8FAvcG^FuuZTKxeApu5fCW0D|JcQlph^Lx9M z^{Wn4?i<`Pyy!ojNC$i5KV<;8Mu0f>5NwQ+o&}XS470ci3#%F6M%se)M#+x94&@sE zfA%sV*1mViwU%MwknonrN%Pmk=_f0Hz7?h3n)ZKdH}zH&nEp!)L9JDmvE$>JXhP*E zExCjg8nYs64Ik|6Xe>C6dQ1E2jD=qvQ3^5E5125Z03S_l9qk*-$4x0v!#Thq^8S8r zO>k1LLZxO@f4miq)|qN6ad;ZRnXPK3=wsndEzxV(H7XCEiG-`z! z`a`xx#q*K^v900ZURCz@bQIe}9iyU1X#HIE+frKK(012;>Vfab3UsSPM*9~AKUi_H zBCF3lYD8SZO^lqMd8DEc=N_G<_^Vcm!M^>BQjV5@g_RXUM{9 z2_iONPGg?Lv)+nYSBA>|x4*s0^CNn`$jS4r{-<_Y%h}IN?*Kb<0jO0 zC6)jWuU~>}b*x+e=<%-c4oL+KGG3K6G1BK}D%4o2g|DI+byGjgKku3zm}-{RQ0nu> z{}EoM>03NcPYTFsEcZN2uJy>G_J)U`NchqByggfkkCU{Y)v={G=<3}j9iVxN z`11#Vh6u#)fO9VIhxHKG=dRBYJ+*-W4JiM2uSqhwJyM&%3Z z);J8Sl>w3dp5&CknHpJeE%N3E{C)0q|Abhl>qD=!;G%?yA2#y_OuLh@J~q6Z^2>Hm z1fRnWLT!G(d3uz{}^UDNMqL?IFlR4!QQtymc@i423$dFwvY| z+kg$nX8$Dt3JFJJ#TIV>2^Sf5Lt@R>;;G7%>od`pTAFB|Fx6 zDjVMwMGmKU==z}!M@!F%s&?jW7sVl@d_O8ZoL%tu2lKO<EH)Tt+%lq#YLL}M6Izz1&oLJaz2;5O^}%UfmE>HI{i1DJ zSKiGG&OG%&Z}{Dg;D;h4ss}n;)AiaL0wI9m2{LBA>`akW);utl&K0DvOl@Y2&MF4m zvZc+di7yqrmxi6)dX*q5fDp(UG)DQ+;$+@qJDQlU;}9|Y%T|j!l*k~RI(l$KGi$uq zKsBzYn82*X+v3+ z%%&c7X#?CgIRRE)j(Rl#^wkt*1qFstE@7xvFPtMBJL-4a1^}cmL^4{%Z}Y}Qowe>n z+UURfxsYEcadkT?s%Sizl-0G@ktM@e7-@17qZEH%|dYVo{!hEt%VK})rqcijYV zyJ{c@yvI1x3NKrt7moQlAmx71czZlf>-U{cRXtl~J{G&%>0|B*W`8}xdbcA=PAiDi zwNk4m$OyotdD6%YzdU(!0)JB$lU;3GyF7J~a#DO-TMegMXP_lvrRGtME|$h*1DZ`e zW%qQzTS8t7ci=3PY1h35OBw1-x>3b)=c+Q;z-TN*q}n5p@Yis%*`YyZK$Z9KaC;Yd zIOD;=0hZJSl1)tT04biL?#5;~T#N4+?2D={ywv4i#3Zz~>!D&)arEB)VD?60wfmMw z{$;R~^WHk`%s!j-VBr>-nUDkD?LttyH%2ksDyYsOwOePiR55`?xxsS< z#tmlI*49Tl6D40=rd0*{vpdUYw2YTzMjr@&r?{wz*AIHn3TXa}$|iO7)Y>lMB*TuG zeVZQi{l*A3wFXc_;LSlc+e!~PEczSz%$&O}t^dum`Xfhr4=P!B7^vsW&eTM#MO4UC zlCQ13MR?3+*&C&e@v_P_;j-bp0cYG?%Wk>Q`Q_^K6lK=e2i==;k^>6iO2rLTavJ!% ztX`zdh48!0OZ(ka_576>= zbMU1lqqs%&7m)xepr{|KbxrZhbM28 z3lP0^8O-q{sfUidl39f$@2z-~;q>>R3L(KOgrbf5V7HBpH=K&dtF6iU@JEv;zNZCG z?!eRZyyh+eYJV?9-L>O;!^53(25o?(>7UG8hBU*_uX4u9B$^VV~6X9Pia9-weA?T;Q(((CXyTBfJt?C5rgpc|V&}_O9sZ>b%gj^|?Gq z7H?wrOfu|UX{w%Q?BzLr1M-teX0r5!@E#ORG}$|xp}Nrdxn8_pYs2At1cOkq9bvLH zq$@c=&Rs~oAlZ6VH|m8dT)bY$c1~wUYpy*<(`sjnjL1=KA~=ZAmt}wkH?!W|0>3e} znyC?N08_9=&@FvCbfX-!p5cdB4{t2ToV%|BSj@0tUNBkGBf=LmsPps1t4&)U%T=o- zVIdb*K{fak(@Vm9OC`G`4Hc0RzcWHL29sk35fN( zuGYvs5bLu-uvco>4#OFBWv>%299`mr7&Z>oEgW&lvkx>N_;^8_E!m3-wK-qHpInt!*5ta18Qw2+{{UaT=0!dJ6L zNpWqBR#}xz99F5Wo-Mz>Z}S4|RR?(U-^tV_Q$S)hgw?&ddd-K>!%-Zmt}0K5r^P}^ zg_)J9>N>>DOeVs-n*RzUoi7yv57*Y=6oo>sKuSo@C|lab8R7^sp#sr7 zfQhCc;mN)?OSM0MFJh7%aoyTn)-v# zLvU1p;bd14G)&zjoGo5`Ue1Pjn{$46R}XTGd&H~;aZ&H(oI=XRKQ{%!;sk38atqh# zXQ_jy7S@6x^^gPt4M?!0qdu6de}b^fpx*S+K8W)jd%ydo$V`|easbiyA8 ztnb`iZpzO$_;T5x{QSj>-+l-l?R!ym<6}_j*CXd1QeKEzf9eggDLD1bs^CrpaL4-? z_Tr7@K3jpqFUen>Ptqo&F(vzj|Xg!_>f{Bzon9o!Ox9P-=yT4rk2K(`#UME;`;= z=69($jUP()RTuI49{4sEuE-bP0u0`iDfSYQvR>J)$Ri0k`X?sG>*_suD)#Ynu6)w; z%w=6IO`^_$`4dBnG03+McE`QisW{^I8~E4#^~$NWM{YWZ=6i(!eW^+2%n$fNx06j;B z1LHmW#~R%Ee=?PaD<8`%&0f*z*Q%#JI0Z9)Td$?k@Q1nO4Z69{@Ba4|K8Jjb(-sZj z;6yBvFkbshTkd09N9XD!e*(3aoMoq+_?42ODer&Hp#RUI9q#XbQ6RZ%{52&R-U%o$ zpNfY<(fZB@K%w*YO^zJ{C-LMD^1i-Njn9ggAC;pS@xOV=#uImtX{%X0^Yb6Z;|ve{ z9P^iWrCHY)lr4Y!9QCthUVRYKJ^lDHzdey!G|`ja_7|_9hz8JdK+^U-=nU($0yip<+FVKP$1kY+zl@@ zm*-NB4P*r0daLkDgxw#@{6|w`Pu~OGm10hpoarZuF60Lgg#&e!?u%AjJ>5BUvJj=V zbpMr2c}LmP`jO26)KU!b+rkGF!lEIh`sac8a|E%a<71X5J?tmn0!N~*gvPh4-mfo( zJ$AnN`C6w_lC~Plz|q?@OfKsU!GKSaP=``sp84tCWvnkeUA>u?GxGKdoP|a}PF{3+ zs?j{U!v>S6DphadF7cU-YfulFDZg`|&{336-BJCN#WxT|AYVw;3u%&Zo$81$iQO9n zOU3-%<@hC#Yr2wjeMdCbnpt^%_>)wF_e99VT?^bUY3!B3XwO?G#Osp+Z~{bA0K zxgJ>{XU_GS_?j)>tS}a0o#|da?{qvVxLYs({>i7{JPt!z{%e*!XBCT^GH+T{=6vZ& zkDU_IAOi=tCH)4UTvc_%VSyIHYqU+{akwVIP!hSf0eHF0pX#eFzF&uTGTrhGr)Ixs z5p^g|hoAImZQ$0k`le#MOeDuAmnbr?K)q&>oGn> z`L=kg{**K7_Y#qsirAU?&BLBKpL2t~qXg>bpEv*Y*Sm?&9*a3Ay~;1QDbQKd^mxx{P!fzi*y{sQYVOTwKRwIXddJW(6)`D~utMlsS+aNsz9 z2z6cigaERoouEW^eZ!oHHOtcfB)#PLdeq$RE6%eZ%{Aki&U4qhfOp#In~Q0p?d2I& zx=K({36Idam#N|fQ$JlLs}#G0!KpiB$#EyPxuY(kWmwea+ zpD~^3Esh6P>JO)Tp6e-1Hy}o2eetM(j6gfnzD_iL-wyFU)6$?tor~!a{ zjy&-1=`3En&T6y|yYis5sn+1aLK!D{V;}gAe}8Ioi-uQFE0{#bfx*XmO+ICXFI8zl zH!T)$;ZC^KO)oQHYlLhabK;xhwHqFOq9T_9RhD$fi)W}8W=uYvtl6(F9>~!>3A4jt zGfFG99c~j+CCauw!UcOEL6GXk#beXa-jDN7;080+6PLfOJnCcn>Wzjcn3>+xeA-+`jE88ytV;+shjc#Rwdw-0r4;uZHxuHSV-ftH@bE~nZY>YpbAK-9c zTer;o`5NX^jC|4NnQp$=p6(Vz6ZId;>Q%3%_^Zi+jOTPky4c8`h&|!=W}9hwBr$gL5ru zRJ_|xVo3X+#7q~rrJ(nPsyR%g(LJ(`;0Ks3kUKk<@ciF}W1nz0h&z%GgSr;w<7=K2 zp)-AGkrBtQ9^low9`*2}S=7p8IQ6fE9KXLGSNZn$i@}A!)K%L1Z|v)~rs=-E9TXx?gCbF$!7z|`woxP% zPu+L_TQRVr@rqMl{yW{nWngX3E$R9TZ&xNSj$BICIfK~Ckl^8pWAPVsszUp@V)EWU zvD?4Dmh~;tuZGVy{Knq&{6`i^xG&~$W8mC}cwOB`&>N)Elc=ow-U)7UQuW_H z$z2S_PF>Z~{JGH}sdN!mQ9Pyk&Hv?eLW8I2KTTtrfZ~MrX}^QV5spWPw58Yauj$T# z-?o2W8kl`+biac3BbrBZ!eaQz=QEmg5BMgDOYes9qJD3Nu=1x)(eYh99CAT6q+!rD9yg38yp>WKYBCaUa0RL#IvVrC!9q4 zi6GX|1GF!c&%T985eS#a-I!VGajNIZ!B3UatNTYjp`y~9cWwJx(t@4#w;r z6`5xi#`cA0omVnT?dOMfYxujTd;%k^p_w;hjrh1ADi~sh$w0XCo__FE`z}YrKL4d9 zx-9baJiAey7+%&AUM=^rU*KHkC%r?%z~Y4dfa6<4PU%SlN$uY)_j9W_)vXnWcEj-d zsl}?d(YJaY_q*V`!JRCDCNHqzpqjtoeI13%;Wef_5O|W1+wS#+>ZP3`DWK! zGwW#&CoSVXi85ei*X85&tu>1#OIGU6Oo)!xH;oeSa-WM>TgVRHt$My4KXf1-xFSho z7*~rFMnGpkw@`K~Y~hw)*S4YM66< zmHyDc&Z_fTus|AHo~PFZTvludPmw*~&0UuBJhU0yl|BhccZ<0HMeQD$CfRdCBjmk{ zN3G{Yg4gpZySIg`I@s?Qdp@Oh6ifsr`@eOo`)1F-rtrn_rj{bo!IA$*tJdr%$xzwZ z0@Tgc<*DxFhJ$y0a)yI%*q(khSR?WHipYv?M>$ukI6vdFJI`x=Fgpkhw|Tv7MskjBS%%#Nvf@j`eX&Mx*4N%s*9Yl?h$) zY>VohIr1Of0HAVyqr-EffQuC_DdRV0*6;4ySe&#ey!!uXd1ucPL?z1vGm zmK9&e!fjJi2?GJ02Wq|>PjGK#D_`u%PK`Vlp6p-0s}d5Zl6Rm=;Gu6Pl+IV1JzkKv z7ovFvdNs^bi_df_wiv(mUt;L{Ck$c%sVxNwYQspm1KNKCrRaeC*Xs7&NL5Xb&CU;j zS=Kg!kEA;Mu0)MeQf|xmVZWaoQ<T}tTeru_K+Is`XhDwF+ zoGoKb(T|cf=?AwpHf#@+kS?#4d(-A|xm)MIvv4lesy&%Q5D0W(_uHe3FV}?GkH6$n z_Wg7@{3*GoZhtN?n6P#b*Y#kI^;;@Kx%yi6(}1PFJH7=B+9rkK0(S~8x0^qy)b_f_ z?Q6Qw#kLDP6|0JfJleHtK92&1Pbmd+f;-AjI>kTbog4V*)1;ZN^$xU#nU=xOV@p_f zJ}aNsQP#cV^};RUS{un(utk0`fCE@Lh9_6#ur*(3iL+<+d2E!WpnFQFUK6Jprsr8{ zn$_3Zk|%uy#X<|XEin_8a}n2;{;cFDB}|-twXZU&?b~42iXSOI>u=z-Li}j!um^V! z;o>E?iEGw26C%SURP@mLjg9y>Q|In~4Qu=1n-!_H|NGCrQS1rUsO5o=3T2+lD=}T~ z6TGDtg?0{ZMP&=rgRfXz{j=Ri)LLj;=oXpNyLsUjlBSyc?*ip7WMY5f$8SjPspn*5 zr33mU-mY+8@^-}NnxF6xKz6f@b&*=6MC&FFa1vytYLbF}Oo&(8Oww>Gn^T*zO&=*^n z9b7=k_E75(*MZWHI<@#lbGmzHC)X`ZO+pH1J7dx~)VG6BjC@1TtKL*fHq6ap zs0-KqR>p`NR^XPIzFdEun15Go@*n{&1W*3u^k99)X0EUcV$_{b9+@p>>@@=Xnz3Q1 zjlGX#w6=!>SEk`EzljXIwkApb9k)2aT2I&jd^)id-2SwQZXtb9F=@FU|A^IT$^^C^wO>) z{?(P*L<8S12r1HGzU@aYQ^eMpUbBN0(s{0Oz?K4eR+cTTu(Q9w`1I6w@l#d|TLBgZ)Y zK>mtEOS+{@%LbH3X9oLyQZHyla9|w1#_Xluo-J3loADEdaojVRT6+T;>HC(tv^!kDsi+^pN|TkAY#>ky^zgrd{tK%llj#yh_X0eec8H&6!s3uvd2XJmIv5 zu$NfJs<;bTXlRM$%2AfI?u!q+!K`m@Pv?XO7l+y4dCfOrVqrvDQ0Ii2!A&5w11IK7 zVhLf;$w&uqqpTO9<^%>xSx4MHx4HSnAq4&kdP(aHVSVj#oX#ky3YWELW=81S34e}) z;?p;sMR0c4oD2J8zAV6$bXPF%^G!ER{!bb&o;3jM$us3T zet0H*tF}Tj!r+T1c|lB*%uJ=6C;aW8<@$k~CyR1vb%W{h-^slMM4PYP-vSEdZ(!o zB&Psok0W4)j#ge78}b~Cy$NvoC3X6#4I?h0%&EPvv>4^DCB{2i4MOX9ID3YP@SWsJ zMLnid`%~5lf=U3(-k*5&WdL?}%}Y>azDM{7&N|Z}h6Xmau1Y65kv`Yft$0~!33pg^=>l$`%Sb)13*}5%;V0rp%|P!czLqdX zet|!li0DY1MN)iy+F*LQpA5Hgnnyox$1*vXBzawhRRgIidcYBy#%4kV{CB*DAiA?`kiU| zBVh`c`d+&A?i|Y0Ju2yOZ*X-ud61fe|M3Y~l1^mq90F3j_}VT(FkOPbJ!tT?!ub;T z<|ADx{tYTUx4{iDpVe?gHyLcDo6*mbzLot$nl*47*P8k1tU>IKX*lY+Cj}M{$*n_N5 zwd+_+C9X8+AYHR3#eHY&<90oj_HaCQ?vcArvHq0Z-{N_i(U^(V^W1^rW?@40QPU;a zy=l*neExL0+s?_m?csD$7jGT5b#Zn^fo1gUH0AqDD)BuaSeV6|Gv;b9Q7j}rn$BxD z84dRYyB3z`%s$d}`gI)W?~=nXb9_XNw@5h|y`Cz=kXuAL>z`FWc~8yxpE3*lioeXK zR+^t(U!q~5Q29O9O`9$XyaGenC5|g zS%Ocvbh{_**2d%>-w9}A4sAGi4mO&V+;QS5x;{C#&iE93frXc4rDwWiPZf1Bf8RbL ztJ2>l!>)sVK({L4)qoCb?r%yB0x8J7AfX2Hi!IsSUzMMI#9qufZ@S8XGVSaarlu6O zVisLwO$$iS6|0n(g3nzUvF(dQN{`#00iXSK@dq4Vaz_w8-}xslW2wY1r(l69o3^bq zB0I276X*r*9y!4Y6p}*i-vGAjL!5h(-wsZ6S9-+mihfac-)z6~{U`f%37g|}>KM>K zv<}@84O-rNAPLE+O6BCEX!Q!y-tCgmkltxY9^0Nd6Z; z-`_d^bM|n~?!5EP%)QUOGjs2A$tXb2FF1QAW!xn^buXt#Uq%q)jlxC-mvHd?e^I`VGE8VQ!6znH9;8Wk6v z^#`}V4@xpB_T5N^5Y4p}NR%B^`?vtKaPh7M7^)dOKTifxY#@8)30cFca;$_f?XknA zadHa09v`7NqBa>fhtr>Lt744X+`Ft)0ul6&JX{0yLbfgJ%RDm9jT*aH~`&C=-Szb^czLBP;}jEJ$8l#mW`Wtji0keeye2;4Uz^-2qg&f)1L_^(D3Y9i zP#u?{^Xiz!_{aEIS+pLrBZPAsc=m}U_q>kR-hD61yc(#bppu`x(I~a9PpT|(dKA

yqVl7M z-~=&_yUWrg$%-w0k%I26k^TG!PzITp;6mWzfJYJ z$6Y??m!Cr)H-T3_G1k+Mm6ZkRLDDZ)9rxg0v1F!Tx!)87`pch%&rFIF9ZQI^{ZHSz z%~Pj&G;|l?-fNQoO?ufEt)YZs+6emw>ypI%iIyf~5~$a7%E5auCo1^mJ%v9C0773w z4I&@EbZxtsI9w_P&tD+!QQc6@!Z73dRQMcjS>0!TzM2&m#eEnF^M4}|T1X>u?rww< z#fk9*(?gZEMEH;*`bJt8xl8YyGXO#hi7aS1T=SkLyrB*RHZi4KB0^5VM-{hMUld=7Q0x#FAOTT@QTT6?h`m+M;8@_}445VJ0Tw`hKv)?_T6uo_i^?+xAQ*donaMmV45YDCGvAAQ=bu1ss$HfQH!1KLkN8_qo zjGzAau+t&%ELeH6(`B2whi?eI$F&Zrb!7W%EHNVg`0xFjq9}|5y9fznpGlX-3yW2N zs>sQG4QHog??Gd0kQ3yBp4KW3I)w^GhPZ&fpNgV*&5YdPb+oCTx+532HpGKYiAsq+ zg7$jEz{@;}@63x}TJ~)#Qe5yg?^f%8-nJQh1?dzsw|YC|ygP+Ptt7*6>xN}b>`A9! zJ`dtSKH4sQN3h!1Q#IfLOsS9DHaq~(g=Y%p64q?9o)|@X>|0m$S96IwbK(oT?>~{M z;56YiN%l!^4Qqlsp8|nF499vFI86#^MXTa)Bc*d*7<^_a>}X1(k+yyvxnfr`^{RPz z;Ahq;+m=VuiMB#V`DX32OIdSzKd6!35nh3gs)-sx=nPaqq;)@06a*4bT>3PaaU35( z8LR6pwLhVeGg_`rIgX>bsTTP;5bVpM*;fW5-`h26xlKVP_BP&HVsDsE_Q4mqpijXH zuv+Gx%K%TuymC0vq|l8`Zv^7|ey^E_+CsHonL&J7{~>oxul?~cEf!$kh{b?uwQdcd z0TddOWTto$8AcW*0Xwvw{aM3)u3g~%dFc^5*wIe;9c<7%^cHfVBnCIZtImAu|7gjD zC-^b%FD_<~I1><{tVlteDvT1RKa){;3;XY_^bqlU8nArR0gO<^b)nFF@{-m!y@1t{) zI{vpjq>ee=?ZN?&X+o&mY+t*zWQnVt1lH=LJ}fvsglVgO?vCH=V+MReXMC-fG+RV% zvvY2v8yIj>l7v?z6@ba{Wug&B&^<8H)KT-Q=(B?n|K~b1(WmU(gPV4C)9^P!gE9Om z-36xyGHI_;0htiuV?y4*_K+KU4x5E7_HP_Kjd1AqPgDO@N$sL9)OeJe@WlVZ{) z0H=+9XnkZF;BWgn<~8hL*5HE!$!kYx- zPBHkJUNW`}uCvWg#cIYMwrTlJ`pCU2Y)p#Wlf)fBZ=0o=8bK?Woj3$(6xY~7M?%%m zr%0OOlU~nBLmv5CNWz~}yP^`J-x2vQvrc_}Fu@$6wMV?eXdR3LEslk+Rv$YLq$QzG z4N(*ZFuPAEzV;@Q#nv4DA{>8iv8MwAn(M|CM&2UlDvgeJER&d_{F`<#n~q{_9oru@ z6L=??p9g-@Op3oryA@=HcO%QYdaxvv=rP$@ZG~O;b0TF)ZkqtQ4xIuAa(I}z(T zC7EZ^3Btdx{d(TAjlUce>dcxK7h@-4+aly(pz5hQ?Od0vkJG96l=jIolTAjpE;Fsw zXpIBmXsn~bdtMdIh&smr+LoGJrBU2mU0_sxG|VoPPM%`kadTdE^me>(T);$fS+=tN z^7*l&v*h+_np757tzo5o@B8L@GCq(?*JG+4M_ZChwX|O|j=LhP{KJX7&$+DzjxeE; zvm+Z3w*F#BC!;$c+6+51Z_=G&q@OVxP@^%y4niH*G$Evmo+l`9#&Nd_xb7y12fFF- zcInZ0hrS4P=4`#+IZvW8cBgdiz6=DN48~E(Kv!ch1#y?;PMfcAe2;%R)L|VDV+~8d zBTL3J-)F2l+4(thrZ2V~7|1yMZAk^O=jQn%tzxQ~;mnioMHU|(kDE~%-(-W0z5O%e zne!4tfjXTrHu4ssWCHD0Vo&W+tZ#Lso}7kqP6JxZwekiZ z?7~5Ude3aob6a6thM{#U1M|G{nVjN^tspK|yxda5WL|kfTP%4Rp1*2TdJ@0l=$luI*U3IRx;Yir-gVhYvQ`HV+9H?1)`PimgPp+-`f6?0CA`|>Eb}8}WJ=@Ak)HVJ@^hYSTDatVQGlYFww1VEswZ2DPSw!E zU!BBlwb68iau9cvv$%SRj@rrgbKwk@;EY5_=k~GA}Hz4BI(b5>FFDV3Z0uB&K^f>{0)eg)eTgeP)0H5xbE zIk#_y%`E7FFHnF_6sqq8()y{K&R>-)tMTgVkG$Ge(piU8^EbSqtIz<8G_`gk7%gu| zBd36m>xC9yY%(3Z8f>{#re?e-ltFY)y+eI*ysKyC(c|PKc_Yf&NS*~R*#}|a8DZ`p z$zo?th=Oj>C4Q68SJXeR$<3%NyC?8YIb$TzuTnPApYhKqE`6(oABH9ujqAV^%c5P+ z$4wLQ0y8xNpM*`FUHJcMX54tZ$H%7xiyhP2pXa*fq$(>E{1 z!}Q3wc#KG@nA&``0~?-RnyMDn)`hQ>v6OBb<>{q^NXpQdib4`#c(^7>MH1%XNi(EfF#@EOlcbHD;bjgi^PSNmu)m+>%xJ0 z9})a?{`W+&J_~5IZSA#91m?PIyWu4|1P(egPsJqMjmud{)ptUZOI4l;=3+^*5tJE( zm#FcnM4BM#=cBpLIO*v$A=U*Tg~{%8^`ruyu1ZU)c$($d-yZiLoGoGu%D!?s(4+|GIta z9rAqF8KcMNa@ZqhYvW-v}x@v)90!)Q)OCvI`GmLp6DS+b0>CWwocbpETbfgK5lE zzsu|_89)Ll5MMYU@(Pu1KKKSWmp6LNCWh6S1Z-#;)_Yg0WtE!hObjVeJkEJsBfV^8 z??a%{Uc9dT(Kz{#sk!@=?RE$-F0fO7FAC~ElyosAU}t)8$p+vB=JJLUIv4j-LZKXB(T`Hb_9eE=3ZTort@g41J<;`e-s!s!^$mX8bNWXS=;)OL#)?t|{)^I`6``8RPX!AT z8}Y0No-Cnn^YoOk^-1Lfhg{_DzZ(G(m#qfEn`H<~3A&7Kw!~?9x--XOhlO=wTMhvPy1FgmvA)x4u$I z$V0xUwlJtz?d`s|`)9P=Ys<^fU7cL70$6TOc!+A zv2nN5g~^E0hkC*>xCxaPxswUF5;y*_t(--r>o(U0;>Bu@^7GMozdRs#c?7+zJ&QT z(!`JGqM`K)I|jc2ijT&R)`e0sR3U4<7k&a}qM3m43&Xyi+yRLLee@Lo4zn@4AIu@p z(Oj{Ii`*KiwgexjJ~tmF8{^0UeN7)@56#xI5`R3(E@wrWmW(sR>Nxr+7vpIRH??Xb zdamNrlw=t!Rjo0_r>f!KVu(q_@|!lf}L^U6jOJH8a7c!@MCAqcaXV&hWYI z%S2pLLF8{1Hj+-O_z;o{=wy>^b=YR-3-2;?DtH{q)p1O#d@Ywx;?xC+^=!icQJh{NtDV zM_Weww_-ZUehi4acZ8V)0NLH0hc2{Ned>_)R~K3{UYYtdzfu?YGxSC~QU=F6+&3;7 z(?h9SJ=I&lEacl`-79Z*WMmZ^t!N8+gH{7Nyd9 zbA9SFnl0Sgex7VbhPsY-kfRAbH?Il0>OQc(US)gPhc%ANFjlbB|Ca+M#!GufyLzVs z3|Cyw!zVOw>E!1WFs1SRV;?!a2$)_9k6^&bC@iB3@Vy_STnw1D0c{SU)i#do?%Oqm zGo0I!ON4qg2@@VbUxV*eR~b}_wwx`v+WMn}5gT1NJX;>LP575WZRkV=OM!?dOPjMF zKsi`Mhh3Q-i(K{-Z^u9Sarr#+P@+T!Ocg1#Y6B!}P=&9+t|SKB-r?RaW7c&>eUH5U z-b)=8y+j^N>{69Q{EIpXtZ6(3#bhpQ0)-&x+0OM_oGh6*Pge*nYESVW0=Dl8V}eKA zJ`sBRx|IWjwUz)G1<@PHQCCSN>ywTieALC6F) z;WUnPMy@rV?$_=3&Y_R^>alOV)_`eHzPG8hK{Q;I4 z#+s;n|MUHi=OR^nf^BUprD@Dj8G8OAzAHh!uDsod)A+vRc^43{97|~t=a8U8front z#x#FyEg|!{MN;QfJ-*}sog2IICRx4(rz*eycx_H%&t97h3n8jxo%86SZu^$e0ui< z=x#g89tschnw;=PUcAwWjx`f`4HS+HmlF3vpoL4CF0v4+m!bxh7Z*F{-dv!g|D^HD z0xy~#?F_AGSW^-Zb2&oM9M)uOT&R^strc3?rLY2gbkH-!|4vg4Kg!Hm!20@mS1ED6 zv6*+0vNdB{|4{byE9CO$KAXJMD`LFgxUUC8HWccyT@^Ysz8UL(s;@M;4xjg{GYcj> z_N*gxpI2D&`wO67@Qj8x2J8_Ujq=KGv5=eoM1@%fKQbme@LHlaJPmCFDI*->B&D%y zdwb9TF<+khVcxnM?4{@1zYek+y~68^t|k%k?@mLgRl7=?#L8^Rn?6tYGTJ(jbWoNU zml#jGR!1Cq#;;$~Lr!IFmRk%AAHs)gLl05Rr$*s^TpzG4ldv|7{q6&t^*6Db2~K*O z3Q`{LUIjfr5KT)5OU}eS?CX!EVlb=k07l=gzZ^5;)=SmDyR}#OJ1J{vS8(xa6Fyt- zl#@{NcFD8tc7m zhFtF(Jb4dOA{1-%J$#OfOmI40|J!X2Ren<>tY5Px$+C`T5f!Bcyr#t)Tqc*)*vD{w za#o#I{F(wVU7c9czE-C)0ld46;xgP;!c*FFAWZJFuC2f5{<^6rUctr@0csTU3e86g zy^%W%q1}3&8BFbLzw2+8XUqvNH`t7M{(3(@&NxHpgNDz2Kqwq2QP%x~i{-(6DEXob zi-L3bUr;tsd74u!R{H_Q!EAg;La%J5>g@-QyaFK4qbsYhoyoYGS39K=w?$E(NY0-- zTs9B;Q95~V(Ni#wiXYj5rrw*4cDwK4946g$QUd}5NDa@yse3f0>rmVnR)uns=CLH{ zR#B-m!s@RA#WG`BcoOWJI;uw=B46+tVbHs9spCf?M|vkbO#wr0Xnhq-M0~;HuG`s$ z0L$+IinY0S+MlFix}JRMiJoj6>R_UcG;Q?}Ies&3Oya7m>N=6y89cR3`TWXDnp6^0 zG%)$~3jYbVvN`Sz$~Ao-Lv7KT_be~U4I8X}Y3j1mxfg%&WhjxgVJCL;xr;L#;{M>~ z$Lv>$biP-Yb}6Q?Sz%L0*7gz{Gkw|wFuSbN4~apBnM=Kn=abS5L&yN|70iiQHkzU!F^2s=J7_K=ilDfdF@_D>K7~b zM=_&vb6=R_9j&WD`32*q9FFInY@VwdIrA6s{5~p=cyg3zey}{{ zmG{vmTd(ZbF`Oy1p&%61wD|CezI3gD1yHzDS8f5;z5c!*?Bysx&h-xrb%Wi(0DMsi z!omhgcQzLq{e9$!J(jlvJKHqJ=0$rRZy9e9_nn@w2lsMA z?5k7vM+=n8oh7Sxr_Dv@SzvQZ`yn4Iyy{-e>tIfUqst$|W^H+ZrZO%pwJ&R4?c+~n z8uM6k1DVdm?!ZOQi^ykdv)z&1qIG<-EjwfCEImX^V%m+!U}Zk-C-ncI*A__!GKDC& z(AETBgO@dOlblTd1*k>qcV^1R(6=$KN1&}}C(do3w-F38^^BL}Px7A2c3?rz%hvWYOquowsFFIF0OmEfCXX&M|@ z1q0B2K`$*@7gBW^8+90bSEKPd^5t`vpv$|2UUPxrlY}LiMKh>+(|a;>Nbz=D6E8Bc z=;d1a4&08DOAcFq;qt+c&{`I4O}T!HyOEI}Os%5#^bx zevA}BUaqx=pe|m~xDg`xLCaDp({GjNQ2<(Nr1t^l9ZEp&qkf)qHsG-9N9iv0YYr4y z3||axP)vkzvq&id-3-h(iRs&Q_maAwX%XJkf`1>0={&NF3BuZ)hsJCPHmc5-p}6C$ zDmV0>)gNxA0~Xdtnn^B)d5gw}Q}zlv`(J-89(@ynm)yel&$QShm`V-xTV7C<00}CR z@{$l@gKo~&kG`_;<3uGsWT9c4nB=&EKTBtl9AxED%Na95NN}SOAB6r{!QNY8UVl*vfmb7FHx$Mis|j_FZ1xUC_b%F> z9ihp{d-+n?_3mi6;Z_#-8nG2k$)>W7agEUXt<}#DJ2iCvQmVPqa31jodfNlL+XJut z+wO1RviFNqA&AyWOT$-QiBcyj8~1k?X;W}6inu)BcF(;3&yP5PJJ;ID%~g(S(>4X} zX5f3HYgbJ#JcZu^CwaB!g1=7Y&m${#W-_(?lUiEFaoH|}pZ0cuUP$|HkFH-MR8%?O zP9W$zUZd$phi_~wGY}78OIhY}fM{lY-PGmRm4FOZ2k^bxTqmcXN5r*qA1Oh?*_cr9f4G2t)Jl05PR^awHom|}TT(0Y8 z{Az#>&7(Y6X}ju-YA5QE4e1P9+dW6`-{jknU0n^?CJ62vSs({c$dyD7TAdDK9upPO zi%_TBl^%M2PT2FRUCh)XQ+#N;i+Nnwr|{K=l}z1Zk;l!S<@)yu%T8#7#`XRRV#q5g zyHS;xD`V@E`NlEmuDR`Y-g!mi`f%ay5+~|NzU?-amhp>hS4HknNgiUgcPr*G;ihRg z2A4iJUSm%Q2XH@{>nNymjaUty%teml#}<*C&YfY}(D8?{^JNhVD^c!dk3*JWZBd}& zYQ*ggdxf->+#QGLL3d!#kD)=o80H8qZc0kC^Gc_aT86*I&%oE0V*2wY zuI}{aH`;p-T*eCgHahVrmP{cT7e}A0lcW&{KcpxDJiDnv(@`7YTH}MG@zvh-hfk$n zU^8g#PZ%Ems7dhoJOgZ95B>ng^)BxLiNxb^AhL@&p-!#6icK z#Fda;FEdg3K&Ct{sk0V%k7XG`?YS<&r>_gE{`y26 z0&3-a7jG5!;jIqsM3d(0-K4;`=jk`UdMW6P-;Vd9rVyu<&B+2$NA_L{{^wEG!c zNGuKkupe(87K>8@J&SP9PKA|~m5@KTNFbh3_FsNB&gX|%eU3#?S=$Xp5_}$WKI;D7 zcbQJ>DnnLWwrythdwyBV6)Yt6-;o>Cw_h*`HugBK#sakm|nmOtn z9?v*5mYip0O7{My*R5-(qE*ywBZvV}aIR5TQ3d&g#5xePYJb1K(rYh$d?_OG{zNF2 zA*!GYA8beZ$kMBBh*p8u{7J;#_`A;XJxNLzhm5~&Zr6tP1wKD}FE#>Qs`UaecqFx` zwk~T=|K8x7{+f`ym{AwF4XEvtK~8CBBjiU6M@Xd>XAg#P*%6O5oq&sri!^gYuY`m| zVQ;|s?k3Q_yZ12thZXEBhRmpPm@X_XUQBI!E{piLD~P=QV~&4QFu;bv;{MoO)HmV^ z1(t(PNM-=8EVo`i6SZ|b-nc*U+KB&>74=rfnK{EuF5t-u&vaZ1>TfoOMy6iQUhQR+ z86MSg%Ca|)dUIM_f19-zUqm=%WpE(K#o=IJ7R-oh>+F#;{&FW!>KJc7y;KxEEB@l= z+K^6i;q0a_%BOFN!OuT=fTVu~1Tz7|-}YWK9;6lAdmo?J&UPx>`V5q_#Rm(uQ(6N& zv`xjw3zI)QCliWXo%{DKXjc2LD2{1hymk5U|Dwlz35&3G*9q=#D3Bjsl#o!s9k>Fa zBx(u_?hO0lMmA6!td+%)cd}#Laz&WFkR*{%%Bh9C7&ftJC=Dc}W2@fKq6Ym{#(2TJ zB1E9Xg$a5JJi90gIb=^ZnlpBVOJ>p*1iJKX|mnNQL)2%5Lt&e)JJJ2r0AoYkr?JGt(7lj+y zKd=U`w0eBwtig1-n2A#@CtJ$Y05lP9xw z2BVMRH_esGUVrPlR#w2htV#NdyIDj|GE_5RCT7&6=0ZtAVNR3$mlf@L0SMed%_g8$ zdR8-yhn_`Hb*46L*2HT?vTjkUR#~e);=rTEG4mS#mXwot{8mTpN}=@q*L}p@`&**3 z@ssTg_OIVM4Ls1?pBW^62T*w9{G2c@A0K;LAY%nxCV1M(*sp;-8E#MS`0rFH{!d4l zo&PNJByo1JRBbTDm~~UWUi(!P45pvEvy#;}n#6{oT zA#?J!^5D48-HGhO{@O_0-~Zob%^W135?61U)m!TW-$ z`BqJiYKN;gcB(_d$3)@sDy{J!ZeKrn0j|?QRm*!mJ2<%pTy>JyJ@-A=q3Wn7BfgS5 z@W5lLOmdP{xe~htqK#e{miJRQG@PkFy0!g=CUoY+d!ar`{?X)c(PYM)>+Jl^Ngz3) zQD5Cp!!Hf0g?VQ85zUx>0~>+k&Gg%kk-W|EuKTYdtDhp5quwYck$nHnAckejjLU+~ z)kU5x8}}PmzgJG*VE=SWK=YJ%)9>+CDuc$}5*t zi@*O&b-#E-7P2i)Rt9HG-az|5M!;8*(=JG>ZdwawDBI4fGT}Ek1&RkBXGlwQ_25iD z$xj{uE>#~(ev-HhZUBGJ0)8K0NUF>Vt;JD!E9@S9Ne&Svc2}-RfrGg*$OE4-2VdJ` zSh1$LM0MmA&Q8r=M`2~PckodtF6?f-b9#op%x#Rln92374<$~mDUUw z)8MG;u{q9Vv-;M@D9^uoRnyMXjJV*kgh3*KuGNe$O~Jw?2!C<*Fy$21<|4iLom-}= z*deBE)>sD?rjh>oJwpum&&w!u@1f*UY>9>v3%dC5pG;# zN0k_QxKUumqTe&Ih7}-*ee$zQrM~)ROQ5RANVMnE-$GJjvmYEFM${Z_SfEf(bX61J z+s4A5O4Gh`YJpav=eR*wm*SaYfw%@m9Y!BIq6=cqaV+96bMn2?eno*&CssoREUw9o zy(lty-8m9~mk*@72F!Rr@S=-qQ-BYLCEkscOL|{By6o^S?3QFI-opnYeVo4*OPtXO zamq7VG$kV`a{bNIIQ7WkgS=U)8ZEHBlsTbNs5YZK{k$G4*4knA1;hMvEj$+N>h&lo z6J$G(O{+Qz3^|bdLv~*c5+%IHQyX?h{*%P zI3J~OE}56&n_DVa9Zcz!_2Fu|_zEoyNA6f3bXmL-ddZBsU_X(q(&LH z58K)`<&ifc{;4-R`>m~~g`;!;jUsP$9Gz+6K3jN_HYcL@9eNW>YTeSs%OZ1ebRwIl ztEQkP&M3aMk0>CbwKztoUjz9q{`i_S{w0lX*Pg>>ZIlJJ7fR;$q8y~Dtfl`%-H16S zg{j9&S@+B%HwU{=w7E$O@Rh-2)tE<*WIAjp-)3 zM3iZ?<#VvQ=vmRm{EV5gGaO58#L9U#boR#)Wto9Uo={GY?FD``hIW|zi$_%$%vj_& zoTyE{%v$EgCVMj(wpwPbb3WB^XS>O(rA*vaghN&2O4ConYTu%L#8T3K8f-$QtzlnW zN#hEk&`-L)B7gIU5R{VNxni#!886d-0KinM?~8gD+MGPwWGQJ0aOO=Fs0N-zBBn z1$u%H9`iaE1z+_uoW-BBkX8MD0X6(KQO;Ut)N@nH5s86Wix(vWMCTE&t4|px>zz4} zNMniRK9fSPX81|%kL`-mNs_>$XZzkxP4uY!CUrwK*K@uV{H9{D+bZs)eu$#@mVH%w zr4o~@d8Kf&bAcih7$EfRCFRNRBW!Y1ksVl2|BDL&A73=3Dk4>rpBFZ4o${=m4V52r zlCFFz4Qj`$?lB2)-riBJg7Ru|Y;;3Xo*_w`rV!q`p0^sA^kcfLo6202AAUYllS%zK zn*4H%V<^97-GH@{`Iq(y>KN)f{gYzxu%A9lBQABt6d;4KCqGrfr+iT1SL0=*OI7ZS zpL(@B?`PZZzt8(!G?;cMge(}#c+Bzic_7a&pT`Qfygl!M9DB%4+QBv6m=Nd7xZgsK zIi(8g=yh7&O7VXpZwZ&Tk6N4!YlA2c!-A)Zo~jj{FNN7;y&8?r_YztEvy=lqZEE#u zz;OK}d~|`OiB*`2xFyNl>3;Xgeh0bZ{bg~|_~rnb{^R zQr3e;@d!c-5=ilPPF)*v_oC7ZtdwiALtUJU?Js|TjdkGUbK7hQD>%#~@TSG)PuPaD zd5P$(jARj)%Yt)5>R9@TD!Xy)vL_^8)oOI8c$rFp-GS``a~eT&Y7CMgAw-EIiTgDR z8l?XV{gnI{p08x@R~kFqJa8U~Yjjg-KHs`O^n(AL6$^kx0E*}1?UrmpmDGjXLvKO1 zC-wk}TNz|@^F6dX2kYoD++^H1f-l{F_|ZX7R&LS zzAQl!DT6A))`lfgzh-<&S2j1|ees?eUx{%%r82r)ZiGq5_mvc^ofg~ghsF&1qwrOURGk@Z%`fzFHokQ#Q5ZYKG4!~tO65;teWPR7 z+fl3tN5M8PT8pVe>sY9@g}H5JA@~T>0#$)<2FlUj&@CTZmEoKhhL+@`32G)JfS$ox zzwdzg>kePTccs6Y=p~xM*Rat56thJ7A$ql@goQ@y{>FAR^TJ|r3HTbr5;c}7NIdc- zm>hb(6oSNKOY4=`fM4ErQ$>2(v$%e*Z)v(>dw&(6BTXwGr)>7lznCYud~`)YU@pY(0Z3x}gLiNWehB&R zP-(e56GeMj-tLFZu#pHiLXj%m=p)CIfA#Dku-q2b3XZGFz+S?aLfwzHwGE^136eb) zA0`ItB?p?lL)L9KsFV3!mOFEtro2ejQjie2-+I&$}QrjjTUoO+( zPv_beIoQ54>0C4Tn$D27_(mqEeVv<6Zxf==27(-FLUE8pf#%C+1|d7ra|R8559>mf z_Wa}De{gM}T~F;=9V~z>N6$ZzddOf5o8X!Nq4OfL1mhKJA})cCF1aXzXuY`TP(SYu z$)K*8Y*sMwyq0vki0E)r;nYt~$N}xtrh5jrO0?2a9*PFGV(V4rKS5Gr)nHv%!@=Zu z$9Iqa#ov*`PIhux@@4)lcLu2Av@T3&A*Y?}<9tgufW-1+BoSD`D>N9ad9zOeh(2!| z?3?PFg?04KdJwtPfB2^kFA->a^TF2QD}-W2%QuQxkBL9sU8~q`a4&k0-}Ti&5I=H^ zXSCq!P_qhGX^?1h4V&l{4PCoXFGIcAzsdpR6cUzgF#Sco=Hpk7@41@C)))5jwd`De zFGN-nA!!?X&1V6PSis0Zftj1zGW)}vk-wwo(!vUK{it^~14JOBAgb^3Co`I%kni<6px;D_+}5 z)A-BZr|VrZ=UHg((->bpgz2X;8?R+xvfwNfU<#!RtOT`!J#zk&k%YQF7$5vyQL}HX z=b=QSbLR)mzT|=I$P)0GU_>HkIWV5-hZ03E>O_DPb) zXMHR@J9cWd-$q3FlVPtMttY6IV*{DbLZ-DuO{L;iE>7K7WzSbaH_L7tt$(EhH4kJ< zBut(n@z1)G(Tzgh2qC)_{fSeN4EX@6lIy3TT}YEcz+TzNkH<%6M=-qXTASTxB*!r)c(Hi1LRcrEPe1v_58{N{@Xlb(Zj|qsh5j1{}GBM0tnru z2a956@q*BnENA{HOB`Cj+n_0ptm~L8+yesj*MS?@i}z@rr8}r+=%yGeDKi z-dBAfj3d9>B~F*YJ9`fig+A@AP}%Z!H#$3$!1V*;yr&Q3p-GK@IC+p32{NH_tF(S_ zy6Y+{a4V_?Ef|bn?LI_2)5v{Dk^lEPWRHnQ$OOPbQS9Y&7#s=@HLplAjmLZ!74UZb zU^}hfg%W5$g^S#L`Igt5@Uf(2iNy(b4Rdtp)vQK~ant7C*BpT?|C1jbN)V1ectu8$ z#JJ~}j!E{N?!z!^V%N_R>-V{1h0(R|Fq?8$BA1V-O(IJ+`sdCA2Ob5loozjk8IX@+ zLq<?W{jre!L{w>yJ46`u%_1D4T@c zVln;uap^ScpDJ)1bHm);7KOluVu~sr#vjf>?iYDs|MZ9aTC=^rfIgBmBY+*mchF6- zWW8qp3psda%mYY}X=LO!`ydnNZnV56mrs-lB>(`Wa5I4IZHWo|ldlxf@$&)ydd)!M zV-lES9sAMnnU0%VF;B054Ay@#wToOtJ%DaQGpv6zhWc4Z0*#oz5;x}_mI$vXe3e$@ zCUa~$3~^X#hWgE{R-(u{otXS<%=fB?BkBF^G*q($YbbQ+bWul=VsIeeO9AH?AI1jN z1&c$spb1Ncb40H<=GOFDM4A!@cs2-;nKg8&6q${1`#+OpW~In%IudYp-9)Pl`;P8w zSu-B+hk~nz96RDEOaf~Jwkx0n1Hj8^&jz&pV+!(BZ#L}bWjeGJYT0tVt1i=dY zo0kEBZm?1I3E&@qkxA^XmYs8zYn&(5h^fSt@dt<*Y7R_#z9WP%?I=NO!2sGuScc*k z6gTWU@cbt~SI|pcNp5$%x5G}Q>WtxLK9NvIS0zlfyaLd61!RG z{gh|z=ZtQ?DkEF0eK4A+uS0t9f76w0G6T@{xBYpckeKW>s&`m!c%9is#fWTXmk*f! zt9vUUvW1Vm`Tmu}AbX0eax@9GJB*yqU;|E*J$^PnvP=hovGt!$4+O3 zoI=;cCTg`G9OC?koiCZR4Aun4nIkT~4H^CqWvED51kT zC2*I(y%1~wi6OkH?a%^nTCfvQS=S+PfqzOk&Dwb+ULu? z3iNu5i26VI#ZJ`!w_&45qV-omWSek|!3UxsJGb*cXzmNF6COQ!ehrP7E!My9X&fu( z4h2JIJ*}Cbc+H;7=VPyM*RXFm5F5zq$3F`R!3e4H0S`t%eI)qf|1Hn$1EL&p^-uW% zbxwhw{WYiC@c(DDoi!-=s5dEmPE)Q(e(t{H+g4h}*5>#%JpK_wtD^`>uKO`#&{FjRRp&q>CwZ9g^`%L{=JR&3d@GUByF?2TkKqG)KVPZm%gJ zvqmP8=y<{Y$e>9;9a-`CKfMvyQ|>>Vr9_RIk%;SmYV4z(Pm8QB?ebm|$d!2_N^vk3 z#?=cAY`%rnVBocwD7Y|Q*glqe319o_DU@LU1GlZ!rcjz8Z3PRdIw8hNil*MEmDmmi z^d4$n<93q^|Ju1*cVKJkAMFKc)9iuR5b2xuSR;I@BkRj&)Sb;$c0K1P*GPAUQlxh6 zih-cM$U*KAHE``(TiJ!Ov8-}y2HWvxAKBxOYk7rri5~vCHo$rGww8)+Nq_&5y)e$H zPul+(5AyYl$k*p!jU2q>gZ^e;kOL{Z;)nq@__yzkxUkKghQ&qAFhHTf3pWDBN%aTs zF@4F!+=40>h>4CN#k|MwAazC0X13$vU9?d}gZ~fN6E^cYc(O=8bh-?gA#}Yq1>f%X z&p@-4KnWXYW{K0{q9KGsjte};A{Ol=R|P0HPYy1OjW_}+ksf~rF zt^Vc)Tm$~qPCq!GF+{n+NZW@{4|A1~-~cK1ZRKx6twCfCCO| zRm=jA)S(?rjdyf!tz!(;?bD`%$b0)^iA57?=kqx{Fr&pw7g_9lw2!ZU^yGUfH#x^R zB8H4$-O!hzuTf-22qSrpSrP4fbW4G7zNIfqPi(i=(0goJ*ndM-Up8-A5A}^i6$%5i zP4kn1RkwX`4cLvzL{Zb`z$p!#pS8rH(nG2Lqy}T*faK@xW?lW7&&BQMRaJRL$j#Q| z^aem2O1*;A@}J#Z89g2sit{YaATv3i7^C7U!)5v0P-x!f;PJsNv5~H1)4PSoUzO+bT*fc_e!&m%!CiX;4iVfd(*OYS7yUT!rsu)K7T# z%}gWzyFeUH+O8o15JmY)8%{wmayRv+a`Fi$*g68^h{4m-=RDGq0^%jF;1&_r?I;{( zU4$X_D7`=9q+gY$qBK-FT|DkRfiV=0`Gz>gNvU^&yUH!0>@;g_|mUw_Ltl64`< zx_$8@JLY=Kg(eZ6^~SHT_$G9hoB$Z4oDkv%TZdvCg%yBqZG7Zj7Dn`xT%8bnVO(_o z@lN%Pw8uLapOL>&Um2JN@FXwL35q`O&?FAhnwm(0q)RO+^hI0;0jr+>$Ju*^HMsKokhQh*G2rp#``R6pzx>NKps~s9-|x5JG|oQF<|S z5)dJp5JF2RA<28^oagy}_+Rg*H=lB4_uieEot^p3>}2ovGpp;4hcb+;asJj+Q|h0G z5oDNlvxu7i_5J|r%fgjRt($&M#t(lNIU0<#G~}E9D!1+P{Uz4a#3=N?sI7%%I*?+} z%ug-2Cga7=V>faq#!VWk>rRC``ARJq+Dt|8@`Y3`h>~|Td9qry@v0FYqQ2X0I_j)x zIJ(Z0U}8AOQ6t3&cds&v!yx;>q1Sj=n`+)!^WoW@St&>dP6^rjd6a}7BVLa)l&8}y zl51#!sy2n^UWnpR9Au<_N}-2zibI|bN3F*;HBDJ{?B%qJk|_1aoQTtaC49m;?Je$7 zyj0kHri`JndUioC{|G5^)9LsQ?Unmtd04)|ecX^E9ruY!=7l_9JxTns0HVyv!kL)W zMVdw7)>*MOw%=S(+s~Y{qzRcto*STB>VA`&=X(S_i`Q9`HuQgaS@jXp;9>LvNl$_d zvW`oq&5B8l3619N1eo!YEhq5(F4j}cGxw(FNqdQPTz6B80`~lx_$V{uWGkYf$=*1P znC-cJo1IEBgDW-qhm%;QaKr3isC#|%9pCV?=Dw`S-_n{X|J<(_Klj76s3g3&7JI=K z0pa(F(sOUey!&?WvkLwW+N)-{A`)X9a}kPM@~6s^^1?^}W!6AOsdu7y|f;pj3l7?YHO*%c|G>z zlxWJy3fQ4$5lj*M=R&&zn)hL*4nrDID~~;1-&1u&=K;f(;Dd9wUibBsK2Y(7t{pvZ zI1+S&`M%|WH50eG=Q)&VQOeqp(=n46@_PBplok+Rh+eNeO|QIY;d|t~C;U`e`RMz} zDd|)r4D_4jRQfN-XrE$))KBA5)WzHevo~#WZ>Dj-%dU2uA59V^3yW#~U9P1F);u-M zHJz_7<-vTJzg;JLAnx~SMVL}=TSS;xQ#ezD{w~g(>(NGCeEPAtIx3#C(0KKWOZdY! zlSe>0E$Ys9Y`Cvf5e%JqvynmySw9;>oT{XaNb@@Q!)&N|`Pewh2r14If|%Zj55L^f z@9@eOw`cop3#B z-9pvt46!`iUM%fNTgqg4ZIZ6e8xN-iz#kZ2GTcxA_x3GrdvUKqt#(M;C%SV-^cAN?#=5ydE6F7)<~UmwV~QbU093Tno1O{-^Zxp%NDzgEdiUHOYlt9 zPH02z(b2r-vjdf|sm5CO{FZ?D6(g-P{NITabQs!FYYHX5ew1Y3g}!btY1F^8&aFO8 zFLlw~Aipu)3GoG2=xTf>Y80eJMC;3HsuKR>@-0@26%NsJT5YuZO=-{Q#cw9h$^-qK zIt+Twm2nsIOU;97##TB2C3^d}%DJ^+CAFrinc+?5gI{vtnTcP%QEJ(Sn+&IY?_%?7 zu}LlEDacx78_PfjZnZygy_crfS#Md1&rG9jPY!^_lf9jYXG&PwGl|z&vA**Mgb320 zHG4UIUzzO?9}d4*RdmxnuvThL(^LL{AM;%4$)wni`tAwmMF5#sJM#JvaB}Y8`1+KL z^edHm@2pmy1OHwoFZgI0GpCB2aE;}nz4{NtEd_K3 z$^4LqU5WNUxQ;_vR>kDT=gPqHlM#K3zbqmYpy+jkX4)R5)%U}xl~fzN6SQFF#xhk# z$;y6;=lDj;%SC>4y!5-{Nov_}knh6Z#<%C2um|N3J?5Ca5?+;i*j9*ilm+in+mT|8 z#Y=6w3RlOsKNBXJXj4~-Fuv9}Pu(9nwk+%jnr1+>dM^q(AFkh&FDY+;UdMaN?S~}4 z1PxJXRNg}9%xL|{!DiEmLibvcIcD$0<5`n2=(;VLoy##QTeVjhP0k0;c3 z-lsuh7q$ZBrXuMyqsdo%NH-D`&h@3LLkQJYPEKM(uKs--$qW-4JAa@xG!@hG(S1*% z6pW8`pJ#FEmixuJdkdvgg#&$7o{xNkAg|5rQL$h3UQe{CaY0H9Nx zoOPoZ&AYz*0U^lOk3=n%Imq1!{}5#bCk}TM8r+&{boUz~owuCe?tcWG|FK_@|G$U$ zEHPpN$HG34^#@C$`{HrP=(wuE!+2au1`MX-Y8?kzFo;_Ed~h5iu&~fbbzjC$Hd4$Z z)me)@E`?U;yr)ReC{F=K@p)3~HwEW|WFgr`#N7pdA z>>Ke^^mcJCe*VgV34>7$+5V#O=Ax-h(mIv96GC|SYWm4Zpl0MyGe+Fj%eo#@mJQ@Q zO5s|yonw@W;Z*7$_9bE=w$dF&k4t6Cc<*bkF4ECN+jVqH-PTK*xyJ;b(p?IH5LRA- z*eqz-RY=qn02Y0~ zqb8QO@L31~Ve5;!K;m$-Trp^Hpxso!^Qds&Blz_gQjw>EBm`0cGh5mLS&++w0s0QW z;A6PBwWWM1f4TbvSR@j6j;fV>D1u!eEEET&Ns>O88)h%1rFDY9ulGO35y8m3^(s+l zgb;+Cv2K&5P|9~y$}eeH{V1ATqK+AYsNc3-!p_(DB+dp z*U#+W+LO3wUu&4PkrQ{|_>Nr=h?{;0w}K5m;L0j4O;XV>Q$8N`A8iv?XsYp+tBmg#CI4{u8n^;pm=$d0e1cX$u0` zn;;`n)6Q-q@yn1)39>uZt&!r7<$=}8hrsuFGZ$km2>1z7(YV^S@7HO4fMQt38>MN= zyxw#&KE5$lNR=pwH3Ad_o!s^w{AV>hvywFuU={Eo>I%!~TA#vgZaIyR^8=I_1d@@n zlesGIaA5wxWPB=Sp6ou_CO#SAEb1) z)mJM_M5?;iK!WPiN-5M+6Aka1Zm{xEPlX8w^$WL%iF=>Gtku!-w_<|fBQy~VAfJv1 z?(hdSU{pt3RX;9f+Jj_#jh=aK@g2(2CLEpHF#8Y0PU$Ho)5gn&YD>|Ml3lkX1=<+h zg4RbpWGRsN<2Vgand7*~@h7JbS|$%GP=a7z!(!{VFtjxqhl>0&@w|{M@_OPaz?PT- z<-au9wS!Q$@#WWY;+YhKqNpNkT?p1`x6ht}0qgh`>={a^#_Zr?{`FzdWhLyE@kZ!SxBNRBc;CO#1_to`7Q?i=4R znr17lbPGWR_b@oYvSLIyRI1#%IYOHg!`1Q{XC$XgB3xNFG#}8h(g&Mi z-NjIWUd1^F<7o+ExblzAhPPw9jN>ETpoW%Kb8x>d37YMSrF4Ei8}2*z`LO3XAIS-W zTe#w=`|vjN&ghR@Uw#Fj7{TxwqRe;!g3gx?KEcjOp-oev0N<|7?^k%Sh5v>@4q0P) z^mie($kxlo$TlXlWKkI7nv3`%cmfidkShCN=99UR{a7pQ8-2X-+dhv;^F(h!+q-=O z8i$nZv+=~_Qls)Mrs+UOI!O~lw>C12VsOxTWA3=v4E%hp)~0ts+=|Maxh}@0|MV!Gj`fFQ1zLaeD(K?- z6T*3m8g;x%xjHyciLnDhhz+LGNF;Mi7urY~%D02FXp5va48kU`tferjM_|jQLI3HC z+au1bC{6J2kBNHfuligbwA6rXDF(*$*Uj6e(&n>YW3RDZSvB@)-E`RpS%5|@^%7c5 zL@FejWBp=^lrv`Qv$$OG3DD2nU;Pfc*$E87mS1Vsn1mM5QH-?o&)PdnQ2QbRA)Na) zAg33wxNJJsJCo?xZ9B2`=*`u7j)1FaZztT=m9_?~>qU1I#s-km$^l|o0)v&BE8nd7 zPK3G5b!Tl3Y@wuI)zqV^QXFBRf<&)vSJBqJ4$46wDo;7up&1+4MEPdqhBeEekj3dc zrUZ$5qWNunJEmo;g9b08y57cNw)$uiXy8HC{vUYhgY{3Pqm*;TUi8NVwfTF`F2Z8M z$d7~}1VFw@|JxG1UIlJbUY`3RI6^4SH9m8v_G(unX3nrFo|=KaxKjj#{GVn)e^9_F+7$C?p)50 zo>=vXTyR&oU2!F8SgB-0Yk)N@Axbeqg%TJ&=C z=N*u+>2@*7kc4CCUxc5E5%x;1WBr)e5BWM=82smpeMFn}PvmoFLadCL(GWMo+`%Oj z!o}BE-EaPJVxxvF+6WbB2O(GqFqC3zSCuYq>v|i9waXv+zULb$FRhbD*S;?lR~UYm z^)Zn-xeg1byq_$^0Kk!SjyF63#IKO7w>#BUj)}TtwBL~-V*=6QmbZA{X)%TRX}KOw zkO~TFz~NQ+hhr}}H8c^l@&%_*TyzaX_~={E)gB84* z_W9$D;oK>WoHm$FbfS88o`>1G+V)=E%Ua=WuoHyv($JZ^>@5Tt%@kMD2Z57!EtN5__TII$a9s_w z92!74h?ih+@~>rWk{O7|+~K9PYSL!4IB5PMZcq?IV)XIuR|rUSU|s>4_HL>CQ&|rD zmcZ)JLA>O*5Lrm{(pu}B>IH)|CzzDrsWQa~A#Jt+$q|!n4cIz|CspZ`yVy9#ShLIL z6|Qx@@74z)zDC+b?dWO zITgW-3yC4puUx&<_4jA>v(R|o2uhh+rgfg{`gj)xqk8HZ*v0Oedca2Bmixq?_d-D9 zI67_$+KBbQ294!6w4b!cG$iQ;8gb!f2m4d|W6+61&Mm+M-N=8lItL!UbJtBgi%F6? zdKhep+o?_nwMAR1>kInDoxchyH|X>Rk(VTckm5(d3r|o7fTxn6MOY9f+UOLQ**IIr z6gNfZ9{}A;(9Qk?DabrklC+9R12YsqwmGUFOx#p%Z5MB!n3n|?hTw9db?=Sq@lv`O zaw8flZGQ_K`o$<~UK`0QwsOWd^$B(; zWZLdz>t0CpD!h=GX_IM=EJ!;BR7hN3+Cf+-k-d)-)=UwAAVw%|OZ*p-I*wRwpWX#H^m4gv4*i1YH zqV_D*S+sKMaGn)3G<#(olWX7r+-7a+wSy=G0%#nfYTdjND!}Ghg+Y?m&e*1RQI|mg;+5P9Y6RiC1_Smk4gv?uak^hvO43TAnLYK!;3z7vYw8lRNgHPm1WXVUCR z2+R%Bt_#W~fGul+#KGJ^>%fd0P!}&x4PmG{ia{`Kd$QG3%x61DT;b}EMCQ~}Fs^cY z2$BS-VD4b3wwbk&SALa>L4}Hf-+}jfJa|aYJv404xW%JgAQgdsl*+VO$B0`V6<(-Q z_h0QBP!uJ5`C0MfX-baYahF+vg;ij%bPHP3WXdup0p-0i{`iuppISyoAR2!PqG50% zl|oHSy-xH~XDhB5tC&Vdi&*!S7@h~lV||RPyl<~FzyACVRW1%0Nt92@KG~3av7P6B zpyhp(4J&~pWux<8Whc|Pqtg&QbC>vtrcX+8xUrI3b9w3zrarl|xw?s=#L=zXnj3ya zSkGM`?tpv*V^4vK$K4OPBCzx2;jr+@_mkg9Ar5rb`h`O^F%R0Z@&d~ML-IXQGPWjT za_d7P`5zI}F1P?g;N0Hi41*1`(uSH~FrYIU`z~tAo0H~O!8I%NXZjvFe%Am4eZt4- z$HuQf2%+HNfhcGNEBtc%m!{w@@F~$w{$TMoVm!9^u~c#=xw+QyGqcfTvrPG1EL+CGBB%LR8s%;Qd7t7i2yq&W-FUUx>KWP zc7qohY%|=|9{J{=1yBfTpU*B}MhKI_29oad$wc$0hJuu7qI7xl5xeD?D zsrU<2L`XK)Z7pIx<3rhl+U;HHbQhyrxO+7`=$*RA+DaBoOYvc#D`*xMnN!y|SQ{3g z|M1~yU0Wvy?wU7u9fNFmtq7$4sbnwg_NK(*F?;4C_$QdPV)EV*9M8FMB(M20ilJnW zjqyEX8dIhZPdHyM3#Qvo|9E1O9r~(P+Av97;VeFO^AnAEjV^Hn6aFrW@{46^abSdY zHEI1#g*Ze*4_Ol2jjgFYMDln7%C_sL076ilCGskIPm9g|D6^&j7uj1rq?065>8Q!F zdgu6crBamC_MjvO;1+jV-aMkduxm&$!gs?j)|u5w`;jP*Eq}mR4OuQORd<0gX9`D* zNNnWCQj5ff+qiSMA3|>OiV=GAp!yPiK&xg1Ft83hE-V8Rk?FKN{qx7xCI{#sNLmaN zB@a0os7C(~kLy9pZ6?y8G`*TTESjU(SiFlA2l+*t!}8Aw()(*|_QB#s!#Lpn;V3=cuH(dwn6 z7_lFtzBirsN|ARRvB3}dmcp16t+i|0Ztx_al96{*74xj3NA`wP;*56*yN*9ZTcy`I zk7?{1pP@NoGHsb?UV;0M&qL^P?<1)*L2X|iP;7CCMJr(tC8w-^MzN}r!63lxC~90I zc#Ialgtx}ug4Vg8dYpM7ISG3^rYZ$7(^B`lh1xgqE=4M}4(gj^2P4YI{P<}k52#F* zL@kj)7yrGt6g*_C*aFaLwaZjyXJV3p&g5kk2!Xve4c_FqByT3LKyW8kA!(OCZ)$sx z_R(~VCt~V9iAXx{s(&WLtj!Kjp9)pUV01`5!QFeilgYp+l$BA&QZ<+YTIICiTmetpUDV6uCaf#fik4RpsYCe4i`@v zv2`8OI6Tx&LP!TJlZ!_f?``qa^3j6s3F*X$2AHwsl!z^VOe66Z3T-5lj)1cQ4gT2` z*7m`JK5LAODLB!Gu%vzMYkx*6PsvER*tpex`tAmO0QBlIfCI_|@gd5|G`Bf`2)eHd zz)$DfIQkA62v~Lb66iBa##M~mj2amSgF(6C7PR~E)-Z2)XgIv|1gFKhrOZLE%QQn5HP3wyQxyPB(W$;!Ivm-~SYC z-=?t_BRT;T)o}M86>Mb)L>8kM;dMzOZE7`x=2_Yk#SIagWyK79J`NHJ=AA%+E;g08 z4?e9%uWKttQ>?gu!$0o;6O@9+7dx4Ew;kbFnpq(=t(;8JkkJwRPPhsl_fVhHq-3I& zc{kvmtd7L7xSnXx8ABj`;0f8XAK7)PG0G2qpY@e?f~514`7a>!ySyVfu%T*;K}#eV zSr@^|%TgWh{fmzYWTjSYeRNF|g4LfWIwlwgq7C;R5DNP9EJ?u@u#ee{_W+R*=w7)hDxeYRq-W3&$xE*FjdXST23CJ2Er!r!^r|6 zh2WF%TE4k!PSi|*N+1vrcXZ7)CW#BaLq-kOb_<{q#O`*~()nk?q&GeD@q`&hlHfN8 z^2PN1gLnt-ujGm5-sB0v<8d*jAj5#TwX&@;jA-+3QpL4YMWZa3i8dVFPqA>Wo}og+ zcl-ZK{sLN<#Q)Vvqz*G?OeBLL+b5WCDS!km&msfZhup8vX z)tP|JC$yIyeMYv>{3c`ggEq>{8ZCKXwsnC1|B^ZZ^9&S^j^R8Qcb)e9^h85dl&A5- zP!h1t&=3Sk5Vvn;U=N*?Qlprs{?HI)n1JoLnCtQXzdQ)|D+koBZD;*DL&hkUp2Ei& zf>{;85OF7!Tfu@&1xF*_r~Xp`eq3hwD428x5h57sQkm%}((=FyM%-JG`Ja+r~)qz5&cu0__5={wg31i2HE= zpTwzEDH0r=SFVPtTD(uHMr)#t-hh!M_#wO+Ob8Emw&wa7zgizA!C+oC^~C|!s8Nmg zZBH@lwp81|BT$R%!(hMzfusf>Y)%TcXY~qf2^b(*3&1t_sdx|COsia{7=A&*=xl%! z>XvgQm{FVmb*l{s4!94dU%S7x4m{la7u_3!s5DJ*Hqa|3DJKY`GN;&O1GDgJdnXJ6 z281BpZw#J;slp8~!>-{4Q&80?J&Rda(f{XunA?C*MSc>xt&nv`>gd;;$@lt^1D91E z>A;F?D9+B!({_;g89G`4@ivIpMy~wL=!HePlMr^2|pc2lYiO3EO<#lh}UR>xFsO@(0&1&zR>qGm zuF8|Bbz>BDZN+<#um|;NA!)g8uCrY-o;9v+K;w-eIo}SXXr6))6?r=Ef)EDjnkNZ3 zN{tA6R)FmeUxLe0x4otV1Hi%%Un1zS$=TIW$}{-IRaLPiOgt1dCrvSpWrq>1YeBSqdR0bvW9eb#y7Pq<{X zd&V4E!kRf*u#hfRJzl;wAGvFnEK(AlBRrZUuT{tEPFyWP1zCtJT&One6(Zz@SEtHK zFdVQo6sFt+Ra5yCFj1n80^_{D{=Ia(a>bE53#lL%q=sPD*bw$}VY#scc9W*}5Xft0 z_pEMxr=A?p{Y<{OBEwqHJLill%F5nkJ~C6K>DIp_+Ln7aI4`|Q z{MnI&4*X={;O0c&1r^bD7qal6xlGVTfqZ|vm>MDz46an}%Fp4lD~5x7sPzpZm-3i1r>SCd8oCoEQfVvI@!mrlpHdN)CxLYjm9nvsg7g$h8 z((f&OyO#HeG}ov(u1;teGC04ff$_)zm7+XrBsd^FL_h10u@<2hRTaQxkW%VDtX{YL_RL8F7#B5;ZF@(MC%`3*EjuL{?= z;8~vl_N6>lmLIJ^}VtavG`h#u985hFtB~s>cw6;F>0vB zuBl0PD%qee*1krS8#J4!q{XjErt6;-DRYm673XQYQ(D;367GGvyue^Jy`$rg~Ef%zD)x%ao*9|ys;;8(@G#ALNU+mIm+E9hSaHbE=SM;={J z7&ZELn0jeP{`dI1kW|%Kk7q{pGj%ie4=qGg#+%bZOxyJ2AlSvp;Q$3akL)UC?QF+P ziSVBdSL>$=7Fub|l~v&eoiRH&Bga!ihV(1**OzFqf%qGoU8&9@`YW=u;gC_mo_iTK ztE;0*4TY$D;W`4Gl}I1Qv?uHv9``9&lSZ@cZ97M*)^LeY_{I?}hx?Yhmy9p&v1=SoveBl`S zlL4Pl1u9G&jkIhRBPSNZn_*L7U0vsg&Ihe|M&@9?rNSjB?-^(7Mwxrl=AR1NQNO2N ztOIf$9`*-$U{~483Wie2ag1^cBaieW7|o)cyqj%OlPb*x?o}yWb*I-SX;|r&Q$nd7 zpjyj}{gR!3MSDr|m~U`(<8PEzvM4^f9opy8Nf;d%e(c3zJ@+kzU2euA`VZ~is_S)z2}}~HBvoLNDqD{W0jXkOy@S3(OBC{a zW^x@qrau1dXP4BJ&9^^sdm)6^f~+l=y;+k0YkP*(!AdENixsp^KjiYc-nK{JF|S^Q z*&7n$>AWnF#^fk`EUuTStkf}IAv4)@TzYq+S8APFAVl*SS=UX=GlkZX{ZjSASRNN4pv#^sC%6az& zE<-qE30u6*eUt*KV$z2cZZXEbmRr;6n})iKg%D%`Fn0(c#!qOkopN>-w=L3IJGebk z`Eb2_v6?=>XqlCXmGDy4e<8LoH|nN5tRP^i$R_*~&$DD9A$viyBFYM^wEYAgFArC; zjKK2LYh|SI;FTw(tbTreVxKysg81JAXGfr}p9~#w`CEfDe~*dWD#y!0oX)LT;FcJ% zAPG}%P3eEx_GU6XUOP{-j;9I^_-SC)RcmT=bXLA9fN!Z#st~Yo6ilFlwGj~AVP|sC zjWu*R?W<@~YM}q|{LD05>CHJUQv;NO#;v^A(C`c*fHhGVV;<51o}ez# zY`~KbCA}yUFc}ANNC^O$6BVbNPRF@@;Gzhwbevs3W>j> zo$E$R3p+CLh}I?j>Smw<3HNSheYH&t&tdqn*SUi<7-n62yN7&->wrwtj6%_ZNv^gE zJ{u_K??LBg!ZA;6MzSkPdnWx<*b1PG!jseSUArf!EUcYBfRJQPvBFk1$A5bvhRggm zaAi%KJK~G=>a3DEwOhR!lvjj~6)l z-(f$H)3fit&`~F6#NIk9qhzFyO;I+L#+z*2V%3;;rl<#g>dl&_Hb$}rRL2`Dn#`(E z_ZYWW-vQBBFx~L1P`~J=UF?UbG4Z?DFjj{sdwEvO>{Cw(pCe!5QemDwadI&BZhV7n zCdPkg*fzj$xL47mB6h@Xv*%!QHP5-ELl3jQh_;VzNo7|lNJ%OnHGzmmmrrDuVl9@Z!Pda{phC8tl*i zuCYQHgB8Nc<|{Gid?M8|;QNc$V`Zo$j8`g@Viv!?p>*S2nHmzm-S&^| zB|QYD`Y{o&wDGY>c8l-lElih-`BLwXaI0#7IlN%#YPvd>JFG>_7pBLSA#V211GT0` z#JNIhHtQXwks>LuKiKAM$8N17^y3`-1D7>oY5<*(xCGzD1Yf&g))Y;nXn2@C~IXXVf6CU?ttB)<$ZW$Q#Ysj{WU1Q*DaM{zS zcII7q=G5CMD&5;~V(9Hp-O#)6r>P6jZML?8%iWmxdRk*?JKhSwVN*zrj9;}rhni=l z0$nOw*&&V`1BLq5Fp%rGPdDFAL(8Iu?8bD;CRz+d*9Ph=I;ZZHEO4X`dSvU_aq}uy z!bjhAPZ8@}zdKyGQ?W!Ue)T&6g~c;72mj5OF=VD^p?^(%FK34kKv*#cVY zYHa!%&yMT1uF%S&9NEkCalPiASlFTGQa2CKHw*R4DQ*)R8y_Z4#y&W5BeY1AY?)G9 zNg5?MzJbNBhj=goNQe+p#6jP}$4eWO^*jE6BhR^`(RH#O;l&-*s|{nha{Txx)Qae7fp*q!)Zla>CL(3sRDJwew`*Tu9;EUXQMb z&yg3*R@>?01|Mp_j5=PsU%yH{^m?q*tn{RXy7%=|#-GYM`+$U7teHf!!aB`dupCYM zJ_TGszO<6CBYbf81iol%+nd{Wjb83|U5!#Z<7Kzofa}~ni!-42jWjR}C#r)chCA-M zIE!m<=LQTq{8(F~1!559W4s$3!$e{Z?>Fc}V0k%JJvOsYU}Sy2{CZ9$OGJLI1rm1@ z2|CGC8z8TQ_c1Ek_~G0+|GdXr)7ldwX_Ux^zGmMJ$sE+f2$&#kDUN;epfkrjDVW~u zib>B7L_4obeBy2GP{%Okf;-AG87y|nu96C@#?@Iy#a1-MvM^$zZ3$vh;<*zVvR_Y% zLED+ytu2y1Mfjx1=5R0WrgZ(37ecaZavG>jPh9^dg7yl#*Ef}^<6Qp3(weUU*1!E) zRw@-Ue^}F2Dog1%XrL*`sFnH6`-2BrbW0!YLnI--D}pNTuV+J9?rRM9baUHpeRcnf z1G|Lwo;hO}5nA()-N#e5A3m5kM8_R>sI)yr>OE+G+@#cDS?Gr3xLT6+)$!+tpM&)g zrFUyhP8m9!{p1*+t9_^}MI|ls0N^(83Buz3|t|9`=wBuj}wk zX%TP8`YH6;J?q5canIRUgV$l%+q~ynVU9p_%Fou$Fv6pgeMV=u5D>|cjfP*V#&#Po z&dC1#!#h@Owz_a=B7u{pqiCxu@jV~Bk6k_Xc>k4} zIN4@!`p5fuevri^w#0j0fw|1}AMu7mnz*(kbET@6U%p|5XOqs`ocs=*+kH@(q?Y{D z@9XSeUi_v@bH$yW(+(kw4aMQ(S6)l%HTJyn82lrf_ZcclZo zAHNWn4?p&)aIYWL?C#5WRVR{&Jftj*U0<}-J;>_i?ft_qQ@Feo$g;Hgk8x9RI9s_L z+cOK^*zNd;kG9L0z0GN<{xBP>BO+^cE>JM1fafdSx|AtH3xoDE??c`^<;tgW zmE2s@LgvqT%`F}!4(tA&de%PIePi|yV%Py)U1HcV{aEAPW$2yX)^KV5>-Tce%HoI9 z8E!>RGC<{<=E&xWO5BN}efRMcoGfSLLn>pRtmSg|pp9L&%H8THj0O6L``drIR=`XNlIY$=nJAFNblRSH3I*h2Ke)Ds-Tz00XY+jrE z@h{qu6jw>CJ~gKPOXPnn2>9Sz!o*$d0NPE?eo4*Ylt)eH&x~YiP-l z2p3jYdh;iCpX1lA(m-bs_0h9a0S;7?xg@Xb)QYSs4g`EvX!^?zlip3`869MOvEPXf zdeZ^jL`A1I+4-*_t1df-=if^Werj}F<0Bpo#o;QopO5Y4SWGfkL*yeZKEv-)!~xkW zKipizFYao{`7rL?);jSx?3fdumXr`KzxPSdAM;CTjKC8Uo31~nSs%W(BHo2;cP7u8 zO#aHjJGP(y@Ae+KieP0ND!V2CjPP;n^<9OLVr zNU7DU+dB|u)n3JTtY;O|#r6TZ$Fg93{o*bZf1&K(c27-T)r`GoSWK%>LuABV_LMvC z8NrW-Ed?kI#5OmIPpz>Jr)gz}F1h@WEkEcv6G7e9Jd)4D z;nzK7e6m~UZ+{+{KI6H7=;O#c$BKhj8{gLKV-d=cDu$Wu=2;=D6yJH9CrULkO+anC z>@)VPDt+B{(i18FP^+hoVAV?n%3gGQ=;fWZW-UF?IhGJ@A#gE7ao~8Hq9WU5)|CUCtUBs z9VMdWHun0}&53CC0=oKPignY&<{NrHqZ{OOAxTzSRwXgo!t3sgRa-ZaX`Ik1c-tW& zJtnX_5+S*yS|TR}z8*4HH;sEk;EfyJ6y9a12fk+lGUZr*oifFs} zFXuT+eMva5WK+^if9Ut|lcC|pcRj@kA&G07(Ap>4P1mA)GVF(t-jb}5Fz`aE*x&DD zv+e1#gVRATGm2z<^e#K(27I*Y8qC>WplJ(98VIu|-v2GU*UoXWAAb4bhIvWJUIJP+ z+XtN{VF(xRX*vb;$vkSzSXp>(|GjI(EJu4U__oIAXBWk9qVSOBd+}U-Pg6^^5W+D6 z=TRVp{wRgOAk-3y;&gWO3DqqYCl4iVVfd0iOoi_TcCTufAkCK z9vH2hS@{^bvqE7BK@d4Ng`Jydycb1(kx`WHLs~i2NjCuq262LG0M^|s-pj=8eRSfH z>W%kUai2(s)0jDB(pO9;v?Ey0r_}iEp(~-F)t77ZJ^t)LK1mwjvc za_wcU>iop6>f+46SJC)ocJskar<`Ek4dv0kSGjk^cgA)OhP|yRU3mX~=!t;hf|O{v z=IZan4?yb=2A5FP@i%Jec3RcK?epe7k@{~uRq+K^BemTmG^0UUk!Kvph1X(j7SE;j zncWZ&68|3|tO-TR#QP%Je{@Xl1P;w{4kdCAhe@(t!8OBQddW}R%W?cU{Um@DdV&oF z-hbHs@kZ)?y-(;;-BcZ|oEy3XTnUeHk}k18N;lV3-d5I{ncn3SDGd^k8NAdnkr(w* zRn=0#re;z~ME!cm-RDQE+Km5cIVTdWJI+T;Q{^%~s5X_YA`0+Wp{KPu^`|UtaNEvn z>**U$AbNvi_)$%XU$&NAadR~xQ)F>pewHhwe24r~s8ddxrdN;LVzov*VC1k-R9`}%}nEl8%PV<}>6Iofw zYI^(o@2;Wt8sA7EY+lrbrG0K9ZhIHNmurkl>ONnNLOr7#QCGE;a^|yFam0 zPAqv+Cku`?_oH%S56^K1Bv@TAbMVTr__MPclryM&b}33)4f{4y zJvi#DB>QJf{rkn|6QthH`P}{L5N7|ReNSpvXg)P^aAmE(9d{Wxw0>kTC+qLEP&d2e zxC;bgWfFDw!tUk1O65-`Dk8bNb9P4WMwtI4o(jagUOe`CsK=vXS47Ls?R|TBc*8Rz zPY6t5gY@g=XU<-aN4x&m=KnSAwD4zgiXGIlO|tp=s_ryuv}ce@P$ei=C_gc5R^8(4 zUt-+;kk`E@Lh0LQSwJSv;8E8()1JZ`AM1BXM(}PBaHH$2UDFa~lGm2((`C2mvgK9a ztDOv2+`(&P%&IkJi@x@K$^Fu+Z`^<5tpda~m2G*p!dYzL5Cf0DDu1r}T~Ql~i#(U| z_;?L3(c&xnk1<$&qp!nJTL|$k<0Y)9s{4w9dfWc;qsY;n&8@&@^k18MBiJz)kr~97 z8Q75(t{vx#>>IDFD-QBr!!?t;1}Al6hI95O`~^)2*Bid9)c#hl?ysJ%KYG*Z=^9>M z2Le}b1|C4bi^NSV-wiTq_iao*UhyNiAd~d+-)$>Pz7F&y4pV(l}V^6xf4h2$Ev280tA5BJp+rPvScO*Sf}rF+Ml!H3}vfJL?Q8E1v}bC2yw4`qHg zTn`cbm)lmjor`&8hz^;jakg@gs|fQr`}O@-cj~}GCT+Q9n7ida&pShP*gJpQ_32-P zU)dbi4J+SsOQFJkj1KLp+mi!(K|NGa#5MUnnbxj!MmlI@+Ld}g>rTvp?BC9z!C7gY zmH#;ZrPOl<$UEWFC$o1DW$S6KUh%yZ`}wpb`Lo>W=$#)X(=h}5PW=e%;GJxp82+U} zrIu>n=X*-=FV>b5_3t5`EMjhz;}bWQYtOP@DBVNdZTdB9Jo48X{jJr=>EVtD$Vr);m~K7b0_+n3=(YwsYs&Fs4NvS;WKaAORr zt=uEABQT{mQc)YLDn5#rt3z+`b${QKj*gulMJ4s@a5OtO8hyjfYq~zJZ?G&uha9`( zqJm@hakZf&Gufv}1d{2dR@IftIwo~DC4f9?CcIYs6=EnH;j{oCJ9hF!h4!i?praBqJJ zq%_Q3zVO*aB6$ca;@AupYwOFss5;FN&SwCIhWEreezShRwR+zweEWWot8bw1#k~SE zZ11q>(&dvHJQ(HmZ1w%z*f6Lc?_bVumFpebZ9MMYcpxOp^IV#$(&35NX3v(zw2!6d z{pvzfflt?5?w_KA&_U*EmG0vY34fE%lsleZ+}|s+JtYIrYlt&p1ef@g@(Yid0x<+A zJ^N%^bHCjwL@LPMa*#iy0<`_W!ZsiEhbbsj?al{AlFh{9B0H3?MW28-moBTkPJlUN zWMGG@x-#sr?U7q$SfRlc72n32`iARAh>;)9_OM(-uIx*!X!K{P3z8mC9;5vJ!tuxy!~xyvznIms6S$DUq%@A2t+jQYC7|!qQu$ZueF7sj zCZl?5sCW6qAA^W}?ZN@+`U#~=GI^O)6`;mrRU-Fy(=p@N`m2#j=OmiV!(iba?*k7Ho zAQGeYKe7Qp;q=G+Nn0N|?`V5eEi_fZ<^|It7ykFq|0j_Wg->TI-WdO`Cl7yI7?gQ<+T-xK`*zONqasY`VPXWX6Q~3pK4NsqO;Fd&G`#6Z7zn5ucNtNTTKu3D~Pz|1Y0&Wv?EL zzbEeaZt3dHr;%?@cd5`$g29C3-zRzezo~pYeVc+}Ik&gUI9L|lx;Q}~*#a*aZz1=0 za9qgd!6idIggj*Vlm4x<#tIX4Jv`|q_7{CHuPe4Dc;|EZ6)w-gv+GO(hWMv^q^t7_ z7s+FsjS}DeTj4#|`ZdeyAYV zJm`eKpnTqYmSj3`(Wu>}2vGg;&ENj*xKs0cEWc)u_o2PXg(p?(sj_^P#9|5eZ@nXi#_r?Sp);p(pN(p zmcI6_n@eQA0N)CbabXX)+4DUfSwb<+`!f72h$)4Y??eCfpXoN-yMgrPuZ|W_Oz`c4 z*Sk7y)yn>nhe)=J`gpSEXbdUm>m_lr`%;W0HXFq)x%|LOrDYLta~BnF_Y^B}i@p>r zyhhb~5ZLN@CKf^`gpBsIKdpo%YP(q?^QiXh7aM?Xn?e{{=g(2esdo+KH2#^9&OHB| z7>W(lS@}oVCy&Jirb5)m@Q~JJG@QIMM~=a4A1rF*cwm_EK5OpVLHM@xM%&nn$F?|o zrzJE{eI9V~u85xYkla)@<1s z`})+C?OMiCMq*@ZitHL&#*$2$K@DbxxfnYcOvXB6`Hk-D{(iqd&Ohgm^PJcB^_=s( zKcDY&zQ-f-FQIzJ`kmv{&Buqsi);RpHC%;OO0gW32rp-Wb8)i(h?1UGRcAXSf9znS zj+9hhxsZsT{Kk0{xBG7=onp}|vK7NiZ@6}`c4FZ#Klm789XfSf8{UU~(k&_%yJ$KS zahVyZ^&5U(kZCY|ae2MUYJpa`FK`zOk-h+u3S2e+6N>|2z2()1`hpp)S{NUPody|mgO?RlYf!S)}z zzz`9s=+FqWfSWlEeI=8$@5fORC^I~kl}8HNF3O=#-p9o1=PS`G)UvuV3%wh99N}Tm@U5X5^N&EG+wY%V z)i&2d(QqWz)h^}4^V?P#NwsH*gKUl|{d6ssS6xOM9R!$ZaDE_L|5~2U98`mCR5f>< zXMmaI!_m@#jh#PdLVv`_^vQ@y<$N5dtKC2+XwS2+$a5!E7c!q16+wx+0n+1 zMzew&!k?)nIGNPv*EiNmK6z z;vVm-+$tIayG5&fe;^(M$i+WIXlV`FI*1n`89SCLdFD0pgf!;CIfRR*iNvp$!OSO8 z82oUXw`8!W7q9zvrZy`#z1X`2Y7}hf#N2)|wnqx=d%tkO{TN zNBz6lmy?9U4YjhPeA%my!!1q&?hgIRjI;|i>zpmt2fi1B?yhw2$ef96PR(+Fsc*6L zZBu1?i>&8^BD#LIhH6XDnFR_HSZ27L+YxS2tLeQKSD&Nj;E!?~6}h8~X&3uUsYAxo zB7o-2F+OVxJ;0ftyIp{0-n@(OoEA(PK$v@Zv_J=^RX)MI zK!auOdUm1+W4VB1djf&?Hg;nuW)-asKaaZod6`^SIj_$Sq4Ffb&VnX+UcKNBd%B+$ z>fu67rY2{GAUeu(W82Xb;U4JO!svZ3dRmWQa&F;`_T(SU5$J|$ zgtCM$KQgb)3a$4e;2g)u(IS5QrXzQ1dT|XzEny|0uO9@GV76;B4H5lR_px3j;K;KO zMR3XmB#f7${b&ztl2LpCRmMkju5kq8!%XS%=s5n)^h#W>r&$a380-d8uq*>w+pLyK zr1TgoJ%Yo(ZtDqyHQ3OCWo%ntV++Y9<-^eDrK&XQP7rOeu2V5F!165azoeml-q%NyQ60QmrukQ9 zZuy+1Zd1R6f|QMKIM`*z+ysMz4E-O0cC{s|MM5ue5)`1HO?SP&UfZ9!K;|C!S;NZ6 zy773Sj##{WeH{y-uAUQV6TESXcp*Alu;CQmI3N(W3mPp*KBdjwc^iQEzCPrc5WE4F zAFK}FXV3D23*qJd zQwzm|{Wukg_HT56+icSRtse4$029JC39ULP!?a1AztiP>g`Fy4E(#8an!!Zhm_TmFm{06?%zKdrfM^jctsn$?{5AwJebk&8V1gU*YBRD>XWMrW{NjeLv)c37ExTA z^kooO;_qi*Yk?Ad z+hM@(fm~D}sIt8^Yt3g5jCQiadwH}dU(b||x%fMi35t*Og9X`KjfF{*58U+h@4J&# zfvb%QsZmSb|C$gG3Mb>cjpheT>E2owyfvV+_h)Kt#In1i7*ACP-$qcczUe?h~~zDS&w)UfpXKOI|5~4*tbnEJjGntfAulUh$966OKOVE^kTT zCE<_m;3DCVOw7?6hP;&1I`%e2Tf9Gg$g_V}K}jhhfp0}INo_)~E)P9~y)Vf&W-UPZ zfseG1DjJeumU0L_;6FPc=f5b~da0enLAJ5^%n?`LK`gF5ZRWMQQnLPvHrPVHx*LhA zStpU)I~~{Vycv+dwlGAbYE@00sx%{YOtB-D^tkr^9Z(UR?^usIr6sXwM28Yb8s)U-C! zWY>rZBR;ZB?L7E>@N8U26%3pO?@=Cdb4obaBwT$9RUMT56&HU|uNINAx%n)n+cuw% zSn`j)%gnv-qu5s2$=}%52O(5{RygsdV~MuIvH{0b61`%P4OcA0g{wbmk1u$cGZTnz zx5?X2ERGRe11-|yYud;E2>&)RFR>HF5&hx1ge zngXo~$8RA`#EV&G(`?7&*oND;g4fS)YJIZ8Kj@b=8^b=sr_T+qU+1@Q;oi2GAGC)| zzPz%@sCWP6w9tR7xBrzczWpqU^4Iw)yPvx>f({$rTqZOv;FSR#wckbMY{cyKI zo)ycFr;{eLXic8dGFX|IH|r>j<*NtW$b+d)@v)7ty9Bb_X{BX}LZLVdwF$jDb`28l zTL;Bx2Y?mIeDCAcrMk;+b2dx`usBX>vw0Ll@G>YhVM;r4FK0D)-pLMK!8$#q9lv%; z8~kkT&<_auZdIZdcpfcUX<6~b3Kn=o&GvtqDDeuSf{p)_bVEb`Srlmcr*f>Vw@%mj zs!s)()(=|M`?Q1h%)j zq5s>8_=n8?5k;o1EK<*Mr|pvSDYY-H29D(i1hN0k%kT~FHxw#?p;pUohxclg8?iX8 z%idO|8+sWp+Z3f+afS8Rhj$tFAOsU0pI5GIcVBu1&3_xICm9=mr#t%9k}n-q+JZ4B z-jHtCm&*&^Xa`^t({3$CbTjZNV<{X?Eo%~EF=Bg^Y;5C#~lD?$dH{=H*SqKhGd(on3NHz)L(WopDsFp1^oI{(U%-eX%PDX7sAHxsn*3 zrJJMrpwtE3kZ68X)xmSghDZmb%mqIn7L;#F&6^n1g$`I8^lOTZQa+C`k1ggZebIL( zo#}Wy9;XR=J=$QLFstYV;+*8;h)q8}eXndU5sN&iy?5Itc-b`Stv#uS_DzXJI>^z^ zi%0)0SJG0%5Hg(`-tbn_pj}A|WFD5D`Rys>Tu%M5CFkBN-<61c!=MO_oKB_sVecz0 z{DPEeg)34t85H8YYkRNyoRpREIokR+!rZN;w>xT|bYpT})lm#@UI8*OHq%$1yz(pSUcwP;&kB)-opTW8kP zG^WdMY>^t|h5r@-)=)S3RXT#QR7qv{cFHG9a2c;X-|d_8R)gb^y!U;*isJamA{T@a zdq-HMrYxe(+abr>4lK?ZfD{CO)xHUrGsc=M`>WUeu!M@F(k}=3-)I23Wdx*xbMYRA zM;ucHzZS?}@PyId$FB0Twhv@cn!xTL9&W=Fv(u=;QcDt+6hjz#JM5{;a-%h!eoRg_ z{2bJ?%b)voDsU@Ut?#^fmghz%hvKCj#tGAc3a}rXAH)Nmbp1*pRMH*aWcALW%PWJ*mH--7 zw~qNuC+eSEGmfiF$Ah8O{2MH|ZBjz6t-h3SYSiadAKjeIl|JOi#ot6YPEirR< zyqkPhTI|@T-Yb0$xA8D^_rvC<;D`!CkY?ZnUHT_%NYiWYQD4s<{)yL26M3==@*9D~ z&K%F2h@I%)T??iKIq>R?&=R|PDrzPFYJ|ep8oEQC*a5qhrvf+Gi5$%qS!wyDWfXg z@MbzdT7exwbwfu+XxpJeXr`s^S4D#-H9xQJrGxhPOX#Z{$!G4}wk8$j#>6qCL3uTS zDkyTW8qw|f9Rc$Z{|;Z0Jn9X$9HZZZ2<)T+fd|kLot>MtBr}cCumaYRNvBH0b>y)N#Y2UD_Utla~ef<=>noNlF87{BlK&ZWhw6Z?<*C_#n+Q zSWj{q;`^!g@B547DSZUP@MGTZyy=V^`sO8!a;KxJ_K`iY+Yqk$HU~7ezR#vIhudLt zHo^rxi@Q?bH$eB-ETpQxUu8}gb>8fOS|hfBdlKt z@B#iv4SzZW@Q?ACPeh&wD3`=z-`IL#8vo}~$Xj8V;v6BIkOfa}PmKxMw-hp&4Iog5 zhQu^7@*5C^%;q_|t2XMwOW?Tkl68$P-Glx$Wu~l{hbzYqE?ZG~X!mav!=8)FCj#l{ zB?guuEvI(bJfz9{E^9#u=({D~1W5kCU<5oEpS%Yb@Ls^~oA} zEJWYy2(nz;@tJljgItzuOsK0#m%BNeaH&Vy4K|!v!@0d=3^eY_SzT(qWaMPm-Thn~ zNBQcrW>o3dOKa^rP8X9%G{vh+!;ezW)}|XiTD|6xhCFD4!&oP2r) z6}cR&>av+NAzi{UW<9e6Q1gkAN>t=>EmW5omtOORh*x%@IhiY<#iU|3Kru($jC(6k5=Y2N0h^H)7VFAM|D9=YvD}zV|`>R0UeEyAnJ!V?N;ysvm6(%Z8XCK}iN0wgg43Kx zv9;3tn!~SFU%x>OT%ZuGGdI}ZJ3*ZZmu2P-jVkic8segJmyxh#!5voc4%bV;}!i?_K0WA$A zvVlgjj&e=z{wt)nC6Y#^H8F;^j%x@5Lnsq{w^ApeY{x*ny{pYaRqsh~*#Z*`Lm-&C zE$t04IJr_o;(BSaD)qGWg7hqnMPN+#BQxgD^VjmMd1M@R+5+f@m5@q$*FCzQw;bRTK+gGjO+Z&wk;aHWot}{ zx+p{Al4VBN&pEV6gB0$&)ig<&I$nB**GPwa9cv-Q+@)cMVr;3IyDC-s3U)+eZcvZ% z$xqK{ZI1&pGN=@k$*WE{hW89jh_Ec5^z=XGSdr|-b@@x}(|?EWO7ocJocdv5I@#ZBl#oz+y$?vOJJr^H6svl39dnNvs$j{xD+qdg^wf*v`g&N1jRb zqv~XmRLr9rJ!zYL5smhKe1*>TCp$|+d3d)>)j;pxRzay}^GaP^^4+X|;b2UCT_tCo zltSVz94EzTWk2Lic9UMNg!G=we3EF}5|5e9?V@Q5nr&Hc>JJikJYt7FVh)8MoLI{4 zuwGGHXET1Jv0mXN?abhpNy^oSrMD_qKKjuXXL-v+9=Mx6X!Ezvo4BFAYL zLD1*oNRH}_B+6W~!c}#lM&hL0iM8klc6KX}Q0rcc4`I2ZCFgcLaaj$Adpg-I)?SdV ztM&MKH8cS5Ji2+1|82Pm2}w4JqgWqeyKV7t_0o3`RL{}HhK{13AFPzjWqLHzuNY4r zOsZm*F*g%Y$fpvNY~!GR<7Qq60K6N+tj4(?TP*NutWOT-ntr!fMC%`C(+q6KTl3{} z5mJA&*7R1=Ph3p_WNt>R9i*&v&#eh9odSWw{oWkim?Y->k-uyvsbqsd=c;%8sMZ=o33qsfy#mQJZwL{nsZsblu zfd*7&s&a|pA(YKPWu;!+DnDN`_(0^z)AZbGNDe0qjVOzh{F9cY1&*?fvNIiUD%$oL z#&O0gXpOT)vj~vw)e$c)q!BgRf0JjBxjRMCD%@*=Q|rI0X!s*o4aJS8#R*899vwS# zlMTr2d>S5oQ4h;$ML6@D_W`eWq0@32w8otNEavH@Tap zmwL(n&6GyDdNCS}=*Ypt$kSjNdRAlk9Enh@ZK)QO^{#?h8;nj7_voZuk9u!-i1cJ- zTy_m_z71|dLlRVnZ@Ro44n<3Ypyyra&q_`qoE%T%9AwbUoMaoXcV33{ z^M`p>G+R$TPo%qyb%(&e5SqO=S>n;Ovd>7B_K zo-=)|d-J;Z6t*>|(Ed2tQ#u2>OuTF~BS|>}i;cRTm6mGRJnMub>C`fTC;vDR(68frY;3pYb z=lnbUiOFQ;w#^rM$-dlXeW)VXNm$1$4t6y^H5buchc_3u){~`XWS{MM20Kcf-tNR| zax=0%v>Q$NKsr&kn~9?-3;U%yX!hFLRC7N+Fba&rhVn7sRkmNZY!9n(DCAvWk8FVb zFxij0r=Xx(&VPWNr4pw8grj+fjno1*jY$e`A5PK{{L~R0sY^Mwkl4@mN@erK9jf$_ z1oP;*_bcv9zOLmm-k=Fd#E`N$r@3Zy{4ALV>9!e8`RGL5xMFmAJf`g#(HhF{toGK4 z`nAQuYESZ8vuMjw^*P#vd%~%3b#=SoO}!rLNO13QY*3cL=9;=LTcz9%|0=9 zKb<$Hs1-@u8Xi`HRQd5_EY|6n8gCsWn6vxx>q*lEdPuIa_Y_ae%ZE1fVZ$MsDrX(I8hI zK`d2pJo+sM?p~YkU}CyWm*R2tseXWd1KWW>=C7I1ER;$Jb#Co?fmnh{GyeLyPjI&C zceu!+TZrQ)>65)cz%BEc>TDP))cpvoJ=Ij?U|-+FP)x$B`wFf!)0=k>RKSO~1}aIs zX5xpI1yM@Phx+I;&cPKdlLQ0cRL`1;Sgd%OZ)gWNbs7%0=(eC!g%9#;o)kLxG@d!D zdI`(hE6su3yBd9`16|q;al*jH2Z|`^Wmssv!pGp|UBoG9wg^2dV`dnyX=+lOB-(* zuWpAkbv}lIMDMT{D;m)c4#{S?=vc*sY}yO>_0bVM)G6$}-^N4R3Q{}?b^d)fHF@P< zASAQ?G9{Ng`Sh*yLPIU&@aCgsS%+oZw-tvh>8a<=sx-Kc53QJk)Ha{sHzp+k-BWe# zbUOIXhXq<^>Py5>Uj;^m^$Zm3w9K+u;f=?$zvsz(jo{xVp91>WQ$8f;OlR2674WB? z3w1&JdJRX?gw%)70j@*u*Fn29_JQ9ao}#Y4>#N1;Lo+=a`pm~#0gF@-H2g!y zi^5k^KZavLMUH-rj+f+Q7*03bs@b1z&DmOCXeAOF_me`JJ6vm2)d_-Ukst(&2-0MJ zF=OEVgf7pw2*B#1&Hs+7`XroOZYc9@X9yGfGs}V;O{3@LprKidtU%!{;!VMonkQT9 zS;5^g==g=|)gRs<8LX=|!`2NwKi)83St8c+l!KxNM$9*XFnEv?vuZ8q;jWIUo%+$O zP&aLI(~JaikJm2`yAIRYsH zt;Yp@6N!Jlm6H=;F(fW^D$}xgA$9L2)@t%wW6M)x;c2LDpD_~t?ji<6%8)@e1hNKx zSFPs%Ph7Au1eMC_p~e_o_-h9%IaLE?iZU3pHA~|ywY}pw@LlAEHp1S0=tulaeqVvg z_J%bF+B)B;x-;-B)sluB`>~nTv1O-2gMRsZ$NcHe_1gM+6y~|KN5d!Nh-4mq~Q`DI_hD&1vNip;bL!{)^z#z z-O`j+$DdNHTMHnjV+<<;ciUNj)Pto#)$21w$Q@$n(k|bg;}KW z&T`;hSOKLDIMR}inY~}7G%e3xWU1+EZBF>QOsL+CI*JX!yl#is5;;*bEE^*(;B*XJja&)Tcmz7`eqP`obP!Gwy^TLLpK%<=KIT|G-%XkC@B;rG t?|O&K5y)U!{p`pC?dyZ9)?Xdd=oz@D+&zom+=jgP`6t)?j30x}{}*~2(5V0b delta 8263 zcmb_>d0bQ1)^3K$ubhCmoj)S3<|(Q+$L z1QZn{2?Rt4VM>q+a#4`N0VE^=gG3LIfH8zA$+r)oz4!aR_s=(f@Jsetd#_sf0Z zs`7O%7U-0_?0}R}N947QN|}`N;=^X^!5>#$eWP>8e%a6dKX+{kx%u5nL*emHo-F@# zP4AYEKkRyXHCQ$6ec^yS3Tc+S-Wx zMk;UhN|`|N(@KzFA5R}yAE7ir(Ibu2AO`cw+=ekP?wl*{*>cNz4EV_T1E=bqQu;3U zQaG!Ubim4JyM%^y%#A)U_C4y(hUjQsjs!N_`j^IykzvxUd~hFf2?=f!(m@C+VK0*cJibyVV~Ca zg1d0=wpO-Pd=PNrZ^tX){NZV&N4FKeWR#t&-Q?OH)oJaLPch2Qp%_7^6|U{8lN3XG zr?+W6r{U^(152JqT2O*V^m^$T`0We>x_rI!p7@N9wLyvWcS`a+Wn^W&UF&b^&2^I= zv=T!r>$OV@z8_7ZAv>To&|Jr=e9zJ)_=8Ir+t{g74*k7(d`PdCx@4f`!xhYH@>WX< zM-YR|-0Y&GA#8469TFDP-&7Z1$Wn_CD&nmWB6{%sgsbPg6gh2JAmitP-pb~o;5>7B zI(JTuxMs3k=;R}c3Z%}Rj^1$gl5b@#Ui7SqDVY)E&HcXNE4Q`iZW0>J{n<6Cq>}V# zWa=kITvY#)c?!b9+j*!b-ogZV0zeamn0WSl+)68J$9=EfrKRzW4$b@RHy4V|>J#0* zZ=l!K&lzSWG**V&u?kR|nA;a^IuO(tSKyeQsCbL(;FOY2D7rISJ!AFLAyq063RArS z_`vFb1K;*c1y0+`ycG+`_U$xo@thHS<1-jVLwciIhJqW%iZiUTr&1sf zA5TVEj&pj5;y1nC<)|7LBmZUKDoC^G5He$ykSc0Jj=)fkv-$>dc{T?`fY<*Xy{z*1 zS+%5R>UBc8OhS)i3T=`XXaFI{(OAY$OI`4T$E zEprB~2rFecY+4en2q1i!7UAPJ1%=_{@o%S{4K`_4oB`%zt00g)^N!HCZgzV+LtbR& zMmpFze-DvWXWK0=%N`7UM5zE4gu%WWp~>18#^qKzveU^P#HJpxk6yhev++bz1lj0g zVB@iS2bY!mF0X&~DhKW)%}IwV6;>vRQz6`?15hgYl|rg?=AN6|Ci<=+Vqb*d;q7zi z;U5O<#t=X({6lsnq9hpqH0E-doh-SxDXI(e?Ce#+ZLo-ea=*EGn z-mfS^^5C}n_?19v{2<`Obvm*$E){dL$OW5x&C|At%dk5`;>*1Wzh8+Q7iNq8z2}Y}_7StF>wjhMoJt1lLm1J)?p#+LYjw6J zd%!sZ^0l&$xV3U;d5aI3v|klxTDJ!5$?k424(S#?8j&OqjU>C)k4P?5G}MNdxe>>| z-jjo?Z&zL|5r;lVuXo%f*|43#U}SlwP2{X(E>cWqZ^i(?+vmVk2mPch*($GAE7u`E zyzDD9X631jH{3u#SSsH@cS zZHNp1Mjlt1N-nl3WxJQuf0)G17o(szCF=^I*YkEUY_FN$kO3q-A>-UZ1s{&sPLn+d zsk)AUvnc)`rI>kujEC0LG}O|`V>&rER`Jur90`BG)Y2PTW z+q9&fAdWpWKyTioa^0k`UgCcRWY=jxI@dJcr+MuUyj*Hfnij4wl$c6RLW*EG*T{Dx zkhZqiX-uiQd$1W^DyFiHoUMw~T*Vbcs10OBc!Esp>acX47 z#v;iT*q@`#q-j$0{)~4eNCH>|8va=owW+WcWLKSkYGjDIT31M8y_t<=czCzc4e;-8 z@m6RH?06gu3apQvM~1ASP_lf_b!~NolsSW}FNgBd%Q^#x6Ld`uEmqfZu8(Y}bgqA6 zCpLb&)(2H-?aIs!TQdj^!Dm`u)F^ZRwsa6m5J$AT*;~;jqexqwQ|baivNzP8y4=YC zEs2$OtFXwbJn_u`z0`t2xdh2Tq;N2PVUS1Fb`9e(Op4MwaY}a{{S8`-@tCUy%$S!S z{H|Be%UDv9D{ZPf6X=u_9EI(_p|vP3qAKch&?OiyXNlAG) zH}o?x$PR7qYL*(Pj>g-Yoo0^{Q~z|V9@y`E&+)4hIG*uRM9wl?nzL0TMl3y+X-T&< z;j9mPt_5FWHSt2#u6bE(SCI|~EwtEaMvgta#ICk_1bRFVE#CWI0(*%cB$+#&S@#c^ zkD|$;byGTi7$C%C2vpwNTj2_-MR-0w??G&7EX(7XA9|+gX(b`4G~G+lc7ssT9k|={ z$Z5<`{Up5Xup%3wgQnr`w7pVEhwQxL=tBRzATkkb+FOd(2-Hp|Fck?Ec!fz7BZ0F6d20VESNKblzS7+=_4=pPz zF{^2JC@6E?!x6Qeg2xzrqY_lQeHy=A$#priu6Uj|qQ2q|mFoIgTzm{C9Z@_gY3;*z zvdq2<9-K_5xi`FZeb!O4(4b&{7uMXH9;GX1uH-)cLvY4VeDOA=CZ^|054KOc*u7MD z=z8+r{bG43-@wGOXbnn+fFx&ncc@OE;F`I5+ba z`r1_Z`-WE6DWrA6J;c=4I<4fHo+-Ye{dyo89~s(PzHiJ0-nq5!VW!fj;DKdaf)#J| z4j?{TmgAUyia6|_k}Oc<&o&mu*=W z4~()u*?6}W-#mJcbPb#v60AC)u*DjMYeL00m&MyV-I*Tr{^CKe87J>LdqFmNqI z#Wb~#*=byNedB@~wn|-DVQ^tt`K7FD37v>Jz96PCOqoO^5)0t0`uN2h@9o-Z9KsR? z3DQOaPESozA#z;wQJ9Q+(Dg*0-OY-=I#fkkQTHc-*bX-KpNG-Gc)! zPP`gLG-qZ+@85i9q3in%&%h~Vuc8v>GYZP2PO)eMzk}z(kd>)Z6p#trz|i=)RL}MQ zOvLrb@U)V2HaSX>PsO$2eMq7~ofyCUN~UmN^4kjJ92WnX>K$^k;#bh^gyG#8 zb>2p{@9#7`s>Kui6+9#yYqWX3Jti)3{(vGglmE-QzPbX#5AH8q-dk|aoD~EF*YRY<~!Sm1Usx)9l7L%!F4V&FNS&SE~iFwXHKZ3MTW1! zNn?{wHais-gruQP*f>3;cBYJSaW7w|kIg*ecePC%ZYI1c<v(7=V#QYvL{c!Wo#w-AE*~PR?4Cf;do;Q>!;xnYMd8HVsm^IhmS}VjqM!a|CsF(wdu%_t*sc3b^4}^847jd|7YeaaV}o*FjE6 zYVHi+rReJ?J z{sjEO^!~NMT#0s_m@pk}bAU1V<_dKR2bE;_7}*Bhcz1wEAg0VUf>>fODQhOngg1~~ zun(L`cb_;XmDvW3j~#=ZOv<8Gp#nVpe802@;gQmMHqBeqwPsD+!z{Z6*=$pV0ZN=< z-mKWCzvMe6Zq7YwD1`05SDhywQ}BX2W`9srw5dES86lw!d)(}RD1_OxZX^Kua znErSPEtt1C{+MECrWo%F-R~wTIuI~lc+%?HLXNu-#7qbE+b=XY9D??Rb; z2_Wx7=UvIWUt=(a9~?Qb&pW*t(nuQYzr1CTu{(9{nP{J>uX^>Xawk@}TGQ5lIld!> z*RKa2UPW~=YopJHDx6?1y5X~3E$d(cz4fS>=sPfU)ZRA6zx9W$GJ?_iiy;i3RJ?|r zS}ad`txCd+84Py*R2AeFtsf)mil3_T+_Ri5vHOv&WSQ~TtZ*B-DpR!}&)Y3XZ_T`e zcPD;iGt-3Rz}&JBJJfKzcc`CguaF~|UELzr9ZcA{@cFql36TI|6wVf(e+-~Zmi;w#2~PVJeEFv1YVsW#H#a?Tw`AAvn^ z{bDXdJd5KEzm{!U?L?q7OR30XWTgKxhPTg@(O6v@1_JddxHYH5kE{!=N?aij-A^Sx zp-m(b7n3`BSg{Unrz>|q zdzouII?+yNMf(|5K3viNi93T;mR>~06BCGmVEn8_N??J+w0j})XqGpP-pCFQfw=5$ z4e0Z9T0-6rR{LW7IIVUI6{IsXzUS`xy%&kfya|`A;yCv1g$wo;gv$v{or#iUCjyUv zEsri^svoH!^ZHXQQ%s#bPkx7g8i1q)57KYH9A(aSW;a%;B=TjQ=f@9r#t`%^; z_6w0H@~FI^VyDGW@RE_=I;r&3DGY8<@QcYCW$m?c4^|xR{`c7e_U_d2$$67ec^bn2 z1n&lwmY7CRba@o;@zPyIRgXDC7m-U?xm>n8^#G}t(gzubbvrk9OT?`V8DS=`TrodX zh+LsZ`f$rTlR#`o2C5~)FMM7?`pLVx2_YmkKboh!K@IgNe`^`*H0}t$$RgSG0%r!pdGjN|9X1;ONZH%*Wx}O^ zI&r(_btkG)rlJ%QFG>2#zZjR`8DOvCSlz9N(s;|7!inVMCnJQ)74;}eRyw9BU%9Nd z&j;F)kMrfS{WiBW(0GX)iuwt%)A*Ajm&~{RSav>d-txNyyX_`rUp2hW zz3KA_v%e0!o)x?{C0ss63Q>$@ip^Q-_zoF+MgOPnbaT+V7&1I@@ka@iV_&(5JUimm zB_(3o_@r#qO+we&{oTUzYSFHGGF5KAhX|=dxXiH3L9R+tRrR7N<%?_h(W74xEZPcwlc1m&>S9g|( z36b`i&W@Q7{QOAJWR+K|Mr0}RvpD;(la+qv{K8Hc7rBcHf-w84L=3snV}p3vXngAE zYcs_JhKwnFIUVHe>rym)(I<5G?0|^jTHWmTkNtBOTP=7Y-?pbNSEwrtpJhfu3M)OjHoXnDGWP&L5XXKs+hWWOvmPG zGz9WUT@x-0;m2QS>hmdxn(>?QjYCMjp&^2xv=oIWX=D3>B&g~QC#Do*{p(v=Y+9GA zBzE@C9_1kE2(jr)(-L9-bZR^1xp6S7PHFZ|mRKlA0 zVg4(Sr?BNmq=_w4DJB8GkH21NB7D!E5LbYJ zzNs^Qe3#qM>VV%9lqCNh4o-Av{o57Z;pIR{YjFl-)vsW7AJhCbH>gXv;6sj9G-ryT zK$nJY)~2*=0AvaG$T7_#M;2X}&O>RYEwVU66WuI*uklTbZmxG8SaUMiUp3dm5%s(% z{$V?MksK^{Wrl5ilafibQ+E*jmKotgeN@tsgj z(ej2Dw&tmCl+{h7IWqIM!tMP0W>#F%ol0|HfqaC@Atf|lnGrl2C~N|l3=+JR%dis- z72?RE4pn!e@ChKRBbI~|DUM|+5)aDh?4x;_aa_kPG^zN7;av&*fD1SJo7%&b?r1>E zMdwdzS^`PV2E9;s7nNr28uxC7n3sO}Z3BSmZ{M0EPV`#0x>Ztkl>&z~uHvZ#W6K>? zx#nP&Jx-+II#5iBz$;W5-4GDOFUUqOT4)WL4NEzu#i*udYKP3)L&=)IG_5}D#LSd4 zLQC`aBrnjBFD6tMp+Bk~Z-bJL5{E}-M7HC?fr;tsC9?S!J$;(djS+x~e;X^xkVR=M zazwtWjvg`hQL_UG?+D8S$0dUQ@%(_ysNsW=3w5)doHJS%^+5urryw&aAT?OWa2n(y z;le4-w~AbteauXA1&Q08QWMzwLGD;R)hxbFkm#g@o^fxWw<;Tl{+&0jEF1vwJqkUW zKdXD!W`6Py%`L_vC^3i5?Q6b#xSFhXK1)lW`I_HyR9f5&!I=&ogq`^LY*v)g;-2hD zKzL?qaIrGMDVJZ_u}B%Iw|Oy>I23zqFBa<4-Tl-$?5yy<^)3y*IX(A9Gzy z0GA{qGyyP&LGZSg;eYccEMCw9x@H8i51( zKd}fhjhcHF862Co?*!SE8puzWteg-SypK|hmdHg9+miuNjh|g63|K&m?1m=|^v)_( z`|CUy+G^}d4lN%K{!s|`Mee8cDRfaxuGv$ILOA67YMw2-IS;P?xiZ0 zl@pGtm{L4<#j|5IrwevHhguTvy%8YQ(Zb;Pze;gf>?m_s=1K*2;b>L*KM#AAWuQHp|K2_Q;Gdb1prNK<+TrAi=lLI=BofbJ;8P%JgaCn1LeJYlzgNcldB?cFZpMJXUUSVg*P4BYiFbV?Meq+~8@ChyB)hzh6^M>i=f5C6?vvPru2!8z)Y~mOOfgE|j{}D+4 zIp+<59EHICJ!cb@GewWi3h;GRS!H9Ts|m>S|D4|?kS+T3;#ZEfwj8APxdt8njNutIhWThNhcw z{)6^GS5kLPryaho1PMO5D@p*e#GcTXLRtXrY1R9erVhb2Z+tU{Kw1!g@yE)=cNrOx z2lOR)A4!|12ZJ7%59v}ACm2*%r~!EchjBt{*)zhBqZBQflLF2PLP|=q;0I%z1Rjx(%Pb9h6jzdCh|0B zkBP1Tp?9shs)Kb9Hj{noYJxj(0A`fQWCI48WI;lyc0Tjb;)=H1N*q=)ZR0H9Nhqa+ zode|iB8*U8y5#4u1Y=6-PvJ=(+r^x7Ahn%KCZWeVF^L-G_F8$(NWk5a^U9_oLY7iG zQdB#P_o1(0Rv8J6%H8$>_$Bw6u9B$lEqYjxuKcX#fXE;D>lP4<13*zffS^}9#9}h zOk$DPLodAnv}|x!6X4)+0G?=$|r=$Y35xtwINOf9yg~BOlmki_%KF z7GVgq|D{lN{aWC)pxU{?+QCf)@7ec#(3>bxj$i>$7Vi@mMy!UN>whkjAD}vQ*@w z&jaXQ&2iL_A(^m~6sV=Kpp7!9F&baD(Flsw&evBVUqHo`UK_vXIi++cu!YuhbAiK9 z@}K(I5V+|UhgBOxqK1l%nvtz7o-o97=6;x)w15h@tCrgPf{pGyQ8TOuIrG)4{p~#> zJMep=(646wwL}zBY~ZU)BsbLeWAhu;YT*q7Pt;(d=QljH?uWE)W6-qH5*2M<;_JcHs z3Fzqwz)I>YlHAq3KFesP8ONYw#C<)3wG~G;WCjef4v)PiEsqDN`{W3)K}~$QuS+q0 z`AJCU=x|kM1TA5BX9e#9t+(-}=aheZDzU-x4OKh63V%~L3Zx(lE=3Cv(*y~C5Y8x$ zm;)HiJa<0>o?+^^iXWc>!jMiAMX}}j;(fuCP8@O^d6g}5c=Ul_BhiBsrvH`_78u{< ztfgy&O+uEH(`nSh?JsDo&@o`o{Pu{k+Ij@YO^=5$OHb79Y*wpnD(g!$XYV;2k>K^1 zXdc!=TVl7NtLM^1XdCMSkjq~x({BktDq~dwr?mU5HwIQ&l7I`o)hVUeC@&Y9Zx(T< zcKS@~D}u0;eqO@cHOu1j*y;67vG%Sj5htn&b_-bc(n5*3{sEmHIPr(WfkJ&j*7CNh zRNDQG#1V0fQ~SH2*If^Q9LA3*kgAuK1q}j>$j$PqM4CD2U@_wXFORthEAPr?_xT&h5K10Wsc7NH$bbX7?sFn;KaVo&^Zr<2sI^3&7(DHVLk+_@%qOaWUW?L9qP^>x4QU<(#gZQVKr^VPpSRFb_uaeK-|l4wr2#&gTD0F9-}70$Aa#$EPvrs3jTyZp+Wn41tp)q4kj z>$=aGyfSX0)&@FYV^f)xV`BXGW_7^&FP_f~tv`|XB!-CdWM}8n-%h-DmePO9Oj+EF zk91(4^jnLU3`g74=-}s%q;Bvebe38d`%thZJqqWbJ!X=KPSptL?(V{Ur4_te40;{H zb1RjN4g!MAdEB+?{q6@KI!RmWuhMU|=bLewxmPjKJ+*9x&y*Q9A~BX>;Pv_RWJNAi zWUz>FaX{k3zWE2KG3moTQ`f$MX5ts2RyV;7>sSvH?N9I;i6I_p4eD6Zz8L$T@aoMH zd5ljMG5sub%P#Vt*#B!p9fh&{eS8kX=ch zd)~l!5P21@-^ragy>!jD>Do9&Ut)M^joO%yed-y}4;7OOtq6F$(Ryq2B9@Ca3%yXA zcRhxCi?vC87z-aHcb}8=GEAgv=tIjd*e#(Q_F%zxH4vvHzk(x; zc5Y(~K!f@(CK9Jrg&JW5w)6aI&=rn|e(4I+e3Bj^9={RbnF#vKR7MO*bk-;iwP`mw z?H${QaBddI(|@j#;aS79;I1w#PaYd7nn;N!R8;OyskuPu?O^b1AlukCIp|eh2b|u$5jc803nI3UU zA9_tv4P4MdRKPfC$GW>Iv?*!+w&(IAa&y<4;`GRdR&-SnaH~m5kHdBbSw3YliV-7A z-)#iGrNZ3unHa#Ot^=O`+&{3p5A&jItq@va&heZ`eAlE)2&p;LXzq(?DDIV!UvZ$1 zW&(|dWL_>)vU-DgyH))T9+S!q>|fL`&gffiwYkpm2LrY+)KKUHBK;KQaEna9!r~yb z+k`j1Iz+4SLZRYHt_x>x1P$M!jWqlgCzFFr~c;5am;GH8!Ysc ztpjfjCY|N4u$RxK|FuujBLz7+L;;X8tJ+eky;e9l$c&S{%CZ}E z6RU~lgC{|2P>7L-QEmV`$Y3)Za5v{PK?Xs>pc_+&a zax$4>#oOp?80Y79O_`@&H+xh0HVPtyPC^!Cmjuzs;4eoG{*!6TkqjRSl!yQA69m`yNcSZF&G zZxO0U0fa%GK84!LMLTaq;9seNE2FfI9 zwMy#q;i<1Jwd{*l|6O?_N8k14#7OSr9+;60m~KMWBHVy{vrq(>%;*|Z?$NRcvD)OC8LPItdr)+ADbz6vP<)Qq=yfhq!IxZtF&#Cnj|4G=^@_penY}0@& z4{l?6|Liu%yC7vU&tx&AZjaTy#EYvksWbFnwWw1zQa;}VXayA_kQTo<12ix3YSEJ< zafr@dA0X}wIj}ljRiSPNWaK2PV0Fhgad{Bg-ypI;CzDWf03D!V@ewSbq2{^8)OX{5 z|2=DwDeg6Ta21m}(Ey$`aUwA%+*tZ*qG9trCy3NuOLGpqIO7;7I5Nr5i`NQFp1wBG zQ~0KkOqws235sj#k#Ij)+^vEY{J|PM^tMj{+gvYF(${RU5fN`@8#@{i(^poWX}&tK zw^t%2SA!(N3i~iFvcOnpXg2q?lJ+$rH|DjQ#C>y`&E0P%u(emB{gzhiQ616W^xaV` z3#Fi?H<9T}3I5q<1lZxxp;*n0EjMwRJnCG&(gN*9)XPEikz8nnX{cLQft0ZbpP%d^t~vwU{ve2e4k1!#s0%$w-?(HQ_+TgdY&%y z4msS;))I~F|9!tcc%Mx!8YX-{H%JQ87FoZ4&oB4ZobS%UJM6Dw??;|M&TJnhTtDYI zKmM8b{k0O_Nk?8h2Uls^qK_XCC`wPt%w3*<2Ep|A1oJYX?itKMF@J$d+zPbg=J){# z$O9{ltcik;W?x0(wG7-uZs@VjIk6kFeO^-g-DQk}QxhN#>4!q;U5EOn@15(MuL+5p zZ#ZP9lFF!+$@iko<3YKvoc?^Zj7RKz(${1Q!P`p2_$)U>`^kHazWkNp{R!&rScF#h z2JI@f8!73I3T+*wQ%patMjEDIuhJ_qkY4YPxr@ z3vaM(bvfaeUeB&==<%Tbo&VYJ-g}*vyn{Y=%yG2d=ctBa?}Xr)JLiVRUeTT$E#7}T zqNjpLa9UisaK66N?ZV-T5YLl3e^2h)*StEucTX#|JwR{fb6@TE*vg-pJO67tc5LuV z%k<;02Z>ejvK`faOo*?P>J>CdGPa%&z%*Q;!5X?qJP%LmfC7p=9!ymOA#Uh_R-f#rQ62%Rdk7q4Y(?Ayrb z^vMd`J9)T$XDj}agr3AvVYDdzW~JVly>th7$*lRuol>F0h7&ve(m~sy1=gxg6dOf9 z*((xo{dLUyA1)ZwO4sL@too+m39qIEM7aj4{!-GQlyTogKz}~#b3jxA!ccX(wC`8G zhV_HWi}9uQ_}wbwdK#?jz7<_ANA8zDz#n-(_7Yc(#_4&uuL-B*?s6g1*R)Ws}ijAl>H#rew3r;ZXm z7D`D8?Ddsn-TREn|NCMwmXg}Ox~7p0-&y%U_29JN?Gie|t^+}B@V3aLFOE|`AuRgd z`$RN4A7N9|I}moP*|3ceym2IMC~9Uk!LhtAC~r7W%3ZRqYjCwL;Yodh1wL`+{$cv1 zGCdcUBmF^LRy!aPx6oz{0)t?&bEI-*5*lO{+7ply0>61zLDf1ulximW#LnGU!`;}8 zH<(R!)TmkP%l_`pnxkw6jQOq}W5tD;jfQA^HiY}gX|yd2p%FM*=M|(9hIN$_jz{;< zaj9z&f5$Y?T!-Dux+ik+4Nc8D$DNGxc{36xa!ghqMb}h>)^g) zfqiCIAW2_W??W+i^c~ax%x+Uvn#o~qhxtslZyOX7g=x-*7sQ z2kdh4?Ru**JW<-mmZ}_hiy^=rCn9UAYcrmQDxHSIS+^#xupN+r8*>wvzBGW3d%QKr z!sqK(8+*KK>{JW_)7X9Row&}kk%a`ggMttb`A;?)$mTN>m;CaRkgIVQR$r0y!C7Tl;T#J2Q?6weqWQBTT z6(r<6##DVhm7!CKnc6)bUeU!WKORgHv8g82u<8SCSZH$n1KcvHm8`@+0;2!Qy#EbFL zNCIk83j*nxILUL3?5&7**ubr>;0hWe@Tw#`*)(>6I~~|9$>8b^fb@SaP^n@{NdB zCRI;fJD4QjLsUNrXN_0S;_VX`UgbM9%q8s6sL5u37L#lp7}$56Rpqwq#I`);H?1TR z>>sEpkN!Rp6YLakII!20P(m5SY4|oR<+~f62%nzL4^TX!s>Ev$>VE~>^bM?mix?%E z13@qj`%Rz_#3LN69atBcC0iQI9BKy?b6lKVrw+EAf7-L>Vs@L`$e>b3TY0|>XtaG50GOAa3M18Y&(8+@Os#MeddkdQC{*}IDsFR>X zo`7mYSIz_Jaw{g-L&X?LqLacL4Vjb1MMjQo5~wGQ>(*?&tm4MXc8` z`s9H}HLR4w;lS(sT?a3IWh)k^KZhlsx=pXVja*#UnrICTIt~0(ceKdRxSacSb* zXCXF%v|W&yKXH^B7iI@(6~6U(E|SuNS{M3Ix9y6C-4f!Eoc%v>(2`;!AP&13qfWV; z2IgQ@P#H^3Ei{Pk$p%xQXZyiqq`jwE;jpUDPw&i#@|AJRBWphf9CKV<9j3zj#8RqV zT+j;QDU=(pvdA|+g;t%^PoaBNnTUNO-?)}R8D*IDEsiJO)5~!+tG@coQ87i)?YSZ| zMZvBH@RG|d^)?Jw`UK5A=q*~X^qN{=_PjMCV#KLP5q*snx|6d=w^ZzJmugQ{ZBOcR1A%s$26jG<)EuI{15r<2a#= z98WHsS?6%3-8g`C+ic6^WnevFX!a?2K-pv?007IH=O$8sxG3fkFduoGog|+1P+h@j z^$Dh{JHNT1U)NQ+9OPIEqP{*N^KiWA=dm4`(Ye7{=LV{(A>h!Ai{AxKJ@R%&8|`xx;_|?R_18_u>xQ0gCc% z-(r3_W!Ua=4$u5_&@}g1hj&Dr?!_vbBA1!)nr9ZGALVj?R{v6dp6!^YK+Uk~Qbg*P zn0k+85+;=M!=_3LQ)Z%;LPG|;>H8a%2qEfZ#{)CBCaRw?mkZEfzM~Vcqj5CC8=LMt z)9yOxx1;u(^C-^2)zM%;NnC&a=M9WLp^oaP@1~^t#ZmE-Vx<1h8`s3ztuscV5OM0op!5=94o|7C9Ub3 zJ#(BY7j2I<6@GRxq|wRkrHf+nk0^ZUw!Y(SbBnW@ZD#gQR{p0KV2%{f*Je}0605i( z*5j)14d$bF@tcxWk#lEE8Q~;r9fxl`>$v3GST0oUDD&>S;DWgHNB<*rOSK0SYI2Ut ze|qgO`OI78iR+|bnfF)ME6Jo$#pf51#fsHu(4qA%N*N6otKMn#IO?6PamBpXgdx-> zd{{C!=~HdUww)$x>do=LThSeunRy|CJuok>4nE8(mdq2KmxXyQgOO&9l03suN# zT*{DdTI|d$t6lB%1(P^tE==rO{v-IMnXli>IY)|p{J>H|@UC4^m)Ue!o)bIKc1NT2 zsAu}x*RYhCsRJno#WOBq2P(Zo8h<^r{hOA*5o18FW4u0@c=~3k`qgI&tV7l0mT|N;>83m? z=i}<$enr`zk0!^Q+a4VU&rH#x;3W1?6(ykmfcMkF*NT<}Co>wn$3K`=)%Logb+1Jx z7p`=D`ZhV?DW5Uc<=ns&&0Kl7@HN~HkOV$oPKv!6DB83njYP$%l8N64^Zb(6)Kk7f z_)jIy7rgM`Qhky$yPnbKlf!+!O{2&EA90v=rs25lNe&jK zy-nx?-TL1B!s)XCbkb6+b0fdVGBy0OcvC5ItGwkio7R5Xsnpx&q?9y0D_j2x@k{N> z@*Y^;6DC{!+kO!GomtBsRkwUt==B|hK*uW)Z!UljbpX)SzX?$!V^Bi{35s6=Ewd-b z?u{2ZG5Dphw9=cd?V=+`869%f7kvP>)1i@UXfV z>ILZgEC;x3?O5u%&+N7bUyGshD8!BYPtbO&PCb6>mBgpLZX>Go%C@R{W#4DW0XeTu z5AkovYoQ~8!gsQ5I#h?kzokx{&-T(JTViA;mCfGqmC0k$;kAIyUORbui`J(Yf-@ju zQOD=v$lu@r_LS>S?9>X;Bi|5CSmu`&&D6lH_e|MaDFp^UX*_CcIlpyckP|*TRa83@ zV!rJ=GxUVn_`9Mjr36yiGZ`gJnxZF~Qyy&XTtZ(X>ekK0g}>YgW}$&Vid;WviXcf~ z1mM)2{UxGfd4d0b@Y!7oNjJmn0EAqPLF<)uO<=o=;iP?&m2`jo(xWffYHOUkxy^_9$W|W_QFmkaKu60@N!=WamHo zTFxyZVbTU9mXfTl5sAfrJcS0?a<1lyKXpduKYBh)(;5G8i|VZN+uTN8M!~TjNCn#w zJ>h19A{Gb_d3;y)a1w0I0nj%aX<)x-(d1)s0&`BeV)R@m^~gf%fd;;qo`nxOz5d<} z43)ISw0w_5$Vtv5(C?P>%lBWfwc7^T<)V=QoZqry?u^|dr7RA0H09hgQy$t_g4&z? z8U*1WW&W|G=}y$T9l!z_Pf;$v?3@$?nBhRTcPP*NBn#dga=wp$^XBL3e6GVDx>5)= zO&xF2AnOBhTI3$<&Y|sTMF_d(F|G^t$rgvd_?;fvhyshiPWJOOpz&46)NLqFgYuc! z3=16=tJotI2hSb~-D}uBX~bV&_<8LeDh0}W!n{?S0bee*d5`FB1sZV)GubfZfR)vj z_ndXJB@sPh@JjEFSpJMG|6HhhKC{~@-XJD8HV{lI)HRBC9x6F)MPygJ2tV<-t#WuJ zB(OrFmBnZJ(hSFjcfT2w(#o)L=t>h*rX&0M=Y6oe=S;B!thA87XQhwq$u_HuZPRg+ z0^uuzwlNg!3UhJVji)^hN~@CK@ro3gyB2A4U_TNBazML0i7O0C&?RSDmDR6xrg{ch za*n{du7tt>aqTo$fO!I@ENzKCo069P{V>?1Be%j)bK&!H#Kh5rLx&kn$J5^wQ$sWZ@=30L|wbz@G z=l|&bz>(gDz|ltd<*$kdj*S=&CFs~L>w(f25vRgeY6&#~wm_&GATL|5=etwA1D2pb zE<-xjNW2X@c*Ha`Qn;^kY)9jRp29pq7+FT(Gv@N0q|D;k#6lSdqA^8%uVEOBLD8YE=>-Hbv!T4+w~O1~ zz@rOxH1@Eg4|Pw`ebZTj{3GKZ{nwj<5-WKDh;=3LOB`|4!f3u!VPq^qoDG29DJV+I24 z30{yO+%xCy61Y-*d-zTX3~Fe%ubT>dDOZ6{CEolvhuWT=S^JhE6* zwODWLPZRzs{g-^d?JID4przZWZKFr;SGg}G6Nl)}y53G*8rnbAWriK@4!KLfpbUKW z_VIV3b5QQctTcSe-LOje5^MPIn)qJbgqfDn>z?;hiJ{#`-p`c!u#64f6@Dh6|K`(E znF`z42;RcL4HCKw4j-yQYAwmAGneuE3=)`PIB9CXap|y%a7IXHDcgsW7|frNr5EdX zhig8eQu3uIZha{rzV+R4@(sXrXBQz(glKlB*^KinhIbFPsY`w^*^a!z`4Pk80_zUI z@DC12m9 z3^OsGb}8qEpSW!9EWq})>O3EBLkgQOf;GUg=-2z!j7sI|T@7bqwGL_28T!SQ;VoM9 zk0i*x*%L{C&FC~`^0z8=bsOWaiM<1MJt9FqT8DauNOM)}J7X5GO$Et2E9*2%?IfCOOfo*Qokt2~kg^1Of;JzhB*Q=!+!T`a0 z*{rcMPpGIh4zO10Gms}|{+WNl84h~O&8zQBKlVgiQerEy|yI62&E+c)OCczn6dE>j9>2;n6;W zj&j%WMkr>wGj_4pMj!}Z7&FyvdgZ5^|EzC}6{m)&K39Y;Qx3uCBy=x?%E!{PcN=UEN`hpDIp?P_~1mDk8-lN~gAx+h_ zlP@JzMMn+tE_7Z2;J**1MXU6^e)L7a6DDRI9{|>{tgweNe(qTNF}upjU_FO*`GZ$z z;77lbmV``zx=JZs1Y+f)O@MZ2Jxk2f_zCklY*U%Sk)S_CwqNH~DD|E8RN{yIkhF)F zq4j#UCu?cb)-Y-GsiS#5_60G9eD8YMMmu(Gg%;o}5wr$Ewj2wM#>RdB2GdsW{M;y+ zew-{L7aakp(7Zm2qvF83lh181x2Md)xuz;@q!}Uc=r2%{s-*dg5TGZe(#K_2Hc6wF z^3gs(g+*v2mit`}ri^WloE%qyaZm$M^H{Lo3HKEF`TD|S2FtNk5}cTHfo(Ui{B+6P zBtip6{{>yizNLo`tZEOb{mi1mg#<;gX@jBpcCi-sr zk~VoB)%bF5D1E9%B`r@YaaaXjCB`Qx_8l$Vp&2=nLkQxmyV2v{v2p$stSvEVUn3|AypD)sWUlH3GE6|Icw5b&$;=xzv z!)uw~y7rn&!wua|Qb+o54kZD<$z1c=304mps(3%9;^lt2#BWwMR6Y-L!iHfB_4wO( z2j1YtBxY=e?nYX2W}rxhcdEW@^kpCxG-vWFD7%KyN`hw!Zl?DJKka}xRnpLJw!$_~kn`oDEwSi|_+z%g`e@LK;7vq-C0GI~GH+KNLQUTwaxQ#tRidtT zi^2Kix7bAc0Tdf})=Y%6DW^X~n^6shV;T154Np(pFg6bAEYqJMfq)?EI5zdIg(!sA zi`3Aa>;OO?TJH*^SkeETu7QseZ|M^vUX= z7@Szpw$&W`&g-B6`yNc$lyjmOu~+M}6ISv*XrbVjzOG-8pI&L)T#^> z!vYf;rHNTGR0bC64d5y6_HtiTdP+<mniNcHF!rmW4%hz1n}Gv+s=(fn(Sd=|W`x$x z)^tQMxU`Q`>EiP5{d}pe-NvX0m`V&5A9o$-Zw@mhwp?41RO-_o_-%`vKr0>_@5x(G z?t*tM5X%eQMozAg#o&%SzAG3>f}b9VH}~Y_xaQ#d`x68C)9v2bV9YoeB?{kcdHg%L zJIZ~qKk=7xSFDF8@2Aq@w#$@O=Tgn#-=Za4cbqI~)wv3`9sW3y6E+Xkrj9onPT%X4 z3INSXx4Y)VCE-`;1*?o1BrA;&!e7*+!N6ARdiKY7ztc8Ke36v2RwB%Pg$|>c%TKCO zV0l;5b>+#LtUD5US*}al7dqeBjBozWB+!u<>4ECoT^~;j9HSu}MI_2oB}*f$H`Mrtkfh*2 zch->_bo$|iPi)y*=XRw29d6FkaDl0IT2I#${ex3K2nezE#tX2E`Hv|9K+ubDz88R) z-IqP=(Xate!IcvE0VBU>Qk6upQytQGF13|g!H8|;qpEU&W$$S)&fr2TT|{;z1FGFkN{=5l zAlv(lUhYU#CJQd^oH9e#ATQ%=_*6rzez@ZQEgGKQq*C`X#?Z69P)uZSS1if^!{D*9 z-tW=JeYsJlkNYjnYM`tUEj@YD&W|P69ad5f$D2%Ej~%adD53opCApVnN!+E>4N0Li z%}gJOy-~&k{fQ=^NM2vUC{e4I_)$>HGZ2ew;FL%?E;i6JarVv6PRYu6>n)(9j7b-i zMxs5Rg<0x>f{pq9QzBiv8>_1ldv1A#rEauk#N28PK&&0p5A6U08}Org4g}*3_8Z5J z^rH{2aiw%3$4Q&d1!{Xp4fQ_!k`6@b9}uKd61-;~=^xfwN;KTaZU}=Vl!Q!GI8O=+ z*J%073UBWJEl8TlNnB^4G@=R^rf$$MPAD!Lh?664NRB4pLCvdNeUTIW=0Bo?|0_N` zM5tvXrapG@J+z{P%hm}lHRFsxWlTcdu!kB&q$TDHp!WFQJyLdTbT~gufJnKH%dI?z z_F;C%_gQr^iEB{wjj3{z#m#1auw^bAZXG{7xFx5;w>zx8MgMQcRn*)+a(*}U_y|!I%v}?pXd!Dj43tfAz(wP>^ho6|u({gAdGpP0yKd${ zGd*LVMp2~af27t3`&tRMsUxJo~T9ctd&UYvH2b}pObQV z=!8(KXfcD$_f`tCB?HU))%nvyYFuG(&y~5L9E<%qu7CFZvCXn8Lt>*~bL3lSP@n<# z0BH9fv}rhFt>x-p6>fPasiUA^r29|tqOj<Nzu;E5e6Up#saQ4q$>w7B&*Vs%kAC8i^wMH>YlbL=-Rw;k{wWvf(o&-;&B%B`eA zxxEO2Hn{|FaUe`TK0cuKc*+0w5|=Ju1Q~`v>GY^pT3Tr;+tn){Lm^c-9;eDsN!=5A zC+@pG`au*0-xvVv4=;P98@Y?JDRZ?AT6v%TyN4h3ABAT;j0g;ji&KHA_2xMrCD8?M z@L^S%@BDr>^RTJnEVQ#bu`%M20}Vd9hRogHI`dud#`^F!H9nX`=_bx=A0F%rA2jdZMPt-%RJNsdwiBWP;bw+0gNkLn=6eczE#Q`OxE}-e=Fc!9U&Jd z+h}wIXv;-AUC|xoAfxd4$(d7N*CwdrXKx`t=H%837CEEV5x`}P|JPtYARmSc zT_i=XZ6da>XnlVMMHa2Srbociq@t+a3bV>HRSMQalsvv*NeJ$4yx_(DtfWdjL7tRd za(~Y3oKG95=++fZ(S*4@$3hs0_cP5vPTuCCnKV?8(e~WGdzN%go^RQ{2nsT`T@l^u zepNE@R82{=cnx?-1l2VlA1b3!F?#R&>j)~8`StwbJl+YE)N|%TD9edEoW&djU*N1i zPEJ2ees(VADppHgcKzBb9S|YJ>|u%qA!hciaGHK&TS zb2hVdMCoNOxig_wYqMK8ZOtNZJ?ngZ%gIxVj_WbM(L7GFx>y*2o2wO0E6LyM-?ueP z$@?C1?+1SsRgmZ?UWpc?(|r11y9|s!{Oi*jjaUE^2$LQnsR_x}6C#Hm#doA#{{e;T)1IlzJMe{1Le`?% zt_6EOq$!VC4V8yFW-}+D6=q;O*;dj(2XdY=bF-%ju@_lU8If+-KIDTMp@lk2GY(v# z=EvH(vJOqb8>uO-yFc_>9o=%~2LhU*NS|@rd&B0TAwZ&8==3)3@N;I%dyGC%TaYb^ zma)hdEm|}`mq@K$*o;XC9C756u|V1lvZxGv55pOd%Ems4jhkL-b)uawHwkqDB=?M+ zi*C+izR4!U)Hw&4YSR`32%Nj2F$jj+%#tkynxS>4m%U1wKo+=k4;crz#tfg16;H0Izsj$ILoS&VZ)2CkikwCXsJLPr5o+5_ zH+16CDT4>O4fAP52VU0Azp&s#CVjQVw!~icv7fY{Acntsa?8)BZyz0lnalG>TYjBd zjNnb*`_WS1*b~l|ddTB)D?tXEO0rIw-ZA9`T96r~-zvY~21Eo4Z1jDVg}QNy+yGsJ zMxSMcx*q%_|2}0;+d#!1(#$~8F2hHycehE|gY}7ACJt6^rk=~pgW~1t>m#BqSxZ6C z6%^DM9m*DM9hILEI{QDp02}vy47r}<%Rl76)N31gTY{$DobuQ^XkTGWt{xp>5_;)U zqBoml)9rhq=h2yf%y4ZHu|YogrLQZ+{*o-Th1av^E}}6pKzE_P+H4ur(ySWmv3^bK zIWxXEdE|j&b$1aIJWXY03z)>Nn3Rqk5z16--io6Y%WMReZrhbkP#5o@;*7{kHi0{v zh7YTZFPvZ5i`JHnzB#>W4r9DvY7|>sMOu!Pf5^E~4F_6*^*F#Db81$OoDD0tQR`_t`GY1h%ZkE zUthc+&@?%ms8W&&ir?bRAk8p(I1q-)u_sKIO3%M`ER0c*vH5*GC*IoJLZ(CEdjdv( z^$sql8j|#oPwUKzlwb(B9>1;!d0~wes;GFRGIJd_XKqMp@P1nNI0GY=TvPOiPtU~m zZQu*FX5MjU;ug8^u=Fawu8V)fBI=~=i0e~kLYev3sB#r5seM6$^>%RC)R6RAw*>uL zu;#wN)s|pj^^*c?o$(8#S&M4sXN1ZFhrJgmFWBbQrkNpj_%!#E%5MrkjQ_VA!6&Mr z_7wPDhfl_UavCKWjv7J_^f8m6BGam*r!eJ;wtm2?@3yY+H;}>C`3&|t)scu89I%iI z-!d-ua`UlWRZSEBUUJ0CJI00q8iW1pUTETT=1*6nE}i}y<^)VR&^6Hu2$Em107PW# z6)EJt8Ix*FN^G?~upP*G!d!u+Wr@$fgK`)2LsowziYL!^|FK-xm%4|Z-yJpywF1^K zr_7Ax$bI9}VSXpFg)^;D0j5DET6hfczg1QAf@oupLd|XdeVRwF<9pf@_s)Q)6KKae z!PZYu_mXL@^Y#uz9o-nL($uTuiq6+Ub+yS&cP#7cU@Eg2Cub}~4B+70B+kL8J->=B zwrco~x?580JesCq2^zL*x1eCT4IeS*Fgmuxf2--fO?-sql~6OF)w(Ry4UH{q1zQ+l zpqEv_E91{RQE8n>{w-`CI^otM@&5*{FUl^hT?&kI5l`3Xs+Ft9;?#77PaYhV9B{{%1ldzb zt6Skq1_CC7vHZa~ef@&HPp9k)ybzi_XULv7NmPI)02*Sqr@+VnYKad?l0zbr#q4 zaR#*CksiqEzPhTcYL>Cu+Sc31zp;VnS%Kc>hR>dN_E50aC`r?q0S1?wML!ANhv`pW z;X}MUUAVhZr93rJgS@1bPAJzhD(2(Z#7=B6K*AjymhU6keA74`W z`$8iBauFg1I<&Qx!KkoIHLBRh?e{w;x2ZKb{NXTYU%BOjQQkuBWyPt@_9w+9*RRvlr1_?<0~oIww&1lugtWSl0GpqG`Z z*;r_|DJOL>uo>lL{mR9|Vf{+amXSY8u#;W6f=zg(UyB}h<+%WX^9aJ3+}y0xueEBF zwWe1S|Lzf8vm4@cj0m4AjVz=jS|nkJuh1)&3#I6FkCh3oxxf%11i`59G5?9hAKE zwMp=X!OP#749Q_aY+s4>qVxtRIzSGJ`SQPXfj2Kd$mnQ^|6$*0+Yv(pGF!eL7fBP~ zzx=fb(~^sJ1L%7UrOj@~{_%0&?LaAX1@J}x7klp=)a3U4jZ#De6qF(;O(hhO-aB@T zG^Gegm!{HtZ-SuGG@(}!1gW7&PXHB&p-7V&2mt~ddM7{#+$X?!zu$M}_s-nE?wvbx z9mg{#+0V1rUVH6TK5Olj{l|Meq-&&!qeLX{9)RCK4q(7JswnKSimOZl?ad6f{WDy0 zB6*(;ilFHb>wAzCs%n4Tk~L+8{cRCjbz5_oYq|Kq=17mnjlivSA*DIRV=$p@1aMuh z0j^8<%<`wg2ft#cFbB)j1%7ymB#PCSqluWPhW?WP*rE)u7;JiJ;hI1ebd+90e~E|~ zlmpXiZB*-(aJF?FDsvb+XS-T>iR_P$-E-KtD;VVWt`Qj$uAGQ#|4P#AWHXvy7laj8 z%)v0&PhmvN7qH zs$kSm=wYb$R`Fxt2~qkJOZ`I^%Xwq_E)KZFkt=9hQI-QeP_s3!Y0fOlO2rJ*nsEdflTsGB< zbiETb$7G=&NibJgO`g77hcHG8H+2lBfj1_BTM=$|f7SKWIns^o)aeo9xswW;HuMT9 z4)q|?bW6ed6BVSDT6`JM-j}XyS=JJ1ebGh)*{4Y;W&!mFo+-qMlnhns$Suh`z_5_( zlOTJlm%U^*%g@-gzb<@*$D3=rwZhRsPo#KA%WZoGz$2zQEG1qJQRA59vpG(ON{vA& z1SqaYWrie2&B=hfwZHgTujFdAZMEYs4+wYu{?(u3;2lRHMbaA{K7Y@YL$03IKGr>| z2T_K=%Thc@pR=(7s)DyNM@>N#bn_sjN_oxvYhz|OF!lMRGU9q4U;1b{7x z_U|u0bBbzj9Cn&2kCilOReiv>QItpYHi6^|BB!eyNw59v`0EMQbi6*@Nh+$>MJrWa z9HR_YF&7xjyXzV;fKlc;TE1aK8Yp%tRb;KSBnDNnOKY|eLgjgoa4+s+({X9aL>5q8?!@@11nbK4>4cBdikHqP58?S>Qx5ak{#j^ zG(ZCC52-59L%j3WtdIaABYtUg`d5Ryk^w4)*V=%GNQ7y;bE1XYv(`GQ7f#_~lRH@W z>_&&}Of-Q?J5)b3Jrg&~yF;u2?mPe`RUMLb57wT#`h>E1pD1K9&JhSoWVCt_i1loC zsurvpuA{D8A+lt$>ndkm(B$uQ^w7g2X%P5#FJc~O4&-YH z8P`QH`16f4dDeaLB#4896j3o%R^1vKbAjE-PVoY3uYVm|@OwCHCz1AWQ34ICHN6Fa z+nS~SqMem{G(GkuduZqU^K=q3p!cI9C;|qWj?A91H{C)l>TbVYZaEF+x(xOrI|@3+ znuJlx^9P7yfcHVkg6>!qm@5I74Z!5qLo#uS`PzF@1!lYcR&nKjG&c&LkEt$*bIrir zQwRoMgR^8wvk1KC2Ccq>EYs8!Mfc3o^x58(V4N;EjmR9WKrx7Whf9i2b0)pS9R>8Z7Q;o5(sa`>+6=$jHbT zsW3MlZ({>Z91jwBcK}UrchFy_>ZReQg_r>2?0^W=EJ$11?bYHw4>Uj#2%<>RWCK6$N@5nzF~e)*jIs%fwX`e1NO*$=^hYgXy*1UKR!+(x4_;xKusZc#?5a#^twH z()n55l~rsV|U)X)#`7DLA|_dI5yinZ@b#d}pM3o^>2|Daib$a2_9w;9}js<4URk z33(W=fV!$tk+50n{d`UT*ff5=MGJqD8B|ZA;XDwMNon69X}OS6kI^vvhDhvui)&!? z1!9@^zy5wtf>u;j+@p$m?)S~_{QOS*bFn%gmc)z!=GfzuQ=hdA)>itGge*J|*+3M1 z8Z=WF{h&k0m*0+76*vjjXmXqB5GjHer$bK8Rq}0Gcn`ee)Gh4=z8yE#75F1d*GiIo zi=Q5Tkg8UWBnfl<2_S+w-|l`o5(PN01mNZwUCYg5) zWDlP}sW8-hdoP#wk?if1_3QJeh@Jl1DfkUkyUb47;|gzxE+pNgAy6IS&Du_Nc5;rc zCHdy*tR%+nbS~$k-!FqR<8f+l-9qmOl2M}H0fOlM&CD+`0bSe|0 z0BEeNpig+~Q9fnNdXsp6G&ja1c0xlz8|hxi`oiL^xk)O zwVs~D$;Yfd+=)0*h|<@N>3rH*3Zl-7%%Jc8K8~VTg#l>v4fWk6WQ zBUw}HuMGie#(g1*&`xGQj+diJCkr6+0-!_Xe3?ce6bif|%*-Bv>OM6sOJ!f4r0d#G zvp#TTO{_Q#me?2o4-F5CIVyUh!S;|>t852;YDo-3@u{PRO{RvU$bS*XCxy)o*)o_0 zV5m$HUF*8qMbcJ&0A?hjM~8>HuNWk;yvwd7xk9(af%gva``Xwas6v&#KQZyDHg>cs zixs|jFO-C{guDRo2q+E)feWG9K@(aV{9rCf;l;YVF2^y>1fZ4V7^JYr+XhHpj}(Qm z)$rF9Rf!t{=mdYQ3HSf3_xrq$S}WA#TUn9`K+Ukd8^g(LL=P zon(DIZ2%hi-mHSp6FhTdv$&rE6t-9J|HzT$#YFj^D65bx0sY$nj~oy7?usK@bL^*s zpTB5IA-PcYi~Dqt1IOZUuFJg7ZB3q@#25$n0o&76wI2BPMQjxHK%1(Q)sX@JUeVw# z(3nZ`1N@hTV<_8^(SHr*1q>$X-8=O7EHF@Zc=-Z&U~p12=QsL0f%Tp1y%ULFV*++K z*qlA$Bd^K>k zm1$eAs7Znk8=n*#>t;B_{P5ReCurC>sYmPyUyaq=cz=qLjsOf@y~Ru&F|cCFAt}AO zKX?L#Hq(<-*~6AgR4?M6qmHpWFrceUfw*Fw_%C0950o32-%aL5kmhCn+Dx}>qQRc{#D;}TUNdV#m-;li|iy%^z8t)lYn2OrZW4dDF_ogql5)e9f0|xI!V!^X@ zjNY|p(7ej653?zT+sA4nD?xCrQD8YRFxU}d1qGA?R|y)(`FyzR8{OdEr!j#m0gK#X zUR=5BdiGVe7h?y4;X?z7=;)FGFy_$&MO(tvoEa*@qs`N!vo9R=kFgee~PY* zeSazN`Tf9WaMg{iB~X@Tg>&IR_UHq#Vl6{#wU+;algKAh*G;m&()w71l}wPEm64Ra z-~ejQ>o{lw;dA#N2j@GI{SyZqi(T83QzWL=PlXw%T6c=E5jWHY$7*kEf%5s~z1{~N z2?L#lO(3`pxu*uYL8qvy1)H+UfZ#xi9#yBS_jAai1R-5<#OcvMer-Pn_RH3)aIO;Y z%M{jrdEhe#j$@Qr1y%iVYakIHT>;p36)}{W{g5i=30D{p!Ulpx9=rX%L2!7i|7h&{ zZz44x(7sBoFJKi1uJk^!md$qoU)bkC;bD14%42;YMP3xD3S9&8_0Bel=>0c*bJpBQ z0ZnKQxYsncy9?@TWB#Y4ocw4Cn#5YMit1bftkhZEtq-fql^iCC-)j`fU_B22&0TQ0 zNS035j}OZq+=DG&`F;$>45t9$lhmI6ks<`ni#h~1j#+RKcPd7AO@T&q*8Y*=dC+vA z26xoaZabNzYRJT<0Fvbtma`7*)gfrz?bM9$gqZxnHs>Yr!8)*+eiT7Xxy?$9&oYxF zo;@MJp*s>{w&PGPmT4?N8rBFgCQVjXod)XKfE$s_Z2WrKOnXp2xJd@j7WHHPJ1;3{ zB>Vm#wC1SMke$2VsyOHMwCFZl)DA~&OCTP|JL!{q`@JWQI+`E5Kb-T`4}OV&gG!_u zucO|Yw)kj4em$RV0_zK~tFiL>df6XfK>W5Vg&40ACr1&P}+Z-}d z8IRIdI+qqP%hj(=g7))Go4Ny9gR&XFbB#XX2K7V_W9A#Xe(6D0tEa{?*Ue^p+yLm( zG!1tFtfjv34~PN0(F{@p0r-I=^xzf5{<7RoL6}Bk+0$EVTKRa2RRVPe32JXX_XO+s zdp$+i1W}JPgcY|clp_s)t^5U{`;4<){2`KOGkh$ehS)&tXDBI)#YPUGYaW&RJ2$J= z?fe4{f(v8ReDz-|sw7x9=@oe?F8}!N!0f1T=oFC7chaiZsjOPZ1J7{(ZR6i!vuFN4 zMq-81zXkwNsb89HaX25Da_Yn?c^+rz0_@`A%vJaP@?0LbKRAiJ;5UzJ7JFpJzrP%A zlEGl6r?rRLsJGbY_ALvM)A>mg$FWO&zb4@9#vz9WqU?-W$LUf@7z!fjAxRu8o{lqT zHR`fYz>vs^9GS*yq~Vj%gp-UenfiQQGa+Gg_qwu5P~cmffqyjB*X8HeBDju=jy>-?6=k=9Q>A>(q1Z)MCUd)Kr#Xd{}MovUVFpTeDV!m#4jS#&0>W6r~YhX z{mnJZr@9A4QIO(!v9<+Yag_vIwTN42kgr#^9HP|i7~z=O(X0^G5AIC?ETZqrG$hxj z1)RQO?0Ba2kqYj&%V_dK;Dim;dES3(0RSu4@vVE+Oop_y%U(f+`zJblyqHvR0aa@9 zBK|}2+km@V!a$aHN28+D)AxQM%O_U;IzCi+m6bUJH!HFk5;VV4`Bc{Q#J$++it0lz zv{jzXlDNR0zyjxewrVDSVm2Q}0%cuW^^e!XfCi4Z3i`N)8>mSzrhj_+ml)ye>HfhJ zcCYT^A?eA5)T?RG1Hui0DHN~>vEU6!aH;Uxuvn+ezZpwM{cJhO0@?=HE5}>VrBBwL zg;0H>+yLsY1v9+x_W6@imd~qz6`ez8;$l@=BZB+`L)i{LlLETi6A1ubI&E76WTebb zNEZTUY*CLqCk@ls>8wd!wo&QZ40eQitP8!lJXfie$T6kHdurk+4Sy%IIAVd47 zbaj1K^Fama`w$z_2Y$k9hxVV2V z-)?x>pX8_b!YD*LtAHGE!HGGyFrtNv4V6>9=sd}dk#*=`-_|`&zvk$FVq?mLsLYZV z6RDiiv?|0=C7Vv>4qsOyKiD4U>7syF*JUD_9cw^)B_IO7yd3Hmlq25S6B5NbeDtQ# z=2+E97XeO1MCUx+SamQ&ly~nL>E-}V`5NjKmE_$31Bsej9660DkY0b=0NB03<;~KG zkGK?Yru6Dg5@;k5NJq_eHmp`0=8{w(nPPt!t8Lfn5C12ZkD`ko>yIJ4G0XY!TBO_6 zWS4WA=_+>?r;*^mhYm4%<_>w<2WT z1CRN8>_CjV2Nn9YpZITU^lf?&Ja3%<>Uz{tdh3bFpr#C5+i1BR-`-}Uol=UQDQAf?$r1xi zX#i*7)&Wf2Q=&?%_|ZnHuPgm6z?@xhkBTruOFFOzw3CMMr~}w;F?P8rX`pTO@y0#~ ztr#tyfg1zO4LB(lA>jhfe+fLK7mB@L_93kPr#xrNDUL#X>t7;)ul`e-v$X=FYkBgY zubkB#$6l?D?=7qj&2m|Z4~brWmrX57nw|1%GdkG3I3{jheDG=2dXisss|f(_?3$g( zc8?4d=CI+LOpr6gv_87B-t*wD>%8fErd(pce+?kG*rIQ8B;oAAT%(rJ03s@lqA6K4 zh6a>9@{0E`Jyq;R&!jV&&-@?DYV>PO6Rcq%>RiEpR8&!yHeX~W;xdDd%NNOR&-~Tn zpG=*%1aw>U9e%T6prpqJaECklI|vd`Yrm6JS@d_nACA)+`{B;gF5ejhOE9+2o>L=12>|7t#=E> zAFEf7Vjw0F(`Zb>MTo>9ZlPG)zn(k*)U4pj^c)2gs=Vj#lf>^c6D|CsgL;KIq{MMW zH3RpVe&^V{Hv&EwMi1f%-T`lf49?UKE}#Ds2Pp<`ya!3DFL}R$B!HbbNWUBeR7NlZ zXcbpbpkozyG)lr{^0WPw)SgC$T&TTomZiL2qQ8r3nri zt~dD|3Kju6-TF+B$OsW&rf>f@g7}{kK<)%YW(uyGka=82O$OA38w0=>t}$QmhMT4FCa?-C`yU*6#db3&&LBE-`j=IsV=E>I*qUUmqYe`ml-B3fIjzY@>8S`6ZP`> zE8YefrYuY>I|82+T=pz^xA)s+cs)3E5jr;RB62=1EKSRTLxZFd4AXEsgEo)@d&nGr zU40mv8sFX%$h7fLO`f0%MppoNXMX^+>U2_u81d7CbfdKxDB4S)ShYw`$MyNv1oG?m z?o{aUn>X<2PkQMWPA!vzwI1o8S9yUc*H+(1IsA(Dj^rJwng@-pQIl??I71y?%CY*q z2AY8G0Y7aZn@-1(ffFt`G~8>rFh|kATX$`MyRq9rj`b0Q0W`voQiqO>ItYGL)dVhq zz|=QHfkAd(_aioeroNSoUb{~rX=z#%qpq(DVXd88Wsb*roGgpEuYTj^10FX%;tX`U zkWG#XmmX~l>us(V0UQCZB)wL_jCkDW*$C5f-}sov6skuD{OpPF<&eBRRhg~#(Bcb! z@*zt}xC`@e>eWG@?LSfO5VDdGTXFL#&P2C#_r>rC)N4pM1V`Qc^?~EkJcFNFkR1#DpXfVqch#lV4;H z<0+1e1YB(%G$auLRZ>Ce^}oM;z5}Bi@0yuXgSaKnP1tjnx^lQ@ zrQ+o*h$07PrsCps5fMk9aDRXjr8+?rHALywz~WepWpI<)q}^`rKSKc=Uniuykdu`P zC~=@;!I9{Iy|+4q02xciWkKM4s9w{S%ogB<6w#lu)ZLsRDZJH3pB9po+9pKp=Ig|Q z32tew1o7_2$Sotb^f~LjI?qR}|I(w(P1ruAXJ@wVRWN2OV}XG&gKY=z&m0t?4GHQ( zKHW3z58%);S0}j76@ho0C09UyxHm6ZL@V(wA5rf8*qv0N*o*Z1^CXmDdU{95f zmh{tAAanwkUm+P*Zb6j<2Zqd^fdID+Es2jLxRb6b6dv^jnuPiglkL7*?F*g9yaG2S z<6^*>8Mxn|MIFSBqS>?-?Q5u9cPHBIaW}G0RSi0sr8;YMrCSTQl1ZqIjYZy z`x+d}_e(Xn6ZvCQ8HJZ1JP)!+Ax093TyL``g-ZMP2bt;jDS@2M<}aE~ zL`km0-dlz57m>6yGpFt)d*2=ky!I5ZKUWkFH=1+(AK7+$5r}$rKTJD4AT@tWRddY2 z;$HtQBJh}_D2b&_WPn3k+o%tWcZdB%Oe*1Cb5^frdDKS$(^S<=gvteXs*ws|p)0Oc z>yhZ;BLE4Rf9q};ux*u@5IbKfw$Dd84p5unxwyUI=&Gvqn#5t};fd9!yI1~fi~=l5 zi4&Tw1re&-l6d#lDF_-TWRl!3Ac+90DnG){aV`p_LMK_khu2Xh;1#WHRt%ok*S3)9 zs!;yvG3=Fnzu5`rJoDf`+y%g*pAxW z7b3<5oF0K3=i{AF@FU8no<9N@OzrFlsi|s1Lyv|q2sL$`fk>{SofPWx=ij_hI&h13B zbMFjz7=6#3e#MhDz0rygW0^mq%MC@Hf#r z-Tqf&Cl_E^O14$YCjCC?B1now=+F(zM-k`{_t2TaF|E_q z%6hJu)L-VmUMP(kosn&(KBo;Hk9GO^SJ`*;eGhah_S?bx@Jv?UhnMU$hh7;c2W_(1 zwK+CO`*OV9LB_4indMWe@%6KkX9?b%I9aFQGg+?e@wwEt>7`xuyA+!Pf$g1E2W)Yv z@_athtAlF&z6MI0E#_z0Y1Lnino=BGn6x~Dzo@dfBCPFwQESYbQY3CxKIve3L13zQ zUcr&B-1_lW(-- zw3m#YeC%BUAOsvGR9L2FbKa)lvvR2msPCtfy&m={wqiVHZEdU=^P{0&d7D}BplG!& z4kmc2x9r1yg1*4f@XLLqUIX!Qq&2e12CJ`wfTR44p2> z(y%|7K$-oZh#usBTpCOAT`vs$FIE zt?7!n@h7#kzq&_cf`7cJK`-5oBo&--cc#i?1(8o*1_Kh-g{G*D@K6nm7NeiKHhSo* z{YyLmBYh>#Q)B9QHoK229p1BW)i~h9JnlQMkg#PzRQ{0l#rLt^iq;Z2%q0pl2cCW* zy=TyBDRr`<9X6?K8PcL+F#=3*&)5?YOxrw%61zVwz>^XOoi!-2nSoHXh59285p zYdK;5j7_)SrLa<}=E#beVev^QMtI^B9n&V8YFiGd>od>1vJ2inFm~Of zdPlRW!l{6ojTIFN ztb8ytPWU^1a_%>6nb+ln0pYY#M8xi|yR)`3h%cv-M2Gj)S>-s*qfcFpe|{QE%--n* zdt>Y`Oio_aZ(342(JO3O^aEDHL7aLztH*1F^G&Jiow6<~H&407fIfF~Y^NfQ_clNBMAUyE2b*tF}#JA7)_R?i{O_ELIYS z6-gYnAs>c*+&$v|*+Wr8vtCJGOTWwPB4l|kvi?MtAt3Po|M&k>94G*bo*CqaQ6j&0 zR-rb6J3MKi zjjt<6Ft9aQ&`*g z&TZ6&)5~v-lp#l!{lxLrsxR3#-C;AigylY(QsneG)V^TWYDu(cW{1X?7%(JP-kQM- z_>Y@&siD&?EN_m?ql`Z_;qKcveZg58ta zdj0xc1oY7mkzcNQ<(r1vy9i{z;?~b#vN*vMJISBP9qR#+aW0%4a`(eP;Hz~0YmXry z7J~R%mGyoGuZ=hLj#gfGaa}t7JZYB4Q~t=9+21by+j({;;{`>lemJLRhLv8t=QSU(oWQb?cK33Z^gS3 zx$4yeIo!qW2M{R9*r` zHFA-PadCNY|AlJ^N-SK9Y!x|C_K3ZeZShaVK#7$qjXydsp?0;+jg!#;CAa zj~8w>T-0fWN_ZY>b?tHAxoRKPoHZMN#UtykKYCaUeL|I#WCaaora1zK_h#v=4DX3@ z{?wyOU&!lI!@qS<1PL)d^XHZk-js%Bw!&|aj5|6=^s$OC@76|feGr~JZly9vlh>z- zQF!wmq(WaBQKHWTj|yiSuGcnoomvsR3+w$-U;SaWz-{vL>o@qv*r^Ym%1zzXdalp) zh6X4H*AIc;x0!*f{#JSGRa1Va=0u&o%ClyIlX0sDnQI<8_7T)Jml6(2gnpp2Wyx#E zeK;-Cd+D#QSF)z@(K2)t6d6x2%xj+EeDDb8ac&yAl5|ryF<{?CZ`SOm_Dn;Fk+DGXm^pME#hx^nJ)PSH(mmF3HbBi*}qVZSLRf4GfrXx|hV(tG30 zn;mHlzc6%(v5AmaY@hkm!JegKUh}L|Z@vkA$s)%amsIBxyR`W;@9OR zC9DLiLWzv2rm%wdAvgE{)ka#M7a^2F~?G5iB&^ z^+^!gSNC z;u)5Oh7X6Re5bp6E3}@T;|ZOcF>ml`8f$kSm1aHMOa8`A!@zF*>`AvkbycAwcxbbV z%4Vu%{Nab1oW;g(0Zp!NI$AmqaT~@5S)2)~PR%xL1glRQxByjewQVK-O`x+K?eghH zrjq;C-~kbRrF+DoiJZnZD(?C6x@fo7SCh$T=LLg(ZX2h_Wdrv>5yD_5tszE6z=ZV8 zA-c{ngoJ%`F;0UI^1`TdhW7s%(0r#_@^d4t?CdW4&mC1JxwkIt1j-aQx@JKvwL_{H z$4s>s1V2G#LOzzN+nw=r4~ZWi#h%4xtE|GVAuL>EuU{VyKLUa12}V$(xH}HN56pN! zJqHDS91aU?PgvGXZj^au18AMT=-(<1fGGp-1yKd0xu_ErLqspO^(@gRJ(+v9E4S`p z6*J?#oa*arBNgc0y6-f#psU!W>$)4>BlWFL~nc^)lEES<-nD7aCmX8ihMDk_C=kX@8IgQ zy~6G7TLxaY4y9_TYvb3%8lX8%-1k;{*a5jxBUAli=2lY}!}G0Dlk2S0hagdQe9iBb zlnKJNb!mfkes)ZkU-~0R?mHTiRa_{&ra20~mDb60te8 zzf){Du@Z=hS|spYzoI`U-RZcUv*z8r+`GEIybR1%Lm8)$=S*%!p_JG|=Rq^c0arY# zmfvLH;acHQj7NUo)sZ6BlP~(bk|M4;C~Vy`triDE{yyjP;RQnq{V&R?rUc2(FR#rF z7TXEGy6eO07wI72W+4@5sueiCE|c}3D)JWR;2feVx2B!@NqM7;@tH%O{lLhVe$427 zR#f){g*Lg0+M{+DugSG{{#L3G+Y%nl4JYkQ8k}pbSnAybVx$BtjOfr!zs{oXu;aa%BKt0jY2tx~>#n zV(&Ri;NQT4n15BSeu^fF|rA_3GV?BN& zZ6~HAui2YMS%`I>v#6@*o{xoYP3L>6ZMeMP=2SYK;RD88?H`me?)$eTQ=ECODoD^> zwoLPmsd@+o!041YuT$6`zlmbeWLl-2uI1V;8YAQbH|&ThtvV9u!K zz%6YJ6`o2nJC=B3u7tYpKkJuM3TlLU4RcrA@E_V46u#dzGmUDN9p3t3ZPXDGXE)nn z@Bbti{h8?K@X_%^ucXS`&|nIIKqI5GV(^lmyH}*W;Wdz}NS^Fd51$_!3gIoUYQ|n; z<3d?b1a%s#?zWDlqyUQDM|opL;o@PkQSHUoK!uq5k5oi;0@MR_X)u+ck~D;ERJbL5 z;wP2bLP`gkC3T?V04Ab{Zo$FLxGCNUqmug`!`ociEGR?dNPWC^mrVv#N`PCNHYgh_ zHeW``G*bCIpzLsz02JQPmea4RSY`{^yGr+7@+*=d86$qY>j?fZ6`69OLK}@~(;#_9 zfFcraJR{ny6~3-hiTeCy=m9f7Kv%ddt}`jHg!0d4rM>UWwH0mqp5{4PYi0_~3c`$j ze=o;?(YWdrU8_THwSG-LpCrnmzlL#5P8M~V{65z~S=4*Q-8n}t9$|d<&|}9FN#%2d z830Pp&53`jv!VL#h&LIM2_pL-=%LTIA?3jKV%{;@!)@A*vD>wXBhB#0u!KFT>nX%( zS{vlD8+M&}HI1)kTLCN0vLHvX8%aBJww!C2d$;G^0(Vl}MM#Qjq2VDtmLX(FXW6~D zgXDk%EBossvkJj~G>+G zDm-xg7Z~=4iWB?#=YFZ6fTSi`_d$ZAQ=d$87-}O^CSpc2bzS25=4I`x!staG#K*0G z`Q|qgn}cmJKSpeXv}LX2fq!dWMcY_u^|c65Uxp5S1!5x^L+xQ!Sq;AjfDzoT1@?nQvJ2i^hwM_h&OLNXwh{bmt&J- z+NF09Eu*hxsy$nKQSOqDNZCyIpzG+cSy5B!ZvM1O-{#k_{dnWngYT|ZW%%uDE_7?W z*fSQ$OEBj_o{+#0tI#;cDHXG(4EwPJGgb4Y z=2__l)3@bHB@1mEOc92I*XG!etbeO$fi;~;#x6?>Q-9-aUJmzEuF|f1HIgY<=;Yqd z^R5za`i7Ohay#Gad-bW=tTGM^S|MtbCsZ1+raknQ?8R*)6_`y#Cgm=fr^) zmBLhPM!t;G`NXC_XA)x_N_0g_%S0Of7WW%wYV~t;h?bPA*we5|7K$b2_g^bNXt|y! z`&+&ZPzw^XAkAwR_w1b!KX1b)k9uOU`Q6vb#}dzovbm?es7zn`IBHA2YbZgq!N$^*cGPP4rKu(#j9rlP z=XMev~fAKN7_bV#IW=!)0gW_vMv4XgIFj)$fuJ+AK| zHVwd`Q5gP9u_Z$nj9}$Trg_SVLrj12%_xG?SoI1Fd5!e3@~zj{ z4{j=)W6SzSH&UGc)e@j4?5~#I=Dfe3qFj@^B;}yZ;#uvh=cJVw+!davN)NDbePEw5 zXI{0aES()vaYO-^Ppv7Y7S#~R41x&Z)5V1rL4AQ6Ot!%eS;w0YKFf3fYU+1_yK zH52-=hinH&7;A(G*&)Yp!Nb6?=UNKi_U8b9=UlpGEtM6grQ!tG2m4^qDg@7{l{iRN zL&42&aWAurQs0-;o}E+P4^`PiWbZd| z-(IIwLI){HCi-9LfX2;8hZFlf??3%<-l}d0-ns!|b4QGF0JZzScd(`pUtS}&rOKD) z{!v$-U2QDo0V#H*>y$S>_*tU(OQ3-wVcc9jw0qkqt129gt2Z;RIOLBno=AK;B4|)l zWcCytyJk(OAQCSB46W;go}*s;;`fZH5m&hNuCTHz@`2676P@ZsM6Xg4I)9AoX&v;| zpt9qvu-Rw)YogayThG5?xXV~EI?P*VUFuKK{?I3<>C6j*XpaNwuO-TSsbl7v)%t9u z2$_KfTZX>KTB&kPSH!f_^ybB|p3K$g3brwYO0&4mo01FDMoh{+F*EVyN_B>RM)`D| zS=!uQn_2mCY_~+$>7`j|rCxFUxgppNZ5SUa+7MLN(_9l_EUnm5Zy)4z2u`QL+@djf z*FN}4dXl!!m8E9#Rp8+2$8Tfm?898=5EZK>wN6pZzPud)9Fwnujg;-rSurJWx-ew# z%ZT!V23Tp75gm;jiJ-;uN4szS87c}0^$5lo>a2cGt?>!fWP*3(Y~S>AK{Ec-pL&4( zg_>C4^WkUFo>rPC(9WwAj5g$H^sf))%49x~t!qkkDiSmCcbv+CnbNSnN*&891%F=$ z0*#kL-fd;za#xP-)JJPqJ3`BqMu3%y7s3`wCfnS^y33Vf{a&=0^z0-6T41TLo9OLX(lAkg)cJI?of3iq{h{PsBmoTAz@H2x;8Q$K4vis4C| zvxUDxij6aw8DQN%-+Pq2(wYY*`~uiKTX$WsCiUa6Q3|}~%4Bu4{ji7XWlonxr%gi6 zhPLQU|3`W|!Ym81q9L7AK3@QRF>*#U99>Yq2u<3WP)*HO{Qh|SjHm`*W}9yx{%qfJ z1D(&$kK59m!J77H8c!&}p4pKl!XEbPaC6}L7}s#gs>;t_{?#|e^N12Q3x{E1D>5n_ z;=?5{&50{E;WQUoP~_?H)iD-Pj^42 zpAV>ycJCwFYeQ_%O#Fp1PY!GbuSZLc3i~VWy@%cVBH{fhn2t5va9?nMzSgtGH|g5} zzk0jb<%AN6S#72Cdqx{RV~NsFkVvkKfdqEO0OGxFemy{nAXyQ}l1IHrW`&y9eQ3-(;oyrMtQ z*Af2L6nBQ&za1>*G%-N1oDY-|uHeBFD!IS%aEO%~Chz3a59k8R^QM8qbH!{Yw_xe< zXO_D=&*u_q=vnWta_d)&We7Uy4%VV~g^<_2uPXAaX8oNB&jfzs0Yl#%&pxzXTyO?f z?jWSCkl3Km%$lQc2%kM@+c;=-)A#HaH#03avnm}I=kJPl_~~Zz)^{rM!?LMPb(Y+Z zozXWE=27h&T9OE6LID&DfE?mx0JfuAkh`S*r6Ljs=jKl=6)h+#a_}E~;Q4G`la;@G zgT80H{JgBra%KISL+Y_R)mN}RFB`3B+tZm73ij`J)gp%!?TfWP+4U)!fHC%*mcvj= zaO5?kYf7Kj&fMj=+^S(p@>&2q=w5-xQR9t$LPt&$643|!M0hzX1252hW-)-)qFMWubLqR7~J#Sw5#u18*_af^GrVUF8qW& z=wJ3cd+T_88D(>h|BX3^GO0&D)3KWp~W@y9Qt*U4u9Vd&jefRP2IX#~rsG{*M~XWjFSgFW5X{u%lu%m2$f z`f)pkRda4UmJxp+k&|00Sp6<>Q~j>KX0<_M|XW_$?DaT9^~)NV%+KH;+>J<2eCJS4Tn}(M@4B2Y#Yquo36S6 z>2o(YZg1|T0vF}NII8>ByyHaJONq>D0j#38d|MadIoqycozG=;ONQ#6`$bgxc(aDA zm?Ee-54i(KS84SM`iABT?CJLbCxmI(_aVe1Q z^Jg`B$qs@)>ft}v{r+7yD}SI8dw4kqTL&~|ra!cXx8MAl(pJM#aJi6`eDZ*y)8hp9 zXl=dXj%2#gtM2WVZ@gv3^vcIXzs$qK{{9JH_YA(xmWcHYH>2#BSN_~Wxy8!++L?Dt z@8DcEx#&eL5tWCvHZO%IUvC_;3?ab!kVyu$e)h-hi5Z_;Y8H;F%k(^rAN1>IEnMNh ze?nw^LE2Roca4#9|f&E^egJQa&M5Ks}0CA-)0NK zo&U*s#hB4glbhziU(d-|CeY8Re_eJFF!nhwi^Kx_OZ>+ENdA@?muPmIEr~(SE-U6N za$$p+{EU_#vh54`lUrVmvuks+5W-(I5b{2EMAxXiN30A-V`QJDtJ(@tZ!&j;vCVSu z{1?acls~q<|GnfW9!C~*|ET=cVttZ}TRCsG!P;Vo`Xg-#dS1{A5!-4j@k6(764(Gv z&48U8!xb@fK#&x1zti72Hm}mEc!w#=qqwL}#aHG2?o@q<*vErkxd`_rvIFsKO(M5cxBk# z5twY5md(obv4nEfNx2En^Q{bs)cXgT(~ZliEr*2_olk@E2cCK!o!{s-g93iMLr~qX zHVZQb*z!3}c9pwT!Gio%&I=NWlvciLo=b%d&X>-v&R0wY?-S?p&_%?T( zLj>V@wk$wM#KQNwo=SckO*QOkARVCq6Cxyd@*_woE6jAy^HEkE5oTeN{ zE2oqi7|POJYu1foemDd=?)_og%4&NhmuYha@QlXn|CYn!dyMf3s8!ZWnQz53ezqCX z+e#;*fB)wcDJ5cDoj-6~)wJ`cKYXyUS<|e0j={Pi!KExH8DssI=gOal*sK3nVb>nc z1lz{-ilN@-O@*8)hmaD=nMh)N)Q5x=)*5n{z2q>G4oj(_ER$m1P+{ay&U0FtGP5y< zh8-fbId2%Y_(s?D{`>v&{PkS-bzk>$Klk(d-S_=mH(LPe@b@`+JvV$`y4PwQ!M(ps z+tq#M^xV-sj-wBsUClzwZR@3cr!V@I8AN)26@G&8i@#FFk$y5%p+qTgpw!T|XJu7l zN};hF?~Lnmz+bm<9#Rl73dhv)hV2;CFl+KXM*`LAs?`~qYX_?|G%_hQzbs~ICM3UU zpb~TQ71pu(@1G@M9s}033kXqnQOLi(4>gF87OB85@`S5MtK#ID)F1-@k+-50W$z0) zZ{afEopwqOk)(3E{ECc!#iI)- zTY2DiV1{Kw;q>m_N@p<5*K(h%Y@$pDl4V#t=k{C!{*W>KN*6*Wu~8JHW3P_ zGtrN_W^WUb)`=GvTn4m8IfuXUx|L}>u6Y`h5;xf;+=OYwric!@pHt5zaNY9dr2+h* zhi9T0u61{EgJi+xc_qVpRQ?5MI~DGaSz;4Uy{u&!cPf#Hks3Rpd`XS$BI ziC($!RjB&qj-0J3qN8}`m2U6%{TO+oOTDGXF(JjQH7j3GF1>uvm3r(TO07XZC>tTm zWMl|t0ZduzY`AuL=#kT!O$SRRqkdT3h0pr{MGp4L!AbW7zJWrxZbP>ht1lzlVx_wRUT7s+^rsHhGKODR%-@jTJys(zRr7+9@{@Q|-L)0Ch;M z_m|I7aV{-Tee8`vo3AHh`&{AZjhw@YL6Skcmpjn1pLhnEznsb(R-5v{o^TH$o?qn?Hmex4SuEL zgU)We*eD|x(854pg2|Nz=y|f9$xaB}TiwaV2m-Ub_P(UV;!Vjo7n6DJvn;86n^)xx zhc5|DmH#v+>UXy|*Fl@D7=~@WOV!w?cHMkp(Uq3_SBDkwM+%JdN-IQFGk2d#H05!H ztB2P7K`b;C-B5~+Zhct50(Rk0Yr{E{q1jM>3p=$&Cw`tWJN_fXnn)_#jc+u`j@v&8 zV!i3JN{;mxxQXPu#ee}MhNH=W0x#MYeNh2jc!a~(bQed6``PYv)^Jci1^OEYrqwew zyj1d*l#nrrK|5bb1V^%NqGjk_)*Hz=0%0}fJ)^)g z`UX>vY@=`fx_5knk$$8v7Vui}n-{ycek=6(*d)3aV?yc zSJ7ga^mdD;D9YFnaLqgsib^WbWgb9{tzYD(CxoZ~Mcujsi_LmZgxVH!UiA{6U0V`8g~Xatl+bDo+0lT9_$0sTfV%tJ(B_UVPy(d6$MT=z?EmK67w$}FU`6r zIgGDeUl+=5)U`bLm^CucQ^k*;kBOFnEZ=?#hlbmH=PVEYg$>-e)d{42=)JGVW*3b_ zo#U29I+o$keX*u+P0nPD6x?|Jr(AUVC5dwFMNHz;d1#{Y_do1oSJKg-+BZdllYPSz z)};K^xu6QeMHTdF%c)j8P24C2b+_3f`S_9+6#T)jU_x9-mNuy+9p0aK^t<_OBQSo+ zvKDA2rn141^py8H0xxvSv5g;B^4x3n(7odYt(nE*tJ zeQ-zYS#<6EuEq$Vues=_RLsk%c*qd^?m$m{dS zB0KYh?G9wS@DR9b>_&_>XIuCa+wo+^giXOXKH<)4o+^2Rux-N2gt*tRAkg~8fM+<4 zy1r~FGaP5t)fr3FQYOs=7yv2Wu!o4pP{?~VZVvif?-@LD(auu<28UN_a!fDQkD7Iv z<|&Y03E-{9iduZ;V~1XsPV+HnAL=l{NrtaZQ8f*^RP@jx-~HH)YW z>vCltm@LdV5%VAC@{r~v!j$nN=%Ov1S18Bd*+6bQOIn3B^=}V&6}+w~{lfo~N)R6P za-q=2)YDjD{j@07a&6xs3&1TELb^V- z$+1n4OT#J0VMa)!*cu%aByI<%EykulBCF^FS?zSBAfcyfS8-j=w}cEt1OZoGK*hu< zD~^F^AK-EC_@Oh)c=SYUogTrk-VADjm$0=*dER-teld^%F%0ZFON6_-+KBP zmbk@chNo#D630=8}iin&bMVd-8RA~t% z6y*YjDpCRj0!ko4fIuJw2np|r-v6`S@9$dgrzdN{fpccho;`c^%x}-0ljnDgZyh~+ z_AmqjISSMN+Y|!f3WGrQJvev(yn|1BzY1OsJTSQRH+Tg<+c%qHz{{ZkeXAe{L^y%{ z!;w6<<_dwFgTVg2ZXTAsGzHJ_f!m3)=*Y#D2oj-TO5mx}>4z@YuAS7Kak^{uq4Vge zzfV5ff3Z_iI`KO2uJhNif5iq@6FcSpK63lzv(taK|8;4W`$5@W1u8r>V zep41CdY5`I`O(zkGQrHkZmJTuo?YBe)tX*MmQ>_6P*|gM=x-7K@2~%>f&ZU1fLK2Y z>mTW9FMiaACzG4KZ{xDK4bHUiwW`fp>lu}xrgnvDN8BoRUvfei#_pqB5J+#Pn)_+5 z90TeCbV@6G?^DY9fY^3Xnzzr*6qhRd7gBaX0nPFJJ7=Tv-u8?`MGdJ8Sc@9g&bpoe zt=n#__5G`ExoE(^*UV*WeRV#~dmki2nnMB7Mv!$mO_ddIxCtbz{Me0A4`f~5H{9;B z5#=Rs0MnMhIs?0bKo+oDd~lgp&`AywaPD9j2Sk2~Z>f6fIdobBd!ycC;5N0XMxGM_ z*}UDx0|{6=@Ob6~VB3My>n< z1oG}Er#&P#k&c7eJ5=ti^7>X9QMqV4F%z@FFQ9z4Pf51QV3%RqnZyxTZVK^*)+RcY zh$pY(fJpI?qg^e^*g>sLl>l9!c!U{w6}teXm{3cRezItXz1EgkIrO($n})a@xY{!0=1ozpKVg>u8AqokkRP!kjCTd1f} zaDLlBLAb9&HW3S}AhS!M&#H%W~2so$}~w|WGUibRi@nKTzp86CSY54)0eb}!cl(0mkPGE zr@RwTGUK*n;j>+7XBiHei`y+1X7ikb-o8Q+(1T=!qQl!L@;W{=tfg{N*Ul9PmDnzm z!lf;(kY*m>g{I%P%u}g}7{Bi;q@NCy_w#RrcR&k(T-nguM<_JUzt(f4*zxp;k%}qG zP-Rhh+^#KxWS+kfBDjJHNSLUEol>L>5BS2OORAbJ+L~SyjUqn!tBmOXTfRh(rJI;0 zwM;E;=X@OST#piLW*KuVI&Sy-?o9f&*^CZ2mwpTQt4?fPbQQJT5Vk9_b9|NE^U@cO zwk&At9sd}O+15a&Yf{jP83ivjBUcUI|4R>`zyiB=#%@gEJS^$KHp6xWJJxVz^PPF~ z_bw?!{gTQOHT=@aRhDgjpF0qFA7~n`I|Y+Bpo+l=1P^+n+|F$`fmLm2RvzWo$)ov| zUBzb2AuY#?G{(!md7)=8H#UkB6?b{GDgGV z9eO0lv!%ba(I`jLs(b#^-q=a+EWI|H%U*D@YSa>~(KlNDmFlZzH$D}%wm&63YeNm{DD|@Q1ToYLsu&BjZAoNjzbDQ7GP` z&W4gfmITT}xi2h&$I`UajMmhZmMO`$hs-1%{;VL1 z{PKrZ9nV@(fmPloSd*0xm5;N?L4?|lH5eDBxsmeuySI?Hd}Uv}nY?V$Mos;n{%;QV zbk&}rQS}%KW4erT+reL?reaI{Rc?%LjJ$nbUrglK0*McD<)6-|qemdI&5Y&F@F4Ax z7#p1yd2DgWIIhavVZazjE@-@tH-7u$8&mI<@POiQ)UA@&UJ^0&eN`8ce$X`Y^E1n| zz()Ii)ik$H8VCPv4HLlmn@LzGs# zQc${C7e*MX7hx<(Y*NE2b0;jHNiwcN!Bw6Qbm$la7TNE`g)`qES*KUOz0A|t2f5-R zKPO`YfgFjtfXy0#b&YC3ZMS`-}MTmG3X7<%QmM9ik8nr+((k)YiQQr^#yY6WB2mD~xvG$MLIWXfYb2Dqvw&@XxvBJ`IYxMXWd#pJGpg2R<9`2>3t znguy=aN4zL{_D`7=K=Ym*5wIb++OsfJaZMbbWO4C5~#x0l`m5TZ$CJpL7Sae3{uBN zRHFkz)x_5#Nqq&m1Ma}CV@b*u=shC}wSX+HkX(^%**Cjc&aPQyXdJJ3tvaHQuc1l@*F$*_KJbLjeJC z_>Gd|U-)2D)XvrkAku+n01Ugz?69?&ZA6`3q{U?YFhWHKCo?B=ozCr!kMEA`m0!hF zu~sfIkIuh}x)TzbUsQ>oA6tg`mE%NFJuKchwj6l~uahL>mZB;a-^DJLE;CFVD^T<{ z_h+Yh9lZwr&$4iJgzvDbj4w0GVS&_~S5m51t6&MwZ zE9OOq&Gb&evE|_5SgjlQ`?^-@m2vGX|dDCt()vJNpQM zK@FnHyw3zzcCIBY`5EKP@OmwDn zYO_}&O9K{NIk<_t^-2IqC{@CGp+uc_VpGVh-G98jC;A4i3;Jqj{}`b7aknfDyJzJk zHi>VO#^KP_xic-5&8Pp}2MYbEJcpAoH33Ety^3Isk!RhXaV$+F=lgWGps$-rHnx@e zr*0peh|<93D+x8%zg|3G+~@5lunMA!ZoQjr3i^QsgY(tq?{Ugz@fohD+)CQH{TL88 zqOgX&}x*UkExGy^V-xYukqL~qOIvSn_2uUa0f2CFbWwes?* zhmBlornKW^x0aI70(vS?13RFKLLUwj05E=hw4-TpLaXA-E&hGvR&8wFQuRQw@8C3Z z^A4`nw~TUf6?OM_-~N*yT7qcQ?_j960oAm;wi|@x42R6TUZV*^VwvP3^B+XbkipFa zAo5npJ9n9wyv0uIyosW|Wn{}e)>Av%po=56%>#xi#f!$;snWeHvR!SCJE(_!=%U8$ zsl1hMD@a)M!$fC_G1acAe$*MY;G7MvBGi2`cuxj1kyag$!bH&;w(d*~_-QMM8c^HJ z)q2@ubrc*D`mA{e3il`xtZ!DZh^0M-*f` z+5P7GQWCg&1)D4ezh81Jv~+F?R$)N>2F*D$%-*p>t}PG3{CYRvuiWdog^2Wi*~s3t zLo!M(U@P4jkWe{n7rASBqWQAkIy=fkVEk@&ZRghzu-xxsEK6W7gIEXi(^nz+1+`3F z7|F(j8c;!ajUX=WjDZdgisdt|o;kEr1~oCD?Xufnne;QJK7kgy+kM4QgZHpa-TAE8@(=9KeAa|dk67-_ zK?jAM~wpFCYm~?Qt60_oN z_rT%4>P|RGY*R%>LEmDpCd7-~LEGa^z+8P00Sb0CsHOtT_|m!4C0|vUh5p4xU0`tE zk3oc1R1up0ZFx(;`S;p))y{>FxlHcy1`%8(=I|B}YiW4SQ^4*LlJ*@l7X=8spA`nFd)=gk9lh|G(|Ia3S54?$bQXJX4A9xLX7#p|JgV^;eNqN_lsTPQSUl?!#5(^)O(fW`!?sf;4 zkAd)K=#ehqUa+&noI(iotmP7UCwh*tpg(;oVD%3AO*3u^kZf#w8G^3aG%B=<>YvGe^u#hR?Ekov5A`Mc!s}rkhDqI>|XaR6JK?G`r~w}azE?BOpbzyLG{>J?!7if zHq^wUVW85O>MTb;bd52pgjqWU>CJIlt+HtQe&(nX>d^Sx^ZiBNT(jDW5PeRA^|8LC zEvg9tx=~ZMV>teSARoo_3uhKe$Ng+Sh5YbV3twKoS+=~dyN~wjfW<6lUDf&N`XE8y z&gN*%QFJ2R!}j#Snvh7RONlwYT?=x4p|7_u%($wtEC98_oI~|{!N7oVU=U9fhoXA2 z0hMYc!0|23>DdshSie!1wA^POMRZX`aXh5Nh(DKcaD zmvistxdO6_WlvEMxy!Fgea2hF8%4RiBcn(5$d352<_19pG2DKsghwk6_hy7E9K^pJ z5SzWlw<2ySeDo%lZ?9=)foxBz)R00?Dt5c8x@xKtpXyqIqJ`7yw=qt5CFXU;!zk4q znI0t&^y|2q(x;Y`$0r?hVBLe(Z<$B&{&vp!t=I7>tdek5hvE`<220POhiBqdbN{N! z)NZ8Gyvj6-CM-0NMp@>iz-NPHZsqRHYa}r3?vVH^u`_ix6#Dm4G&-OnUNmU)5Zm}d zCNjmHDnT%xC`Y5EnsfNK7P26xrGcxLvFpH9rI8rYtvz4zbfcog3+R-w1W#~A{hdeO z%iF*D-7UbM8Lz+zXjpu^vNCqA!1ju$BkzuMe?po7N_2DZ%mV4jY{Mttnt{O0UbtUsXQstx`xmz6LciwlS)Kjd8~?*f7+5-1O+z1aRZTE$zvF!jLQ~7B2|hP^ zgz)t9$h@L&7bKwco&RMY{Dn3_8{AiKbk?1fFNzO|DxS6q7iqkem$dH)3Oq~VkI4W9;@y+*mdiGTy$j<*tkv>Do_5i8A@j}7%WV2!#d@x~H~Iez?! z#{8N&vcqJa9IrEId##Xx%1}*R{zR`Po0Aqgx@tT*();Z`?i*cs7bX0T_f;_2JCvKl zrx+1`{hLN(vr&^VGx9)JRuIScTy);-2z^nv`v zl38ZwP6#QDG(djCbb2=IVN-N>eVdu@^wVQH>8|6&C|b`;+onqw{0s8RCz223_pK)| z-r~p2y@5WG?;w5bo7uMm0m$4dWKNG{FnQoMD=Gnx2Dph|Qc$MCZbkal-xlWe(OHH4 zjtl0=Q-1un=)sFoQ_?e%~DNlwLXuBW#CLgR}C40d4>GFXt{IMayDzv$i1*H_rBHzy0y6P?(a(r<+B3 znX7itmXQ>#cXNUVzajW}S#kK(2FEqPEBqW-`GVzlaF+oR^CLYxA5)}qNis?55wpE5$C zcZbJB8Q0lymGlMOqVqi&|FI_h?@4`5$cax^K^>-pI-FQ5gYKOlv0c#pr-A!Mv1DLv z)9d`Hcw1F!SoGePfW4HJ8?Q#+FAaj1kORvHt}h2fe2OkmKJt)mP(LBVP{)(!Y+KWV zn9;N`vTL)$vZf7pX+DG77bn<-LyxJ2H1Qf_b*bvTI*JOd_XL5-Y!nQrsgZvYawv@B zT*C$IwA)s?kD7Sa3D6E-$;lF{S021lke#nyxgl?3*;}O%)?C(<;Y^|{5G_O3c3D0B zXsfS-Da$>JV5-Mv7{*JKt6pkY39CRGW)I3~7`cyc-y+POSFlDPR>nw$`oqITaJ46|n<)j+z#_z{RO} zq0%^ae4 z`Zv@9-JEB4*OZ%+vXOD)*Civ0THy{gedlU@4>WwSfIzJ86?FpyRq~AtAr8te+zjXl zx4XviY240~tKQ)a(HL1|pugKP`Nr)S{>Z&#IoY|fFJHJG`-~Jt3#n@#bm3+`dV$4o zHCOi{lW5tC<)n?yaARL{C-MRTyq4W33ks@R_~$M763v^VQ1&`gr4u>oF@AOa#|STM zI2=uOi)+45-)yR(Db=r8WEP|o4S^(RF;F&wM-SsmX(7O_9WY%oz`=VSOrWpNxWZZr z?R7Ssd{ex8&iCmgXCeC)0KOiL#ar5U*LPuy4#)Be=Ieq|(cf9Lv^s$4ud zcGFz=TW+Hx!`7Il8pzNS{<*0d*r@H_JiT72KXWdl%fU4Q*^nn4wm3qfnQ>XgE!Q2n z3GQSi%#3m#iMN09zBqz=(PO?Rg^{y37gFMfHwlaYl5Ho3IAgaj&Tu*EY-K|Cq}x|F z+y1GK%X;K{`2MXgW96dhdJ{));X)FzhDHGu)0(0M1ns}R=1x!Jh5BKsOeU*;hmZSbzPD^X?h3ih_xr;x@b36tD|5Q2eo6yM4`Nw`-N3_H*e97XXeZpgM zXU5%Xa2+=^pMT~GxT)V*d+?>L)sT7$$$1q58AG!XcyJHXh~=jQS>8rM2eAL#n2I+h zMUI8TorlTiUN=WRywufbFyb7A8IL~QFQ1cF;`mp5F7j6WtD`Oh36&)Iu^8>_WxKKH zX8#v;H{EQnS@{L|Ov2-6Hi*eouZq}dzr2c_Zcp1_|ua145P1kB0D)W9sruZ9Dx6Icyz+J?XTu~lr~f%$S@gV!!rlxcH)8zD&oAK0%C@xZUNhoY z`Cc@$>4BcwTiWQZ<~1M4;j`ymXINF1#>w@tRZagiy)z8!EM}E&O)imP`wHI@bY9<%_Wz)g#Q#%5! zTpA>MPDoYTrp-M!elb`5^?9n5ao`1{h)#wqX;k)+CQN}@;7}k5DCHCwuGB>)?0yr7 z8m}NP;vO&gCf%Wd`e=x1o)B3QeOg0Xo0lA?{b;FaPHMm`Z*dF{DAq0)Hr8y1iorX2 zr9qusfr7J6XF(mzD|Hk{?x!hqG-OaYcng%ISc_}ZF}wec_Xql4>TxZ$lxJA2@Hfv@ z=gpl2g>-8$b7?SyUyw>mbZIF2GByY8(an_pxI7&RCGndT84gMzl%x`kg+ITMI_qGr zV0t7Zxm1eGv=_!ykWjRs_O`mJXvR*s-_(`+@u(!o<|Zh0aMbDfT!N**R}tBm4C3JL zBd!_66RXAqL8T*Ml`yJWjSN@DKh#FDMhvr`Pgp0~#j_!=<4v@`bHmcfo(1;?ME`B8 zjdU}&2H6*L#+h>`t)vih=44X)xFB$%YiD7Dzw}`3uXHIO)%78Z-*x2IxXUN!%d&C_ zp$ExgRtDAg3hL_&8`3U#OV!*f!qn-z%SrjmbqAKqYM?iVT4@mkYKeo5jZWwWID(F4 zK~hOuNR$?7vX`tV$UM$41T>Sz`9OPqc`!_ZQVz?#TNx9*AM?pS74~o_zm-&7b4wtt zCsoF^($aX)ZUNM#QqCK%#wUS=velDPiE~PGw_j*v7~M1Fs*zE{kmgU^;#ZJS-GO~K zd10(_1Et?REEBAU2V+SB>Z0-e>pl%>(*Km-oG7Cq>ON@SJ84BunblF_gtpKP{K z+e!592(Lng71V5wD@1(Gd_X?7@*c*zg8g`IRq}te0ItEOW@VgmeFW;$kVS@Jx_}Oh z`V(os9~^`^dk|VlG;XnNrqwAHSn(VS2};a=|9f9xChNA^+-)oV9#{kL z=w7!*f!vGr_e2Y43l51l-z3v84guSvp`NpfHJMI{azi*+oXdo4GRP-SJ* zOi-w~cXH0!w2a?%G(0D;{8zfSZl$e_CB|pj-{0Pf@j}fOx7n9paXZlLpL%Xx^=ei# z%>GKgHMoHu<7RuSo6gLX8fnf=1X(m@>bt3SooNBOIwP=f@>fNHiE7iA~&md`oLq|KX#k!e6rG1(R1YKQw(e zY5r{7|x9*FPM?0mkD(eDEqn%RlMA3RDXM{>!S=6EgcldS$&4=(cPuf64Ab6X99IMPV4x2yXw=!>ZRb)JE|Sn z0$Xs`jj4gbs|~Aw>Z_SQcQG|G3)7KSBR0;&CC8TW4--0HOAb8$F<-v^W62A!Q99^h zR&j5Az^zWQR1q~TwHU<=cc`*XCEZIOtqG@z?&5~~*gl9XTg2Hh5QS2kxUlp$j!X`CiFce~L-F)P|#EQjhcu5jZB+Ez1Ze#K3Bo>zM!Gy1gc=Y zbUM7cSza&t<-Uw(hFJr7CbX494<$+s!Ax>9BGRR^4iuqH_xS1;`PAf?NczphP-}Ty zlSI$PebbNs_4bfO=Lnrf^#7UShSaT+h$6>({bU(b;*U?8L}J-K0ic7=ur;9hxMP(`_tbBo@X2NbJu23 z^Qlj|K2&L8?ppR2eU+1{d8>pjK#Y7SLoss7it=nqq>gs~a2~gk>!ytmf63wGqlu$G zT@}bi8!%-#x&if-4@=mmc4g%ajCBsH*4KE9-JJ^9UExrJs_V+sSWVjcdVd=FB&mI@ zUygaC=)dbSR}L3n;u|oe?&-d6LR8zgNMI}b>iI!_ zV|36($2aY*D6lq@l4C~q#w`^XIKm#$`r%YC(+c;m?bak%tMI)X&DGent`76d4n7Vx zQ}hR$C3)L#J~5Gi*bMvW-F^flh;K8-->|cZ+;M|$kcjnZQ?55(ruq(WtaObx3wvp4%V1~SV`gfh+ZO+^ul^f@QqQ0|M5VkAe%=O)1l zme{DagZ8m~@+Q^%PJVz7v_Tr{?qsSMc87^MLg^_0??fgq=FyrFG zA?zgOzJE_1ZM%+xsc>D-^x9Z-IvC1rrm%bMshRw5jx!J?kmJ|Up!(>6H!zV@Vor@b z7-%3FycfeB$Nf@Ae(8@py~3+^!5_MvdBp#v>S?6R?_t~|o_i|V_9NtVvC~#NG&%RT z{@Yki`xOFS3)Kdo%hDb6X_$YSKwfR);6W#M$JK-;SAY+?jj<8{eH^4$0PF!CJPmC& z|Lm8!eK@oS8k5}@L^{kKXsp(WRnGPKU?k^vdeM$BYC3L83F{pAqwiabSDG$J08WwA z*;u%e!jNJrOeBM-045Z{y8)jLflM#){qR$Wu4MOO=JMizqsT^eOgqScQdDB{d+H3| zC~}Tbv{RV$u8&ICI+*t5Sq+dl_NHHJyf|c^0kX)oK5#Vtaw;r0V==TifSnA_Q0Gwi zBs!H%^l{UXyO}BN5*=-4Ac3Xy*0L=s_JG-C2m>oBvE6MYkV0g^2r9oV4H9x;hHEnp zj}XcVK91DmoraI<#eKjR5%ZLE#j-jG~;a?x9F`skTaHqp1Ys9Tc+b?iX#&JIlmh+NoT!O>f} zr<70T^(zR$ov{-Ii5xFX9Co0*A;MwCDw|Pe02;deHz2AXsB3`ZoF5_=MK;?5rDj}B z62+0eAbD&stW1-D*&$!3{;pZ?e;n9ub6e7WfMF9~=AAR%UDOihKxOkZKu z!3eLt%qc;@r0Zc74n$opv0BPuefAQQz5D{c8fqSCP{Af5CY3F|;cK&r#o+dcIKWQt z^`*pa2a1nGP7d7>-_9~`mDzpBwzeyeiiB6?-L5>KxB3sQIKc=RL@n5g_F73SDpD4k zB4tO`LPjS<5mGC-LF!KwLz$W8TP1@H=)$)_^pqrLe`Bf&^2U3HIQ;JHSQH}i9Cl<# z>O}qiJ$bB!S$%(|`Na^5TD&*g+=Z;u#lWKs`urEc^HaIRMri2N&&dH8wL*`vr}4u& zQ$)>5vtB%EUtLlL3iL7%-oMnW@Cjfx%|4?booC-$wPLVjKy5vUQ2vn6hmcImJhm!g z7?X?T#^`9&xwCzqVO(sesCp(537(9_zwcdu4j2UXi7;gKcGO?K5^uQ5?LGV4uX)8jzjyy{@0=$TDU#924j-JnYaf4v#KTe}rEh z>r|pdE6&~$)2}6i!pD}!6)2LM&g?T5<=qU;AUmbzMO<@HNWU(n0#_Z{}9_h6dAVl*w$ao+E*nA zT)l`LLPWkJ&@-WQk6JL}5>a#(%(Epo%V*uJlquR0ngCC+9O4`rhiq4r-ng^R411r% zrZ=pbC?6>$FPz|ejHY$olyqzlvCRTS^LF*R2!2FDt)`$lIy8U5iEfc2NxiREjE4(ZqzK{on&z!7K zKHX>UvMzc9@;)jGTw}egzxGQs<7Z^Q*iwxw9XXpvwwh96XaT?{I40i4$DVIK| zW))RMcVx`UT*S{#y!2+U5-Sd((5VaYP1r4@0h@X(-s%8G7od3fwEEtQHyq1T8x>WV z-_j8okM32CiUPL|?^^7837LiplT&{Ep1(Wz6mXn`(QfxVb>J=DAI#Ai$^b$Jfzv7L z_JPOidgIb1;Ni`z9vI6XAd{EDW5v78EE#s$=YRy<2uOap5o8g?YNHr^u;gu~yJ~>8 zJ026qW;}C8BV9V%GiWAo2jr3FR{hK2bs!gWm*n^i?eO z)%spUFxq>95VmUXTiE`Fw=VHeSXaY`!f4(&n?+YmQ5bc|>?0Sj$afiW5De9!27$Bt zci2nd+%gvijT+`tv~yQ#2%x_sTwx{f6l{kF;avmG`1f0V_Eh<)t zRsu=`6ZMzQa!>O?;TEdNA}y9UvF&WAsP}t?O}9&kGtD;Q@Ui_nY;Wtx4LTO;Qm-3< zm@KiKl(rMDR}zb!HjP;#AP;R=b=nfxT`OM%PyJfKBkl}u-xxyt??A0Ap8dG}ho>A} zf{m)c4fLkQ2g zZGcJtEEEN-FM!$Sc!j@Y{aZSFuCbw`#eVw1@0wf1`yx5SPV@WunmXhO^b3G|VkviW^b=Zw+J^qim zmcT=}wL_jqO<{Cf75lkEuGqVUa;(zPci0Xea>DV&Q>-S=a+*BZl>euaA~9}x)UI}X z`4_>VCH0R_&u%_|F#rL<=jstwq8;xCHI-3H#Pg`AXlJI0LX`q9s>l6Lbqm5B99MI7 z73+iTu2CgFdA*CqV>IAhRaxE9!tTy-MaU>n!{W|8@$DGcN==vcO3tEQNSt=RnEL30 zq@fLP7Jsm35u%y?W1zcGKIYQg1i0#B+h@g))C3TYy@sQ3S!GqB?!Z-PEa+7k5@0cR zj6PKdz{rjC;rw9Lxrnw>?w+cDLp}RA%s4IrOzU;3Zp=alB|zlapqANOVwfw zo`LyYc)PTsGLxI9!u|rf=hG7hiS29Un2OF z83tsD-)WDgWkPk*7R4<=2eJyK8>uW(-MWvouH_!}jeB9Dx0TCJK&yM4M^eIe*(|aRAXYuVRW+FvVFYOU4zXS#zf8}o z-#4k(+vL6&CNaBHs}@d27ujlplmS=He8xX9Heg0NI5T}=E$8vmN0x?QB3VQeK}Jh! zq4mtChEPDkqpDTne;ODDYY4_Vcj$$U&nJv`#)Xc=1R2z|Ij!U5HiJ=r3?kzbijy$l zUDg`PM`~`Ziq1>(dfZOjCr1w@r7_sf+40H5;V_*kONZ%pcwb6Oo)?n;is8z5V2rmM zoef^w_ScVVN+yW1S$OWsa>?4O0kA;0n(&8)_;`j52G%!rI}F+^{bX}7zvC4X~7pg zI-r#XDu1nRg4G__wM)yd#NehS4ca|W|J#8sw^fuPD2B9_)(4~Uy$#iKzkToo=!4S# z_#mDLpS|zG{bwdGFIxfvxE>uS+@VB`ypEW3CT7>bqD$@f(zHhRB@DJ(uTb*;8)52_ z$_#Vf{9-Wu=L)U*l*7@4=Ix<0Mw9n{0~GV^`^;l#GWfs&SNq5I%uu-F7zuGxu1_|; zufp~Mn%R;o7H^(i&CSt2)#ld>YX2pHEnG%Wkw@(I_fhxF0qaG!K4Z`PwfbeZ9@Ehx z0y1Q`>wOk0FyG~Fy-13w8~%-~luB@6@O5 zu(j&gIl&tSx;Gu{kODQ5L*XU;Q`(M{&7V%9-u1=O7oj+bhMS2|oNv_Xh6fV<&!ckn zFin^}!l^zY3W!N1_QS%HLPCwHa9A#WjGhmx_$c6rL1~xr`5{Hw^6|dDRj{)dnn|P} zggk{baaTq+W;$7wc{h@l_`tcy{XG{cChl8S4a2|Zqcsdxg87N9k$1_hQ<46(Ee_)A zal7pGO{mV@%Dw9^XX49iRhF^E|0yKuLwPJ3zVD-&|4_y0@o1-fUYM5cM?6@#hWevz z#x)RFO$m~{FLu3k;1N9r`Jkn)3@b7>V8Yu{<_3ze@Y;g{eu)Rv)6} z`T-w@QB%2q*O&m3coUWNpVmY@WoDQj&QVT8OJ&Q(*{@X{ojX;a8O9Mkz@_J8z+?~k zQ*!O8RhFwWlbYgO>0hSfK^%)ZOV&I6#U&NC^ZOtKtYHS%g{ps9$nw{!J<$3aj@(+5 z7vJ9QtkUrS7l5P)7%Axfe>Aw63EPixxD>c#2NrZPVSs{vEu)a#_fI~X zMUs{rjlCe-w3Rg+RyxA{0o*7#PcyL0kQ$7tB^Ce-6 zor8mH`iNmcAH87y*i2zWpTON)Em^dZgCy+T?`?doeh2kwqsU%`&3XkyIMHi=5YE}p zO@gH`mQk~;`1rGwctuaX+&}Tzu>bNtLJ{qZoxpqt4mCWW`9H(?Se{kJu^dh-`yJUF z_p*ow3Gq<6exNT{OLr2cokDyHjmh$QabV_#L+;{wAky$L8>$7g8C{rZR>B6uS~N#& zn`Sovj3hQ$qQR3>rR^#Mk+!p4`rq8-c}2W<>TjZQo6e{SuFrx_nRBe(LR_tzJL{M$ zSCBK<1fz=mPe~*52MH2l+es-=m4?(3s9MoZ`=!kdRXRMDM=eT?QCTPw4-HSwKDyvBD|=k`qSB$mhc9cbM6oRE zYH)<+;*#*vdq?R}cH|QDy>dFTxa3~l))G3GHV6&1CT{IBI~79?;$43D>d4b_q&7v) zNJ8md(P3W%)0mB>-Wg??ja*Vy$@!`%GxFgF+I!XjxGIlLN)*~dKurv(nG-G3QmH&g zN-y$sYP34af=wU?%#oaw6W+7a#=*zy3Ju*toVIX>=Q!IJO+Xs-|BI&Cd$tmNi9(&& z(vA;&>=bY|BYlhFD%hatgc;=L(dG!MgOEv|#FK6>GFWo)Y z*~oc`O?q1S1dOGHH3#s3P~%H=(C5^QW)BqFR>3ojpz2!KP_t$Q+A_8F{#8+P8?)wI zwt5`JtLg3pEPIVB%Bq4jT|QnK$E8b^o4ztOprIM0dKxVEZRXFFVno@3*()PUL<#fX zTL{}vUmwbtozhB|o@rKYw>xrwCTBW1pItEtc`3j};JjA{-({p_C`S#}(vXK!D2CK# z==5!xlW-O>H)wuIpPDIbWAd8C|O7XI;k$o#H8*m9bDbEHBes!4Ubf^&)pQ4B-xF;)uUtvd<`D|AbZg~{c{48X&L*9>tKKCvoF5s{cbKsK zW{b5nE+Y*#YMZHkf{t}!A@@FoS^DnAalL{E`tB;ga`Rkle5aRT_Nl}#6D`UwT)HH; zZw!IQ*I@3>VVOUSZcvR%z)NZrskTHtb`~)cY<-Yo8FNQar)u`)X$wAI4Ys{Qc1ov2 zFq+{&hlh=wpot6X-bsn!&ik@|k-I0h{`CVMK#f#$*mMwPq3%se6k65(qrYDijas4m zU?iffQ4;q{@@^R}hK;ryk4UX<5?V((lkI0R_G|cUNhdB{m-rk-F-T$(Bk1>fWG zqAM&JHC}dXY3W^Vti8t05<YB40=^9Pe7ABCA*@V9Nb#Lbm*=o9 zER-gQm_{tkKq<(+R_XSpopA3G+^52YzYly(uHK-#B7LhyMcBOJJc3FZJBx}=yjMyg zmV34;(q0|$uc{U{>DjH^vjG!|#07AkO41iMoY4{uzWr;OX5|M&?j6QNM8F#re!r7< zM39TX5oGKpkPQ|P0#H6fa8W;l>g0LNE!G9Sih}LiR{fC*)iEOJVoCv_A$nPl>C6=V zxz(0(UYReC@GPe{C`X&3>5T9>Znu!n3s0b>0_xEg0B#^NC?GjV=%hF3N-a1d8{(%Z z;_6z>t*?onow+E4#^u&hZuVwV@nsp<-Ec==^m|p7vEX{keLouF$Q^0xCb?z#I^*)%<1B-r3?11&#LOa!N zORxb+TNvEYO@6ah6RVYeiBtjeEA5N8Gf?gPy8i3L%Qv2s8(w==Z7hf7(4TDHT=ieA zIZ6+AY(D@Dfb7%~k6<_;0EL?XHuFLe2~c+^+`w&T#eVedz|a1HrBivNjRm-9E)i|! z)o2PruF@vzSl|M>Qu-ZDM#RS|b< zys{~6a;lOxR$gxOuu@q7oYD?kTgm>a_}_|C{0E#r|Nh?FQ#%9w#Su#c>tAq3^Q&cd zvP*e7ek0a{Z+05?a&J6zv`zih>MaIVIf25lV^6fN?c$faiY1Y^*u6@AFn>(HShvQC zfAA{tIg|_tfgrUUAAEPeizhzocd|Iv?Tz$mORK7O;ho;QDk;RrF#AlR3``v1V-V;J zkZsU-Yewr^Vlra)Mt9V`%a!I7viqsu!4A?OX<_nB(D@YQ2Bhx!`?CW8e|E^}AA?8mZ(*$O;;OLJC&#G@`-<1kyQ z6!Y2dk_>=(V4QuCXMW7&-fG%*MfM=Qj6EgY|0n)@bT~*Z2NObbf9!^rnn^5jnb-n*Q?SJKwx0Mv1z?mqJJ-JOtk&Ou+ZecCn6|02ll{S|iKN2*M< z!a`5JP=2u}quM0bJ@tuAaMwtJ{jlxVw-4{>A)}qkn}nQF7TlMj#NX$E*6NBBPuFJW z;9?)%0eiTBK59x2~m?{E!EmF#DQK0eLv{$-T~Ox{qb?%&P#=JD8v zC{^roCfr2cATUqWSqMS=Zv8R`HY(6tm4_+{KWg*VxZu1&lzUnYTTw5c^dY^3v)&rJ zWCVw&)Zrx5ozHaTyd^3iuAIyWypmA%W4;E6mW2g#k zFaQw1RWa;f(1YAG7n{lxY;{8P2F_NIS>xT*Z9&oWeY};j-FhOc|@5#3tLCjM#+%!k(4y z(8^diY-M;aHBpen>Ce=B{|ESJg1|?^b8xkOVk^|N?o@`i2{3Im5`7LPl1Eg~2&=do zWCq+9hZ~i&H1Zi$U&7u+-czqM8u|WXksS=KV%=@fnu1@`t5x}*{o&ZQ_p6|d5mdJ( z0OF(4y0t^XR|h2VZ-|2BNo!SZkC_PMVYCcjD0_T%^TQdo78Qr@JyIlnn+U6VF!ahi zz7(qdF^=^3Zq2tv{3+zb+u_6}P5vvJwf`g5kXjv0yko$$jWpq2b268!(?I*ZA8E;x zO<^CxLGs@tI2FES8e4y0|JU~9B=}ki_<3rMmN}ff&nd0(PC zM?R&W>w&G!e|P^*Jn$>|FJ>Wr0scEdefrK!JS#)`*ev}&B=nEu>W!FG$<^qFKhQ+) z8K=TVSGPPVUGf+^k}5tp8Rm2)_16zJ9%_4bcP5^o`Eh~01|X-64r9JW#Ekz3EXBF( ze>FQO9J|S9&wjf3p^c{*U2^TE=&5Jy@&0L>Md9@HH>fU8I^Ak1`8z+Rr~mv-eA~}? znN@8Gi@}gQXt9{OESO=_M!4JrT62STLnAWJu^G0*9t*s^ltNsGg@|n@L%{@YEOa3G z4UPRw7S!-%?_l5-N|pVuN8+0&>?`DE$$gnH@FkG~C?9wr17ZdSy<9lRrG%9aqvk-( zw7R+8s=nD~tjgmmOrNtGC|chZ2;;j=&4nggcUHA#5U0x5z&8TZzcjSH%P_32PTZcB zee-8l3tbYQY8G2Rw^3LjV7{(VOsKP?TTdRLzZ^d>{$M(8ZtL%q-#eev>L3U>fxI{4 z=P|Ws34UupgEK!1zP$pi^h`=N3^WC|Dc>-aJ=-znP_~XCddA>JB~HogU9&897O-u4 z2^U2s#gv2S#G_*I0r(XKzJ-6W73x@{eKM}I7!mEJ)Fq=w!* zilS5v(z_x^@4bV-6F>qYH4s2bqy|E-Id=lj?|a{G=9@Wxoik_VI1Y~CF1xI~)^%NL z?H%;moajyt;jqW!FbAw z@XRlddx1i_FN{ad!+@W&d%GsG ztQc(D*!{(=_`0?fnkHQTc)sh?IUkup7kM(lZLAP ztUT3*hO-%tJdf#IxDC#jn0(eXs)K3=E?v$>2xIGK2E0sXDsf)vZ|Tqc6;>b`g&h{F zyD1kuMh1`+A+(D(W%-VF`K)YSAxkv{DM^qp5A)emoz^(~J;Ef&yA|dIwAY5an(Gl% z+PfRpVkF49-w;=Ct`QbI@_Lp`ehX$wGdh1_R-I&gu6Kz`lAeQTOroV)}a6u+yZB$17#|E$*3eMP(3RQ6}Prw z!KZfQ3T@2ca%&ZY8CRSefb5t<;M?p|Ik6L>(QLXeMD z6ygcp7TRVuOOJz{Z@aq}xAJ`Hw4{D+QM{Cb$pLP3OK@gb7 zNn$ONa}h)3*Gp!n^M0NR@R^yhcDwO);G;RV^Qsx={3em06E8jrhX?}E)cW(^N2d`N z!1Dfjjjh2yjrQdkzk2HDmrg+34*T%s;q8n`zml85*CiS}8%rJ*J#s@62_iMmJ$4nu zrr<0)edqf6tBtz+R{hg}R-`D(SH;o%ujSdPK=Q^+T)e*mZp7$K0fF!7xxiQbI&o-k z3KR^?;Xkd))e-xXMCF%ZPebYb&u#NX6vg9E?*{K>tFML>;qJq#GYb%~oF?Ze?>XIS z8+T}EYpf9iax*;ddPvRzHUUKpyWSi1R3%K*!L)O4+JCF1?- z{FgW)^i+H}xLVoOkK|7Qk7-hxQMce%d*EhtIapo8tyLlB)Cfw&ey9Xh5pGe~e6$}5 zqT3!J=dLb?yyx`drR2 zqA^~i zoa+AyD!waYIk~&zyH`BWe|1_m|A-52^Q06?glkU&ARS_FVRe(2^_xuogSvek|8f^x zqJdh!ZT9OSKHsZ0{3V+}eiz+rGt%v>hFQ@mltc(7FEoKrV|(e-)@Gk8@50ihlWH41 zk1Jl+OmCNSV-iHA74VS&@mm zU<^ZYAX3A*ww751s)CZixfKB?K$woi3DeM8>)hwNb&|2XI)LOdR<(zQ{Vka_O)V%B zKV>#aSo!0=F2P<&{#v^7gnaB;iYEUipAA5mzG>neYIiCSAP)UrUDah+lF{Se99S3j ztDUrL9h+xN^>Ewc!ov`mcSJ9VoZUW1mRhhzRkArUB{_IYTuO+7$4Ez%7Gh z07q0dwSsssqTs#Kt|?vrH4G@cx|=lDXk8lO36Uw1wMMuC3^SJt!yLDe4HjdU z_XD*eh#4aL}B;2vOsMbp*+*Hg&W0N zAHXFAvU;uKD%!peGJsu^gk_gCxlw8SzSE@iu{^Q^j)_I4De- zv!Z_#r=u_4YJVWlXnKlRQ-YhVd20kNkawFCv@BBFqt^6o5Ttb}tzC?!{m##6uA z$yo!_$rI3m{jTAQzvA^#{cE~sFfjRArdhc^WOZ*46kgk{J>jo_zWWw`)X9q|fUnwQ zwEmb6uW{ngrt!?f$zKGV&qC>>D&a!0#zog6#Mp2jd3>8DLVsiGx9cI3jk?CRZqC}R zc)@w2s*Q_I>p_M7pRQ0O$CJF2sXXVt-QzFiSx9O1zO?x}{Hw%x>2LDYqB)})3jc)@ zS=@R+6VAT&9rBgoR@K9?TRz#s*y+U+78)4N1p$1$jXeDj4w42ceac%NxhrieRMXIWz9YrOfD{MSR!uo_?Y~nwvHq zX!ZX9!gY?`*+}G}4fFV7KyW|q|5*+I43gvR= z0g?s>fH`%b3{b}3j#4{Az}z0=Ap5W1GKhtn`zR;ebLJi03+}-11WT>jc07IoC@0f! z%L7EBDf^eUy;C*hlLENw2DR1pX4943oE!q+ARCb+@+wQUbAbKu*NMXDS)o{vmZjlC zf4Ql1qWMw8e0ExwLB67#Crg%t=6yC^g(on@L4yXdmM6Gtm3JclMJkph%K!zopYOZV zM>JXKxBMhwXX;`NxU13npfeUutB+Y6IjL;NdVwXFeKCC|A2L%oVA~Z0qSZ`FMtu1ESsWlE+!)t}K}O(*g&uXw3XPE{H)DyRpbr+QKz3B^Wbtc{{}G z#Qopj0CIM$%1Drfq!)Yr0~jwj_o}S?PT%AOHL?Tf{mg?~q}}ZU=byX~5t;Zx*gazT zuV9naMt-^v`}dce_?!y?MLr-vqKpz3-h;fs6&eiNXU*cv4+Z<0lV%@#(cuk=K&z$A zKL9GPg85E~@-~)vV`iky`mFTqJ3i3Sa~V4Nc|ltr&{JLhIe-2xf)#)d#=_SAY}A0T z!8rCJ0@KMxg|au-J*1eyK|6v7oFq^y)&hdTz)t+P7%q3+AbB}ua1IecV7*%r?to-k zg8Bd-s-K;w=X-gl5Nk4^LLztj+i`v0Uxp&UdToQ`hby-fXxQ)V9}uc2e%TNr?YE@ z>4rfLk?FTL_8lAwrfPXSXG7|x(ldb#Tp2Ak zIP54;2L#AuAV7Yy&~qa}H*3+f?*N%DZD^Clryl)0uBcX7YkBHk$*PA@iFA0CgaB)) zn=Nt7R?ky;+yQX#Zy@nkKKiK%W$dt--y7!X3(5J&R8gF@oq&Knk;S0nTrQ}_p14|q z03d`QF6iAKvy9}-?3sjxh0hP(N538x+D4jW7SPL$HGr^2(i?$>K5V75*M9!3k?kxC z!mDe|Ulg7Yew!qesTPwHhUI<95?vp2m`AbITW450Y3N=#+a5g?j%(tc6s3rWyRZ$v z<-PtQEfa(b-eKzOi)FF{ zh+9GIFsxnlOoo+OcHP(6)aorazfE;O^!FLc!Zzd$`S5wdG7It(mBOH4Tw3xxa6Fh)6DYKe8?sLHVgeS0z1NZIiTio??FTDDoXqiovxM9qz|)FlGzntz0do z(|F~wX6?+Un{+Jr#E!41?yOqD%1M3kmTX+w&eZ>p_vPt4*^;oB@JiAE0^(4GRx!5^SlH8(%#F|XSiaQv|VOc82whi>i8Env42 zt8S>b5KO}eK@4S-K#k|>!*C$%Aso;u;$yY*uO@xnr~>I*FNxMxn#L7qY?YN#PN%Hw zI@(EnvL639AXj*l%ZV%56KDklxpQk2t#8=e03*#CvF-0Lf5Sh3&`NHa&`vsur38?? z{qz9poI(~|T~B0Ek&&C2q;>dKUTh+TYq@}NKJ7KQ%5LTEH`SaYvf~F}^^*0Oolc~Z!*#Bvf3~alNU!>_=)dTr188@EtylsNL+HZZMr9Z*Jme*|L9d1H6}MgWUtoWY}O$BVXZjH6$|PBN1Kspga%y z`McHhs9U`b*NfHM{9l=^S|t6eqlioPg-cJHUFdx8 zI+t{IoJ%IFNq7@cz)LYD<{~*QS^8RJtP=;?+?z3O$2dtY#EEm0b`Z9L01^-^Xw0F!Ap_NR z!SBTb7w8-9;>qcWr76?=pp{@HDAlcjNaW)Z}!}xjgVB{gw|^e)PV_;R#SwV%iWz!p8f% z#p)ic(|8^rU3wa?&LS@b<&oma5H4v+iZ0o&PEm+NkK;03fG@zk0_f>His{W-f8_b?mCfXQf$btDKUx*kFb!FxJwg4D{I29h(Qr`> zSP{l=vv)WFtC=y=#4)!dp#0$4x2J{u-UJX&?zayN~hMIAFw2|(?7 z%TW5-^W+i%`AQD%SZHuXo@h&Ofo}4?;nLLCxBx*If7ONtyYH)T--o4)$n&`>`wUpV zIJ>X%`k5=ZB_8l9LA)bfV|yAEC7%8sP!7=Hb0{}-s#I+MHn;>WK=n6Xy%nb`5D185 zBy9M7&X~r2wi_?onO(2JZs=gOaWRRW%MUP{b*?UNwt9c4%4C|iA@nQsL@g1}`Ujmf z@cX)KpMJ>9#(G0Zzpb<%AAzvdZLaztUrT5-I7ki_Pm;mlH#c>TRzlc|RV(ho+QA#+ z4OB3fD%05!sm!VB=#CIN&c`H%4n2!X%A9~??=&UKFA6LQ+fDw2d*ZmVrbi)Pg8+s<6qEep=+oB=J+v2y27 zdOtj28Waa^|B4_lVuQ(_XOs#0aH2TG{(Pvq!-@Dme>>-uf#)TZ1Ohn#>rRusSg=08 z``m&q7%5O*Y4%+v3t&a~ijO1ZM_0KrFCJx^NW`zR$NO(4`$##Ij*A+AU?vv>oJz#c z<5UoBX+Bbk&+xurzS>k)=cTt7)M#Uf>uQ^fo@hEjvQmW@>zH zcs5X0fVG!UHMp!R7Id!=oG%rCz}m2Ka)3GF9Ml`^%F)mWkyt#nJM^ z);zDK8XrcbUf}B*T)pUjSL}R~mIqc0U>3NcARvAPfg-d`KRR&X4oMw;6=exEF^Vh~ z){P9Ys1hA<7_ayp8tCEp3W-p!?L5MlTD7?#(h5q><@|zNYI@@TQ*BN@-&8dh>>VHz zxM@N2K$3py{lielRnI?`3;BRmYM)!BK$f~%h4ggs&FQ#>s2~oraaJI)^l3wXllh{C z>Rl>L6UpCpgglG7n+tR-$G&_p#uRLpx$qIh!kI>=8$9n+e36%!1Uy#o^yh{6{D`I= z;N)h&<;5sh6L~-i5-9aKfb;Ga!E%TONG)eSM(x)7t@Lw8lf`?r=_jBW0cABq0{>Qp zu<+h_;j9gAp)JhC1qynXt4&djhkE5$2|#}s%~^r_&wzSrH_Rt%@j})MGTiS`{gr5S zAcKHGfhmV%`9`cbc$;9Fk1=#aq!+wz9GpKVXoD>P z-{8hCgZh8&%sW|!T9)vgm*P~ZgnHMdWlnT;yC3Z|r2<)RYa>6#k%sBohebEpum11> z+zsyeZSN7u6UBr_i=~ww3~#(@V|N6xU8=dqV-;z-ZMX~ia{-^Ow^_jm??V=bOYi;y z&Qiu~5tS<^Deo8hn4UYvXFx(R(Oo-N?QtV}TtMOTA{M#`?cOdh^H5hnmnrTscfPhs zoAB96h2Gf70m(1FJhN26XE6xY?O%#=QUG7+5>VV(-v~W1Za2YQj~n8TX&QiDg?BspQ}#vBx~_PE!n8u{)lNeL4J zqWflaLn_l4dh*>jxd zuB*r7gy|Aq2&0fBK_aCu(n-dwcq%LK?iO&$pCzs$5ZA}^nsVU4p=o5J`-pt$ zx@k8)1inlA-;q1Me23nxFh%_Zg~{gyvSOgZPlmHnf0u7;W%R^v$^zI13%8T{z~-pr zhSH(yO0}1uOH$h9CP3YP^HR4UGDKZ0{fZT^MQ`2gA6h>P>jLaFa@ynGM|;h&2nm+k z6vNoer4>-EXd3yO`7*#`kWi~}2wWazug~{P1)1Xxkw~n)F`ooN11Nj-tVE})2Owl? zc_@&t@h}+I6@lyQalonLYyg5Uy5(~`zW}0xPwY4AC?Hg{Oas=JblxI#^CN0;j;7${ z=8*dmP^{SFm*@m%O126d2J>|G#mUIRX4ofwx$tfN1@S8ZB-+_Yf=&V`2h}<)$FN;P z5qT?NT6BUBsKzn}tKWRrLFb~`iosP<;=DG0W! z#zENUYG07qrRrI}4j57^HH#%G&u_*Yu$_;9$qw|iLZogeVLs}h=25BYm!OOvR{~D# zhCe*)qtZ@~3l~qnl4C?K5^rBlAo3I2^N!i|Q}x*)zyRW!*w^=Gr-9SDak6e`2Oe1y zJi*!fYA&c$Rd+#_9rh&7QPoWcdS7dIc{-zD?tmsg=;&x-6v9FG3UB1kl8Bsz@!%f+ z-@or^aj*v{E(34@?%x+m4=yC#2lz4vf{?r4@G1-*f8dS#-RJ*>P9*u#+0*EvQu4?dcoepB*AF-GFe`L6shP|_c_kh$os5Np&PR5(s_!DF0Y3}m*8+rK+)&1`M{BM!!D+Ds z_ZJf5rZTMTKdozMpDHqcMJF4cm?Sj@dL_I1yJp14EH@6yYxMs@jm|OsVCvcK_eC`S zLRprcF{xd~p18_+p}>Y`zV5~a@=8^fgYsyL1Mz^gos|H_1nj7X9Az%Q)gfvC6~|c7 zUpMb_2F&TRf4)|nU_%4+Pv+$){kB-9nrvFf<5H3JSz2?OzHGlOCg557mw z`z|%{=ItCB9L)?_ZNgblmbW#OFlRcbK|rlav&z&#&pj>ByQiUgW)AFV;{_YC1f2Mz zc?1NmUcGwd%4^n}T};=E-)la;r8)ol<@LnxPaoaCJoerFQcT$VO~H27XH+gxk4%Ox zMK#qiT>C-7#@TY`2FVTjOE&bkU)7;mG zVW%GFaUaJciL2|eEc31vdc_Yr!bqSInfgvxGtimmf;b5e;}n~xMq;A6ZE@*-lluqs*0^0v3DTI zoHzd==Xk4zaB=d?7v3RgvRKf4zv|dz*e8v@7I-1)LeoqaaG9ug6DF$!5x!$r+sZ0K zQu~i=Tk;TEgK13JZX@da;R46FCqrthWP_r5mJifLnomRAAlN3GIr-ZX;3)33|U`kdIv{w6tv zN(OZTIr1r@A`X+e(kMZqZPwbWilSWi7KjZU~ z^~`-9#!lT5dzn|&>$qWn^j)F4;xD;byx{Cj4Cm&&7!K9Vg4Mm4T<4x*sk=UROTw5olm^DVO5AoMEIf>6`6X~iiZr{=i077sp|^e- zYQWad_s!}TuR|smsksOF(l^zU{5Uikuls48NO1+<%SI_={8v9Awd}E92hRY*;aH`Z zU54$Dv?;3mhv_QX?&Dr7e-`nvEdUlGgkK)+J(o%woGeAsy}N`pPOQuF%RaxFR%n~K z$^6WPd#-Y08nffj@!^=c?c0zH>SM48(|_5DmjmWvt+)*km}RO4-|-Q=TXWg&7$r;I zq5|Lr+1j zXNjH6KndIIep_`|*v5UJ`eYvo#tvSR{a+p5z&;yp)ZuLPT=J$`YoL~pKMKUA30=5_ z{uaLOWLIgH0>*Rei5a`MX)#+GHzQBU_+;10=-d%;i`vVK3P!uD&ASGfD9~TcK_#XA z$Ix!1*dDcAU1XtG!zS6+n%kY7N~E+n4;=sZJLG#~&S$R2Ml#!bArd;nPmrN8$z2># z6O62Mq0k?EDl;m&jC)Co$xStRKGZ2+ckI^pddt`Pru#o_k4R{Gf#0NTLxn}aM9?V!-}F84S6_cq5Lb&kZ?+&j;Qw1 znt0aQJr`4*y{z)m^jGbpZI^%5{nH3>Vsst#NUwS8b;!4THeLKj2EV?A-hJqi`ghR8 zoEc`X{yNX3NfX^Xdu%@PNpf7gIHQlWu==JR$CZjpV?k@VnNZab`7&Dpew)2DB_%75 z*oGjSSo(%j&uaP){+lnCZnwez#zvy3zPn%acaL7|-*A!S!`S0`Ym!C2+fvvotF`ub z{6b6c%@zV2cK6zTR0 zxFQ4tkQF%sp zE8PRtJbHt;!JEqosruxa((wAZVKF&p%23*Cp%rAuIkt5bIb8W)`ouTU(LF+ZT?vpD|`odKBGcIP`J8n zGDF;=>GbnJQsP#tzEj!1)dkts-tEf2PQA8njmk(tKd^x_FuqRsZd z`_XNP(7=#lvdrzP9X2P4ZKYo;IEYwM`t6nR=8&)U=k6WK54oB87RbW53hcALyQ|l) zou=IRG6(wQi6x6EmgXB~{9@sJ6mE7v>oNoNt+^Lf&j|PaO+Qv1^+W_{-iI>MQlMMq zEX3x@xidOiUK%g3R!6d;iIorQNKOOW_Ct5W!WB&)E4|uyUfB}g<_bIUzRoPOXE@sx zmJ!=IPUxen1y>6rH95T^5iUTx0fKYKM&)YUTPtN3EidK{QDol@ps2fCCu=yy!tTkW zS6&jIL$!9Sv$NkrjAjS*i-XW8wnj8@)2#yui>S#)==u?t3zrM)E;H!BcD6Ze;pp6b^bN8DuCWKdifZ~c*T%>?a?msZQoZ2!%oA^@q8;F zU*GPpTQwD^Sj0WLP-AA2o$<}enEAPuehtUE+pI9jZr76!JRB5u&#h(8ay#7ULWBA8 z^VS|K(NMvDACiiqTE*>(cnRUX4}{m`-tN_uYu21wpq-NybrW}}8Vv2smt=E0n{MW2 zb{?aS$|f>%aJy8Q$cap%)@s_D1C-RaVo2H~eALW&Sd})|SGjUDO*!SR$#>*Ftgq~d=8vDqapGB@T=!ik~9 zWoeF@$UNIM%kT|O3Y^>%6YCc{ALgIwO_$J}Ut4AQY%CT#^w@OX;MxDyKq8kXnA&ZjMSaCZ^BbqlJnhGGe^04ZM(rfCQC6h^ z$fO*U0$RQ@r^S?0L$0f~P9OYo<5s+Uah9q!nc0|*{_vik%7Qp){INh~$&^x-!X<|{XBIkrmbD}fcWXUVp+DYC@c2NHF zW3TDe4Q<DSsS(^`iu%mFX+lcjXVZ z{o|k7e>!;d()${xevO93-lRc1&Ih^QJ1!#x%yIGf+UB(m-d*QQa%%KXD#cA6ryI}B z{}>h(O_-_lUuqs1+Nq{lZFFk$pKz64-TT5QRxe(p*5(b>N4t-Q?o=LiE;t_(qloz5 zFENePY+N;YOy62xz}45%vT#}_ez0%P)7amDx%Z81mMbXn@bs+BIsCf~%_(dyHR7sP z%YU?|gSiQ4)=2uN6Pb?!-Ah|Av^TN&or(c}u7t=qn>SAJrA9MZZq~Jb;IEBCBgv>L zr6rG!%Xg@n1!Ex1;+w=PY~F>FGVi1i3(T{MLul*yGujE^?c=PBe$V}7o~m-+SZXlz zmS8(K7^*W(2aXdfB{EA?#Zr$rO>BJdf3jijnsKZ+Jc0Ce4LsH>a)uM4yLJPkKSmX7 z-&w3Vay{^$?f$!eu(#*xxXKW63>qFIgkNS>`b*Lfi1EI5(5zZ1ZkTZ7+*Sd5f4aQ47s!i?)bt4CJ(L0fi0?C(Hza7RRXhuK#E* zM?a|)`^fH#*4QRn087ZHoKe4MP1!DGXJTM@{5n{tMi786M(jRpVCagZ^!9OS2=?}u zjDu`Q&*#sk&*)WZP<@ite9A$5M8QT{GwN+O*sSGlj_glCDokgeb#is0fxt1& zao!=6PONN-ow|u2_z705h*+I)kM)Oem{$dGoP37>z3XAD)`>u+#hx7kkwj*89$DBE zXGzB23Ygi8-PYM@2>BC66Bf3an|4@HdabPyaMQe`e1+vf&0}@cO>|V{>MCK()e4rs z#OjMledHCIIc! z;L%|jzWREc$IoVc9%FL*!A=;i)Yh0^O?yb+K+y4=%DS1{ zvXG4GwG_*NT}2GQ{0M?cWkN9n#A>^+|j*uQ7zs+v1dq3t|32Sfc4Hyr&wgUV?Q`0CB97y)8Ny)`s*?S+3}whyHX_*jk`sw&t7;w zN;aI#;3{x*A07quHC;AH8x+d>7P*DF_ABS-vlqN&McqP_1O2Txe2zje4u92Ux@bc? zL-q+~E;$j45r`A&6QGDWh%^Xl(tk+}+(9_(>QiGq7!~|lJpP8b0oOB#Up_YXCLANo zBvB{uV%|P_HO(MF;6u16_jsyjwbtS1(dY{vc!6Q`;#(`j;HynE2NW*6F4A{Dc!;_% z0|KsRwBH!+f`;;w*&7L>{gT~VB%a0XNpT`1>^{dodkO7tyWF=h)nIz=q*s#{QGl4L zI)>JK`pRB6W%u`GQ$Xs@_IfjAL3vuF+fs0M2*xxbFXK(9dBtMTogE|5c+qs;nz5Bq z_C3v!OU{YF*cqJpQI!QaI;8tOd+Rw-{3^X0RX00!a5LEC+C6L2T{D{R3i4?;$WW+c z?DM?Y)I65TJqqE0XIQ+f=Or@}SQ6=6lAOC+{qx@DnbnbdTWMY$U!2f7B*+HiPBr_U zjNf?o8Uuf(QjlDt{gV(zCN*;%*V_WqK1P&9FN9_g2H8gH8I`vo^gj_qPf!q-T?NoX3`Rq`MjV zDy=86$GWmT2b&>MQIcS48!BW_r3=Z*^Iz~aGB#@)3;%-el|Sd*AQdOvxm71%U@m{? zuTtUZsH8rJHTIg1nuxO@m06OR%qhrlgOt6jC{Ae~rjdj#_vEN|Zr_tq=1;fyz1&Vd zY&YLM>(YJWO zNAjIuUh=|7=wSr`BW2o?1B{7=#G?S|Ic57~nzs9)`h+a^r`QJ>7_s5t=5S4Zrwv6P z0{FMKYhmqJXO+=anOXi2Q~TfIMe#Xr3WB+gj_ zsOO9M3(o^n{WT1ymFSPZM@)b5y}aA8W~vaxGpFo0_VY=T)hYdfme6S~w8Ee0m}3~7 zUmlgg_hb0e&<;3^-cEUVOB|gtWv*7EOF!dn#Kavsf93eAZR*O(V}?>o=2qd$6PKEV zj!s`hu*^>E%_o;n0mBl+Q+j_bGvjOI)mQX=rwz1y!!P=G9o+lD?spMyyh*Y{DegEd z)j_5B`I1}r8zMfg@wh8@9VJ|;-H7_Kc2&nKn3q&e@-M zdWpe)(Xvs~L+r>A({gO~G--b=`vZ5nxjMsIQgqcHJE;C{>AmUhK!&2)2@n9ESLG<_p;lh;HMzR&u9q?U&%$-G;+1eH=eD4-6!#izTssy>s87c zdDtbibr|(#0R7n0?=2*l=l!c}h{oejxrj#R+cF4pRr)UwS^L9ON9yHvLpWq5{_ zf9R#G3)c=zO{9jdsDx!8t<5R>pt}b50v=JU=(Z>|$d^9I_tx{|HG9!_3EgWO7{NSM z9_146L+0a+scj%b+I0+sn8Z-*_N*)Y*oQUQ}bNp7@D9uH1MU9%J9-th&I}}pb zYx8aHKmw4K*C%(=1?{yQZ}wEO-)!o3d%>e2o>1u(vr_2iP*=|AA(_CTsnMTAKFRF< zYwA69Li5<=S%Z#EB64uDBH>K$XGDJ1z&>HA%2GX5wzsi!+u1sqhA!4l2cGo?eoeE! zlB~H+?-QkCi)b15rpWBPs#rV1|CI5-vZIs7Z*|8e=R+skY{vrX)$B;vT@F7g`pNLK zLc>HVgVqCrYHwmh6X+`(pUrY;jOW%n)K)5^{w4QdKOiCQY-T2*+nWO)orz7kUt^I&75{1_n{;Y0(@Bg_l(?N1Kq2*yU zZU~UPT-Z<0io~bZg;9spRH)|(G8t7g*M1Lm`M^{*hv># zNx|3Ir@K*-m$L(BZoj!n(DxTjzxA{KI8G`9P?AIwq8IIY+#DS`f>wDeSKP(h3^v?& z#`5!ef#6NED*8XeVs4~$*0Li$xOkuEc=mfqryJ7zM)OPpG2kp@10I@^=hV9L6XqrI z97la$dqTdl+HAgSpJp8GyPt+HZ7Idv-@uA*mty&3x(dbFW|5Myntz`s6eqVV9pW+mxoPZY7`dS0r{HYHeKQm%hvG=Hm5l~Jsg^uH=F4M`J~3=#XUenuJ`B}PINLDa9qjkv-=$D z*>KxOx~qK9<78y0J5U<7H|b&gb_n5+u8)-Zu~k>mQNhoj&#w^&X<9uWp1sXU)u5BW zP+mA4$A1k@Yvhu=yiH&)ecv`yA4GNYj{ACynDk+3V3p&O4-?rMhI%FO1qAy@OWNDh~VB ze*Gb<8EmShPlI^ccSw_6>zZ8pY?#yviAdPVT;L9E;nWI`=^Grn zLuk}$-G}%Y@gsAHPjr+6UU}u%t`zEKObv}TzhC5lCSTVN<~%R`FUUD!?@8PzG@u{lql0p*ftLaNpx<9sL0s?gHw zn(j2Wq}g;T`2vFtx*-qbBYXXhgNB*=6e^pb$EBh1J1o!t5FSO|tRAEG<7!D9451_A zphI&^2~}mdh#qD|tRi!`V4MD5mets-`_!NRG2RU}Hz;WER~XjKT)EA0!yDd2w|~}B z^D?lN(>Hh=g1nTLtcvbQ(06B1^Eu)Rqi+tk{{wf?waB+;{(N$BZS&saH2(XJ+fHqn z+K{zn>^;y2tj&+z2g2|zC`!Cd9J(ydF2B#(tozsW{wUSY?qQzsr}RM!reV@THEcU6 zK~kHUn)Rm>nB{u4o|z^Gx8Ufn#T|dwt5;m5;Q|Pc>Fa&VMhvl@>(XCQdb8N;eunFh z=#O~(2`y-2ZEyi_KUIf^|N0qSz!S_d$CcV<=MstFegn#eTYa7Mi;VaCfM9sXz1QNk zx15gb$F2|mtU(0#F9)^FmfNj1M7y|^^JeRB_Ju|&X$Zxzf?o1jwO9(CxqTO!4Pa6W z*qb-l;6$8c+aA#*@0(Gp+4LANf#jCQpSuTQ(!d9Qq+$g=p2+4jyUSlYxt*Vguo^HZF^59dEPBrRLu9 zrk_dUB=%GOVYhNqZ4r{O)fl9lRKpVqS_I*oiH0aPZ%XL2q6_MM(6j~bV?>Pzz} z1Gm>k(jgB|buC!6zphsR`Gg^y9^|riqojCL;=C7y>(uC)k;Rpg43l6 zC#f&Iq9YVOk&(wI?Fwm0r?K!(JIvLtt+G(y(rxsjW%^1?)-aF{S~(=G5Kq4OCU}!x z$j3*YEN#h|P!n0(*RLz5ky_-^$`=^UTDlOKWlh6)nlr{@L7yGnwPNQkAk3S%(mmlV z0@XFGvWU%u&GioLr*qFZ=))ghqKV`FoZ#v|5)*2)SoNnaHNbwUsyE#qV9|)DK-6hVyEy^|59${WzjLTKf2g4^Y zgP`H?l}USdP?8E0=#ZKRZ6DS=w=>**^c7Wq9NQUlH}dH&bgrp-hYoZ$2?vbZY7@a#czci4r}m6yB!cT zWUZEutz05!p7ll%>zl^uZ#IhEhryctI4-a`L;5bUWH%Jp1zkd|qvJ61n`j#()QF(h z`Q7W2MDbl)V+Sx?`;F9X*b2*J(BLGXD&jsOL+X5K*07R#s`fDHo^8hb5nRZ=Z3#m5 z(WHkTjCD|XkFp$PudoIw4$hy?TIz}-VA%D4ihi}`StJ*%oWCWUx`cK~Vx4&~WHs$K z5AS?V();sE_VtOx28HUv*ZjqthVNn~-T#nT!#7N`0bVHMaY;s72_a`9U7Rrnk8a6~ zU9>JEBdkfPjN?e^q~*1E^>!!*Jt>k1ctF#gzidkIq%Q@kL{(YPi_E+)Dyf|pHe`wY zJSmQBPj_Z^APXokBL431x!AJuTu+$^!`7gpr?$=IJTK)I1B<2-RRyUX^m0yj5O^p{mVM^uKqLy!Y%jr>AXFMyhn(GpYLmmdv1t%u-SOLjo|Q4;UH=MJXy z|Dh#u|6oqdn_dJubH?seVG`#_fvk^GZ);Qe7cdWyDy;QOAT#_uw>-UO-lbyv4&=r= zohf(@pqkrbF7~QDqncy6X~*$36+$$UU5P8S;=lxrbHE<^F=Y74@^6PVhoj}D_Qa4- zX;X>haL>@eutXAo`s>BU=l5OU#jQ;Qv(7M%Aprt$EM!5}bwO`2+`e*VL`5bF89%-n zs2U~6hJMQ=x}<@Grm*`Vmz-2gxdsK1%w*c`Q|c`{%IsZ(dj%%#|1J%QBoySaC$!^* z@@&_(vohXGn0d$Ga_@7iiH{TY6y;B;rzC@qNeJ8)P8sVje@Qi=)C&+#b{L@&r9sic z(^Th;Yb_7O{rt+*&4aL3FM@PBMGxHb@Dxlr?po?|$`P)e)sa8%|4Dw#Z!Lnc&Txu~zK2X5W#(?|I6 zh;Wshx+!02xuY~i_{v&&vKKu(>SVtM+F$)N@{W8=nA<{aR(E1~`x2v3%6`v^JXts^ zr;@0H^|yE9)nhDn3A2*yKy@ZObQH-DMZhu@qra&3CU-yN55xd0c0(s_J5u;yWB+6Cf1^DJo}}mrQD&C|(h(VZ7TUP&JR z3;y;z>B0`V91Zke6ahs;S|3g&tl@Y@0Jz(@3W%Pj+@))cpW&#`e%rF9OfC@7Sj|d? zNPZadN{w~HL4%Wf;BfN_uLhrq`U4!5=H;o_w0F~^=et`{r>o_>cN^BccwQ#;VPILV zJwMj2_Ls>zAR>IW7&ryHEG0@X!GcS@S1Q9niRr$G(l6?;`_N;NCl;L9uOzxf@^O|6 zy`RzQvfUPxUZ&=*3I+F0&!=-4vM#-?C*LtZDsEp-{;(z)ej=`QZi5*6J;psGW7}R$ zTN2^^V3ZwW{eaObm9Ysjl+-nJc4S(oqmsr)xni6bp(p7rFUMp5?l`UZYrg+C6R3xg?F8aMlF>J`)-4_lVvr(2At0P&eF{$dxYPaUm5LaKv{0Wbd zrcM(Ore<@rAMlVGV|&J!z;CYC_?14Oi=!rmWl{C5hVFO|egZ2g30=~RvxAtZa;cYL zk~!+p#Pv+VGU3QfaMR`35w(`K`&v;y3 zgel3apVtTvj!n?G7nZm=GiQw~#Bt|L3B&-foB!xFW^nH=Nj+Gm26% z_?%qNg(=Ud#t>t(3CjXZwM^UEfasipajO%gD^3-{fh~vTH_8ga>N;Lzx=q?(gMP+S zY_NbifT8)9!Rk>%kT1|Gkn4L-8L8^ba%9iTxB6^O+UnR{qj2Liu;`Gc`^GgSsB2<&!`Vv|IVv_poAz72fd%a&a$ zMKZg`oduHbyA!el5NZ=IIgTFYjqrw)h|2f?aEPA@qtFa_;jwOT5c`L=uWbr4Qa~7d zX2wqP@L5Zv?6XB|-8a)rpqIoA=5WTVj1R-j4|i1QZ>oaCKHqV$ntk*_Oh~Ydp0Q*r<(|#F z1lOG(wh!);7{l&EcvnBj{qt4M)BEFgOny*PW8Sc~iHZOCOxt=kKfuqif>a5qb8H{gJX=mzqZia z$3O~Uce7KDEkTN;+ALpB365jdpk~O*?Y(;>+VH&3FE1RHwsp3K4#zKKDF`_%U*pd=i!Y z&JI~!DAKT_gg1jR_=|g$DDpM5DeQpo5w>5AGCykWkId$dM`-*-w8G#aJ{B5{zP83_ zUk{C`3);c;aR%y|Kh4eIKF&RNEmMVEI`4VXZMNhUN&VnsNvVWILf~rx!8^b#eLF?4 zkGjsHEWXTM4{#O_@0Pt7qpRTGxyfVJ@Uh?~ffXN+MdsX;M_jHoWg(l~cNrCd{nOLU!-#f# zZFlN&u?HOlmreQU36f)3PpKWqE}I_MkEIjG!NV|(BVOhkSYg3KY`)%_W{uIElkhd@gg^@#4@hRfaQ35fN8d=(oZ^_)`L%HmBP7XnwgVa&f4T z(vf*SZHUCxPRy;RY%_dn8NXM4)azsD=Alt*F>tTuvQCuq;YRfos#-if!CdsbVaG!! zZ~lG_0J34A-T)y7=(4 z&p5N{5oc=6dc@GGx{bz-yI^#y5cl_=xz&_*q7Y-{ zE_)u^Q{Qo|AI7?7yZ7^M5%NY|J{|=x3l-K{yZ>C~EtGbACw90C4d7>_IHAXfnP&zh z!_IKgbS>DH>xTb%msS-80(qI05>lM>aZYD$RUH(wKGbut|Piw*cAGA zM6#|V`;?8vxIwCHut0_Jp9#tNp*+yD*3A`eUDm4&{amRQj|&NWKk~tw|S3 zb>-cREA;hq89e-CG|f0Q)B2zBzkf!&JX$TZ4<0qk$9zatui>{=pqP7M8*nqWx!4g^ zux{Z*Aj)R!BQr=fP1OpGL!W*wWoWj@<7i7iJ$Neg8Xd7DxS2Wj$%+H`Up(&rOkqd^ zf9y$hLCrk47&Z?S6^8vtCURA$S4W`#IF35SodYx1VRiLjs42(Qv3!YKE`KUBCqZOE z*R@4IA2Z-XF!v+fb z;H083da+r!vV}q^#a#bqk_(ST+bO*Y zL+nr9jr_4Q=owbpn}YA$)v0kBo35ObuI}o5u{m4l=DPl`5g~|TPILZGtaR-Y{Z*Yn zcx30E#!g{Q?z>whu@4C z!BH|S$3nEl;z!ePhdLp^fa`)h?c>^~=RVCfG)+`H$W14+9$=A09rS zJWT6Gj~7o;p4G(J=7PP_X1JBKZZxpKY<91sT0rI{T%+wOctm|Y9u zPR5}JrBXBDRN`d%e%U7I=Rn+A(Y^`~Hy0Kc{XBR;hp!heH1Sz9wbSlH{OKbuFB-y| zrk%&io(M!B%)v7s8*wFNZu#N)?3>Nd7UK>df%yhK+ZUyCCO3BcElzZuFE*1q=h9OK z#b-nlAOjfJDCw_pZH4ovEVf}qk)EM0Y}4l2QUcA)HA^5CIPK5IWk|1*N4 zPg;70ap}%JM(Lg0cPGof1iHMfhw_CN4=G!u;NOkdMb%A=sU@#?+N4Wc!<8ku-j-DuJ=}+e z*G;-iL?89i?WB(Q;SvMS_DAeEJ$CENTP_8=PM^FhXWH&GsBGqzy8P?_P^zoR30MOt zyy?u}p1O%{yb(Y>Iz;ppHoxvT0$pD__{q-0V3Hsm1B%kuxuFXU;>^E9RFjBe3zPk< z`J9J!wQ7=8A%}C1Aad%@E%&4bfJ>>j&n;W8E5_Z))L%7Iik}G=jQ!BY>qKakpYGk0 zTFoc%;Oin76fLnp=?RN^$$qKQCrzb@ugy3K4;{C4nRiW*JK_Ut>cus%7`0yZ)Q@;&D0-N`G!a8kwJw(8_P5-68xM%xq z+hXlUd;y^MpUur}N(@^_L>G@z_O)If@!KW z2aV=Z&Dvn*oxrR-xBN&;UuUJP!&Rq_`(|(BWViY5ZeNn@2xlcZDaeOjITYpYDVy3z zX(%#4S%xSRB<;kje0$nuqAPfLz3^DieZhlTe_E?y?vwW>G(UzYjArJM8>TUxWINu7 z@JO~k<$q47*KHSXvy+L4wJ?>+&PokT4oEzM9`TnBkvq+OG z(*$`)?bz}RUL^|BjLlcyj3~qq<3P0}?%Q6%{~7Q9o4?nX*L;amJf%VJ!48M=bpNg5 zVCE~f5Ick*6EA=s$rI_wc7ixped+!iag9|5?06)PQni0+@~C)!Mv1AuKFaHVQjWU! z*D}y1LH->iNFH2(&b5*vwzKthHV7v#%VqP0wuH|6nXNP}Bh9=5@^6A^I zZCwi^Kf7s4}M8$|Er*ZtZbp+t^$ z>`o*hSE;8qX=XCMG?9EX(0BoikyS}nE{VK~p*dL_)MqTFx^5>CPq3WGmHoS4GCq>d zJlcrVs~Zes#JA?0d(Bd6VIVp-(12XfvnvDmPDAi}MvRRvsG#aLvN9fq=7i2x3hhmu zkFSDxchkyw5A_ugDJ4FlVs}y@aDxnB9Pkg4av-bAMRJ(}l8DhV-NVhxOuBxAGO4%Z`K7wpAu9=nQP-o^iWYxDAYvp}*6`u4lh z-Z33_P92d{8aCoH)}1i?0k$^zKyY*1-Zt>o4m(~q>;0ZLo(3;Dzla3(OOku?%Cf#a zl&FPw76qkZ3dtJgThy-VZhf=dc+sw)^1IO9jE3ZZj3$r|>d#HR#|lJN_KgeyPpjsV zyQ;=-vU!x3fX~uS34BWFpx!P0cNj>*E2aN!%N|Gc!n*;!BYzTIGLCF%u{!c&ik){k zvxK-MoS^sw$8mVa-WkInV@;Jx8FvOj0BeR_DD2d|#^Df>%T78N1f;Bcp_l;CO||_O z88nKF$2=APthHL?^T%ppjA;Ik343UP`PUI~LP*VuA%ff2%1D=U6H7tLV77!AmGa{c zln3HPkpt00Ci>y{FU;7ehy5uN$Xg18 z6VczpG5d#oUUs3*h%pYwjq!4_0A0eR1_M>S2|ZcFo3U^sEpbJnUQH$G=z_{rU8C0M zwXm}ns$z!*e1n(d6^~dq>p-_4>uh7+>LGAJ3C89jqQA03<5IQ}BSr|#QB0TgQ-xBN zZ6dRtiW7fgBwAA*&wHmjvhdKd3{u;s=T^SFgnfjSDTIouqvXHYAF0nbw7O8Ohj5v# zgf}w8Lf}h|FHKnPU!Cc09Gw_y0))-Lp0-fu1MDc}!x>lXh*IX10hkx-jDLU+#HJed z#0V-cK1f&d^{lXeH^;9f(W8dcDmXlyE!si7m3SMFS;7+}{&4^7f@;SE&y82bU&kAE z*n|?X(o^i&!$bjwDk=THOrLYsd##mdrt^2lj5Ttc_^Z;}vH&vu&51v4`J7iUxcIvKc>45-1Jb)REz$%8UPQ01K|!?}{)Uw#ROEoxOjhE&?CIOSGp( zcKy||;C6l_J3?9hTi39iD6LL)Os6ApIh6FfJl(N`eyfe@uh?5I)xGCWv$VhF!pcYO zVKF^Qm?cB=5^L!mgT3KGsDKc-I5#-BoOle1X&sKU*Yi`rax|(m%w|mCG_=sCjp6)< z!xHE?p@h&X&dL}r(lP)t1!rK5&-4I{qmt%zE}&stVn%4h+uerOm=TA>Xgs@!EZ{qB zvHiM%{ycIfgY1l0Vekz|VgRE=_%ZWQ;J0Y4T_NaAMu!1my*?9$Cf<%P^9S)|rm&49 zO^if~-j)E@cSN$DV%rPvBUYH%8-64com46l9lu^{sroUS|ziz@^rKYQj`b?LS$kEQyhf{ zV>ehGemRVpNhip1@0jp_TKRTdi=-Te{k9O#mFl!2m&O^S0!$!B`5^T%ClwM`>Y1s8 z->1`4SVPp&z(XS!1}#j^%a2zvj)g5j73&UCCJ9N@5H5vagc4GUzQWKi8Ijp>g;im> zI?Sa%X4)8!MPhgQibm#jXvJ$wbeqHrWiGzYb`aT3Gs0*2kuFFjW+n33Agk!Iy2Ixc zA>+@SJIl1wNVes%ZQ$}O>D@L|L15^0PkY+=t1$Z)V*Gs`#

5FFj}N+uU_Tzv@_)w|y+HVUm7&Zr^cJl=I)(ygk?J z?ed2F(9kfDGPF}Vp@(il-wngYelq=cdN}`E5#M|tu|CZv6od}yP2o+#K`Y#aK_%q< zZeXZ6Q`3Ne6OjF6${!zwU}C39tJ@b4a>G7wt`zOYu96|;)& z@nU%j2h!TB=F1wXTK~m*$$%rW^&UAY9vErLsidDNB75UkP2p)sJN^RV8G;Epy+~{6 zE{zIK13Uf;d#T0(9J}^%f&tK8{=TDQLbW6s`XAugUneSZfB)0}q6}yS|K8_+M-*)T zzWsv%KN`Ik@!!t_ z-TlAFc84g|{w>eg2_*HuUsE3bzi;Jt=HCTVCi*w8!oCe3qgT=2>cIIAEz%`50O~q9 zLss7SjH>m^j*^X(0_eg|hVS6MqW!&CRQ_{@|LoyE5BgvGracckdBKvETygqS_5R-@ z=SOIKFReeqB};MIR&!j(=AiRKi$T_07x4D%k&aUvSi@2rY&eq@Q3ya)Ip#Fod*a7= z#P90LMq%1UDd^tfmC&6W2PcfzWlT5t?3ZGuYE}*^pACio=L#7YKA;a&s4y-kB(h9G ze!%XCBAOUF$Gco7`#!0=MTMSlsRQ5zKNEMwICk|+0hOtoWiT5QtCns-slaSVDh!+= zO6kbc=QuQpvIhLiqtUim{d5cBwaxUKw0q~*3d5!HMW2+IgkjT!eXf;gMS9}Z`zJ$b zoOr(`-;VFXf$h8(xJbM*-3cCCTE|v0>7KV*fP!0)G>UJ%h8_XdBHD$26@(i0cEV%> zb4`K97$J-iK2M1KM%1~z|ATKWiq}4z-U-{rYR*|ad~O8RB%-!G_2qLP&rMJka2ZDg z(T;E$>RZ+F!W_qMd_a}lI&?HaqzP5a!n36nh+yn*&xyF@nW}$2tJs8_3pUGUeLX`m z(T2l<>-cg{+m07O>5_~>0_>A1vk~r zz=r2qiwTwr!?Qom4+E&M%4>v{ceo1F(~JF7*ZDwR%d|h=AtBFXIyYqfp@$%x#oGga zQfGJd`rJ^{(TKsw)*la9W^*aRBg^epX*o>ejt_vxL?2JU%=|vAV`He zD8kp7C17AgSj2%a`I;tTyjEk341EJOCO~Vd152UF;;^Rq_wkp^Bo^Gt2S|29L&w*= z_I1?832shh6TPq1vEFe2gJOIhs_Tel72$S{i~*c-WY6zIO2pQ=EZLvF^NLbFO$7}b z4H7Z}e?r9yfg&I^OJ1lpa>g)CIDmd#ZBsqGCydcf=@lybBacSEF55PdE&#p=dR^@i zK*ZW>Mh?%1^$zKPJ<)ogzezv#|7bQjcid1v(= zjeOD)%1dJvH`O-j>Hj=FFyrSK6GP!ZTZtn%%t3G0eRRtaFeyC;67lEw{3ryJ1?qEN zgc|%L6V9K@!6-ud<$o>G{dBZ-T#-tVDvYqvHHwj(}W<5n9w2eiKek%ZUQz8cqQci$?pDl1aZHXc|n}F z<*zmedgw5|Z1Ms?l`q%kVjvyQ5UQkF`V#8!A#GjPD2Obpfi2wc7Sp;;`o+-D~+!Z``AIegk=38E_7yRIV>wwGIa2Y zNE*QZ-~Y_HZ+nRFMQI2vhs|xNcZFeM5QFncD1c}>vwwAkZ$FdE+E_@IS=3IE)+aHW zZ?b5;`Hf*RU&vI1Fg>A)p{G<6DcM+#edpbg9=I?{^_{6X)4UJR8otE+)jI|c>?BYj zVcYm_4%EGE`h158>}Fv4LiitPknJj)NrxHcvqwOb+c^N&&+a5L7`SelQ0P|KK~_Na zB<;wJ)YElH#tn)Un6BU{gW>H8IYl;K#u9r@KM@kz9z+9G4OEuVm#M@vwCsixC6c>q z`I#kOAH(iIGw%6xU{M|G{)P4JnaaYjVQ-^nWa4(?V)97Ti$KfjV%}mr&BwE*noe03 zj2q=oQWdI5G0>yShP0*>A5|*U*V;<3nz>%1(EYP+Hi&tAXgrBLlko5ynk~!~Dg#E8 zZ}^^bqg;PpM;AK0EU!jWPZ#UJruLUazusYC5Vv@~C{Tg2#g|9~0 z#BD_-56P$Js}DE^OcoU_$9K`OW}7waBM7^M3E$NY#ZA+91s2tdPjR=+HjR>U>I>TD znG%Av<+p2BU>#*L1AeKyf_OM@MtRigwvC)?29uNlB}X6Ms)Cz!nAf%CdV8~EGBj$Z zy?ppyd=}-qd~xUB-0_*>k6V?bqMiRKbJ@|A`sCdHSVLt zP%wzFzR`b?Ho;fy97Q>2?k7wUr=9Ktrnsqi+B~cX^kFEJ9>0`KiE#$`-?@#xgs(Wo zWIM%iN5X_wMW#~4tua4bpV?4WH~x#4nU>i5c}cmMz3)n$H=M{^jR+4%$8Y`PVK?jw zab)|lezT_aCX*TOg$HUX8`a40mwO6n4WNBwgrVsWQx%U{L-}c)CMq}0vLg?3f1t!Df z5hacCqhtYlR;EbDP#MOgBC04VGWlPZ8L{{>TAN^*)uGvEI7p`BYblO_O|waE6dPPh zfK>k3tUdLM>URq~(-7PnYV#(OIVIg)>9>G%0Cmue>8&dX`mMSqKmLp|wws@Fda}=w&TxUA^$Ai0$3sz4u zTBmuyh7YROsEuCOVSiUkmsCshcVBSbL~kaf$BYPrwml3L3_ppQ+2LVAW@z>!OI2%` z=?l-v>(Qpek$XoRe$FtDd-}PQm_0uGF+IvE|A+9CV`mH}cqc1yR(s{|ZdAPvkT*A7 z6z0OF{omoCuraeSq{Xh!K%Hp)UOT>>cePOjFQSDZScjE)4J^xF_23lr_%9LguL}Bd zyX3ec8-@LjbAaQOznJAK&g?_>;t*-MS$biTkv+CvgK}o)m^TPK^uEnVA=##54WG#z zg)@c?yt7R>GL4iv)?LTI@FeR$HT&_uudFtC7Apu7>KA>?IFhrKD|!g?e0aRJ?jddF zu+PK)-jGASS%xdPCf0`22Xg}_^1$DdPBk&48obOP%=b=x^c>c%TW zm4D7*6BJ!Ef>ZY>2;Hs`)+d`voxe&nB~ZZ1kTloF3w<1P+>xlc&rJ-KkY))LA)7^?j zmzvC?aB92$##BP6Mp$AP3w>ei9%(S5;gkpG1)TxZ2KKG{H--sc@(^49;B;a(6CoGm zABxm}Ye1>|er~)+epLPgs)DbWPoecy00O9njP+^745^nRZSXFkk188 z*~UMkaid??-KmSr<&~ow%R$Nad*;1!)32=|Epz0u;knI;E_Ilen zSRlPi3BwUl^brlq15KL_di&lOsfbrYn{-K$fcr^DhaWQH$R*zl(*XBl22? ztcWxnD%@pmqC)NIMbcu7hbPTjlpVZOncZ!RI?)=2^@~8gAsFfjm5Of#^>i3A^nDd0 zEUoEX-9VWM3Wb*^1T7Ah>7z+u(i55*8d=tnmkU1CPoPiV)>D<2K?7r_pgB4JKn$QP zMJCEC=sy2?yp>`H!J83Lmp#rP{WU?++&?n`5kgi;-allM6zx$}M zwZbD6sc(Z%>U%D6oIYgjC-cSJrk>T;Fsye$55osbw`Bs&SK!-S{@FqP@T$il9e|4; z7j^xF9sV%Ej92w;7VwZaI_9c%zpMNYYn1!z^zQepO|X07=N?vp=c>E3@SCq$4}Ik| zA~CIi%VqwwIDFPbvtmC;vc*`zTtnB+;?ea}31O}}sNI9Ki8Ghgo$$)K4~rhL4ddsG zGfnR)>E*;Xv_l@!zYkp8*~&2oMfQYtJl;o#d!}1s^@}lIhdgampP0BSN-$DAL!v z&;|M{2QZ45hNyu0YSu>`<3&ui0(*?dsll|qq9w}fyqP(3ifFO&Bb54tsKs6(e(!ux z!3k^4$Gm;{j0F#$v6yKeNxF}BJ$p*z#m`O*gtl4Z%}9>U>@%zf@hC;={iPZJ_W!?M zBpRW5quWU-T@tkV=f|g#y;!nCZ{h+ok!_x8lCb5+DhXbq1Fh(WQ805oyf;5}L&CV6 zS({a4Z`ff~HMp_DCsL}sDxNK3pvy4bsrC6!@NeS9uGWv)W5OhJ<%

7p5PdDyyT? zL3_L|DqTBReAs6@WWzi?+cuLVoe!E`y$lL$O*BSWkX;_( zI~MQOQpjP35Fni7qL4L+KB)|pg(R2M^-MaXz~J#Efmnj$#@85Sc0yu?m}0F)oz?ra zpoxo4>1$*~BtJncqUxf%pNaF?6>=o?{#E)t`-7@ANtD%fguq~S>!#_hQ7*WmA)yn@VXNJf9)LFVEcraq>>mL|8!!SVJ zD-|)Q)88?5VjL)F#l}>KOUnVfT~Q3WXed>tGfyk{5J9o`A-7cF1OH8g#fYk({&^P3 zXt3J>u2STW^BFSjH(T@NXKcD*-(E5yd-!J|JEWWV!g0MFm{A5#bkWw;qk!F71IbB) zC${3|V`<%K=IfHucI8gRl;(Ld>7oLS^C5)`TdX2thiUw!;nhpd%O`T_Ovr~=B^PR1 zmv`d(l?h35GSQUg;F*2AZO@gNkg0S)*ej!G_m$qc|9wVSp)!d`GJvm zP3XeYxejzO+>?T#`eS@QD=rf4u404NYA)UB=ia)35a`No+Y|&{Pj8^D!YD|W&(Bj* zg~o=?4QF&i_i@yuEYWPBl$du;GgjZ$4s(HJ19h#_iS_YCv=Yz|_d;J*?q-)`e zc$4Z*XR5X09~J$VRFp-0Kc^FS-F@{b5MEontMRYI=5C3?I>&F9cp`n?)v-5xO48Rui^xbQ)J+nhO!5s9L##x-G(u*F6^MSPp;+FjQL>@D6R+ zJw?CKHzC1uYatNOVG;p)1IjnDf&oannwsK%9~oeyDP3=)#OdRlKx*lL(w0f&g73*V z+N^oci+^2kGmJhuMxC~0xK_M#NiY+i#l!JYc%YE!*|gwhdUMi2$Kd zVP6gP?wM1bXtR~-zN4Th{~?5t{)){t`I9eZAI9^$gP88`r4GgOp+7h8E>vh8r@Rb8 zat`dL_Vqa6b~?5M`urfh?#k(xx_V+}53T%emIkq=4_|viWmP*`(DIx;ruNzNWsiPc zJLjhQ_anFKc5Zms#VhnKl?GbXy~|r!navA7=wYm0qs|&;${Sj(JiGrqc@xNpL`T_7 z)r0tzM~yr1ihD)+EDf1em&D70idPBxQ|O5&h>$4b?V%Fpi^tL&8j?A7XTY*Zb4 zwa43aq?hbDF0hEvzmA7VI&P5m7%au%sKn1sZ>9DLk;^z-8-|W$ zU)tFyh+#$&*=La$!o+z3?n>YK+yyv6qXTtXOF7gFkU=Dej4 zwarEE^;&M24^JPZ(p?GfvFt|*tzM2{h%0~H zM?32470@1o@}J$|+w-PB;*`4%%|J_wM7$e&{Yh13pm!_4uE zRyVEus)*QPe92>))1&{lU15nSO!s|N`P+*R@)C9j?gqOY=Gsq6+avh#ApudnOR8XB z$@CNn-n&m$Bh+&rnJ4#~a!)McGSc%{7FkM$53`x{@)wV+q*b>i$J7F@tO_*(e44mJ zFsb2sx+s4^9=BWnlTNEYq)2tFJh9^5;SsFfV?oc)w6cY7M*Pi2e^L0}qYlS-$MOf$ z;XOBI3Y#gu;tH>%e^XdA$(Wl4X`#+Pmctb7u&RDCHfqa3X7TygCr;{K zA+;;bAJ;1l_mh~eabZtQM0gH;IA`eY3=;OG+PGq{uJ@}cLtjeC#MFG6J^mJFYooW$ z+SU4evh<^|x>I$lEi=0hG-lQ)ZZ>%H+VePf!=}L4+Ku>|_6`;LhK*lT4>j#Dw^?X5 zMzz&9$8viJZxZ*~W+8)h4IG1f#Wy#{YvzIB9JosXuc-HIFWw05Yl`+S?6pl)z>Zug zzK8CC9eO7X<^l_L_zJ3LF$m3WoyL8C-&uJ0Ygym`Z;uS+T&nk_&3>iMfu1|KOU*ug z7k{tMqf1qCREmR~F0G4CwYeCUUlaqD_Ix{@!)}$}c+7iD-?1E_yB^1r?*H{L+f`=M z=gkx_5c|Hb-=wY~mIc9#db#tZV`J>}>D`cHz zW9x)3pgTQdA>m=Mk_U2mBSnh+-ii7p4OMqjw%}5P$67)yE{9)n4T+c_WO`~g_N(ex zL}CS@%1^n_@X#wB$qK;J$=l0QxY(~=;7ze`-{O_y)m^i+yL-?zu4U@=ZtL2+a@l^5 z;a?V_QtaOpXA!Py3&iKt*2BFA)HBBu8#?N_jBZgs^yQ_GOndsp;vaCh>vZh@>xQt; z$KMw8?TX8-?yIl7&1%xnzh-jh1CWn<1NFrNH_!o#m#F|IDYv?h>(`yS%fQt-#i}x0<9XHS@04)7-kakxK*6PJj|x$ID34 z8iCYPf9VkB(sJc=j7a1CMbvBPJ(+60Etze#09y&{n)ka3z9mh?O~I#=Gaf|(#%z0= z5!S)gh`pgJr-^~$ZWdujjf2z2w}%f1=*iKe`f;SPs#56CY02*Dv$Sk%A0p^oZW_z^ zaeD&CB7z|)R++bRZ2xwBdX2>R{^z5ux3h~jDbqP=LQ=QF z!xP9l-RP0Q>)WV+V-`mn;Yj<~*|G~af%4UajH$g|B%Ui>fJ>uAiM(GMvu>Qc?ckUh zGHG#sl0hNO?ncRrIjH*B?U3B)vE?X4G$*$=j;y((rR}xJEB*5Zi5Z3^D>i~Umx4ni zP<5(f<^oq23lH}^ALvbxcLer5QXEikb~eUnn1q}bSq2a9`iA`SGN<|Ywg=xmX5g{M zbszgOs*iAu|Clz}>w#YP-SReNXff|pAb06cI`WfOPlL2iWAb=Udj1Q_|Ka_~|3wkm z&Dj~73oA)k2%d>(X1}ydU-*UYOfWoqJgHK(SLC0j<9LA}NR2`g&rtM zg~*ZI6LQ&W0qmKT$F@=957Hq=r7z01tylp@(OJg_(6f}&cBNxgJvk){%BB}1wq2av z^borKegF;{9)U!;O2*{Bh6*izE#Qgj0TB4 zcdL@4UUq5n@yhkF7`u^m`sm}Y1&-s}U52!+n>ZV%1)p(YE@Sl*v)!XN=r@-Np0mWv zz5)p3Zr%OTJ@#g$cu$f;x%GVbA_q7QMs6ddT~z}4YQbQayLk}tQl&tO_G)T>1|f=m zM4Q}PrQ&e%ja`%4E||#L?E%kb?{V!D*K@b0n#l~hrhNSasz@XF9zoe(Eq*W3XnwiF zb;FnOVD<7cH1gRNmYdv9&>_qEq*bYFV9EMv$fB3yxo- zn}+=S+l&iH65jyn(`(U_{gWCWHgt8Zg2<1pq|{IEY5=m!bUAYguRDufV{N|eo9G(Y{-yh(cp_y$Rka{mrhq3p4NIa=# z{oi8_-fyI_St&j?yxpi3pi{tE$Fuy~0RgzjQO{KehIm_|BA6O0ffy!fq*720IJq>X z_3eqtH1X&~apEkkH|Bo7VnPl~yZR$h;(dZFQxvxw}cJsjF) zZE2*;8nqy}-`}l)`0B@3&}AM>c|R&|jPIRtz5giDTR{@x(fYjnQS)Y9^G$!N@xbtf z%;K2(p_ti^rKU7iqB3#f0-8yD&2jzj5d#wrf|Zbcb@;A_2)>v8c&?kVkg>ip%I`tf zd~ktgN@1A6UOUAUg3vl&^rVK0Hoq)Tba_3vuHmQPTWkpLVu07TlWkt-TxcH!Txy(U z|HyoKYlat<)SOhQg~`Znc)2@%P@E_w^Xouxk`(7C)rL;|KaE{^G}~zx)|qMaV7ln1 zsHjdm=pmxSFhZ%REv055@gh4F%I+li(wrCM;l2U6dCDvjrp|Mnzlpxw9 zwusa&*6+uh@Bi=p|2^+}?!E8(JomZxoNGiC;_^J2jgWg4etXIjXXd9C{KRWf)I4(l za^=I&%7ScV6^3Gnc1hmdvtE6EA8*qzV#<*SP!r{! zSg`aqYkWLww3@A-KU$uEV=pu}#!=$Ek~AZKR61!i=Z`Q!6*ON=CJbmyp^T{UOSGvN z_l)VO<98gJM*`BORjQwvGv~YF?;lxe{}bNFVeKg|dtBY4=-N9IuMl?T1sBMIG?fah zOc?xt;4yO7qtCw@T@?|i}D z@?my`u3aFj%&x+=#e{z|4yfE`Yg4=bSx#3YBGn&VpQB6fE9g*wrs^?j5il9_s9X7k z{HHnwiaIx)2jQ>Db6Ynw*Pgn%ktCz@YjFR;4k^KTbdNSZP}7`NTA9#@cxYFWB*nu{ zKBfw=6-paYlWR}(@-@GSn@1$c->pJZLT83%@v1RaWYut5G$8L@Cy6GYur1UKwm(R` zfRXG*H~NVwAPA!_r!%6cBmrkMpIoS6ztvA}K}Vn)p7ay$WdiBVS^DX~OSnU(dT(2B zcKP(z3qzJ6%WTrl@t59$)iz#ay6G{t>RibfqwosIw+RpXt4!h&hOMV@%Dpg5JRCA9 zs*TkT&f@t(l$gS&H6dvs2p05rqZ<}m>*LTKwi~J6ZEeAMz+yy4a_R6`u zwJW;afFE-0GKnZ`MA z=C{(T#MhEs2iqIcH%~RzT^++c#$i76h~g&V_vbREwOc81(itpQthGlMoL(#O>)kkG zQciFFpw94W&Vz`egr!fD^!UUh^zew5h0PqS|6N+u#z9)=b@lBrZFmhvZty+DsmW}W zyLV|zwDBp%7|=VAqwIp4NAZRu;kB!WQ#L5$PU!q7_u{{z@yA&ibtHJ%-h@8EP z_b|%V(>GRUFn?@xbcTcQ3`d!P8TRU19-^7`FF?%8a6jK7zv>mbOuv&Nh-kZZLica_ zrPn%uX8)f3`(JbU-F|uN_RAU{6XyP)Q1 zsHs!>flg9=hsehljDW6EKCAzu30d^o0^R7t$g9px1E*uo*;iqDPTUq?5e5rzQFe5H zBghS(qLi@+rz{Pw|0kmQjcPpL zchPS6$wls3P63AqS7ffiGMT;*R_MsB(d-h=`59`4b3K4wzi@71kf6%!>2xiQv(Ixg zR%8wj16`nHO9baa_M47mvc44)vm9U~y*|+BP2cDZmRa2+R_F^nY~ByT8gPRqR(iG| zANr%q@dVP7>yBFM7mvG^bZ=)XN;2cLW%=xkS-JvwATKouFGKsu^m93RQz*Mzx&n5n z-(KNWuWM}@7U2SzduM3x(*CaNuyFxyU+l10a+$O(I6uy?3K}^)=}~5-r!qS7EsV^F(<>XFV+ttdRKPOjp&x?qWsE|65y2t*Ejtf~(J5%_~Z z5Nl#W;Fa0rFBss7&{|Vn6?g`I&Q#jMfF}}<$Hv|u5Od`9FF1B(&kh8-3xcXD8~SH% zq5M)g?OLk$g6t)C{}Zexjjw~jV5-zNMc9?K?!7mT&5HQ*wLCTEz4hz7wW#-C+HCgM zukR76s-kJBsrqY_-C%diZ8#^0K^Pz36MMdW&MOpNm z(D?uJ=l`t0|5<_mAFV*((i1B?FPWU2HM4m6g$4qJ?0u=;-QRa(&Eq+f<~*v1?n2`Y z*;Dk$gDde_2-SYnT#kuuR^eNu9^5_<#@EsoR3T7sSUD?vRdUsW;0qUmOoBeZ>=4_C z76b`m{^Ksru)?h?5`}cxQZc-;5aRQC@(&~WCvPEMuGU^jPbifQpR2FR|Bz==^9d%R zJIv%uSZiZj3zf>b^mTs~Ky^xKWiq^!O4fSBLic5QDzZ3KvGU&EVXO$NIHCGY9eG2( zn;@a>)d%7~KESYd7JL_Az55|SMrzml@F@Xo0gcb!Ira1kxhY)q=~zAAEj#JTBhgdb zgQ9_pzLP*ciFi?m?Kr83`{V>PPdaD1B|OekNS)RycM^E_-)uLsUPZry=r>vZ`q3)I z=^CbEi!;gn@+_<9#9haA`mJ+<-S%xlirkJ9!v?|@RTZ)1m!CPI3U+_z=QoFUA=rWo zr*mz>%SxP648R+az~3SWjw601$maCj0>q?lo73pbfZ4D`eMfL~bJ|o9*=t$3aE^qz zjE>;Cm+hn=mK@y4e1X}AktMTDAS~XMlQ*gX@jXp(WBpJeP0eSq(p!Ik5~Rb$9cD^s zrW@QjQ8CuTjZlY`h4(~H`ZH87;b#R!5xazuH**9iOoCVmBwc87C0p~YOGHIl=;n6T7$xL%Pz#{jLOg~mw*CA!?Pc{E8 zj1N>c!cP%%fyCJ>7shhAKBM9S|48^M$J(5EPW!q*sE1a$)xMEUgGzj3>4lZ%%m^AD zALu$H7*-hiL_nZwYh+t&1ed=$#KReTVrx>03g~W>Z-ZKD!kG0py9&O0cQy2#){Q9K zI<@<7X@Lq(0Bv_f287sWr8xzujJhj)LtdgfZJBJcQ9q>lQtAvg3%ckp^ZJ}0V;?)g ziyB*E{w3m%`;2HfVY$vuSoK#~4%K7yJDd-v}*B_tD8!RanbY)>ufk z4$A!|8jfcs8dD>{E_$D_j}L*3MtWNyUsxV3A7$l7l+)9sl~B@Jwvx@0`teKDV%CR8{R`b9Z|vT!C-WVl9G93l6XxHlH>j&zXu zbLri%zUNp+gz3?0vo~(2nE%$UBxVp@OOez#(ktJozEKnO(&BYKkdOvAv+4ZU`q-k0 z>5fOU5&EvN?sZ}RsDSo^4$y98iCxg7aS_euwg@L~OF8iTD=U8q>h>~+sNzji#~>ja z$Pke}1GBOm{#y$q>PmV0^0;=3dUsV1P_V&Sql zX}3LdL5CZ%R%rN$Gh$V_jc55AhSvpVEIvEQWd+XsOLc~#K=3>pyPU_(Q=LLwrXjW| zKe>q(jeAx)G;8wF`G$zz(>(NopMGpd@gqydq8Z5>n8G^R41xt-NsWdp+X%@3eE&6l zx#NJLj9AmGU8rPlt8+r; zirwnTpRrKIj~amr1UWE{r1-(;(WA(~BfM=YFiIoipyyZ9zkue>v4GJp8lLso9n6qm1T`BRleeE&jksV$%!B+)7(>hxoh*eArX*&HQ)-sCl3e;V8RWCnVN%Te zj9ePb%lAi4IGJtDRX1fT=nH3>`n5tGOShGMSVjo_*XsXJI`P1q6Uk?{6t;dia0@X1 z?2z@r(#(`O&VB;zdK+wZ)GB8z>AOPVD^)%s>G4Glc%yA4t_TiatRO%PMmK@CsN_JUJl=2Tw4pDOuoJ-V9rmrY zf}0yywK6!!S@v-nxvfLP4Z0%KoPC>|L6a1V`qh&`2mAY&cZ0P?R0*ud{Z8n*zHR0^ zrgdlcyE(n7?4$y3MFEou8U8yN5gm=n6E-}nD(#&rywFMIu5H4QQRNP`B5c#FQJrsv z2Fc;53Hk>Bu0F1EAz8ll2U&+E)KvvhlZyXMnREyVpaV?L)HaSyMPoZSeB?~KOyfD% zuf!01K*|2N@Ps^>nY5j+1^0A@@5ATh;Xf{hyW)KCit{SM5QUnd&PJ#G=dE2zRA1Zn z%=Y;+o{Z=kG%cjtbOm(s;B0#&XI?klB%g0qwf!~0<@wtOe;)L@4xKTPC$nymLX49GWk2A@54#pmtO!SgdL3zwlETlri zZTHc3$?hllu09*h;^c?^CKun{oBZaseU%tN=Ce79H<{QyQb-HGb{MsHF3^jC~ zzD!7cQ@L+}OAXfa(ONzk=ZW8R>~^4W;xW2-rOxp$ZS`j>b7Yrr7qYRt$$`O%sfg0~ z_4VDy4KlUEOH@TJMlzDN`I=l^555pS<*A?ywno**=eDad%MoSb(3IoY(zmrBB4Gm0Fj=*&A>qP zGNU6BbvpO}e})x$)S+E_QH`us8j}^C-8e|Ol>an&ll?OTpy=fIHQP|vYJpX>0#x>^F8`VRrI0h2F5KrFj!)H zyp3nfxty&dm`fyse1(q>g97<079z?&-Dw+A zcVv2=@~?o>-@Jo_)?BG&wG^B6lp5v z3-Kikq>)c(V$JPQq_fY}|1FgauPlNz?zbOTMTFIE-ciYt9F20NT8KP_i@K|DnI0@< z`79={enHXF`nPpntLYba@tycs_oZPD3)q^0YI#s1eEHXgy~+3z+8dGLDB z#znW?J|)NKSbdew3X;XVvqjmdJ~>H2n3mW}H8P?rQXxzP!70S;6*}h~WT#|$V~u0b zO4$ZQJ?x>lb#6IVpY$%f&hFK1j3N6#Ju@6Yf}7~K{$Uhs8x!-I?OBX4+Hmce+pHgV z6}Fbeyq%mbcpCQ1RFL-fCo>EyQRu_ph*;Qc3AsK{FyZM=UAK9R68=>zaqtqkARnu4 zek)4%&)#!R=qM5T=+K`ZC@qM3Qx&c2 z_Y$kvti;fB$l8;mm%tl;6G;O>Hov2(Yna+Or-dKF1&yDvCkOaGCv>Aj0`WyP$0(k& z#Ffw=c!RUVj|Hz2>_Rd(vsCl=|Nig)2KoQ?Sn5zb3Hg~{N8-URTs8@b`#YNchyo}R zkAL&%0pWO}1?7W;;Ti-{kOJ|)>_7UH5$+wR5T$GfGkR2JyOTv^Huuf*-=s>KV!&Ci z9RmHjK~;e(*6cWoe{)S3%Tk3IG2h-f0{zc?X>DM@{rw%1F!5UE{QWz_lYjRM{L}Hl zUtqp|Js%8Q>;L7$+Ux(uKI#_s5carNtsupDs$6 z0wWr_LybEIG_1Q^pH&gwgT`~e-KE8{^c)7>jTj`mo{*zgfPx3Zo+(-o-G<19aUqfs zFA${RSNIh86kwJ=eUGnq=7?Dg*dhI26X0Vuyd*66AW$wdE0Ci4-4rVp$P?u@1(<1q zZwknO^bVX8n(i`)P9pq#eZPi@A+T&PU$KBvH3Ja$ALq#{cnTp+w6o|0*ZKwgW;w?& zmy>tECAdW(?V}*k>(bcjihoKr4%;!wo!_boFN*@XuhdlGjRlGg{?`%XKQu`_Tg)t^ zG12lNHBmdB^S&;je*xI`dg*+|sHp2JY&Sv)r-aAsL(tz4`}rtitr+x*Zqy`p!n0fq ze=e=O$xn*#`hpVw>w@b~yE}h~qS17&Cty0R?S=Uj&!dPg+A5zl&q_bF+WF0WmY<+I z_Fhc*pE*lj68d|ib>0Iz)^E*#DOouR@D9HM z%|qG=rzGnv3UGm1g1Q8q;5jv*D_C-|6 z10k^O;))hI{0kA|-CN(u>Kxp-E!K7r^0~p^ZIC(-j9Sb{xK9C)5e$Pw|rcz(x?i{NxG(9sC%roovgC&!k7zr3oXS@Qn1r z7VFaxM6joZP2)qVjoxYG;4XHH-A@Qf?HNVtQ`6C7`Tj0f03Yc7x4{{K!G%f)xx19{ zmqr`$E;F2R4*pv{=Xpe4udY^{Y}-tq3J-LV)w7XeE)EtO-#+bo{bNcq>A_V5f({5Y zLVr%|P-sf+n-(HpgVLui%h5=`39~ojbWL}HP zr8=#8aaH47o$At!KwXed4GDi44di{nwgsB1qwS^VYaM;EO1u400I^c~pSkK^zKeo( zQ-F@~B>!xC1llW=g8NRWl~I;YOr5N5K8Kj$%ai)6IGx3Pr)+srqz7kmk+Es&s~xP> zL(`NRcbVQ&TwEOFR^%y**0PTp+@%dy0-r!mz(%0#yWE?QsVL%9A)eYCF6ij#?f=QK zeKFQkeh(=dh<6yi1p(QK%d78lQ5&0G@iXX^aRh;CwIDMFXRvWRaD&yerjo;AZMS%6 zxx&vl!Ayt%;M%O_z~@i&FXcZpYmCokO+ey?|%6%%{H9H11b3#$pFe8Qs*O1lU z!-mXy7{-bT3wJIa>TbuMs#dq*pW(U9m@gkk{HACKqDWjmSg+Jj9e4cWVQH1m9UDmM zH1>nOt9tkqe`xR9Y52yn(|QD?LNEo~#NFg~FBlomNv;TKmq{Jn1OxEuI7dMgs$sik zK^&Ya?Gr2>5KM=;VQpOw30I<8A!WHAod10Wp!uoy#ysxFHMC~-HqVI}D>i&Tx2u!) z2_hW7YiDQO@T&2|$;zDlj~s{bv40cMl*$R`R~znDo_Nm3;g~uKc%yC@-?S5=qT)ck1xLE}90_uBThVLDu(tuzZL- zgjlp}`#=;)_cJQxy>BqC?vm469M@U;EZ@xtuPv|J*F+<+^0}5vipFQL4(-dQh}%JS zY}E&^OZl`$L9p)VcNF79XndUZZR(7XuLYgOkx$1#5bYKV57! zOA~ArDn2Z25G?@v_6=di?w;mPSNiJQ`BK~1}D2aUxB^jg=mT|BWTEh+l{ax9FMM?SCMe`qea7(17-AR4=MY$ z@zrgJ1u|+<}-7h%z5IL?uE#0g$ z%Y|_4TXLWV&pX@_8_dek#`kl_yZn@D>*mJ}x+KP!qr0M@H&)#zA_fDd<6$+zHQ+wWi%;axt?un-q>G)ec` zT4;Elk;?lfno^p6Xnr^W);mup?CsY!KQUrp% z<(AJVZFjovwsf+b-tl0q27BD2{wXIO&`z@)QV$b3)|XW|a%120`mn4&qSC!qN^?6) zi&k8SqhC_I?#)aD(KfPMFk+3GR>AG_oTb`@>kycZD&c1b-YEmd_XmqVz;$H)>P>O! zoyV1a+5%;^7z?6{2x5(GHT-Q}Y~W_$gpl*GprLMF6}}7KWE)ih5gm=svo*<=M#muk z8SZ+D$8HZ?#@73AKCQC3^R3)IL5UMz&7;t6vXG0a0LoIz4*XMU>a8otIFyy1YI-3S zqRWQY=FZj`8FQCH5(t43P8~L1yx85N2Y|?bU=Zcf{0q5~fuvO1Cc6+DJ6^j^oX*Eb z4T^a3cTU}N$&>@-=17B+h~F$En1rhBsR$xXoSMG*3$5K!TKXC~CF!o7TW1JQTdFy2x0#E`By|c##yX-3?wzoBe>##q079wVE3fd$mxX zYPjyGy=ON0a_m$cOn@=9{;!kGdcQLw+BK;`ceJuxhm(7w?d`p%j@e2I7Fz3jjaUMG|Q z=-b#wT7Y`!0jXwp&)3^s!)rD>&=S}a$g z6LegYax`3bo;AGeO79gc&&=w|*Ie45hZCNxt%<(BOq`colA(%slj|`425z#8+*A@t z(R&=9-^%|BAWA?2Nj!;+<{z)3RW^^hJNC*cqOA#hrLwJz6WzUfs*}OW-8l44U}l7a zJE9bSwcmmR339iY&3B7+kSmyVOCNiFuGi63@U%M(-_bdG@U%R@Cpl?aoSk-?KUeS| z1aXA$3#ZrL*?j@kr%e3{&`@#d%Ve`ykP)P zDRh8u{4*drM%1BrxT0=L1nrf(+(+1b97KG|qc{4(w=g6vA~nNdr;4l7xzIkD(!f-( zFn2!xm7R~UC(JQpaQ_nw9&SXtVg;mR!_PQqyv6`WB#9aZ2|*^f`f17`F3N-cUGJwBWWnf;XwdEN6KJYQLh?LK45f9>n$U_G*}~y>CDYLBxz{K3G65(usHG z$(V??2wl_?Uk508NQuP#UQrc(4nP=Mx-Xrx#9RfjUY~V);{-9t@~P&fit6Wz{TWs} zm*nR&o=CSc9Y_w&jZ!v)c%$XICc$;seI0@99n5;w8PdoXjQrjbJ=~-_y{*e+$Vi}* z>-i*zZk*&T%a=31W=?HFo!aDxJ}=IvK)NPVqlFB4Zkgg;yeAf}038!ja5%kIgcrkG zA)e>2(mv6E-}F2F@($mGRe{!MB>Wsex?l@Rd8N8b*J~`f>=>?H>2`4R^)lA572SQ< zkof4kT=bUQc$3X0H^f5kh0cr z9#M+f3*$n&ZY9aM8aUxMclqT5Pk(O)1$-YG$E=KTN!VKbC)3Sxj|XvVVT0QGhRuUcyM| zfm~8C4lb!>Tc#r!$vx=+cA#B(+sISvJ3`R;h^aaFqx82$Gc;{q?cq59a*(fps?_H* zqP^mCW9^Ym`naIpDw3nPZ@1_(55<2bm=~b-TLaCZiYTZp9}F)KoGuw^)a~dQC?6vm zUjgDqnCR!(@%@AR*rrk7xh|W!YHxM<9L!GZ$~opHi=kL_3D?UF9=x~52uL_SU#kk71~y%j%j~S>Y{^oyeI1fO%qi}5A4BUTw$ab>66&1fX|nne z>Gphl6Z}e#Wre4o36wp#2|jF@?mMDTy`R|;1^b?^)piR(9}bD$#h~I>Hg5{6LG`0$ zfFyu!@NDX#l+JXV&Zw#d^xnO=p|^(NE>+6f$#LrR=;Gu0}Z?OPnf|=lRmXGl% z3TbC;pN_7k0a8JG=IMrl2Cd%e$nbBOLr-BnzlM+YM}eRaH@%HxJp{ABjO8PyRC$h; zg{=pGj28H74d86YmRt2Lthh0fi;)<~v_?wM0)YN#`m zOuY6N5ywfc`Xu<4W82{4=XSGNhG~%0fMO%kHhy1MRDMB+*PlGgwC(x1{^fH;bgXNo zH@9AfpX_-0Z$ODgUDHo}r89Le1^g{-B+msu^;`&5^X=x(y;J6(cGBjzy_sdUsYwz+ z^z2sH6eRAxIAy!m$lO)coI27{R$(aARWR>fm8g5RyoNZx6Ux>q>8xYqTm5n%ht&yk zAE=l;uHh|dJ~27x%nC(ic?q0JSwKc{mSpquaA&6xTx9hsc2N6M0`fvT3YQWThm3e^jeANyEiQM@@ujy4(14;u(tZndKjG$RyePYQI^8-;3 z*GigpX1rlM3rIViKO5$aVcRUMF5EksVdEC*joW#gCEeF-FhA7$KE{l_If%`ZVUq-5 zP(m(hrknWklyMw7v4h7V;FAA+_V!fW@IIT>8X(Vp5ZcAy>1_VjeE$6-#iZXtbBj)s zyVAf?M|QdjE3RKmDZ@0~Y=O{)$Sf<+g?xNp#1yj2J*;?#ox)1-enTfGly*_49Ecw& zB@V#l#DYh3+^V=Y7%RDI;l6DBQv5m<*djo)@&$=Mw-9QptmQXPId*J`E$+JgW~0)v zB16l`ZrDq}8zW2E#65Y`|LWrtg>U(}`^F{6oesdVmPPASUymMH;5NdBm-rzHGL}KT zLS&Dp8D;QeQoCUx)@yeGNs5`*wvDnAAll(-R4+J0ko7aa(f3O_s}oa-R9s#88A&)M z6u*heXk;iGy`5^%e>^^H^e>MAQVZ8+pa*VLZ^bD_+WP`Dt zb5v{HtY28FLY?#KrKpv`Mwo>?6&Ewh7fE3UxUpk-h1VaOHm37GMxpNFelniPeX9KS z`*s*Nl3K{%zI6To04pbde)fj++tcu-%+z8B0zEghf>z~pgH(>m zS{==kV%wq^s=Bz5B8DmR3@1|(FSnVMYoa{hk=SeNW~Wd(OEPyg)(zZMoeo9FpeqoE z<8qo0o{l&yu24?eU8HqIIN_g4Qx7VDr#_r^DP~AZW7W{s?0Es-=E?Np2@@m$xwHXi zLw9t?!Zln6Bvd6w0ul3lE9Qu@@P$LGkB>~#S{3l;9wgemyeVx=Zl=E7ZBy1NR^M3- zXi)j0ffO0xqQ%6sCKZ+iM!Tz>8VYwC_dgyuddTFm$Y({#hg#|9@ynMj2&H0{9CPhN znE)9N;y6^$T@Q!f96*;w0RHfTR;d#(D)U(w@pQO4Y1PAbA-VKcbl?<3!x`I{0v3k%m+B%ZAyb# zXH+&}WL0-X;XsSTgD>i1Q5e!uPNRjVUlcK$37-EUSa`5~fXgK^&lx{$8rLdXP~hwF zHRheAzO&<8Lio)Hvi6J|Q()9TtEjKN3SmM*a6A*NN&3d+}2*Gmt@q9on2`xxJp zX3_wWGy0#pITNIP=nOSBCtzr~X7sXS*ZXz@k(=M2jX#`6>EL-L>EG`-q2Gfnyv(Q5 z9D5$3jrz9NRuywEYuJ5)xI}*UKaOa;MOr+>ZTa|V+ z@X}}F*q{4Z8o#opLyeJ8k_>TDq-YrB*}QXZ;ge5t!O6wn+h{#M2eIvig-LkAmaVN{ zPk+gGUGZ+pY5uJ-YIUt{_4f)nC(8iTaDHl!6E!L7vvFpe8|FQ*m7rYvsh*}=XXICL zT@F^LGX)OZ`MRW9%LXOvjr7Tp^Z1#{iHw1_sGBP;P=nws@Wq>ZX`%_KQFQ6MjF02* zolvSmCA{X;khECsaS>@OhzyvzDNKSzX#9R?2(bNIU!s`Kp94^O{xq#FVcfhde!#F45X%pCY`U+u8dM40TW@~* zh}_1u$*Vyb{4ev8IZON<@CL%^@rdeMhTFo=5aS4Pa|R=&R27NmavIy68hH$#InsI> zoqtx6WkTC!PF&l{28}blz5j5;LaDG%(-wk!ChvKe+8eJ}t;ho2{e)peTkPceQt}R& zc6|RgxD_=1y&t8Ah8LFKx;D-}22U}4E>vhGYm1xNwvX^;I>GJH*zME>kMm(#AcO|7 zVel;YvsKr;)&1hHo6~XnA!4E@4zyU&^*U~~Xfdx<+nE?VKVSEk@rD#TZyv`Z8CeOA zAz4u5Z=4XC!HRUz@HbJENgL3VOh?-w+&{3qWG%^DB+=`C@#b84f&2!e-riuY^YC_F zv`K;rt6ilYzfbP`*FH9F5-d{8uJiX zlluD~ehqH-$9COP-Chhzz#hONN-U)g;@rq9DVO73n5>d{IOgsX4-1Zbp)7F$j;Bn> zdI|$EUvmH2@jV(gvr3ViAqNLhO_%Yt0e*(&LLW;s2N8*UI0Vklm=erUy5KV@BbRVa)R3(> z7u=lvSJeBh%a2&8p`I&j8#`kf~H0H+(z|Yk7C|rauWL*vgrGDo6?wgjPpL zBHW8v{9C%B!Zk+k9uNU%;J(k2NOQJy#1ro*s^NzSL0AYRxin~)bnyMI^?Np0C(n0v zUDPqzIFQfdR*ir!L6#N{+CcZ}g&B_BJjFkE@J;-Wb1^-D<|YKtXqChrrt#!;hYqeH zHp7ebD@NK#t2sP>UdP__r}&-;KHL0wam2q|qvV>*>!!@`jvAaJ65H0{dY$S(qZD{o zLr(rfugm>BwIb;%f<|q@Tc1Sr2ILcPUJR3BiQ=B7%RhT)z5l52W*mao+1O!nbvkX- z?A|Al-T3wEV*abITwmdwqol{2#TF6A%!xrX#!%+|yop4>d&(~2nN(559NT>)-+6X% z%bx)gi>!4Snie&lu?px2Nq)ucEISqC7y4~o?o;E4|MOgB24^hO`IK0sVt#GkL`)U^ z+)#hAL%J4`td3QYi-%X?E^?D5o~s&Oj*0b1NtIbH~;`NGRw$xfzd=vE#e+PnO-gE!^}?k!9HCu6|#6{=xZPSFa;KZtDTs&#=yW7cUfa0hji#=kd6y zS7}YZNLIxICM9Jp$?vqiJ`(x841elJP)@`C(o4G-n{}z9TK5cix^b2Lt{PyPd_R{t z{I$;Ms(+_q_)DyPf~rQsQx?1M%Kk60p^YpUP4?zC!c#x%cvKj*H>Hb~)_-kMm?K*_ zIm~kD>J^max|7H|@0Hs**V%ow=!-`>OY1WYx|}WmN;ua0&ypoDdey!(LGbN5|AKOP zZqJzu zSN2q@2eXTA)k{GF!~(SZIg+$l63T~$zfh7F>WCStn@HVxp0V(>n$(WP)e(d2`#NweXbH4rP&aoNF?Ibsb~rN1*%>$nE$F&H|P z;WWOa@{oyZsFA4Y@Es^`i}G?Po{;-~R)rw%zMsBHtBihxV2ut*TXUFke;5#f)?5#c z?|4DBuVEa(bi0$WJ(xP-q2zj ze$ZBsUvlOI21$~=}7aV=s#>(ZZ7^bX6wa3BUY#Oi?iyW~M$YTRKUR5FT zDYSvY^XwJhrY74PhimO)JDM=Lm>y7ulkELF90t}7e?1t=uV(cw| zWQk*0j@<`#v+P&L&VUc#A=K|+16lDc9=W1$J}_PVtG3d?gaIe7Q^h@F#lK!~KqldR zs6NLPDUBYX>Z7z1k6d{l864ck@MIEFac;4Z};tGNYtKSpv z$50V{R>XJF+zw?^g%Uv%GJ%BGZ)(T)C#7x-kQ~^46vD+ zXSJ#-6ocr`oIc+SqWH&yU}H08YjlgR>R;prtE4Fiv?#JRGyC5WG1#B(wzY1el{+n> zF&<*Q8#-t9x!mu8r;30X3zsa*Ab>APJ@_pzf}d#vk`jl#vTfL2kDo zc3jK7IU9(a2iik88}7%llEib`J;h61RgZ`#bjPOON8oLwylSqLQ`sa9$W#+_ESIlMI3Tul^y2j< zbZ2QOIVfJ5ty&d-eraT_zu2EiE(f_%-on~e=(dd9{fs08_(s0llypmH#js6XG<@uP zH@@{ct3=YV9fj3Hi7{(dv`zQ%b12djOB(k=29Jr1321p1_xJ_?47!y5?j5d1Xoqp` zW)f4g(5~`PoP4eOKyZ48xL$xQW_a)mrM8ZpAiT~Th=w!wvR}sPx`dZSLyF03;&f2R zAaHoGgpoI)WJsfO5;Cux$nLLSih9WId_t`PXZg)h@8o{cP(Rc8 zJ#WV^Wuhnakj=*D4s6vgyn@7y)kirUU`;3QqTpYRyJJ=u7Kw0P{UN0>`CeuCcTfJZ zIs5=N-$QyDpC6L=^Th2e($T38ZlEXrQ=4H_;?WQqWEYh>cKPW>M?Gb(iA2NIFWgV< zz&2Y+Ml8dbZ5%S_K(qb9!z8ZMmv}@}^kQE*OvCWvK+8;IfK2f<&m7nb|j@ zfdiR$PVb5Y2_uBwGrRrX(M4q~s9|4}Cd5|c&ecKJ^vbFRi@a8;AMko}Cjy(n`K-B0 z@KaLH!m~6@DyI468fuelb7562%u8|)DDThTh_0wGuceMTmCQ!DKWX41s;ae93rbb} zNx0^b+?I{_)ny>vxEMXlmy4p7(5&-?qcX7*BZ-$M?Te9SsUc}oSAB;oMb}#0c|91b zb?u_BznV?NZIxVSAtcrLPcZhQgZ?k&gdRWLG(cTWX#r{IcMXui8Gy{Ue?)20KYbEC zvM^e61bYJB#q$NPQtf_g?cPFfa-XbG6$xJPH24I> zu#0v94xlRuldA2CAlQOp4zE4o)GZ^WK7h-EL_`xqh0z5}I>X-_f)m5cl?&zVBRN6E zJ_*TgBiDGKPFR2q)Avi1AvH)ZmXSHExeHYDaRF@>Ms6Bb6L`RZN9eaWPKnz44Mn=a ziF+fXa%91G$3~K6Vrm`(Z87dhDeACI2imWL&M!lqrXh%5X-ED1rh&h8*n30B^>VFc zYP3U1FNDVTZzT;JUHj9fV`nAri|BzB258l`SO-w7ddBiIHeby?&;4>{_t#P2Vn{z| zE2`?&8vvF($yGnn+ z>Kv|1t1ieF{!0qNy5aIN9w}kUIXMZD0tMj-;aL!FX=m18?!`4=#L%YQ!`RTiKvO!I zDVE2qf7&8a6L$m;TH{QJ2C9|s0&cQk^2Ujh8@5m_r zm^0O9|KVA64Lr)4C_nK*KqlwZOg z>>dPhTYw|?r0Gp+ai|3Kg+k=xdwqGwb>dIvNY*5u)LckK%ns#chfxuB@S+2wPp zAAU~r1EQO{bQO5<)66GNQ4Eh+d-H-H6kWMvjngbM#Q*f0~4ocnw#84eToaSBbqbkv`lgG3G1U*U{F>93r zHagUIB(B@`)e~$$AS`v0BV^UmPHFuv+6KjviqyS``x&xU;1>2FI$Kg!!nn(#D;^m; zuZb_ZK-6CHXckpW=%b{5#slrui4n1YCts{PG_C$rXDNzEPP+ZdUo?LgIclv02)N z4VN%qj|koR%|!{Oh0-ti`u;rQyOm-v^Ke}FBvk^3i@MhB7EZ?l&3<@+o?bx5ksx2x z6(e6p{n^v&W@6jRi`LnWWzSZdE)&hQ*`h(EL^+hC-N@?=02W*DzcK*)&`wbsIAoqB zdYyvC0B;l&0$}q@WT?w~EJba5f^p0_U`u`5ImGTnbm5&Y>`>@!P!jro@D%a5r}ym3 zeqN|EyR)nO1fEdQT$*WozXR(GHf+qTP4wll?CkxOx~Dozf7I#Me)jywbPniy_&}bj zN*YfJ9InF3X9`G)5oqNkXqPSicMQbhhP=%94h7n5@#F8haBTReC>n~4x(_e_B>$j;uPe|q(Zvta zC7RGpuHXvQ9pq5taOW8&yrA+d1P&_?vJ>$g#e?Uq74U-bPx1APPC!-;R;KJZA`z#r zyBJU9Jj6U4z06nhyyE-U$pPytj9p_SxLl{ru3NcUC5mI49yB6o72JVz{OlGenD2s&q(^20<5NSli=g;>xj{*C43b3N-K(#69POIo7ZRqC`hEJ*0? z@RL+Z`47_YjdOM)IjenXRE_0O-K`_khkycsPrhkC2ckMcmf{!Tk7 zXKibt>>rxEj%U=PK)aezTBtKs@_EMSQ8Fbi?yVU~$87a?_2N|h7mw~kJ497&`N|2C zfkW6G`%I;BhX+y2RZZY9&@rc|$R$N^%BfxmLp7sk>9{aPuXMVL0ia9Plz^fn1TJZB zr}*HmwjqnL1&dkyk5-{b#bf|dx}3zr=br3OJ!E&QgZ)@A*u3_67B$fK`?kaIh`_8> zV{Y!~hVD1VDNia;K@KTBJV)dJ(M^nHLqF<{`To_gj*692^jVh%z7)@g$pSYacJ4>g zbf*^ZMnAA6drb9i2ESZRM#LuMQ?2MTJ%xM1TEQ_J1WWzESAj}o4n_DP6*(Q-`NPJ>pgnw1 z#n9_75&5`@p|x`79(>o&wMPb{lloSA5RBp9A5m5ljV8P>Q?~u{(AH`$-b@$V$lkc% z5bhks3O0ylZV+{@&zs+I7CJb-D?fC)rP$uD77f`M?5r20X~m;uZnH?ujzQT)?)5 z_uRRTgU#{HH`Z#7eMO=d*2iMfuZ z@ZG*BuP}(3^a`#bVqdZ1^$^%g>wL57qtpbsOs>ayo|tB=@)0le}S2c|6pX=&|J4i02I@1de*M)uiV|n-Y0|GRbkW4=yTO+bf3Syy z$mXUp;ya4jLKg>5)gmulV2-6;@HBb?e`4*NtGG*nv@b{wpsA5hJd3nS3+q1mAWF2J zZ?V4xb}aX~hAPhw@}V{(*An#U*~Q!=t;*x4i&|ZW4%YX)ubfp$npN(f7`w*@qV=6( zxdphLz8mgbW%U*sr|cD2}LqvVq5P zZ(bDhacr?lU;X`-r0#+jq~<9@evD;2ndy9h(UnKziA4U))-zQ7On{0epL9Qc`U-X4kB zz+E2$y8P+5^$j=y#Q*E(g=i75%|&CbVkUp@s8IwldtnWm>=I}id48}5^dj>Bk&}3a z*uK)onp|mR{vxYUs*|W@*=utOVUOlUU6#J?DT@{Xy0DngQcJ;VjSMNOG0O7 zmeWapaHMf+S@hmjJ&c> zS?qVN>p31Zs+X}!u4DP$vwFRV$va?`wZ}+ykp(JTUAOV_u0H~IV}!IgIi758YY7wl_8e66;^ubzPs3dQirZ(@-|5kOaOS#S5zkb;~Kw#|n{ zNyz&uL;GA-!Uy}4B=)gBOCk4USv1K_U2eR_6zZ?@^i)0px*)f^_Amun>F5nkeuMi} zuBP&eS_fpSqV5@iCO9RQI}X^s%0VUkgC{_z1F9d^w-mN-d(ow+ikyHanc0gwnyxZ@ zpQa&Q;L!N$nq=ImxYxF+zqr-k@37kGMxish>?Jgwr+(C#s9vnVKECxqP64vsa7Ixl zY>z4BZ{$!M&`j7=kJcwUdY#OHm@S5*dh{lP~u4l9?ll=uv8#wCf#hxVA(#7M0!0U zc%{!;iuSp?y!_ByOBdxXp5G{S5cI2h_7>0zrIcf*_WZ49rRZxHB7kAo`tMO5{Gqg|B8 zJl+J)E#;p3su1n!8F_x4!y(9Ayw2BU24Z?vAIv~f85QXEGkMq{Z|2Gh1X+6QDF|+B zwv;(5a6)6(G}~jN5~c36IcXgp1R;X@l%n8ohBg=|KT&kt2-DvPrL3m%r>~~O=vzTt zl#W3jw@(JD>w^5Fhlu&LI|7z^v6gE@ z?W=h^u2D8NpMKC@W&k+3q|kcnPC{UnsTskav_Oo;z2ol7WCxpV;&b4fU&x)*Or~gZ zo>nOndoWaJevf78$WSX8wm531q-P2}c}$eP9;L z#y86ha2w6>Bk!ppyC^@ghAyau@$lUaw(xv+^_lO$a;j0kUI5kmGvUSmMb=x#MYV-( z!!*(Y5|T2Mk_t+PhYkTn38hPvmK?fUT2Vwm38k44=^7dYq+#eGlyA9`)ZA37+%m9@1 znBPSN1sl$P9m+a?nB(pZx*d6X_T!}2+h}Q0E7z=oCa!Bh+^FukAdx^IB z+qw!Sb8DvZ4NC9}f%BbB-@Ul6XSHdIvUY(-Hah`FLJm%u8$M9B>aylNj`RoLF1_)j zJNZtHYS@c5;sWJI0=wQyWGsnZl0nJF=DZcng;B#?-E+!=Rvy^|W$s}nYGU6-H5>zsSyw3T8_Ep3If7X~jd;H)isMD8a_?=>%={R7;z2tuD-SZfNYSW}^p~Oh4H- zX5t*Y&~m!M)|&9?$&H)I{nxj@GT@pKnG$YL3iJcOS({dbFP4(EXPaud;1^tFo;>s+3BN@s$;PU@YHX1>lSa+f**a+ zeHuIT!;QRir{Fqc8&o%SYWG~Ls}hZb&x4mRU)lK?C1q?UGGJ{sJ~J|F936adojh;W ziRDJx_N>$<4gJ2xy{gb4F(tlBqK+wPfBwpS9(N;#+)(*b)Dv4e7fBbqojWM}!9{=M zz$XlI{TJf8TJoJvPhvy3B$r~K7=rTW(Wh7aUu_JBFAuuHemTaK?uQ!}P`kQT3Uyda zWq{&SSM!4G+FpKDJ(;clprG9E_0Hc%FWku)_u8ujbFyTS@E&VaKY{|}2Skxwx#z*0 zFqUyLu0Ssi-X>h_w#kbbO24A$U*qPqW^;reV@%8k?tG3SkL81Ma|!cE9{V`b_5?Cw zFlHeY?pL1X*o7IvLlea_#O~bou5550M;)*ru2Pf zi640EUr1*yC(%pHnkOE#u7ukbZ{~y}{pK%)lKX4Ob_fN6r(T#G;4NFJ&vOr2eP)O= z4)Xtr{(f9r9fLMprlv^XgR(v(EQ{*enF+7ZK9On&}J4r*4DnVoS6(3<{aKI!a1wHm^g`@3&F1YkdB_(>nXz zlhBC);j3+&b^7LlTU)q4J0|aLgdZlEypGGPXR$ZH87s8ln@=F05<2zPj4i7pgnF+X z(%^7Im6d)-;!8u1Z|?*eZs*A3QdwY-Cc%ra3#$f0{zx*u=#esJxcZ2g-Oe;)v7=&= zlcB2j5b*|wf%OtegTXUa_rHLB;?-GG?j+iqiYz&VK_EBq^&6YmSO=9?p7i&9RjVzLdr|iYTJ=;Vsp)7mVhxbIN zq%WtFJKPXU6Ocn6k}#V3!|#lYtTSGNZ%maYw-r#9=4L28#23S4H_9<56lDvW+-R3K z@}KpjYX&(TqlKKXXqwqy+_gXHUGdz83-MR*J{w@bHuk@Ec;6(>pZCz55ZCI3-)q{v zX}V!owk);%(YM1S;?3#W_t|jH2#z5x=^DrpAaTRYt&_P>uw%0uD zHbj4G6{mU`QJ>4q1a_HjM)?1H%cWPNC@JXE*D&(+g;Gkfw1;)Z#kVsgyuiNXDCeA8vwp`VZ6g~C0rNdBYCAjI>HHmO-bJ1F+aONCL~?~l4V z-Gz)J4`(u>^!#kw!?|Ai8@{!Z--)bLF=&v6*JyTFaBA%HwOEzmG}6pmUb8SWUX#+; zi2()SV>Gub1CF%rSq8w!e6^Q?=6=44DNMe_YdE#{S41^ppC~irD-pRRA;?b_x?d9| zwA1BJbn5@E?@SfKFH9RnjOSpif_c?W_d+UI<1Rbs@zLhXES$lbu;?;HG+VLZa~;$i zq8UtYci>-=8ON1$Zs$B2ZGJ>$3T`+u4S6*^!2Enpx|FHiZyf0zS@7;!H*A{NfIm4lEE&O_$^FtA*w zEask#Y*4*5ls6J;pd>Y;{(W}*&N-&+EOJ9{!qlF_;9KvXhc5TNydG5a2@l!@xWNZd zu+~6Nl7+@%pSsMi@jmX^oTFuOrfqu$5f`@DQN!%I!P7Jmum$c=F#j4)sIZTc-?uUp zL6aG_>>Z7`p_7V>-eIU}L>7Z}%moFR&NHS%`Vw?i*P7RZ_(0{zWv#S-b>eW?;#7)9 z@}x_z6pe4B$Et)<&{l|!Qfnw?0xzfR0;o}ikF>u;T4%-}8TV94str3mJZ_HZqI^&{ zP@4!_c;&V2UV%FDW1_L4`F+E;Yj8wdre(>b21)>BkLU?v4Jtr#gXT+}E2UKHmG*upgECSmv<@j)}Pz7Q9A%H(xHqf00wdTHpDA=qQh(TWGL<9kw6I zj=O9{(%S&*ZzL$1Y>4NY@Mld$&4h0a$5z-L+l~fDnQ82d4L=Gq$>4^}Pn9)Wog*6^ z2^4kqBqzO+=ri;UUPX4L+rqpb?2nbEmAvk z2Akv<>9gaHcMlzf>63XW$x{(&JI{L%tI9ijF~_UM;<)_vD!d+F2-GpFcuigALJ<;?AFZjcm%gQ(wJHfk=NEZ{gdS}1w+ci3qDNZa z;z12%p-O27kB%?N&JP~5a%vY1_sbTsHZEPwzYozm#k~O;?R>O*jC178{*SsU^fP#$ z5yzm87jQ7-5T{B*sgee&t6i8~L%c$Jw;PbVyGSBH19+&{zj)s62`*Db2mTl+Vd}tX zYMX2~iQ$9h#pZ`7Dk)8V7Iq7~=EAdc%ONDH9T~i?sm3$<4DZ1{W6sF1z8>)ap@Q5a z`s+drn<3w#nW$f-xLuKSPGXh4S|yntsaG1`%JXy`f2>ob$wsSHE6?4;pH6}Xddr2@ zg~n4Zse)pM7KP)WTZ=v=eV9wBF#8CUD375zVa_04xLs&puz_u=3FR3vG(2k{_ct36 zWrP$xD1bq!2w_Ik2m?)Bff>gzWkHJf~G?-d8H~3KJzmVTYnwcJzT$lXf zNgBkdMq+{<6s?Yx4`6qiJl#9gB&j2Ic3|^tbdlPbUkNxm`%GoO2+%)TjGiPD+i;y6 z@cnQlGMn{?dV=LRFM2$*fbp(oN2#?t6F1{4wFiB-{|lA&slEp@AIf8Ik7JQIc_#No0k{db0{i zNB5ir^)!_q!ajF2EuY+V+$#j+L9Jw zO{)Q@Dg-@6>IB8H@AqEP+8l-5I<9pai7Mp_#iPRB+Ev~Sg5%K_=hs#NNPb!Q)r^;~ z&PkyWiZ@vq(~xc6u=<`eyO^vG=lNJ7l$U49Clg6MwODOm~_{ z@ET_@Kdit0szg%9+n*R*v~rIu-UBq~^Mw&jq+_U_@&UROwlsyD+t0f@ zE^IH*t@q2T>Q1TDvE(nxC5BU~iK1`3QXD#y=*K_GvJz7s3MC6L`zB1Xb3cuFIrZZ! zpl*N#VOx#=kFxZ{1YfZhxkZg)iq?=EB zI8K9DC$GJ$&LePc_X!GxPt2S6eV)N%iQ&1pl7Z!FNnFIttEpsTJSNu96QhE%Nk3wz0H^rvNaJCwq7x)O*NMAu z-zJ6%k6Cdqg{o1nI!xh;!qbemqXOjd)0G6Jg9lw5Xevd6d$K!^+9^8}SY5>gJ({wX zf&_fcQ@uXX?*;Rbf4pxc@w<*RH{$M;CnkJ)0hG73_I56NjzDLv=m4SUfOx$4W*QSr z3JdLaP(`aTsd4NtLw%J5t(H9@4xg6?`x?*cuDTMsXsjJVlHvR=4ESYV`iQWBt##fa zP8ioN20kmYif&+7ALX}rL|7KKa08HeA5;?zzc@g^!k063;9N5GEDmkoZy{R$Ga-P= zJ3EJvD+?p{q3oxj!m*yExt^&F-&3|D_HW`;pZHoKLWL^|neIw@?(N?le?2C2zN7b- zZz^Fog{n{kIp(#OrTVllV|BkjeY&4SgPc$skHI>z{@^nk`>)ZwPI4vfeBfk%QmHk*)hH;lPKlQ3He|Azhevge(*v>Y#fdr# zYY^!l_mz}#O}^-}-tU_U<$h`Qx}x9%o(!%Gg+oF~lbnP5K`7F@2$^ZNZFx_ahC z+voer2-_fM@8c>Zr3foIPgo7^n3Xsi(Sa|D3Q2eL$k0ALCD_19ub~LuP0hx!5qbjp z_%eQ-)hG$ZYJJn&LE_>kf+{HIaZlaKxW27T3MM5(>5&dc{~HsA&(3BLh%S2%Kw5l2 zt+QPvLl3*Y6Okn^e%>(dFHzx2=!v^^wK)6aGmoh#8`R$Y5`Yd+>kCnDAHHsjIBPTL zU&h5;6S$Pxz!5jSh{vh~?6<2I%(X&0PvN1J4mJkN`R?d(s3TZ8fZ;*;fWj_U&Sm%d+CN8kt?0V{PI3;1G^TyaYUXf>I&? z7h0boGDsbw`+mJ5b$Lt(k9nd307KGzbdfW7$!pDswF%^CX1@6ZJL5HRN+Jyhe=`=1 zyAqYyOIObl4gx4eP84|Wm9wT3%I>8vkAg&}X>|>4d zy2UV+-1YAtPz^SWWiOR;iXK5A9@lhohw$r3>@P02SM--Q3ot3c4AYVNWc|3(O6WN% zzvSE|*UJR9zW9>+fqT&)8N{K*RMPsH z(X6VSRcuTKO7i2VJJhQpCHgydV>Z;(<@Cq2JNg3GYiM1>U4(Xgi|4j(nj4^&R>UCB zJo&^Xo^_?(g>L8}+Oagbdy=V`i6ec4xsd5u%OQCv?+k6#T_#N>CBIimij3HuycS@N z>9tZ0hsL=|)VlCPK3Hoh<%Wp{r@+EC`vB{sQmHET;3{vDBm1~`tD|sw90g}HFXu74 zeBWxATi#nBg+onE{pz_a@%DT+X?5uqZv3qiHjV_+Ye_t}n)x9jehGMAExIS);mUXV zm~SRju&uNw>s_|-FiK1LY;d(?7z?Iq4|K?S4WH&@P2eASAiaiT#M-$Jmo0f#Et z<)VH$r9L9z@a2FtxCFLV`P?s8YZnmashcspLQKkD6tP0SpK2OYZsyW%J_E$`KJOF+ zvd|+zyiL7#=X>lU`yQ71$S8M-agy0vU}hXmv404toZ8n_Tsca=TeVG$)p*b=(u^~7 z64#)Dpd#p_yz~gxCOo;#=JK1~yGJqyXJ|A=`T!i3U{6iG`|G3-Kfk7)boTQ>q&Eld z|6~DDUMHr9SGZnH68bIDEKOF;AYN`A6XhO*#xslG3cOXD#d=YXtDZ1xW~Gj5Iwpld zT4fF6YVwZ~f4YnA{7l{k@;Tteveo&G6eqq7!XAO#eTUs~1t8iiXJ0~MnSsfq3m+z4?P!|+!205#s=kWYuIvNDCTKT-1UT+Eq zMyE&Tt~un-KlfLZF&o)ZXgP8v-o7(3XHYfFWe=80vwV{&Hq6f$8n|`=H5W_O>2?EN zh*rPz=OjtULN6{-uOh%9@~+t7^oJ3*m%{3@0b!Ahd2CLt7yZJ8Qdg;o10v34FLS$p zshX$253OiR!yRzD<>VSmV%W^Wxlv;{ny}Bl6E=!E12*#8E>53)#DS*61X#ha>d9ew zFdB@7R_XzrpTv7^S`+*Y*6*oCqQkJZMEWPkqOM@_i+auAZL4+;TPs@0EW)#h4ou-^ z9#Q&&Iy1|_9$o|1C= zQ^v}*!D#cwgvS9hVKPq!0Yjn1G8D%m!wHWZ0_R=9C9XF#_3hucyT!>Ijg&hcIbi_O zS$f6@j^3zeLNdR9<|v_?OjA!;Z8w<6rtNLj>^i}(xtzB!5SSa~p1cW2kZpg<*PZTW-|8PmBZGX!Gd9m2wKR$EV+>{@9{UQn z@TD=}c;SrWR4Fx?QPdaK4k#7=vQw?mTe}$Qbz9ANEY>V7?s4g&3Xh69zDo5f)2MpH zyeKFfdEw&!m3maOi+EwkR7mCEMZV=7ZiKQ@8-vz2vG2o-@2fYPd5n#MDnyOKGUSV` zP^TZs&ITU8)?3HDV5nw37T&NtY(;n=Oa}Lf@y9JU_wQPiyR#Y)AFp!IPGoHRC4UZD z4E|NHJR}W2XK4rfM$zw1(dhhrPS}sR1K+TGcJ2vls93R7kPxhT4F|wddl_KQD(LLU zk=HXwh#w-MF}%tq_$(B~j#kDVdxWUr!E?7@vY@!2G((!RTR^XNcW_;&fE}ikK zrget!d8C()!JbRE$z;~@Iv7m~!y1oYEHEV%gXhmT;~epYC_UGEm4#aq3k=K}*KajB zDQwZM0YfphG4x1nN*~KPu}&g*d9jT6H`e1~P|o!a`dwLJgIsc$S-8F7hPD*EwUxW; z<4v0WS}1elWH@g2ft|W6l-1>4*irn*xkExmQ{L8ghPPAa$T{(!J8z{CpuR_XyiIS4 z&RkjM28zPFMBW;pJ?IeVod`l8H1Xa*UrGX6NnH{m_T`qu3l^B7Z)-suTe4iM7an`- z*sx{siw%}y-t81**KPuSze-OaOVJKp5`BHbQeih++OnsPtT^-gtFm%Tnin1Y{u7$H zy7%;UG}IP~x;5bumx_`sb$m_q$jZ1^qs?S@OV553U0MI4LH{sMCyDtcScg&(_eaWA zqrf4JtSqsdtlYzT^8l4&iS9M<{y73ob$cCYYZ6*f(QCv&_86T|!lm1^Fqpuflhp%1 z8-CyGDvP*dm|ewQbQEt;xVw5?=l_Jz+%oq%aoBD)iXn8Pk2Mx-68Lt z+5WxrDg7>g%y&n+;mWrtXGW)pdzrpIhbf6F?NN30@mB2t3NlD@O6 z%{ifgsM6Fbw~Y6UKl#MypjLH~`i%t8Er^-5&|H$%H@KnP*6HSsc0%oxl}>~gL2 zHChYoob>KBgvmhQ?aGROu@(Kaa>}2@nwNJregv9zSGSWIJMzh_x!od-Q`I<{`XIZ z+U$K`p5Er`4|4g#{PI+llnQgmyhV&Tizq*l75{-st4u=45{)sRx|#Ai~|if(+7a$Q`O&cSluNV=C|wRuy%n7iVQNtDYG_r^~2jC0**rR%86mu z`f|*Q?KJTjIcgg*&$aGE05Tu^sFs!8>WbE1jd*kg&+1O6`&xK*kk|P0oX1W!NmP|` zOUCd62oybNWbRH3`sC%gkKircF9rJTqU9W|2*^xmeFm8cAP)qZs-K*@t}r-N5zt#? zq47}rhzxRLsssz#et+)M1_p`T5JMYiK=gT2hOx&DOSy=~5$hM&ilbs_5QPb@gH4$1 zZ^W5=-X{KOANb;}FDWlN+N-sDTWpMrbxB!nINykC8pCL^b^`Iv2K}d&+fk95;C$EhB z0VKTE!ukgCX4iR8mKDiN*)IX~-5nv6uFk7yf@LEvgG49DY9J&zj}%C*fPTZ!B`0EU~<-t8ckKx@P^Y-&Ys#Mr+Of=W$FBs;|z5$YlL(sWk z*{2HpXx5x@K^&jSs|F@#v982>pA8t-Kpm~X_SCG6YPD|;Yv2R^D{TMfH7c>cXJ@#0 zzqkI?s1V9+tg$17D!h)SFThYq`sh$6NyYM`w(=?_g4x@WTSQ@*)}NWuPyFwUefyeZ z>d=rIF84HSiR^@{N@%ZA8E~iZF$riwVl3py!D6D`D%a7300PPA8zngyF2H=IDx#wf zUeY)zq&FK+;D+MzRFi%66ze~0WIG|*OhQnmb-qDunx+(j`eH4Nz`AZdy2RUq8h4bx zrX|;cb5rH^c(vDYw+Lo?5rw~hZIWmyNkxN`UWIVw7-zD=_!O16`~WR7vLH6<(`VHt z9P1Q{=yL|#_>N7~vOx}4%3WYqPYN%6E(HpcuuyVB0=U>(jk2u$;B94jDqK?%hY(hA zc}nB(ihtJe<%k_<8?==@0mh!?IyZ|imY^>XKm4OIl>$%Fw_>L@C41a>F8-5U?x<-* zoDU}aLBr|Zj1o4(k@b+l|F-!5v!(wFO?6;JCG68Kg`9lsw_IjajE+^Vo%c1V4fO$w zZ+B&*1fi3Ik%w$pbV4BJ#Ckw}%=*Wzp}7P1Qn>cA$df>ibCve3gI@F6N@Wb!(*Z?f zH2%w3AFKuSgd4z{#@C)ZY|PT&)@tQF0`XDHNc2H$kQcrgfgD*q;d{ad_)Zq)Lbgfo z)Rc4WUlUwJWsJzI)ok4trIuif0gWYH}&ckF=C#_TAi$<0o`tx6D_M2>(Vzy(^{|>XHD`OV|Zy!n&IQxr&E!Me+Sw?KocLd^8 z5HgNyK*!P)JIg-{-@us;@B47!{9(Ip-$xZN$K%^n7@FEEMZGg5pjBTNds4`-{;q;W zf(*&7>Bp9kem#7BgV5a1Jy3kZ_w!BMMv9%?k!_H*Q-eps9MvaPr{018W5F^YGf_BG zW&{O?DjhIw_*vbBap+g13(`Cd<#|d=J zs)=T!%s%1eOLZg?pVn^REoZZ51EMKv%mrn41Crn2sk77GE$P_r>Nlvmn^ zow}gPBp8h!iJz{LP=a$2ti^O>-@>La+GP~X{x!giayq^*L>kXXr_O=|^$JmeXbh8O zzKw8*NpV-yyBaZVuN70Hw&jIU{`&dFIe5*4i-6cl2JYeK^EXh(F4_U$v&X$muK0PE z=vWA!7ik#D>X65LHmBuv_;dPA@cNPflbJ+1&RJ$KE$?f4n6aAnr)g^@H1KlxwK|fw z=dd+Jhv1iGc1|LHZpB|Ll~POx=hSK1&D zayuJzl=t@DyML=o7XV;|8z))!Z*RS|XUjrjJ*Pd0&Z9s51&>2K@&A^aH% zv7)9ZRZ2Xk;t#U3gqL#nO;D2s3!w zb_cR~9513y@|klK+cl39*@t`v6qh1{+w0b4;o9Z{zp2@cGS=6>AC3bq=^0 zMU4QP48p2LGW&Dy-p1v+s$l)|td)CYB+|j&JV%ngaMIc1wyjPim%EV_$=-O%6EU>y zR#O)c2d1O7lVhWh-RZ%_lAt*sN!%O({Z9m=`Ggz_2`fget?SiSv{yH(avSQq*2?xECS)V3)x@c$39 z`77nd6jT5Qo-yXKO_z+{cp~~3UDm?GBzM(5rHb}w0s|im634rwI3qpg8^d!V_nfBP zQw}M9hudkjY%UtijqpcW`x#t4YFDGS9UD02vpRZZQt?Kn5Va}L1G_BK$E;q+`OGkX zRDHtk%sb&F*uv)->58L2L)+w}JC$8DE1IuS9Mveg-v=V8Bq!UQ%5*cO{}C?ib^*Hv zNE}sySX#pAHv3>t@*R%bbszuf)RP7ypB<-oZkO1xzKpx$&mOKR)74YvD`+Uiyp9hj zb=>vX-4lA=S5hROw{=PUex}Xd36X4IZf4G*^IZ(Sw5}IC(V#FZv<6vH3IU~tH#()f zVemXI9jfKIv`-2ois3Cp3G&LY4MIGaGrN-tPcBsJ;M@`=g$lE4xmKWEL^4}_Cg1o= zR&F{yYNTg+W!Y1(QOGpFXXLpD*u@7mD2BB4yj+ zq`(YExa5X@(vN(Q0*E=2Jw2%%vC4rd{ZdCr2Xh9m7A#k_opO{wrZ4JlyCi2PAvO_| zggs3m*8U-Ssyd$R`i|tI&W`zHz8V*vWuw?O`9_I>n%c~mWjK5~+amu_P|nStQwJ9N zhG84z=8sWX2zzxErRODhv&4Sv>n47bKfI%(RAmuRb0SY0JCy_9e7e51=BcNYZ5K_M zoyqUAi0KEam#6cPSJUQ{5-LRQ81YI)ZuTw+D=UzZ>rV%nz0+@qbUD$S{W&*O;KT@w}C?VEQ#5;`9I2;6J94{WWYHF(@g z)^cx}!Z?aTwmKX}RhXAqiZ9ez=)TRB)_g==yuG2};0iy76&0wO8>k!LW*xE?+xDx- zzr#te=-#9@)Z3RPGez^F3>|!b)}6A1sL*zuQ&*FuJ2)wBv@~ZRT#KFcPf30A8EULw za2QmMD|bZ`04)9P5S#VadtYZ8z#d8$ea6gxHc6oAA|G-1N%np4y476^X>w-o0|rzx zVD5O}YdEA_u8ocTqtsTA1M8S;t+6|~>mrkpb%3qV6ZmzOlL-_V7cA=8;+66{H@oN7 zb!0jW-abM=Huks3{ph5Re@sQZ!{6=@+BmR^{+U?v<<+n8RzqDh#|C5!_=gHB5q}jJ zUaSJscw;R)#)<#0w)nr1%M{I~Z;W5;-nwl)fa@oaqwDfh3+wSwre1IV^+AJ*NN4>S z0~X-yMMvog+?x7QF$LN_AnH;@FHla7*;ssO+;EqSIrSCpj!Mf#a?0rnZeys)JrmLg z&5g$L1k>T?eNKc9%z{lsb!%tO9i9)@$#kv{OQEO`fmWkmo!j|z=UPz{&g{59TN`MrLs?t0q@7hOa0)$@yryirE6 z@Rp`bh087K>s)20b`n+6Z~}ETgU^k|%LB5Pokr#i`KQ6*T0VT0Rvh={J?dJGTDqU+Kb_ zqoc9onQCTnX~y0!(f9a}Px3 zaAtA*UUwLjQSKc}PR@&RW&Qe?ynPrq;+yewuc0uTz}Yq}^gOU3zkPg$v0>{TRlQfHBV-BupKI7WKFV@+{1aD?9cMh@!N}Ibi^>)hHmMe=GCB4p` zh65SJ2&5K!e;a0{1URI&#F3_EkQmbo*0CU^4yQY~x<5mC#Y-u6PhDxdZEs0)xjtWO zaN<8P)dQ0NS3v78(3x@ ztsEyyz1f+mJxjd-9Uz?on%J%#d2Xz>>|Cd~+Ds|7=(u+$hU&riZI>p`G<4K?Z4@BY zJ?D`dZ^4oa0>b_mV2Shq!1Gr-`43<LA~4qN%1c^!N5UDyHw4P zU`CW<1=>mf^wM6h8%^`FBWJL`;Tcqm3g-3ukYh3=m*Ggm;dnyI;akP`e$%FbP!AT=uSYHV*Sv z@qV8)jHIJ92`?#=xAc!`ijB)ZlM-`1eQy44rDoh*ISMkA9jjh?BhGQ&Bd4p0Ph9YD zI)&1*Sfe(^5uLnUA(|0L_n59e;}!NtKlqj^_~}YFF4C4|tL<>+ zVKXx`VLgMr!QcxM0piBjbXPTOLDC4n)RTZXcdKeh>W2SSck|yh%a74LN2Mi0+*mPj zlQ+W3{oqt(n}0}19&sv_fx|M}w)Z&5Sry%+h2#xk{<4L(np%0NBD#Ykw?sPo2$+n$ zryI{XE;oBifOGPR6l5iL^G0iAm|o^Z6%SAAxC#yaxH(gujegZ4x2$1A>_^2+=Y4hO z5sDva?cQn50F#gIqu_?LUehTZOX%a9D?Zpri2D%wwXDs(@D=$-)(g*PS>3OElU3$- zM;l1O%kqWwc04no5O^Mfny{yjpfn-1A>rpav*Q@al9_rS?)y+ZNU4CK&=Oy*^euye z!3RZI+E^xTQ`CeZ!6*SBX;S1rDjog*H5G)VqmeF7eyP!vxwOgQ2sfe}r{rn(piy*A5--S}5yL6~TUVHYqo4$D8E&lBbXE&LOXcawDE? zTv{{1sK>a@;t-W-Xc!@|-%wxm^?rF@i_gZGX&i%*gQhe3YK6RkhA{abIdufQv86h=`0TI!hQ#f$U` za+cMx?wkze+=y9iSHhRLw=1H@AK+!GH*Agc?w9NKpHDx{9hJn>+mqbLfo>t!zxx7HC8u<~|C*8VAZ{<#$uqnry9|Hh=|NgIf z{)fKB!vRxe0|S|5RVGa0B_tMA>09aK^RB{| zi|l(?i=(+98=`l>_F8XG-b5>E*2d`JfjO_|CE^)ehO)P#@W8o!%%ak+^lhqG29Htn zjiKU1S}u=4!4zOKsvV9=0o6@4^FhD&Sr+&rhD-cL!jG|Wcuq=g22oMv^b|$lc#t|6 z!4?tn?H5xN56VKI1}+F=4~=B5$75d0@YGnlxEH@rJZXs%HB9#Mb;#Hxcffau;8xPN zFj!_IVnZY=Qw{j&8s@V8#>+}@nsHhuN{DNzTvzG2SJ-={hK6qm|JBQ~=PJ1Bk|hro zK*UD3!-e;{4%vyZgzxmem$}ZyM~JT}uKxX@Si0G^Z#5tdK2+IU=#|cDcZV5yYq^0( zq&gwbU9RFq;zMJ#-3v!L&)d(w_nKm#iXvU?TN7~(GnV&pV*pyT<|;bn<@oFTF%Ppp zzkhc38rD2y1l)VWPnP3^v3uDMr>DR;NKejoyj8@(dYgz`rhijm>imDQ0Plax+EG`H zWH;lED;}^BdLkn1E>k;buN+!95>dAD`E2)lm;EY8k5ZetyOvc)38lffGR0E7dlsuF zCoXmCr}n3tVDb5L89=I!0XudDT;;^&lJ_5L zW0wYrqkX8jY4r@bz0Dn3!w~L{ZPgl{RZDQFJFQw_^blRuxuF7@Q1w!~N-{jxZ1+Tu z2m%R}Nj&jq(QlR}onn7(TW->d3LQ?Q(qF_M_)cy34WsMe+ISe0^T^eJ=vfnXKBkLS z2IPqvs#mg@U5A9W%i|C#LUD%@|1t)k^9GJOf`Ep|m)oYFXl z5{n47X_5=SCq~Adda`x<=!F>Mnx@`^7Qe`vyqU(l*K9ZI)%;|{NIfQeda+!n7CwY^ zo#rjAfBsR}*aV?Yw{~PwX$}7g2tiAZ|1&!90yTxG%bqhZryY`yql?>!tZ2eeizS~a zjT~v#zAhqg7RHZcjg1QX*?u89_4^;C;slRbg5rgag@4Vkg_g}ttaw-2e>O`zO|fys zfo;Z86K;);eVlN(_(h}kr%w<&o^!hpqaV=1QkUZ5+LCMM!1sh1 zlD+|p6J9F(uJ35LP_ddRUCwy+>)0V0?bL3F;;v46qtmLueNBimS4=sYK1o3DUFBTY zXFx%zUs+1bNlxgS0o&W!=xrR1XU|hlQv8%U^YvQ?EWPQlr7aDVIVy`Hb(Jt6RPWF< z@|SQUx!-_J6lB!xEvg}et67?mS>?uW_30<#@-wJAW}CMIuGF{h`aWlFjdlNU0&MO~ z>_~u$EL8aeyn7&4O?`b(w&4`)o@a3}kOgb&9IJMfl-O_wGmtsCUbICqcoP*ncuqAS zQImee0(?a%wEmd)h0RwLC@Ofvm zZ1TxwJsBu3Z^?mUPsQ%6sE$E@*W z)=1RWxG<+K=?Sxd1KpNn8m}NycdVFOu_JtGeBZaj9wfg zofh?MgS5v4L3`J$;@4sPLP1Iiyis_Ys1YBWDM8j-Dsq$hmZQpVG~32~dp9EVjA^)5 z%=?Dh<)*$0Md2kHjg5uWWV#J^u!=~B0c#K_WN{UW!Xml$*eRquqsj(cew+zX308ZZ z+jN>JA%aqZ#vr=D22md^c?+{@6KXJKiR3nwTk_x(2?7u7)!j@r2QD#|Kq^pNc%Mbz zL(8$RYt{3o5}cBY6$ch$XNf8r#})DQ>vWiLs2Ht(H}!@_aR| zoafHk{`QA&)p0HKM3w9v4T+j~pZ3!VBRKynTji!eT<8_e;~2GN_5KbYRu^0MK$aa> z2c;G`!jy|)_<~$Oy+LTkjsLDus$T=oi*?f!aBhGGskaE2c`3-!_xUO&GNXR&@C|Ft zfu(@Xj(4#dmlN9a#*P(Ag@{2ROy+boW@UMvYm+HLgj9mN_R@BlI-0<#ILD|8N?kb| zZ%Zzl-jNlkWtaAFI>J8_J57?CTb1IF<&WS%3?lT9VOMtD`th5HkMQN*`_!}B+tL{2RpDZELl0;>ChzSy;cswAHfH z`>KTmkX26n9dk`5AvG|}_3h$9zcBo=Jf(yBqlhgLb54--^qd>vJJ;Y0RsUQ?FJqUVT&t}??dTy4&$s;WNG+Qtt<3_@VsF4EnU z7+yomD@y2gMQ~kbfq+EV@M$;N19bRrivNH>QF7h} zSCq$>{~HO@A~AI|dL|zSU_#bDn6q9s&)RoJoRd#4ms+@ZY||m8S1y?OqN+$EE!?hP zM}fDSX_~+{{RWF$Zt^d993WD{{#~bwHfXec@_$0V zB8N`-x($r$_s%p0CVa_V*mrJ^xgE80(cYDh(cAM>T#&YB-6>k(fjHhJJf^I*TWxVK zZV_$_SD>q>`M?U}Upc?lAHXb+zG0zLO8=N!^G->Y-#G9H{)Y5RC&;!l{tb@(KQKK8 zz;tbJu!pTEDiWbfR2Er-_^S4MgPJ59492@W{gd}J?4S4bELS#sn-w)O6$+xj^0;-^ z1jI?JnTiI?Ryc%`v=6WD#1w{J`KWRw8dzdNu9S~K8T<;Rk)VUJi}Cr;I%HRL2K!#Y zSO!JCLD}WEUJm9Hqp|Y(DCgr6YUvviL&@GvA~V*MpRorE|kRVJ4Ei z3oUQ3cGTiuJ1Qc!aeL+sDy{_A3Gd>HG3hkujgW$N zRr*E3zec|xQ%r%fB6f>lC%T@3EkeDkF37~-$wI&%IfZJAANCM(lhXeL2bv?o@LcjE5p$<>m>@{hy<%@IX5=x9jxk&;|BqYyus z>UjN`hkZkRX0OWJP zYnVe3?<<|R53vDh8scquSF>+a6hWU}h`20#GBs^kNM}YqJy+N3E;#Ja?VVH%NRLMH zW@kx@K$jGfw1Nu|t}SwgqYj-S#-i8|MLvxNSd;6r2M|TO=cQ!eAcL`Zg6)6OmbVDD z;KaHQQR$d(UjH&U$(7{%I>0m(3}Z75svBeC{wM3@N~w6b zOGmxx128Wd$3VHtQKbJ6KQf8D@BP*DMpL`AOWaKNYnoT$TWC~DxZ;%Bn)b7^YzK|m zceR3al+c05)TlMZZu{#(tW@94{-qGF!8kF%!S;MRdJbx?@?y6J=@4vsMBKA85$Bg? zPdsiwC|`pJ!o?S1D;KK0?{UFXIX0IH$AaWO*CqJ(T%0&S`BgBL7YCt=0}!Fh!gfgt zFs`2PR{^Oxo@KHVDbW7?Z=NX*uhUmBW>xiA5lnJr>dqW{CzTSrB; zwtc`fA_4-!5CVr*QY8fjRECmPDd|SKyBiUaRuGU-i9u#Sx&~<#5EK{~U`D#T^SkFf z&-;Gwx7K(5@VHnmX3yUDzUmj(8HGRXme(4O!+l>)C$2uyiZ((w0>&enr^VKCKqdtA z+<3I^k9x4j2aSlan%7pP)oN&x{YoaQ2C9gB!X{#lhuCE5lkQ=m(Y3r{9qw94?{ zW|Cv>gra&734BctIaYRWcg$MVy4+^;%qRfWUZ%gz1DazsTm`ZZqc{Qpn&Px3ZGtR| zbzC<=6QK(6)51jslAnaF^P(C6Cy#zEuIdmNE~Xl*2_=3{6HLKsweN&GUTTm)84D&1 zw-pxHPRT!`6;H43ZE#=;z<28Q_-f(5q{hTpE5{)nJZZcLB+vmsjWO>@4IZsQkvjyp z2SIV#XE5GB}zB|i=hYK2~fBNL)#a(@=te@-b7ntT2w3s!n$9V4p(*O#S@@qPcV z10XqTg{w_%k}6ZrLLY4mws9hW77c^aGgR6%4kwOSHk?^4U251Q&L=fX&P@a=p|O9s zhN~p%8y<~o8VK_i;Avx($hJkV9Ftb^qoBR)%dt;yS7w6JPvs4l0Ha_p_uZz<|1t_R z_W*GCUwRxci@|%wglHr6>nhi<7)~HeTW|+nF|zL5#0sY@WR=Mrg!~^vIkbjNinV}j zFPslWOUs;xMClHlSHEP`Sk@K}irkG~nNLWq44Y89F`V%IS*W_#gajQB(-f!JKRFCb z(qzx{Yj==zcU(ZSPS8HnT%$V=CakAJ)8w?xhFXx0<`s}Th50Is79FyoPM>V1h)RS<_$MA;rbW!t9qxGkWE9|HuF)Lghw*Ey$tR? zcd2DlZh+X%8Des%OlIz|#(i5J!y+xZZ?eQNux+0co@*>b{7G3Vd>%}u0=U$Pq>kB?)FaqRdo5(}ESNuOqNep{R$3K2Gr)uR~v>o*QX&FH{}T zNp7#nIkT-1yeE1e%Nup7Hv0Qs^7czrO{&jI9h|7HQfzX!z;LFeVsf3|^(-(lf^wX{ zADvlMe#4`nm}gVroUhD#+-T5CU;0O>H{_X8S+R?{4Pt0W*eS?4b^qhgx*5(#y!8sR zXUz(bk8wvhA!?}>E&5CmHXFn!{)m={`#h^Jc(dj7U`%F_hceFkJ*8-dV)CM%9zu@f z(6Af+{1yE2AdPf&7}m58@N|64-llV&>$vIcuUFz5A9^r!wz$Us&cx*<-q6DN9xxK& zswqC!gpsKyvuxOJE!B7!Iz@V0`B9B#|I?yTQl&(t@TvaFTqv$`ol*rRqxUZA%}3NA zvfu`Wz?|oPLh|W?5ZM<3GtJp@UqI}0ye%1M$+NWqi1rsti(N75KCMSY*elLVMq+{C z%tPmQ2e?zUhQ5>1Gv@)^{U5qpdRyP!W6tWT0bke^$AjyOoHroKx5sVoKXr*O7pd(# zyAZ_Di)%T$#m`$zX9haUIl6#S@eZ9d!4bEb*xpes3t;n7?1!$})metoK=jz+Au?9E3#6};P6e8{nQc; zGF`bKZ&q0wltm7{g))XRmM@%>Y%vS5Juek*hZe_o>4MYg8mlxVzj%hn&G^R(Kp7WvvJu|1S)!(i@+r9rI z_K{jiuyz5@Gg<)g{hz$ng&neW&*R^T(K|Ir7 z6EBv>31na99Q&@c0xyf-x7$}yB?S=XT3dA3uqaS$&2^IlQquzJFv1ISw3!%xwB-tC z*-%~ku*QNTa<;?iqQ0OZBW6Q8Si;r?1&z%-)hY96s-`yT^0gN7)r!%m5RRLXY;Q$) zms^?!fC@p%ad0Tq2~@hpu_mwXT)R&w()Ino+_g4WkN>+X~d6p8h1Ov zx{-YAZFCaTtE{nrn&<}<)7dP9YY7r0gJz|xN$l9P9U#sV1H!~%Hg^8;%^oaavW2kV z@F%O&sI`dT%E||Vg*?yxM>g>vEr;2Mvy%W&|6Blp2EgW#&N0EdN^V7qX6qp1TqMtJ ze&DEo-`?|+8`vV8GS%n3-i3Tp#ejb-mSfRk#dya*4%osn!3zxaQ#D#o54PHaA&mkFN^bK>c#1D zkMiTou!9X*lhm?_)1yNTtvelWm}B2RB=I1jhzzHLb&*(o3+_6~X7JKF%ocgc1-bV2 zAt52f<2N7ZGX8nT%=EVR=bihxUMJ_)dQj8PiasT#O=W(U@`Jy%xcG3ip7IpB9G7OJLnqL$ z0RBiy{G*85Gmr6Ls0F{{)@l%fgG6w=0LgOoWzAG1Q6S zT|=|SsDl`ozzncZA!R1L`6?GN7W(%Zkv;Kgk)RsB9OXLyJO3<Z+kdDo#$GZm_@unt|Z zYJQut@4rZVNd`!({AO+B=#L+mly*LlR1#Y^f?Xv0)uNYFM|_gr|Lj@TfL`YLy$Eq+ zzfWq*)v^1plmdV36cR5HPqe{S8dM*|=5?l@MW2n2zx8i+@or;pD!Er`H~tWA4cyJf zBhjM`N(LeZ#6d*)C^}Qjot>kjhtBDf$-2`@Fh}n+TyD1inJn%Ubw0G)XOnX~^hK-> zaDbAtvoQ(t;@4Fb9lrA6EJi+|Kvl|w2TjK2tQh$F&Nv^fInc<{mF33S-`|4bH2-Ly zG?3L_U(F4CHnZ=#!`R|@S3h;82sMqqyHDm!G-D`dDBt_5!IFW^R|Fp-*wGB? z4y_p{*wTgoGQ%ewfcSXG0P@cs8Cx`f;Ml9E3CA{{UQQG&5uAhvGQa%eH8cdv)jKgL z(uFfjTxzT>+{vs;ST!E2?fQ+Xd8RG~O*)r{mbX{YEHZzHSH04BKjOkKYZXv$FVSWD zT&1-xEvn{}_Y)8V=*p#kh_Y;%kg6pn!IiIl5md{XN%9K0!Jn$q?+Y~%u3)UFBr6A< zScMeg_s!U{{42~IfyJ43MGkCTXi*njoWpC!ofA)-zO(A|4cr5kL-eG0KBAc1A+_c# zCOG0jv1*x{@YL1gpa$LLkN%!D5~#AJZE1M0V$sbmt&I*kT8hNL8G!e&*OmsD5l)l8 zPul;k8p!TW#huo867m@0Nj0*bNd1APB&$HRg|q6=6}!ZBJq0D6oyD1#?n*aeW$#%jyC9NPHK&1h z2X3?y8Bzuhxy3^(Y9ZdL8}5jtH$l=(AIxI8_D%MjIW{d=xeA!oB^qR}nQ%baQOd#V z@foYxY7z}i1aEWD-7}NGuWH%jUrQ%?_#4s5Zm56z4vkkhJu>mE26A(gRQ}2tgj-!Q zW>TJuE9U6NzJ%w_J&Ggv=P>oN2Kv*8w)&+9Fdl<)WC*l1ghIB2gWwY}Ie}OSUt}`z z=m?y?>T$PmZ%4QrXV7VMFqgE(!NEH`YpSX?sWs@t4?FST;D90^RTYATayr!lLJwUw zW#MUzW+qjLjnezMBsU1Lu@&UZo~X$>ZS!>(U31NkHjtb^ekFACr3Lkn*9JJ}tLo{20JyM)Op^1@1z>)BBzf z9_Pv1*p@N6j=a7~a9u$GI3RG%;MGFj&!Z0Aar5Z4MGN}b$*XX}3(>$wr+l|C+S0AGh;b&v-23;_v`VR6*_Ub(q?nh_$)+xdHpWd zQi${F{l2O~5Cc#rg~Zoyb3$rLrTh>{RnMP$6AV`i7*;V_T+>he8-g+~71iA4fU9hV zpdHerx6d6eEMLa&eZGq-6|dxc)*fpU2Jh_~?@PAv z;o{WUsNX4!NK){YGWJti1^xVo_sm@e}7a-mL&@W>hFiAn;T)2fkBQR_GJ*$ zN>c-}tsq2DbF`KsWNtXjdeh6yyNwV8Paej_tD)5I<3R+p|U?69K7#x1`KB*mVtuDUn8Z8@0pJS~yB z3A|Heq$!M<%(d7DBNs99^$Wo!_+7Ny>J-zd<0N1m0-w9+vN`(D(qP-{n)7oQ;t3Ow zSn|vwH>>aR-(M6A?hn?dp2{L(M#)c<{$X>&gK z)?N(UsW(nP8&$Vl@ytVTVM}Ty;B0$FN?n8ucm_>^ckmD2of@~KKTC%85(n@6S=8T% zc8d_f-4MpONwEzeTm?Sc!ovf885VYJy;rpnNIoo;I=Y zLF+VxX!~~~xvOVaq{W{vS`W!c1-{mUo#8<+a!}S4NWWTnc-&vi?`Qp+$*9OL&~=Dm zldg=vi2;7GRh=y)%f=dM&>py>uM=69pC)9^8+3ZBJtq`A?yxkSlZ_VxN)(ZAek_8Y zxl)WzESP~}-bd^}-aMw?a+?tDZR8>=L_E+9LKtNp{Ehklr{l7F?A2$%@;PeC6S|~hHAj`iN|P|ZOMX_^YFEwrQQ%> zeEOTjIiKGBHr^=(u`ie8{JQC5)kUX0;h2a`q9)6P?bUEWWb~#u&eZTlwRHprf!#Zo z>k;G{_QLyrENi`gz|tMa`*roCbJljC@OHip)f5KF$G$CSJ0LngQsYtem+B= zR!NtR4P;rnjlH00oSTf?dYOPmedeq#tlfnp!R zigX2TUPL&?z3e}a1rny93Far0uN9YC>onxvzqsrBWXz3RnQJ&_rXaQmkudVb$*ZM^ zKKZltzJp@A++SHz^~k|w_CccBZ!6caG-nj$?Y^N_Z2OTb=3e-Uqh8e}A=*yj&h1&r z%%&^Fao2wNi>H=*{WRP8Mpmik5d3;_Y2UyS(y92B&@gJ<9AhcrWBz#dd|qB?`;-(X zhQ7+R?9i<%YlKLr-egcmC1>t(CmXa zc`z&3xgq(=*&OcIofAQf*sNwlaylrY53yW0CJTu3l_eXY1O`t!0eOFpZ>efg=r_$R z;Vz|lS1JfM2o5Z5LL{iV)FGacV@kO#`10&ma>r+-=kHc5STWN0%bruZ=tA+KVb%R` zRBPgF)jtKvW>X@KSc)Hz;G(XbLBeTzD0`A7>Ll5OiykOdWi1q*F~EC+CkO{Jf%N-o z<{FxJyKWuvS99C_m0t0s^kX;O1Tu=gAmrd~8rn~uNltTr;*i5)W*$(8$z{bS9#D)2 zt|YtI5gS-6c3*aiY?w!|(RAl$`RD2^+7PIR_Fy@-PtW<1(k6&ef=Koz2Hf`2g`OD~ zLrP%@Off-&Ag}vEaih4UAgl=ST#*5e3iNyu0gA0nK^1e||xrUSA^vPVxwSuP9!9$6JtnO7Zy7M~@WT)G$a2AY*+FDR1x% z{rr4t6bwJ|m3yQn>dHp%?zDtPEfn$c5w^jNE^gD@WwgC9GTU^>$3EDhyqibe%y@Le zopnUA;Yz(gU~npsr*-o4`m4`*mzj4~KNrf`gLejQ!jCcP^kJtNQA{6i0t$7AEU`Vo zWfJcOpnIx?Q6IB?kYOo^r0NS2-7>+s!zDM{(LyLEx*tFVV*w3+u3BiQ%{+9x)3afgQY zyuy?ZUb>2lK2&AznqCybT`60PPI66*IJ8`3)K;ooUsSN6-3IzKx`yZ#h$lb&>?<|6 zUqCMQ^7gI6`xk$XWhUL7Y4tzDo9$;m(<*2t|xcO(OzK6icbgE#7n0Q zjAcK0Bc`J}16Ntkpcj}GIN{?Lx7sm5dD=B&-EQF(tU_We{;VT^Unp!bntFV)gnCF3 z(O7N@2|@>6EZLYf&`m7%0IVHuxRsIB}%j%v+RwU}!LOwxFF^ve{q zw5<)Mp1*q}F|Jz>np)!mUap2})sJ8Rb&x4#eQ8efD|9?Y8@4+6{;7tohxo{5$uY_o z-AQXtc-hYP+wf(`Lfh++$q;I8d!uRm=trm+sAGxXAs11m%{hv*mie6gv=2ZbuD~CJ zi8h(&Q;Mt`QhlWZfEKTA-DeuUFS~Cy6{17Gex9 z4_KFUwz8*PrU5s(*I#+`uj!SWahiqtPU4wN?{W-7@83b%HPF+Cg;|T}ssm^0b>S?a z&e>eD$nAR;)b5<6qQi^i0M~tJH7_`<6;qnF8$!C#UXt*^%6>b@NN-m+o`o^4zC{z8$gd$zO~vNzv{Z z#lPv3FK2FP(JuddICL(-2CrtRClzepxd|W8k5845SBT!fXPC(L;gY@lhb#-4DNi(A(^Nl;b%4E3pLnNHR3dzR(#uUg0>p32No(7vx?9?=H&m_4PkrG$D6z? z@KtL2==#WP(VJun)?>&BZL>9U=T){JFbRSAev}#4k*(`-Ff*|CoZ1cUZsX z{V1=VeA*buNZI4=?3}L2KOe)H>QoPWy5D2S15q?p{AA|c-;%htUX35=mXNuDcco}E z@8W#ph2(b_7HTI9LX(MlZSDOr(CTx2EMNz=SgqgBZXx*Hg(OWHbZN3JagRWPSJ^z* ztgVsppii+9O5TuKb#GZ73h5OaA3KnSk~cY!jyhS(WTKLS+$UcqIjd%;8+&(Qbnp#r z_kDD?GCAhTy94c%z}1`1)(KHA>3T~P6L3ax|MlBAUz`X04CTD$j~H6C2@Nd(^BM(r zy+Y1XqBDuc7V6cACW_2CL$#U*ZSm>Y5JQR#?rilrK+qm<7r%W_?e)}Qv^TB?9qpG8s%=K9v)Br)pFXszYB46E-(s4=e>PxY5f5TOKMcV0_H#@#pp3z9ESygCT@GIx{&;{jK*4S|z z(AnP2QY~#DW_&K`4_H1;@TqwW8&5zylZ+ty zZ}G?b(ZvSs@+jBZj1OZ{phxT@EbDUW`mXhw-_kltYe@Ko#FnOW>q}5`H7q?8;o=Gr z+63k~d$nE>Vo3JVIxDDf7I7HC25JSl9?5$rKSuLTt^D)D^46$*=bp~lr$wh!&*HMi zw3P3~hb(rh;gIO1ScU*nLxgghXn)}4tp-fPSGCo^sb}Pv-U&)k@5kYZf4p=jc>iF% ze>vpnYpKeGLPxL#mN+$l*l>-O``z0jE$jJd(Gxc|&+!Q`V+1NmHVF_Acb?3>cL}*@ zg$OF$2KLpd&w}k-^R+}rgj+^ys0->fg4)`zD0>8K3xe!iki(5#d=rA1L>5H0EZ#Rf z-+mgNMQr>OT5`!CxwpXw7jc`k_M!WmcMaH=m~+x(Oii^*%H%RtVWaVrO5-4DboWE* zT3!7{rW}!rGiQ944{W)En2o&r$Z^5Wut|S7;I~+0)~PDNcvJ&;{F6yTUz+A>R1^49 z?x#^Fs0O?u*V2|#xKht7sCNAjH^sc_b3KcbiL93RHL(aVJ_+-nnm&rQ=XW0No#@f{Q6IRmpj?GT~#-j3o^e-+v@UyZb-f;>2yNUhT|XVLxM^& z`8WQ;d$V@5DdG?dY>eA2nd^5q?dNF5exp&Mqh<}QHU0V%=4{ng=LEiM2#O3<*MOFq0zH4F2&wzZ$_Q~MK)VS)2i&<~=u zOQ$&Mu_l4%n;!?b1(G|Mj@fD>M)@UIo$|B~!3W6DYJBE-=7r@70(e$VDCQ5inE&QJ zt*vSGgM)_e;3rFd&?#(b>);{bDe>5ou(diCS(*uoqtKcC-4+!gt|#oEUB{J?ZLZQK zSALktseAVjM-LFvts98T-c9M3DzHg3SEKo#zk!raqcpnfJWA^t0+L@A0?g=5Gatqv zf^MmYIv%FEE>&l_TK}hYPyE7}Y{H^UFaBx#jsKZxcGf@dqcyuv?J7@hJY-QzB{DYf|3}KzQwnHJGI|61qH=e{H)BDA4hp~1)z5_2hKC~niw52bz zYiX9$sYsU5r~#Y0h2|&~ZSNwN2w;y(aw%&nqJ#hHQ}lW}(IwA%tvv)8fXPAu$BU9c zZ)>l|^zH|c1BYHqFQ4n4?larmY;Y;r?W1En0ncxP&@8_H=(JpNjG6LgwxPnaBrOth zuWeHd>D)1k=368ucNM5* z!Nf^&;8Sfs(n>8KXv$qM0v`$ymO2a;QAO3K_PK6QRGgM}nfyy=Nu{=2s2=%h3(xkE zj1(YZDVB%(fsY{zW_TMu()*sYnE*|7Dsum7J#AC37sXc4Ao66?nJdE%>d*RasmJ3?i3w}4N3(^J`!?j5TY{hiX%X5!5=0-ad4=bO(?^UE_Yh*NdVZ1MtknikF6TeL&;?Q4gX{2Vo3~ja4N9?XE=nT{6qPc`C{MVhlt>|}j_IR1cXwG3e*}w0MoW;n|rmNQJ zgPP?DIp)pujj>y;H~ncO6E*~qHXAZ))kwaR)0ClI0|FZ5)fYA~@$oh@Wrm@o(iBZQ zEw_C$c2tJeJ#eiK??S?JokmTQG90fos5}@Z01Yk){C(HO?H|*`XM{&$?yTp(m7j=! z+Thy(38RI)6=fUG|n;)m(`q(>na#qx)M-A`CDMMT~zH@%5 z@_)HtD>O0G7oAI&sfizPEfKv`g+hF`tIZ~bsx2ofv8Dx=GUaknY+{=<&5W|t7X}KONF! zJ}WFZG>JaXpGq2`agM|qJE@$N;=;7(2-=to zpSMoE6pacgEiQQb1gp2+z0fYuum5fxG2vgl)9;!Em^AqeAgJzAu0ciGUnhJf*d)Jr z>2nnwo;zqt)=YZJo_C|gj8J|JwB{+pItj6ghIvp?Z4fY*VU-;y+oYVrFl6*jq5oxDlpd|e0PVk{6=egZ%DOX%hXY)^zj+q zvvM)nMwY_+?z7sT_{oA?dh}y}60KU@E3F!C&A=n!G^s5iu6Qz?2px_S6Ss1D#_VgB zHOiPwV4$2#P7xF-Pn)6-K8|pE%iPW;wtFwpsG{INUkkh-BE@=@<`yq$| z=&s}FWo=f;ZUKp#+wt9l%l#Va(Q)DD_7ax-v;+L72?Ol-3!+YksTP66WBza3HPfLK zDK&SG>ED?_&YQLz4!)q%N&MhrfYTV`3;;8~FzdM>GmZ1&>K{nYfBMEkpTH1YT)eu&V{wtUx~^PEF1l1b1vdgq4eRJV;|s}^1OSzX9%KI`8a8%xvw>%;TFrgtIjb= zb`=ugNhUxO*9W7RKFfXUe>VRL^O!nK0lEByYoimwEwk>!E{a|5dSzCHSO{>r=NEp$ z^K|{*xxSmro9>pj(Nk*JOA5ie23QpB7X&meNpIByD{%0gz($* zr;_|@CYNnPhu|Ga#5$D>7!d-W_a?A$6vp#RhVVN!G@*y`o~z*fuP@p@sVCI$`g>!S zZ7jBTl0S=#U>3&YI8fActosve-KjY>6xfFQoqBfG4rfh8)2*prz3|y!-<`44FF(p< z5)3kJeH^>@>wM^x0$Sv@kJ`ek5vgo7Juy+J8pEF4L4GrXMKU0t=5$gP`tDb5?JXtdYt^h1f@z=?XX4DT=8Kg+cxZ z+)Ch?8rn3z7-eJ&SEcCpKqT>lTMl;=J)lXE|K`MYhjUwQu8)n7I$?vOJ#aUV9g4kj z#%g%gIcWp~z1Y#33~&xtye>juR25LaSXzRIP~YQiF)PA;f>>nlR&F^zJwwJ!_R zMgxDyqY2NHCvqHIgxt9g!p^YwyY|5gfJ#xmSs5qkMR7 z9pI$k!L&4ZuFAo|3;iew5)ZdOc6IgFo+^a;66AfGUYs2|cXYODES31-LKRGTnp6}xglEL+lYIPR)e0C4p8?)MkIZ}UO_EE!W8q#@WKwuMJxFZkxyk03mdI`kw@JyUu8KWaR-{y>(eT2189K(jI8T<5V_9)f~5>{${U` zo4FxuplJW1>BB`qlCz4>ei%FFGbT*|dct79WW`vm`7j(O0vt2W?Kl(PNVK?XzZ9#PBv zOc^BYk&J%&<)a>tgs)E8&Q{2*yH#;h1fz+w)~M3x+^-rk6${6;#re(85FyepI6l*6 zsJ8`EcS4gy=u)`k<}Fy&jYWs6S(0R)Up*rgtk@O6=?JxB9C!?tD5mF5G3@nJtjGGN zIg+$s+ohDn;~5_|DNx4p$t3JJF>e_O^)-=8GLN*PuYY=no+DjF5dVyeAV-wX)BFl} zV%YgH4PnOo6p_c0MOh5u%F4R zvUdsllh<^MX5ZTNNNum4{}J@j@(z>TGJ#X&wGZ%Wl^OZI*po3lZj5q&O8guKJ9+z9 zJpR>J=$4DK|M+8^hcj1pT!fpBLZ`g(4M%mNWOt`^yyzYoFTmKm>HEQ*JYTF zlUoz#O1V@2Hl{T{_3G3wm@n7b>5mF7`2=yTzh+L ziDPHco?$vU+{qX^x551|jP$D(p<~kfA1=UB%{(BXdNgVDC&x?P5i-W#fX-BUb3!R#yBUbL{zy8O27g;-A+OdB@S7Bi6CB#EM zbjI^(3hVc3QgUOS5abva=V@?mR*Y*6F$F^D52^k+4#`iZ2mUB%@a%3TrX$c4Gk>h~$@+v1sP479Yo z{<%y~y$M2a0%bMo$y!Dm7!>)_i&oMtW9OMNznMc48&(|2B#)R>^2U!;CMaXhB+e3d z3a-xwZqr_kctXuNmTmg_Jl`dDf5F8-PHgMmB5g*`C*h0f0sG*D#0M~<>Slb?_xcjH zq6w0G|8o$R7CxT2+^9$nIw^oDuBjN>XC7K}lOA@yW{nFEBZLqt5a{1v_y8iaw<~c) zQ1tumUcpAz@LgnI*+5b2zzD0?tGX2IuQSKsx;o>Q)~JQnq^{jA>akPTuhS4Pb{3Jc z*c97x()dT?tCs3CPl8}Wzi3opPI zCV%`=qM0tm&!7Ht_@OXx_<{ZFMW=+dlUtIqpu|bu^EHLJVWudb&|B){5ZaU~upE{A zPgIdVJz~yqO%$CmJ(4gs9mQ*8&Inat&AH;-l1zZKS-9$)8V)ymy?-TSqP^Ax4R(Zl z?$`%{Ha~aB@1&qrZ=l?jZUzF8RP~2fOG|IfL_v_WK;anGd%N3p1d1JXdxXS!3^}ZBaHvi!z;UqP@BlOVT z>LWSdn9$f@4@s2aA~}c-lYkoCY+W+?%{W@~v0hHSX=4BPlPd^rUz9gV=Cy;r97Fvv z#K1&=Oa=2pKC6yL$ zthpzj`~ko6K05FH3TfqIxr;0PLG#o^9Nl&ZQh(A5x@OKC)~U_$zkxxpL(aoL1gi}p zR9h2E$D)Yw&@`VvnU-mbQ<3{eY&7sfIr`=K`Go96`UnM`iUzhIdHq;hw*3~I;+J;J zAk>G4b>H*5xsgcK%k+dqFu}U~!mna*&6>CIK+PzW^dO}5>7L1AE>N4?f5P@*hV8xo zq=02m$jtV`4aH^kF{Q)GPv_Bp9Lf@o-`J~@t;Pg;&K$EwTw3_}Yj>_}v@)o#nI-W0 zjakuWG-I5KFDf3(y$-5+)g>}~MwKHsdlUY7_qzV40{!(ZC0dWCvrl=iz>1%WDAT~b z0MqUze^!M>&$pmD!_cdllS!CPrBW$;ApiC?+s4IbX0zgpbMj*$OnLQ}>4Yxx%<0^; za8g5!N;j`uvBG)#r&wb#ar4gU)lINj@T97rkI{%cnBHG)FPPoZ92O|ZjlKM5i>V*8 z_;7`v?HyhMEY(G6~ljh=Vg5FV8o<`(bECT0H8f!JN{WC9Xs!`Vc_e;Qt zL-G3#zeU;rVQ}gejlTA)jX}~c-(qKSuTS~5%Qx*JjEXL=10L&R^PePnRFm^kHg1k- z)kVnSzD2}fSFPc&AE)H<E+) z9bsJ5Gf4dUr7Myb_y!A>=2d@{8N}bcYoJ<~7Dj7STTm3Xr`wX39K^4Uus7R!i?}nn z%jomXVhrj0LapAhAy|4hyDn%3h(c$jem+`boWinCX?LyAY=VvMxxE_ge0<}C>RbBY zRx7W@W#ddSxEkSb(Ie{OVu2FsN^kqJD3_&bey&{4yALOR;|KkIy18kD@V!5R$i#^_ z0%PkIAC7OzYauUFY?-|`zzItQ(E0g9{z>_m7k#o6Z;0nRoBQG8Un1!QP#8qi4h=C! zqALv`?kY(P8MS|B+*79$-7sxsT#Y!g1+r zmmvnBR#ht#eMgg`CG6Z1Z&O?_3?7w9I(0*L(X$c{ zeT)|4mhz(Cl2PXK+x!+-pw+W7BHZCGh9A|$UvF~{PdC&strEBlTGBQ0-00=Y7 zqtr^|zsMiu-BK?$281HzUW(~l$2^Ysep4hfw~8N?H9eDCN3ZqAH!3~==eVH-+V_^6 zm0!jB`n5-=+X+2VK9JX6UkJOq4LwW;^2kUCe6fpcEnNNurgN6pP&MJnF=SYHN>B%puVtqCn=%oX3Ns1>`e0y}t)E&e*HZI}r_D*47Q1C1t6)2(I zt>r&zrM6Y!m}#trPJmM_*=RM=ulOmyD}hC+wuAs6(+}V9)US;`Dx)w%bZ+>UQQ$b& zg5=}}-^a1h$C}jQm6GmwXg={J^@9_wqQ)j;*rA7T&Cn~2weC+AHRBtOTXokvp&3r= z4|X{h`l7dNzG;Qm$$CC4&a`_zh((Vk#*5!rabq;3yI1}O*jz5P+p8Sb5f8SfHmPl2 zi5NHRds%O)XQl;=bW~&rAt~a zD1IbK^%itdppzm?q<#>n-&-@1?~O~`Ixx;JD z8RmO&HTXjxHnz0&kT9EH(#@CcS%PznCN-rbt;d=fZVYwP*?TxKB8zY~oSXg!8^PJ_ z!&{)GJ^|aCxQ4$x1Z+gnKSn4K^sC<8@HXq}Tjt+-S$v<$^(;ND`s6AXq55P8cISog zh>VYj-5MiB(n`mI=p0Y3YTYoOtgGLjSw~1j`X9>D%*>a`F0N#mM4Ro(Ar;*Vx9V^B zQ;f{Ag`rN5PklWyYDA)^sE+oL=UN2&u;zTr};e_uDS?cDoE7xEAR0QHgL&eB9TrWQ6S@&= zky3Z2wtu#OG|d8KQHzoQNK(3FT`E{FtWvt)(?j#bdiRTs=`iJWU%ZP4>ygQ>ixuhj}05v2o?@rSY zx1vU6CQDbJk)rsM+(CZLixo(EuS=|yilKV@mdOw&{Yla9&oaHUgLPmp5tHqbd7xgd zdYtKC7^~Te`TjJa=fo8FZ}p{svzTfZzjD|aSf(t>m*uf|H@Q!<_t5 zOL8fs+RGEFij8S*usz_=(UwUGq^Ua!l1+<~WT~KkX|r5B8&OGUKOEfIDFlbO72(H5 zop&=FuBV9i(ZAaU=1dzIvhf*wCD3h;A=XduRH!a%#%BjR)3ly~Ay~?A1r(I=sevy) z;u*+h)fDXcpJY4)hGswK2x0oRA5^OGRmMdm6H5_@TFtp#h@hmxS&=L)<%MII7vr*PmMQpbXAdsfN9ZLr$2& z+yh!dsUE%)c)}d_oY`9pm}+*0V(Ur*LV~@^?|2r|gEeRcfnZ`OV!@Ad$2qP=?#r#c zy)#Z0Mq)+_)nW$&j`(b++fKB+1m}2u4B*e5X3W`?Sj|GfdcYIlx<+?c^TT;Vri3ow-uBTyxE#ab zgBunc@I?{yHZDJcGGdp0^{YSxP!Dl2V*pOJg6dMLQ62r!_^P z4}UyQzI$@Ok5gx^+xA~o3LL$|LYDXW4gG>~jT!9Tu+EER{a!4T^7&ay?%}i}Ys=cF zCHXwJzt$)$V(58wL`6gfN*QO0szeM^ZIfbkRJ_60OpnAL5kC3&Hb#GT$u*IU_SChH z_h1t54zVbe!X8fTs!YlI6Ut>2=^o-*-uhRX_(6Od7G}$t6P-K3rdEQ;ehJPVIes8( zM_fk`X9YR_Oe~7}E&(TCBua~LDGk+%EyPIU#`0!C54kLeUs*Z)GkGJKjG81gl2^n@ zdrO(vkEq9z{0zCd$Yv2S{9XH1SD>7BaX_jULAf5J>`joHdh5n*;G?muKImN^T$K2A z)s*CkmA&%e@9-a`S^{;q5wZxj5$n#=a24d-h8q%w0MBm@1{S%h?UpWua&4L7at%eN z4J;LRJ`e&jEx!ye~Ai8K(G<#Gd%rZ`jCN6IYQoaC;AMl^HpA~uEzjOy%0zswgS@cKr zcS`%JK3lW|&Dzpz(ON{vtL(S<24V2i5jZzs)(QcV;-q{QfSQI=sass**VgGhnXmmj zN$yt$Sd`a4c)3QOt@ZDS`>)PgbCX7v&LJT5oz-#TG-F`5xwu;9h}QgOK`3E}QK$4{xD?%^KeSm1FRgs4(9q8V+Ej5>S6mg3*czKWb!k@W#px6H=ASehgA zt6$N1JSk@yf->Q$lnrEM=~y6r>`h6e{5|;XJ6*KnwJli-6?o6CvopyU;Oj_2%KJ`D zfW#?e76a`D*D&md51RUUL99o1K732b3XaLyRF47kncy(WAX8p9U-u5 zk))Irc}^-9J%S~bCijAM!#he2N%snWEHEa&>qqww%8o#k8nJwA8)_a1BZLM)~q9vlSV34zR{atSSi26YVs zBtjG>gjxf)MZif75g5XS^Nn9m@vZ1s8F0P2M%;X(yeWue)O!9FE~PM15QPP0R31Kk zH5L+IF#&t!*mC024SG)(XQ^xN_TbYF;~iqB&xsQz_H6F@dq)fbB*0aJOPQAiv~vu& zi>1-Q4W|}Wbp_U_q}~nwj2K)+4GQd zn#VwB`+h$n#~7{w2u7k|iJ;gX*i5T7;>{nXp3j21()`1O+`lx9ZREg0sX92Ms(gUX z!!?|{2+(1hZx!~^rAq`vkR2Z1@|(`wb99U%uasKWKFSv1hr!vrB5@HxNHtv*%eKqY zU-d;ApZf;Qs>B-0)1bb;hGkY?o?J+IT&40$jgi1vJ^m9Qi3G%UwJ8;-(S~_%&E* zn)w6IdTv_Lfs#3%dP@n`IBWHG#qR$h?>(5B?81gYAQVvn0hJyE1E^GyCRGL07y$(f zNbk}?q=qVrAk~2MqKNd~J3$bn3(^B5(tAQLq3nr1@4Mgrft}ge8HUM_oBNz|ovT;+ z3LYl*!S~&%DBxDe7?$__V68uC_Fc}Wjve97uhtC$(ySB>>PeAfQPAS1}Vy z>AI_jL)$sD!EGT$ zkENFV4at4U*C^J&aA_a9vnJ+TDCUenpY@qGFxpZIEsQo+i@}`TVv7 zJdkt;`z>W1scm+#7R?d1uX@6oFz9gJ>W8YgjrUGJ9dL(i<+-TRM1D2HW7>+}t~sHX z(}t&lX`@`ei#B^^wK504Qxvy6=T7H%)$xiWGvPVzG>+DY8FvnM-iUn&av+gc7eHDG zlp`^ITpQRidBE@Rz9=ez+(>iEp&VQNg<*E!3gcqyoGQ(uSIuUkj9^CZKu-OY;T7JA z%Rb+)s%)e!3*pY<U_@VywGZ8;jsSm%|lzEFZIlqd*h{k@UtQ5i*&nXrDrebwdc_&hVfNueD_?nhvZR0 zTRo*t&Ug=l!@2*RE9`a*ir1{n8W)B-DBS);hljuy(v|WZNJM5R56T9T{rF3x)*gxg zrZb`D-8(x*X>V&A(D>AEloaSh6uqcb5(G14K}+J*wcE*E;e_<=+Ttt_A>cc=Hs9!<=GB7(>`)D5~EbEt4 zFWp>YDHC!BJe#ges=R$Y|B?n1_cxB`X3`Bm0n=R!DW zgU-lkMQUTfJK+IT#5q!U@SR@f9o|q~gD{yY*xVA^Py^x>?t6=ddj8 z+Q;6#h1AE~MY87mPqpFirSJ8&k?YQ0NCH5+*WH(X>Q8p?+WUsC7 zJ+KuYOf^<;jsPu+8<44F1>_>FBK&;4ne>q31)gUluMEhsCLO+B8)e2xkjDw5Ev-_t zYq<8v9Syb)uYOnW|5jh=pMYEh0kdRFxsg^FSWM^Zm)$SF-hJ&!51X^us-*Rx(xgaK z*}afcpO{MC6Jg(dR`Y0Fty{QegAI+E%B1LRL!Aiv(|{RtXVT^Y+D`fZ1sU-s!PSU2 zW?X@Ogfr344!M$!cLJJX%X;qL)a-&3L_Ch)p0FWAW8DA&}JQap2$r0lssgQk4zwd#=TsNkJ!LGQ{rP|t!zJZK7C3or1FtnXYU1OknFk@d8P;(3Nn=lWGuX^CaG|_%R~vEScpaVMC{c*abid&qC9-_f;FKusHNF->!$0v@(2sL&4#51DCa7ZCd30qXe?N?~{0E zjGiUg-o3IOIcJiy!4r%~pnoe52VratW$mMhiK0m-3iFg25M?)t%F1eWDnUzf0!sc3 zkZdHj92A7)D25GE2(4ox?yMQVpym*vyTH#;iT@m6w}r@Gwzm@^WwU${a927v!9dp7 zYQ5qMg1@ydYsnDWKGY-3RYBIh6Ab4nssh(?=!ZjMpVN_&usFj=nmHq_=7RE5K9F>D zpOl91^UkDFBHgD#vd-f6=2mhoTH+nJ!5wJwbv7AZPcLr5#g)yCcMC&5If}&})ZAZZ4?9;ZB*#M)y+W~OCHT<0gz@+a-jx_ruuAAS7I-eqckh&)_*T@vwD zuOjW)xbD6n`i!oS995NAO(W+XGTaHMWLpY+K=Q*Ftl%+`QHX}OP^4+FpM2v-DWP$bgoRs`mMb2#WAEqx$Kr<2hkx_Q(5rSmxA z7^Ah&7;h?&-r8RXyzW5ce;HM|mtH5bdZwCA8dM#EL{*M}4(&8yy6tttr;4bk3 zuCNUHSd4z})t39IxK!QOv+F!7cYdEh8tA>4sxI0zs`&-@d#9OmQyK*FYlE49jI=$; zBTbt>RB3p5tH=CSm&5FvgLO;I@2q_}y@;=!(9NR1gv5-K269rjg9>UxoWpi~e=qT( z#EH87?)EQa*5sY-`eRnsLz_vSZivsIeNbMEkN`8f-FXj+#qv1 z(%|9-c>{2~TJm)ZBwA(eS}njYTG<1Zn@4Iq(BHsQ@B`cK^veE8!0>e2msmHVA#Q&J z=_61iM=%CcpGL?W&k^iE_1vm+%<%mXx2LZ$R5qpg{!d5DY^A?GrT{G80B|92q3+SP zrNOmvFA<(mA(WawgWo+xmxW?Z-GnDSgJw)@6WcF=^a1j_6%*%%0wnhnLYS_Z@95$b zv{y%N+wvC66{pWav~^eLRxS#2S7Kez+}7h`Acc0C=or2>{0)>&1kyyyn}ZDykKL0%u*iW* zuilB*!~D&`Z9EaUj)PI!{V7^BB;EIJpw_WLQ#VzhffLi>s*9+jmvJB94{xU_Rw}pu zTKEG2p#AH{BXUJ@z0+P0#Lh7b!QM!~$OgxTb25??gH%D6g|{!`9%IROZ?|#FEkk!oqG>d<>q%SvJQsCftKABq|x8$AD9WhQ)*Ar1*B=PkNVs-4e#u1V0 zgMFByK-gF&){{WrS7mAaRq71sXyPTSy7&zsJ-O3sPQ1>u4jaX z$O8Ru7(lvrdSfVcgSzC+BIt59Q4lA7H^#OKI+7N2>C9(fz;nTOD)uXZqEnqfGT|Kz zfC(?9nL2YU3&Mx*&^AS~3vG~-FAa7Lpd_}?_1oB8Qn-oZtNAdw+zhDb47&gGKk@%z zE3?_ZvA>FCLK%%&C@i_H!~BRxV+Ewp5`)0|_mvWS`K_7Vj^fa^Pn9dM%ynUkEP`41 z)%rIFW{y-RQy}kml0UarqKBg(4|^l!u`Y)M#&1(aKN*zYqnO^d?@! zQX~*lcDj1SugpOJh=`ly4OQ*S<@K+Ahp*pRYf9WcQQV?**f=?!T<~FDve~qMqyHLn zNH;CzQ&-DtK?;x#lLTe2 zD^TX6;yQmmTQbkjz4hQ)yx%wj7(ObXLG4PNVIa8ak;(OSa6VJE#ptlehkNP!F3dp6tk$E8% zjY#39+ODUU6pSDsYeFUO7zCrXII#{YMq}yLoOv6e>1hXTi8nl zCN$Ql6be&hsAB#$GFGW0*@i0VoYzK*4#vK0H`5uM8C3!15a3?slAt0Az^7KfbvqOA z2kB5q1BU{%RU|a8l_~y)e}t5_Wqs~(Xcf0jt#?tdvIfL}+KY)eF5K#Q0^kKI z>F_{#pCT#mj8`A6c5O|J-`RF5sqDT6vW{*f9_-4EY&*f23OqTXNC`bwWJ~OFz)~+Oq1^nah>V1T zh4sQB=I*=jlQw@Xzcc>N?-nK}BVPmN%B!}8DbfH}FaC23AvR--W+25dT*Nqzux<&z z=x>szY&}WrREW1ZKPx_fTPJfQb7UgC!f6|Iw!CV`=l;?ADmaN?iZG;2QlCCDKTmMY z>oyUP)CMs>=hU$0(cJ=S?I38bhq;Nz=nd7Mp=)CyX zUo6me%@8@l1}E(-E)1o#Q(FFHW~DcBaUmC>;wPJjxRF~@2tW$S6sf?N#pl<U#SaCrPmWAmxuRIYY#xJiYjfXvEHp& ztSQplQgvzMVMS*JpHUPBOe*zS$NYI?giPKAN)5`qcqrgeS7)?XD&I6`G_b zT1smlUj?;L4qsh%D5Ng0FoMb7yqcPSNoFs$JbdXiK&0PbVOAhV%q4;QkNT9Gc<}{o zI-R23{c{8Z-1`wT6L_YH%d@DV7K_$I#RqnI*qO7=9bcFW{G5iLWpO#5kH!5Ra*ntwmdpyAm%mc*B ziNsfz2UASQ7(l-bxCHy@iR{Sbw`(9N{L9YdySZ)Gd!{T570n$?63a7=&q2ubr)1yJ zofY2SZhjno-o;Fi-X9(3lju3`fG%aHiO`xR=Q_pi9}m1%-tskJB$;coirBSrib8;r z0b8wRmMg9U#XG#by@WJ{1_g_8bGl&PvT|tBA4LhG5ni%$ zRf?4IccUA->o^rNMAAW(KG~)w?~({jzX%`01B6V&E*1K+cH!V&xhh(%Z`$xYupVPg z@!MVWL;EIWJ*w3zFhFh%z%K6pU%Qx*G116QYS1&>N!(nDfUv#4&s`jhoN82Hn>fky zbN7~gyFxqJSq~)rosvookV=p}BDQZoW)2Z+23Glz^p4NGDebDSDN78>uK0ZJZQ=>0 zcGD4_bAX%1%5mIiz813b=1MMLD;&J+Znwmy0(nIk9V6H`J~Uio^bl*|v(GY;Kyxs+ zP&wYF;;Z_6it#pZcnX!YUvv!gH?~+KwiU{{*lUOmP7FS+_fqQB>dnV^FKuNn8M-__ zSsKXhH9Nr~wrrDM`>N*Q4gK`bL}QZ|s^!kC+-Pxyqa@lN5+0cTq%4HJgR~>{Q&eHP zFZhy0Xnc~ovA6Z;<=b5?36ygh*Bo42*z2ol;`xuDXO%8vD?ivq+^x=CdTC2{kwWS7 zp41B}&PNEu@;dj7z#tU+WjyMqQss%uUN;J6WfG4QZc69IAy5)I4YZtehs=)W9Iq2R z(suvcnPOTB3x*_5l(reRm|4d{<1@#QQZq z`yMG_0|r}&{DnQL>k>cM&zLS1(gCok4UsF}oo=7p* z@x^68Z-Z->&x1Pd%OR|OysRmED{FzsGJP_UeB=!yIP-p~j$B~#<#Kf1+4baY+NU-N z3Y;jNUCSxRE+0`M5~)74HT4FqTS{MQ{q_k4?+?1(BnU^{ZKt5-zJpsgmoQT~N_#8I z51coJrHu|Wu6(WBDdbRUTaB%?N$5zp481|h(MgJJHTKC+zvoKaQ9aBf&uO}dg-MzL z$!`-;i3zH`M_=xOg29(MVG&JIA{Kr>T39VNgAEY7MQ}Yx7Q~rI7$u0cR#* z4#)k$hdb*(DucFlQ?-Y`sT7V!1sl_X4uj-7kZ`h!OM#R+qPoW`)`_~+-$t?KEskgI zQQ*m-lTX%egJE7Yeu6xP5d;yC|*g>@a%R-#IwtqD|nW zEF87;v~^H5gaj-*1>8oI&-T!R4X40)2$quma%+T|K3USKq?Yl-Foj3AIhJ1w7O@pc z6BIWl*D9IY5;}t?yOHEH%=MmF)vZ_dLZWaKOsyOeT#MgvR*p{eS7trwyjI_y0Lza0 zHiPwMI49k`OLmP z)5#=Ny;*wNqShK?*^9m1GAQIUH~_=M%F`EI3d~)YDM~*q48%x)mA^eCSlcF{$GM+X zlHn<#s-fmXhsrkmNH6IrejaIQ;gjMAFBCZW-TC0j@}bpO4wOlGM~ zv?Btd#8W$CY8w(PhUS=CJdgQ^M4Pnd4yD`v3@B_gzG(%2aZo}FTr(qc9s3!)z{zcw zem@s)q3mU4$k0<3<~mfmy3{upicJADBRVRG;}+Kg;-Ay>Idy}BH$QqQJSQuJ6nx!w zjpMTy->FoKP{2tf7YZbdpGV9k}xfuZ( zi{L0~Z0DSzrgsz{y#MWurrctJ^9E!lpE}Q`G`+x(Ui-N|iKocM8{0?xwwKnnd1^o3 zp{t)96<0f1`Ej?^cDQu6DWi@5W)o7}Lw+39UCAD>dwv5pmpp@c*&m_7uIyo}cD9#5 zKD0)Tjq_2NtgUovE{Csi0mNQ1e)HVam~G$x6`S-ugs2YJJrcYp^nQ-Ftg4l17)_Fo zW4BIZu%Ts%t_qrkG{>~=RDHkqA8v5Gm(++#!g=3x9^SSr;~ug;vyqY=wkUj|tXN(8 z+;X+@#t6lf#k)eDp_6mG=E%4mT3>77SJTg( zx6AM-0tWxOvN@wbV;Ll9WDm3FuSk%;UCrkdP(IKoHsZFLRa@RY%>X$r=m-qWat?;# z!c526j7)Ly=xIMSzuKT;OW&q((_AYV@*^4}T_cS&H|dt01GrRqspZb@7`-`3L?+ua#q)!+t9UVN4~Ymx>AV1 zm$Yexgp0$Tme3T!va^!?bK4tF)&!W`b}4rGBCv41H%fFBnY$_7i?8(u=?X?NgSYFF zCo4K9MzNyLu`?a@pfmlNKUYUSjn`#CBy-UsA(0=B%7|2Omz3HuUFBvPrf6fN8PXtg zh53{zFpY#P_;1|CC0y)Otn6rw?E-2~HVeY+Lu_YI$`*iRvk9Pp zc^)8)XcmNvYf*c*#c36yNd!00codKH`c)uc?aWm5kt}5kT4#94a6am^h_hZvS7qQp z!Q*l|FbMJHbtybM?ip?wjac{L0wQ~l#7>1_YyDm@0(?rn_4&EjX9na+i3-R3Ms5d< z*D+Vbfh5*Eso>MN+YoyHzN;*}E@`3oU>b}?1{zO!!`+58;(0xbShM(4`fUAaqrkDDjgQ)l)4$eO$N(>DIy zr}8qW9Bea{Cgn~j52i;GH!yROAJ~_5y>DS#7>G4E*C;^#^kc3&lb9_DE;KuUGQJCE1>r)5S*}^gm3&D-%Ico%0YSGW*MGR)p76cWpL<>^wLKFkUMW z(k8x*oEr(Qa$XOVto-(H2i$PBZ||jsd!l?AOFc}|?FW}Yzl1Be^SGXsYGSaHd*+w- zOPTEs*D3`F*T=Bqt``V5ry5R$aSSEvkXR@xBLSeTlZ77(#Mfw*o2Lr?atD}aYDI1PSVWM@JhJpeqY%)vC;5Jj;aMRb&y|LR`#UMrhc^h)=!-3b zw)1?QoX`GyHLXF|I~PB^#qUhn=tK>eg4_fxGNy|0XB|(4+XxA3B;rJwvEMSyPegg_ zD_nV<{Jc&(o-Lwr+Hk+IF06BlDsgiDNAU;feBMkzEKLqNu^CtiV>qzIV+gqKWv5_hv(&OzTZ( zRqX*k0)U_0MF6#XcJ!NCe11Fzv3mpEKeNx*5>Z*!#jkAbAZYok-qNY?x9WuoLsUB4 zS!UmD>BMx^AZIh^&uO37Pu0PPu;uhb9{gy%2{cYrjyc05U>2|T zQc}7qYm3`EqxKyr9PB-Ps0j4DjEAU|V&$O8t54k-oNmO5`|NR^m1o>jr*#2BB43@4 z{;dYJLA+Wl#1|HL6{wJ=7jX}!u6;?&b+8b&2u|!4hD=5(RGh8~xxdqMPWieJZ}_`L zin@#1`Yy@<31DIGYuk~*U1e9JCda2A+jWqw#6`eRX|ZKJV_&neV$Eg?!7E~1l&Am-lH@Lq5P39lWTu)l))dk152C1pyx(l)-$;n!Kq zV`e^ux7oo${NK5Qirpi~pc>;cwp31Cju-MH7yO|lmBbE6 SgW(3Xk{PI(0}Fc12Fh> zFD0I!PdOgh?Qr^#OuI3=i*05a?VU6vO^hQ~L>>BC1lvXb_cma;&|`%hjW$juTL`Be zXrwxz$jByNy7`(tGG0+VuT5^rKIq>9*4rmR@_o5W_CIBGAGtv?elDu?VoLq!P;GAQ8P6_C zADsx`3V*)$iu`XsKRDCAykH??pqiu|A8md$O!1zKfyPJaEikwLKEbZMgUg?Uw1`oi zoRy~-fs9;mhZVt)#}|3Ck#vr1j?aaKNk|BOB>Eo`hAc1c;cXM{wvpW%m^cMzzny6I zJEw+&7k*&4S=yLuWA_f0Z5+5~+W?XK5mpO=x@Z`XJ~{fIjwXZvtIZeAsU=6Hmv`X} zR8UX8ytjyI#jtatUSGQ5B7IBCO3uh?A}lhUaoZU8uEkMNDXUr-m41IIMQv+RA#1MU zKI;3Xzcj>>f*X9nKCX|pbCEVl0=(Cys$q@#em_VKB?9j~#zjg6McH-KJu_bd3kz&D zKRQwN`Bo%R{*Vx!QS1M1^w5*^#NR{pFNinEB@FRtkoYj^l$r>DFMj_H49iv`>2ZI* zuzE-mntwm1UpEI_@ZaawXxjg|MRu+K<6+^fT5{{fTSggccklmul--Ws{oe20|9yFS z-~2hc|K1{zLE?FT-`F2Vl4}1xn|1(|;NR!4t3Z4H_xbQw zWGO0H3%rjyj&17#&$H_+Lx_K#N}(hkxKg?1)H0&dPb9hBsf+9<=sy1U>i-t|@9qDe z{UbZ#Jwy;0Cz6#JkCM19MdnIlKY(^v zjHY%%4FU7c)+~frAme;AHE!@(@p3-g?H#o{$Z|6@QjPUIVT@zT+eb+_1+G`Gte0mD z)zxrZBEigb;U@Z>3d5xOF;s>w3fzv>ebOyHX;cX2K2FZ?wzf%zg*6VMBmAd>4NT=A z2!FwYJcr9T-S(5`WDztM$v6G;{WSP`8&At*^$r7}@MLHH)s2WkfN&D87x~O;hsQ6% z6Q0HPVZWjAh?rUm?M$`mUH)17R(dJafLdc}Ck|{Uj)s+Vb5F)8a0=}wg=El|T04}u z3|k)rj#k+=_McTq!r|;HuJ*Qxdh)6gKigKj zB&*gLTw9oUE;4;%+xbRnX_R@2_UFU1&Pv0vJChIL3GC(*X5G^^Y8ObVkHlCEMJ6OQ zua*Y|BdbuKJITDYuY+5gIdSPEz4ji|&}NEcw`W6r$-@OaeeF&Q!5U&&nA~3YUU0P0 zJQhZu5w!mbv$6|`+NU`q;%q41__+n}iC2HG)oMnFqKB_BY2~8)O+mQ%(!3_lkiT<9 z&oN#OWiGW`9EOrmqh?F{aw?)w^5a<(;MEy^FcrQmSb9=P=9*V{69vO*v>ygib@Y-Y z!cMTm1)pJ73-S#^DkKu^e_6{QBfRfh=}N^1|FnlU^Xa6RWsyE|0K8#ocDJ8 zl8ZmFZnygg+ish-0hjmG;(F1W!@K7U?(oBB7w17anLiC`)^+ibE7Z|jbLXme-HTOLp<3hjWEFylP^1l^XsF2 z?%o0}f+P>1MgX4n{U};~y_%`&OdPg(L&NTc51-?sb~_<}jADrv*F3vhmxZr6 zn!H9;K-EL8PH8}GtK*CuY8KfJ)^~_8%TJvwz5Gk&{ZbPGuL`0jvH) z#cvlWmLUu@^betpv@+~6%-WIzLnMh{NAiKdvOOI{we7uek;YOgkWuzMaYxCIha}bE znk7kX$d)ziK5jU#U3hDsg@4mB2FqDqe5MakbG`er=Q_ypr#&>pg{L3Vqwyt;$wD1V z$S3WqPn{ZQz_I?aLU>M(0BRp{I@(ubXIHL;wK%6WA>+g{n1^+ZQUnq%(2Dam)wEzF zd|e^w4o}$r>J5X{>{XW%l`;^ctNs%u`w`pgFK(a>R5bTr8Qtt#-qOS6qxlsE%1_A% z>FyZd>~Xe0T23jB4HeN6=JExC`2cM$n{Ve$+?C9#gG>dlzCsycB z&h4wtNV^g}H}(|KaI{N{)Bzo%5=U81};fV}o&0wp#c4;;x!f19gzgg7>F&gJG;qvT$DEiA(G zAf(7HOV!P8@$i;yX+TMI)Bk@ zJGpuMZU5%jfQyIb92BRDJ{WagCPPYpx{AUbz0_Q@$8Do8>R>GV_|Q>)h`2;f8}lbj zb!5W=ol1>r@diwFVT-ajHngS*QK)ChFecgxM*ke*a2Zvw3F0?$;?n#+BgR}EUJftv zJMGZ^Ex(wotq zNPdqMTHzQg*h+yw<6-UnH_~cn3)8&QUInraS3cgkIHWG2B6^}FkkdlUn3bh#@~00Q~%?vIq+Oc{8^8P7OljN z!q{jfagVzDZ+1iA@s+QwhAGmdjcaFc+3n7vOPa$mU210K2!fB;)!)~yj@WLdAHIJf zuk?U+(iAnTVXc)hOo=y@t(!c%F9t0|uj`NP{z+dc5Ka*#)>|3GD%1?PJ<)V+%$UE( z-|Jm*3nRO@1C6d`_*6~z?|z>|J)<=ULM(Dbh{B=1svCR!?bE7Eb%H4IWKW}toYI@| zpTg^Fvu^1tJ?yAN5TsDXZs)TK|LoYtbCkHdl+)KuH zAEz*kk1Bg3f)S(S_Pm~Mu2KARt{QX0z|~~%0QRG1|5@z(Fps?f)yFD>6g9z;MSrsw z@ejk&-7^yd!rpB46EE-$>>8@16@rd3_G_9uDP}%Sznzr)maCLDRq6G5gC#p}y2U3Ehoy#9FR>^GWW-;)d<0{anwN%FSTR zsb~8k{>+ezckFzkgJ*fP{FjQj`&Xnh-n9>iEzuTEp!RJLSq?h8ym|1s=Pp+we@|tmUBok*F6`t2WYuBA0O^v=_m`z^?>p|eIhb%_ znoCc(VIpw+aKf6ZUp4JF*VqV_{9N5?``FBg+Sl42#DSN+zp75!4T6VxB9t!5P{>5p zz2A2ZisH8v+ruY`@A3eL`j@|E-;>nMpUiLv>d8;tzTqa#yy^YWH?`%$lEcbT`y7~o za;>JC3jBuGi}{FPGi_0=k4}EeCBl8gnmD>(hK#J^OJ$qv5A$X8sfgHTKWtYo5;s2 zfzNuEHx6InL`M&`&J5iYnT+bfk{=cq1a4W4V-p9_eCQiLr*}pam##W<14_vWB`Le< zp2-7SCu(R1VxC~V6Q;8!I$1+;M-=TVrQmC^;|3*+i@4aS>p`*Iu_#%?7oQJhMp$I7 z?VoV7_7*=8_)}lau%{-~c=c#oNaWvJ-~M~6e$zOIq<7pg^IOCFb4sdPcWmdm{qjrq z<+PFGBU-3^Un(hUtzIu&*_&13YjNLeggA=ME&(Pxx$|COIb8y+4;#chR`_uM`ykq0vZMA*1cry#(K-qfyo}&GAWU=jIm_d`T@fAR@y*0k4OpcT zJk+g5UDKYn=rTbH_blzX`GhH<2OmOT^`9wJI!oi~N{^VATNG)tO;-#m3EfiCVs#@0C z_7uAhaZaPo&ml^XhSP_ULA@l7^H2BqfBQF@*T`JTyMC@B^v!HbMOEEe;CV5K-u<%O z5h?RlEAJ0iN_x!4PPtz~*0(()c)Hv$2(%fSf;Z0|zsNsokBHr|(y|!aaWZv$#nw69 zt=$8D+i{wX#zj3zR7KlLC2KkB-fendqN}IlrhM9+yl?0e+S9Hh^!LH}$7ac$uC_Y~ z&&fA|l3er9wC*rk-m3JU9&ICEZUsD&x4AmFJGWZ2tf57sgzGq7oV^j1BZnicBRkkVZFr7i1KgthN}gk1BQkOk+^dw6^- zm65qckhQGPKE~0{W?oHUPdR-UTwbY_X$2P+<`P{i{E;bM@wkr?FR?n^YP7p(ihlE@ zT-MFezryynX>#j^JNvx051e6DM?IG%^VTo#V zNbbpr=ma2ro&5d}wq&?IydAWF30v=9GFl6LQ&{X1VqVMV{$^baE=OsxbYJQ+2-}r8J z-1VlAe7p5Gg%Qu7mxF_f?Ma{#q>#FTS6!s%vZtjG9}|NH&2fqh8hY=kJqF&7Kdw3B zbkpJE;$yyw%Agv6Tt!OeKXCFULGhX7jp`j-DtfOJALjaVL)w_zCzFGFhXkqfhP9!h z)6h=A;OXpP2q+miou|wx*aeZIG-w&$mQ689T?a7DCRQ5unTCqGW;Fu@y@@3BNYYz= zPPu!WqL7Ukb<$4d_0*X+-uK=)h#lBEcpBI04(}bpM|CyUp_ldIKOIRCcFacY72Llx zxYzI_CwiX|UO4b!`G>{!O_!fl+ch1zL>kB*EqtR99Vm_92smQ9dsc+ZCqDY99oN0m zX%6Q&So{mv_!(_=kmBr$86@25JDkn%tI#*SeIpihcPJI+@LjsCW>m-yP;zEFJkDeI)$ z3(~0r9!|O470C6I<~vdPv?ER6-0r<$>LFrUeXMP8*EThfr9yC| zMLWf2%%qyWbzJW&r*pr`OOP=gIdWSzOww69Rb}*p zPd0a6ka^`RBV(9j+a)Yy`K&5?vTIb zWxq2PP+8!f19<<1ndK_2;O!VLUvsuWDD!_Ow)GXxb?c^|k#@Rjn%wW1JK2`WLv8%J z;YQ65T%g*j=lu}z=3{xmuQY|lNjGAaLuM^FBnNfh7AGYRX&0oWL|+G%a9kAs-Grh; zo{6a1u*LHHYn|uS2t7=eI zq)(8z_Qo!eN_}x7fkB{W$1T^A?Yh+CN`~>HD-Atog3=F!`hM49Vw(^1xJp}CR5A@_ zH-A>nKh z$X((wxhvims4<3}d+X)GPNclI!_o^n8IVaqS)Q^m`s!)!mqZeOjFUs5k?U zXQd?d3O1-J_kbJaDeJvAo)j$?yg*g)*2`$~2YLwYkA9vd1sGQWB<1#aS6W}je3Ssa zrT>kR#$5kOMrCygd$F?1&b<~#Masl}hOB$hMT$4n3hPhHykVU*3cMe;_I(UaoG;H2 z(w*x_AJY<|DZ8lPV29m5>O|qK1;`LffydxAfyK|`d2*-Du-XntKftn0m^k7yq|#%{pKp6SyZeSE z)SN^i_O35Ahlxn-9_^Gh60%sdjxV$&NnB50ju8xcYbCfDoJcF#;p2lIR`Zn*wgd6Y zjYBsY_k4q`1YA98@0^vn;n49TE4SF;A6;svDv1OQhJldKGb481{VIdk#(d+u&rOF) zbxht_ZW;E0$78I#X<1Z+ydzAwtLh6jrQrLbE?1HEniW6elolQ7Cs1uqb+zws{bm)- zXR3>ULy>nv%-IEO3k2|dlNxU-!vU3ic2Jn}Dd=Wuma3y2i5fDEcGGk{{A4#kpVc{T zKzw}s7a+OqZBLe^%GsTT>-{??W{AF}R4sdJM~DAG>Et7fH2pH`G{SvRJ^sdU&Ly7ck8y}!!zuUcVqb0v>?T#)Be#vDBYNO&L9zSRBoVo{BvgAhpDbPDAPViaRHO;H4^>o z_i9UU9OR{Un&{L28%pN*T(Q05vCe@Ux=jAw#;nd|dmYE*gs1fp8n4cNU+}gpJNQ@= zv~Y94YY;=OHk)%GFDTe#BgE0^()OzPtm8Aywp>rWN$r#dZIPT|)6n4ydBbrWtANEk zaQ^-L}}+Me&#S`E65l@xAD?;+JWH*@x;Bdwo9RtZg-s-3J1%=8}Y?E>n2ZAEzSAd!vI08Y1{9$ zneG36QI^SJ>QQ3q0YWCN<1gEiUSv)6-=o8(26bB1-jt5V7O2IuO<5S@d0cZif|IWw z-KrM8inaGjeh%5S+{AXx_42sx2=v#t4T~MItl#cyPi{Z#*6#p@ZDkE7-)gX@O>E5v z?S#4>H5G?xd!Oho{N&bn&5ROClnN^J2Ub55!Ae(3Y zhTF;7z4&#?b^W@c&gi9YE0YP#ppt9Vrl)#-tu6UJ;t?T z+@N{nImfotR%zqf9Yv^b{=gc8(@`n(SM55w1*chXh|Q}1xRAZ)WI~g2k5kXuSE(=t8NBTT$@aq>5%XHE&*`yCSZu`;r)7anRs2#sKVzkxr^xEj5%JCT#IMLW1Qa%cA2E!v-uFFaCC+j zeuyE*{O*ReAq4*q=g+r0+-yZYSEN%~o35GceT+Ew+$;~Vm7sWPPe;>UdZ+gro9>c~`-syx-g2bvo)};Ms;(J0nj7&FA z6Fb`l7fjb>&j-hLJ15WmV*3nVv4qYB!oy}CoBcx_v37X5RSBZ$6^L*qiYD(V&A5rz zrLaEVF>V=+*;mPvP<$lyMVf)h%}9yL{c7K`n?oASw=Zy=EEwyjaGNDN@HVzg=g-7C=h1M+bo)kBwQD`*;NPqS(6Y!pM?_R2 z0#5G0kP$FXki-Q4BOQr-Sa3QDDw>~k&*u@r0;nj5^H*HqZqnwhT93oF7kA(Hi5=Z= zu531q+Ao=QV7+UFiK(s+EH1pWPqY#3cNxpZiDP!xWuM}wqu2wwx5GNz?lvm1xBc17 zizks%bs$&gnV`vo`PsYs}GS2h)MUDO}rF0S2-Mb(CJag2Y4NRGNs9Lj{Y|NRI$!3dnzVMAiKhNjqm(w zy7cARw8d)TPwaaEv0YnpIg(56^Rk!TjvHg&8S=SFvgNnXWdwsn!SYvyY-9}!+tuIa zM7yDv@U+JU8|&dphIb|&*~_cF(J@&_4($GW)c#L@&ndNJcg56q^~b9Xm$49&>0cLg zGA(}BMQBXB-F^JO=x^M*AqzSZv6!C#v;zT#N%z)QVlla<|H~;}9lFHMOY?fp-tlTO zh?191Jq+#CSWvvX`bD9#pq%&nUWtelWz4L1XZ5GBj zjw>c}glr@`T`4_Ylh@`Yif5~BXf>@2)6^=%7&dIy^HYDEf1c}l?mzB7KlkD(JxYJ-1CZMu+HsV^x|vt)G_>$h#TZzR=W=Th1_`)yB(yR1L8 zZ>rMP+{d;X-ZQk0zGgGCJo5H4I)H3XfncUmY;2P~Yg^|c_C(_Inny2E(6=?|N2 zMKTZfLX%3>VZf#&%?x$;ZQsHrs?@G(g}iuX*)Rnf$y1=qOj~#F*^e z@|+i0m|_^U1dsfkDcvas#aItSte*^G+%1DqElAiLA+~62#3^|?d{xhsoCxn(?hPVE z2M-7@P1#6#V)o3GK%*n)w{;Ah;Oux^aUy9_;Ryoi*#;c;JzXVQ<~gglSY3W&+pO<_ zyu~Q545nPT=E_9rQSAel^PN_4l=4XU{Y?`Q-Ea4VIJ+ zBw_zm2q3jMK0A9F=m51zDmfWX3;)R5B0?deLK)XT`Uoykp-1< ziLVKlg*RTfPi4+hnD=f-Z{48Dnrj5`+w~ow#osXU^|cl5t(CE=Ke+>2={$ES@RBko z$Ub`=-aa;nLtL&mUsxw61(fVFPF%ssbn-!+bctvw-sA58arT#hky?gv_tC;{Dm2`* z^AW-R7uQbZ5?Sz=+@Rr;TTp^PREGd?KZEq$Y{Hi*NC$YtPhA?fS^}Fj>s+=;NG|Gp z^gL26yR6WWSiQ+~oDijJHr&O@=JP*(v+^-&fpHMcc`%Z}^Gkr4w?Q@pk!!*FzTew4 zRoe#=hJ4IhU=z-O(IK26DBGEaSG(-p(U?+{TUw%jz%}pAnugn-3@3oH}tdA62w-W zVs9*1f{19hQ-C-KcV?VXJI$;g>xT}|Ez%0>cvEoY_ey4tV)?=UVMyH`Qc_cnJLT%| zPCxlLqb*Or3o>M%EQ-%jF9B^i{94{>;!EyX#^H<`J5yNh5L(Y}Hhv#l4?ejINd60} z0zkE8*T_mwg{B;zhhy;#4HSk(fI&aHUeq zj?NSQq!}|VAu!58<>HnAGGlood3|miFrrs5KUQ?QEa|X>Of#8Fyi*3#rnfZtF@1$e z4?hw|MQla;UanlsR@fbd&$?h)g?rEQ$;L<0(x$T1iG^?iqAxr z03=oPk?1sCTLQw~a`^V#nDCZr$_4B0>fMf^6@x(AE{_ZEAaZyh%YhiQ@R1rqx4`G$VT zVZ4g|5;KLEAqLC2v=s{m*&_2)HoeLOW`^h)Mj&0kuVg4}BF6|`hFStzoCix0XUfGu zq?wp^?E3|$nWmDuo8{L+2tO@lq4U3XTTVDN^ncBbd;K-x=k~Mlmv>1no^0%9csW%^ zP5ec-GliMOtOCy~S4}V!yZ!+7MlsD;iWyTb!IaSBK8Xqr2(I{|KaC#?^GjR_`Dqm1 zy(@F(jM=%7S*uDD6+CzC_{qZOp>OXy)8KBXpaQ!l-I-%!u4C@KS+dJfH*Y+StBI0?TL`VdY41(xAS~^EflxR^Bgs9Q$C}|QzIip2Q5uyjtM~fhX zAkmFs!sulf#$b&3&dBq7-|zkVTkHGlJ!@sna&qpn_r3SEuYH~K>bAZn`_VH;VK5jw zpmoC#24fC@!I&N#W`XWtlHaXCKP(S)G;ct^(6w{DJ`DOf@>t8<8wTTzr2k`xn^|{& z!Op>e8&{13GM2G{sk|nc8vFjfjsgrP?YR=*HO=QPUzCttosME;1blqHd0u#M?MmP2 zv%@v-r=Ohpnme^Re?=xr_Sovnsl&UzOe|-g9s2vP!=El*tFmm;SllWV(<=phC&yQZ zmjV|TybJX+cYRE4_=v0C27>fW{qOa^9{B(5f$6y&V5quUSg%i>;BG_UI^omcE_H!Q zzHbuga@q;y%=3eA)dacMri%W zKFk7>dUpr~gW1W7Qw4fA;VQy`d)z%?*zgTunJbyvEE9RV3K!5%k!KU|-SBGo&f{l( zMz24gf~B6MkFq3uyR(InMn74<^i15(5Zq9)Is}8oB!zRqY`aLzPb78ATQBbN-*L$v z4pBaKpJrTFEGj@NB<2tpwg=Kx!^Cg^#+&*pWsB(cqR+ zwNR}vS{~@pC)w7zk!UK4Lgx2^soz}p`%tGB!nlVE#`ZgecW#4)hKSN7qaR00Ty`4= zI}jEH*(>ZTo?*%O6~K?bZKof(=UYG_c>pE)#EvZ`)2a@HcGYs0o15FC>n{x+ z>yts309ls74ZTux;x1(K6j581GQWw0){JTwkbh|Rcx7hdPqiX9>w?HAcKM!6U`tQ_ zLaoOnGV-*C#Y!-bI|TsMZhdk?)DuiTY^&cgY%<{BeMg{H1Qx3d$Nu=V(sXW+Oi4Pn zuQrsj;I!Dtj@sWe7MOf&$0z%h9NcnoQ53l+gJu%0sj~NJVznG|r2M^D=pk0URtHoN zqQlNy|3T)ze+k-dxQK^sv&x0ROMNm_9jRjj>CU;XZ=8o5W$MEH$;K6%w|G`VLY|G0 z0Zyqnxt?rfhDETNakGjzTF~wjAuj*n`Qr|j905&8=dG37lasM4-f1Wgrcw>V@UiNK z2dUDUJZs4-1iMdtk5!#@>NId}L`2!+W7CHNp!9&_eC))YU32 zLRGuDExoWplU$0!yBP`i`zsq1KJFSTumO2C3qN@Q3UC;V`=>1f;c6u!ju)RHSsjOs z-@o!WC%l^Ps7H67fJ1__-ehBAwf$QB4tiA8XUsQV9pJo%kW7#Ce9DZX48_`{i1zVl z8-TO|QrNe@sF(j<+j_XMwjRk8%W+KF1HC3-(NA{6kq7|iJUgjjAgsrc!)Q+Hq5a0^ zu&qNw3V$NQR(9_|EWiBMfMACWocrf+a^~sFsb{+RD)$L|?|W~spkxiz zU~ahXU#%<)rW*Upf0tl35j+7@)7Mh7OwI_!s?xHLS!O&-A}7o&6$Yt)hG=9cQ&{Idh@_p4G`*%5b#c4>nb zcR3tV#*{krZQZbE*A%FY+wKaq=~k_#Fj(_Rxsi@$=#c6q2ggVxydAsDh{D z?wV0}kb9a1utI_zng497naa?ZY25E!#MbG@Md}qq+AZY?_SUmJH7qM;*K^G;_@DOo zhwlUy$lo><+WB#@r`Ge?wBBTOM9JxyR1(3V^lB_2Q`AY#DRElx!sK+W^U}lV^~M@$ zG!qgfZ}Le+ZIJ)`@lw*xEzlp|xTMJhGkSI!DkDDvZ756AhR;oDBcTlfgPO(FH(U~_ zi?Rl+60)BKr`d-+YSyc7Qt}FF8&}fsZvg$S`LEaFzn^?N0wnnV$5ANeS-oLm@L8B1^qG48lu2s(U-< zlW)!&(LPa}hHqmVhWM2Fzo<{NLWXDDj~(owgs$>r#eRAHkR2!VS|McIf^O~>|4b@J zNoANKZbSs|bFcQ$Du0U&i-b4i?<4yBv;ENX@^>t&c?jgT7w{%s;yPSXSN{68Cm`X$ zA9f!cR#-zoh5S}C8>}zG7f}D{-lRy(lZp7SYTJz6>lkaf zYm*bkOZ!{30rBc{l}%glz@Ed?D+xcI*0h8aC`_kb7{ z4sXw+i!0STIHY@CRjO+q_u4~OPLp%e{=S^(KfF7U)k1qo`(lw@ng6w_Wm9M;sMuq) z#Nln^P^?Gy{E*Lz9%oPw&(!wrR)Fd22So`3g#PQ*4>C?ydP;ELq~#JUsk;sZxBcP- z+LwUxf+4aIQ!H2hs>vIC-09F43oT3~lrqnfVt2VFR=v#~x81NXO_g;IE4AzNJe27va@V5=-5H z@-j}F1|Dw64_%$)>GL35ZKpV|Y?DD%87jjA4-jF9=nlilYo1thcXLAsiQQ4N;SDjC8Yh0oF3+|-AS#vD>t9xVfC(=n|Qsh5Jl$#bjcC>w|FtAl? z%rJd>_G4J?t?bb%_MhZ`H|YWv zaZim%B2msKhc82Qo~8eW+liI0aE-I}w9PFAH?|J9MZ|jgmePm7racMt2O~8px~bv! zb@9h0)Ng_vc|qZr!FpWqpmLxp8=oeJZaI9A%nA)}9`FkW`@!-4g==+5ag?~G2IOAVR**U9 zpBI!m=0wUl8aQc*Q4~hATbf%6qlD4vm+6fJq#eZU0C#=sUb;K55VnI&iV+V%f7cf7 zVtAg=s5lx}L39WOb`2#B{f&_Im(=p|WL=_k*c|1nb{Cq2+?csuw;F}1$U3 z$nG;{B#JNLZtTHrA7$uvea?{jW3i6QZ-@5x|Hu8eL+Xm?81b`?L6p6g|7#w~gWVJ( zB_*^2u*E;k&7nhVg~z!xO~m89UmMeX1oJ6=lqq3*v_=vA4rs)LQiq`qqWm(N3%r-L z_}e8+i*sCGr`!lsGh(ij)F;L>*zslIC8w>F=wm;-omkV4iAJhw43-~7a9E_Lh4$@V9=gp9JsqC^PK$^)?h0DXw(o#f3+~(j zO@JYvA{pCX%HqHqe2zXBJq)Fes0yJS@`=eURj;Ae%BxAAQz@o5uVDSa>2F#Nq6_=z zYC*iuL(mc#qJXBsYsJt{K~+ig9z5Fc#~MN(qO88gdp498DG zI8$5tp<7Er-fT+-uRD!OTYd!Uaaf=l48PtM8S6vs|m<^Pyx~)zjifB$?H5;El zedlE6ZvhwV%ok&$HA;rm)nSAWnDX(B#^F6H%2E$|3_V1oIMv=$NfbL(0tjdQm`0`i zxFyDT%K=gFJdaZKia5hC?Dl|?eWVDYA~0K-S_PBFavFDUupMC4K(dMHoB|k4Gj#EN{jSJ zeP4c>^{LP0%58|O2${Wq$B>!IPFM6`uC>udYPN1E@ND$=>|fa__-;Q67EpL?>7c8` zAW471Cq)Kb2<{1>*}y$h5W%`&3RjjJY+d!&^ST3i3w^pJ^iuwyJ9|sHmyX}bPi_hE z18F+MNgy;8UjoHgpgX8pO$if2Pj)O@*@~GzrThP_G9@QW9Me*zfiJ^rr?L*DIe2nDJiig9W^J`{IYdGU61PM z-3j9wjjdKs4x#@C z?7^!SuO53AHyGqa9sDiCPe+iVA@#R*CI>f=vElxER(D+Zf0c>SZ-fJy%_{pt17ijY z#(&dqG~=fQT&4*na7ou{MFpt|KlYe|q}63)oOtDF{nW1V%z;t>n}3k(L>~a1E2B02 zH(WvxB6|OOd!&A><*O6p_$H{ImrER0Xem4KQf$O z$4e6|h3}+$*8C~ik0e46P9Q|QblfJPaF;^60s6Y-I@gB};^N#7W|Sg4&=RBw2i^ib z24h!1`~_f0Xr~u$;Jj9Mu%OZ1{;Nyv@JWDJWZWg6ks&&=vatuB^dJNyK6-RRY}v&6I(EnxE`Za}jNX+>EsoKbQ;IbK_D{pEhwCE(v%w!6gm6 z5G&i>;Jpld4?GV(>dokUu&w!^6Ah*h1{DzG>*_-8TklgW!gUknUEQl zDt@-03vyXr+Tq~Ycz6Yfx`<8!IvFrnAX#uU_@y_02A->Oe=f$mST`d(w=U0S!AF2@ zfzQC4(aa6W6(503F^Kn~JCLrOh^JT`Bk`Y7ZYS+lEL8|w>lc$_|5~F@9e+50M>_4T zubiK@yd_y2;FH6RGyv+U&Zkyi+i`CwR&JG8nply?BnH*$R0btg=qnssOuJxRI~}u7 zp)U>!yIl%C9z0(#)3oBF7t@r>IDs)#yHdPb4ku_4i{U&~w%urMr&Z9I`db-r*C(#P zU064vTG9#kFrfW&su(`0OPqkG=-zlopV}vGa3d~E-!Kd5ywFclyD44RFE1^fb~J!e zWB~1N*;Sp%Ux#Bp4XSaM+`Y+AHQ~WC?Y&M- zp*mn3yw>jQ5N44sM#A7KRk3K=-U&6D`R2R^3ZDh8{{PXra zJNmRpv>G^$O!Ua=_r`QYZS-IU7RKgdpmXaTY!6yLl!alpzU{)Fz5iG-Ke@sz4NrvN zmz){@qZO;3K86T0<1sw|cq!(+-A~hggp~y=>*T=u!NY>-L7k>*c$91?_UG668fZc; z!8a4`aq>CXH1GPBmddSO7Uj^k@L>(Uhef+PtQ@2C0}2P;=|;)3C8It$IRw60PQ$OB zS9X|u>Zej+R#h~(usg4+BNx-eIye@_hu>~svZgttmMtR46H^DcKQdda9Q4!LCF+r5 zPIrPsLL$04I4H_)F2jF!v1r-H*Hx_Qd3d$Q)~Y=hGpS87Tk`qJL}`rVlg1i^^BF(bA2nnGWToIa z0BiNRJ6K?01Ef8?oxLXqt|f z35C=OW?v>pkcObZ{QyO&#drrbeI@m?UtQzV+4f<6wcYIT0} z?$Mam85(o=a=Dg;;FkZ85~_e6mI>r9AJUdD-gjKE`Ns}YJagfa+Fk}=itx?@@H8-? z*qs`dz4+UWZh_Cc$+NXSP4Z3mDCm=IM#!9tUZF13FVk~YYdnMk+43t~FU@5%VjoSyTqQ>g1tK7@Muz8ibMBwV(LpX}r zmCxg^578gAHQYtNzuC|K*>6|mW{83H5 zny{t(7zynktIjdm*D;@QcL|C@1x+T2HDVXWQc;%<%!64j)a`We|H4>M^2;ysC%|te z%=mN7q#su$#ArY+7pg9U6z%q!?1!1jIn`Uc&yLisPQn9y!7P^cv1;ld;TU92AL(w> z-VA2O03)f>877L%I=|yvI3GAOzL65v)L$trpW1@4O19tlCw4W+$W}vrOco4$3{J{R zoq`57KdawayIC>(BXxbX+@w(gNWiBh7Mpfk`p(8d9yE#zudYX_|G0#dx?3%@<9gjr zT<^a-iLXW0+hchpE~F3{5wcFXh=_VTFKsWjHhX`w0V+=UKr^&o{{xB>o~ZHbJ&6X-kEY@?{mIL_+`mye zwa|wFf4&8fz&t7I!BN*wWyqdljhh~U%z#Nb4~yUPp-l|Ma3ntBwOkPi8*(N!K9~r* zM7!xI_B7Ov-Gx8NemCIcpAdi$J61!kn3y3m^As$SG(>r?Nbu~F;=OxDplE#Ca|V?O zy$O^+FT)!E1&G*z!N^43B0ApNcGmtDEXCGVmdt%AzeJM;3}=a1=S#=^XBJF-Yvi~G zppZK~ZP+$o2-P>JZ=V$o#7iMcwaP`&VR;sOALLgD>1m{UXP6(c_jj?cvX}^2ySzkq zBB(X9K67g`I>l|-$4%-ay_xt8^k@;^-r3Ul)X<=Y76KFHb^lmZ`?JSXb$i z(|xI151+(B0uQPT5_k&CQT+N|CSbkyq##%4);>*-_|uQ3I2fCqD7r`QN>a5S3I^(e zb3%dFz|4-zSKgd-iB;bhY}%SnzfcVma;%})uv~oR$9$iwW8x#kBr8s~yz`i`%!=;0eZGQ)>7T$@3 z*9$3MLbo>_9~M_#Z*l2-?U>i?jj5LyH`_wZzAH=~?uaOHc=ckvS{=Q$;^$Eicic69 zHw{g8Z#$s!n7X;VqyCD5=J9y3r<*%=1+1esiFgbE@zi#LN>`3qh3)$LFAAaO(6Ks7G{0@{^0M4_z`N7ALlu1Ae-lr6*@zFwGTPtSkSPK)$9Q+!MH@Q+2N% z=~)NK5_-M1wL|ixXNJ&+j-0fM{t&5*C1wydPqiuT-=DaUh1j0p*ty!-eW|lZ+~}-^ z<6u-6*RqWHk${d#E@Y8bxm7{rcdKN48&Gn(71GiwZ*L2%4D)~?B`s&@vsMWjxP(zH zK;I9_zw35{RX3}G_m%v6%~jw~CE6ptn3(v;q2{r(av_rqs|z*St9o8eAfd{J<_i`g zi}X3itp8hbBgu8BAyp+zxcB~tsJ zuPBt)6j!&^E1Vn83AqN22av5MFHfn=scmp95gL5Q#h$r+3t&O@gWWnZ!f3vHzW08X zAf(D=?kg@Dd)^1JU`8T7(U>EbrFEIzf(y^y)N!3z2ON35ZPK_^3Z__d~LJ zLEhY!L88cU0F;>#j(#mW@p;lz-OCj8Kd!_t)R44Si-oQWiVk=9R0w;rjX%}rMvOUX zngr3NDu(htSC9+@9k0p9ri#^*F`h*3#>M$CDwU^NE zQ+}v8ZPlIbrzs42y>+-_ztgZp2;A7`%An-=O+E+oJ*sKSeEJ-ARh9*?YLEJh=#tjW zuqy>?)uBDs)Auf5UO*k~)deQ9k8tP`42# zGVi0sKCx?|H${CQ-(vK9wt?@Y^%x|Kn;Xdn*jT#QWI+Pi&?s+bCJ?LZHD5 zh&_3XcRJAZ_r?}rfhIGEMMkhrs0gmaBf;9B_5vlF^&DGkv6nberp#SklSg@3jo2oWnw(rt*&Y zt3pwJIQc6)dTfQ)h|26B_i%WOOWv3csxT|uLBHRqNQy=;m{zx9>y2h}5Ky&#@|de?+{|$;H1L`CE?=603fgfDvj{iMI~u{ECF9Yo zyaa}nVY4*agXq(Yv==KouQMp_5x2Yz@xY1|SF*#YUdzg<7qO>Ukj)Tn`2gzjPb+(4 zFt@Xm+t=x1<{5|i>U?Iun5R#eooY)5yR{N5yJUpBt!k%G@6(PQcKw(;bRZ>$(+4=5?z%4SPp9bXjDUaO5)n(XQ?MsCRVuD{}{T1Hg`CpwoWl3wzrUjz-*O zdPRBvV9S8CH3Pv9;LEh9!M%~)d^3Ti{CNjHc4~gjW{_4{R=K|dEU^PY$nnJUIb^IeMF%Yj|jn?CQA=nu0P znLwar4U}k?dq1_K^S-|OO+oALtsG0T_kYV2+l|$iXn8GXY?$5~Lf3`oEFg0|pMH3dOs)|-|rc8kLDSx0-;k|AYME$(FV@Um_B1k*1Nau|rwyf(#N4J&8 z_;a_bP$p-m;uBW37U6L~c?q>H$yqHKUfa+hu0yl|Bn*hFa19-=`+xA_bJ8EYn8*6u zO;D8u4Dl+(<>VUbUBvR(@f4N;InK4lFGJR8`;YyVH1s)F8wJtBhCf!J#QqbLj2h-& zoOUH#95cS;JBjN=nFFi3UPQ>CkSeWC=!lQ?4gAAyP*f?&n`;AU4IM7NC^`C(`*izi zN`@{=`0LUzECO7xtT2FB$tGayI{;VVmsxf~^T@J0u zQ$T;Q7JjF0_ND2nlJ~A3K|AV%;f&({jRy>^F3v23c8g$~jkkMgr6ar2-7pwtQsEDl zeDJ|O5sdtip}tg*qa+O!YN<=PY!yA7J>vgPOiunOc@|DCd|ms_Z#fMfT#ez-^73C9 z*|Z4u`{OUEC-Rz-V`6QaaZvKz4UVFj<|z5~bk1ljxjHnP(Z|nKZXIWeMN|)|+c%d{ zT~=Jq6wq05xIki8GU*-!NM#Pv)I}NdRQzh9@}nQT_3Bq^*syu|;nn-LmC8)9RMTSW zyUpH#%q+ZJrJaq-A0%ce3))|&l-5pFMMs~UgV%BKgdWx^HK=pH z%@L5Dm9sybWdpAjMMvcGwL`CIbwE{hbWdfdqud`C$p058q$YZ3N1Yb&axtHM26;Zi zbetTheT55>5F2FB!n?^?1W_XCz1wu3*oqbZPav@gvWT9|@Si0^ zT4UcQNWlBKZ3l+Ad-Nk+W8$CzP~TLb8#SmYnU(#Zl?V?O8oiy^M(LzbcN)Aks0+a= zR{VWMuZ{&QDfrCS(H}<+mD+p`$d>Pq;=Jh<04Ab8HmIpZZ$U(n=2xd+8{#8+fPQZU zX1+deaIvVD6amSJbb&}a%4nAF%aU?ixkIu3Fl$Wq`mumK!8a++D_Aw~B;c-7E`%MFLA z%z%WhmmMgBR)_ip{JceWg`xQH8k)t0PC!z9LP=9M>wC-;r>_G`4iNU&lwVThRdF1A zqp|4YcEu6GfYoF?Tjj8g0r3|ko-YLJgRJl!pD_a;UE(X_tDk2MP@Lr=@&RdYn)c4o zD$v3_v0lhLMTTHjzqHH2=hdUka~V1tWk@6{Ev}R_AnqA2EgzrhfolrYDxr}W$|>PM zm+K_DNxDayl)V;0U2-dXE_D*k9TIZB`&&2=JSoMybj6%~9tFk41(%iKhue><4GOX3 z&aI^n=MRoi3*58+`F^3kDAV&-?)%D14i7)3N%{Xlqfg0S4>?`JAp(jKGw}_pOKBFt zv=`2F`{$j9c^kIN)cjBK8{APBg~S&dr=)cK(C=XxzLt3|OjY90uKk7HVBO;!uqnH` zlPZ5Q`t6_SO;Y2TG&(usf;dMZq_a_fi(;3@1wf z&Mg1>?A+bZ#$OB9pk>}7-PJ>WE<;6!m_-*IJn0nJfFlgjD0>(j4DQ@Zur~o|P=M`L zL@a@4M_RylkFpI&_0(VbT-O|e6gUEH4!F?|h#PH2)~CSVC|{NL``T^XWpFRien$%G z5}s!~9DiZ&*U)?Oa1lZsv(9l#wJ`MJ;6_Sf;hdz10b;YiOU==ZmJRSJymd*y zF94xgilt*~SLgaNoD_h&+w5p{eqEHl`=U=)?7U~&$!T1vXaGGOXyumz8L znvA9pTHYV~Gibv=a&>2cw<*{WbjbG#uaiOhBlq0EBp@r@`At`c&?7yw-_1E?>KA&Y zuxV~GyThAdVHA#^js(|zZ?l9S{8tp0Xm*6gX?($Adt6x0vb)x`zYkx%a_$I24j0gO z$oR8b)Gu)P!>5a)w|-rW!e*Dm?T$Q;e__UF{HkMB z6ax}LY{EKbdpyJrYiz9P8YcbGnqjDtECbKC1Zz z%O}KgngtaxL{`mha~$3$)uK#A)aKebCzx3PTomWcd1%-X3hyko;0!{`qe3 z-E6&N1k(t!)46A*rY{OSRx5Dtlc!1>qA-z{YxYhwv)D#XtvtW?BzeHmSFWWnHu$j8 zdnG=WqOq?TErQeS3Pa8krwPB>YW_^xvsjSFXA;)C82FbB>lGY_c~PoD(7s?XTb)JJ zeAN=p=;Vm8?oi*3mLQ2sD4>3le4&VwNVrCVTGGIn}>k&Bdi@`(?$6Vo-WHuts@o%Wo*NbKh`!Ej^qPUX-5I zq-d@igrzXnGlZQtSt=2Kvmy4&M2ajV7-4{$p}`K}R0PQ`^}_f5EX~KEr%DbFDj)r8 z^6t2= z%JO(yW=pBeIMrW+GL|TCGwX&SaVtqMj-9pSlJfrFyY3_sZ_e;zlUk+(`f23LF7{k@ zd5q0jkcYzC?Nhpv_>f-4mM-?&0@6-TPqV3zgK_`rZWfArq~Ud~-AJNh>TrJZ$BDV4 zza|&RDJp*nMr>-Nx(WJOPVUDwrWY;0lpQ55HKlCoU|GW-4A;CfjPSwrh^6pCu7-o912(C+ zm79JJ8?=RP#)7d_na^H02M$EeB;gQl=$Z>hy6V97nv4eraRV%VHZwB%M4MaWP;gkcl>W@q$9-Xv zZ+v9CvZ18G6;V5l%n?V6wW#FSk0;oqY8%LMrx{&3NLPTDc$>7@YC6&2ED|oB>PJI$_dCEaov6L0e(0?AS;8?@OwY96rPCVm{~5SajtW{lj&TeTdARl z+olJrqO}Mf(cZ!Hfd+?i;|927lvWA&2iJ|ga4NC)c-vvFmsiVBqT^r4MX!AhsA{S!!$TwlbMVdaM8<;J+$I>#k}q_7V$l#jM9g zW105jj1Fcdh41#~@!hjI?9H_P?2GWkc%p+5*~VuOe=$6Jz!UzLD@(UI)ooHNTD&=D^li4RSreUwbQheTl6$6WCV|I`&mpZ#2ykU>d7x)jyudC`J3ZU83vSMA%- zA8XPdAfKMW5w)B53u^A(MbSiY205YS{!AQP9T*wuynvu|8gq|mEe*crhGY4~yf{=5 zXySg3gy&^Iac;|rw6LvBHrq9K)XUl)crxfI=ZV|~fuj3-0(^$!q@}298y)2QhRw2a z79pVF#`i~=EN?|4eTh+dih-PKPH5^GT;UhV-`Mw8w2Av3=*EQRPKoxr$NgcNOr}hE zNy?`VB0`dcTbNt6{#&$3?bY;X39 zewdFTdb`l--qKPtv*1$byXd6@!vi`z4i$@Eo>6c6r#Bnc1Xhg%-Q2(9xWL*>ElT`Ze4{> zs+)5a*j)fMyQDo%rAj6BliQkHLzippL%g|${&0*UzRQTQ2r)L#fbzx->%SK?y6 z%79+RKIvLS*sZUY;f@zPiQilOReGQgX?^cGoJbue;g;i_dzhoVHn{@_9G(86Pt7FX1;fS$V?!VTz{+{LJHQ0}L9h?!s0fE6Rpb zRsW2f9(kJBr^YnWG?*sLv{bM1_+T00=Lb`X7Z&Z>1ix+H3Ws%_*X6H#+~YPAs|W7Z z^}qulzVRNvuhwjAtDL{H)6#qimpV0#{FHTV`9I$RM3ged`KWiR6NGS?IaNo+xh!~? zL*6}IvTv@B;PHyqJ;-|Za$!-R;t7^`QXq^y-tTuQVhXQTHYZ*Y<8y(TKUCHr4r&TA%JS+_zy}mIVPo2ny?D4|I7@?+Am5lrlL^e5eGFOF_P6l!;u_y zt!)@x&cXCoKnAzu*;?CG$?MJw7lB2VOki!*Tqd;abs!HErfkih^;P2za$<4DUG-hA z7yh$}Q3Q>_`l_h&?!@k2O+oW}wUUX7mw`nZ0J2w13W+7N4}+ABfocb z$k@kLqB%;U{ldWlbyun19tmGnkj*8KZ0tGNuA7H_k+}wA+|&NAmXUrhvRTfk%XUpzQ3!_ndlrIo(jWuG|Zs=dmdEGy>EW6wy3(I{p;Fd8OHiY zGjB6Si_2CP3PLxjKauzg_E%w{*xmNu{L$>c3!5bv(#o5=XIGBWyqkL+)h5{u%o&Um zb_wpwxU!{a%)8oKaDWFLa9|Q@t?9>tD2ctop7vELHo4 z#FoGX12mZL9WQe0khYO<=PJuLc?y3dru!#32jYrSU79YG?9b_(#i!+n* zxOw{P8-s$cYH5kf#ViV6q{GgvU46^&X<-!y&)4|ZQHC0~ZPXCP-Q|S8TOYMq(S)Ms zUR%hKcV%8AF%VeXStppG`o^_wSr`}$vtj6wn8;>S?Yl0mZJ7P=-^fs3PFQ4nA=lP! z&~YjB%vW1mUg^Ew-6*Vty3bX;>$TGt1f2~Im9Vrk>OjIkSiFU13`;u$=am!rQREJX zSH|G(xqnZaboKAAok#lhT{_Q5oVQ9nhU@ISwvo3*r!QXZRm`+=R!S>IIg8^@qpDBo zaNi`P-lzFS7uuf`^vrif>3441PERn3L>GT1Q2GT&mr zFvKAXg0jVIoWKG9{~SPE4Iz<(pj6|$#wC!&e<7*ao1yV`^}}tl0V+Q?e|){t=)z-{ zbs=E!{i^mF-?ciKS)Pd22!S@LN@DkEhGU|!{D&SWwjJP(VfHBjdaZ7RO-6lFi{L)2 z;dJR)FaK>77Za#GgeMtH9GSS^oYagNlO`+S=GxXpnk$t%{vB#+sz&-$cd7gMx9O;Q zNEYbVluT_Xf|?C5=(*|%R6P@!NhM`DxMYxO*u)|sAo$#op{YgmPuRi&a(16s@uc%K zT|3o#_YwRe`Si}xKoUlD3^DVGhO zoWkkjGOu{6#MZ|q;+U2G&Dx_&hr7WZ)N)g89k0T#?@ZE%d<(mw;&GmH6L zmiXUu>9lLkoQ(d%@xGR$k%cdc^E32MH6B|&EO%q7I`SCrE=etPE7Om{mWbC} zW}*)*&ocK{QND&*%Y=i&f0Z04W7?IH;*y>pD&y_Y@aGS z`~;_y{8L_y-)FCr|Mw@7rBFe<~E=j`j=w~p8K?3p(VKfn^ zc4WKBkB|HlENe18sKC3Khu^tR4fvNS+&jxi;q<4~)rwfx&<4HvA8kP7ze)faSQ>8L zwoVSWFvPHo1Thl?ns)@f|HX*iq)4Hx;45l+vP{2u+pM~-$H?B2$OyJGXF|eBJkK+R z%$Y-ql_pNtFeyP2u2=*a=AW`mQTnWqXLjH%(ZZw?dAt@Hp1TgrX*59l|M2zKQBihb z+c-STkit+(m%sojB_$n#3Ih^1-5?-{vbV=7pgNocp=MakY0Mhll z2Jh!x>sjBkzJGu+Fkv%k!SDjEwf^&@#C~p6*?71ZC#}}ycb1_KPf zS`VnXHfCwV55>|I+*Fsb`^)%X89gZ}xy<}mY>K~H4V0P}^ZMU9l{Pz#G?0ud(}PBP zm_=w%X73pXTFa-!G||W9z%ZaVYyP)%pc78_w&V!q9R*go%&lXQ1cn6yQvaXqT1mQ>4 zOtsZ<4)AvKMmMn`ZHTW(sEefgII(mj!=Sc`N&kfs-OEt&_~pX2oaHR$aVQdN;NWHL zTGTj9SpY}(3zrjn2;Ziue={6;3CLlT*4|PW^pLjun?-HKC-vL$M#$SmNo0;0ovtF+ z9NmPxqtGy-BR+&K34ap0X&1=_z96>KS-ULDhD%emb1ZAtGKzkvEd_xWK|Bt0jGd~@ zh_=awI?}dfO?1GUW(!F}qGd)8UGN-H2$4e0?(W|VG)7%F_fAPAtupIqm^0nJi1C^d zQEbieOJ90+x1{i9N%KjeU#IGPv(V0H8Yj7>u6LH~PVY=8 z*VCs};t@CC`jKJomQ7b=IAs!s-`CYZvF!Q_JJ##=pZK7d1G>h8??nPLcQp@fpjpPh zF3kW+dyu^|&p~DcJ-0=AbF=GBw{RX(glRnxP7k(`1<*gD)hoDQ?3=DiIqoga<`1kW zwwO8&lpoq$hTSSC=r;bV2^MPGG53N(YrOa}C6)CWJ(l^v! z_>t*1Md*TiUe6z0mNaJ?XJLJT?Rhu7+!V+b@C%y-6aW^{^xSYGOW+GZk~1F*=$nnO zURWyIc1BK*2Ap~5s78_XW>m0Ncf!sNBb1Q%N!lt(dL5_JE*^>D=V)V`bh_oazq*>+ z90I3kzfGDFtaCMF<_(Z8KLX5K7Mmyh^$pEeFeBuw=Hg#gTN-`z$rRRdGWVmKtwCU9 z@D7bOVbtSPHr|(AXVW8!^>^82JX?IPT)#?$$r)G7;QIDw&&=}4i92B!HCSFaAx%_ z-xw^+s7TX$6=jNxk*L-G@wn=R zw{5jE^J%l=D;RugkVBYtSZog~hE<0v#(d{7+A%gbMP8PYXZL5!oS?ss-fk7r%qxh; z-`aGi!td(!I>vv@J~+5ka4!27b$-3bEyx(C2GCgO+Z(th({Z{e=ogu?dU@W88;+I=Pv^5T)s8oTg*ASB51-(jcxJRRx?jAT!_DVU z(1SwV%j7UKgY7$iNrsL??!x9pCzeLdV0RtJ>C9~|Jxzk^zt;&0xQZqKy6lu$Q?I3h zkl4Y6%}}y>2P^LLrNK!6A-J4rB`{MmAI~;mU9dtf&5=en-M6%}Y`h*be>4t*uMe<$ z9pcy2w6%>}0b6BdF8LeSYQ8{5BqB^4z7>#MNzSN_kfu|8T$#KXb1%gF;|)vkcfO-- zAXB{ojW6!kJjFekD<~^i>ml`wh^kmGV0XCx)(M!>qT-xJGBcTMEUapsn4Bc)-V^Fh zC=dk28ewfvQeD9w+`)Aj)XfbtWuoeNXv{g^(kC5=-bkNR z)3bFIgJbKv-&<@du*r z`ZCcRP+#o`Ie{cBR{&>m&=?WK;U|{&nUr2U+&bXy2TyMDPN?7-6T^?<)Y?6$508YV zC_Zh_>pwft#mZ}xGS@C~;$&Wuj zE2ug3F$YxU)_aB#18b|^Tm1JIFpgF4H93Lb@<-gh=t{Km1KbuvF7G@PtJQ=*Yujy!6S#;bJk7 z_wBxPxS(9r9M1E)yV>>|_pA0EQ`MBqwbY-<;_t~PG(hUTo6Yt|oqrs3r>grtS zxfYeY`bhse8;5kTL?AysQ+VvrnxNms?%NtE=+Br>b1cTwN;97q&41CjcmtA|8hk^% z<<+bJhEyu@2VR>w_mJOt)?i&p)$LUVL)yU?{?%JQy@Hr?{5>Q|<)A_+tk{F1rsmtvSRZ74%y8rZ zF)j^gFNQ7bZ)Pnf!JxMRY>|4ly_Hn|S=HljZhZXq^1uF=5HYJg#VFIsyo+l%08ygW zkRPa~VfBQ^<;?&M+aN%J^$5u+v>jRXc8uEnw70 z1&R;BX<-dEWPaVi31hZ~#(XRsfcFY}yNS0{55}O66J7Dc5HPjv|>nY$ zhGjARMgZ1)3hrVvHH=bE(9uGiq~|J)_~&(hs;vl6&WY=Yg`ESvi%bf*saAmz_nG-4 zlx0_4D9hXF$<0&KL5?KXA9q!xZc~rH{1g0Z4s&nW!&(0G1lKo^HQ6Z>ULL20wFk_c zwlJ<^9(#uAw*eeG3@Gp>vqo3S&(ppoHvy?QsXJ&DuIQ&#{0vekutkn5#TLLRtdSS| z!Fq=XKT<+60kz#CZG|5z%ua@5ui%oG3`H&cM$KL>?#efp(k@`qOXc|51<6GfPs?dL zUIReXEuw7UWR3ajBIFXaq`c;30`B?~dxbHW&YpQb#g zt5rlwLkiFXA;BPo06tf|^A>#7$^7DF$!W_K#HXbYDBehJwEzEKcd5`2)Jm3R(;TXN z6Yl4+ef}2nBIYdSpp7CZRR?CprR={m7_o6{j?*46svP!5k?6>+cgu>ql|8z}BUp$8_sNt%M19l7rGz7YWxky?EYX$-Bg{2${-E5dL zoes%OV{#07Wte@;p-=^vjF0aO|Gs!Ibs#h;ccw$~Y>g#tN$_Jtu zyIYpl+N}}bu|#x}Uy=y(nO?DMC{K&14Y88$@p(1+`L6|)?c0SuT`0`c88x`k_hNXL z$QUT$wXhsqzik*G*StiHB_318@dPtJNzi?6pz!mL^pNO8Vv#@BR=arzoa;K#Cak3= zIF5k;n6AcAgU{h|ft!;0JY~Yk8Y3-nUG^rf&O>S=$u|Gc3C=O_CSPyP{$o|xO=Ip@#0>w5P%kjtboG|Tojz3>yjxnTe3 zaL#dEZT{a)HcZ(ORiX6iV^{eG%G+FrH}OO`1FWnt4G=#+muY`v(|r}*j!EpQ>wfqx^{qvHUOdyYXgi1M&#PW z>uD?MhkSrGzj!@PJl-O++=BVxbA2x`|eysH4iat3_vJZ;lM5 zyJifiZ@PP|;JoS>>&WV4fm+-L4&=OxNZ#m0IUMtyJ=1=`)ma%ekAT`p+y(Z$8k3*z zjhz2xy~BqHrD~2h9GUtDXcB6T5zyyhpC-mS-8xxHAkE7%k-B4|Lk`4wYa8#SwU{xf zSG4VW+?2Zj@z-;&IMi!mb(6BLr{!IJaM{bAny;bvGph;p-V(qX2<=0VZn)&Ny?#A? z2KE##Z1mIC+5W?C0`}HmGLT`dhsr?e%ONi8KEX5jNU;ZR-juaAhpL=-RIy5}6cwSs@l^S>t4O;;+XM{S?PWIR{ zbyltOc~SQV4B5&H?gJf%sMcT?(lq!snt<3kQ^$8ckVTvGRF?ysR@4r3hV@(1Ay=edk^CjZvN+&u6-00Hzm zvqNtEw*$4!;B;g5F<%3qT6%R#-~6Es*KM3oYWJg1K@I7{mmrlE+p~O4%VSU8R>qSE z?`*3_7Vk#fYSFw`U~LWf0sRDj9EU`0G5gSSN$yxm?%48#SV0HvavtoIO$`^wEH-?Z zO?tG&ZqRp3y?vqoSA|1vv12K@=tYhJGz)%Qa$d?Aa#K+lUH1MNA6{|DEXuD&tSx$2 z-<^4--8FRe*C7nfI!ItFQLh_TIokKx9}oy0f|&w{V$E(f@8}QGfdESb&oERz*8_UwY)5p{n+3xAz3z42Z%6dTquPBzUIvZ(X14HH zp`#sTcTU-h`9S5WvO+HpTUk8i9Z^lxpI|3a{KmqWE<~{Lq~;H}4OSB^52f7Yltu?g-EGtu=jBV_FcjbHz29@( z_+W^v`{z$;K;-aMn#<1Ua9MGDuPQqi`66svGmpbS>#T3!JF1_Q8zvsao6WH|eNQOwSPZG_|7v{t#AatvDn;eE|6e^Fz7WxorS zWWQq9k^n2B?yD?h#qn{sC22JaN}-)oJdec8EcKb`J=nZ{HakgMJo)T+z=QX~d0?gC zBOi08+J7h$2hp3po)cWXY7Mixx)gx>g1L9_$Jjdq#f2WQ40@;jJ{jhW?3egFwQvtN zfIjg{x@APeXJzWjfHxT`Z)$q|H8b-s5$!n1)XJ*zg$bvAFEg2!!tHoc>go2cWKrRK zg>rTN+aKFke**k1pP2CdL#dT^X9180cZ~rA!F&k8Gu`pfl1{vb>%mZdjT4-;rf61a zq@CKsW>no503fi}Kv9;9>9-tz-l!i#-kkmX=SViZ#dmJ@=|InT^MyXH_J6nlJ}&{a z!4MVwWiqYQguNat{f=-$)f*H$i-NVdh2kAzGAS8C<@0<;i`YA!fI@7VSAJ$_v>-f0 z{D2Ao`W&!nHh=%2+Tr(@QD`pN0Kd_uBZfvR*M2t|$gyB>$h|N<6UCocTEXtf-g*so znz%^NTceBVl+IykY0^{$`I7lEu{5hYdc{wGD$yF?YSk&8LxPGB#XM&VYa@ohhZrIU z|Gi<3S`SB|x3`rjV~Z2KEPKZp>{ilVlJbNmp!i7I7gTw*_FEkH7k|b8)l=cYY9F!3 z%}{3oAm!~s=Cxj zJ=$Coa)X_$j@|)f#H!8T-oj-5&k?DY5f#5a4rav(+!nzeYSc<6(l^Y1_!l5!Uo}Pl zQ;BFJNmF>@1Mpe&4_2PM@N*W3Ux|9(qBlJP(n30v`0B941LrutGfQhOH>4E;Vtvl-!e6P z_!%nyEHAwmDyrR*(2F*;^}6rS*BVLFCOtgt@c4=a@W}CZcY&|0dUo2{Z{3d!$P$fW zp$_)fW5bQq)tObP!nFIQeTdy-#6)h=GMZc?J#)*QjLDgBtt3(8XaR&|z6Pv8ukIc< zF#Vf;0MF8SIW{W1JzdXMNGz7X=MY1+>wJjwjxp}+MXPd)@EZ#iT1c$tT=gh&zGd(m zc=S^NK>`N^6Y{PsV3kwM-t~GcN~SjFHYqcw?e3Q>5>A0CN!rv0rp75U}3;=@r_d%7x#J#Q>UQl*&vmbO%bXxu31i>j@2YWRl~ZK0`yjERIa zUPoY-Kfhn<$MBcSj5YBWK10>^VQehl?K@Mwzx9x&C0~WzN5P>q6_PI>hpU>(z4P@A z9&ZjIv=`2zF8ktzOn-yQIEt6j?9QEbW?LZ^va2`l-EhlnB5GGwjnb-){SeNa7AN!U z;Dmtul#K%m9Nq=I9H(}%pycx*4%rgIhV4;E=ja*8+Kn4TUbE{O*I?JO6>^A7{-?(O zi)9AScA3f}vj?@3*GwB7)AE1Xi!_yZRg*C7xt;=3xzz@AFzbknWJ{9O(WbyqqD`PJ z(sN2?3PVr=kuNxZ2J9Bn92dS5ZtP1WLzhm@PC^CAA=xA< z1DBBnluSwyitJQn9~JJ1VMo+$Mq>_WIJcPV=v{8`0e#01bJYj#?#B!aFSmgF@g0*l zwX?3RI9>+_vJJ%D#2F8TTA0|okO5+}7A+5Z3gJhLC;{||)^buEL2n_T(J2i2fh-5f zdpy>Gcv9ex77*7bi0a7?Z|jZsXB7YtvtYojkJd}qab(zSx33Kl8MbGXkH*mK913dB;}W;eH* z6~fCTeLz)6wpSGiiA)9lnIq5 zGZU1E=x0%SDY%vFp+N9&CGy{WG_|+52==qFeING)8-NqiFGdOb3s-;;MqU=$7s?-+ z(XUH_6g`zaF zb7(YuH9;11t)2?O&J0ngi~}w#4*{2u?DL-0&*ln)_<<5Yha_Vvoei0brq7lJg0%Dr z3fCtgIvsKr!)9X;H8IZ2!UndtJC>iEG{9B~n6z$y@J&K&kj7T&>}BWT{hB z=9)mM;Y2p`P)@O}?Fy!72J(B{sbCFR2eARQjw-(0yYe1I24~7()7E_9@nryG_tI*g zwQ6y@u6eDbTh*2Gsy(yTQ!lUEq8|5a|1VdOU{z6?ECQ=hZ$kY!c&ixCZFH{Ott{~{D=;(jguKFJUZJm+=0ORW=33_j;n?( z^;NeVj{RO7Saod}x$-syE>cLP@J1;5XmA_HwyYE$_xR4Z{}usigee=fR0caZ^d2%_ zqghbTG&M;WN|IVO@xl2h{fmgpwCm^l{%x<_z4X0K7OB~H{q(oicr}2~qG`-fwp2A8=-dLheZkyu8U_kiG=&32^racuGEpv`J zo0{fUz7O)eVJRa&)ak3Y#l#ugO-+3yuSImy`Y&?wn*U-z2EKaaOf@k?yI2(+{n>BB zAn@N9#Z$S)FTWRRc`w{*zAC>%G!vXM#yTIsO^eXm`;TK(0e8qK&rtUr!l5{GcC@h1 za1{Py?NhU|MdK4w3-e!F_nz(!W*)cya#lxvW-t<+_FG*V>%?wjz4lOxeGAqWzjbQC zroL-MJ=W6@CsYN$O9nSG@=sUsrmoJJDEjxT*s$!Cl8x_;tKf{yFd>A()XJ2K#HU< zYA`^&rGXpcJ77vBTre^mD4C=~#zom2H>_2oxX-(nZ$&vhMo`O80Y0padZWy^_l82* z&ll!(KI(dk8}kPFTO*QDi>k3bke*~Om;*z>rnl{v*LSgMSm7ju3-@BGnfLe12X>y^*iPX){C$c#6 z$uXDx-L8!hY`1%Kv9zi7D(cu6m+TraUd+-4rY{e}gAvZp2N+sTUWJqf(y@zzKgP-XXgg(%(C+zEjk zUUREsI0UWyIR>~tGn`gOBS2d|m)pqDdaQf;3Qk-;Yw&>;ZvxP^Me+JMX<Mw>4oTP_NyzXwFFKhHYBIGZs zqD`+o1vchTHLMybV3(ChrlY|-Geqp#a^d@*!~rVT>I^?fnb*qIjTcV_AaQguiLdLY z-~91ksK#)`k@Y*pfNv%p^(~x@0Ij_%`dSh8NNIG)*HF@Q4Y{t?5}q)ItKVnZXfxwu zP>Yax8C+hP?qUvehcHQfO~bo|)PHLvxHfSHPzYn2LSiwbNf`i+SX8H&NpSy;)e|(|nG9-h3ABh`;f^`Y_pd+R>7f z?*&ynl|+4<;>wlYC}v{%_V{%=j@0K!6%B#)mFJC3n@49}#XnNgKcuaeS9Sp8ZSBOpoR(3=un1Bx;9*hYb+WXa4`;4PQGv{|NE^7s4A|=u+ zGxlP#eg?dz)nlw6d^H}@`{HZqS+eOcP3dcodhBx{XX-pp zjd1eVHbxg__Xm(=a4uwja@`c=N^*9=8@R;}*oO%f;tLjOa`p{rf*!sam>9esVpEk8 zE{K|9<`ibB6#)G}9RS#BXCY!l=*T{XEQut*{|}n{u!pof&JggR>9wHn#KlON70$ z1;L)}`Z@5NR6%Ja>ejmBKcxw}zU20FVl^|*zP6cV8amRi&EJ3EJr7J9eg3ckJbN}FIqe3}D>lij--k*M0R%Mt zR|2|?wuXD-?eg{+U$4LFk$ezOR)KtLgofL2@XspgeJ1BYK@;rBD0=(H;|#))D~pPt&54tLjHHr#AA%*O z4EU>8+@G*rpC#+d=4MPaHi~Nvv^#q&YElH~7XaWF01HUQ&UaM`-UVjT4^u__`a@X| zp_l%qQ$~V5o@AdW&)a8{jW&(GeL6#9s9Lz@<;)WRdlkV*;ATin4e|+O zf`}CI`H4wNYRw0)T4%e&c5Z)f_DN{gSPcFq26nMkSS z2=EVR(&%R-&4MUOe`2}>M8<6s`zZGq>=7qz3~_R)*_8$gRa5?gGQwaAdyC__CZ_YWZZS;+1$qpf|-y(YUQQ@bn* zZ3$#H&+7-Z-$_lgNK-paYY;mxzT{rnbRiHa3MujN*Q33_W+GU-(*or&+o^ef@WLot*AfGgVu$@b(2b zW%<(*y@tyTX?O=lzvwsgKvXYYGE zdMEmhhpGYBlKu(PzH|SCw*uB#Q6E>~VBT@MENEH<>@S9!px`=KHP=b5T9!k_iir6$ zx{iOa37VYc#7gk}78a5qP<^Zr^96AQ@5GfSYJgIa<|z*xE$O^3>S<1+b)tXMKr{;# zbIH9{Ri}W$BQz}^lE*lgnu{MrY_%EoWe_YHY6a;3_xBQjMJf>sIU>lKIFvM&4;-b; zxMrm_<88=JY4mjWgNyl2fP=c+fDdD+3)*z@(^3EQ?PIi;W9+;scq`1*Xh%dqH7JUf z@oLAys^n~?-#MAff2(*zScSS)Hy5e9=#OT#yV`w+u6Lk*@+D+CB(0F3`1QbX>a16U zkQU<2Z-atYdexPqQc@C8%cN$!m)OCjWYS~H?uzB1FdF+j0pSPUj&T& z3BA45FS)F@4V=U&ost0#fRJ5rV5r9(Kxk~1`zmm{=z3>-o2vyfko=L?jS2^cz%|9d^VQW~ z(F~W=u_?VWI2hBUviIfLBw29>vDdNtYz2 zmIFWPO`=Y`*z26phqwXSjs?juzHpyu>5crO^L7HUVZ zPI~ln{;)TKb_#d$SKKH5RjJJU#~_Tavm#y3RAD7?J0Y^M@zaaP1mdiI?oGfe&vi8v zMJLb@r6!f8H_(`lb@}Uv8Yn{g&iEEPP-IR1XQTifRPA{gaVpGt+*Ijc{mjltT%I=G zBdBBr!u@D$T?6Lwfz2A$-4#|LgIQS!-ZeQFd%a(3qnA`gFq}f0*MhijNqcEC(-x?! z{eReBj_~p=UhOqEeLg0Ko53z(XMf(%L}O4-kEXwGvZHGk?QDIK6Lk3z+PeNC*bTtk zTW(n?d^nFTc*&MT@XDyOLnh%V_)-Ra= zOzs82j1C|6w&99&HTSMoC-lKDd8{(DTIH?Iy5A3)ih> zd}h<3yy~r@5i;`k9Mw+Vin$NL{iHl8#YCPKtfo3ccXP}23JH&r{Kx`ydok8AfViu_ zSj+Kfcetviw{VL?7J3I8?$wdBqnS`DRr`@MhHT zDKD|x^4N89gO2=y67tG%bw7uxQnJ(2RjHIhL&E$b5`e8x2R&+Xa+`bkINkn66V=CC z{y~qF6+NJM+3PnuEKiuWdR{*g0ZzRH*v>YuT3K`Y7^1r;#BQ@q#>aNGQATGoSw|vV z$c1io(#7zL)}Izu^tCz@#>TW71Ey@9*GRSdnis~|KVbi3%R7{$*&Au!udr;eJX(ozFR@sWNIV?!TP|4D^4?@kXuH6RWmEEL)lXd!F!1GJWkwz!AQAzOi`n9;JrT zC6Z@o+jqmg6(12B4$j&61pi%jr^;yZXGPgVfOH;!3pZGfo4EaK>BKIoTFv3kCoa}S zey%(-=(K8V%w%EX5Puo)=YG=PFTnV6>=9M~8A>#oTA2FQHRJ^&sKU-7m-f3>#grZrb0h42GWFD6rJhNeafJgg9MGmVEV{48 zW_B@thN1x<5RrlQx04A=EtK`Jp?8ezUGMJ6Py+Rpsi@C|Yt$C5yn|KTnDLs)PA+Sy zeZ1IpbmiKmmtL*Z+{eW^2$OL__#vT0r|(|uX`m%<2sf?qk!ZZ<&;<#f^IoCai&X`2c)H`bEIIrd>L13Ias9k zpU{BH)taS<85tI$?k6)@o*UX$_g$NIxP0q5?>y`{HyDk`%{}3&Co8z?{<&jsy1>lat(fdYB!h9ovX!DDND7 zo8wXgY)J?dK3(+Cv@jr{>Gm^t87CD^ibrtAW+sD#WHLe@qga{^XkyvgKD)~F2fKAj0v(fw%)GHxqvojW`0s>_-_kV1}g8`1sPw^4)!F7^T zt3H4(;^GjxS^5eqhokA53IZZBTh}5JWRA@Eb%QbBDG-gmv-L0zuV>en5HFMI$CC!2 zLpjmhcM`i#Ln7nbz8f`O`iISr4lxlXsA7Qg4y0A;HYbLChmly5fZOU)f^d95-+M)km-IFy8trFMKuPag7hJUsSPExJDTeAsT4;U$eVMce0_GcejPtLZw$G zUCv1U9zmM>BZ=dn$TDDW0}UV8#y1dhK_hGg=cxGLjEWOB5bAktqG)!rNW|Jkt{hgF zP$IXBt`z9NE6!Lp4X?Cq7lD{<73sX%eV-Gx+p>s%0xlsG9jTf z%cjt!m_>5S*$#iw##|y3(0ddwG7vc6pzLcOe}>8hZ{1RIhm;B0$Dv`khRGN|XI%?j zl4om~W4WMM>THWB5lWQ8&7)wpGQegnu3e%a_hNw7UWE7=rb}C}dY^KQ;*>vs zDf!=(xRdks$a2FfW5S-H8{Z2MZ3Sv}f8XCZ$`xhdn)uQ{`qBg`3bEl^E0%|(Q$Hl) zNAIn;5gCJZf$vu4&0Brlu4qZunLEYqogq!7Z|=r6Jm}@?eD!?)N3ayOJZee3wq~Yz zxxB1)Bks~g=&i!Bfu?+tW<3BRIgM z4Tq!xWXw|y`qE19>$wi&2G+~0I}Ze z+TAh~56Nc&f`3GP_vEfXQa5{&CDld`=q>Y1K9-)xf2h6vvOIRk{_AcEfa&`UvEX$e zn;Tubx;I(oMq>P7&evHe*C{?hL_ut~EC!JDz2;}lP(-$?L7#BQ3tm;zkYm|MhqLEu zBKg}DaS|#nRFD2aqdkhRNIxvjof{S%ImrG88;O#|-o;uVfzX!6S)UT0(tG*Dl;6(S zKpn4B=Kv;rj*<8sT#9765hRx<&`KUXz$m$awZla^XoDkMG^B|R!FVQYC%U|iVwyOJ ztzLO_ginyuCiq&CB`-IVttMO|SNi(796hV~)acxE9CYlp`>@ zPHGAc0xNG^9&(#}IDURJ)X@o-g6=s1ec!XqQS3FY^%;knPQCP(tXCjs2db;DrJln2 z4ea+AXE{xSrb!ia_q9H?^d6_EG5!f*Hl3LxF&<~ZCiEKLfi!FGA1hOj7t0kc{GK^j zFfgDAJRPSvS?|uzbiWhcyGOj^_N{L#9{`6wmPRPC)uY$979Tsbk=Mtp2YwRp1bd29 z2%2eOt|G~9=@$|dGG$H|XbTfAT|(uQ;DQ-?Aq@+QY{>V&XVnvnW4xaqN<}oGNefmS za$T9p6euh;_Z#cW5J4t5UThlb4R*$%{LRaj4=N^S(1}$;qz#b`*`|%pFFyHCl66^! zPuC(663U9?oDGdeZs2eW{(|JdYu7q36{}^y`)xD7DUekyq6B-}XMphN+UT|NtSYxO zlrQl8E;sOlAE@}aT906tLxa_96Fu?v+qJO+DK1kI3<%89B-l*(0hERYedcFlx}u5^ zA16XYuR9%+%9(t0@8f)aek%ITDL0SVb@qO3hAcQYn8$Cn?2E4QR(V=($ZY%1g50{0 zqm|{Z_^GOf(A_^w`CKg_#{*40#OJN;J_nIcaTmR<(l#6IN4$N;NOj!YaRq_64qw$( z=05Qo=n=H)wH?hwzGXc8>1cBzJfT_IgG%c?e`KRw`)1&|EvM&><5)d$AfodA%LsHE zN$dUnj04U*fBEGt3I)yDq60%*w^C`@jys!jzGe_hbG|J1M!mE@qXh_Q{Qx zIiH^V)}uLPz}xWIoY-!U8tvkhb1_8os6Mc0Tj7wO!by+|($ zZvusa-N|Nk_Z5%*kG@>m81zmH1p;8wO--DnIW%?qji@=u7dElgV?ICSvJI`$7Vy~Y z_E8p~L^ve}NAsk%eL830mK@CqG`#_nB7TY%=@}E(30Dhd32LL~yVpRBZ2S)6h8_{;YEWy%jA47&JvmwAG=BCwF~X8}II+rx zip^%!CeU-EXgTE1k{TKC7U7Y$5;y1b9`}c5kqc*?Rg4Pwb<^h1_nBipS#67VzW-e| z+fQ-?H>JzPy;`w>x#T_5=~pEe?(%rK%uOm0_)9Bwn%$h!s-ne=yEXq#R!uf0*$+we z+%0jA%}VV=L&YJYNmYroJKy@;>#{>m7;H$XNzDa~@z{O+?GP>;%H48|E~xF(H-P>N zJgwsa0GNDZK$@I9afh>#1NRbb0j{F7?3~^OTp>}BbGIVEZ{$r{tedmDtXP~F(@?%a zuQ8|Jz2PssOT~6i#s&OWat8HmjujELh>Lx9rJsKm&b+4-T<}eiB@A7C4w~k|r_X*EKljgQwLGU?$w75H}9whFmV71k8lGb%%!ID?{G^e-)I0;uj|C(0q+wreG z0nmFjuTrn;3Y@Q?FtIk9vy_Ce(hHUllV)WKgrHgZLfN6lcE~?8U$}%q05?)=urB@E zT=zHulHA+A6?j}Gd1>jkc0d)ccooG3u_0@vn5K3eACU5ZoWGSh_sTUIg?t~74gLPy zK`u?BOwmnIgtka7AtEqp=||#Hfl&QvpNP(pq$isvJDvg8E@J6TkH3r4t^z&3aRR{` z;Owy%iEdf7rMj)`)Tenet=FbFFV`4Nh2Se(ZlyVedJ=nb;7wG%7!S-q>vM#bT3)*T z=!*_0+Mg~o3dcmKl&L60*H`j+a?^TnCzfAX*}J+{Za&dbaA;ALlFtO3Wq<4%+_m*D z_IvbVIYe7AXyEgbYL&KT0%()(#H=y6+WP@0m-w84netS6!tukU_7IUaqleknkPQwf zH(^g&;4BxvoHWx^C1O1n*@9Z`o0R+$7#KnRwsL>ELqko3_Ng5!4Zo|!B?7?9`?CC8EZsmZlzvmv-Z_2M7=YhH)7wTLGjvgpv&u@7SYSacC*;Of@OdajUt(+&62zP|q*I(jQld*&e z%<^KNp;EfnSRs@Rk;nCvC2Ew&269f4ez%rBh#fe($c3PK zX?3Z2#$g+|JSihD9nSd61x}tcNnYC^T_^dJT;qT!EzkA5G%K^YAk~bB3|g7+0T4r; zn5x=CyAW}0zsTcbP4_{D-ecMX0T(qq&!F+=fJ=K#*}Yozt>8OwgauNDOTp||7&Pw{ zEM?kCnyU44tEi9tVZ=FJ zx5<9C2;5>mYFu`SYoHCC0ezJOb^ebEXxNpBp(!!RT8+P2si&FAp=;*8_%Q#O4$h-0F17%Uwz>|C)qzo;Wb0 zkWZ^$wYqCdJd{uxBKg_{s>~*?EucYi?p%K74u_0Q>b<@2expkS0Zj@4mb_{&s1z_@ zK`GpKle;rx@7tO#vO=wI{xNq1scP?5lkIs23f)b0xkd1)N5G_l^C}%@ImHaW^CiZx z$%qg?7;G>+um&G}QVG#KkG?4WFIjc=By5nlKfw#YS)XyEV^HsrDq-X#;JOG6H6wjf zzykkYWdegj2?ni3*S<4N5*bmH&fCqZPfaApxatlH(TatRh@C#&I%NQA_e=N-&ianv zeAs}xc4z&)OS}k7Y>c^&WT=nN%G-v_Jyz`3n8|kL|JqMa0?av8`G4;xWd1lkAG#rI zRHxnKd>(Nn_3!>fumJlr`QmSbIfnN70mY#wVTlRcO9J6We&IlM`t#Oh zdJpe-16UzL>EUl#58+P{25PXnR{t{!THhP8%|e}nD&$AOOkYD~^oG(26kPztQw3H5 zb-8rTsy+(Bv@Qz~w*_5~8xjA9emV;h{#agjBu8EfPVi_~I^TorMnm7y&ihd;6{FkR zU+tNcmbm^^2KbaCR?xXOhL+XkyJD>55|aI9q^km082e47RqkhZ%dSaDsp;FlQk?

2$u`p3Y1=cd>fDk&mGiW}E*Z-yaV&kc>|~(vN($jbFVOK71Y{KvOMnA< zFfQ@D-Ij}s+TIkgG})0R5K6dxtAFQ|dp6)w%q#!a)ad?Bq{&cT?WJY{`E7c4I;HcE zn^+le*CwUpgC|k&ue$jwn|d}jAD>kIozr8&^ap`n@`BamLWF@TmDGP_d)J3X6u`9% zD$!)yFK*jO8l>C1ETdu2yTGhS!=0A1+MMLXv$bGjIklWjPbZHwd6XQWqcm7UnAUD@*~ zW%%3U12~WpxDA{C4L71FQ6%+MCNBqzBt%)JhNhp{!A2AB1V_PQ1!bERR9kOFL&S#CgwxMj`SbdAIpPP8CJG7LLmDTk+lh2eI(!RRd~I z);F2-96{CFBk7#}I``rUo{8x{b#uf{DYt&k|NpxC&ZwrE?q3pm69MT>kR~X-N>h}s zAo$R`AW{XS1wu(Qf=V@jptJ`;0V$!^01=TYAVmU!KmY}$NI>b3{14*u-1Xj1_sf0P zx_7O!lCzRCb7uC;?Af#TZ|^<#Ly9m3%*S)KL->&Z>6EQ6c&<$5$Y&P_)Vp$(Y`YH5 zoENsng6i(BTN;)wzDe;hv%d?n%+bNmLi%jo+%{`15eE@9OHT!5oxMuhdtF-1V5 zJSwY}%^f7)$t!tX!dDY5I6oktBE9K$_0=3BrW8qa{f*c%sk^iF>jJj>> zhwqX9{&L~$xRSo9iO7O#ef%l(wZ4wb&e*LvzXr48ox!*6gyip&LH@Ho)Loq2mhNku z5mM)Q8h+gt^eVN=3GbbFzWAJdlsib+?-DgPZSa@oez(8#rI`2rOn|9nv6Hx=h1$oR zcurBo(LD-}gUVyC01(Lt`Q+Ls|8C5kzXzTk^X=1Q^ql-zq0vHDi)d1T>jE2KSwCiY zmM?*Jw7>xZ@De1eEnD%Hj_9^vr;_g6oFG!}qh*NQ+40(<@@{Hf%cbD}mS>T?$ip@f;C7Ek%*ry7BN?SFB{rs{e;*!v-v~R6h4WG7yE-CgG+Rl1 zs{im2WJEu#fqck2A<)RZDy$~2yW17w*#^5n;uM<=e#)krigV#hbm~q7mQ~N`pRH;Q%1!*1h}7gA{Kl zZ^53pM@87f(lM#PcLwKrKS!U})C@S1CX{0*ubWQZy$=WZ z->C)lKUHPsS0{M8Gz_$9pUSjF9|;hR2&zZ+b{@YCzNI)bdf{>3$JunNH}6Ai>ApNM zdf&#lsKYPm_3;z*94toM9-f;P*(v~$mMelBfNlAn74_{-pUik11EtgXAVK28`CU^2 z)V(#;S)4I)mc;>#X5V!NtOz;>1(jdxmQ2sy=any^uWc3Lu99y~oHls8m)UvvWnYL? zl5ETk`U1bzgR?xOYovjstY&aPDT|)f35L^7cEM|41_#9_=O9rI!0>9z9UdNdNKMf2 zZQc)22Jkf*nAh%pD$!J$S2#VM%FHp}OwfOW}eV?hD+*s=A*dS9yo7U$8fmU4IvzkwqPf0R2(Yw(Ew$8No@GVWT(VSdIS5h+{Y!=uP>YBH#k8QD}X-|I! zVtBONoPM$ZQK@#o1}Sw? z-|B6wGnBOVN1llaH;BZ(l*+WbzsoE_=1cwb35Pq(q688|Cgy4y@O(T6&Dk}pP8_Sh zs}*3rF&zX$rIcSf##{lWMj<)E=YTK^0CalUgbNi;X+v>%V`E>27R~Z8%ewWT|8qCz z$j#AR$f$#EwS>Gqm|w(aaQ17spzyAW1vYykfo!qkDa#;JIQOkkzh&%0L z)1Q52hF5phbCt;7NrTLEo>3wVF5E-;ta}JV`2lU6yXU|jzhrja$sZ6Sj|nwqzyzVq z_z7D^b{}yN2St6{Zkkex_3%5Q*ME3VCVg%zs1GI{Lo44hoYT3+76e!TjD+RtzYvAo z3Xc~Gnn2sma_8F|kZ^+(S&m0nEF3g_SO;(d$CdZJhgmxYst~nQ9JQuzIRi05skroNDjDp&!nUnAh% zOCjrP1zfPbzPaj zhiRwK5nfR}gnXw5jtw}*8G(_^1GoIOg4uH3DzlAGbS?tKcB;*_0;IFq!S_S#LCtP- z03Xqw@DQV0efluHJe#k_>P4PWeZ<=5ZJO_DQ_sGC0+G{U?{=h-$cG05VZzDKg5KAcQt~4Q&G*dPxQfPPaklb?ci1Abec8m^P8|{eR zdvv$M-%5Lc(#QJ9z}`+R&NqEIfXGJFuI50;Q8Huf2(B(#w#hT!KLpvs%qVr%$OY;@b|+1==+?S3E1Bb0htr1Fef z{wofvaYF)_aK4%x`?^6D?$g_GvR4;Y?9$s-5I2muL_!QGW|$*+AP60nK4br6aEQB5 zqM6i9A7}0!kbg;QPsemJ=eopS_1PdXiqW1nS@r6?p<#~l-vOmWne}PVyuqf_xo%VW zKgRFLQpCI?I8SQWfd7aDTNeSqFt=2xE^RZ#A;4Mxg8F~WR)u~304Rqki)o|bWcpdr-G?*f96isR=g%g-NHOqK*bk_0oY zzl(@^QQ+zzKB!<}WMSeZ?I&3L08-2->Rd{z3JT;@5pZ!i2Y^ChZk`4{`1j8b;UbQG)`}WSuL!yuWtuVO~l)ScH>EaeRK>( zieFVGqof=ki_-USx?J=>SI1Na`x917x_ts8NWR+(V2S_0Mcn6E8r}?wmw`HB26_96x)O# zm3BE`8ZcC9Ij;r<;LC`6zZXh#??U*YB+=AG^d|Kx{YP1KQXrvLP&-4ESr2H?O!hho z;LT%8#yYy8o{xN<70xXSM{JuD$kzAq1(@RU?44w>rB)atFsRUo{br`N_HnsIK6`vU zkin5p$LQLXznG3kak-flqm!noO*v7S9@I`>b|GnpVg?@<0xSd9KETfd=ymfw-khkg zJnH9u3)5$It$G(&wk!cFkJm1s6a@Y*tk8Jlepn-uO`bw-e7{qn2Vlp6f`uT0FCoH( zxiZODc_N0Qh(hBpz+N|!2Zi?T&HxXu0@)-spPw_rfoGioR9wkW`aLj^%lc9^9?MK6 zT5=ds{bFcK42v#eT%uKpaugapQV{c+ki?4n06nRkX8@QyO}#uO1oJgr<{FX;<0Q6V z-4YN@<#aw=vmX7`5ZTrCa4~hmV{$27C(SCz4R^GN~SC|9@G)a934_N zMv|t#Ap`BXP+l@T$&zjtk%gvh?SMo%0#jsbd@`7v+WNRXJH7D!a<2hg=t9#XOvb6^ z&6k(>7TW?*W{Fm>;ZGbulTyC0Q~?+dYw5|PmGTeW>@cr%X#*scrn7<|_R&wuN}t|^ z#qt~=#X!*U!^isL5zIK#p>^*V;%HwG=i2LteQ@x^oTA7P%ivR3}rJAf@_&PFfsyl6TiwM`hdY7~l_@wp1Y5a1G`; zDvNEeVN|bZnQAs72JpjNF)H;= zATMzUbHPPZ?x}A^NDpbFol%Yp5(`wps#eg>m|iGcQFNt4<}$RmZikX~l!tBgRAl@O z=l41mxkxcD!UaX?sIGyXJ!U@;ycQJh15qecHi}N8yub3 z_t{=-pbn;CMiy?i%N+b}!I8I*|K)~YDEqDt6Ach>8|)Z^zu4O9ukllGD36vcYgVRv zoC#UmbpPK1Qo>VBJM8Y#w1N~)!uGC2@c`KXvB|-e0;#`%@fC~WAc7M>i-4azDwVp8 z1+Z0YOE2VILB=Bgt>So*{8uh=dn+{gdFfjgHBt^Vh*DUXijw~HX{zw2bNS$}tme`p z;4QdamEqU?GTzDuobRkTZ|h|kzhiiGmeXNO6*?uvYo2s7tLStv}W9#gY-Q9r~>Ia8|Gj~14oA>Sv`2*|oztqG3uU}MRk7njJ zuD{y-?WGTLMN3W}JKA&o%{EU{+xw{RdO5pE05hd8MvV#phQDQnuv;d5Odx4ENqkU8 zG=y}TXzlmIP2(>Z+`TkmSh*CNHP)3Gh0z28jA>zhV$KqkfO)GdC!|J~iR)T1JyWoe zTjwo7xDEvJOhxSM*%CMjHJIoG{N1Jm)5z|V@f1hrQNAx(BZv>SSG?Qv_YV@9n)CEN z((p~FP)~F4x6PUt03X5=*TZI1Uf;mx(uv<{@sGbWk!*b$xpik|_GB!%J zj6Z$btzR~@Ftu!J$%)%2pO~<;OwgfZ1j&Fvi3vs67DXYdd9zsAqEWOYxSWQ4>w*$t z^V{BOqPmN<%dL(B&C8HvGf?hR+#qcQchDzdCjG2T;&+vMiXrha6-Dx1fV-K%`3 z7GtGs)AIFX7eD;)NG}_6%T4Eqxx1KthQUe1%^-E{^>5~@ZmcFshR8zsIVNCxDfDdz z-80)BI`7%SUTIxTt`kSy5z1zPQnq#gv_rO$NKpRq?@C*gUlB zZ;KP3i4Kk;s4E0%WX_Fs2=up0Cns#1Nlc?cy}NB_VNt1SvmimRl~|PH%g&e93ghnH zjN6U?+T|?KQnw>gPJKplvQ;cVf#|54h^y;u{6VG7!hbo4k^TpZgP~ys3%H$Hh9=Zs zL_e2-=s)~3j(*4c&bx3QID1K+7TJ$CX3-$RtYt$(WkmjD)h04-FwK!}*6u3WV zpHgdUV)!FH=Uod&0Lxa*DLy};bE0ieSDDIsp40$1*UcJ62|c&|sc8C-GT-c5Jcu$+ zDq5!K+&H* z4V@ynPm~Y~e?%QM3r}&8d0NA}d;6EB^q$fax&9hovK7dF=@-h8en!Xut6BfIpY58U z&m`5l+?-;io@tp{U>Kk4xTjUwKtWL7VfPi_pW6f+vT7z<@wvia@@@R^?S!ANxWkmy zX8N=q{U9aPT>@NNf#pybD3$}52O>5j#S&x0qXL2l1$%w;=w}$V=o>>YadaX2(umF> zLEmgi&FU*<-e}rlGpg2yDLo~pms15(yl(3?*J3nt!ne910tI&ImIj@SufB7*ao4VV1H?K3L*Vk6`w_ml*rdo8{ zHx=PY0zP-HpYYHH(*mmX(gLg#mXN*tv8%g8%={@EI?w_lQ0b!|BZYX`_PJi#GuvG| zVgK5&6*KO#AwT{~;HFpix7`8+!s)qoN5}oo+t9nUK0qjXUe{Q6%~&x+=Q@cx%FkV? z%dX3PITfDuwKl%H`N1Jid&_H_km3WV_Y&7HFE-aj_qwQpmxb1P-LvMW z{q3Konr)a(_lwHkHCP)O@*J(8l0{4w`xFZqptUF?<8RU`O9$F1^SWJJNs$~!C#Zby z#IsV%FWBZg^IVx7!QvbKKJqf3dT)e)dz?1)zWU?5Z;gwsj zu(MpP+KLgalJ7LQ1!NT$l#;NL!u%37;u(*_`1X2>ymj{`*{a^=8VxonEuXXM#D(FnC2peK;2=<7+Dt4t9=>GUg=3mf znv8i+dD;G%TE3!ch_6%~VpNv?$(V@Fpn5&MD@cuwzCpQHCDYfZz)uqQmVP73*r8p( ziZV|;0mua_L8s$JzV+5osFI>FFOfaAKz-c!{-FcG$|d}vnwh~`Sg(LzB@^WQ((V~= zvMcd|u<*nw@(n}&McbTZ1L^VCxfw=<9#6Q~?6XEIzUAt!M|JldujoYf?;mJ@RWvps z1aG0&DFIUNQR*@ecsC(Dq8WrFas|ET_boLFlWxRs$Ji^(EU0&nglJ^t=uLXxM_I1G z4v^*h+8+zIosRT2aZVUr!qIS3f%3RI<_2Pa;7)qe_U40y4PW9xR%7V1&mV3uuw(9^ zGb6MacV{{0ujgy49|l`peY$@B*GyR1$KS*|Vc?rGhJq|-$0ju8!%1ub(0F;(G+!=> zq0MM1XB8)>mREW6I}es%dWa9Jg9%PLx%(r0z_@+KJXFe}y*t6@qSP|?#SfxA`Ed^w~g5Z6*cWr+~hSuuvx@n1p zA1YR=5~Fl2qM7G(=;kLU>_?m)jv>)Co-yF?3l0Kn?er4`y+4c0OB0!e-|1LH17d>( zR^d2T)L6EO#ZVqaG+s9wGF-pIS-U1N28^N6Llvx8aumj%VSa!nNz(IYx#SF#0TaNO#0Q4qN05WDy|qMbm-V8aakJkdd#D-jqb4c z#?hw63AY%dj5f`5RlgopKK_=$_1zoqtUaDUZQi421#qgSJp}MHpF0xS! zWNgvaMPI)xn((}MEnp<0*0Eq=Mbg@=J};$gMtx!TCY!(Q6PvYQ@YX^Oz?TNAtdQLA zF;biCsRyt3Ljv_%dd;)+#P;j$rS6%(k~gWr;?H@{dV4+6uZo3hOhR0%Ye9s~v2eg& z{L|sY-vEZQ{NF9@yfN{)Wg4NputM1|bHMf@_LG6(yn{*9t8d>DRxIhBjC!}EW9;GQ zdpC>_xS9>+pGY$bt~WTx>%}~1qcIN#Ve=3g;XTdk+h)sCKqwNbUEaC2A4ZZva+m$) z-ZIE>Oym)R$PlJ5_fFp>8-GJbf0?>#{yLSEm9WIwxKJ^Oa2oRyH`(j^b~%%FAQh9Y zU3mhfU*kQ1Jy8f1MKhJc%_ub3w1-Z&Nz}l1*!x^M*HFSx`5LPqUJWtbe^TCv%7+5s zkp1YlEJl0(E?b*&mnb_ciohzX$+j|so%7Z9l;~}yuaVzQc}hUI>OK{@b|m1+Ue>Ph zuS|;%lK-lm1;Wg@6K2HsH#Srp8u0W^biGSfGb@k2WEA))^WX+%<&T%mjho}g%7f)> z4#bP__6x(?shB5-FE^ggvT|-k$P^9mc9^}3v6z3kLZ`E?^RQCQ=GiPeai%||4|wK*Uv?XjH&Q^_m<<635^fk&OF>StPsHv zK%3vrcxfs<(2b_@d4So@_Wzop>q;5_fQ^ z;Ys6c^5DU@o|ef}C;c@+e*9e9iSFO1={j+IC7o)$rMT69N=dEFKlqRZQRx57?N!i^ zJGY0NT4Mu*1l?}W0&(V!TNt8#`~u;3QwDyq_hz8mdfw}6stmUWDQHsbSKxjIGXuHx zs&&vX_qc=KJ_1P5I|}dYQCw{3ICJRGsXi}NdWfhuG(f+FA>h{7kIwq7+J>X&IA4#G z>Pw`RjfqyU_wasLHym&>0rIBR7m zb#i?1#R`>@zt`@K&CI4_JeYB4RqvWiB8kzoDAYN0_22P`9ig8A>9U2W-POoHyC||b zgt})!*E=YZC&}Z_J@M)qTJsJYdgJKjwWALA?|#gc&|p#=<9>|Y74jQ>Ka`aEo0@{4 z3L}B3m$*zU8z=XzO2xW^P>+A9qkKl70qFqj5<#sZFlKC(<4BsgN_Wo9Ro(A}mce?W=|G zn#idV-~dw^blVcf^{U=kvT>W*d`e4k-ZB|={&D)}yp~C|?}uHSx6?nfpm`dRxCc=? zpgf5S*R6l;y#PC0m%K4dANV9?C#0C=&pLY(+;QLTNzlCBhi%?>b$9gxO$R)Kpks@k z`Z3~nfm{KWh(fR259SAWMw}p5ofi7thS%`MYwD`%k0PRrrGXW`@}@kf{I)X&1%4?v zM;2~+e^uV6i(k*tZ|t_+al62;UyfP|{$FoXb8SL@Q7^i-gjO!N@u<>fq6t%Ov|5Lt z@(zh-Pvmm%oP?)PmDSsu*>w782b@hb(MY%kv;u9{WceA_^8QT56-dz7b`MSWU4w3} zjKb=U%KoaMji5vI`dV%C zwJbpDYJO1vp1K=Ij1?mjxTb(T51eJ3o@tU;ckMf%6K34+w=o*$t*!UC04xt`YW9Q0 z{En}2+&&P&WK7|=T*%%ZJ1>4Y%0kZZmCGgK*}XcitS!v|aX?KF1;m8JvU*H``L7gT zgkD@Y@SjkdoLB|>|O1D-(P2@dn$oUcYwpgDmaBs;lI52yil*8=%VpZoa<7rM`XvGs! zE7b*~`bP+!`~yld6F&u-wvl~TpIshmgs#M?2(0L-GtzGb#iI=kw@EI+Eu+;JUmbA> ztN?N9EaJOrlj5f?tlk9QpKP~RP*{OO;i{*R z?G%jq+%;K8=W#K59;H8SiZ@L$&R^Si%UMPM)s_C1G;V0FUr^JgRFj#UrO;#(SfTY0 zI{?JOg6-WmQ0zn=>~$~63Srm2FifNC=tid;56!=R6%~KCE~DHWK#h$l|EVMcT%(w@ z1+um{(Ae1vN;ZtfMZ4{E!Q9tJV>)xo(KIVy`_y=rwRs z?4*C|7bRpNF10REK-oMhto%%E9|DgUST!I%(;vr19#|RQHnXTTzmqtqPg>Emq^! zi#^HBNn1cDL@%m8RK1FsLwp%;XJac`fjhH%d>RDF$UY7ftJES=yV%|*#Uu8s?t<+p zbwoaL4k|KD8%qvU>I8sXX;w^(bcC+&-@kUh^>yO=1Py0nK?zFKn!7<)(`ah<0lfRt z1j`AdH(D?hs(g?_(VqW4iU+kVIz8*Ed;YgY3h0h^) z{b69gWMEzk1r+l4xM`9rWdF(PgtZ~xdrIQ zJ6rUc(!)wgf}E?X&Ywp7DS9Hq{2zW6I{k`KleP*>bak%;{AwwT^h~c+=(;@kA0D$I AzW@LL literal 49270 zcmeFYbySpX^fo#{H%fQ&(x7w;3XBLS-60YqE!{J(lp-x5DN0Cp*9ZzK5)R#i2uOF= zc?Ms9-#Y7@wZ6a3A7`zPHLM}#dG3AheeG+Gb15GhRKt}Y0K>jwfs z9~0mKf0;_j-3H$99&4)K1>S+L6V;Yb;Em8-!^9H=VvfXqgX0!=>_8wk5bW+9eZS20 z8ULUxyR56LG4DiIM0MSIK5;bByXPFYs*Q1QCJXGuWPiSGe1QKC?jr}L9=lt&U&(g- zc*K_>%@NgmT&6r#YiEUXk3vn-q*hsv-)SO282-$vL#bS@Zzg_`OM$l#W;GDmQ)50B zJd@+8t&-$h?rFgWOXT`Lum7Wg|D%Eb|7bv8VF)pL{_G1|*51K+&=D#6B;wx$uXb{y z(Z-bWVgoZ7EBxfuA*+y>`-yp4+C`(d8i`z_Vja1+ho9nF;;f!}oPV^4b;GqcZ0x>I zfQmZ5fwz*$yj)U&GPam2{Anjt$z%-5BwE);?iuKDTczGFQFB>*)l?M>$+9BvC~|iJ z7~}ajgi#__QRwOliN6|X3bM7)vy-#&?A#jfLq<~hmfp^-8{^DrU~>X_(sQW@pA5z> zQ&^(7Al>%;L@t-sns4hzJQ&px!Mji&$?aZKT6RGB2dUr+E*Ki+jq@)nUOoT&t5=;H z{>dWh3Vs6c6tA9q9A`o%BKe2ErEW?G43_8_al*ES+B3dLkFe+^a>3tU-8%*pyAtOsdhaSZM^b@2y7(N?4IOo)0w{o-1 zp6=PRFjljmY-Am`i+6gy+fIfz>CmgVDqvYohw;y?o};}Qj7x9WwEZin489?CjB;K;D}u zg^6M4Y=%aSTVOzl+qbx)UsyqcaX&Dp>Kxv(Zvwl0&r#ROwUK!GJePIbaQEz873;z^ zJOCvn=Q^Q?MWs5fIA%hBod$>7&ZaAk8lf1+-SHe5MTy6S-AV>}RvAW_hg4^f`&GM- zKX}RWy(U5ZgH|7j4n8IF>#+E}cVioFUD#R=dIctfZ1V57inIEVO~ztI(iZ*u3LiaD$`LhvP*o+ZyIkRGy! zXu(`Ms_u?Abe1e%MacKyR=0A$+1IV;LZV<{&|!bv*0`vfo{c&1&I` z2LAo4v(5!Ts#L1Uf#2^70?>Hc%oj%+1p{{BhYM$PZVr+po6W?2S25Yoi#FGde}`(5 z2jktwFvBK6WozHjD>M57^`Vtc zH3w>axMXY=ub54`%>{p6-%iz)>+1!dO6-4lO7SWmHGat34y#7gVpj&705Yk8hx53#w8*Sa3!U(3UGlWhF{UlBl)bk?^UT0l#l* zY;`F?$Djg!3ugz;xmPUDji(+O#B4>!L7jG|`c5{&^OW#fQ#VulfqqyYJ! ztOEXd#D3LbD5RVN*O-~L<;qa0J3w##uhq_ z@H!+YnQAqb?SlPX?%=X4#>#);^anuSx93T)g#7KqJ|vipul4k9NGS8l`%!2@@9^4w;OQ=w;$HH0T-eD*5F@5tDZ9gS5$>`FeB zEl8~&LyqlE;it;XF1-cdXw;Hq?{T>JJbbFRxi*-m!xGw>RV)9QNOyytvA=RAW!K+PqGkj)_ ztifx@!7{`G61!>J$~++&wbma;v=H1F*Pf9C=-MJ{Q2k6Y&!j0HGL>)9KPF~-JhtD) zHwm*F)+?ICGZXt#{wsa34zM@wIeUjf%Eugbk!x-c&zpu3MRM>xSm6f^(41!e=#qAz zK4luyI?D||9Lb~4Rgfth^yQwpq71#CJFu5mStjR=sta!ytH>{DBie9z-B94f%(tI8 zts3a0IQ!i0)kx~kv)VDWSGTK0`#W!)8l46UWGf}AOfU!1Rp6ML{62dxyn)=eyoaF< z$gyb-P2I~jTbz9P?L_v&-5jN%lLNEOPpR$Qr2v1FqY8fq@@yM=wO4FNzfcEM1Ee=b z0C6p@3SdYr`s>og-&Zf#UUBQP?GsCqOcWfsw<{Cn%bvCoFljEYf5sBqXU{{LZI#Kl zrA`Em5pxe(_K}U?y}Vf3AGyRm0oC zO92eC7haS%$`9Rh-jZFDiSV^`S`#$}yX`2XY5Cvw@0D@OZx`YD71u!&MCiu|pP38PmqXF&!?@Bn#TM)3qNxZ`iAHoZuH1T>p#6VV0Udei?Vq|L$*I>$e~#fK@w zcm1s%%$z#Uw5?({*YNYi4bPR|^ZSIttE1SE;e*A_jdsZF{ozrYO33Vr!thwSRfrgB z&v5nZv5Hch8#nGg)>jvLe1YX8Ep(DPzqa)LKGQ+*YTVJ$Vc~TtJx~z|w&V>iJx{sS zKcQw?a`XV5UL5TIFO~gO)vI<@6TorEDiS0+TFT-=Ldi4dRHrUbg}u^auPnQNYXc7B ztcjRv@ejHiQpAdBOg?S*<6te!+)8yo_$EkxPr_~zrYnNyiRTsxYE7+0PIcvhRtzu! z7*AAVNOm9<++|=5R^xpIF^6W}Ushj>u3-#J|7ccA4c9ATg~lyPT;d*+Zs(xx>?<@` zH-5)#JbZCf*0PtX(d%>`Ma9#QU|Dko^5Ltgw}3f;u5uraNuVaYLM+@YqNHiXQV8s7#?64P}*nSxXghE%3E% zuJQl>$*&_1K6ryUK<|-42-&yH#<->6$E0h2*Yu`D9D%H$o1Ec|3KpCA>4+mpKEp8o zf6{!D015n77~WXfrP^lC^cMQ>&(HZmO7D(9M+TUQ^X7(-4%7seDzGoasVQycn`2q` z`}3E#QK8^5h)|w{Z}i#*9y-1CCgMFp1R}TW!itxTqiEFkZ;2zVwdBglpS!~M>TevA zRW^@?lNf|dcbxj*UYa+~;bf{#J}5Ki*8OsJ&}n-UxyWc@CUlO!Jy0jCa=j+}12M|1 zem0v=PRn}wH|a9^!f_?|+<(NWj<57e8>hU~n^HCTwqMECQ1}!rIZlE$o` zS9L(!t3C2Z?)HSb&_Ei7E6J_}$zykzP7_kk7WbHIBb)MQ2%fDzICPt;4*4a??2?dH zW_++}>nndW96V6!f6?H4{9;Gz#~fsgV?{gQ~!C`_pGefom=%GZI!!^0v<(`U}NCs0LC z&#>#6fh}I^$QY6Ho4ImMp$5^1`JEdQjAF5Wj3mjf^Ih6DwKUt-mQR~_;@kUMX>RXHtdl>@GK4ZOk`_*NxOab}1(DD{*7b0&j7n z?&O)YT}W^!wM&=(ktiaHI>y0mETv3A7B#%MF`q_9mthJ)t%9V~I)BnFj3kxIyZH+_ zjSSkL%z~Am{rGCoGpH|w6_;hDhb|DRgiH2is{$%qVIA{F(Z!VnHWM!jH)tQjO%X*d zCTnMGuQ`6b5$=W9czmz^?A*4R@*>r8H8FEl3NV=&l!->XZ7 zeRNT%B(1#Z&c;VFThp6HiYk6eEBpr`m;Ot?M4X#e4cH1kI6 z1^Ki*mL9XLsy4Y6a5fS@{2n2cIJ%n1`@}X0QL*otNpei!?(&)c4_Bep{C_se1lEq( z4Izq3jLNcaK;Dl^;bn8%!U$}3nt#lnwuQ(ZjZ7L8&woMqZVQ6D!46O>9JRxRac@+^ zUhiJAh}NGiF9uXr!G9TgEasY!46$ju@CIt;$|R=zHrM61i}wACjQ6^A^r9GMa}lr= z^fIfqe3Kp3j$#3Vifo$`f)|;e=N%9V6!A}NC9iiX?)3^p2Aw5ezn{Kc_i7(Dd$#@l zJP^zqfA|jraVta~N03bjX)-caxEN+4*Y%~SimEW&dGQgwvw`#?7EVZRlR%%oY$J>P z=~L*kK~3=i#Qh(*$v^|d4U!Gr1eN2M;^h;Kgn`{$N}(*@MgDm79*sueb`W#gpw^ib zatb++U?1V?+6|clE2{O3KFP9&SaAr&$z)I+8{TzxE_H&lo@GDe*NPU?jt;wE_c@PK zK33%tj!oe1wPNx;!@|#Cb^2o86$3$AYFkJ^u2{EKF|44}NVh0@c)SgQWMZ(Aa` zOVGGP`~CJLai@deJe`y5`$TJ!w1G+XqB>k!X=heIB!Q!O4k97EP(6+LqZcS|sKUf< zlJ=COlMplWcUu>sA%@9&>=<6uKNu5C56TU8 zXVVp>k9N8hy>H4)TKWN&U(A4QIRO5UH+h1`7i0#_Bs7QA`mXHxV=`MW@KN{CYMWg% zk|++{#z5L_Db#|+>G_RgS_}ued*29z|7fYOfHSOzalkK-ueTtauE5U8pY`F(u-K+f z0QF)>Zf~1ULJP~m4&J!gM)^!Q=dWuAhCb)f&sO-Zc+zi6qE#r*5>slVaf~JW?20G< zM>7j-=$@r11RSNMupdY&9bH?nDw9Xw8Yp_Mha!q^$R&Eagks?_hbE7?_eV~fA@j3FvSU_Y zON#DlBEhUYZ7dzoLtfmE%la+Kq%8lVkz>=43#)ymO`2e4X&PxdY0~2X{*gMqaXe{- zj$k5%$QI_uvsaF2l9A^yO;gbJClAjR_G`u`F>;Um19WuazavW$eE9AuhVPwalPI`%eQ4FbI6xg_H^R2`V(z{{dI{ zNBpEw1Ll74mRO#*T`2Cf*^*cVC>4^!s;BhxlX`51M6tpx2~@35bpw@;L-gGcb!(5J z*Fv+wbIecG$5>hX~JH5PjBR3Z2SZqnkUR7ZQ=G}Kf(t!{5b zM?nk%(ep`nSED&`W*-j5ZIp~?ly({@pV%vo&NiF7RiQ#nUf!@g)^M=bXa)mswbN~r zF=E$tMw6v81KHsP$M!r?oIh0->%9c*x^U0ik{u!SIX!LJR`ocucZq}}-^aeN5!oMR zmy{f>tBniRdF%R=#KSbqm$_z*g}LtlV1K%5ZZYEM)DG#*!!9@Y(~^LZ=Y<1fh4>;q zGL~HkaK*PBT(p(n>glR+L@3CIbK@AOH-OIG(rW&Bz*z{3R65mWeUhXVW4Wxo#Fl>0 zc2&2DS)}u)AKYo}ty#8&uVS(S-SqS_82ZKP>zh`Y=I7bK?G z(-|hAQgXZ|>nA4NNy1htca6uNPU&nM7=h07%OnIInO54(L|KiF#5CHUw{EqL_ffn@ zuW^~w{Q3OW!6 zc#>n9q)O&}$PX5y%ocGaXMAh+ZA*+1Y9r739Byrfq0mK`;Gff{k;%(64wTxbK!!AW zy@M!@Z@NpYNCZ&R=>)jUCLeWxj~O%D zEm8zz<~@`RP6b(kv&)`bsDAPTQr4aT$IutzXJ;+@?XOgY&cpPNzMi;{BEVaNo)lSI zQ*KTsUqJNO_BkwZxXnf5wtpe01?+^RL7%pcf!CfI7&mc*@iHv83OU6ML95vDX4Q!* z<>Vhk^_jdqd66tP?QtxmbwS89hr>k51bW4Zn@SGWL^$vtFhx|(Xxt8%gS5V(@|lCB zH?n$8Gh_X-zeWfLQgI!8N-y-=5G9=G#9rZ$u5Zy zenDt$!8S|9Csgc29_^E(bW{~1J>rBC*^8e2J%BoLvIxV=`47N}r*`m#Ob_p>i}4$| z?Dhh2JbmT3Ya%)~t|?+Miv=_Z2R4mQl^ckT!KUeh6LwWG%&v(A=oLXrA0RP2nc(r(>3B=*Zs zP@mJJ;oSCUcxtO*jS6>}1CXfpu1r(?$%yKC0dgCBdD*S!>k^&6 z!XB~WH2+2SiTGf`sv_*kBg4l(((2Y+C-YB!8q}2<=z7y_8_q$)r|?0p!(p)oYEQVe;XCb_FMd{Gghe&lduMau7I%i zyEPbCxBj4}Q@s}4rIRJg|Ma-|R9w^dpm>B8q!v!~8&V3Q38zS3Fbr+-N9U)O7g^*d zKJ7#Jx_>Xh7;irP6Y)fcs`gcw^CRefl3=omxRp)q=lhi%`>QJ*(FUGdfSzH@e-ZH% zQxxG*uR{8F7Qn=;l-?xtE?)$_5P4~)C6P_x_?xMAZHz2IUsav!*I(gtf%PeM_b0vn z6gD1^uVJgAx(ar?0TF-%iNF_)2Ak*W~ z@1rHI9)JvsqL}1sC65?FE-8=sEAOS&d*m$=EP;$bH3(Y#x@P{D6s8P1p$@OaUq4Qx zoJXMW)&!=h0oOw=z1S0O9LT5r@AMAPS8>6OZCi}($wfFSAEkgYwI;{-VZ1r&X& zdg(`*i_|7MXs0-xMgVRs_II1NUQlhTVN_AxZTl8vOt{meOaws;jUOg)$@IgvKfS0q z`Wi+0N%Xm(Toi?h4Kh4Xm85UuNng^O*yh!r@|&9!sK2kVQDmx(uLe@eKXPyAx{ujI z$pf9JqlvK5ytcs6QpyEOCJ$p8TUBBkJW)bOo)+4aaGENrZ^P!(JB6j-trrLQmL~82 z<#wU@4+Xk)4|*#^HhaYOU>T(wxa)+1WnPais^0CaZ%i&s+S=wJX*;XvTbnq4kR~kK zT0bJF^4D5RUz=;*P8@p*D6KE)KaMSqP$qH&Z?5)uxS*~QQk*`(P-o*iHAm&dRqPR> z?}eNc=u|9nPuK~FRllV3zBZhtU+QyWT|eb2`tn!pT~X(WV5c+x^|g}&L+Y{*_)9zW9wlq*y63fdLF!Q`qW0w+Q|Bz zQfyYdm6FBEJ6ZWrX{WXL80qG_&QYbAM9yQBs}PaTUlNraV@)pVl9ob`7N3r=!x(%2 z%F(-l+CP70^QLDVZ(S$-AW(-p8V;AY)&2fhl}$1}oR4xLMj4sdGjIk_s;QCcR{}yN2r}JR-_gRaNCGBgaI?NqX1*li((Cd}K5I zr>V#P2yxX)>16xPvq~+QC+Z9QkDWunK;KmkfcAS-v*l?h(J=}9eO&=EbNgfWP{U-k z0uyy^F1M|$X!+o|DZ=SiXJ>**Yd}MZu%8Xva(tfFi~o_v2g8YCM!i63q3BV;7N;)i z=}m$5Ayr< z&5$Z80TqOyz*wRun~xGlCuX41By{(P!j#C(2d5BKMMe9^(1DJUyAN`OCoYS)L3as! z!zePQCZ}jOJx1=4<3$p51kcY$N(Ues0#qxHRo30qU! zHOhPq)n4d;)axj@!W2*?(NFI%bmzEf!;{_4Ed{eW2M$;U-G3#WI9)crBJuf6IL{Ur zx^$)xVFexVRQyW+I(V;>gEbpJdZXc2HH@vj4s3Mu&Xe>fHT z`C7x-5gDOeADHW}MKa&5JZjEbeQ#meV*g3m>gznMA ze%7yhN;NRkgy{RLC-|S}zBFj`BFvzI|J0?@tSg3Y+OCneR;%G^qU}HZhtjr>eR}Du zys?3Y*452#gg(8=7u4qYl^|Ri;U|=UTlRjErfqSVR>^AWDK~uY?@A!Q>lWP7!3gUs z-PUyC$De(eNRraYVZd)woeO&6{f*l z$RAl{9&iNi1~<(E`$e~|R{xE<68*$s=Kt&{c{`3-DR4`dpojA3155>{7*+ZfS2f!w z>CjFCTKOA9dcZk*#@{AIMAP`N{?n$b2`FLy0^$wIjJU}~;1gr6xYDQ5r58q)=UyB9 z$^R=1b`4hRY11=XGJE3Wy4v?b1sDnPvxxdc@PED&tbSYP(pTqZ;rG=^LO?&U_R)Xn zW#BOs&u*J(J{*PP*zYp*d_tv!ziHM1?Wxkx$Sai})I){a{VYf|ler8u@*%T1;5pn) zylSGD>trMGv~s;sk5|`7>E_Sx^`!@u6d%@{V~!|Hl$nWn`dcuHV?)V#^M$(Ltw=;1 zWB|MjQo^+?9UQ+7V|=vif=V`rmtvwxwb`3;a?hqfF7(qHB*bjOnL&%Vy-ud3Tt%z= zZFjrKP)#RxVBiQPOS+ZKMYf6Z7f5zJAlOCK-k5-C8m3r^x zQ=)nJV{?sHdt+rqE&dfH%jIP@MTvO~#rmigrelU}H~L^hCDkH%?K7)1&j{?5ywb74-!qGf8@6g70StrCyVJVg*girL z<}EVuEN`eUry3zEpsC;i5*3SU+mXI3WUzOs^7-|JTqU!qHEV^v^eRt)eK#n~{=Ohx zozKici?~&5F+fO(5h))D{Gu&6aT}HJ6v@m@9RqK}gJ<0!9qd9I?u_9|w%3Xi*B87P z&y*Ugh~ZU{cXj#oPn0d_F#;54kHmdwDq6MweZyu}Ug-xvj3NFbnV&j{l`Xs>@&LVM z4OH0Am7$fTr}@{cSG&XFCchz+U%E*$`lRsg_|st3U%t7Y{-wCT=bIySG>-}6f$8Fs z7^39p)9#r@`aVgmp95XpC-OSNQ6vxIcblRG%6za#hpQ{m_@k zvK1b^iLYcUk_@3~lz2zDvn#E>iUoplSi#MpPvJJNeE4IHXbnWedt*Qf$L@ zF;gV1&=0*^1I3Tau61`XWgAmdFI*RQ`~+~(0k+q&lA31B1WIrbG2b}tyz(0kCNxQ_IC}JnzYbN6rk- zaM_u@X7@TMX>ZQZh_b0wp+2W!*?{&Ux10NZqNHuI<-6QuakHZ{XKASK+t>;eUB=4+ z@Z9FoP7T6yZ;BH+g@Cr~^ML_O_9FE(a<3ayMfX#r`X_jMCznypaq8n7p?)S&JLjUZ zmbd1yL@)&5hP`_R-m=J>$R87{oM={fWA(A>>55k~xi7d~-PFmC-Cfa*#J5G3-dKCG zRU0d<{v9A$E9c%6RZv@cV&Zdm@+lra*}BTL}NAlozI}15n@dSw|lD3tR*~0;-{DqHOx@rzED$ ztKTpLbPO6aq+9Sn?~?c?{%eh(N5vHz)?xkJ1&>AHa=2kEd3EWD)5(SL zXuBn@GwZyNmoYKky;Htvlu%DZ*O(Me`2c46>wHs*MZ}#%aeaM$%mslcN5{-uypL@x zGtr^QbbDdOA%638M@eec%bu+{+v{-*G-Iiwd|*rcp?41a>(3P&o?ql0EVhlMR5g1% zmfjz`B!nI&=7HT`M66Dgxu1#5)K;uK3pEh2r9Rt~#k|DsFWHtBy$fG}1v-|3Tye6C z>>g!A-Pjh!uvznBBrrNC(vuCXZwtKHhq1bXeehmWB{k~@m)o`!OZNGrnn%|?dd0;Q zAct*7)uZ-MTS%*_`9fK4*ra2I3TjF$P^tt@JyJtPmo-P0$4U~dB6ZYqxKduhN{h8y zv8@s&12xPtNei)pNcLzoKvwk9uCymbn@bGQmYi2=L=sL**cNP3x1toMeg19sb|s%n zNpBZ~C-1t{X8Pc;{>q%{9M1X8Z4>Kg*GVf-J2+GG)Z$TMUX0-y!q;p5@MXHeBa6^? zp0>3c$YhJjhRtUkEs8S-!A}+d2L$?XpZW3-&$w1@dP#xElm6`sMsR8{vV>9`Q*H01 z>zgogBBPNyzm9Tn%Awh8xEWixv+9#_zogM?UR&0*Cp~ff406?Vm$xf-_vyO)RJc%9 zZ0707lLHy@Tb)V}_j{jp6bK!8`X<9`$G(;2J@n<3b=VIfP9qEY$1MpMcpbilA@#bn z2CcAm%>Qoi!fWk;C~cxc?xvpIMz9`=j@EW=%%28enWPS_v8>ju1Zw}z$ZNGuaL&8p z`z9wb#m0%H6yo$x{J&c|@hQo2jE!MZt`u#od^m~(jV#h2V?{b#VJG>EiZ7i^rZO)M zl3oDK@#Qi`i)OEioc`dtmxXgFR6bj<)8{ClMcuqlm^Vjwg`Wm7zef~oQGEwUYw&Jt z&pueLCSrbh6skI)NuqqJ?m~>V5{~Y;!8HOo{Av)vxg_@!?dXtNiR3^;BlKXb zBTW(eW83eT_ZH;LO=2Dce+e8Bdy5y19pgUSAqP z&F{<4{{rj!O^`6%Bl;fq_Gpe0e;sT6oArU4jTF*Jf=rVWH!64*reADL&o}c6b`55^ zCAE`n0>__T4FzsEDe?BQb6_T-An@@i+b}N-jb{qG5;fR;h7V7;od1Ax{)RMXYXODs zypThRp(f8SO)=4^z}?eYnA6gaqrwAudXa0T@17>)yUQXh^NoT%ourRQob~EqCjlx z40%3Yk>Wr7uvRC;1ZEnN%OnD!jZbMh7IoL;CW6a&^k0hE!|5YXAI@>FY`L<>nqB+s zt`pc~X&t33tqW3`<5 zUm+NmyzRpo3l=vV)7>*Ad>{5cmfzX}?(*&~2F0%d*(7!3pe+e1UoY3acbw1+t$~U5 zrDS7v46_+la~fAX>E@~c*-xh>&0(AW8cKimiYXn?E-B26Scm10fd$z^>WQi`O9f+~ z3pE`j*#A=G(-6X9FVc$J9Tph1yd|@Bu8yo-gSo`?R^+TMdoWiFkWrW3ORS|Y9=<_3 zW#pLI_p$dRUrGmkc7qhlYW&M1=cj#8=|im(Z=n=CIzixy(F=LttShK)%+f*-$f#ya z4AWIpg2f9K*FY?U?EMx)%}cusLS2Iy$acl4Ut_@+AwXEE0K$sv(<>A!TA- z)~U2k{I4p2TlFAA^IPeA13^8BDr=ud1hf)sWq!M%0*z8_54Yxbkdqx-!dPYLdtBWk z^1Gr;BcGm9zd8ct^tm0?!gk$%5CxF~)j=@&`*gd?_fVW!SUU4XhXo_6-2DF0aJVQh z`jGN5-5Z_$V7j!HVk(h2-&x$yqF*;ZRL?;=z+^y+Q4zLP6Qd4N`d%UO{>tg-eqt^1 zGNO8m>w;5%a{;@wIMpXRT#V12LPA&bC>ev!|4)G%($aCL&kMi)p z`iwGpZe_1^9xmQ>qJ~ih0x);pm^CiErs)V0sveNV0gu@0v;#(z?#hMg)b9?{jq|Z? zEz%v^SbP^w+wLW1W&O3ROL_ziRXq(jp%SG&2D=MvbHK}%I1vN!k~x9dwXPL4zT7ZI zq2XrG0dSrjO1b5}bTu%W6**=wa>g23kyLQ=7Qt(JIkA@I|8otR0T3FVbf3$W9gs}BMa4j(CG zc!h7K3*z#CXp_oE*I{_TWIg4YbOD&o%u2%k&Z}3%$OYq*7XyWC=5rOHb5jj12gMR) z?i;I$4<@@GUwJd_IiWB6NSPnSb9p~&0P}))?QH9iV7IaAOan6;ui=3$2NdnI_9ffA z&=c&LnC$y3qzE{tzZ*1=RL|Q8^{aZ@EE^q+T+pC>?yT9|d6bi3aCouEnIl*9F0|;# zv9n`tibeu~T4CB_SjW|mk0|yyQ%m&JFxor(HoDXw z`w14DDmB;M6+A>s3)Cwx1q877TSdPiSlAsnQ>rX%r>j2xCnk<7($14G%mjyrG+pe( zSK%$`b1qm`#Gj@byzQ~K_dQ!C_XnyZ3rJ`+i7#c?idgqr#P{@RWA_)pjWo(g{aBs4 zWXh`C@SwVE#R;(|K?FuRFDK0teZ=D*n9*ElHvDtlBE|E zC9b=F>cNPmOi|aGmv$ac*ko?2`Fts0;FhY`k7eS>aEg4a4jer znLpleO@;Uwf%_{{5wm@THR45J$$TQi$WbY{%S?we64sCueEI||7A8e z=nSe3GC<9)N&85O68j-)71Yq1BUtUPCSy;TiH{b}aUYWyB6LnvDjXy1| z1uXxSx|MnDA8Y=~Av~6=kLy0{+qc{qL~qU+V=w*&Qypmx<`i0Ph}T#B$8P8-?8Z&J z5iS3`!JojOL;(G^&nwV0PG)PY?JQmj=mMcNwtar6%r7?fU1$)W~ojp9NtKJdE1iCb;LCo<;*hqcB+PK2w zjc6?3yd6BX=^9KvS4-cD&!p#+domQ0;AfCiu$1A`=yv*3g&0T{7|ZIwTec-xHCv`j zQ%~m(Ska42CX$zzYL;ua4Dnjk|8z&;q)RNpr}g_!6@>(~xVH))(Ff|f6b z3Z>2zsYe%-(oH;iFPd?<^bt^+=OGSopXYJ>UC zM;>NybO{`%&LD&sCg+}6CpnwnnRLx9yKlFU&*;I7HS>%{uy>zgZP;Ftm);U}ht%}V z`w!^!r4|!7oB;pZD5(RxZ5j3xhmbQR#T-E{t0~7OYn;!w)y%Psrb|o9E>2b|;K85a z9V|98>pP05Ib;BO@bD43Z)}!})HM(oHJJkACq{g1DfQ`lkNCV{(FoW#?`NNk z&9psr@6RvF&+K2V$7@Nc{WJ(pPj{P~Z(q4|WrOLG+XH1F3q(@&IWJv>tLkczSf%izab*aXcoK$LkTgu zo8!VkLHwdb$9MX@y?nG#dK1`516^|J{|zK$8|0z0B0HPzN0#VOoIMRCwc6Y6(xR>F zX^a|E66gQ)m|}$}8hZJ^MTam)1;Q8P9yqaJ1?H_@3aJ`G3L!I)@2i^_Vb3wy!{v9b z1-kt|er`XYMBeENVy|Z7`@ANgn!_hIre$vI6$32i^c8r#!9p^G>X-?hGgD_mKmuif zko7M;MQr`jkGob2!~fpZEetKeTb0#2j-$+*q&pE({z@zhDp^UBR(9`__jy1sDEUbXbH|-X9#{!016!au#IScfzIP+TlWhr1NZykT!)*~oq%}xQzjM2~Xs(MGnv-lpMuteDhVT01G zOYwA_CtOV02v8rTD_`<`BeK$reXk!9fLCq`R3MHVO2u!M;s2clAn}X)&f*p|@H%Ge zdl3zmSf2V;)z=Rn|8nYLNOV_3LTgs;Q4~l?@!s@pa#(G>CPoDnV7sa)H>3_&2@-!^fQ~=ZL)D-ht$8XP>uk@U zT?hbCGV%|a6Q#cXx!<>$%$waVhE;;GBwP;NU&toBRJkl?3X4t(m^U-p8wY{TpKjdn zB;sg!O~&DK0sI1)^Q0jFvz5obosEhg={LcfPKYTnHMs^vT}hLAPPi?89EKS0az6eZ!(mqk;7k5J46l! z5e-UZTm}=&?;>yWT;0lxHU>UGlx!4@hgIV$%@T{;rfM$LfKHSZ0eedIN}$RM!sn|6 z^16;5!2e6&E~plGi$3=8WEk#Ciq*(C8R;--mPAg_|C5btd4Q}YwN8^7D}z45*vzc> zYUdr3Rx-6x1T9a!E#n-Zat=d#Z00jSGRuff zX761qX4v%4v2}ABZ7g$*fnJnts-Wd9vT^>55QfIb9&nV-QE`cdrL{jGs>`S)*v$&l z1&oPXzrDiC_Vtk);ly$Te!yW`dX@lxmx)$F0!8(lX6IG+7rW<2v!}GV^^$z`Du5Hj zB>AFR=-mlL>tmJ~uZPnn9Z7pe*XcFqTS2_tjX#gFkCk7|?|!V|QDS1dRWc4_CW*W8 z4yYD|ZK~~Ari$yME5_20K$prh?ccoI(TCs*qwD{b#~0N_&Rn= zNmQJE59xyq8ChR8-HmuMRB^YlAm42Tzhzc&rR>^4SC#$CF&6W2Ytq8;7bXgOs%S*R zU4|Q0sd@@n1U0`owQ+F1Qv~<&tUf0}<8t8mNwQl~N?HW1#b>x#{t<&25X0Af!tbCX zB^AH91iw`zB_&CFKynA=nXz^qc64?XFT1RKBAn%^T zTUSfy5s>+;dH~!A^j-y8?DZx*2P$u2W)cmcv)`&cuKtkZaJYnF+^h&s{+_K0HC(QN z&c^^`Zgk#(LJKxy7hb|vEA^|zG^Z}-0MK09ruo;s2T@fFLNVYQ^Q&*;W z9c&)h^~|K|30*5R3UJA%LA!M}q++ik{XmqE)+C&ehxDdAo94b<(Q6$*OIvp!8Ng;| zE-I&&<%-&mXgu2McKr#^n2rN&3CX!W{ZBE!mYBrKb?mNwg<&1`d8HgSy~Q+JQnwY7 z6=yV7ViWMh=6_ouv%D~)B?yVdMiW60O&Y25ok^#oniA$cQbU&+?8#ygW5CjHJ;@ET ziLGIcXNKlYM(VZ*fj}vV3%|&-0ukX_Wk5^9JQawB7rv48illT;*OxjcsC(kctw5;snZ-N}egPaf#W&0Y1Q(4`k`jF1;;*pI5uH zOIXf6zT}b-xzSGdf*J%4`JwyrX2hu0h3XF=)#CD|y@z`}7uB4*Tm)iFNKTq``ju|o?T!q4 zUY$*>sRC5C)6e?ewzxU|bFCBCQU%B?SXs!OA6_vd0SCK6gmElgBd^;dbu~Tev8B_y z2eVd=nQfT!8$oOtA)KE?n~FFdOxC%g&;Pg|c$dsi2jV(`Sm4)yV)T%YP~^|bu@ir~ za{enH5-w5?H@)xsDP%%DtZ@ihsW^;8TugVn6gJydHr_b_mB%XIE{R{qrnpiPb$f+pZe$(6uk zUj!0GnU}#m*FI-BWps6()YEQ4nRxT~=#pW6jGYGym4jSRf(dRAE}**81_1Lmb_+jB z<)$szzs3gN3JemwjzzkGlgz;L5KMj)$9SR+b+-KN(!ZdztkoN5{b%3Fo=4_Kd&3ZN zs!uxKnk41?Mg;(()Up7K-I5xUW4`ui>+r#ZU)*>?pW69SAY<<2x%`|~S7?&Y{x z4jJ_;-rXFK7L52dL(Y8Ya)JV12 zC2sqJ!*&G~MB#fjvu`ez{*6XF0v>Askiq-f2oLz?8xC_%#5q$GEG!u87 zbRF-!2GNY&9T~7YC0jdG;FCi?)u00BAP4O_FWQVG*C0v&E1}e8*vI*r8=*C4R+3m2 zh4Bl=eCn!h8hcDKS5f+*)nmE&h32<@6Sc{bBV!EcdWJ+c3)txYMb=x#HT{2K!wXVU z6hTrHK|xAMDZik?q!j5^RHTP=jwzuiH6$dBAp+9fQxueTbPNUvNRMuK-kbjJ*L}a9 ze|3D~yiZ=|I_DD}JO;~v1ySuY`}iu)IKfAfBag0E531{N1drp`v5Fjtd$hB2FZL9x z$@QHl1DvM8jv;6zd$K-7F!KY#U#ga!&iInZ`Tj*ixv8|W)UEqo4LZ%QL8!*|{SYNa z0(}rz%nG(c|H5h8{BmgCqz!}0#gx1IBzc^7#oQH3)8QwkJ1Nm}RwMw^YOrqpJhekW zAHiIp^|!VTg1|j5+O6eiESmI_oR&X$k48qYM$sftPhhPOl>u2bLIti8uf&S|RqqG^ zC8sZwB_8bfb(j{}o1yT$ekfQE93{+z-ug`ty_*R2elVG1)Yr|vPmA=Ct#{;Ywrm0h znT2R@^^b24JnbW-NOoLixxT%2E`vOYX=AA&-BE#KOM!8mzH^Z~4P&<5d3qyL>Dgus7!zpWk;HEllT}6%2!jr3_3fj5L)IvWi%2ZQ56ZcUQ``o{z@|bwetQW zER`qa&-n*jl;kxTb6^0kwsEZ>)uTg5>y(&6o`PwRN=Q32J#a5l_@?qIEkV0T&K6Z2ScB}ipNd`2Hg zp!9|DL+rIFKEhynRGD3;iGK9 z$Vg2`@?pqyWlmF=m3tW87gNrZ0$J}^O6f=bv_x!$bHeudC9{?1!C&eRgF~|H6F2m5 zoe~p+4SIdg9jtItvg7SfHkTbm*+!6^YCk|TqB!>kLBy1JMtTRl9-6d>z9QUtY&mGz zS8i6gF&|pbk_y@9^f~E6%Sji&Cm*{WxS*=Zaq5!uQNc}c4d-7&!Nz%8JcZt}qsNjO z!fbaFB2)U@@>Zk2*Lj~K&phjM^hv&-wq=sCxcMprLPvs0_4G-M>1#{-v|q_)Jbo${ZQb!# z{uev>6zAaV?Cgo(e*7Bj`N}$($<7}5aR~sF&SGDTyj2Tnk&Gk-8xEo}P87$F*b4Fy zn!y8G?_nli-4ZuA=yP_qd1BObF)4$bEiw4q7waFYbK0M;Jq99*{*1AzQ_q=Ob@dw0 zg^$zYCRi&!o|m?iDRuEPHyRWdW_mK;=M7L<%+-R;V?OZNh+sV!Kb05FEzmoU!>MCM zVHhvJgO1;NSnI95;5_sgCalUek$26Vc-cl6&$`VzN{|qXS+c5q>iP{lm0vKq#B$E| zUaPQuaPr%&w-;H1Vx$cNP$Y7i>k$a#DPrVLRhvQMLgQu8=~e)-rVbipmhlieE`My> zadZ0`e)HIvkY&}Lko_3p0Nnt|fGklp!9+(3Ss?l6oL3+uSU#DtFxN*xYFo~)q;e*A zM#Sm_b3U)2o(P58>88|-GJsq&TZ2x)+EGL@Cw_*&7!bMCkh~>GOps|)g^y@d7yI7D zv)79HEsCE%s9%>*tbb9eF|@X5WWVPJ8{nu6_t1C*tRp^Kb?0~e_@a)(*?^ZGaaOSX zvjRJtF>ksLjgaIz$G4hE9xW|r-d%4v1Ob^hZ*$K0(mZYox2$PA4|9SC@Nlv?CAOzA zDt*scq^yFhmf7Hn5`i$<~z3c6y-5e=YK>^o^l3{D^oF<;rYX{%bfO^=ubKC2B z-2WBo@z9q#%vywdj3u?HMvh*zU%NWO`-0@z6vfz5<^Q}ZUaim9Calko(GJ9wE~+&w z>?ESAa6H6L+*dWgQAFt1ILLb~pkzaQPRGJava1BbmKjI<=QBcwhL%RZlDF0<06(w% z-YI~2p4q!K((WN{&(!ZGu11Y2z1;=;_uPM6xf;ufg6xSmC+r*V!I@B@jax~D-IjN) zBr282zVRN2rkzm!wkC6ks}s>TB_VR=x4}yw)1HfMjgqxy&x6c3@OeDcl^r=rlfG3|yz=aC?ZG}5AJ;MXU>0*eOHR186D~_jcRTSl zW|=WRWi$F|E7`ZoVL(P8Dk;uA2H9tk^j4l(fb4%-SP}bofr;$7q0y9Y{q^+^eqxr{ z22Ta!P{L9Hj(^&IMsrxClfCXc5VD)m8fZAeKSEiZYkL%0TQ^jc0y!6){du8gZ)PDN zZ}>WXdHGnDXV*O6u~#&=6f7K(USq=Hj^r0VMnQrqsGFM~9Da|L6if;Fd~$mlclvIS zIR(R*>r;#B=Yl9PIF%0toFko_mHn~|4z%LySsP>G6p!ODbO z++rnHcg3K^kRzpWz4GMtZP^2Dx|LzLopzllb{S1hUmpFhJ@%iKs1I}+UIT4_Y)Yi? zClUI7cjE4FE_r#$T;t8n=X1#w)l?5cO#>^}a^z9jd>a;HLBqqyN~9)!-R-9xc|yi> zz8e8N2b+Gj6LcjE@rG~sX?3Zi?0VU=AY!;qG(W7N(U2+6O?Iag@i6ucFu= zwM4$AU%uZ0trntIP=GH!@a^0NB(X_{Lx(qDtzGM7z8+9TWi0?8pp42HOsJGn3H542 z?%v%CRo=xZ<5t7kBGnM`jdR}lE!beT>yo~mK#c8)ACt1^)-T$hd*|7GWJvLZb8kSc zJN97e7Gbr%FgE@jIc)b#wJGneJ8RXYH1NjBN31Km-lZFfxwP#0ljvXIU-oC0{F@R` zWS5hcj2OX_=qGMiZ2V{!HS^2hRbMleDyCH~&$kfQ@2nNDGe}pquhi=ELY?9i#kXe%iqAq0CX9u&gJGcIg;!}} z$L7A{fNM!z0FiA@l7&xy*pXzk*3dQ_An{dq)+s=qs);38YD14Ab-_GSV5(`jH-p=^ ziA$;Z!@SfsC?eh4V*~!Y%^ft4Vrl+FLlHH`;DCA>uhT`IbBKy`J3Q|;^**#AjI~|? z+4S0)=I9UDoq*N71nPMddJilD;YJ@pM_Xox2tV)O3=ZqgKB!YkB7ho=Mi>5QLgF+K zM%81A6M8){b)EUg$7!`%n=aal9p6uR8`0!YKDQ18E?^nyr%JLX+LH$n(9=BDA99a@ z!HJ*q^3%>X^j$0i9!#CCEIqOL35RF%r-5s8D4EG=TCzU2g6EvHE6z3!et9a9X8&

o6C3Zc$?Rk84{ueJ=^1SFBtSLYpf79g}7u4_S zJ#YB(m^fMQ9Li$4J%Mp4SO^#RU5(>KbF}dF!^Z3yVax2duma1O58a;yH${HVqtk=z z!L}fc$MOM0yus=otr9q_|FHFYtk1F8rgAO%m0hcMogsgFEo9h)Z%&p-MZ`LNmilB$xC6W7wd@PArp)fJSKPWgztE5J0Q9dYzSrOr5e>V4Y0i%$_n zKe3VVU^Uvu^rBn5|G&0bsS&wXA>Edaf|FuBgj8Y#$6vkk*4eRp7YYQ4Pyj`$WkR=S z^#_*Mk=BDh9NVp1J%MX@?VD3Qt$ctXDYNO)ih$BN&S#fsde<(@a7!8JG^V;%{}=T- zq_wq)o!d8WHKQLNSqqks=~u7`^cY9-mLu2>`S48k@Ne_Ud#^WnE<4UKHd>NhorZ57 zQLLy~r*RmoY#YC;jMSDLW!P@LY2nyeywXVNxnW%%E|H|*+_1PaeC%jQbh!Ry2OC1^ zk!ZCnxI(tF^TM%FJ?N2owdwbi!MsrEp8ZR#va7pR!P0W|-Ht$fLWrNC@$;Th+iE|BB2ff)ZI5&p2ZIcTwBN$HUrBxY_&F6*;GrxaVU%^(;Q&wTffxuzy`-=+-kEdT>e3ze} z`S(1cy82ErCBo0i5-ZQ4f8ykZwyzSt{NIf=q8IW1X{^Q4R9jPdnJy-4Kwl2mAc1~# zJhs|+V_sf*DI+Fid&9{=JS6$cm8|`ouCGA)SXk+KBH@&L&BBV)TNz)+$$CZa1Lcq^%RBg?bSCnY$y zWcca676_qpBXhY;OTVtAo;n-;%_A{9{LCvpY1`E+-;F^1C&->F23?+MX_EQOwUpll zdv)Gf6+-f5^ns2->KQDwhm5x-aaOq7Hg<0%?6tx<&ms}rC1`d<15=>9b&dp>+ zh+hZ)Uy@V6@?XIO(w?%Yubx=r{NN}Wi4I8QETdY=jj?tPccm3C&TSMqVgw-GP;7sF=Ogx-{-RRqOCj`sAj_ltmsyv0KfVE~> zCYF|WG8j2|=@TI-P_5_hyuS3c3WFx*Zt~Dma3_Sal{t)z*j+RRYZ?P8rN(KYo3wPK zmw@o$LMD7T{mz6JD%!Ue<^_l1oQQ~paq#|Fm%mtW=o|O1mF<3FI^t2YG3dwa^(cL388;a1J9YOC*Gn5h8=q36tO|Zc1CGI+*TV zkdKa`NrDCK0;KeM%n$_=i>wVm;fY??H+=+1ibNT_VJ$6O9nBvbhHHkqy8Lz| zlP^LC27x+@{Ykn%`=(nT9z<^nQ#+4F+AG`Vh2S2DC5u0gf#m)Np3z}Ml2)c5w^Mi`?w z=jK)&;*ebSl{GOQnM>V{@*k-ydAHAzXo-_J5c9h$_@;qlm+U+b8>YmJ%G#SpM9TM4mz_OR6^ekxj{~KjH0W@JKE> zQdg`;OGJ%SZxy$QKL2Ul{YGB+-TOy>+7J!);fac`N}HEX;Oe-2I{1T+XjI@lIzx%% z>6y99w{CC%&=b2PtoDgtYBRSk(O5;Dn2UR&w#}C!K3bFZ)iU^5@!lSuO?DtKH;wY@ zr_0UAH_YeCZCdEPmU{CQE&Tenv-YRce*M2uM8G?Sg1#db`A^HpoA%1Vl4AL^4J$P zvhTLc^pA&)%*`YbX#LfBD zs~;Z^Pu+UOMJ7GKT6QFe$86-0%%okK)Dn79rc(e)u@^)P!7^?Nl~6xdnOs=y<`iXB z2(ouR7+-qNI;p@^z%o$q7Rdp!fChAXup_z*pv1 zl6!I$>jWH@FV~Z#BoAzShkZl?xGv>9(e;G98f@qh&KtCiBw3Adx7#Gk1j*PuCs@)Doja#Y3JxL@}|@sM)M>rFzsBm)-Q1Xs-PUNmCR zd{cu64hoQ0jykAK^*lx_kg+V=@1^5|M?Y8 z2b(Ky+|RP@GU#UK2^tMG5$ldtG_T+y{m8Z`+~yeiXA zL6xjkjPxEK$w|Iz>ztRe4qVJd37T335>quWEhmRyC|3DSL*wqS_&#Hj?oc^Vanal? z>vjsk8n)l*7p0>)EZ-*J?6{K25cwWkzC@u@1*?*UO3D&O0SsMhGL;B4P)NQ#>$(|0QF~#m1qm0I;=VWE!lGJqe@ND zcd|=&K>5uI=wQD{b?OXRJ+%I$V&=56RbSdii zFq*gTe**fii*343i1}7>cKs|#1ljZ!6s>&wjWuNF{P1_x&mmc?s9S3zL9X9zKMkAf z4iPFkcW0X<Kt!snZ1C&07m#G&ywAiS%bhUI&`fM|ePxy~Fz!%EfXcDj*!$n5q>sx-4 z#z(K+FmmcD!mk$381)w{RH>HQq35K5Mf;9fdI*53%vovnh(ik;MOoRCtDHXP6*sfy zNL`s`qVAdb()}x)FQRkdrl&O+XfXv8ZPaNhLaBWoy)Ki#0;P*XB3=6QiF-Ks%f7y%l z+5X6o(!0S7-2mn3+u{|xtknlsW=~BJECn!OU@SHV9523nw2z`z|_3mb@+XT*ZB)20XyFnN8|$C?y-YT7{Y-Al+MeAm*3`{ zu{13a*nJ(zO<@3dvK+5GUK!_6wlt3AF4=^E&0*mlQ*&YK2g^|jkSusVq!%abH5QQj zB@wk9leRhdq(%&4c0V8_>D9o$sXP% zw~(<*Q)0yCL7nA36HwmAfkDG%fu=^yqu_eUZ^+TEI@*2tp1%C~x+L;-#K}~Hen9ez ze$a@5Dwa7psmg)H@~+JnS&jF{_l4Ut@l`c_I?0`%)yPRTrUwejXB4w`OH+SL zki}}+!pe|QWG%n^hXu-rK9)(kz^^AttY~70bMm>&U;Q-Q4ZW)ch;_ zm4e)^|5XdLq&q5OlBlcT@Oqs&6; zpmZbgAy#&bc{NKrPbn{95Chn3AY5%a*jUI`v^z8hIFvQtMGQ-q{x%6G=Ul5_i)_ms zm@W9uS$BTq!r&_3UHQ2Go>J!svWpj-ViJ{xW8dig{|0-Wu{wmcrLJoK6Pm%0C{e89q)#T?3XnjuTm31$eapcDS={V3YP2zY zWdVKVA6x3;%=O{USo<>NQiHw(zpcU-`-8Z_sYVK3i&z9;p+yB;7JqiG^ z=!13#hZkjmhttnhQgs^X3X4cUuttL(htGxcA87h?_8Q(hQVzZf{F)E`3Q%dYpmH$1 ziDo*GSM)iM!=`}~{)v^Ac0Khw36cac1+G<~!{X^FcB3B@r-IpQtu;5)&m+ye{HZIC zZC@nmcN733P*0|^vCLBUd9#mfjrkC?k2&7JwP$3Wjk;EWkBnfmI%Hc>pocM8YUEBV z{O9fOA0?1pUjDJAp^Y1hCV;M{AMUV^|Fb2erIiRhCqPB?g=I0NOHHN!I}v3MgOrd8 zbjHJqMa14ldP*eJiz@$vKTYkh%eSg2G3jzzOmDjP3BVV)`i}11JBPN!xQ7-98#1Ze zcx!%ad1BF}&f(5qd~i-B;?J|a%aX?{Pi>2kKENFQXs($IKDuXHTN+ligfIUO6n!6x z9NGXTZ;$%|`9`X_ecS<1%l)bcS}4b*af7OMS-`m;DPCv|CD&4~Ym9ZT+QpsMI)#$E z+3~cCA&FmI$&S=^v4Uoci;UOw=w1~e=20=jnxKsU>xf|LuPzb7_qOJ()EBQX)YjYp zYy=ULp{RQcQd*}Zs+hm-oxT2C?)C0BSEgFqA?|O) zN8JYuwMEHT#_Om_Q1@jaO4bwg;=u^cw0j|wTytjMB{zi5WX-P&is7h;GdN3}3c$8f z&_%fSU%{^1?C@NEuclK)JpqU_QBkb0+H23VSW=}n@@f6Tu2f1?AX?kEjq<$6!I$0yBdMf97N<&jgAa#&&#E_9NwNun}o-bs%G4 zCFQD#f~N`3F5s%sfV(-I;XB4U9$j?uCQDw*#G_ASkzEyok9JHwB-#*PV)M8}81ilc zz?7Kz;pV2bndy%6^BK(H*xprvRK;z$`H^5xpU_|ZM9kv>GqtFT=&Qf*L*s)CyAzRdd~A#$3%I`Mex5hDw0%Od6o?-$o)9e%Q`$tRO zsdbe&?2a1U0lfCaxiNbad7IUDEWNTElu#j9X5?jPj8~tQV3gJ9;3;;zvdCL9^pPWT*u^WRmgLEV(!B@P}?yCjI#K{FSMmCwu zXPHa5@9dmC{JuLV3i!_ne%>`FIYfEt(CTcy|2N zmn%Y@bgX~dICv4G2fCDbEHSQ9ftxV7lDWC@@?^#ZSncb^GC>6FjM`&Psc8nmajxgX za4}XP*)94q3f=N=7{zYlPs2vpMfKy*)6TDQ3-UVyJNL%~6AS zV8=1*j`a2CN^G|F>oGM#2W5XKaW1=#otLyJ#@#9UIU?T{AlRCi9#ha-EV0(o>Xx&8 zKBJ-LYIBbU1y}&d9wv5SsEoDzoD5Q zDP;tu`Wh#e`Cz>ZKxP*x@HRq3%^WuR%*PvNzGUlMIei2V`W3bYZpw07b>WrRr^hP% zm@As*N@B;PtSW8hKhAGusMKXsU}wSX3pdIi`$T$_EsNm-*GF{vV6zfA2k2vOLp|=6 zWPbKPUkY5F)xl5Ut;pqCyGup0<~V;StVc$!xdd>|a}M@^0}%_pB86!%fG$wH7VT524eaE5e~T%a*rNi!s9{1ibXuFJo7&I)3ads z+4qu{2x4br3&Wl2M%MP-T(!?Xnw>Hl%U|l;+sH9as}5Yw=1;qwcG#CaM*l5#aNOTE z+hh07M}^Hra?Om@)`N|1gubG8gpGEjCxQ>rz}nzmvlBc1b`_^_3;-O0(YVTsBe;lX zL+pgLcRaMd_S3&=Wj;z5Ot-3dJeu|;gG@=qlqS@gNjqh9E5QvR`S2*h4+SkWI}T~n zx)E^TeC-610eO<#uVRuEJ0XOsl%XHHaAVUt@B&-M>AEfEF{a4K!x4(vYyiJ&nG7z| z8~T}d3DEuMN9apqHb=y)V^3=OuSUUC=u>sMNH89HC6-i+pHIQo7*R0|?a^}ym6Ah zXTcNUc?$g^2>lFShy7AZ2Q@oe!2tRT&{lQgn4Ikuk4e}C_DHFbaOZAxPmW1s^j zmBAKr+6CrULe6qs>{$k%($Df*$f`6Xy0<^l!TC!91|e1iAFxo=IFVwmtz-1P06Gk# zdOW8s@4xWA>d2fz@W2?v14d^BOdRrYleCNGBrO@rT8*?;B{|;ZEQ8P zP&%E~EpdTVS7dNC(4#w*mO)IHd}KKm>Colj;O3u3zyB-`1-F;DG1=FIri;W!8gJg` z1C!a}YLD|X_TMB3wuQ-y59_So!T8)Hy!Z7EE0g0SS3H3GW#66U;hUaOC^QntvwflP zgrloa`3aJE-;%n&Y+;}m_wyxD?&$d`3;)-VsKM4Muq`nufj&-kRbVPEkAVgXHz?F4{bO&8R9V|f)xXkfswfAU|Pf;UIn%< zpJle2GK_94Uh%{QVRQXza%F4k1ITY4-xp@@FNAn7LT(2724iOiz z%4_71!DR!SysEWqdQ&pe+m`PvlXoXg(6#F7t*O+xS-pCOw(|s^r8>~#x`R7GNSaK; zMdIoQC%uTfJb(zBZJf@f>YSL|HJBv$Gf`7@utez_60t`@uDHl`_VhRWnwi8xUoa8`#uOer<8_XdH(YSYglagqh!5{>Bjxi6%{Ej$%qt2RsfLV zJqCRUhF7Q1OV!ZjwTF|>IFq0fxH?=GVp!y}i?LL)^vF^a)%GQ%ol86jmhes)ZT`{p zQXL(m6&bvo5PetA8|3D|4fmr8;wt%Q?Yn>>E?(d+sIhNhvzc*H;xRGWEL&w7P)WTj zcF-G*=0(rqW^r9E7Q@UI7=l#`If1Pfl9lc${Z=$Q6INtvhsC{bH4?S>ya;e-|-spaH{V3|eD1 zDW>_Xt#=8k5*xWioi4gJ1g4>uoUR%z4xyV%KuhGnY<@eN-=2Ae8(mpF6Qo7AvT(h;jwd4xgA^F zAmUXx&6(>~5olB1RxRUYujW+45i^fa@*!bCW#6kpqolvNeFq<(GpQ+e${aRA8$dTu zzEJB+0pR?`vsb#kPP1X&ATT@(uY(^7grQvd`NT&Tn-u0)>?wF)ft8AZ={CUC=>)Hex!6VuS zZ8@w~3}Va3=ZKL7AWem+6|HWoOW8HrrAje`{=FrIw{AcFEGCkVKjpLy2L$FVES0L_ z^(DSRjKbXjMeX`SoOyoT+nIQvVJ}(DgtQf2SN{G==l>`i#i6bgxSqGRbgUjqhTjl| zA3l+Lh3s!V_j{sCLwt_Mve<SK7QS%1j378G!9LE(D&z~@5{g0 z8s>HMQdrqCjf3bNu)%k(4*Z^F`HxdZUu?=)35`_0>AHpIP{fqK0qn*zNN={rSzC^_1LrSO6k&^CYrtCU2=Z8#pP<^~HK5*@TBVQS@T!(q!$EcCzj|U0)b}7HxC75JmJjUz+}9VlN6@Qm zNqT!RrnW8(`>y|fD548g*dHC!sKhcO2~aKgS9hlFaPM#BCx8I11Uo~XkBrrkNS;2@E9#{P zZTAGZW7?zlt*J?W-d2M5xasAWKllcJY20ViWcj~qM}uoe3lJ6_-VKB9L7L&_ zkDBZ0l`wY!TxXa@_bxMN?w(k*m_5~K8gEbn4hVA5LyPPoE|EDen4V|=KLr(}%w*8) zD}oggY$PV)6xl0ei(IE`--uJ~R(l+>UB5tD6ZpoE7@Afulb>A_Y5wvvnKX#$8DsB# z|1Ql#nB)zkg|WbvVONiVfhw%Z34v1Gq}}X3&Q69xS3l`m)^jC|My^)oTWQOmFOf&l zz|oXlD5iC#(uMNDn;<8GQy4yjKa7ZAO%~QZe4xcRb9^$qxKV=bjWYJ*=3J~!Vm@V( z1pHm^MZdT*;npT5vI@|=r5o=&@iCxQ;qsO1Di~fXHucKK-$?h?#{3Sxw;m&p;sIVk zSp>7sFrYP76pDZt9y1+=;CDvcnmN8R6T{~hin{^!bt>lDFQxpGX^z(o+S;;*lkE(- zY8Y&)a<`=Kkv`)U#I}#upI+8VpNGQ{3N>Rv1iacya@Hrv#0h@C7az%g@$)eR<_R7z zIhAq$fe?L08*?3>daYnslxUNz<(l8S@06pZNj(c6y-G|dZf0P}QO97d{LAkR(W+}d zY6{VN7@h!2#GCrhCJl@G=l!6RG6=XaP&xW*IvgDgI4@jtFuWzI0%|-%=1T^CEW3x_ zQ?zYwixJGAp(8y~tF0|B9c+kps$P%(TSy5qIRVJexX??Lu=IyY1-h+OD46XaEvFsC zf_SXW#>{X%c#1XOM5c5R<4y2r*ZQaDTs#p@zerq2CggF_6Ewi_dmeU5YZGc-cWJUU z+l3oZO^ied?o8*u%=arIuR#EUenvKpbnGHW^?N3t_)@uhZL>S)5jmg!CN!6y3G%(+ zHKV_$lKK06HSj$D5;^I|Km}FOx|M+WiMDUt^``C6!Th#HjJ1J20q_02{`pf@Yij?@ zf~Mvy#V%Zx@1iDLWIR&2UueM3zg2ERIt$<1bYYm;|I5n(^(A@KxDRipYOf7u!~ZA= zu{ppzzWpdew8t20rX%erT z$X2-^0C7hn1}C{onprSmwdXWZ>FLk_IYkF|jzG0XyKrR8Zc2lk$Rm`HLkS;x9iQpOuLZuZ*(7M1~XvNPk`5m1Ad<>tl zcnU%^*9qLt*w3Nyr6)uYq5#noZ=HS~A)@Wx_`3qQ|1_!eYY$AkwiEQTrQHp>Q&l(J z6wF~IB`entrAEZSmlVLJOt86&hV&+a%p?Uy$pv&Y>vbeQ6*I)>w{!()NN%nl7haIY z8tgh~e?5ukTe)t+s&#LA;G-zN=%>&0IA+`dj>%G96=vO@zb8#%CU&ytQVIhD8SrQ< z;@tetKsugnqsJ%X7XHq;EDP3sf2i{maqsp0$)u0I4Wh-eMC;-`?mxR(7FJYCR8eOZ z+xPO0^-yG$a~V9&a6+VL-DD*gs#~{cTwffDGZao7`ieMS4p98Y+qbwhWZI81-p{x8 zJlu-*TB{z5qp9^wk*By-X-zP;r9xdR%suRCjOm$4W;tq+?E(3q=1@Hwoq49}s|nsB zgKqh1`;KSSi52<1swl;3U(3C#{bcwL1M;?@|7s&;pvzu3Ed{Va1b-7aA-8#beSfyn z3`VCkJ|E%PUm&1iK=&d*x{oQMF`NMe&lpS)ICk#Ff)Y6Y8QPlZu_GC+# zf1w^d{KRDO`3YM#y?dUyZ*c^~^D9lV?FWWMz0UYL+`DVa$Uu&Q)Bja};le4ie%fmGzP+l%SVsWpW0=RlN#we+0&e;^GTEzEAov~4u+sj-2HR$j#38`jZ;y1b3sboZJ* znHTIM;`0V9GrRx?WcV5!Nl)^`>v`AG)TXV+@y8rm$SW(7p=%7bfjlY7<`Yu3*CFfRgQ) z<5$8IwkF`{DSAW8N00YM@^br2Y;I9PLg0ZP{_v#^cC3O1zdU@0bM+S2bw1a}JXg=w zZ=b*a#OT$%2VUEEU{~f`(){-z3|_4_KzG&IAFub#NoV)Uq#mwi;ua;aZg>MT)JTks zrdn#ZA4S^)3~p2PF?$=E|F?T5v0gBAO$nQp!@GjR0KOWl-fFm#6+CNQhZ{Y{QOJ zf_wKSWB*%7hjWGZIB!kN_$s8HQ0Ix`J-i#zR9)v?DI+Z_G-CGn1z8q?8~)%KQSh4& zCk++a6>h&0=Wh5Fx~4}P2EU8&U(JUJ+5Ql<4}Q+XB-8%WJW8bK!A-%1WZodQiMDDy z#vFX0K$zi}*d2;kb3jYOpVod4s@eE+N}*km)x&FTpDq>9hE_Q7%k#JJeN17sm>eS~ zr%N(Nhu>Gk5b_eNThFfrXPx-k_A9f2a56c$de4vIpz&{wTkO+QTAKLV>^so+-3BYm zU-n-on&8vAq4h9}BwHO!kKNgj1p2!y4!%x5)dfO?@a;n8bmNuNiQXf&ZBIpAB`J+z z!EC!#voCvEVCMcF&J){EJDel1q0zT~VU)`R|9zhAEng*rJVgE(7$&rOS1V{};ogXi zmKDxqP0 z2})$aiTi?`&%S=u_g3>|5J?EO=%=i~>^OGyTj~;AgC4V@|I#S@H9*+TWin^vNsILF zc3t(v%Q9tcR-Z+*{Ok_b;Zwj0rE;IBzrK4hs+_g*YM9SBxh9kItfL5OjyxYK=ALYK zCIY9U(7wSo`^XWnWbIg#XT{!?Pdei0kB7n1aGp|6M*mQ|n=?>&>=^8S=YV+{>aJ;G zc8mU^FY)!a7UbzUq1S#-3tqORfN)Np6!m3NDSsRz=!`!R&Q~$jCD5pM%g9ZnPzHh? zw$<)9U4lGZewjxJtJp8(Z#s2A1zRtC_I&fq~Ym8T9~bugXwPyYkxNZYKVkilS%c41Y~k&^bhmtB2j1 zX1Zi^ZajTgc2;EcyF%OfY>sqZ)u{~g@u!@VhqJLHHM*ZWtzUJ=xcYkrjQ&YHTNFG( z^gBoXF@Bl_I1h`{8{R!3lBTXFqeoVZUP{Q4gRo_0TKGeS_H)_cf3^SiRsIRIsX8Ii zmd={LJjZ!-7=>(Ky`M|*X9xmt8+&yw=_oGJGR}agg_8?TbkBKsCgrXN6qD26t&v)2 ztdlLx@O6C9%3cfoQZX!Ed>DW-t|uuIO`zOIzc-UEjoXY46h@vQogs<8{qWXL&>r_c z<)-JkF*F}QEzps@$jGr+{5an=pK^c(-y;^ja3jo_m1tf;g&=Yqpt;U;L62Y7_jimy zru%)i=yQwj2z+$LCx*p8nFr#yrHp1vS6 zH5;*-Q^9rptEl-uXhLu*>rZe67`sF<w6$`z=^swh?=ncu* ziw4FIxUq#Chg^5jJ$t1|JbAC-pD|-Z-hvC1JJtH$GhEMuEHLm;^}zR>evdQ*@-;7* z#LNXBco);-@f%4{4`)=pX!<=H*EcxM{|)QWk#xhIPpp_cjR2A%)BjWFMbx{~NwN%N zzMNT3BRqmg#JFfzK#VtU!IGnuy*RZrw4Wk{3eQ~&$p}wMRrVX-ANxPDhTi~bB2MgK zG{-3e4Qo1_C$5NF!R}%qjFZ`^D!rhA>G9cvbl%Wh-^~B!D^3Xaxg52`Oqy^36QViu z1a&4|#&5jVKjN=V3T|Wq2XR7kui51mq#O=9bGN-}nJTXWF!BR~DVXUeFW5ivSYWZr zyk0~uX7e{MbpV@unlzDGp3R3(z6wLFHHW&duCC+0n(*OktDBIdkmCO1=RZw9oa#7o zLwb@o&;Bdx*gq5WDip5*!dAg=11(g^|C$l_qa~&nxXZ-oL1$+BAO80?H)e5D*Bm>_ zZq0?C4e6tgi++sw`uW<(6~+ArA?_N>b(4ATihi*l{B=J1SpqC~3R?7hqajg3h8{?9RActg;<#WAh783S^A6Ry`^aA}Rwi6;Nxh{nsd$PzJh% zj5-5xW@OObD!zgYu;=`9VTc2DP{?*Gv|nLe{J)wK@NZW(?rw>Fp=M=i8-@Cx|Jom3 zR@ND~$C7Vq^*`HgxLACn(dHM8Q+lMM=CIhhLAFzEF~^$boE-(Kf|Wd9dA`u4f4>%M z>(icDLy(_|{0AZ+4iccQQv_O`gve%S!~FNZO^27hf*U9FqgU+h=}ARA z&=+)}5xicngZCXx8qRn4pVv3A^kX9>1Tz$`+$VA<2Q2NOjll516@+?M2VX~T2AR0B z1h~?)+b6oTxrS6UcLM_=r7L;C$ZswC_8EK5+WD*Qe6Y$vjKK}F==4(OnHGGu0Fuqk z(|T#U&LrYWlQgJd2j(c6t6w$;zNDmLv*#3WT6s+R5-c$$e}q7@4I!m~dyNqo0+LJf z)O5U@q>)~7Gl<|$nD?~N8*GGM?Y-4gDZ-g?7{iqw)&ZI`I2PNB=~t@ltz7+{P%1RR zjSEEOLZ|(1E0rU{!%5UVB26tsmBx$eBRnf^Q)(&43op6PM$7~wGp{SiDSi|Fc%0_f zH?fuHAm|zdrey9^2mg_9$oZ`h zi)0Ep9xnovAiZEJjyyIdiBK-CzFb9vZo4GjV; z_uVZDGhNVd;28d}>NuT3TZLbK6wkE&(U#upqn!uCs7*?zqj005e>q~+sf8GYDqa_rr{|7%EpOnwi)Q`8xP=97)B z`wFB>_Lb&`2Rk&5yRZLN%k|uvDB=BpU!jb$u7%SatD}c!`C6vUezjH^fDg9ic54zV zKJOfD7~|c?%UdCX9hVO+||(bd*WH>KlWd)l?= z<{+Q$P|)--JbTCSZBMU&!tJw;he0FM0k32-_~>y<*s+Ywh18TEGwteRFR6b7J~9}i zVY=43>s6QPm|I-sWGpEUnyndW!Kd)56_4JcJ!D*~2xxQDwWGCPfhN`&5v=I|48H~N3sZ@hQhrdTu%wTUSD?$1&fvEH!b=%iGs94zB{Cf#C% zLJvb6fNi(`O&1A$+vyVOAiUm6X!mrMn9=u?B<8883LRYWe_k3r7e+;7?ECyQQH@1QS*kD zN=INj{rWd{pN(oqnbpJevLuFr^H1?S>RTqKdNF& z!{>CcfsgErsw?a9Ba*Wp#5Uqk$M09htw-i@ywEt09zr7b%iE$vLd=|G_3naRLqF37BBbea?Dom4*PF1Ta!hOVT@7j^>!;QQ@I63Su zAB}Cdn>qd79G_J)(`{?9sPM(@c2V)34;$69soOoQzQ zJIcKU-`asj=yl?4Fr9J&tT{KHSN;|1=uLg9P>2T+Jn3f=j%^uIs6kby^ef-sA}wKD z72-Fv8++=sq&i;3o>O}TX}$k@btw5=;wv&D?5R6;sb*QXl3{jkIv$&w5-x=VeZAZ` zTe$-Bz#u)9d*l^f2>jdb?%=KS#0z}^mwfezdRXo`iyPIjdDm--vkru`U^na+(wF(R zjqeKm)mFp*m5I1TMsc9pc%~cqz$>E3fN|%)3*WHu@|H z#rL(nbc~<1Icv(X&YuYs9n;F9qfU^QSQP3+M~dA z;yRwND!8H7jvED^>9O`$NsdWl>C#6hKk5F9?^>`$3EYMa!N$4n4~Kr>uvq&lB#z=T zVXWl^zTSo-W3y}F(D<5N^sxeF)y^fBv(7hGnr?Q8c|Y(vDj5M3HE>&d$lRiaO@T1s zVqNZ+CWmN>%G81#ADP_=Q={&}4Y(uJd7hl*rh-Qf1O z7M{z5)G{RL428?(&uli}ZeSOAXjVH`hAP7mM=B!#l$yg3G|lNfVEjv8cN&AkHIH6N ze6q1r#$OJa7zPc2WS;l03XUi_Mw0Hdt)}=jKq3mZ71Jv zy`y>`d}LFc>`9Jqcirq5hHVFVEoC5#T{ao?WVDBifOW|MNnGlDO2GQ=zfMV>&+@8J zUD)OMmdv_Fi{qOQP=@eB`F?cxJ}VX8v2i==IQpk1v@}q|m-WyHd`~!sK(|kadPI&M zc$<5`v)sx%GcRb_E0n#PhTzf+ida9l)eq^1Hk@<5OFBhF5*ckylCIik4EDdgP;Nmc zt1McWUX>C2iHI#!fS_+6=m4f^xnrWM=T3{{w66*4d{Chp6XbA@&YorR*I*S&;J`{b zz1!XRnP_k(PU)>cjhGMt>mrKx;>!(WNNT|?>HKvy2E7(v%+nmutzhJ@`64Ez$p9d*2<@WYhK=KtM&rhBQUd08gZeH0k=F zVnE0vND~MsBGNlZ4X7vz2;3mOs5I$KY9OEp7)nq&gerk3Ef9MDHlXi$-*3*GIcMhl zb>?IoXS}`d-Rs)DcK52ky$b}t<_QYR;vi)iQ(+er$AL7|U5wXhW#mM1Q*mGWhvV5( zg_2jqXn8i^ytr!gDW1V=G%H{6P*wC|%H|6Wqo7KAG1G&VhEHzy70UQ;+|(-=y5*lO z#&O1ZazaQqCq|7VX)5oxUs>$Uy)_w%c9Ap)HB z@PTlXdacVAExCF_#K!R)`fY4za&epsed{iyE%0|ibor@CR&90x9#!uge+E9l&sX95 z_6;4rLi(itirgs@n3nZ>p{`%zYTD$ng_K)ng8UnMhqpx@974QzMcLyCH_TSPA0p; zdpEGZiwy!g-%0?Z|F=TNMOTUz1ky`K9sFSS0$-Y~rGuh_*Jn5N{@Bc!AkRx}QXA+N z?k`fq;o#y4m=L{Dh1H{t>y*l0anXBO)F6@`M|FW<}1%A8o#{6T`%`RyM~ z*Pl#~O}E^R_|vy!7$C8!9=PVqrUGp#VFRZ!$U=_YVm!p+#F>&)+D7r3P#a42;O zfhgrbWv47j=roduuhj*phx^l&DZwty< zu0siiWe(f+dw3AwNcaa(*eMbeD(kv1-mG^EU13vi`K&<2Q*!%KgTrzRqccUQlm=1( zxc*cRWFlH&=%Po^(Zn>oP;~C9)&A)t3^2AY&zx_F#jO;>3P<*=REUXoqaja;TrX?l ze75+P(?us%==MuYo-|t1eo8}50L}dXEZ@yvV#bcjTuJ$~TjK&WOyDlD6k(#lT7y4b z;HKtdVT@SuTL%&o?($AI0B^U?)ByI7+ukX~eR zn6R*Gv!Q9df0iIkS5CV+u^T2T?!Tvf^K)h-Gd7$HWVUU^{vlxrj0n@q8fGl#^lrWe zob?1#RXeO~$dqGSUOSySFb1* zwA~>19Ma!EK&P+|&YrKSL)q(}uP)=*W%gcC`OV=2X+XN+aC@;HTsp=?;DXD=?zIJKA}%{h`H3Lt!J1?lCBJY|rP`fffXb+}J-^L)QS7f?``NPPik=&|8 ze~Bhu8G3SrU3w|sQGKROacnCetA|(%PU&>{sYk69x;p+DN;0>rYDf`MYxwW z+$7*w$e+HSMgVWYf6Kaj`uWDwLB@Z*5eweQ>C}afd3K{K}}a42PQ=#{7nt?&m2sHPlSk zD@?usgZcNS`AxNd(RTL?K$XQNg7D>k7mC$6l|@LDd!w|gl^=o zk(YKY^O_?!Ooyi(Iqj@LDjNF`4OzXsoCArD&rJ~L7^!~w-`YOmHR z_KmH;F!XUq6(XpdHSzkNI1GgIT}HElL0XaBX*uhRfH!#jv#w8~D*>E5tiRVw=V_)Y zpE2}EN2)EmRgqbWe=$}TMelvGT%xS0(_))+foi( zmK2iSO@`r6h75WNv+p%->bAw&J}@90|Kb$GRCVkW%qTnr#UT1{hP4g7&yLBC?qOJI zA1G)#J~tx4db~`OzeF(nVxm+o=PduT*gw*g1!q8mp&g-4`%2HXh9ty?fdVQz?XuHy z)31hoC(7m3kgEs5CRBQ#R{9o9b1Ns$($Kz??^~iqBbI*R&?)U39&sUbWY8DCQ8I;`N zV9(Ru+b`FdnX0M1RNF(;&hQ0qMJZvdNy#k7 zZkY4^LcK)uQ{xd{HGIn!Wi?-JM85W+k9PVlpU`6Hp~qe9g0Sd9TIfKIbydN^;;{4h zXnx;TuWL<#M-i!6{8_{FsA41(Yo5!glr&iL&*=Kzx2ddPk&5nx3Do?QCnS47dO$?< zhTluDE7p&j{QMbM7XAF0_`ApfoMz}Cu#!qG_J$Xd3^Y1;&D8UIz=KjI^!eOhZ#5FI z{T9UwJ4}c2|1sVhB8EZMRIX-nkZ5Wgdm;CoNfeq{w534?=4Jb1)5qVsc>a*-^?=E} zcOhv|4gW;l?+hK04rCvo%VwJfT9F&fJI4U@En|5l8x3@q_G;?qrLvQ(*{sYs^}B}q zqUhWih8br0jWe<9*24gdI#q4&E&sZctg;RfCI4}3wAYMG@(B60(aA7a(4E<*R7#Mo zVR}gCzHDo`M@9QOSV+}Z`Wu(dzUA$;I8Rn$65clpB*E|A6cF*m9SJEn(>bY zkZtw#d-(@I>v{A7)>b%?vOQR_#U68o`-oogcK@f!CIE5@YBXG;fS>&bPxwT49-T5jH_=GaF9imXHT ziRL}7-=md5uBHwKJJXN6cJ&SfcY8Ra%OY`8Mtkb@F^37ch2W;b2Hb-^pnC}JFT(9K zdT^*o9%rL)Cgy;PoAc{^F&f;j^OncawBj!s1({7;AeH}<`PhP&Y|k`n%bq3;Qb}nW zd394m5O@szx5uSLj_zKRyzI?3YjZL39$nC#aoSc4ssqc>gc8-h)#&PkJtrr~LgLYK zp?g|8Q+uy(RnAno8{I|JDd}4pU(hX<@PB!ogAcj&ZMiQug@%WSDO-R*+9SHVti<;Di!X8v=pFJLWD$l%^+zcw=YKIr#mP!k5* z*{7iI!q){(9s5(Tfnq}8LvTmQRd7cM`aG-Mi?HWq_KZq5xtS=Hgpy?X*&L$^cA0~m zw_T2cq)DICmrno~JdaPHc)Okb{;;5NwO6kI0o?Z-^3)G;<@m*vk-ME<`7n%7<^D{e z!vb67w$t^w$78~__T_|SSB;85d#S7k@b+x^l1;AsiH@g@o zv=>q@{JDx7WF9wxKrQW6P$Ut#cgGX>hYkWLoqLb}&l;9WrQIjhem5$|8Gst=(pS-c zWH%0k|DtTl6oW3-b4C0a=Cq}u&g5yjs^XvLfFS5GcpvJm+QrD+qvQXLzq8so{7dZy zW)bPPklYtb>6hu0n2ioAH1+2f%da>L(eAb;`bGQ6fZzyM?bo3o&HWeZMI(m2T8QdP@$g&Ni`SVOlRRvBh-6Qx6Acz5M2}@$zsF_s2b$AuyFc zuZ(b{3O$yYkQ}MGNCIUm>@>g`t@$C<^`M;wyA2NAM7U0k=16ocV`_H85MwaRcerk? zl+IUwd36O;pS-)mI_GAp+1I1YcB;FM45j-2Md=xLU87jjM8arI_3JXC{3Mb)hxeVu z8Ahdy>B?b-c-xVx;wHj|kZ3`8s>ZKhQcIob2e0?kul%ytx3Z1y=N)Ja@XDLGWP8Sjamc zZH$tgML?^&xz`MWuwiC2eN=cJ(}wgMm+51FS0uFkJ;{8Gxzb@fxu-&!1VFYe6*pHv z`5<&5&--{_$Y50XEY9xiS>)Oj{-M&a7eMkA0C7r&HOfMkxbpO zrwpY$$ext<$86w6sJ{C@1irs<{r*4mvilDSd>>(v!o6>}j59btxz9B?lrsuC;K(oc z<3kGPrI_&t-uJGZc73q+N{;)~iG8=ZP9J5zU3JJ)tjDY3+d^YrT)%Ny79n$TGH(`_ z+;-PuDO0YdxQ&vKHL0^T<+D5#bE#wfjNqC9JLU$|5hbe%b1QQ%@l|j3vCHe0xh2j4 z^YpG^f|=I$MUoZ#thejT5L~Uv0Na_9_`5KetM*YiK!YiYkiXz=Vjc$RR^T zB{%)Eu;w2ay(#xcM{C@N%^1;seN@n%sy_!z7e~>ZdeI`x0)t3dR$HG$eo%~ZF*4&( zrm%<2E7sj77|}5OwMk-wU7W#57#y#cwPaBmh`Cm>{SHBW6p&sqYCx;UQPor{?Ah=KGS0AIkF^pYu(o(_JBoDG2+iI>5mt?q7W4VJ~-r|P&nU{!~ zPYjV$7f-EvLOj}@oHiQN5;)~%tcOoN*ZBT|C}ACc8RRmO`Wb!(Ma_eLbCgb7;jM6JsK~idyc$dg z^Lp!AtO^yzOE>Ct`f@V9IAshFJnz8 zx0@#rr@c@Gi0Ub~?}rx3tCW<;cIZuFN!b!ZyWlfJn zne?iLHWan^!g4U2VvrldIcsOPx zPH792uWLf?X~6;5gkd36Znp{KRGn_gO|BHjZ^_MUnnBsnKqr3bm8PL!nT@r!=kaA@ zeZ`$HI3`}};_y(P(uZCj2Z+qScBP54L|%@(R1demMI8y22_Kn94nbN*!$~ABBtgR| zU%a2wTojMV<;4h&-?g>uwO55KEbdX(FkeSjHt*;EQrip`Sx%tIYxlECX3C7#tCxd~ zsv*6U9L<*3kw4Hx-l{Tn>Kox{*UOLAIwC*oMPT_W?5@chLIeCWUL1BG2)3QnCAg|2 zNjjIeDq63xntYC!rLkZnX7!!mO*WeC{icgS^|K$&8kh(@8ir`(O9 z8tX?Hzs~U44rJ%I4)Z$iFtmH+w+ec+`^6yhEsLC#&4OeF0cCztDK)iN1U`>2)^n)O z!beREw-%Y?gv8QQMiGiT{U=5yA`*JSHf|#rC(_+Y1=g}B=L>#xJdZ>t*)D+Z?wzN` z>-w*Zb%~>_18uGQ$^E6Z^2t=*%MRBJT}Nk&5!E+9Mh&I}6^}XfQDhFCK-v-^dVUFX zwj7(z$`!lS+rX10jgvIpfcHom^d%P}+YSJ#Of`Oq%?aR%a-n4p=4{&q?`)jv@W{)o zm5&Z!EH_4?V=fVX8mWzvW2Vu6DY#xS99$M{{`~j1;XaNX9K6w$kP_cWm$-?JxP&x_A44aT920$} zRxG#B+oLqjUS;Jc#zi+}uA+_T8MlBUUaZ4K7#LhmKn zA5XoX%Y(0QLTyG(F}T6rsY~Twy|qrBd}SwdRsa!@B9>aQ>Jn|Wv7&v@vo1$HRzHsi zlg#JXaba#Yx?QD6=|!{l!J0-HlH6CV1Z$r7q5{tHw!rdrqx|NdyfrJ+L70Ja)NCS` z)Vsk3;Zvm}Uk`*<y^k9`U(zoAZ_6crv zD{GZQr%i_aaa(?A^7k+>^+^$ft5?k+^gp&B(ag*Jrt^FzuD)91=tAIy?P)%7K$Sq6 z%w(ysLa683b*Ki##q6p-`q3IeD9L@HW1FY|Pp@%U`TAUX3jGdK95}EZ>Q(c6wIjP% zTR>sL-=|UG(PuX(Kn1Z#R+^R4(A~DMft=|9S^CaQ?2jWzX)%o1U%FnOeGBotWwltCD1x!fHqqS6qVKkde0G}QksAA;F;rbQJYQXQ zhZ*i+-efy1vr?a{?xYLZKU{e-s+BZlWU*llc?;l682T%4uWB~F7K`NFa%v8oiSO8W z@rf0|_{nnB1QAeoyL5S6{H3u^DDi~Wi%h{|MDcTZzv2Y4DH7lo2tf6FOc9u7rVS5B zEMoxVxFD6FOV1y=mp^l~3&>|d>4i9M=B2Ec&gkW0^3A<^f_uA_?a1ZTe+i1rYFOz( z>hkIljNoG9>^qv8SEXh=K~0p9y~mt8*gSpEU2Dk-EI|sJ@~-d`KB3N zd5Fo1qLKoBC-H4!tAYM0oUguV9N34}mCS4j2VnZ=7e^Rjk0=R*Hs*}r!nJ9_m?7kC z_gUKBnoEzP?Z)7R;nM2cjv8e@@|kLGIo)o0;AWxQrhJ~|#gP6hXT`JlvP)>kvRuRH zx2`l{X&^W35Zj&oxncTRrq4p{=23 zS(9>(xtCC%HNR#V44?DZDZv-9M7TiMUw6G!%bGLV|!;|ywljSQGv8p9Ldi^1S zSfw<5pE5q8yIViD=(=IYVvexF@c9iIS!6le7QqTc3QNQarFm+A&oMqLCg?87tqtcE ze=wvj*lWNnYZduIm$S3m8xniC@)Eypdy6`Y+hX!rhUVKu4A#KW0|XHqJ*}1(=1RNn zj3iFUcP~c{B@B*occ-0j97+xdc;9$fb_kq1A9>37@hOnatj%!PrDYqRmfQ6ia1V8p zfeM5f6Gf-qMiX(TS~6`_A$hc{6O~=N@fvQgS&_G*$u(hW=6PJNmA_90KaVKe=poMq z@Y!lE7%BI=SBFu?ivt|;N@*}LvET)VgA35@B26Fqs!N$ag zz)nDi2apS-@Iny-{Nq~*k!|>+$fVdyhi;tS!5vC&v4N~B+m+1@RsoJ+1~__qXn@bW zs&o7Pw}SCAm#R$PL_V3zquW>#BSvg$#08;vAR~nvzJun#xZ=+n_!?Z0Q%4hRe7 zG27|Uo$3&tvr}`zb9z+W2mQPG%OL8>Nc7agCC|&1$e?#ZYZB=|w7mW@o1=%d5L^+8 z3%H?k%WaT?eA;7)7B($`rS?7RX{;15$M5N|TYC69arlN{JEoLn@YF=5LibbNs-15iDy&Guk z>6VXAezQSFbmDY+k@yL{#zNpI)kb;bmLcNP@BZ|UOY`^j8Hgr0 ziVA%yjkI>`%QdD}lm(x97=MuVeQv&{O`-epibXt>&#vK^NDkQA&Kg zRN?^_LochP@TX}VxFs*<4QBrC;5n@WsS}S;Y7{B2pMmA9$h^G!D9&Rt(WD5Sf#Qs) zUz5w#i=Gm+=4)R`egL{9DH2XmbJBopk+^V@7<6jreQO9pWgj@xmD6wOx@u=63dzkR zCCuCTC=27ckV z(?`cfcs|O>63Rv9X;5e3jUQX)-!BU25x*VrYFk7Piy)V|jx2n-y%Y<)W%*3?=RBNlcwQchC}ldIovPW zHaCR4bT(=}@a=T)P>E%)s^5;wR%i8-eSCr;;FUTVGkl4kZmlYT&f4Tm&cxr2zfQN@g z@>6Y3#pyV|w~IdIeWZhiH6^RND`iOUmO2QyR!Jd7Z=2Oca{gX1rdyh)cf zugYYorX8yJ7UF>+lXH>ixOQhZV`vFE8%`3^nYK_R>7f$bR>TQYAFOI}5k0>ux|}%< z54(oy?$ntLbCGF!BnH~t7S52f_Ve_Z z0MEd%jJE&LU4==I&m^+`wegoiw%mS?Phl}_I^vq`oLs zyizo;UEa!?(Ubfr)iR0*ShJHSqk1)Y*uH*#cbQ3qsQrBLvUv5V6flKw?w(Cjyl#q7 zb;w`i>yupLH11$3U5w4vhO-NsR>`WYFJskXg{P&EN*$J7s%ms4*v^0k=jR`t@2DLu z;BmKZg4-VTV z*UvSMT!#4vYA*n-)#ka4bp?PCnKRQ5!$@hACkQ(hMbKe5j#+YZ`P%V z3Mr>xFag?GS71?*D+|Yees8*SgpnD(rh6k)Lq3luA|dwDe6LSL)kQqBwkJ^le_p#G z$_LZE?A}}1dwF)Bb@5z!ByTSVyh3z*%hei6hOgaJqfi*MUR6_O6_Vk~n$)Do(WAgt z-4V9#X6d@VG$YYW4>SEcDE1-)%&&_a6Xoch*Ny2eo6$iYp3O0dAdMrcFP1$R{f7k^ zTQC!CMgnk?&GOA22*tlcQPgBe;WA!3!do0qY<%P_l_{u;-D)X%M6QaQcaGnbOY7YT zPt<&#XJu(+Zrueg|^LhuCN)4Nz=x+4L>F9LwDquy}@W;Q-7Ji2y3Ww8wVAy^X8L zqyd8(5qwuy=@RlVB?p6OHS1I|o1SLE%Hr7*mxyV>OW2cxQJ3-@wHk!ctaXw(Zm#*u zrDk^+U^$#LUB)ZPT|oB!*HTv`0Y&lp;nguE8^73~uhA5CfJgNdc^f(OEvz{lnMC}i z2~9_nfas*-TXc(2z{Q&uBK>Px~p9a2;iQRT++5qOja<%IBQB2Il_B#KtUFCSOPD`U}UreE3oTwcCwzb1rf z8o~e2M8!thTIjBDR_~H|>skkQ z1V7S!ne#Vjc~+}FxeU%l2NN#r+N|e*`OR<1;WLrj6@0VTxrP|1RCt@UV@}77kKdP4 zA`cAWi0`YD(-t39mtLQ?DwV=xC^^dKtCN~<4X0!;u@PvKfBhezhx9H?-*Qq@bDXM4 zJ)vo@L7j=@{RsA9cNHG8V1+gW%rA3`9g~dUGhPp&I>=i%t!(bE1*B5MCCR#ZBmw#B zlc&01o4u=(#{=?Xy+d{nTi2!tZ5l}4%gxui%cEUoBA!1IO6)(MC5X!qo_4LIm4)ja*bk4+pA1pw(zg1E&fPMf2t+Gn1G7y1p@xR d^)r=P$D|`f3~m@5^q_r!ysmjI?{Cv5{{?BL7;gXo diff --git a/reference/bas.lm-9.png b/reference/bas.lm-9.png index 4ea28fd1056a67d5cef153c0b4987f0aebbd2256..aabfa475ea5b708f198a9d49258a1051e13e140c 100644 GIT binary patch literal 29446 zcmeFZX;@QN_ct81iW6vS6`5Ib(0-<~S`=e(Nh?PkQ#EP@4SAmkDoCmYu$Eve#u1CR7@GKtT zq=6r6;=cEbM<7hDYW^+D8lMY8AihEzKYGY3>E1Lyx#3(QW=x@^<;n7qv?lja^-IjCH^MWoh~KUtDYttyy#E ztKT-d*!nI1@w?^Q9#wu6XL-sJPYH(~$0qUvFnr#`*m=_luY9pA#YyI~5^huk2tBpa z`@jGF-xc^jyaMxc`A|W-v>9Lj-aC7W8$OL{`_79Vr1h7Y0hOH z3L1w#&zn@IZ&u2@gf?S_5h1SZlnPP*6Wm@5p>In@S|vOOsY?VHj0XloenfJY48x81 z8Ob?pfYLDbu_Rj9^C68%5OzP*d}A&>p2po(O&B<;cE&zdC-Q1r{gTdgNKlb^jJk*m z+#BHsXRgszDOj8$M)DE<%b@SPT|c!i&an)w$jlL%O~gicAP`}zED_BY5XJU%1+KzTqkw)-40m4W7DrJ2GixazW?GWJ=E? z(Uf7h(*I!ywsMK2HW^GDxFS1Ikk{G`KXsSgtzaGtdKiMri9{gYzgVvw`$yP4du$@+ zrIbc}ZQj;YXVy39!7rAJD69`u3i~V;i>eG+1y^O371;fq5++%sBaTk;k zCt4RTwsdvuWdse!h1Q8wC*%=DV;j7Lfy$vj$b=F>!`YjV@g(lTxenwENiw;pQv(_pm{6<+T&7=e?o3Ejm4uA^wLiK+Nf( z-?LrGowGV%k@~+LGiazOGqoi(1pW2#Mz(F=f!%9ZcQj?Ha)_|nR!{(Kd_|u)sq40} z%%*i5+Uf3mIk9gtB7or71RY_Q`*o=rIEa&{}|m2=Tc zocuDewf@MF=7yfFSZZq6$0T}sB3jbx{wCpA%ZV54&TmJ^s>!>AgU#hW*0jEJ#uWvx zt+I(l<$DRaVah*uGL;g~Kt%@LcxEsD)Zj>BWe?77O4dop8dS9!;!_jeybsGOBd4tp zV03?662RH`r45#@2bL0RYC^Wu5<-@PImY~UYZ(DbBiLUG*ps`M<5BpS*?nr$>`bK4 z?_r;}^Q+lgViVnMuS#{Tt=bN~Zt2}Rg%TOvLp`Z)e>d!*i$$fKLh3Pk*CwTfzIi_n zc~XZ?!h;?ro_wYQ;myoFn^x+;$_D*RhK#IZ*ZV`|CHKtf)~2bf1Dz*O3Ht>-P)mTG zT57v{C99^sQC?0#T#PvKebVjC68h#iW`c-DYeVi{Sswc8eGug6Qx!n)5xFo&%Y@b( zqa31dv_kB2uc>cx*dicp&F|po+Z#?a5L>q@#ytuN{r5$eUGarB;|rRdn7#@v7o^-Q z;E2B^=Pa+wsy>)axSO76ydK-PQ9uuOZK-c`!#hJ6m*4BK39N(;pBh?-@@2+yfv3xa znho_`#Z**|wq9@(HN|EmRIW~HJ2WhiVqOJr317Thw%*S&di5YWUVgngg~nm_NGGMb zKW7Cz?s|d4V)&^UbD5FCKJjy06-|O|p(pXY_~qNC1w*s(g;vR`TDYQTtI-~)JV>O7 z&t?NL52`;j)R#3F8;-(jrfwU>PET}gnQrDnYQG-Uf`_6wv!Kv?gxp@zl@)usk3li= zrf*g$3w!F?Vyt?P7ggg{HjE8io4P`9i?xnc|70`R`Sl3bPtlwDOx}gW=P=t}{3 zy2&mY4|9_GSPqX2HaSEq*tB~<;){X2?{UF1aUw}yIGJnJh?d6*$}l{Ky$_S z=80+tb9c40%?)x~PwwkAauuQ1CEfn1g9m>3{qevb1kBjd?&X5>zST7$rI-Egj^p<0 z`7tBMi2ghSwlFgMgDi8?6nlNi-VxTso9NYfCrd->KPxPe5I0~#Is*O#BxC-@!7U%oJ ztaehwct*A%H8u6tyrX}k{g}RC@2ORY+Rv8(Bh#xmA(6Jv@lHsKtCrYHSmC=Qq=89O z+9sRbbuE)g2OZ~s-`OUgbeM>(emhsb=W3xV@@J~s&`eMDyWHw-ee}Ub36(D8X{PpM zjc?nw@fTmEJkEIbw){qMjI6w8?s(qTrs@gQ{5agct3dH1CC{w8g9zO)Z!1n1v&j?l zbvZSQv!eb*yHp9`Nkm1WZk-UT3m{I2k!# zH~SVOZwqhaOfJog zs9vfx#-h$&SfWrQlw}B?9V06d{ic0Y2Lr@)dxSqvJy-1O_1<&!nMIBG0|I9ty#F_M zS8IL3g-eA}C9Lo_t?sU)`3J2XUFMltldnp;xb*VL1~ziPcJMX|@hHe1}aIc+@sTaD5Uj-IH#)TRhvTu@E9 zPRMMBo1@vxV)a5vS0eL5BZV1b$zIGddPDs4oxht1z1MxVqNmO^)~Xlpv$TGL|Klz~ zR=0D=<+&&9i2Z_NI(FTeQgZ&@n1o77#Nu6Jdk5LzPKNS>ha#i*5qYvi6dj^m7)%K$ zI9{K#i8^J0XA(r|3EaN8T>@*H&qRf08RX*j`7C2pVycl&r4d)%DlYCCgsg5P6FP82 z?Ed6S$68WWf?22ISsu-tBKb$4co_S-4=fX3cEK}Zb8YH#^luIZ^=7n`>11`MRc~Vj zbbYRi)ffJ2gxfK>M0Bs|6@3nc2I!6W-1Tk_X!&B(Sm9{Hlcs(BnG}NuG`i41vzlv@ zn%-=jW`;*dV2`2OjCj5zNTV#LOM;vYWmnPn(*B+tp0};-brCl`W~u6>ge_uTR`lZ2 zo;hAw-x|&I1_u8%lHUua_2Nzm8l6Q*j!MthecHEc5Lp(0r_5whMxsl*#x*8qZK6%5 zlPQ+K1*)vZr%I7eVMk>dvhAO2>sORhevK#Kn2Qb_;N@}tLd0S|EYR(U*xgko*q40C z|HxPB2gipB1H(G~8qIY)n>k;8aC$O6ZkQRlklzq?j5EZH=Vt`9_%%hS#v;r562}HU zxO$tJuoqibl#rM1Iu&JLFW))|w>Hgl=_X}b&AGDLdW631%lZoF@&l;aIZCo)Tl8vE zX5QJGG#b_n6|`%F@10+HZ7`==v^I%m+V|nr@;tsq+a@sEpMEjhSV|iE!@0xSwsrToQ{37pxIsT66g6ruu6r&g=^ra-D z$JTEA$Au3up zz)GF*XRDsCvhgBMU3c1W=ivs;G^`I~fquV(^JqevKxnl|_5v1DBhWR2f3mZv1qc65 zAs#7FAfea(1$;YvGw0m`te`o^t`;!zZYrd3pJ8tm>SbP_NlCzgGP1nMF!m23^r$-v zd5Npmrzwz~`}13W)NWQl%hdcVg@|*8X6FOFxU72qmlEiGP|J#B-jbk1h0TBK?>Ly4 z^C22}E6?^`s+Z&iyj^5;MgxdU*-iVAXw7~hq%GksVc}zpJ!(OrK;xz0vM6wD~y^mMmjV` z$9ik~G7fL7mJ6XUT^x>EOgc$?X5QNW`h)vc?aTgE&JdjVfY1k0!~BjK8V%Gy1k+x~iC&Ou~X;#ndGz6M3OPGAS*+nDM4n!bYb4pPUzlfH)B zeWKz|NYF(I%t+C%XrR`?!*UNAyzrGGmpCXYNez7?4WpZWSo`meuk6vOK;}JE-WW`D z7ntnoUZ;JL4!4eOt4#DJPQOcv0E)@@p8QteS`|70B$o3S2&fE{3W;G0TaW@ghCJHbi)nJlt%8KKQDok z^~*~>YX}g($|00hb3#_lxJZ4R-)#KgR4?c0ZWG5>-)|IEABdN+p}YxS4c$P@6T^w( zORw`T4-f2N-btakOZnd1s5feT>XiSqO;Q@|fi$9vvr$v^JzPe)H`$r2U-4H$Hz&QN znd8!y*ndtqMZM}RE;y)q4*z2C<}*!A!3H1y0Nr(M-Js*bnWJ$HM}i{=N1n>iAJ zwS!Zrb6YL7o*%P+5wSrw|0islga=8gkS-rRF8p(yUQ5pIaf*r#&0W=_%!T9j+7eti(|)?m*B zKoiMmqCc^clCt|AmRnzcF7+{}I}~=RC1Xh1&G}V%@z4=b1P?4zI{u=+>(Z%!1Ozo0m zY%RgGA9jKh;cJ}8Z0w(1oEV4J;HnfboS&Uw7FcWomhsQ^0)u{gF_4v!jqD=1l5&S* z$ut#O;Sz1k7^Y{G@x%#Ozq;r<1Y%3!4#R4}ack34|Js0HZ8d$#diQLCTFjn9vKZ6? zFD{2flDN@LRuc*r5p8z(Emy#Ij>kF;q{U_{_hNg1I_~{u zgiq2(%W{o{oO(H;Z76#ODBbcj!a^|=TOmB7;4y}P7qa4LOG488#HZ)f zFWsd9(P>ZX>A=UhOq^hscyWmxPXlj7QvGaYTFJ?~6}%cBSyb)LA^WK+$7=a+u-F`L znHMPbSgZ!ex$_N*#?2NjT5l!rA{&nVkKKw(Xo)C9qFwPXrH|myY^ih2Ne+R*h+ecF zeIc^f@!E%ImfF)s=R5Aq?>+b1ou?d$(|!jhau5(pD}7#xledxsXF!;~$V8GPld^-W zDwPv(RUGjnetEX71={sQbpSexxi{ZK1QaF$={H0|`v{%w8)H|EnV>H31M6s7SYjHa z43q4En!JD`!iU@#(mPXwmK9c|xk~tu4echILsGt5=!C;|bz^7BF=UvWGC#4L;5uWX~2-LowR2#0iZmAw{&fzwvRn@NuaQ z5>bUwzCzgxiiBMF>yCbaNcMzZTZI^j`;ZO~Qh3gm(Y~&UHWpsYJ5`*jZOtZ*rQ_qq zroC~5t56Q9_T2t0h~}?ZM_26r3Q&Q#+I~N7@n|KFaIz;gQ6kHhT4K)6yvaE-jHAkY zu#R=D3`$-V#@1df?G0MH95E97^~jZ#-+(irryp_P(#)dol<**a8fO^36olo6e_V>% zqtk#!w=rMIx{GXO!%e?~1-O--xT@@_=JUpW%T~J4m?s7%u(T%p!adb&&pbLKQ=KAt z>@8ObVKei#h!a?I1meaC?Q)C(nXSv4mSwi97)29K&JIp#`HgPN#8G(-pwhY@K2>^> zt-J*)J#SZ;?cen1#gAKf@17!W#U5i|#_mD0 zi{n6PFF&E-B*rI$Ud;|naG@?_WJ)w~@sZNHH!?nuD0tKrJ+w%7;^>35{^s9nZDHYM z7P+t#e_S%+Jvd!f;7bm9HN&Pi{V@mtFAeF1Mh^cel0b=smm5H{?IZa=Vl>`PgkA`? zq>;O=N-2lkp)1f3m4~+Q-atQDQ02_oHq8ym-^XMI?Hd3!t8W2?*gQJf4^J2#=0iC? z3vrSocYXvD4eA`pUuF$#XYdrcj&w-!5IzJ&>2@FkeYm&^IuZwjSIc(NMU};JMLP&q z=yal+L6<XUT*M6c5BPDmttIVb zo*NNi{Ch$dM>A2oqf1#f1!`Z(J6H-OdO3TeqOQ-y2BFyX1Y#xp3MN7{DsDrSFCtwT z0*)FuYZAV0+6Hpu<%Al#;0*sI+;MO^YISy2f5i{Ws;~b0zys#V$eV6roy^lgo0Xnq zCV2IEiJ9GWr{RtA8AgF%>xTs{Gx+;g=JoTV2UmC`)={!e&uk0mdz(@^B(5H){`GEh(3!(&x( zi^q2utK!z-bozhDiA>j?S%e<3&8D-N%K(7tE<8ai>Ybd=^%#1bYF3i^upZm8TR@-% zd13b1tH(VQ?ADcbxoeU_mTC4b{Rsa&-Dyfnhq!%{^EsRG*#5zeZv_<&5yuq8T_p+W zqJPUOLeIjHHgsV4OOc$?bhR4N}TH74xjlh zMGW`vY)d)U;@{vcc4WOm_b zdq}KL9YPC(P_eI6-q42kgky+)+pOpXYS)2vV&<@uADM8&xw20qtcWR2l;j!gMpwy3 zuNwV?5x!WtC0}z^)(b@CMWo}BBU4q2XNkm?59^VB<4ebNZ_G4RjAC)hb$c|k|N8}8 z2d$%C^(yv3(wtt;in{0Lk=qb4G;EYG4X^Z)Ov5wKd47`5OlJFhvA46pDkX7PjjVYL z(?dXL1w0_avhJ-^WYn!XO#IWlt=|t7@!YPslhq2OSF=695?F_D3+S>xdgjz+simVc z#d+tCwCo-c8lq$^IvP6-EX9ZhQ-5AGrf)pr+f>n73(Ab|#s=|gNRdPyT(X$6qWP%{ zfXR)q7cc$2ER#53I0oQh++@E8s)6Jw8G!R4p||+XK_^=M&@gqy$o;PY97}O&%fqB3 zKAxMB+*)A_BtHEzuN*4$NyDIOL)shD7=l1D%b}5UnCQ{sUWXP`86k4ZD+3z$4I;rb z63sFs^(%~VLBr?3ItLRuv?jtr9#}97S{^+zz8K!%uNs=I8}j?A`DR_a;kwcGJ!&)Y zO6WI*efJDJ+~a#H|2T0-W0w%DdVSj^?#EKNN_WudK}dpFK)KV1xbb~+$6>qr`ug!; zDIY4$Gah3=$wm952QJ|wKG!Pu*y)5lYSBXTPQ}uzN6KVB>N4LG%K2- zlL0-$81;JBr$}rd6T`;L`CH&5>dq-|K+HfKRyq)>={o zM(TWRs0xx_ko*EDb6JpGR0^?$i$QGp&7i?JX9mqrtJw3kMw>Rn30`X2DB+0_RqaXk z?2sL?e?sz-WPvakI*YH`zbxFPxg#X%RL4~R-cJn%6TF=J8q*Y_(!IFVV4;;Wl&m1V#dBM_(8B-OOI8uhw? zwFKUbot1~c9%;~rLBr70TbQ!Kc&y6r%jJmXYDX$5P%=s3U9|AJ?JcGTd2<0jYA;F!rP921vWrWQoJ%@O~ zmEHT@4#aSgS(#!h=GS20JTr!>-r;dQi$o%30oO|-6i;)rXcL#19w^)oY$$Z_!MLA+ z(B|^oCsMhA!N4sn&EJ4N$5lBpNaK(A5j4lxBY5Bp2wx>$p9@Hi0C-$@!&Hp}#>7J@ zIH#uRE)z>|Ra|NaS%CDi@KFD_K)kI zjJ7sd;5~rU>#VZ|7PYToo!$CCKeGDWLcPJw#Ez3l-`jO4_5sR##e6{zr0> zS}HRxLp8`W+JQO!N5Xn&OR?3pg=vfJfpJe$FhMZmMcebrWS_ zYc?aAGe8g#mkzvJ#+5`!{7oP1_~=Q)tpf+z@>F$s0O)v{$jGE05+q# z89HSxr4ri~Z?*btngtuyyU^CIazyq-M6?WYya|PPdtgEVMjh83ovA@y%1KIV`TbO3 zNvt1=E&on(IiC8t-JgLk;}ZY;v~^oJo-OVPOaS&Ocw>f6yT}g*xyOjh5LYSNX-Jz( z2@7W>*3h-0c}HrB7c;kNAOIDbha3LOPnW3i5v2bO6kB>r`wb%}MMG0Pv7(&27DEeW*@aF~DHx(~4+CfYSpzE_EJyR`J9FrYZef~JAnIX=ZC5{o z@}2BPb^`OonP^0_e8v~!$v@3cd*P%$)e@1>B&0r+UQXBF@+%N>yWx9pSbBn2=b>FV38zg}y(t1Ht+}wSKg+Wf!t%;%C?`J5{H{z3)F`PL{v}P;r1>eA|$M z)|N0fz(pWvi$fINMqy2RDzo6D;(?!jRUt5PpWsMy$jDt7NfR;}>q7DyHc>mMiQf7) zOXpW0tTG%=Nc9O7LLGBOc7*S`c#U5$T@+6S8bB8joQ828ASCcr+sze5;o$B2_ZsVt zVEH;Z3b;#bmCn0%}=;}b8~($PVqQLmzf z_Qw<^5ED7P0Ceu-0JPzdyT%j&8aQqZ;u>uLu49Wu-S8D?6O~4rh`~oSKbZN6!d!mu z69YhO>FDqU&A+c>)IVbdjs)S96!#@}+dn402aiC=wzaE9MFh~YBji!hFg z>@0Pu?q?)x;Q+$;*L5@tSJnh!Lf3b=12gWAK4#(aT>5Y@d@7}g8zT> zp#K$I>VJD5qQRf`Wzhjo@y|cQuXcC>;6jx=l6YRiguDad$eI;NZ+TX>T#!vm!=fJ7 zPngRwUff3{Z%MfUq}AQcs}j66&;=f%{HF;)M3{nRg{&s4n~)`bG7HQwr1tZ!O2Lu_aU4%cFnY5+}H zXkCj4s}-^m!BC?$!PyH%3*qy-x*Pce8^3U_l#g6LZy6omfnsgdsAzx)0h+#n+M~l_ zMoO1W^J%x)gqIx;j%lUyJHSrPR$9l(eAMjvFiAgUprP`jhva7%FfwaXBhBZI{8}+! zlSDw1V|T6f8~p$$Lj*z#TQA%d+2Dc>v$fXLVLc0vn2mLvOq*_&u>2g>}G`YCr_ z?g9!wPBI6>@C}Hli@fhhPI;kq>IP2_h&a`=ucVPr4*<2+dHKT@SI-R#_8ZZ*==jp-H$IF97>r8iE>GA%U`$9@bm6`a=(wr<;@o(8sR8027qGpohiy zt3T7*lo?a$KQy(Wp{f-1SYBX|Rab(%rU|*EU#1uUaQ{1OWYK2fbDM6LR=GI~jRTc$ zXeuj<;mx{8lH=(nfz=I}=YIwPa71mUx2L^={4vI)#?y$2fanP|@ne zXjy`4qxFATO}V$*0b>lGE#LZQXevP}VAyo3DHsE4G)BmDs_;&bg1DAZ{Auo+cV zH5#7KRNtNJ{4#FdRf|8;d6N$pin^?HUqS9zSO8Y0$Kq7vsAtVf%!)B?uyf5#Qd7)&fJj-I|1_=E()o zRMk-V+c~qF@UL$)+mDFRXeXwr3AXO-a8eZI)-th$OWTG*55PacbM=bf%7(s-Of-X? zGBCN2yLp0PW|G$NKYLZan@sAv9D}LQPA@IZ; zuvftpn`A7OTu+)U;fuRUwrDy5s`Z8Bf~@ZfWMtlkt$aHyfI}b!b(3NEtW(UfykZ}< zZIQpGA|Q@=-j>w8gwp(yPkb~6z?)1dzL3@mL^G1H%N6RbIt}LtTli~ZvH4Bv6{px64K{l1+ z1$^*?heEgNC&rpC(vR@URtO06pg?}Iv*J@^4)Nqb#}30(s$3y;9@Z{e@TPE^%Q6OZ z!zIhvlY8HxNq&}{=+dVhD)=l|Gi#T&37=wgO85b-pdx6w&==!s8#?GLydijcH4YuyAT+PR#K-}&at*Oz1_1tpIKVMz5caW-wkT=p{UlWvG)2vFHx)i0`AS}T1TSRa4GU2Y2>^IXt(7^Z<_}n91pzu%=HcI8UCnFckhXin}W*wTJ zzAXdg;8bsFCg+GioEKK!c}qh?0*%p_K@g)j z?kQd5A6Fm=9`1laZdxWj^iC&0FI3FAmMYsSQT(=f!qmn=R%~7J+hssv5O((tmV$s1 zn(E4Y9qTH&cYFv1k*gbl)4p!gtm)C9*B7>?yfK%H3?(W2>+u#q$qlWKemC+Jz+1p| z>|bz;QzIXvtohsx>F87;&!pIpZVw(zR&;>y?K;iaA99?3J;`b8|9#G%6YA(P!Ek=L z+&&Vd7^Js!Wx~Zq;qUj787~%HxZ0>ev5y&Up?3&x=;Vs^RUVeuEV=@hlx-AH0?rwkW)0U; zH-Ica^7Fdwu5D%m=fJ6sV=cx>IzeDz0e(kWvq4spS|?vx`e6kk*aK)E^7F}sENY&6 z&%^>Hs^3i&^L%lWYnynmsR9^<`xm_>*WkM#D1>M}o9ErEsK|*hzUPZMli$UbXlKFq8;-3;ZC(D&#=|FHEUA1`QY)?R*++zT z3o0Xc2Me>>NM&NdlmerO54XTc8zvluE1TDzjLhY7ST97cAzidx-*2Ht0c|rBnLzib zMrBpkcmgP&9fA4lVBVWAbZ@9QqchEkIA2fM@7#}dRirTDS)f$1=y8nswoke}=MJbh zwuM@Av$_xj;ZnRnxIJ7#_t54SA@rIbEf;JzTs~YseRJpvVA}zkNG6(r5H9AMXH$y? zZKB2fXjdOmF8r-7mRCuQj|k9eRo1`>V4=8lb_d8IF&$>*%ps{+=!lzx5ni$aOq8aF z=5XuMbXjM4wL!yeVx)x9BfUrd=vXVCpcuWxBwDsHv0MfzB)iF8o9SS6)qL}pjj3hi zk3VVHkPZD$9X1#;^`!vA)qaeN#t zl2pk=Zn<>ju8;QT%aj2MyFT$vwi#>Yx^{MZLe4Ck?r@o?zxZ)s0p0`c0FF>z#-L(; zWDQh#XW9@aj$EMsd7;J_mv+HyLjKWL(W`UjOHETNHCT2hR>!J4H}qmxTN3JShYmeY zLnDpYS+s6}TVYGf^4&XI!1c7JN^n&1VB=?KhZ^XA@fRj*mFAOzg4Af#>s)r;GHU zkrGCVCf|nW$@ea=G~vx}g*H=Pk+apUzO^r}By0G&Agcvs2f;r@eCTXVQuA zJu55M=~^eHu^kf1c;1FN7~hhheWZrTA0X$<4E3dKzYU37K7pe@(r??(v-TQ&*c)p` zD*!tJOZ6|CjT`5VSR{%3yl_yVPjVlo&EBI$awQxTCkBf_{|Cd z&D*SWuk+LR*syg_v5OY-G~YEj@N~Z6!Q(jDb|~L4XM63rGT|-S6gtgHIxM!`?adk- zU#l4vk$d0qKnPm<#+cgea&#K7#yBDFFkABy5wi}wwKT<9VsWzRa_MMCW`;0bq+{WwC5+A0 zR^U9kg^Kb!GV}NKHa@Ee<+KjEp7;l1}9^Ne)a-i}Q2efeJ{5XN6KDys*I4ZW#qIe23qb=aeD- ztg6sq>agZBb4&k+eqAqs>}p7FBZs^(!?UZjvt{WS8O&yKB3+o;?`DOafHf!zJTX@P zfXaLSpv=xvN!ins!sxa~>kN`be{_FpFkWUcqMV5C1BG{d;?`?gvc~`I=Q>G`SS7AS z`-txx)t(eYS=W!N8a9;bl@?&QwEBf~06W1G?A=>=w1rPYXQ3L?B-L;p^qMy1eqWQh z0J0xLQOm?l-Wy6XOHDnO@H;RKBU?b4`_WuHCPBW%+1sN&O+>VaXeK zs3^3LUVtWZNn}Y2#8{E^iMZw1|C*jSTuc+vGZ{0!%Gdqnn*jS1QVaa}tigQ``m~3? zzZ&e{-ug$R2+0VAB@2NJibAh?Wzn4c^Ziia&zM@I&Z2{pVu2<2*_FiPfUQ0 z;VcML7l*8&h_MONX;hFcRNC#({0~98Bl)aB$GfI9^|Aa~Sliyx0yM~OdJsLDPSsM4 z;A2y3lA6w7&JVRy1d zHaPDeG!JY0jHg{W)?B&Cb6D ziuPQACcJ@5{5&yT;0(*!DdQTo<$HFO_%q|GR#lUy$-a!k(zn0B$BjPvBUt`vy;kuu2}Gt< z`b^47DFYlev{CAmd_=Qq>EwP-jIT0?IKGqHddu)9{yL*CE>&-_PWmx9VV;8PM;bM5 zm?=@AB~_FiMkjH#ji}PmC%6phZQDy5xUW|AfuqB^a|cBAiirb8e=T_u^Wc#c2gOez zIt{(YQLWIMZHRGN9u!=l3~I5NW>Ss32>9{5vONbbVL2p8YtNW#%%yfP`@Ed=#O1y9 zM_WX+Y{OpDGE%TaKr!k(nD%kO0eYaY=RMF(G;=PM=fMFWgXA)BDL6PJ4B7PRAYNar z>`_fq#A%78jULJ<$q3vHWqGFs05>aHLGh*c|R~@$OxIpk}@O5^NLNd%ApdWeUVa#|1JY`GXHG7z<{P;ckHr{fj5=*ie57Qid>=12ny6`Ytl4pyj)SN4 zcUV*;DuH!Ca7M<6ZOA%rhR^L$Jb|65^Li{jME~lDENKcAT%kFL$L=jN9ROS_6Yh-K z3@B)`^g#RLjg5ZXBr4yNOy({MV=5pJ0V zq9z}HDann<-z*nA3{mopys*Zonpe7-jH+PFQt7`CWdgLTBEs7l%Wn)J^FjJgNq1E4 zcuEaiP}FD^TPF*M+nV7u8u8--%=-*>D4Jk+0M?=pxlt!T9up?{;?h+^ zM#@A@)t{PEzg%!F7rP zt7HaplisBI5NE2^0nU*w>3=OyA0(oNbPU4}n>0R9FSosJ(9qn#IYSI@VaFsAUvHN4 z8|9rPLd6F%P?y2>)=9|UjsuN|(-)*{SAQO}dYL6_b6}I)t3@*X3dYjZ80A@zbH(37 zc22<(*#mz7*<+QiNwNq&<96U+Rme5UkoPI$6qN|DXI_RWw#cD;bmr|1U_^@R!-+yT zvuI+2K?WBmsa^xEL1fR)!PSr$ofWmvm{1c&?q(MFp->$gG~27g@XPP}wZ5qiwBJ>C zMlzTa>k!W`4@EOi;-cQauA#O(Ic*806-pUZkeYnJL3(!wiI-Mi@ zqk6Q)!B?c8b(m*64?!H4&~AF>R>y?zTikJ5jtH)vtndy0j~m?L?fo_R6Rt+#R^BL( zr@T3IFFiH&jZ=L`<8LX3u~pTRKkE38+#?;8ye`rjmf&xL_^)Dyj`Uf@PW0FI?Qu+) z?l0$^y5E|7Aa%Z;{_GRzd9hxzf9nN~H`%hXkm2W{B1cej##aI3G$a-*`Hdm_EAz$! zaiLYv)~4h^Mp#>G1U)q(&h`8MH$F_a;2?lhQ9^cb5TTw0*qT9;O zc8(kN4)}h271owzgi}w*Uuca&e?35PGBc_=0MocFS9w%23-7@s*%AuJ7wncP!aM}Nw=R}@wUGN-pWF_j_y>#fBou%USIB|Ph{?3-bX_Q z$c|+;5^gD-J;BZ8{-8_~`(7tCV(RYW7FvXlvomSw0lW+klcZ)>5AkVe3RgS6%(ei3W_&_!=8TtN5qVCzm?0cJoTz5_|)rAuer z4uSjbIXK@8^vw(f`|m$m&A0z|+|nI}Gd8^{iBD7bG$E5+^J=%ZX42`Ud4OxI2o;^8 zhYUvm+@E)PkER?k^bB|%TG|HnnIXfELq*&F3-p1sHnk15F+zqtK(qg%d%z!t+6FfS zwbUwZvW2#Hz+d?QPxaN~D;oeQQF{~l-Z$$=lBM!C%e((`5E)u*!rs8>E-~eY-46D> zcuw*QWrx9*K0b;Zb5Pp{jTL`*!mnf|fJ}9$2lwi-WlSp1$IL)d=RwR53*`}fsiUv7 zHGSD&H17y>A1x?=PnurDWmI$Rx%F7d_?lj@nRyV~&`B*Qad;w+Zo#&28S=sP0N$mm zg_*FPE)JfF%B^#3!~`mj5GOpa)wlV&YLk0f+F|>0PPg#K+iA8z!+T3qwITM_AZg(3 z9~9nU;C$HVQ(aUaNM!dUcpc`8H0ka!$eL1+t-JnWh~zqq26+Id$^^q_UZ#**x_$v^ z<13a~c4|^PS^0sqke!uRU^>0w;sD+#_He^X*149?cY*u1{XYP4iF;Y5G0S_VEvdVF z2-KN@xD{`?$pmnj=rtrmHEDLX$L zKsDQ%kthTwSsFzT5p~fpum1(kQg!Z_ivsEvV5<7nwPYz+J#A9K>ksT6)peY4&DQBu zd?6Ram)SZESG^pc)Gh;m`eE)tkLo0N*{^QdR0i@b_Po$&{oKswl6W&eOzN%BSPV!2 zJ}GJ432yf^Z_&tY`riv#Fdk&X2&>gRfh*e5m|f_Z@5luk-T&>UFIoqM8vZn> zL|th_mI(a#C30WMRU?nD0N5f-{IhnOpyRq7Hut>vY*Lhj0Z%~?m4n_;re`W?A`k_; zuY;4;U&z<3^gGGNx`MgAOQH3FJgC8;g!7Ury)lE+3H`D!!-$)CxpdRg%^@G zBV>KqGES?c$&gDQ6!F$HJ>d7!T#!xAn19*>;M%6qf4FD-C;N%8D*oguLHxfLOeIDF zwEqV71eYb+Xt%upu`KWl)5x|bi{l@;`Uv9v0H0=U#E9C3H>1Yd6v@FWTaKq;YJx*@ z@0Ct#kU|?QN~MyH5b5xCD3ogCjV=Z0-i`7=Vm6F{P!XQyphfdJEr%FF>)Ql&6uf%T zVP)*Y4SpjYh84Dt9Du|v0=%FRQ7fJvRYeq)s5K^ks5bQieN zeF*1G_%g=%;j?OSey~R6055sEjosNQ=d_HmEedSxPa3C2I;h$^Qr4sL*9uREMtHPY zS*%rJQ<0cM+2`0QZ%VFs&5$z=n-g^K1Q zd^CH3u!;|#jV&|s;W4`zTc{hnn!HUol=w?rd2i$=GQQ&AgKcm4L)FFda_@o&UVm+J z73YD}GXi8Fg2$Tp!;zC0Ka{Pz69M|UX~rxl&l=-UZ+oTPmT4`w?~ahSA5HvG1mGH^ zrTC!BGMT19`PL3nPsnY)QPTw?W~~etb^Hp`%T@H4Hwxj}>9q0(;t2_h5@yoqiDC=@h~g!gfHc0^8%E)CsbR|} zG_WZh@80Z4j$mI5Wn*-$<75#JNav3Hm7<2rflHX+{-6=6tsQ+InLR67ldrwkSdBu? z-EGXuWM}!c)Vk4h&;&D-stcBVD9}s+vHjVzzZJZ4sZFn)^exEX`PefiB<%0_M)M94 zke;3>7a)5ZpF6Z-efbaM@6Nr@wyIvcO#G1?Tt?;*3&xgUTS#B8K^xx=rp0Bm|8}Iw zuX&`{AbkVc>wvgooky+%eST#-NNr6yLo9;(;b{=w+2uO4qw-r2j0m<#K(B)|3=k2# z0>v8DSFcm_I}OjSBmZMY4{3e)n#*2@Tn3h|Dy{!PB7jFBB8c$|;w~*9H|ZDSzUl z&g-A771mJ1tZY5sXDZ^|4crOpdVi|>+C`yYhIBrK$S$Hp_iC`n)!Mw{6K%U_H^6Sz z_>SjZMV4_DbueGU($n`G1z(1EJy!=?(oDeh9h$gUji*iA96S}h`YPBw+gp6-Fj0$( z`w^~Q>H%=Q(+xVJm^r@Xs&^J`?^a35`6K^Yk6=MSlPykYz0nEX^*|c>pEY9mfGUbj zX#Y=l-yPIc*X4mkU%Jggqq~;;C;dDpja#JPO^b6d`Qe)QFjyx$C+Jg^WHD1zi1OAKUOS zt7xmg#e5|=$eOdl3o!_QYOPzb z3)6V=TECkff=MbeZLYSeS9z}m#)bOdXzexJS!FW-l9Z}2-#G;>CZMI=tv!QlACO>$ zqn5CeMRWS5t`JKxE64(aL|Gt!z*rm5J9o#5r|N=z5VdouV0IMJ!Db6o+_S-{QiIEl z6brm4T7oh|YQ*>9$KSD16Ck53yJWdkg`&@cg}}#J2oT&g5X**BOD+Pt%+V}^lu-_#-iR?P z&@~@OA&mk%-~53emPh<4?z$~!4*SsLw&M`ZkbbAM-Sx*ZX}AG|(Dh2dT-&j+abTl{@U)?vVsFkzdmfQGVGBybm4@r}x z=cG}5@IB|8Zup8OOLxZ@weOjDQjMxJqP`)q^Qr#Y2x@g0ZazUCie)E=;j{Z10ckAg}guJ1b+d;f~U&w^Bg5(L0X&*Ec3a>zdGYph)m?RzZ#8<`oY z=5NWtGE`oNLGV?Uwf`AGO5%A5!G0l*t$QXYw1Fj;?lrH8Zn0&?Z3EbJuyWj-mDjp0 ztah`EL`O}hn?KDkdIfF(v5SvMuU)B>6Yr0z4YLO!;V(_$pvI|>qFNY*bsGA$zV7C& zj~^%#WuMScjjQ6tAFvHgTfK~zP6GW5eCqeLu_$Kg+?kdY2bI_K#(44I;U4j?LtKjoIEN>oN*>SE{l&W340XxqU1Gwd`hOP%Ev4S01Ymi=QQCR?eiY>>} zQpFAzJ{upV1(U4mIH!lLv|K7KFk^`wF6|_6FoZgGA{@uUiz0LL76vTU-P7pSHOhsrCY&)jGCdi2$y&>RPR_~#z#uSe$9D>>sgnV9anXDLXp_inPW z8_DsxQF(PsN{?CdKC*l4&XZa{Ys6)Pj|+2nzM+uhd5a}+jrJVUL++uP6c!5&sZZiF zEyG(Yr6sA%8;JE(($1Bn9kUxhw`F|QZyhwvurrrNgP77);N#E2M53G=2-)~DyajsH z5_HX2Di4^zY|<)ui6?rB8Sg>rOkziNp}-P~S&W{2LTCn!$952=-B=?!(Ju2reGd6K z>9DxNdYm`NXHYJZ-6q7>HQCT_5H%IozQj}i5^-~GE^_+7!q1SQ_C1a>JwMSWtwgG- z;K3%;O44I-*zZr?pIL2G)}-w=Gm)@H?BOqw;pq;p)4u4dJJE_FMIRIJC$XjXU&=C3CS3rTas4UW|6s0#dlaVjwpcwh+vq6H|tBO$N#1e z{+ojMAAcaI&qGJ5qR?T3MTsL%oeRE^t^-88ZtWX?I8$ySu?xw}+2aX2XvAan&0 z{<}3k5mf}mXM4VJyk`7dT2`8m{;SWtUQxH3q_a(* z;3Cv2Hw_VOWwRv~k)bL-Az8Sig|o$ZOb@(6fjKYEP&3zdq?e`%JTD`LQUnG@Byn^D zZ_-m>2tN>Nf^PO{sGkzig@jYwBG(YpcNL4dGO$P=DpFCnFu1$Guz;Lv1JH`y;6D5* zyf3h1aG$Y~3#bb|AiXH7N45|qg_X~A0hPEQbot((Fxb+>JEJ?C9uJ@StKuxrNGi=7 z^FFG;DK!3!>UQmqk9_MrMrWhl2^I=+vXoB)t;&N&k zqunyP;-fM&YqTWZ#lBF=E;1+{3&|QT7E4PV9S+)hWx=U%^qt$I-S9}c;pNuh@5(u&@0pkG>N6%d3-3CFP{5y@*!-GH<>K*fzlxny$5WyV~>O3V>^d|C57VU3^63 zXDoy=H81O+TB0>=8`C`%ChH(lq8bJ~lxO!Z-(uy)7PzcgZ;iaNVC#C3*iIm3+6duX z{rwCK6t^!^ABhe@aVJ21RLq>3R}sCBH7e20(noZ0JPOtvB(W?6{_j1x`auD>OxX zh#Ykp1iY3-hd30>K-Z?B`BKtC{Cs;GUdYvszx4X{9jsfW?1D?Ul~w?x^;*#ycyET6 ze0%Xn-m_w`zk*?4!oT8^L4-{~0|Z|+gUsJm1=7_*tAMb4X|>(p#LQaib(JWAx%d`8 z-}22N=<7QjFtG0~`$QXAz2ejXIOyPm3)}WL7)}=XS^Wd|Jd&dUWITmOhq>a}vOZdX z>b(-~VCy_kscF6XH%S1Pr*;bs@hHZKjRSTHlh8EgqU}2t4YG;49)cn0ch!O8>+j;J z%4{^y7_+Nk9`Vhy{R%Zpv4}S#TM|ENyLo&Ccz1EO61N(g-p+qc4=|B~ivz@u1|2$r z42F}ej*W2)&A7^T6YSn6gVI3Uo^AbBCUe#zeN;~y1R5>%%tfjK$u$fh2qS9XU6g^E z)*yeUes|e;qE@P9;xlLayGC>v>Q&@y#{*l$BAZy8$r^a9|CW;UJaP+XV&RgpB3BltoZcx)oB(;GR$SBPQdLA+} zn8)X7Gw!mw?u*t_j(|h0pZ;a#&OX}tv6vyIFflCuDmHSXsf<>uh`#@Uh1dz8=En{( z-#4v|i8?+d=LeTk7}AP#1wjbAZYO+eyHs?by)&L1U9DCj3q2zH7ln+duW?G)LwY=7RE(> zpIqeQNJpge1rw1l3AQt!vq3KD4QURajYcb-JzTxMF_lZ=;ft1Bos-*ApKe#JyBYJO z6onmcfcw|efos^6bc)O*l=cS=?jdowdipyo{v17i=3?{B?D1uGQ5=}XOZZmXt=XjJ ztm|(Lvz0@fNmpv0WVSz8k7n!u+WQ_)u|cP``>@AP0Qjz{^|86DDm( z4*hWfG#5`ylr}9&qO&Ycnzt);Eims;^GHk!rY*hKuy7Y-rcc|P*|$907VJJ3@VO7q zf!8Z!7BOnW^bk{Ce@dtR1&qMIE(tO0fyleP?)CKDjWZjl;Vs>agk~OKc#w zOJXO-r>bVamPc#N9ERq1Y+aYORf#e|^v8L=j+4Zf^i?_k4t~LejiTWCLi*lQ#Vq9|RXj_Towvc4*p+C5@vcm?JLJp3~4l@|}$>B_At< zIU<`B<=h)x7Ipn))d@(Ds?xlU=T--B*~-X>=(s|%y5H%Zpac}uq>+Sa`8)+$!!m1K~v>F92Kf9f@9mGptnbD6Pijl5bI zoJ0d))9KGO)A&(cGLc|H^t4hH!y>WCtcKWihs_z65K*l~1H)F$_L9}{0g|^gy_9GT zz*~d{9&dg-J@3S1bd-N!3C3JRsVj~?AD`9fJ=0q#Vij#M?!8bujYf{PXHdj_2((zC zWa<9?C*ur{g^f|G-r^pwb+O2rsb(Zg*F&=Sv-GQl`nXOA`c##A@2!N+15 z+DgTk9Rw);OOsFWl86}N6Z2D9`|wD64Ux$t)UUzS3opb@6SwsB^`TRuhd#*&n}nkE zS8TuYK=<@WW18zW_#W0VF-tN!K8p^&X`q?ShLQ;($S%?{rU-;>dwk3?J_d!fE$ zbqzFG^`eZ3=R3m=Z)MK>)KDS0Nljg#KU|ov$o!l?`9StIXN(O;&)cH#fe5)qoRNCu z483pKjN^Bq_o(Zt>8hgH=U{i4lGtO{pMy`lO+ak$S*O)m2=&y#OzJ+}4t@wx-|>v? zQOrl-kj_p1myvvbo^KvI1C__& z2NMH4p4Lh4lQavjY|@XdPWWt^ARfaTLw*rSzaC9-KP!{{tZ(>$Y1fTOCHSp!-!qe? z1sO*;CVa2?W7uce>yOn^A=9y~v3ee7li!M-;&6<4+qZJk^;4zUWU;qFj3{m>ZeCGt zF4{uS?2LrZF1Zte4&mI@BNQU=&@tS%;~e(>_$|`YXpvLPpC3%| z-4Qt*&PCZAx}9DTnz!-GojGs1*u5Fcp(I>Z&eJe}%9zzhUacw+sX6nQsD0e^m{5o> zXdLz~DI$!35-iZM&Hpm=AM8x2g!&3l_dN>8`hHS(MMM_^D4LLHvrm0trR}8TWa;ncQ@K?6 zx+&;w*|V1xlk|InFDwPURE|Gp-tAzdm`^rdyucvr(7{<5(kw+92-yR%n)#us@pxR- zCHmW1!G=A5&z!HNV7S*n)49H;d7d9bHzqV?C>rK7%FlM@^p;LPPs3iRx0psPtuT7g zFREnzaH3$y@U?Try6^((H~X%~vlEhbxtOi|^&+Tm@j=?%SjJsOssx3S8hP{sPMp|l zcm6iv)N;wOXtst8)9nfMvUdY@A=b1;k2U)V@iyd(awfx_`86)z_vG)z%dd!eg@7EiNSU<7tYYR1)SGnc4@ z%$NQwVYp>8`SRHH!k&d6vrciLUcE+9Fq4pDjb>TDuf}}7e`{!ZT4$>xu`~Q)<7nH! zt<-ZapZrK^;gk!0r<^KRFXK3H2(=>;2sULdqSU}C%jN$7ol>unP zWf_IPHfL#%`8QAfr#sIR3W%^>Iiyld$W+zSnNKuRs=7Hv7ZUne}2rv+Iok{Ls!H^?q(Xz zaS42=kw@{NYFfP7kT%vVwRDjQKYgQ#p8F6VbC)_IfbL6s&?Q@h{X z(XLkwhr-A@lks=^MJrPxd<&qnDca>BNBrRZ6W16m0Uls|19ij4%i91HHeT#dQcQ8T zTbR-Oa+=f|ErB^T_&Glns$O?EcU#RUm)VuUh@@_jm$sK8kFD_ID7Z(s^&i-%mMc~Q zre3RZ*R_~Am0MhGWHc8g+efJF2`6or+-}DcNrgpW{1c9FyDKH>YzEv9mNKb0*x!t? zuSeVTn^fsIBb+DhC$1?jG}!aRKH=JMwXc$s?Se2FS<4+pu+$+6*BW5MGOC{~HxZ1!JkT`fJyVff zy6lj71o^7G>8gt(I}l96WY&C$IiwxXwbrscL{p6O*j-)_7a}!+RJeD(^KQ%Zwt!%l zFT2yHr8YtFm33%dF5T-Rqw{Zr4F23Imrzl)1iwb4czi=VLBCN|e(&$ozqRDq6QG^D zL9F)A3b2pHbAze>5Qu>!93QR4?YZ)iWYnUMNAA;=WPG>;>)kseN; zercwkY|i@&DbTPOj<^WSdzF`_&gVm z$DeVqks(Xc*}_zQn>_~C3EUp#%ywC;z3=CM+#QBC()sgpce|m!D4$cyG`3FeS``uh zYN%s=6imPiMU>WQcR0VURNqe<#C-fJG<)RF^RRbft4*r~L$t5Zo5;`0nUn5JX)Yb& zMMadeluM^niy$AU?CLBpe1MS8uFd%$J?3oKVUwY!vIM>1j z@Bjj15HrsG&j+}a<3`_$^EBw0HM=ELKb+?j)+^Jy^N9-4PW;{@D?6}A(;%T<9p9nm z&AwB`xKYpm&0gRvhb4RSZU(5@yo7Y-GTRjaUDt9dD|~rfJMnqc)4WDKVlY$=x_BbV z(Sf%i=ZCV$x@U(dBGYP8(jbzpTqA$@DYWGH#s21aznpaT(KoAQ;>$Xd{&1nvJvD42 z@8HRl_wpq}$OH8v)UA5x$c5uGDATTp7P?5p^G(DnM}N6L?7USt16?|JWgjB9Ey&my zNpX*i@V3*J37Xk3|H#-K@$i&?f4cXC8M2;85Q?_XYFn4kqt3M zCMRz=4m4%IM^bECpw2wB+^BK6;(yMzg?(wm)9vp*-dom*T8Y9ToLneBJ0X`|cNAty zZn=ju>eiumLO8W6P7PnwB?gZ)JELk8d2-C;m#+nmalRN1kKyQ>eU56N1Ck@ z-T=_e!64%vJfa^akmq+nD1&=DW=eK>sOmUwPs=JN_O2?p2BW zVyEqrdVG7yGX>V*N6;8m!+7-hqq&CX8h&9l$_2*r+oG22y9lSm1jjq0c9F?K&KtG~ztcaB#aMX~bViIIiOHqvqt>pRsCB zl~z{wKHdMgn>}tLa*rAR%i5d zBPCyyM;lf)<7J5Fv38T1xjHaS91=BhCSW2wNU+{lHyTSv2W)n9%%*!e21Z45Mhf9M zB{;_nBR@8^$71#h7j$lICvlb>F*GuL5c2q0#p#aAf7shGXkYr;dNL!#w2Z!cWkTZ` zecM5|i*DNWbq`&?Cy1xv47bjJ<&54+`0S?~sWz#s^61-@(Wb^Qo1hbdGoJLZF(+-E zhOEyY)cUKG<4$QN=W8|U$~&zz+JMb8LNmU#Z!n;-;Xhu@|KmNIkIq_Bk^#4M4F#Oa zN_(MeCn7P&1#f!V*}K2a?(0>$vaeLQI;HgCDCiWSk0dxL06bWgd8WERWo;3%F>pvi zq%G%JdGw9S=&0DWo_i*Pz4e@ZCTFDc5Kh(O-U`wB2b0)Q5+#K)oWLw3Q!TS&0AJ(r ziX7994+-@J3&&D2sjJ|9v@YTriffeOJ|{-+(^t5Tp}(zu8%mn_i>}@F%0`QTTP0B zX3G?ADM5K&*WWbK$i)V%8HBq6uPe(+Z7rB7EP9)6{Va$??yfQ*7{qpRp%kqCR>MQ% zI7S^kk2X_rEqAi69^4luNlhB5AZ=B&L-ZT**nwQP1&6{55S@Eto{8DpP(|J9|S zJw3XUrtsZ)>%4w#hqffXP9zbQz9fl>J{AnFzih7$yJfK-NMUw4?#%V)l|MK9dKh1E zbJxQUl&TSiITv16N*{|(CRB{}$c<;=^4~Nbbt)nDxgT(Hbmj^W4sKQA8<&&9I|e4- z1*Gh2WkK%#wAl;r8=spTCtXQQ<83)=O2tj2vrtPax3g_S?_peez`a*IuhRzvaMvbr zG6@ZBU3K3yO~b1@%17>fN?eoeNdokU2OKHizc=x!_C|N6Tz;{8~?3y^(33A(yr~2vOdH(iyi~yqS{0+&|*I=(XdXjczvMqJE z8S?sh*lrl{hc^HBb59G@#aUIkLlv5W-h!W}C=waLG?pyl7sz3G2#+z3&B z``um_RU7A7zX$1+`bSlomurzwApI5Q JO0K}~{~H)N#+(2E literal 29832 zcmeFZdsLIx);AiwD-GCfmCCi&t+Z7{ML_OtsZwhJ6_S7<1d0LzAs~iZ2*F!yi$E<^ zQEpYLKtc%0osa~jg33+Ahg(PjqC_8Z0Wky;l6)(1@BO}GoNt^n#u@K9e|^swE%L0} zTx-oW=WqVjeE8*vpAT}K`8oswfjsp6cgGNjm8l5C@}JhM0&n=&Zq0xntA0A{^BwpJ zo<(mq75rG6@O^L+0%3JY|DRFb>)DeC#Ak>@-+dF9S|kyWTTevc#A^SPmZa4WHGZEM zEnl;4`B&fWfAeQn%E9$#cYl@p)abz^?(b>D*1cbKs&~7N@Bik&m0wc7`J{Pm^qN)8 z-~III#Wkn*tpDfwZ(WPuFGfI~WJNFcg)Eee!6?<5bclh5(g$lZ$(WTfRCT53D}!kN z=YRia1^)kCfviUhbhu42{~OL#4AstYDA#*C-(OpF44E1=%9-r(s1V|oL%L8=UEu*EFv;CaV}^HZJpO*pB$Zk`$;$*C&Opq;6xpugxi(40 z^&j2kc37Q~+b=DH0vP$W)sx@V1h6LJhpXm2m|U-2V?DPKh^Om95n09af}~vbAw@y) z&I=Z4XB1Z&lw{t?_OC=ylJ5^75H-Hb^p$4sk7%6HQN4S#u|9mB7saJ&b^(5EB|JTG z06K5}?HC1FdR5tHEn=x2z}{@^_RgR4Ezq!#+<#HOB{fMMcIMW5N40ldayciQ=Kaml znwb8CrZ0Iys@R0co|zv>nj6M?R4s-Em^60VnLCvoSdOSUf}UB1kX)u#gu3xFr#3}+ zFr)LGg`V`C3`D+JOZ6=#p;~bRYasOn`w|7g6a+(`%ZEH(L&j{)1Nz?fCaT)3o+Hdg=DTL^6 zYWgiP=qP91Iw7U3lu*mZV!Z+_3S$&v!BCMpw9wS+^MKavws{?#+Y>2^s|&kHBt>)C zBrhpD$?IgkYN&)vRYYOCm4Ee6w?P@Ki9q=cd#fC@SB&3+#gTnI7Bj-T;dfrP zZW&+^_YM_XESq9ZEd(kC$~rApwyNpQab*qu`>OsLdmLyauk{gU^c?N2FR2X8PkgL` zX;-VTJtUxd)3!ZnvcA&EG1jT+gp}9wOzcv8LpriNvv28Pw4{%)d&=ivMCkpV(Y$@* zf}!<~ZRnoEgSwg1$J(hWm(0;;)tj~()-%{*2CX^9nBb>B=)QhAH+T_VayOEfnBcdi z*Qj!7tPJ_7HCK911)X&CmfJ@k{JXeEZWE15tCu$35uKjQoiA zjx29T0Xdj2d&WU-nGg)UXgu1+5jL|bOP)Pj_fub7w}#FOc8IS<)nhrd0AAF*a~&yY zvzp2rq4N5txtMn0IPpi3gHG!E|I+Sgh_5C#TjVGX@)3x2SK>M)Hv|jc!<_ z3CBnXO*Lar7y9^NW1kqw_y6qnV!{r2clYbq`%Wh~e{G4z_jwOp_6QV^&)+LgPW>#S z!!=^CM12#^wdhVcc8Qm1KNc23(3;EsCf|j3A;XooXr=0^k-4Zq%;l+JI;u0W-sZ`H zLD@dnsYlq$l-JRcWYwwVK=K;j>6NWybM$I!x>kI1HY&G+Dt@z=woC|?H)CiMNgCU9 z1Ufh&(pgH$?>8k0GWR8yWu>&bCf3dn9ua&dOKTq#e7Q_mNJ^DP5j->acQbqkX;sRR z6V)EfhQ49TD18izL0A2`dJTQ)3tCOHb#@b4sX7Zx&~twgNF@4@Nj) zrA@-3*!IpuxgcL$Fzr}23+A-r!D}CJLF}WaF;AW2YN)?vrC46GiisxezVjtsujs!t z$Ocq!{{j=e-79k6d^nH~9H!<+8Ki}k<4(ts?2*`}4e}fJ68|L6MyruMLj%dS%Y>{? zt&|s#9qyEUQ(O227Kr_4qo0`~YUVOi>O5qPs;UtUgONvw;0|D=W-5Cm!?|&<$pe|& zsAm~;M9D;cGl+J=9!mY8{bEPVnm|^Gp!$ZO+Dc$@Iey34g@b0=n-3p2=84zViXFkm z4~m>tWE5`ZQ9YX;4f|hiaGrLDCjeNx>c^AgOMe&HNf zE39mdM0-Pd%v!2H!z^m4k*0luKsbLsz7jEVj%ev%V+aY&uPfJ;D_aCe$$LCg5 zP5yS8@Ed0k9X>mJCn;Ag?w^-7?x9M1$x{PR{*b%U7is1d^2d2-E{ZQcGg;E3BsM(` zK@yxdZTxOIqI18IJ)%vPDwJrAEtb^~OFX#M>C&U!Zp1eZCJHB2i>@_^;1th5FUvmT ztx%SA7AopJM(4UCN`_AKCr?I=D{c@DZnXe`G3~dUJYrUORmRTN~gJE!~=bL4F#37~iPq?!gRA{}BAa***zn}=& zJ(~IS!kpjYP0Pc*HLUaWomauq5W?X zc=TJM-H5i96|D#advX+wnf72n*$JGPHB&7u(2)f{E1`AR)=A@ioQR%~p`HetXA^je z=ubPm<(4c`6$#J*oCb zn%%;tF+&IIn6A06dDjk$SyIFk&dU zC0aq*9z3sCYtFsT**oP$I68EwHi>x|&%Zgot&D=_JPK*V%{dgYdkgTNN~te5&Gk&T z#c>bko-XmQ(zi12L0iR<0;PV2pOn}IkUBIa}MXW#id|V3#l&JJFKxJ-<-RPi)te) z`?cqLhNkELf)kmm5@LNf&I~^L>8B-!kQYm4tM~&opP%7qnfk>%)~2qcg;71ojO%$F z+|>NJ_<6mhjPzGL?Qa!vBX!w6>dcJnB!WVVT{~@>e1efmjSK8@&TF8i)}Gf(S1<^q zYn@t~I#m4~=WhD945rb%(+a%3bfzYrv$2J2evWZ<4+fnVm`zgWI!ANH?q6 ztjtDoPWf-naba#5CLi>EoK}%T=K5`(K~rL#wZWP9TBzRY%U7>LM~7f^km87Qa5vD zzmv?l6(ya#W;)3~J0iVfVd*?S>e$Im&y6sw*|Yf7t&UYQ><&}Pd6TM%C=0|KBr#zC( zS~M&Kb0c!i#c9a$)IJGIo48MQxS?YDZP`7uDhH8!y`1o-lzo&*tvP^1;Txt3?29Kq z)r+yc?q|^N*Kjr+&lC!3{-LD9_H;Qjo|BVQddwp&S>lMiB`ZbwpCXYaTaDzuIxvV; znT#!|Zu<+BzEI!3_jMkl*&$X;?7sJ&8adMJX-hgA)a3)vjlR)48I8}6_;Q>% zp-2n#7LA%ZF1cS1>|@Gy`%vmRLo)!B@?7b%d>lX6Qo-gijcIV(&nc4}+(SvTNFe2>ZqI$;MDnR4}N#+(1n_3Zen=5IG} zXNt2xD270UT`xLDp+iUJmqVDq#wytnk4n{>Xq~)1?ePxaroc124L=a`nfeO6efqKs zQ#IM&biE<*zY6W+9e<;|-#$4X=;ds#{(aCiZ6&a~;9B#W0bopVQwCZ?a#!L4coBg(pJty=W&HVf0-b9k3 z4PNepH_?|Qv?g4s2ZFqcsiGC_8+z)k z@F5<}r_dRtZfuckr5J$-BBi%K`raB#IqHpNIS2BBHNhmo!><5v%XQ)L*9ZEisi$!o zAYQHw{>8J0v1NV1eIX&I0Jn8Ivt4|BZWHeD-r955(=z-OV&B?x%1$~v5cA`1Gq4v^ zXCYB{gDzHK3|)%MBL;i4x{{1YK!a_6&bH8=oH}>FY#E~F1VHQ(*FcZN2lWWVj}O)f z*9JXcXKMIlvppBR4pBp{8ZU19!~oytuzLRcEFXx%Wg zvAQ@#{fl@2y&Mtd;@*`0z2YAHB|&5Q9)l5$u7BrQud0Mak?M|8BVq;jFV%}Tvv}tV zt@0aEw!in9kAMyF1B$bYHE-Vn07kN4s7Hn$duE$rO~r7kZ{g)z8KPnjsv^4EzTRAx zt0|>zY!{>Rz6TZ{;oBPXPe79nagR(FQ`pG~Po~QIlWc4VJW_rHrkBJblx#p`Z9BPA zE^Dcq*m1_E{SpbxGhuE-)7g+Vb~QGaHSsN>v?~7j6w~^e!WD@?SZ*nWrz@K$aLU7O*7f%%U7}xieE&w10?CO9lIB|V;f6Fn1mfBsn~-jD zQkm4vUJsR$1&?agmxyysS7*&wY1->iN`F>wkhrOjZtcp~4tx-8+qfXjEVn`4TmuNs zVFGnGTbBn(#qLvG^ws-9{*Xek^BiV+1ULXIA>q)Bw0b#o9Zf9BA)^#Zi*9O+0*5R; z%BmCwc(7V}iWEkOwzXm|5?|>S=s`ZWXmWW9d(h1JMdpLs#zu(Ym1g@g=F@Pbr<)>( zc+FhgQeJhfPRqp_M=Q4%}h^T<-FFi;S2KGBr9t2Bq4G=1p-{s`wjFifWVG8#e_Ll$6on!jL?ZtGYz zh^w631(neH=w8lbZ5W9!T}lAX=ulhN^Hhms{>|E{QMVSmtpHXh++JKlW2UUDw11^X zD*k}W&6f$T{yEPooT)1_+z|Ao^4GD<*!W@?YB@0EF`=r2GiV6co6Kek9V8f*^{`H!0~jw3Pln= zosX;0)zOTr1gBQ_a(L-8aq6oUmz(Rhj0yN1gnt6Fw@UBF!lFDXZ~4ds7OL?~yy7DA z8`zs64zytaD|n33|F@VYh*mGRxa_jeEd?3A4;=cIx@ZK#@1LgC)v*gpb4xU+ZrX*R zY9DDb#iSHO$kMR;#)$jk%QpUvvcHkD$aU#OB6hE|Gv6Ktjxb=wI1mf1rke$N4X>ZC z7K`Yefvn1StVha2*LYX9*Rz?`FAjP-v3ZLZ#H$ctmp(|Ckwy~18Yr)OkG2JNqo0SU zack0327Xvzk9>s(CUOthLB#N8ya$__sJP*hx7Z2yS$LLv#oTuFbYXin_q6k`I+I@>$Som&+#A81-cz`ORR>Gki!&^9Fk;wSX@6DOB=eu2QnV?L%nS`{G+m6j58 z?ca%4BErnp7#6##?)b2uy}$$7I%Mf}vGj&O_Z{ge*!R=Px@o9>LkW;=e{aZG!o?}$ zO}I6HTw`NN6cVm|-AG!7cYD+wQ|FLR2oBCSay(wZE1x^vXSHNF&DTTHsJ_xrkCc6V zR^qA+h_H2H=ZsY@M8IOsZ2(-P?eAue;FS1~=IlC30&p%Cx;kWs<);FZ2J>#~kXrd) zq+E`-x0le{V$9k}l(z!0d$W=K&MkV~{oI9dt6X{uzCUPsREhSdYY9%WjfAlu2xSS$ zQUV9y#Eonbmc!ig3Aa_Xh{n7J%;)xhH@@9`Sdqe{vE)^mOqD&9%~0meYvgeEqd(Rn zYNr27!QaC^jJ!teuY4t1^n3Pa%MrGljN~ik?OK2@-EWl9lJ2Kig2&)cq|~CiLYth- z4iATn5H)p%JtCU~QeD`sE@Ev7{%fHFlx;(=52e#OEewD9W3}xhaGxw7-sHYk$Iv) z^9sI9{Z7+w{j zf|}>jSx8%Ew`u&-@Rc9-0+Ha}f?+T}^&1K6Zm!i}oK|oxnsEw1Kn@ZW34f}t(vEBn zyRkOa_D?`U1FO&JyD6al*^+#IkNk!})Y>9l6=6M?kl1j^=|bBOS{~nYgip5kR-^$$ zJCz=v7>HV4^IpHAh=liO^ebV_lLGHDDVtfVOJeY%gN!o%yhW6E(fys@%QZ(7u@ED2 zQhrQ>tCxSDy$UhB%g!7u^khE;OSqNrZdC;L#J;J-X$dc*LGFNLkcMLWYEF~M3_Hur z2)fO(u#@c$1PBA9MxlZ44~yE(VvEeuUHqPe4>= zb4%xq<@YR2=XhVybeH193NuJx+v{ynVy zs&_`o0DfQlO>Zvtmq<@V-9OU2%Zq286VSATjU#o$scoG0YweKXa(5y0EKhm&?E~Y4ho`SN zf{Mdd{x=0WIokfWhL__KtrNc}>14g!Hm~jr#I-_06p$<|#!8uL?`etdg+!}`-X`@f zLP$<3LzwpJj!{jwVe57SFY3>dJ%dI3D6}XDH<<8oLlj0HEFMnjkttEEo0B2V%+S5* z86zLRFh#aIx89Y{Iu&;VuU8W)3x2(X)vC7?IpF zv@ZjStYwYFol%D=3a(L4vNi$ViYR2CQjDRoyQ?^y#x27NW=Pn`2Mtc?EP)R|jd6RY z@*zj0baVXuUM(NP6Ftj+JG*EG0>i9H2nE&B#ew+a#Q}mU)ew!C!gZu>Sk_jpdTXK^ z8ZE+0^BIw|EFwtVnX5{XiG@SX@hQD-=~Ei_J@dE4w2aY`p~(CD|TAq zyuSs90=oXEc39|*+(9wAb|vfjorD;YFXMrPPfu!a>GYsyA55~0UKs7&`wzVd85_1b zuHmoVH4FazAs1kFOOo|mK<%vA9bgiRKsYem_-2_OqV!a~OD2+FF2r#f(+_#qE}3F< zXxz}u%_5YbTJ;c~g#?4$i;hrvN((@OK$j-XH?7fxD>_{A(lQk|XgQsXrt%!_7$H#j zV5>ONM%k6IYL;~^|Du04xY0ypS&$F-H2f;1_T-XBUu`s!xbH}{tx4%$S@gBGu7#wK z&^8(K6LE@GxB=?gUJa(4^@u$w(cULmH}2K?Z5UkE_K*JC;VG0>)hz8dr8SarRfePZ zk;F9CWX4_9b=U*CgT(hV*GVru1oG|7n~qZ25&)LxO`G}!86ysV*T(*I2z9+XzH598 zcDot*NI6og4%l7*MjB6@<-%tn3WF!?NK|gN0t|k&=I)vOe9SG9Hp=&!SZ7z>O* z4picj*X#?#ZDLD~;1F(yO!c826BX^zSLw-6JzD{SErg|gDB6Pu%!x13 znBY_!<)nR2i{&oO<)T+3b|)pa^SVQ7-h8W9sy+Uv7RYZ0AWZz;c%ou#WH{EmTDq*} za@F|j3-2F6=OY_W{!{N(gG41T&v~f_klD z-q8+68mNPT+u>qPd>uu6U?V_I4>QP$a%co%)63CH zK!K0L0;5!NqkCnjGk&!W?xp z={l|gi3sZlv3}M@U}uWUq^o!8S+HdOA&Av0D;-)t6Uuuq%&<_+ap^5575L;^o}gPx_Yg1?5(Brypc9J-Hbr6F z0NaA);ErDj)v85t3qGo}kWkH{WY`B~f0Mfts0_G$63nVM^pe^y09~s|l6kUu35A`w z;q@~@3gav|?m%I(iW8?K+5oTGNtsDE|IPqPJW? zclO1afRqYXj;ffJpzN~nJlx8@^?HC8*huHrsxHBWW`SE1ikh1y;GfNQwyZ~FStSqA zvL)74GDq>AJmNytdwWQ0MK=cax+sLxFj3oX%dn}AcNyiCxA-fbj}&-A1If)D%p%c| zA;5U8C@2MxVgHrZnu*#zHUmrCGtY%=BPV$gm!_8?u8I2gWyCLpVRaGj0-_>J(WYY) zEe+mn#)tI;MA7&0$2g3Mxjr(36&K{|(7@XAO!F#ktn2v?NW}0MjvmXfps(&p>(=pS zf+y`$=oMQ(8^5?sfA;+LH4@*PZ+r(m)&an)I0vUNs8&+76t24%xE8T9A3!z944J=w zstOLMoy@(OUA^`LD9GB-|0SeE+njRjwh{?(9@Q2s*-AuEU#W8jEmh)_M_!aP5pT5o zx%HobNaE_#QxLXUv5Zny<}KB2nrB)R3KK}h;-1fRA`xxwGIuubOkt;{U7|ON56>C) zLm7hSq$Mv$>_0ZtCu`(4>i!zhAoZoqsd})C*m=DxN~s)~N>qj>xpx|U@TxnndzA{j z!Yw+-s#QuP;gS^jxM9r`TG>q#41{5)ff3l&(5T|jie9(C*DcZ|vKvybJK-1Q z7EuwvIk43ydfqIiw2rSmu0E~kt z$ZrVabwtpZp6LA>IUml2v~V$$htgZDZyfKpe+aFBS+8hiq@VUC(+V-pgf|1~w+A*o zlC9T!MWEjkM@X+F9c#b+(BuC=RP{d*nf-s&M?G=%lsl&dOY$Qnlh|+_*s6BuHFO8^ zLSy7@iw3*ww@#>BC0P&WNKO6PvmPQT=cxNv^}q=j%n z?qp|Mgvt$ZJSa9MWqSLa5#BZqj`X>IE`{j5Ufl)Zh9vA;=@dl=EVnqmH{*6o^(bCY zb?aoi3*=3=CpbQ%e65H=+F6#MIj5a$48v?_@>k@V;M3IpkaFL9fj|cHL5jxg07F@I zL-~8dknHSh1J!~+0FLlm%V@_e%Bg|XHOlJH=M&%9cbfeNF#es483Q>Che-@L5rj46 zXAS`ky$03VmRRTq8gIHUux?GM@NC#{u`2PTViK~KJZ#QAS?<(&5EJF-ps!QYk&Ky< z9c*Gho|D#L(RuN2f|r_TSD(ce2U5t2vtSYPfu}Hj=5Z$FslmsENyu)kjWbWBo6Gjt zV$9-q$G@J(61)n$uDy8xUUsR8e1p`6BE#x~m}QGfck%qI^O1>;09 z`_)|dEtGAi{ANw=NUmBsK9>CsFrRX| z$z^N&P|Z!H9Yl%j^C+9R9TSW5vQSU;x7wG~fy`6j#VX^Rt29eARCzbi@;HxBtdWPz zEr8S)a~rBVZ9-qA%}MeqCS+BLIe{8etSJqiTNo(pcC;pUZmo`1Ybgq<^ZVtV$4fof zUMJ5r>l=(;Xb@y6UokJ$bdaFRS}910InXg*HJ2(aP;`V+-{0wx^6A8a)ZUYv?=AHW zEFG!VK{BL*$VZ~L!1HR{;ur`j(Ha|ipJs$Ob7z%M|p`U0X_ z+X7`Nk3vM|h)zD_t{sJ`al3~wISr!I`cXDOHh%kt@_J>?$M1j}GZ2k+rv`Z!q*b)E zv?!xR9_9}RydhRjN7WEs*#M!+nyu?2Hp;8AEnr^Qzw+pgh@D@3C$?)@Kin;Zmorz@ zUZPX!LWlH>aME#-R5Du+nW9XK1YA~2OJ+Q zF|u)ud&SO%2tnEKg^b` z_^tUe{zAF)`(Fi54?szgd}^TJ^lcDJg2!NkOsxsLQ~8PHL3gdm1e9HU#RE@4(#;c#78F zU6<;$e^l5QDY{c8#a4|pQtK$H|6ZyCU~%dug=IzX3hUt}9pqm(_?fmb(6ZAEt*&xZ zYfsc^l9<&m1bEHMXpxO?p#DGu4GRZ2%pO-OmqOcWrG4>lo~WO~TcP%YlbNLdOe$9W z+PX3Y@Dl`T?@h`jx(`}j)f*G^K>gS;f?J!e`6Wl%9a02ur1Yrmu@Axbf9EWi(p-5WWSS{bkCqj$u{- z_0g$+N2{N#{m?=37|1jnDU)_>zqvu*D9aaYU}i!cMe|*f-aR8~eyLn01j#OaMbY4% z20TuCP;Khp`{%uF|62=gy{czqo)}o}zt5n62n(PkOqD;>#o(jNFv=SV@rK5O!_NKg z_QgG<4#}(-EwAtl<=kmW?@i-|-!^C$B9{z&UtaY*Yi_BB;q&7e6GO9ucjNjE|7hEF zGiIgScl%9!ZXY7c1!R_ly7jvo%DNBzKO+b}=ke%)*xY8(sy>@aHNnHMTUn!-U#J%$ zEy3LsSU1^rNI=+)F4bno`x$lJrehQsNOvlzU;Xz;lBl%r5m3}UlK&9A!z*o3 z)E6_0;sGcR-58=LB8;OVOi;QsXX6!!pg-p10uk?uJ%zl?8lBZum99K?Q|UVz{ZIRPwGatF1dw<;9JiRq2V z17L7^#tR&005W5@N(0;RbXaqmDog@LcsGF4Ak z4gpQ_fdSq4mw`eUzgq@O&|CD3XTz-n?dRz>mL9qm*q=@Xxn@a<$M8hi9{Y-2RkC9g zlH%FOoNZq&;Q8t|KtLw;>vtm>3S%g4vZ)W71omC>E4Yt#eE)(%BC<ge|Jckzodd zojWhMl|B$Bx&;S7m2OAuvlA2Br_(=N<%Ro4FN`G}ox`(UR?&#}t>~U9m*8cH{b+Dy z*DMBCb`RILW!6osY;IcQ(i$4mCnW{`f#rGg#UUIX^qcZtz^1Nm4cqZ(GjvJ6A=5>j zOYh>ArjskSBeEiX$x?p$u7^pxXF6t}FqBrY^OT-w5z+t1*3MPn^e242I0&waODnm_ zz_!w(dONHutZU`~U$e7F-}Vw{TMi~jDVx-u=;78LR13Yn$+5Hm=%MYG6aEawX;Tyr zs`>1v*FSaIV(|UX%2G~t=cn*~L}XoDKV$7(9j93SwpH^8eVHuHm2Q@@wb90}3bq&m zCol{c%_XX#c>M@!*?37EMiB|i@&KJ9n zW{RAq!EJm*51CPpiNZvoQ(#?$ym#^hd)igUizIE{=*>DxUq(EtU|`|>b=_{)v~$zsNLN2y1P z>u7s0u>~}aWRa0ux);(8FMeXcbyvYC`dWS;%9xIlDH_x zSKmeD;vRoq2>k=urR7Y>+LVN#0OhaC-#6b+KT6`!Hgn`|kDGUujOrU8f=;3j@B0x; z*Pgmhp|*cCwt<0z%oz5*Dnn_)ib&v|MeD~0QBh;NKpHRpX8*LIWcMC0Sz}0eh&*)5 z^?sx+YUtF0(w)_kFm_sBp2dtr$Ie(sGjW4N3?N+VFY}IYc&;hWJsZ>8Qi1A%2isG% zOql0a-!smkN6;}pHbhz97Rg|_dHmNY`O7VNX^Q*sNRM_3d_M)O;If;jBMa{;=b@-G zz0#M}(A#{e;L;oA3-~gs5AdFSV4Z?BW8HK^)VygBbj>S?5s?py$9CPlj#?0(f8U&` z_`9-`hc7-NXle0n_myPE!V4?_jcX3-M+m#5R>xGT;v#4L$Vu(Iu4CRu$e(#RKw`OR zVl}S>Rt|3-Y`QV;_<}k=d{N(EH@(*U^lgXET_>*eoVFXfgkr@M1gnIwCseYzgnCpE zN2fgbMm0vHYm6`LAF}tW=OwiRRtr4*hgHjl&3^19y?!;T0GC|V6~bUj+;h*OOFb1O z%oFlJGNv8B4b5&3RG$Y;FO`p`xc+`y-!kiwGg$X6ILF5!4eTwgt?fp+(ob}ug81j2 zcU*M{N^WrsKKbV)-%GEC_CIVHoYX@8`wBOU%6;cMt?wJy_Jp8oM+$hFqbYj#js+>DwV@k10rUsy)-QxfJ*};0cO?SGL;rzH#UGiyX(kW5Sz} z&SvW8bkDx{ZQ~qLd(LB%S5pB}OfS97F*VLRhaHtrEg}>=Qde#+GQgRz>SUCzzh+)` zOfkiET`$5?GEOg*+D4e1DZ%_$EY4j0rgqK$Ze3THh?AKsY7ZkFQmJ&;G~XT3J-6C9x+sMR(#Eq z`o7-{7gkySnCZPxSVbriqf4XLII%nxOLp7&XD!+AtSz0$^mLko4NHB|ft95khI5e* zUgt0-hxW^&OhhMdaqfbfI3i?^F0V=)y99u@ef6$V|5N%FZMScb+Q|#JFG#It z(759sWhy3!+UFrVMj^V>H<#M7<%K3pF%Kt|1p*QhMCYe!KT2g`IOQ!JAN4gC+o5c3 z#_8W9rjuWM)HnAl`k_D>sEiBB9sjj5vmEWr(kfph>B_<@&(-h37%H}XB;bS}gpaj9 zU)K4f72k^#H(Fd?LT%gr;_+Y&Yr?~eEcsSn@lz-mB%a-fFuVUa((!zX%6H)x8tH_o zmPQQR5_o>$n_OvNeiR?1-5f{1GNnZka{q3i`^jZ6g`4m zKHAw=vB@x|RX8xSJl}d&13VmicQoZVNwNt@U^vQQJ-`I{iGrjD8M&M|x~7oX{X&4% z^uD-vz574St&QXyj1}2OQF2J#fsB0z?)-lwu_`lpUS-GiBOsD5K+~_|U$7a}f;xXJ zDXy{wuc(G!(Kfd#v5@#4)cG$#5e~`66m@VC@|Juf(jiU0JMw5;3$U-ckqD5S2DZ4O zH|Fs#y_W3X4mdG3x5g%hEB<=Y(Ad&Cf&9QDEO&AkFHRo$o@LPd8bUX`{R5DX`!|q3 z_irFykyG_R-4-)cWqc#`ZP5qhUn7nC=eUL)BL^=FFbRgRwniFs+h8`rz9F1gC9g9> z5laqiF-)tf@5-uHQ&w(u$x+U&mZhIRr1^#UI^F-Sy%A+!lD;$!I|6%-XT>|6Z!t94 ze>rDGt1g5R1@4(EU`@U_kC_?&Zb8Jbsq`!PCdW|6vhB*)3F&Rv1+t?LfMi>)yGwFD z_<&B#xQ-DWmwKGj12kYUuWntNT25(F*+3A397uH|Nirb@-5$jY7Th0oEF02?j)>uV zU;}rtZv!@|hE}8e7;4Us@WJ?32(gs9^s&o$1E~|{1CEZHG#jX>Lo)H0=H07ixluE+C1Z@{$4?bh=k_=B7i53OrFZnMlgu1%xcvXs&iMtT&zK3;$r6t9*_gU z9jZSgn_<@Y4_PS4VpQZnl}V`teakGXh-(h1EPQdW$354R&^>BpW*H#6cQ|DDekh*) zez|axvD#_pgP9ygt|m$`4b9Q#a%V{TV&F2j8p)4B#f;J_E)}}BgC2#V9^o*KyWTd~ z4aEKmu)?L4)%9@m5HLicC|vqqhOZ0}38@xqQ~hto=tv4TNWDGJzaY*+(Y*E354uuj z`PRHu#gMx38Ch){4VXGMKVN!mukZ&iginh*&m z;!(v%1$SExDn?@Pq+~_^>{IuofG4C0pn#b`k66~<9kCP85#L$;pArKMOK*i9E zdca^3y2n>$DcG@!-)S@RU63(-2xS&H#FSw@>eA1EOovQpb;lPV0T2;(4b9nx#{n=b2cHWAo;%TF-n@^ zPq_8`d-aiaiGUirhFp68O9;%cZHt7p3-BSXBtKT76y#n$r>!WJKKdv$>%+akx2_B=TC#>8h+Y6ZuP(gr&zU@iWM}EQZ9%E zI6*f!~F8SqBlTS-_O;?#B zrrsv!YZj4SI&imnOC^QFL58ZFsr{?vuLAsBH>yUc(!2C^G?C_&}jj`K8&pJ zvmbsWvI-q~NnP`zng2aZ=*)Xmq&*5Io`9Y;!D>}I^Z0LMT=aLrVoY%iPPtzX`T zZeY8{=TQ9P)}(a(<2xX0_pm#)zxDo>_nMcMc+mL($yP0Z@J<=ACv{s?rDHQ!%T78M z1>itc$&pJ~xAlmi#OEh;&2S0ig>rWJUc`5<;*qoA{Cu%VvbPhcHoP9cab;G$T5>|C z&(LB!R+3ShigKz?l+=>chxhZz?BCF&NK zhvH#8SRh;SJXD!KDSDnDU^iXeW(@{eKhyhn)wSpad*;}d49+z=YhMOIkpyjX0FiN| zbUB1ac^&cKwWKI!VWsJF-3z!me|~^rEXI8X8pr*uHCa-;$cd9j7px_X-PM}a1RG9S zJtNO4q-!44=y`WXYJ|p=@-7&w=S_3Cha+%|=xTz0aYG<_YE=WhW9-2v#av7?S5OAk9 z9h?c$aI;n>oQH4IUT9Fr6f>`aSd2a4^<9t@=sNERxiGskRL4jXOZcQ^`;pGfV3Ran?6pUG zzxp@tUi?d0OZ80af+NVQ9@b$NmG~S%gkPs(f3k5I{kE`NiX+9P55gFyV=p!(7H|F3&8iL03J=acRqAr? z1Bx+@*CU)jk>@E9BmJ#;C#5S;U4-h)Es3F?@kSAlHgZP$bk4#HqY}R3d64G`9^)7g znYD(|HD=JE*iVz{X(Xp>9#m*H;O?ld<=%aL6+{CoxMy6`1?$j5(Q6`shTT_{SGV-W zLo%8oxfF*>c{c`#T8u&;N!UaMiVJozJUP94oC{*8w^^YdP{r^A;GaW}3z+Fq-dW@r z#jo(MurIXQV(`H3A?@C!E)^`=Qrx>OATJdvr%O5+o@==snMJw&~=4)sICeS`^ zjWV)+)y(Hj0quK@yL2YH+V;LbgPaG!CG{}l}@tDfPI4vGFn zb-W--GGI>Tme>YEtM5>(&-pdzCincV6vKWc*%GLXI03|&o1*BnSVps)a5m&b_5bMC3K z;ZCf?qD$W~!Wib_6p=rz=6m7<#J|iNZLl>dO6sYh8!R%VJzTTg}O23xS zwSTs+W-}VS`i_0vRgK}?TCQ^=nEg9Ka@$b*5t@2CeeA`gG2IrOQW?K{1f*4PU5Rv2 znZ@9rCkvnqC5^p0)akUHzRxz3#GYzb{`(t{(EGh8K%=7X87fK2$)382JRG!>$iKL` zRbTCo&8^s{d5!;g!L15!rq!oTyl5&d@jn%3$bUv4erN;Z9=|=I4FGA!(%25|QXtu_ z=a^xS3fLgH6zzkw&s;kwC+L)+&5&WiYPNQNHSQ5lr!2a5;9MZ!bN^eMp`*|#?_4{I z_e0w8%O5ThhCc>c%uS|iYDkyKwfpsFYCfM12XO zf{*;)H={_Cs0jP`Ao|2p{X!suYQc0+VvI8boTyXqqJ>|>@-(u-3M!8Z0)Q(H*cjU23K{upFFWa&iJunZXs%ZLTdZX8^w<|K)A2%mh7g4DU~H-v9a{R#`u zBK=^zRETZu*b2hEK^tiic)4zj+Q{ zg#6KYRV9HO`qe*`Ql#@%kQKWYi$9KB+X&>(rmyTE9K#eN3et?-4FsRHJk;lMw`Gjo0~vdF z;E$n`m)`0|;Qsvi4d&Ne0m1F9k9gWL+|S&nCM!x~E$38l4{}0A5g!GBlHXNAnx{^$ z>Zt0pno0$%|L~7pAUXY1@uap=b@xfC5-8&MZ-W+tncnp&))#?JIwd_l!5bW5cU@DL zo_-9X*59_7g98}q={$muEuOq~UeITy=Q`@NS;{vtLzd2<&s{>t5m6E-RP)F*ph-2p zH}vJSMIyn%~&*3JHASI{AkQDDJ4CLJ1GN#El(T%8KZ~-liLYwun zz{ds+#(EFb-FZyWMEi6879>Isd44a#2C`W3DDcNduJ(KZa%CPhMoEA!hgqnq@ zMg=M>OYodqstghb=F=|)vTZdsfw+AK?|~J*RLcr?>KeH;y#`T}Ggg-#3^JmY6Ru;Z zFGh!8@Wr=DZ_L6@Ju2A=&>{FbLhA{#p;~Z?aoU|vtB)4rIn0SXk&Ok@72us~dYZ$j z&&?KuR^5QjjVK#J(_O1LGKSQ71qSwd7zWY_-ge(J4n6@~XqyT!9KXUeh)nN9HPWjCDBcPO zsFThQBv$y@l>Z1i%Np5x-Yn=$3S(Dn(>2ZM)p**(Fx+RW0cq`-0eTKE2!Mo#%Yfo! zODbTId36M@xkGFJlmrgs_}3q_x9xNFAi&7B^vS{fQ!UV={KWE}%3YxE10Ws8C>F>u z>XC4t8c%v+-dTjVDq5f<^UrZbZOF7ojv3d z->icoLFyp_0Tdz3s<%)=Z0b$y(s+5a9|teL2Kh+SGaXN~-%Nj68%x(&m_mT@MhqSX z?_-rIAgSd6&S#TXX&v;mY#z?DBDi0zN!xt-!wv}nUsqPwbrL+URf%#{9K z1<`hQ7-NTu%EPT`TV;je+?hB&UkOhjyLSJ`56}$3x6##U+KP4Hni~ZWYOg^T?t4Ul zmc~=R!$yE4lLvEZRNsNb`*Uy$h(2O{RUptj4_z(90c?e6s{$$?XGUh&Fu|X6!C^T- zQH9*}WT421}e z*RX)*2}9W0_J6NW`hovPYgB+Kx3v`ShPbJ9dbto;{Wl)4o8yBur%0Lgft)hcMfeq| zXmSp^zTH4AAPUES0pA6mZO}l<>RESnd57I?3bMXb9}j@%GF(L~dh;*Ujn9=cN|Jw` zBs0V)>NTZ-(h1rc{&LAGz#|sWgNy-2ENX~l9gN%UG7tVB!rX_O_PDj8{-?jME3Nc% z|GIRNe%((&{${mlnq9wsfVSkYUuc_m2b|GbyF!^EibsHn|7**dOx3H|6ii=_+5nv_ zAC}xR9yXG>Lz#*#Dm#={0Iom5yFsoGikoJmrZZE#3AJmAh@K;*yU*(rRKdxH9x-=T z*2IEO5>b6c=5wnV9Xa>DYcKWXOjR{dNB&mnYYnIG?BBf{KoikM@Xu^<8w+z7M>)2#*I)550o4DZKk z zP*j?zAwcMekq`*Ig^)P`zxQ3UX8xG<{xRRoU0J}oH}{-#_c>?p-~R2rFB?cS3ppu? z3PCo~rcztjm|n$H&P9kP5BK0IYSNOqByk|Z9l1<mRLbv4u zU|Y;3L$o+|5CcaPJm!NO7g?!GcHa2FQ)1Adci~GM?hCQ|=;{8;%Lz0n=`)D8QqW?i zl_x)*05M^N(vp=4X_Lgm$4P&iiDAFJ=*jS2d2klkKtCu@wwpY@Ee8_+nk+y!7Go_4 zZ$ob(#{flGl_kl(4K_p;jbd0R0vZzl&KV>yU9nl* zLBfK>GMv^`cAaHsR(Wo}&>rwep2wN!x3o=Q+_SC4n%xHi))u6oMN+C_QgO~T*k2RN z{n6JBKoE60oP^Fz`e`X)3unNwW;V&YUk6(ogv_Lg zliV<2Bnfn@VG(%5NGXmTlL)x5_=Z-1*(>O~zD^^fhfKbLYs4&$;bVDUBfO~{_z80C z0lPv%Vtk6duY-t25-5D4YJdPTXr#CAUq&n2l7It7YlG$uB088*U*zDMArA~8(-I^I z5?^a#MuPG;cUjG6aY#`o+dU(jIZewH@9u+n6|OM>sZfAHLG^({z_G?{@dxXPhwH8* z4Ui!hKh=pYdsR=vY+znzUBDJql>al)Hgz#)*6Hh+w0`xZ5Ua)KG#aUD69hm4Iq;@v z0H(l9#|8ACgeC&568Qq;kP`c{wRBZnI%2aa4Jg%;j1I5s zLuPD%h`p7Ob%a%z6PCktLfU#8qHR65%sc=_u0Sf+;|4q>5Yu5lsY3Rz}h>a2n#1`mR0L8lRpg6*^&p@NVS^KPm^=gRi zDu70&h+i1|j$sse!(e4=o)>4B8YBtvvqj)bLmd9a&caR(VgGqw$kK(zGYvD5vd6soy&2WR12q7-JLuaLpd3 zkY|PhK+si^co99Xv(EHwEZM~|%{_)77-P@ze>AgTq}-t2!!xgex)zhlAL6&8_tx91 z53@?38;L_-h4SH;k)gF8G!&q!li=6&?rf4^kV*kA75=e8nED&m-NlErZqm-M#iD*# zD%Hmd6e|^VP0X4PJwsESPj0VYzQgC0jy@VVWBbj>ijDf_6M;-`KL(T~1d%B+Q!0cV zvTEuD?6My@RMLv|9zEah8?El0Uo1KU+)2^78;c&m@o6(=2iUD2*<=+y9v*f%q+64A zZD~1q#=$&Sn~akjsrgt+;vPh)|Cpbp^{6Llm84aKGBk5H*`7*0K-nqI*<~JQ$84+o&)1*pRg;cSWbK4}hZN zde4tk%DZuwgUT>qY$DjsTj&^46dxJ1;b@($>ONGvRwbuNRx0Sj>EE9(B9Ecn$~Q8b zq&}shjVy6l|J1mSSfsMtW9W;d=Wf&Cp&Ty^9QJL375>iUVWchz-OfQ;y9G6reico* z*LnLLy8wjNM|X(RY|Rl3m_zU2XzA0*uQ@jbLNsih4@rW|`YWfHOEl3*-IjKAm07lP z1af`1NB>oOrD46owF?(bJqS1Zmancw2r%_ZwK%|#k7ZhJq#39ihvE8qKA*|&R8yjwKf{UQur6kdwUd4amnwDwPHSqc0r z-f|Q2NjPs;;irm&ToV&}IKHki^bWGPT_xmKr4!Nq;@?c`;`L0p1EKcNr!X&TnCqB1 z+IbUvKoCs8HAfy1KSQQsj#@YN~!GOW?&P?;i7B!8-xA@gc5`)5kD z1Xizc?L+jq>NEk}sU^S|(D(G-j92?2xCi|lpai$l5~QM4gnlm;K9H~dw)XE(qb55} zGz5Zo;R_xip4H;$0|=s3`wqvU1xL@HVuSw(+V`mia?x!Xuj#qc5APX!L(?YhCw=== z0kI##-U-4UB=%LiLMBV@wO8MxUx<9va32$FXr^pd3OAc$A}x9Hs6zrWCUoW)8$1p@X$=bHd#tVP*LAiNfoCj_7y zrE5eHlc=kU!yuv=Z-nLTSqpy+Dqsk-aXB)#XPCalKwW6)BJHUMS7ig+F)Uzlg_b5q zE)~tioK*`Hj&IxT_;E(YSqyI|c6EsgRgowYLL9nBxy2rIP>XERaW0K;0}nA0#<<1y zsd0tGEMH7z9kp9kP^V;$1AETvaI_}4l=$jNoQ^lwR#@;lCVgcgL z_KO;%lNemWjU)Ipda-x6Z+o>z)8d$dK(1cHH9`RhntULkjL^b1yIU+}3bE>o{Q?;C zWQ#p`UR`u(xAt1D#Q@5z0yvL4n72)ya2-1&5jqEx+6XPFhdHo_nl9Y-pEB*4$gxC$ zh*R8}PlhHiI0>>u#bJb}{*OL=H$^L-0|i%qO}#7O2N}||65V#>?r<6BT4 z8j)bbk4Fxa+%&Ga=oJJ=q{yfBdM2jXfdML~z|hS+jPHtByVA@jPVi zUaeeTFd}$KrcFeEhzN~~rX)J>6Q2Xjl++w%R}+0N{HI;yhnZC<9M6~f03!Fc6(s&A$m~it#BleV2&^hS-NeS8J>{eXDpvrS%1CxD z=wnC~??PPfe^uN4hV`8GS{Urj=oag$+cvFCYp{hQm97FPJMWiUxWvzC*FxanJ4Y^@3>R%i2Wxy?G+WrM!1x|qdQS_PELUQXugh?V%`eASX!~YzLlcZ za(pjBm)j8`7oL~q(GoCc?T`5IihJ;F^b3OiY0i@J&89t$_IN)a_>B|1W@2g9;B`s` zmMHOXc8>+DYJ_qzcN(3mA+3AmEksUuhI?{xve-dmqw;2$X(UfC>69A76}H${V#!*M zMRJYxS`qTo^hIO)341!E`d1 z6SWf|7bx>afUa0)&s0a$;`IOGiJ4opnBq6W+^^x_{WU2#D*##Wd2FaS{I3yZ-&+j< zXx35}8hFc@&KM&zy>N!jBZ%i2u;6$2FVgyd)fDrx}hpHw)K3`n7UZ;v+g4 z$BBK#j?n3V)qElR1HRxWl3C#fn7AgDWcxk%4`J3#iQgOEYFB92rs?xdq0Qbkyjsh{ zicdEvMQC#G=`ih%M603UxM?d`!OfjD9r?PkXz<6()M#DRoYokPbOeyP5yczW zP#AIoXu1Dx#sB|&|3u+XL`6jDfLE&H{OIRNf^(`PEzy{5CE z_d8i6Dtch@09y(3k%8;T@JlSiWBPP@1HHa^C^rt~9L(}qWS%C#EJ4B*la|C=2=3gs zjq^VO+)2xpWQiKbGapd^;p&|20Zt}4C;FUwuR7WXJy`v5HW{woa7N|afHAbu{QDC0 zC{zR6;7nUJhng2T+Q80|X@FIi<&auE_w*}1h989r=DHn{d^!o-Rzl;Ub-?zRateWZ zbX8u`8|!NO#MktL(X98q=}qVRU*CMbFc)aqq&Vnd6;!lgwAfp?p;6e8O&1*h{dv_} zZ!FYS2f$?f6lcMm>GUzLkSUMeV272mBLqB}OSP~Li@}9AcSiH0tE?OQ@Y@;5W{X<2 zp#!%7)t_ky)H*(75KeIYw(+QGfp8s(F=kFk1Q)|d+2R+*gDk}~+O$DZ(O%N=NlkJW z8;)9*zGY-})OTGc`QbK^SlLT_!XGY3&q2FxApSAfwvB%u{+0_2PJGT+hkrimF&kBC zZ&ws6`}gfPielHlR%5H*T)S5s8-JgxdEbFpp&716@(*?0*ei?0s9*W;pkEye{hyaD zNa}9h?6rP)(2%|Q>iB{daiX^*f;R`!AW*+QLp{3RE)X)9wzzlzAAMja>PSg-za@C1 z2hU8%@VlQCyhI(7BwJI(zCgEsHeQsA1=bx3VO<;cM`-yaJ{QT&^$J+);axf9y92+= zhReYq;mY*KV1{W|jpS|zZpGHMbt&KDc(?ZYz-=Ady}6~ixo8T=+mb*JKOO|A<1di(ds?PsidItf=jeLR(0 z=!o|ULbw>qB=gh>%ca=kq@Z0?U;l6yib~Y#5mr&_=rlICQTrRS+$g=pF-?+r-~+k* z#Lx?4{rI@a1=Gj4&O3%;yq$`1Qd}KqKV?F#MmF^?zI!FFJJIZgVDrR!J4zsL*bi3Q z!l=$^;eQRTsEnwSdVr;M0ktdI>|*ofUg6>Iy&g#ZdL3ao@k!D5SmgC5@^4p>Yt6~n)#^ESTzqy6v{Dd-*fzxo&WtvJJd?|Gn~GUNKPwR}stbTQ6iSPHT5 zu1SD+khs*_FjCa`Awl_=l*LzawsBi3(U{opIRqshl2S$Ps?RkW&4CQ=(LLJg1<4So zm#oh2`cR^4@s`LxgYaK3;Z+^j7i>@QAHIz67+q`ovIb9UF5eX+5fu>odQx^)h8J~e zP0i2bv)01g;Lq$jU54v%dco=hMRDXola zI9$}`%%+Gxu^t{!37LAU)l$AIQ1Dy$dYxI6hSF}IzpJllookzx+ zCP;j{x655&%sXP8y-0xmYQU$;-P}W_qs#4aFRt(odZdoA-^%7wxETYN4(WA{NR`MD z<99i^sn*KYo0?t4F-)m7iYJ5NvBxieb3Z5g^XE`skcF`$(sJN|V|Ywxh``p6emtq? zWDb<(wcbe75dV_8lz;)DWpIBKAvu=x|TJNKu z){kQccWe||4ijXxHsNMj9blf5~haqXxHDqf{7nWkW z$}_R=p4z`aqrL*UsQgPVDb~Y}f}b@kuF-!kY8=5ap42-Q5bG4;j!Q(nAiKG#p3FuC zxh6Jv8;{2CsxNlx$@N$u&lS)!WX9>4Ko$$(;f1pKncR$2OO?nf`M9C7!%Mfm#K#aC zGzM~7O;T6B2Q0B=dn0tOFG$62^}RVKH?Z|uLqHCvXE)T`3+98uWtlbGR!qcLUZ%QV z_RO48tu4D^mqF2Y_qka2j%o7x7<9bx#FCGJq9gD1YR7CZk5VtM(qfZJ==FL}KYXEV z*h09e;2Kl^^;c^J);--D!pvLWa!4gUuNkJ<0k&!7Zd5uOHTGzP8OsH=bRX|;4OQ`ycA^SXTE@&Eb!I5u zDT4ai+Wx!pyY|Doz7%^ImR4L{yiY!B%#4y=s6uN$G&M$DH1M?b^V{sY@I*Kk63C^@ z)xDRUq!nd@pP^nlzs78qtaT=Vc_?sn;4w~l;~*M*#5m<;fZx)*kdri}>Q*D}sI;*R z#*}o3`1}5iuCXyB6a5$ys!JGp`~Aj()0f!KKU9`~?Hty1Dqr9NyKk}FC_~0{z2Gx4 zfjy)}SlLjfuUzLM|s8H~UVvZ_O#UQAtrNre@6_NlxYybo=$q{9Vt z(<00VL5hk4Kk8@veMQ!gx3O;NfW+4 zIoqGRPPwU7KK<}VBD=OEQXAjJuMTVL;eQCf+?RXA@Q~;#A70jj{i2KJ2peul=&HN5x^C1hefTjYU1UDnJFU5W`x2ys zOZteR)fv4V3|YL?)5%rhgG(cIE_yQ>clCqjELGDO?Wbl8hE<5X#KGqJI;DU(gK6(p z{~ar$i(*$y7Uy)fw9gy&;WMvebuQ?hISZvKu(E7Ks?=u4@|Ab$o*z@B_GTa8wI#KP z4_ka@#H9Vy*sVBmxUsv^+6+Ef8b&yv^k^fG;kyV3Q>RB=JZ-$5Q zI{k4^UP{mF)f7~SPpw`$A!S8PdugiMqJTPr{rP`n~mv z)5CEUkLHHt4A;MJUy0oj85Z|6)d0FTd7h1T4VQ=&ZlqrGX&$?H={&RHC2RS;tg6&G zkCSu9e6{@ujNFIy3VoIY4ME`$Qb?{*)Ptz~W5JDoRw&4N-gy~J167)552!nU7>V#= z3gVukhvW>UHVO^ljYobRWa$i>5??j*k#mKT|ACwA3z;|c6Yag!=CgKWSaUddIIa0| zyIZ7A*@ln2bh^)4*Rorz7BroES>#cpeVkTML1tmFk6~nHT;ahz@}g0w{l3>K8E1zh zqI@7#Lb;u@wDBM?0uH|TzyG1VzlwlW4t(`hw)p4Hs9k^W-NWj;Ayp!)jy;|yzJJt3 zDEXNR-qsY`8d~AEs|b0Ds76++B|fQIG)N=+vOtS)4VLGZJT4+SuxrB^wxlH%tgE#V zGS*SbcDU?7Mn(POYVmaI(Z1LYOBKU+)n6oDIZW<2JPjqvl`|$cU<=IlpVa{^xvucO zoF#S5h7pH9OYnwhu+d~XH$&p~P!;tjUH?=sd&leF_TvwKW>9)djd0;<)q7fdOK}gj zzMrqjU!S*lF)HZE65l{6YRR~7c`0CjSO-t{trCf-Y)%K1^rZ@&{C{^+kDnkP`Qzs$=1AB+;EHvf@pGAiv$bV2(0f~u|^b# zhjqy2^975|s5_OQkCuf$cV$VN1tm8y__750FC{p__;sI-SMUX^5e_2ltcJ6VQCy`G zDP%!j<)hLQ@QYbgUSg$I7@hmxfodKb-XaK=dkOtw%&9LPBVgU!@MMVx z;jP&ozrz2#>Kd%y%gaY;qRcxg=;47!_Rwc~Z{r&j>WFpQRss{Vq<6RqKbqC1`kpfm zHowwxpyr-x{R!&hlyzz2QRSogk{Q{H8t3+zi9wD+;BNl>^~GLV zzVfQ9^Ct_O<0i!HRLL&-8r)PNIkz2AhY*6pZpL(_Bdc%u3kZM5&)a24Rz0pZ^D%L( zd$saa$!<+XnsPcTerwf~zv#F>F8&(v(v5G$TLd+(Iiw+F^-@EFUUZ9XIu?xczH2{B zkmy0nF8Q8O+1~h0Hc&K=|GmM7X7~}+vMU{O=GuDAQkfMszADRjw`V7U`)$<|&x_k9g$~Z{uQdfCfihOwI@+}P{4*eT)+*iWXhzKXPwzRTdbkegK$ zFJ1Q2Q_{?%S`K~J_5g7@pXs^F4Sv70Y%D&weC^wymK&SfDSQCF_q&KBFa63sBR6@< zHUF#EUj_22zML09=*?=-b`ss<42Gb4d0VZ2v=P#wq}bkP zy!iXs7W+K;*Q4iZ-0K#%`AV0}^lU<|=G*p>d2ux^IOkBdK&Gff9Sl*tlWmqjblg@X ze-9*EK{D`7nqnC39^+?nPxtkBk!;N7X00zP(<1`LPsCsd(P3Vg?5;vzUq>-Q;|AeC4mN^H%$2g_*gSADyC#8JY?pAJ?&D zmENfMoY)CkDJdnMG)^fW4+;CQ5kmZIi`t7s_x7{m0oX$(6oLJ+^;GyUKyjGE6tIrJoHu$zgu~KqkG^}-39@rH5TR_)7 z$19Qz3Z;mUKogz-OVc7L zz6hvLFWd0T``nYadB2O*lL*$NE(&ttTKi&nf}StTo*y1lpL@xF?=a;{(T3yNqjQ72 z^@NWo0`^Vv^O#uPfoV+FP+oIv_kMLJX77pN#yR5AXH5ojvLcA zSHzPf``8|?u&Y2K3Kc6{&L4?6u~xmkXMZ(cwT{llai@)*`ADfKhEU$4)&z*gUJErq zmt0Liz;ee|GZoYG%9ib44z-uh`}B6cAey|qdg~=BXlb5IoZCMCM+==!+|7M5j(ep_ zqQj-OFSEKquG#XymNrcJp?37U^0^Kl&Gd=e!hT-X!>NgXu7rBVE*%?8K9kjYS1mbk zb{)CDExamples#> [1] 12 12 12 12 12 #> #> $best -#> [1] 6 10 2 9 5 +#> [1] 16 6 13 3 15 #> #> $bestmodel #> $bestmodel[[1]] @@ -851,19 +851,19 @@

Examples#> #> > confint(predict(hald.gprior, Hald, estimator="BMA", se.fit=TRUE, top=5), parm="mean") #> 2.5% 97.5% mean -#> [1,] 73.14972 86.05554 79.74246 -#> [2,] 69.25283 79.58061 74.50010 -#> [3,] 100.99680 109.61389 105.29268 -#> [4,] 85.09427 94.80613 89.88693 -#> [5,] 90.46133 100.25573 95.57177 -#> [6,] 101.17433 107.83584 104.56409 -#> [7,] 97.66983 109.21652 103.40145 -#> [8,] 71.60336 82.50264 77.13668 -#> [9,] 87.54693 96.32029 91.99731 -#> [10,] 106.91309 122.38044 114.21325 -#> [11,] 77.21741 88.02753 82.78446 -#> [12,] 106.40541 115.07330 111.00723 -#> [13,] 105.51892 115.05656 110.40160 +#> [1,] 73.00939 86.01817 79.74246 +#> [2,] 69.14569 79.43434 74.50010 +#> [3,] 100.89213 109.57630 105.29268 +#> [4,] 84.94441 94.50001 89.88693 +#> [5,] 90.30960 100.18471 95.57177 +#> [6,] 101.28510 108.02065 104.56409 +#> [7,] 97.16491 108.87403 103.40145 +#> [8,] 71.59345 82.79361 77.13668 +#> [9,] 87.51051 96.49305 91.99731 +#> [10,] 106.52299 122.03522 114.21325 +#> [11,] 77.66005 88.42324 82.78446 +#> [12,] 106.64733 115.51574 111.00723 +#> [13,] 105.63903 115.24049 110.40160 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") diff --git a/reference/coef.html b/reference/coef.html index e024a16c..84d7debd 100644 --- a/reference/coef.html +++ b/reference/coef.html @@ -205,12 +205,12 @@

Examples confint(coef.hald.gprior) -#> 2.5% 97.5% beta -#> Intercept 93.9652078 96.9242885 95.42307692 -#> X1 0.6474743 2.1543916 1.40116123 -#> X2 -0.1555206 0.9738998 0.42325794 -#> X3 -0.7716724 0.7071778 -0.03997087 -#> X4 -0.8413231 0.2565509 -0.22076600 +#> 2.5% 97.5% beta +#> Intercept 93.94388385 96.8507384 95.42307692 +#> X1 0.61891336 2.0975078 1.40116123 +#> X2 -0.02050468 0.9323464 0.42325794 +#> X3 -0.80435395 0.6342809 -0.03997087 +#> X4 -0.75952512 0.2233208 -0.22076600 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") diff --git a/reference/confint.coef.html b/reference/confint.coef.html index cd47799d..36cf2bd0 100644 --- a/reference/confint.coef.html +++ b/reference/confint.coef.html @@ -154,22 +154,22 @@

Examplescoef_hald <- coef(hald_gprior) confint(coef_hald) #> 2.5% 97.5% beta -#> Intercept 93.874900 96.9050723 95.4230769 -#> X1 0.000000 1.8866600 1.2150202 -#> X2 -1.174845 0.8750293 0.2756235 -#> X3 -1.508400 0.5982637 -0.1270575 -#> X4 -1.740936 0.2533020 -0.3268710 +#> Intercept 93.921187 96.9252540 95.4230769 +#> X1 0.000000 1.8699243 1.2150202 +#> X2 -1.150678 0.8655846 0.2756235 +#> X3 -1.538495 0.5490304 -0.1270575 +#> X4 -1.715886 0.2450915 -0.3268710 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") #> [1] "confint.bas" confint(coef_hald, approx=FALSE, nsim=5000) #> 2.5% 97.5% beta -#> Intercept 93.778041 96.9304313 95.4230769 -#> X1 0.000000 1.8820942 1.2150202 -#> X2 -1.210235 0.8444226 0.2756235 -#> X3 -1.542606 0.5720867 -0.1270575 -#> X4 -1.770739 0.2206185 -0.3268710 +#> Intercept 93.926036 96.9807556 95.4230769 +#> X1 0.000000 1.8910915 1.2150202 +#> X2 -1.065372 0.9489101 0.2756235 +#> X3 -1.515266 0.5836245 -0.1270575 +#> X4 -1.635468 0.3317377 -0.3268710 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") @@ -177,7 +177,7 @@

Examples# extract just the coefficient of X4 confint(coef_hald, parm="X4") #> 2.5% 97.5% beta -#> X4 -1.713441 0.2804865 -0.326871 +#> X4 -1.664808 0.3060944 -0.326871 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") diff --git a/reference/confint.pred.html b/reference/confint.pred.html index 1f263296..bf1cf358 100644 --- a/reference/confint.pred.html +++ b/reference/confint.pred.html @@ -182,19 +182,19 @@

Exampleshald.pred = predict(hald.gprior, estimator="BMA", predict=FALSE, se.fit=TRUE) confint(hald.pred) #> 2.5% 97.5% pred -#> [1,] 67.66018 91.87737 79.68307 -#> [2,] 63.55127 85.77851 74.69127 -#> [3,] 95.28254 117.06920 105.63258 -#> [4,] 78.46905 100.65600 89.91648 -#> [5,] 84.13461 106.65294 95.67480 -#> [6,] 94.12140 115.04727 104.57616 -#> [7,] 92.20376 115.25220 103.47945 -#> [8,] 65.91170 89.09566 76.96808 -#> [9,] 81.58145 103.24453 92.22184 -#> [10,] 101.91625 127.26698 113.84918 -#> [11,] 70.54872 93.19682 82.59035 -#> [12,] 99.90601 121.61121 110.87673 -#> [13,] 99.42816 121.85114 110.34001 +#> [1,] 68.01280 91.56949 79.68307 +#> [2,] 63.49079 86.53384 74.69127 +#> [3,] 95.10224 116.73747 105.63258 +#> [4,] 78.51888 100.76498 89.91648 +#> [5,] 84.41477 106.89964 95.67480 +#> [6,] 93.93347 114.47776 104.57616 +#> [7,] 91.69907 114.73029 103.47945 +#> [8,] 66.18518 88.90840 76.96808 +#> [9,] 81.32753 103.28639 92.22184 +#> [10,] 101.27312 126.86767 113.84918 +#> [11,] 71.21060 94.17152 82.59035 +#> [12,] 99.56256 121.58581 110.87673 +#> [13,] 99.42045 121.73570 110.34001 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") diff --git a/reference/diagnostics-1.png b/reference/diagnostics-1.png index 8dff9e366dcbd3b1ad9b0897762bae9aa686eb7f..d9b8d5712cd8dbf7dab91f62eb8f529a017b538b 100644 GIT binary patch literal 41929 zcmeFZ^;?u{)HXapC@COaN-EObZgo(G+@N%~NQ-n0vL&Qs=yoGrgCIS??FK{{A~Be08Z@u*6bdPY)d~NJ5hH z@^ucwUnU6dtC2Ze_u|OHShzC9XW2D-h83*zJc^|Q&dN(LSw-deCwh863TAyx-*6$( z|M&0z)c_Z=xcv~w0^ERCz&bz!a00u40T2gt2Pg8q) zyef{?hltz$dlU_Qc$4BHtOPCunIX-f;J*?0Vxsi>SY!oJrV)~#z_VPq+_X;MX!QGf znWfFTW?*t$rH>*S+x|5ipQHS41A?OjLUo8akTToN^-i2E8%9KYJ{327OO8dldF2LI(TzuNmlD}43;#LYMi#^S9-*H+=JA#& zHdPtw>3I&XpzmLvFgC1}?jbgP7_?i;RYXz%TYbX%&+~6J30%X$OPt8!n>1J^rEd7$ zHPPM{SUPML=1fROl}W)*q_L|Ee#~d~?XK2wr3BU0D`*R!=xW~6e_}AQ6-%jj59qZFg+l?UI zH62}6o11H)S86s3856S_pKeAt#fhvFWX_-Zbk&_rT49w~`u5&}y3G*5aOZ9crN2no zMBbhk{NZMDq_bD!sQ1%nv8OFL+H`65)O+iL4{deRq{PBhzmw_o_4?^Z=|_83DJS;% z8I6Yurm=C&eg37YYXt>rUiXrhx8)^2lsAASR=WMJWUaM_ncZ^ zCds8M3zPYZ-VK}4STx}6GyrOk^cQPxch}vpId=JZZI;39->>$EL7J(yEYkV0b(8F| z5TPG8%S-p23=GR4vI?>$QHrnX^f$TNjUu=#(7i{kZ4vHeQm64y~BMIkcV*^$q>=%>95EK zT9eGhcLn$SHVWrY_1kWp1U(AHiD5g zF(P}8Eo}A7cyPF%tr0uwVK5?mb>`|^V{4j(QGs)JiDeo`xk#uzi&nb_GOoi?0wv)s z@ys-HYeEN5C**g}sB4-tdGKYPwhigMff^KgV9e5#7i-`AXvwOrK)XGN+3jYEjf44a z!l=fIuwzu6uwrhv{~-UPsk!YbXhAlye{!7@U(e6|r-XBK?@d)bzwlZbH*Ws84{9X~ z)QTC;NtI+&@hm34q;*T}tTbx9QU>37bI~lncz@?!FKbAlZxFwOLgd#E?s}QSTVsFk zHbXxJw5L6LGp}S)GhZ7ndZ$U2X6!kzuxqL4c69nSJ5jcLP)!dMhBfvR-?*AWu(Ew6 z$=ht>ucEW+o|g4`eYt)mk>Y*4vaeP_;=tJLV@LG~_?Qby z-&bq*NGBn>5u2r_IxNf5XWMYE#)ff{yX-+GO@ywod&CalI2VSsgAh~K-b^Z6Iq`qv z-f^RNhP~Uck3)QYDzSiDrVkU-5n8-Yerr)ow?-aB2N}~L8@Xl+)N=Eq{rOo1L}d3m zs`}~rohnpfc;9`)?q3DeWmUvl-(`!cM9WoIy!n%I?+e^KN&4r520`fiXUR6FZ|X9G z=-hxzO_qPEoHIW+jHxs_S#P^hR?uv9uS;uft`9_Q#i|LrS^3ZX5ruOPwQX09vQ;AOSC^hdIa@8}nLo<9`%4cg&+_zDI zPd#(y9ahok&YM%2RDb_}#^~Ii?jB%oyE)8q=FTn}E*?pQ-*b7#!YO+nnJ!s2pA_gK zc4yvOa)q0TXgtX#)6RKacxL_Qo{fu%<=Ir=1fHYDD>EjN=BMYz=QO>*Nra2*n2ACEOGByezYJSP<4cQddx^w&UGJ&NftI38~yad7EXF%V{ZK`BIV;U z^48C3A-RCxL2u5_PAGc49f>jU4@kD}HZCY#i1v*Ltt?l4tw^V;UG|0N2-2(s?Uuh` zzB2%I>!zsT;>Hyw#M7MUCUwyb;OB-dTN>$zm7zJ?*y0eyZ{%bVU>_4VZUQKb!! zC-c>+{`pBwJuQgxJxM(J8s&2w-aF|hxs`X@;g|i&Hrv9l@vdUky&Kc3)y7x5p>Ze5$@+&#e3F}E;ZAcLt=UZW`+LI+6FIZ< zN|`nD0=c7GJ+H+uy^U3}joo}(x_h$20v{&@F%D7pl1#w3VeGI(7AM+#ZpL}5K)bOb zRz4**YErSv{+?+YR|kT&dSv6+-@M0uF#D1GCJ>r9g1m3&km-^abvAo@{!GB;INPq2 zxb2nwgx{Nybmx(yy=lR22QQ~~|3y2sTAlV6G>n783kqF3RUQHD&plTvO{Wun1(I{D zs*Vvn_FL^)A@@GCYD!qx^^5bhY8QPiomCe19;;`|kBOJ%_THIElCq7;Uh+gbWO@t7 zl``m>PBsd5d5(fYaA8k^L~g_j9#v4m_q%|HeT%fl&O z+3anM*y@LDdIPHljU%gg2Yab+Q#$`RkG7r^55E6bGkeaGft54<|)0sNcPtXV9YRn0dWkBdz$$ zDq5B`Qilp8xDr8K-cH>a$%(p=baSYQ9#%%o?&M0T(Me{I=(1P6P#4Si48xAOddDHd$%ne6R=J{?lneX9S{m#*mc zQaMi{Xg|RtqU-MKCV3VZfkQAY*vrj)ZI$-2!`7&TSRI-t$?$)O*LXsy7>;5}6}qAfR|y*0bxHJevGdrUluNPj)v$ zH>%`~X^>zUt*chjs{662ActSS>S|`g2mJEB0^ds2@b!~sGan;me;H{)Z{B{i6>(+I zm*V?b9aX8tubsyGJPpVk9~}yyrm_D>FG{)j>3MA2QZYTUnjRJFzLnkBFddqm_~eH* z4=Zz;>$*uONADvWHleQO#UFM)^8jT8wTFjBg737hOJ=#M?ZA6|xah|ct(|z#F)8G4 zci7krKj~RFRc;_PHV3TymLb97T&Rk?FuyQSXbCXQk?J&^Va>O-KR~U zNr~zE*jJ(b=+u8TCbtMU+@?AwBk0hX#~I3a^_8C{ZUaK1rhfO@9YVSsGSfKv9J&IB zw;FPzKo~FwVc-Wlz-H1eLsUoY%~~N@7GRT6i2MoTcz*Tjaucta1^U6V7=S90kLD8G`f;R(DNt z4s8Mw@soa5IO80N|8Armuz9%4F55iO`q?}p22A!R&u3E@S3a<2lO40;$qbj?Bu4DCjf&-`o5l#1w8ShG zkeN|QSNnwrbpO#yBIwh#U=5wP!il&ufMvs|8T8(h5u7g+T>ZI|uzXtE{UXekzbd&w zvnrfpyQ#D_RpE=vKr`b`eW-LqnQ}?>F3X(dW@6i?zmE!JuaC9IcdZeS04s=D9*t%s6NWeqipJVOf>tdQBkij{D=6A17UZfKJt20n zap@MV>Aw154}*a;LYS|WA$j(bMdluTJrP@Mac}qiUfr}BX#B;&)Mh=_r+n!~=y(nAzY8QQY9p+i$HFfe2xM{!t}6{Nw?%N=+{W%A66FiE`~ zM8H>PF@oKlhZcoV9xFCJ29wRD_BXOYKA3#Y2S@GEPaMMHXOThzALS@A;#-d~Tqn9| zNF7t_Q={0`xII!2UMs|X>DcwhBgsD#e<+Mk2U=zaZaW8A7ajSDf3|ZVJ7~YQ8n??` zU%KybP5ppccX5l%vgs(*#c(wvH47(T)tK>hUcQpe>&>(_H)h>rf8Nq`htDBM{G;5i z)~DZMr6>(`t?`CdA zm`>75CU9W`Nt|F~)GAuEeDH~T($lYnM=s`aIfIxSe(u0H_0_0S`W9%GYLf$7z`HQF z4PwC!t1KD><&YW6t(<4_2><-b75Uo6_*=h3o`w;s`^Pq<-f(W|KJpyy^y&L>;j%Hj zjm~NJX?n#-BiIiHoUOu+YxWD*mej{K-sOUTbR+4jS;xmE>b%ZMXHKE}LLH%j^)6q? zz=x(sn^-l**TVF2v3rRqKr@DcjKE+Ibp;_TKP|7M`FhV_9qe{G10y5OekE@4_kiwl(U&T&S+KD`As~ zQGG2>SAy`FIlU<{ZaLSs>%=jBbbpQjpYi=nBAhfz4pkC-mxjKF{_CtjGd(r^2{R2n z>m+px-`$8h4=bn}&=OUrzM(Ql-;#g8<@QopOpO<+N3%I>h;Vwl9&88K{5i2JTmQF-Umt2VM{e)@YEeuY|FB<3AH@6Y zP1!?#WPsv(4I?U6iYd)0$wSq-k%IKYlzlb-maZowTWg}0%hExu)RH}b z27kzvL>um#U~zC&?J zZ6e>C01bc+F}KTv>p<8Sby^!~MQ?8#gPzkWVWTz5?Qxe*6)jGkbhC+0yQTK;KT{Qz zpA-W$SfN5;!OM4;WWu0*9L|iZw(fIDr5c^ng!*?(E=Mpb9wc#Zo9MhLwa9{G46n}G zM98XU^ENGP5NKtqUVi3DPA9>pa4e^4tl{N5;xAtARjbpt*MK=)gv&V@_4I9gG>e3hRc)!fWAr5ItxMK_I2P?!D5>-Tv<=}0T%d5Od2+kC?euA<{tr@~N#o$e#v1y&BGm%jnPF#!WrHqoB*(U}I$9gqQ{ z5k1p;zKvE0^%?TuWcV4SzLd|pI^YBlzb32uYZXdNy~=yOIJe(Z%Jn*4e>hk?vG$1G zMbXt^@{Ap>homXEdT!Bs?}6zNdUHLy_bjq_M2|7;T(hIq-PpcDYLa4pa^@3Ge1@rGvWTHC%?L zK7CkODwq0>9dS$_U3k!2!uN=3i+#iiaUq$+j9Bnv)TXF5~V?BcUUg0@i1&5fC67H>H%B#sz}0crsIHj`B*G&j@h+BdpYI|gL? zADuKm-&Jh$zwn)0Y#9VgDt+BsMRbiF7)4nHGxNQ6cqsPK2s?YNMIYjL_1G=kN1<$e zbCyDc{o&2doaKeO6KC{gSRZQaBwn1+ zwI`2zkz=z#9PxdF5MV~BM>MCXZ4_@ULSy^+I8KPocNCZ2GrHPO%F_)@%@D3zt6yli z-WKix6U<30F;shzQe%?6bI9XaDJiZhetpx;oF0e$e&&R7K()|($_>(d(Yyz#2p{7q zfvjGW`;-On3@+9)3nDThLn@5B`pQdDivLJ_sr=eri-X#4W0@$<$zDeSIafUdr z&Yk~A<}NnSK8c13adr7RQg9@4pChfzD9Mi!s)`Da81RyDB+TsXpU3 z!mFG=<-*c9z@0nG*ql-r->BU#KLSxCnd+CEHUT;!0&`wllFqP6&Cz1IC?Vw2(dlUp&BWkE&&>w z)O2?)1aL{2@b&)t3?_fIPA<&nLcHi4Ka@JEfM$Vi240HBdeXS^<0Wt(?FY*SC7W!o z&|rI>OaDqh{umViwq$x7TsS^9iWmI4T$?tDUfP6Mbp#KKSa7ZS1$%yCVH1V)o2UOa-o`(jbO_?^^4oyO!^g;_q55Nzy_n8|*gR|st|yqA z=@Msr8Q`8=UBYV`;5j}B#?b7qE2BS(0Bnu@D6y$Bmn*x<=`2Ocpk%LMr+Dmjn&w;v?4dS~YiQ`Zd6E8^Y()tzULuGcaJR1snx4(y=T z;~&xdiA@p*2>VT0#dNjLGvxj-eO{}Erg%3Dq&?n36Sha(4DqKuxZY3VUH^TTHQt`> z26dMQSpISrH94#N&lc}C>;XMg$I}I$a)KFh{>j##vvw5}gXL=Ze)idew4VrEDB2ri zIW8<_uWSX}L1jbr;73$>bb%CWWRB_|umPoEK2BNkW@C0_@$+}9`<9A$^uXX<0}cYg%`w(;FP$| zF5G8UX=o~waw>%^omie!KlaDlb)uX+SHIN0UrvJ#p~4`Nd$?z1+elm(Vr7*PumG|? z$ci*mX}y-KynNjiz{qNFG%L;H|Sh)GOOiGX&eGYl!e zm{Ud`AQVAO-T|o!pJ=qBV@VgEKaLo|-0of!ZrP*zsBV4fT0>9z2%8@aRb_tZGgcmI z5vaPkfb6X7<6c?QsQIeEejtRKjfk0Yc8+wfOlaNUZXb^p@E*R>F)$G)*=-TX;*x+1o4-M;6h{NeBnV-ypS>rB$=AOvCO zVDHS;C0$DR1xmNTmda=GvesLw=A_9==aSIe9%jJb#|h6-ti88Bzy!ZTRYiP%$|@fx zuetf8EL{fSF!KpO8*^&ssp081Z{pNDXCvKHX0a@bH!u7+MfJNA1w1Q}%!t50U3u;F zeNJ8F)Ejx12V9PR>hdn}^0Q+d;^?26r62E{FDR~&)hgMOG~D&rB#I#zDFbh}L_wu! zL|Q6imo=30Wy-_f5?Pa*76o6bDYw{>!k^JQLDzDh52pZB(zXv{D5>6?k(Z9O9`tb= z@(4j|ZV8tMf|36}8HjI?0skCV@B!UG1N5Qvz82R`a&^N-udTYVRT#F{^%2r>&9goB ze;Oe2@s7lss~33lB-96J2D0tBJ=o#R_nQpgQ#=#HX;?PVLD&f-p|(`3r}8<~+d0-5 z?%^>bD`0jS`s>mYwBtsI6e*^Z?!5Pt!&8|@lg#t|cL;2zOo;j*!_H#!13OKG!Gq9$ z4*JIq!VA~@s^V-)fn`lGvM^R+hI54n}JBG;V zJjBd5CGo1}jf%xQ^weWAMBPBOvwe6q1br|8EH@bweL=2jt*_sI!(&@LlZ`^)$sWYxb zC&7M;2@9Yq-Xan;7~ZzQ&i7jN84C^eA`9|$uKX5tO4@*`7CPml(Jo`||La-Ms z43^H_$_CXSiXkk=+!D06{vW+cX~HOAdvIO#&}kS8u|I8H3n*IL|JcmFh8xssoG#lk zH7MDB@F&pVw=Mo?eH|exw^{yx9Qv4C@syVm08Sa|-JL|C!AOfHd zPA|Tys!jJt>F?G%5!zm6=AW#`W>Hos44hJrCMnl6<&qyWDOe$Xy=o1APB!0(--!?< zv!k(Lg#k1GRBSq4%9NCCBgC#D!&PWUHMh8!K>o2qOM+^uww4jKv1&2sR! z+<#0qq-I28!>|WiY11A1&_C`p#4-;EA}qZMtj7rOoS@b*@n_u8AmzL8 z)!kZoJO%D=Tv2DmBUF5_Rq!h4P1>LSD1CU;A9uq%$b8s(OaQ#>s26GPzM8of=xfD{|FgL;sW*At*z`@tn(GIGabrz|IdxpaDSveStc+j{ z&H|H{Vcfgs%Axi8TmI`g?I2wuPogY}Qi>^JV`v6kUf;qPolw#pF(V(O?{VY&p>-TN zaij=QFAksMXyu>f`X>4-gCsx@EVh3lW<9n8)yFe$U+hA?**{rKfzaN(l;z<#gI3@- zKY-d03G9G(Lu{CaSeRi!`PHmJaDNtQVV_fVkVI;<>qTDuKY;(Rp9NP2oM;bO1h+b`x$!7mieokN*p@-$o6}Rifj5RFN#MZ%i_1_ zVXJi4^#(zu|4AzL`Al$6Sg-9fUZW*gBV>N~Rer|$BgaYheVOT4^zvS}LXNHI$MleK z9pblYJK;{^zZ|m9ak)6#Cj78rvtT%F=PHMfhq$Yal3S5L`5 zGtbK?)~+}bOi>(@)Y(l)SD^w>XOKnS)+B1;C{3Csq4V-DccqLFODTQh7qdB3EA3l1 zU_$#TZ>}s(es+B6g%?+!!y-duF4`YeRBNZENMX-xC+Ldo@{W&v{B%!%HRP`v9{R*jW10o|4o}F3ZNv*`*ipd8`^;pcs{i5TcYixd6DPE;x4u`KiAr=f`bMn2;r+9(0fo1at3cW2_gIkQN|p%= z>Nq@}tHLvsQKwIT(QMC#NZz?so)3-~AC5(iT*YaEn2K~qMNXQg`)@p9_Mvk%n8eQL z7=M0s8N<(B{z8~Z?++Xb29n}$nh%rAYX|rz9~fsm*bgkX<(*gO8oZr?)8Wjxw~DB+ z3LCApdDcBeZ}-LFsAelI?S{k!kQ7(h(I5+yJ~W4z!LYBM7ILdkpnfR3zz(i1vlf)4 zViloN*`KQ8qP$~%5;5xCcz~o?-G=X(+z;taCAicY-92@ z0fFq;U5~^KA3&kaZqXv=MF$&#vqb@Y#;#)8!pmqT@S8KnSL^U7-@U2!Q@Ho18~qZk zdFN$ltyn675aRNo+2!t)W2p))4~rs;EVAQ-qFkK#|2B#(poktL&|0aJIj$*aU`F5q6rg3KF=SIFrf`o6z9 zdktA{F#L)q8thvvnqyZW4*?~opv{4AyP5eXEq?7-)9JnaP2!ky1`8$v;<5N2x7NK7 zCPR5(CU6foEV>KG*$lTBAXH7{X5($^=m!sVKx)-pGb+jX>_`p5`ypDarPY5VUnjxu zWpC#k&t>1Dh^z#5Mp^f2#B13vSaa}~U+qvNcqMK)4{@d(pIx?!>icF_VpaoMJqlhc zT20nU4(vLenZfu;<>QXe2;3^hBz;(Vhk7SA3hG-ZE^{ocy%^3r2Ri(H|A#~HKI}JI zq;2W|CTcxf^1u+9J(h}fUwzXZnVE{yv69a$lJh&V5-H1)*;iwwZNcL!nlMgL|*8wq+xa$X*hLy{9T4GJSqX8J67%2lUO=(&|se>^rTFD zo3MUlpRUfl={i8usCkVypXV~sbajgYGXT4NfL9>P0bhlOhlPFUc<6}9C_87P$3}Ya ztIj$8xNm_`f%Dj*YtLsGPb11O(u zz8O{ad(2Pi)6>p_S_^|W&i@;13(LYs>SM)rH^!PGMzGp5lAMZml+>*IyOtTcCEK;v zuaBx(yp$pyc^h|*fF6<*Yp@K`W5%&$<;5)WHN=$Sna3QR?`@a(lN*`pFMMYs^MInk z{A3cb#udl~nU&S2@Rq{|n(tVTy+erZGvFGY{WlOke#@shr*HW*LEa_B?3T9O9|E3P zO3ZQvORq1$=*jHL;>zJ_rsQTX-h<4d-<6sEe&FsNrL^*=JyjfH2MvR|_0 zz;?nrmMcG%Chsz`^dg<7uXceUl56;7X6ZSL;OT*xl4fX@41VB7+}|ez^gaGXLL49Y z3%a~(8L3<18eBI+{4ExqS-JqwfgPReZrkZEl#$)jY~E78UUW$r__Z5d|1FUHi?STd^b(HQgB1DB z^ZmOUU>7_&*=`VVs{_vtY$GB^nu^B8faMTiSj@ZVuWFDh3i zdol5dlg*@Z_3u$hN zXC*`y*;&C0=I2N7px+FSNruO}M2hGOXWCvL$FmxF5_yfG8|PkJBsfAaL&|cc zG?T26^nlv+{&p=_5rW6NTk7FYx&~6Ms)c37`BO$|ngd4H+cP8QeWBv^r1KVQnb*zc zDmFs@^ryL8$bqO@=Er_i>q~BOc%rmfn)!vc!{dsTzs_Y%Z4cIiEeY=)Esp~l;%7%i zxhnzj(&gB)mA`VG+fnhI8aPD)e&wvHcDYRHPRYazTq&+y0I70`eE@wx!mU>P5U5k} z9Wb?7`G*!EC*)9+*J|td`|h5t$Rv@?!lVd{ge z5EeYl7o|Gz1?)aW3uhN~j-TC-eZ1NsjmHcwR$0V|Bz0a?i^JVjAU}Kcq1oM(1WTLp z7$l9hiXdeD!}&DxMvM4&Z1Y!1j3$K)ruc%o=B`}C(yHGgHE3=MeKS36ncqA?FyEun z*yXcN*|;R8J1j#_=OV>vd*~8SKu^1d6fI(4S;pY@596=SuzV?(MNw7gOwM|NTQ@#l zJZJmbN#wyH!Cvq?ysgdzF@((zxqP^hAUCY_CXJvNyx|;dAlrs*pF9op5C3(Za~`(t zf$gwW`(0vpXusut7{Y)EsT~sS#jf<=PN(Az!MQYy=nDa51pH});iQs|9keqfPFHrCH@Xr1@$qMQ!*gY;yop(Pagu+S--z0@P05Jy!3_cBB<+ZP+rttVH$yY{xIpQ z-oCHgkOMayFUKHm+v~jV8{ZVBet7un=2Gv48|=EM<7R{9o(AY)Ne>t*JV8hr_*)IX z2vCzRG_XsXjqnO?{B`pH@Jj1EIEvc^s)0@P(kt4wbK@0{BmqYe-#fq#b|T2> zT&QMmaw9pv5V%OtLG`#P&vAGn8Y)M#>tWU}d0c?7+}A@yN+HpgROks!H_V0Ca7|Hw zagPB{j$@eH&_JT|FKadJ>JdT;Fmg+?$QoItDWs|DYQc&KNe7 zWy%mNkaMa2NcPbY#sXV|^Mlko>uK2$IW7)t=5R${yF7i@narC?E7YR)dl2f38$`+L z`iAOH(Yace6?X2%|CvNxJD>xjC5$bMsSd?->3i;=ZyR3yPF-Da)piHjc_B# z9k>@X8EOZu1(^gFGTKc>82Sg{Znx4QclX9xV2Q?fe`hlJ2%`@3HYH(o`P*XZWUoiQww9JnZ@5JG^{*TbVm0>%^5AQ zormE4-%CC<0C5QQ>CUzdC!hsZq6b!oB19RQj-#8fd6RZC!UI*&Q{G5&b?yKD&pA3y z%s6J?zG1|4H>wF$4~pf#{+HvVUj)Ul@B0AJ9!`LS@Dq2@@3BF{iSIe845$fHtWjhT zA49>RReE7d180SRD^uLh;V<}x@4vWm)E)>4!UTzuI9CK!wbw7nXpi+B2r*UdOg15w z;egnctl}#8J;quDsb~+s5pQ41hI>QjR&6g661`&SISf4qyC(J42a%B(WzbncdUn^(i;d@z!A8LGq?my+ z?B=!qnm4Z@a1{+V3*X+#;Sju0Vs33_EbUEjoj#_H0D-@8;|7d~kl-Extxcl3q>|+L z$7@$^65QYWa@1k6qr2~znpM8BvT_;-e#JMnsHnK!uA!iDWmI#TQaCk*)Y?MBqiCxk zWP-M2s@(5HPpni4z0yucejcVd%tUKS1od99Y>lL|*H`>!uO1V%PJ8Z{Z@Vq=)vlVJ z1(P|%aTVE2J^ER5=rr@{x8QtOHy{~h7rqlEh?BtiAtH&YYu6(>+SCR-$yF<@Dtq`X zb0m^k)4Q$$k2?=} zhwBBAA5nUIH{j>3;|E$C5A{yz^wpTwW(d||1g;F%dPJBum;mI!%1LQ0Ieyc+$q%JP zUZjDBVxIg(bPlz}BCxUKpT;?)Da6KC9OKLk_};Lh^ujxOS#YA3ANCc&+0$LLV$B9z zx3fU4NPrQqLTC;A#!Gu)UC1f%0j2%Ho+w`3e1TFzOYsWD3XuxBt^ed+dsq5j^``T_?oFLy5|%CW8(8_u)xpl)2`Ue5LkW)$ zRz=mz4Ch(;Q5=Z7!ukiSXe`mqdf`cAqf})qTt!Z06fA`D%4eIQyBr%FQSj@Sa}!T)}E`s2pSvFvMAT1iG^Q)E*_$B|Dv@v;>V1`2-F4~}CD z-t-kT_HP>{@WeTecom%sxKpBA!1SaIYF4Bl3|w>lH8?=ej?=pXUlp1 zef=@;9x*%p?9r^}wVPXU0FA=lk#L0%k4{Od^m!V1X68aHNU#`}b##)+P%i8Cwy*_XDjI3jW-sxXc5xXt`7 zSS%tb>ZGT7hXY@PB}sU4g$OHC=v9%v-}m?gG(KpnGADAJAK;LCZ?+0Z4)-y5;@=J5 zr`})Zz=?uiWR?UP!TIzNa`Wu*_U*^oP=^0;nCg6|h_@~`?JK;9E9f7jY9bv9IqT?v-2%!V*&XXfUB!jXJN{mzTeSX;v(`s}F>eHY?1bg7sXifS z38m!;Jbu@#qvQqmt}Sqf_6_tm*LmXanmo7k=Pp1uwE%tAO>$2=SOL^wQ7?%JM>Tgk zQ~TP@j52mT@HS7h1uS31EGRs2pS%vkkMKOOm{o)Z}W24iPPuI60#XdULg&5>_i zdw@hq9KepAOof+@BLB%!2${~RjSTNLe%*DkcN7JVGgskpBkEJz`-7MfR-6}LRn1J~PhFS!lf~j@|IUjemQ^%Y5fi8_!{9EjF!ubjJ-9-d z<^sYg5|y~}w^fyQ{7e3yHL!3@`<2Lz z9C!n|h@+6N=BWo9?`E01te@kxrq3}n9l}sF>7K6J0`G2JyLwXkm<=Xm&ojC0wG?>) zY{fGTz%sx;;Qo>q#fi!T-5H&0$bgp&4p?R#({-22-Qt#-qSSw$VltCs@z#^RwR^-* zv6YFr^V}zxGN?hytu(_i;2zupVdpN#$8!~ZCi6~jGkl`KC7CiA&?fhF9hdo}M(4-s z^lo2bS=BJ)Xrk1yX{Sn{3ha=Aye~I68nOr7;8r-zrZgsSO#Q87n;ukcL;@-rET|tX z%MAsvNRy8xaM#{^%FT^47-(rV0Ynu>7&W3kufv@4H(NBX9y}NiRMao;f$T1B(l}YY9xY$p*V2`o>7vpg5eV=H3Hw*R=LqQPFyry#B1g>f!xG8O~2CzyNpxv+(OwMfTQFAW+ zP;U}Uk@7gCE12~z=fpS?J){91pv)O;6=7-^LhhMOutyNO@VCpz#iwI*Va->uYQ7nF zX%A%k(dy`2PY`B;b+3>`+Oi2VO0()yj={zV^s|3pBx0q%`jL3U>ey4_RP#XS8^1%f zL*sabpBzgt^#J=zpgN}~0?OtG=LEUVwIzbb;qyVDHEuGi07n)pqm(NXvg@^s9?&xl zXK-SrlxTXxxPOjo}4eIGvjSc00~5epZj(-SY!)!@j|-~ z^GEC=!K-Z(eJemyZioLFn1BR{PE{7R79ynU6J9%zxia7xmaPueacXm~6~L6)38JnD zPDkLkq|b!9Y4rF#s00cXRid2N>U-_mlxGBS%;cq-UH`2BXVhiG4Sh~o@Mc(4_j~Z7 zc3LKwf1a&>JYvR`^OJxHM_W}kEX4~Kh=T(q0i|N_13tXe+`+arjt7@SG<=JESQ5b; z+N9i9w!twWYz*c9QUvaj3*BY;=qG_U&8SchnZE*(*@=!ID$J1!)PekY`eU?{Ge%EK zJ6bkaA$U@`FM^JmCf_Ohx4+WHf$Xl5ld5;u5hEN{$8Xm%h4)Cc~K=6<-UsP0Q4PII6b5(IyM=F$xN3I)>hv!{dD)@v2EHI7jn5Zf>ez8Vr~XPNqy6uU)~>d9qnqVO^){rEwoaNQn z&bO@qnfB1sA`g3V@$*Kl&W>8qQYEISZ*BkBcfgEzyXhdwkOG?Zc92C)w2LARPp>pR za#1Ap7ik$FSyjgUs5GJ)4*?rZdu|F_4J|H-lhc`wwML7y$N(d@0~Z|OfP2z%o6hT! z#os|+)=PyYtfUa(e7^q=W3;o#+eHg7K(&vg(caT%q;8!@=Gf>Lu-Sf(V%3!zDp$$G zvc*$Ee<*tpnoHs()a7F-;vXy#cKtW1SStH zqU9}IbsGdl8__u=35(&pKP_m^Q=u-HSgcb<;15rEcqpBrqDH;Wd=<^L(2c6?EG1&m zjQX-JW4KRYPFei_F!$!+P`2U!@R+eAAyjrMTScVoLPa7)cCr>Cd&%A~(jzLACCc`Q zVvK#?O;H}%B4Zy$LXEYU8H_RSb&tNkdEOb6@MZe9q5#Uf1MYY!FR} zP0sk;5!bi*WAOtSEh_}YZQ~|!KRcHevxb{J!t)!>^deLw)vOZpTT7_2z|za zUKIqsVE|NewQOi#$YB-XD9*GC>_zK6zpBn2@*>LQzSwbnVec!8&qGuITtXvD44%Jf z=1XVlVasNF56k&CFd;Z4hl|jT%`r$s^CPSgtM3BYObwDOEPylobrjxd^i$M8o;hN_ zcLJLUax6Iqrb{Ni{fE*3E) z+ChEi3InO@4=7bcdrWz6wC-f7!?G1Qv?O;4jRjba78XxU2I}($Hx7!HK48ywRTiMm z#crLR`maC^V56E0Rl_Snu8Ke)TIb!%%g*lweYBH20S|X#Jlbw(qt`nNTXC;J+~b=- z=tW7~TlCXbyd~7Z^y|A2*;4Faf5|N!Fj=#6f?N-i>TmjFxQ<;Sm^q(SG=Qpbk^kM+ zL$d|}1kdL+IU?O-pSrt~{G51rP2A9sKpqjlv`W zaM=vj!HxPR#V|0Q;XWjN46a=`pRut?=J_rV{2(C^H1oOgvTlMt?21fXOH6%YV(PMs ztA3zz-a8aP+ocqQuysQsXHQS`?xL z3bjJGnT<`fr$b|@A%gX%wg74S`yl1p(mY%ozMJ&0g+)@~cv0YfD!P&7i6kim(`mm**9~%I`wOZUe z!u2oHQ+)qnAVw>&8(qWsY#yBewM%r9Ymguycr=GHkLBUOF*mJ8nct0%R%J|ixK_|# z`<|2?<@XW-yIURPRU2mWs-EcgZ@@nzQF*aUO2BKyGx-^}>W7`FaEqtDv8gRf_L{VQ zc|azDVyNf!bP@FgL_~=rGTqz~@-D)}4)0zDWJHr59JDT`z1-N0Q1s_4=Zi_ytvEX{ zUh-^TcO<-7+~!I8x7jK^`uCMKO6X?rE6Kx&pqEl9#JPoO7@xeE5zIt)pbttKen|n1WFONC5hhCd z;5ELGNtfcOW{Qwyl{`G{i4BgjHcVW|VQalwEoJW0dSP4D;qJl3Rb!38;CKzlr~>>H zaQ4Z@QTb;^s76Z7nP?<>i-GVCk3{mw+~zPyoLz-$>sB8#R}qugt<5RDopG{DrC|6S zNL&%2@T1CrdtL*q58B%)z;iO~Dd4++-?h<*0;jTGh&3s|BRHE8)Ydyb$nSpVqlu;I z51lIUIz-bHNyEU~3@*ne&xIm(&${L4Shhz1*^zYf5+ocYoN&gwj>+9V zTXrsP*yqbsOjl<(dgWASQ&OVv3$A>CXndScFs&}gz>fkv?S%Wg8W_%^C8EKc=&IMt37J|>6nFMDvjLsxf zQ>^%PbKV7}ictk~3^kO{p5srhUu3SSzNrHh)s`KF@+NjQJx147$`Zj5=9ZfyAR%-D?2$#vg$bYJi z@d))vYl%fZ7NDtXbT(T2^63aQ<1g>$9TsJ^*AH`4NeQ(ABK3^PuaEq;^3x@Le-Jah zy)t6+J?lq>USSiPqFLR7%2d?yC&nIET*dZvyrVudOltHYtm`(mUFPw^tAq{|gr5EGuhPn23+=Xx0LE9&zm3+Y@4+tK1z;~tf3t5h69 znTfHs+oR6~vNY2+1a>aoKIB)Ed>pe?%(TS$P*9C`b6@#`(!-#8O)!CB_U97%+;V9T zPe(xx)9jT-tahWSnR@;AV7+MvHYw zU6tXeF03Dlg<(GPGxuUJz|W0l?F*Vtma{uxf04N<_@LGz)cWTb-nEGI?d!w-K3QZa z=s*1FEH(-hPBwN`s-o6otqzzhSO5^1^ycdg_!P!Kfus9P)ef*2XonIO5q1&y^Xsp) zIClg#)z8Ql01%Nh)ZsmF6tpu}z`S&!`qn1%*Ozi_sUGdX%$>*qRw&7WxrVj5jcMh} zTjV;oXT#`w{ZBy850-w0Q+e3lYqd|wfMoBz2FrpwZjeAA{Db^x70_ z#37*@@|1=z@CKMY5MR}17TG743I$7sy?v;<3&TvtOm|ELH;QPG5zn{!%JlGHebkrP z39mS^t78Q?6;cgIQ9*&>e{w~iDD|{uLuqn7aybmVU4TWx! zHRv$5W+SF1SSMoj=kFHl#hofJ?fl~6{UTh~;Gbo>9hoEGI|tHVnnOeI3?S_b(L|k& zMGz24Wlg79jWCrI*DvO!B3k%jF6Dz9s~pJ@p}IkG4IH5MkNL*hmjL0@6Q9A%_9W7`1xHS;tw% zIhbIFUGJjs!>FpY55crPLNJr9T-2YvMHl}M)+DO;-n=u3L4GJ_)S$#+=L{3Qa^ML} zpQRU{Gp}52rJN|Y)uGg7kj>&IWwMH8fk(4K(rWdtfkf`Mj zD}ZAZZcPMBE$Unh^!YF0T5VJF_-#mdA4BZ&oC69{!7Gc1D+o5YOOjh6q5#nbyTg53 zoG&@C&J6$WW4mx~D2?Oh3tT0D#m3N1Kjtk5$>ws+UxgDoAf>Yy^~rL{&;HLn{nWq* zWjemt8qjFI&;hAJy!84h=<|3yOk0<^$xgC+o{tu2!X_s4J;KRQyVPthNR~3{2-^IT zDRB=B%i@77sLbRlIBTILym|6W$!FSh+QUh~pUg)%?>9MwF@|FJ&w`{Eh`D9?Kzyg3 z&sU(uEW#|8I@5m=5G&+J!qGZgp^%efcj};YouQ|cai#QL3ZdvS`{q%9#NEOP7JIhl zoa$-cVe<8ezD4YNBbz$D^rYg*U{TPp;VBJ-BN_$m+~AGp@K)H)Go>NqGmj7D_Ye^g zY-<@m7W!c1{8d8GbpoX;tjgxT00;qw`oPw&>0p1d(uxPLhMe2Bo+8j@Sj1bR{1D#^ zqw)Mvbk@(R^{*7M%5H%>d}^Gaa)GISe|pA4KaI6)))8=M7;;wX>D)aCV^*u;Z~f^P z0052Etj}6D*?6IOV)fElhPhyMF(UAH{B{riH;lVn_00LsMvd66$@ivX$KUP*36@(q zvOo|nmdTIHx8M(fbk$k-ZNJTFji{0+*{~&gwh+bc!JLdz$w$bQk_z}n5u38V6u%z- zF7Vqy$y#CJB~~7*8mq!HEpyYLINJp}GJDwtn-R^sW=c4GDta^&yM^tH3XDZeMLlO8 zmgXWv>d*CbI&|&oTn!NISYV*In&@{?5>b)KV$>eEG-8nv=Oz)mq4286zU|ph&D#Bn z6&;CjR-6()@mHOXtQ}h8<$)zKTS;>bc9N^;zx24PWKsWE4i6Vw72TRhsO-09Izrjp ztrj8!bCOc09Oq0q=se~+cCJHleyig*D0)iD*C2u-jGd_6@E4r(LAsSWH|?~P^8T3C z+fG0Ij|Z58yW!6Jf5${n?)Ca~z#e(B9R=A7biK%j3D;LlQzku9BGR}cl#umhwmutiZj40O!XJ23gg znKXIJ)&Yic*=2tCm^k$lP$g!I=LnX$-q-CPjUwL$95?cP$%w0;Iy09m{91g-e};Qg zy*v~O`2fKsxK`vJgD6PK-aOCJ?1Lh4LbmFh9n+>p>S?qiYb#T6ijys*5BmVqI{aRb zyK#jtR~#-uwE-ud0GpF{JvDn$`DO34o0I}HiDZ+*7pDU{ogadOm8y0rrF{df@QZYOMU#8 zZZXDuBz&0c_2yFbC~zuF;y&QwfxYYm?V*{MuFn~!LY)>BaDk(qPQYFsL0H3AKkqhz zFBNfv9X`Z-hqEd!`%C6fq=MM_i{YjZm) zFsddhHJ0x~T9i8~a&{jNSh3sIgeTYz?N$mWfrrqIT@|)Te&uaTaDIEZ{bpC?Yj9*O z2iCubeL>#9$%Qhr_SB!)HR+-_)+(!oeXBLn-tYMqJ(0zq87K{({B$g{C~Fnz=&tBf~o zH_)N#Iz+<;M*U9m4fSf5u$#TYAr=l|S$MzWb~7()(xi z)AF#XYzB}TbXI$$im;6*WWnss$Ry4V(Q_?{fsw3oAWgfJEvK0%V0%_MFD#|Ru!Dwc zcuZoQmAieYj8Y@1Tvx_BGgB6;y8Y_M+3&rR$f()45iVT+{*LKQ|G`(*WiXxVz6x^; zjGF&QBks$~*U{{7O_bf2TB;Sk$V>DJ{7M@B>3?F)NkcnVv5~P0i>EQ8D?VK+3dz^) z#7VX61LK}tzZ8db;xM_dzCaAUPtubYeLT>z%8wfdyZz_3PkVBO(F6X)B_+^@&2CJ$f zD=A)J>d;RqbzBK6E{?RAtYCg9sy}1-~mj$sB3|uaWj&nV{)(6v<$x$f0 z-E`S4r|r#N6J=83oqTz^81~Rk%IK4#y0iWQ{wMB^Y9HQYAISdT!Z@M)TJy=q{SOtE z-l~n>P0xro(%vMV7Lr771@iK}3*ymoV)Kf2%^3M_<@%4HKS8(6zJ=y@UWt^Ew-yGa zEX}e(r2nY}0CO?JkG?&Iu)U7@gQ@Hf#@ue=PC-V5>en2)9#_vCaK8NZpL>VM-;yQg z+;FCet7ue7T=djd=;0HPfN7*Z z-p;8Py{nF&ksX^48h5W<<}K$0vE$Lyhp4@A&UbE&k2($hI*XIM-2WIuUMs*Ww;a4J$Yh5r3KD zwF4?PP;OAN5g4Fo0PZS@iK(!N;a*A((j|to6`t{gpf$0iQ*%tk{Tvt34Lu=PN_AJIyRFG0rF+ zS_a96>m8`NNQ~)Lc;+>Y`|jocoB2KU-V}h5syM@;QkICT_P5S~knYVuWruJ>|BF`N zHvQ^5HWE;&4REv|0MpY~Ay`?+yv&}=a+qz6u&6Eb1FT;&6fWJwfvm0G#JiP|MVZ*H zp;vtj4MW=kCwXv1Qmf0Z<}>p8iHQ-U@`|hi2rlxi%-~bH8v_p4wl$D^iVdDleBZ$Q z4fg~8_gK}?gj}iCwKz4hbAX)625_L6tiVN)$GcfyM&>yTWwIbHS?SE4he4^F$w@!M z`IfTs|7L>kdVEGC$JTP-t>>@FZ1d!BHm5MctfXtb?iHMTOn=Gum0SkL4qQz%M3NEzOQO>}b;s)XBn;V_?C)LL zJVsFH8nHVl6Jx@cyNuUsYkjTfuX#X#t@wbq(c=$`l+lG1tQ|=n6q%}2@j^D^%rRS) z)Q~)~$lDQ!*Oojy{_vE7>5|{p4Zjj^Rp(oEJB{{vX6EZpuiz|SF zO>Vwpvt;#Q+?OdXdst6iWyxUcftDI*hWS$9yZhbM35QOZ9Ayj0;LhA%{B<+w9ArF^ zi?04&g%`ort}cxI1hCZ;A+EoXDsHU5Z5(H>8n&lf6=vrYaxGr zZ@X^Y!p>I@|2zivn&>0IGa1Ad-*$YQT70#+p-u~&UbypzCWErPkFEx{(v_7ZzT9n@ zmUIjbuhoMFWZ}fxY{mrQJu|;)iELqam?p?+fnx_ zZz(O%96p0WH%2MdDIdKJ52t<2?gtl5VA&GcM%<+?4kfqk2xm`G3DZnV|1dRx@298& zB1-kZ=)uu{((_$)2+`QjA(wCzV2B6-eBpy{@OL;$)cI*ZxC`ywSd|r2ZQR? zQF#WggVL!!W_+=)TNl33nH4#ra&FPFAW<%Bn3^q_&0kk?J7Wgh%_n#vDW3N{PQOot=HS%y!_ zSo%_}zi(|I1xGCO7U2bmDuYCYY*+&9uSOaoKrZiW_&3ewmN)zSgC*`D=y3nb;)_V_ zCt<1FAaHA0hE491drR^9(5|PM(>Gb<)vVaDs?C4GvSE2O*+=J1pec(fe2UZFaBlXO zLdSG|mKcNbHHFANc8lzMI+M*U6e*3Z^jAgvve0-mQ`u0q25R+%_JRV;7x5mZ`l43& zCw$kS*|_?dYV36Q+^IUMbtPWqwe`@XK8y;ZBx&E7NANS*?L|HLM5y6p1Cz>?+x~fX zH2%lqo1X(HcKlnSL3nv2zfEZ;@-~Bc6M@MyWSuZ)S0$Z)cE_e5PRf!+C|$ z)#v@;YsY_8v_JU1`9U=f0HFNaU{j9ca~=50Ee}szmz!A02`n_~1@P8Wrztt1ax##8 zvD8rG;;>*~DaLl`%1)~ZQyyDGuT+-`|1kRfol2fHbHeFU6QLrPsLkvUO;>XYNXglZ zjeIY?!xMq8eCo=%0?}K*J}$r0dwkCUdoOzOj?vo!BHVd-I|XME!{c{9h^g&PS6SW_ zsl`4CX@0NEQnz_q7k}d6p4LUH)=+K?tqv`~f}u%kk=8Hbl<&>q%jlCp)|cHtRcyp5 zTnp1C#mwR;y)pT0SPzh?hy5KsJ0$n-2u zOGWt|^dkq+cg>^9&aLH_K#KSjs*+jK3%f*qeX4dM&%23xBv)P;5O3&~hl!gx^qZ*@ zKFQv}PVwaUo4X>=fnmz)z2GG;)(>#_%uPJV2dOhN;!o8+zV$daEHRr&3n!$JV zCXZDKPI?c^CS_x%xE>6ZXejeRjb>ij>CXWy$f|K|lf?Sdr?;2^vjRKA4(Mb1Y!l{5gPa}fbT$+&il4ROI@>Si+mVH!L@*NR0}6tgx9$$=H26|*%P@2uwNZlo>u@8(B2D<=mPsXySgo}AR5`{8en zTHb>=W&x1sO9=a$dx0Xt@o#KV4IOlP9(Ezlh@u(SP1b?in+WZX(9AijtmgtMe`>Gc zDKm`PE=FpY5&bgCoomXLQIY4?a6(lm-9M*pSlY3rU(>kf$$w8=oLw%N5fdaqnJK6e z8{HBQ<2tUtXe^V>Jq24~HDxo=z4f>}v&#{8|s{vybF zq|@Kok01tWUA5OZoH2hz*dCCv{ztqF&9aXGBJPz(D1ieUk@W1Uw2q=9`rz;XE-E`P zlz{GzN96%ld7!KE3hG%Nx69{~>zEP1rvWJIy*xsak^!SSBBzeW zM}W+vFWD^ylSY`MLjMO-FsSb3T*T%GkYJfNrN)hFM7vd0M7GWt) zmdjwtG^)NGqOu1^3^{Lu^)mZieEo4F8=_mXI~(42RN5q5BBv5sFvEDL*3nEc1r>bI zM?jnFfn>KIt1(*yo7|TICFr@CBjhndeVCiMZA5>FR0G&)oGag zu}667-!+u1$)(2rON4R{$`!$|Iv%<#62A*7@&H4fGKZRtS}X)IZ zrzis%1;pjMT~R%upIQ1Ep;irZsH*N^s$P4MxmIdykVsqJ{c18Nmd%j541pOlS>S{q z6hWMLgSG!ocNsi7OkZ`yk3=0N+N2S^B>j)B9lcwq$*;zrp1#+~5GWgGU=`$|SgNMm zi^VjQaI#OUdD&YFRav+U;+sJ5scbu+C>CbZwpBap+|BTC(cLUT2=cdHn!X|-w z*3mfPN&w>xDJZ4!DwruLpB`zr8yU-A`{Aa+^BspL^*JQSbZ&`< z&mW`kzzZCWi3Yd0+(HzMu3jIabh2R{S!GE0B_~4_))9A*8t#nkL@HYov{fz zxR_&AyW9T@@A3`OVdD;$#aE~5WSRV=CdkSk9ZT*?Dn{WE`TgjCsC88DA6bYUNE&~- zm;1ROY*VnbZX0bw4|(g>&I9ti=Lu(?3je$sKS;at-;G`C#=3jecNQ~XB3I9sm8QsL zux4_CtIhBKHMIHC%FiA=7d*4QO|2l!0&_6qDiP)3>N_VDk?gt1Xc3<_vk)nu-D^Ax6Rh z`DN6lVm+KIJ%@?@nHMhcYyA%YfM2ltfencJJLw1Q?sQVje!il~Ac3{C%4HMQBfz+m z7KA%y7v)(gF<-8B1bGn0;5C~NJ1+_ z4`>?*DTyd`AfM+};-F}u%_piZwsQ=L^~J7Lt}0x==Dc~Svac#X*$16o3zvUi`A;t% z>yB<-h2~+{3rZsXDc^sWaOPbM4O|kD$W*2zV3$muUCzD$(wt7%=E}KX-aKu~^Lwe# z)qcPMM+JY6^@iR)1^*usVU4#u_|Mjk5P4k#9EF{GBb#({x&`|g`w|da(x8lr(in}e ziZY73apP0P0Yx~~gHas=yzVu^>xW+;xd2PToj|Y@vpOz68!3E7e&ME)k{6TC(Wxb( zSOxVE&qhM;9)2ABst!m}u-QXg@1;}^_j7?#gX{}eDwnLB&-!yFVD~my9iR)dDnVoB z#!lFTRQC~h8qbH7=>SHR0)vi`HS|2v&GZCz1?DCBzmxcqhS$4+7f-38#*SIqG&H zD{WFMYSutTt>_ad0U8ioGBW%9oLO6UV+4QPR)xF%u|Nei@h|c)ENa@iU_Dl1D!=qQ zpsF4}hTWE$^Mm^zKa;u<>MZ1cw*2;9IGglm-RS$y8t~L+t_cL3vj{x%`rOZ%+{PCI zpQvW6R6ycN^X3KWu*rd=HEj1Te{{o6{_O)TC9rm+JMF*s*Duu^fd#u)myHQ7Uol%h z1EeNVD5g8S%dKc_LO~bOwmBAbS(qKj6T(=y-9nDKWs0tteH-Eoff$&!^f3Xqz z)9SnSQqP|Jnn78jTPY|G0X1wE3#iHBs-8OZRO`(Ms!pqzyIFs71n@tUs;N`h>s?_A za9P!S4U)Tn;;r$l{C;%~lo6`rFI*dX1MG!Bftlc-F-rnM8t(E_>r`Ee-1H%}Hv%no zt+YfTvp}T4TJ4i*KFT^yZi_RH2Yb3}n}4`Yj^rY;c9@_(xbRxABOq=097F%WfeOqe zoA@vOWY?m$<_3gXZfC^sm-5g0AlO0r$%v+E-+D1o%+bSk#O2>ngGD~R{1(IQ$v=Q5 z`z;Moir`3wD`-J2PDxGu|6TC96}gNLP4~97B`i8+2Naz+5d(KUa`5Zz6U;R{hhN$a z79RNW@4snXOowjV@hMn2(sEUmX!*iW=+Gga!xqdU2j7|MwH*I1ANQ}+RogFLKgnG_ zTo4mLAAOlcbI8Bu|6&oeqB4*3%!t*GjV26(;AGBiw_U zI!~WJ{@JQ1K-kLKX>5EtMb(1h)nJ4Lzy4cpFBxLHfA%K$EvQ>gssbbuS(L1Nn0+dG z^>Egt_`+%yex-pUF;?j6t%qKugyG$UhqYmbfd%Zda2Sj*B=w;QcI7=6;gEml!0wZv z(UHr-8ywUw+p040iTP!#iJY3dvbBo=LROb`T5Fz-It;DFJ>plgpX32O+nDh-H?4Yj z)yQ$HK9t;cjn~mY{^Ht>!dGwWcU-RxZNicHea4@L;&a2UlKvw;AFF69i74H!+2Le@ z!BB{cC792shybGq=JW#<}76dqOjsR5JO~ zEJh~Y)pJ#1tP|0@)?Sek+TU)(%+&IIW&w?4m`10)^VioM^i=-!CxI9=u{66xEXmVO zuo|&(ejaZ4h%&U66f?a(Z80+Wc6q^Kp?{n{B;OhMbuvFJjP!DNS9`~cq-&Uh06Rf9 zT&q;-^Etg$*+?@d@!?c0oW{!sf3Fwym#vr~k)+uYsn*XEBg<}U9MT`cJ?kAwtufQ2 zCZVf{%>VF3k>1O_iRV;3I)As;Z>PqnhFj6)n`^>s+C8BkdA4EYZI(-=TBQZ!T$h7t zWsBHW0|`(w#LXSzs-0%!v<(gXYF~`1!tU*jsy4K*%Jp=kS$`6WXrj66_tDQf*srjS z12ojF_bBaM06wN;*nPtBHpPSVJSMSHL6d#TyxSIcZelaDt^Sr2wepq77{^F)_UQQ4 z1s7aFk-PGcCioF*l-vIinDyVpyPWJLRl-*IEOY$(#!%gsDI-jz*NNV>DPq67Q=;)f zg{2{xqE#QYg;jIpt#)BiarBfe%~ZEC3DbC4_co=eXt5`ur7g^u^!>aq7#ZvucE983 zWSVu^&&?$HNJpgk6tt`a=ZZ(cOp+Y1_rdwwpNVKr_9-FW=C-LDPiIQ_K0$l96u{dI z`=*ZB?u#)yP?s)B4I#ZHhT__c5AlPi<&u&iOynt_A{pz%qP|Q~>J#EZk<;D!O%d=A zcw6xB^VPt_n6n2cIY=jxjxe~6v9$62o3G$8G+&PLCgZZ!cgHHIpQ>E0VA52JN0Ai0 zdyoXOp_mo0E1Q|b3fwFvqbI?^g7%Q~h}gb2ERmyNSkD5f#FMx>EBBrRnuD%jj1xva z>x4XbmjFv5u#7gO61{|ZnP^@Gr${jr8?@XTf)vK|IYQ@4Val8Enc zRT#?Nl>DE*0PnU6s}2n#?R87=Mcfws7)J}_gSYk2pv|9yVePaQhIx{{603pQ-32#j zWZ(wkz5|_y8JmJ(WoTL;kzfxd$0}TKt4fkV^z)=ZNG;imcA#_%N$QeQ!jY{ym1KekUgH&DZ}hXgFHI3v@;xt}Tr^DW%*B zxgNN+w^rT;kNDM6MbTnIFGguk$0}rtoXUVTSlk;_`ZHz)|5J^|q%6*N0>0{+pQy|qI5ydJ|Qq@Y#$gk8}1iQRaG*m%{6GrgXG028#JwKY7fncL*fI6h|)-zn4MN` zW7pE?WgN$yi6_!eA!Tu%kqn87{!YdvWBf`=wKanr!4{@jr|oS6wiFEO)!0>%GN+rs zik8N1BiKUWA{V|6NGi)^z`Je_NW>YOc~QWfPI+|1yRaZq_TGd?&3T)#XB+O3v~a=J zIp;LVAArPiU=shf3}iOS&3^$1C3lH&j%au|=-1lnip<`qfZ@eP1Qs?rfgQxScP3bt z`5G*>s_*Tfc_y<$`E;f&GMw~-$Z@Ar+o7dC%$L-9_an6XqmiIx+IO&pMV%Jzy$KFC zvb=>K3(ExkQcuONqnH?QL-RDiBI@H8ZX9V-?|b&=yVu>D(pl z?SkB4c1LFghk~#NqM+>d8Mt_D(!d@kTQStlYUko811on5PshTUzy zJOsuB8`vKX(j!`Tl2SL9SjBEirCwNS72I78Xc_W77y;jXOH>8D5el``< zzP&-K`GY}UZipa_5`W{ayLW1vwfwuiMb!N(mCj($nt@FWEws)N)hxSJv(k+*+S_0P zHW^43(El<>{{=N%b6YH|53p+GVG3OH6m!S(HEmF6HB9q zak4_Z_yr8GbVp%^dKWF4{9ZF`6U_J#^Xi6G(YYcorQ)~EZ?~@n-j#R#^xYoX+z#S8 z5Gvc2!Z1f&L*Nr&uvgESSEuaID`xnD?e|3EjB45h(Gs^^~zL3P{~+`a|}6{_k~Cv&V#ME_%|HA7mqXCSPrgScph zfpp^62f5Iq?ufUIzo-i77>dGLSrs{Xt~0L`6mj>r`VOxgJ{|nX_)#z=(^0GWRt<%? zb-z07F6r`~m-jyoyl1@ogNI4vXdK0A!NNTVXW1ZIH5*)*Jy{+W{E+ItVmQ>K`zZK# zsWr`?Dq8nx1PxTsM`3+=w&7UwU7|oR3H2R2t@C1o>9vYbl9v!ie3^C~w#N`zQ*9CFeo3#|?rm#V4 zSNW3QfRZq0^WR@T>p|DmTv~j~xjjc{G$rAymSd`1#EY|?TFSTo+Y`5PZqRFM9w+}b zOfGpPRrBZKR}cE2=tlc4#~lnN zqMAN0O8&GP0BjB^26)+N(=4l&_ZoHE+_>(fNyyxxwAT0F*nF?*ga3ucFd9|c*#M(Z zX%UUU*>CNwPI<-{BE>$XoMT6GB~=VZ z)bU%;(HdTRdqD=W2`~K6M3paDF{gDcQ5A}&%xM9nKg2R&`BvaKDr2U*Y;p0JCM)jc zB8*yF?sktaTVLtcAW&`YyFOgImbys1wPl(K10KN2qktB!BrH2Oy$xG)WNURUAnu=P z$EjLIPK~dw{{cn^x%HUg?yr5?@AwMTDvOtCPmp<=u3+3Pa;hlD6eiKH2rWVFp7==L zWy)3@kzV4fc#Gj%%##TYFexGOa3`j~QfJ_XHDv{-j`JzXP#s!qsot(5?hsozWwoa# zUi@$ioh%A7BmE@ata4e!WINEz{u)Q;E0Q4v_iO{Fyk`kE=+??xpH>hU-KtqXPw=Y} z;hb(NVDVwj$0S2;Ef{;%JCB=Vng9|R_UCDFw_Hu%(`PO{D}piivAKsWQt0^@)WM|7ujD zT7Az^!+KdZYBGFnkijIaDq0b@GQcsn0tfa+12ZCe=nA56K4r}w`1)s~j&)Cd`*reL zDfrsFYZ6-2ECQZbWp8=eddpOPIEpC-9_{Yg?>PUvzO*rH)0K7sL>q}mzK*;VDO&k< z!-=BPmmrF9obYd(PT6jRR%=O@x4CcU> z^b=0OvLD@-v$uQzovhvuT^V8$IjD-szM)myxUw|*4`<@4f|dB+uZ$jHcQlp?hLBco zNfy-)`cOoy-1AVVw^orOL(HqRbmOPTbyvu?dE2_is2fg;@Z{X$2f- zaYSyIW8jCsPd^%f-y?dbk=Ll-?)go&sNW*Zs#E&8mo3r}nEnAy!>J;QC1h2%DTZ$$ z507#<`k{$pCFJ>G>i?MInDO#5%+yVXhQ)!?1*t?|$U#_$z7dTy2e@L|%ODfrY#1!F z+OJUF+var>ei?y_7EXHIy=2QtSwM6AT&yPM;+*QpYN90(@3xazHn_ppu`64+n1_85 z@41+3E6r$T88ZGlmdFrtU{z3=htEI6vp4k~Q5tdFK@Tf;Byis_87oQ`pl-;IfuWlf z6wS$}Ig?s|KD>4av|RbJv?*F7qgp&AI=%ZkoEO|(3SzG%;uh{xiPjN1ChVFnrwjD< zD~6f8Bbt**8;E&^_UX(eJ{chebhCV}Ppi!!IG|T-X}+D)^bu={Z-ezYXkwXPpb*)_ z>-5R3bzmr8=e1_Hwzs}N>-UJ_iL0|-^<36=x=Fj#{>7cqLB?M@d}F0rdx=vY*@Aq6 zyzYi!UgZ={`Y!Id+!|51{W6BiSb`5=t^Yp(bojx^ieta1YcaSc<>D!%6-gN9zK7gk zi?xe|AvGun)IwG65^+@9G6A|~ai2At0hAQoEMY|>+;r;VxzFpGX>Np5c ziMvx-y3&5N5U$?Z?gB1mu5?}8)xe7~Y0=|Gsu>!nXlFMf%$UhtN%Bm8I+ET8BqO|T zpmPk@4Gd3fTd@Y_7H+XJ^cv|SIvSdQvr~QL_ETb60hg<-;o3@kfbdnW=d=LbLGqrx zj_Fu_8S`Tq*lQKZXq`yB&#FU91mz<>u&%gNG4NnOh$qPbS7uR`sdhxops!@tTsLbu z=d}{AnvJieR^5#HXFiz(7OtdroR^T*sfOr4{4;8B0|fQ*XvPB^s_7&sGwf#~7f> z-z>!g`fmo!!uVix^$`>r!ki5O?1VnZon&`}{-UHnlnQ+)&j-;g^x;(svjX%Nn*@SP z=mW&nK!0KX|BVPYdEl*`6?;yPii&3;mFt`=l53*-7=8a=@K0t^ zUtw!rSRm;o@f*&rNW8>10@WFVuT5K^Tn(HhE*6Quj^E7#kJOiKl z?kjV&)q2}FEFaI=v^Dte-tIlD^STyRmHnEOrnwr+}A8CWyf9hIIiQ9eJTZQ#=G zJF&Pue`8o|x>x_Vn5daCWyXlIe?%E!_2iTCMt3l{vo zit`o3r^Gl8G2x&I#KiXG?xcfAWSf>ai}5|Di5>Rbw3<;JWAg;gCZDJ4;ehDDE$b*a z+m9Mimm@p*<3DR^jDyw%LF;0*@fA`bwklv66H1c4b?eP*Z2V{Bmr_siHB*dta0LUEKU4EL>~kNk`ihpeWlJT^02z?B?ipZtE=pdv?z;5MZKL6Bg@> z8!3HYOkgMKRG(Mx`};?Mt*om?UU%Q%`nA` z5`v}$ZLx4U?euT36R+lWS{FPf6IW;I{VT~6lN#Ye^sy=s0m@-cE{yP9K{}W@xIdwN zh&YRzY@931;aKpX*PBvTr$5w}i!a@I6b!b@?TIU1eP8RpGfxvO>4W9l9un3n_BA0m z+N%)nQJ?Pn5pBro$YHSr4jC_<-V$K$?ojC_ByNrsaq_suy4Sm~@t;)sP2_zx(9JpA zq)>mJ?1D$6cQrjq^f?C`J|awe{|#JlE!lYR+`LC*lPR@#H+Gp)ajWih_ZD(C?(;v% zH97Ocl-})@e`oSaFvXC>DYyA56Bld(X`&k})PWRw)07Hvk(^PjY1R@vM2^uE;eTJ7 zAsYgT@)1DZaXr#}PM$t{g&JuaJdtJ3a{tTU=KBYBWyv1bM&oE_>wHaVJ>GOCoEry` z|Gg4!r*YkbE{;jecGW3&y1v!6Xjdew@1m36xKh}EuBb`LKA%`yYnWGc3aod2@$r)FWk@Z9EOzKH`aEqVHuAPv){pJ^<3#YiS zQ%NXom?&FhVhPCAC9coW<{u(LwD>mpJDzbdy%2C?#ZLW!_unBtZIIXsg5jJR!>?{7(CoFSi7jp3ohv{X)#| z=c$u|IRh`x{5#sq%SpXuTy?=}?f${%PU(Hr--G?n$-#d*!l0#GrmRzCgte_4NtML8 zrt@NQUxoq}^>G~T)M*=s#`axjo!8*ZXM-=@fz$1V%KA`@>M3MTs@oY7z0~infxOnO zWR(Rad$|oM94<&rOyq%i|J@_k9;HPSetOWWIqgLKb~=~-NQnY9sVjMOK>^TWy*0Olygv|yzk9rhEWqY)7$Y?*HzC&oLO zS2V6rQxoVX`d??LPS-)2n+VJ@sdzx3ZEWp_*sHFTfW-`V=Kv zSl4Xbe&e1v-l~HM8Kb{{W2Y)ex>wz}CGEp)?I%(bIcb={PW|Nj%40OKj5Nw58=}5% z_g=M5|Ff^88djZvk5<%3pkdVI9qpmDmrVsdt&wh>PL_hNK3N1T7ROjNDfeWVS06r5gyf%-9!x;bzmUT^TX}>R2?gadcz6XqAQ85^nqj%K4TW@a*dd# zB*6Y_*#o=hSI@^U=F*UwR2xbPG&_?8%1dHhkzWpyUP;XL+5Ij^#(*+Zjh_t@ z82Vn)2{!;@v@_>Hp9!d@zZux|V;Czk(Dxc*Vi8+!EBzC3B5Besboog`V14e?xc-E` zk5;g2TZU&uOTePE^~@*5Zr7p)&*9PX&qR|>O-sPP*_F=P}|NYK1Y0A_|b^PtJpr}q=-}nsV z#NOET3zF7#?W#+1e{_ZThJt)`E%@z5O1qa93bPqEygS<55?==2q5+fct4Lof5CQU; zvOuZP-2L>&M5dwpL&Y>bxVa1;evzrkr)Z0WGL0mYXnBV3N-qPYxb3UuF*M>n z(QNfImq^MZ`%V6}yLDvxx+&q%gBIeS;oYCjHH|LqomVlwUw@nA10zh4rfHSdghlsH z&sN;h8H-;J&)y28B}Are${25pVRw~qlW#`0^6o7(tg$Z1m}@DVAG|>isOi@!Z7r|i z?|C9jw4-k~R;;$gQ(4X5-1f~HxKR~W(`I6sSX??Wo^it6!pW+|4L|DC(o1Ed_I62! zEYRAd(wLTvW-a;beA@8ym{Vdpp43NLV#4H%%Q@5QJ!QX}x;lljL%f477XA(@S)RU} z-f<|v%Mo~*CUiFc)caYTKaDu@AD`)S>BENt7QN~e=ZR!5nScf7*$vRChaZO)xJ zemK!%vwlKLNV_t?kwnEQs62eI@-M(cy<413pk4eq-~h@S1Ka=M6gR^+-ICgo5z^k> zeiI}6BGQ!~`1&)Tm)V$S{JWh*Vd1N1Gx0Be0NNxA=OsL!*1$3`yLICK0#x~b_YkmX z!grzvsT7TP-F}tyJ|-m6d;Ert*?Q(`w~~zUXPVH;^Z;>1W^>CH=kBi4wk`$|qjE2G z%>mDdrQaL();t?{G@#xjFmY_R|C-=FBd_drs4E}Of{+NGI_gdq-3F#P@G$fE6y#}(L%l+3Y_2}?@W*@H0WNGKk0ZW6P>ht$${P9mbrv7JRu z832)%%|NR-8l{V4D{{ek$t3(U7gRlSUc--gL3)G4nfRfCh*7y4+-cerzIu^Cu8G`m z!rgrPs~h^N^astzM|DK;JIhmz6Bn6a-Jd$cL8`0o7bkmB9u9M-6Xeb@{8s!H{MM_5 z5!H<|B1p&ci>nUdYV$!z`qH8sZUQv^)&|pByge3^KP6R_lhbff9At%@THbH371P3n zR~D^nw*toEKhu+lwz#dT-QC>W&%bfYnJ z>elYAYtwQirng7$Yi4FwA$(l9GAlJ#X@+DKA+F~{ds*)U&^~GXr%~AQ;Z1# zBEsILScIE;C7gtvQ*i(eh{e)tiqcK>B~}&;%Cy!4a3wq0*cd6hpmwq*=5xzEZC(f( zG^b+Jhhji!F+r+$afd0M?IXJoU({r^G^>qt@yq>DjM^|;;ceY5zZ}3+7nl9Qdc$?tT!-YR$I5lMFtNAEHXI;lm75NjbZ!{}O{c=Au^4rkJ83{ms2XqQ zk=`FBzy)ADUWlP&`-I z!t`J=6a>_;HqTu^@dDJ_U|P8LK|Op`AAvb!C_6^x#wtt-KL!XD)8b_3-II zJVbSA=YS_VVU1qYv@&Fi1AJ0uZKIie**+r~%Ms}g zM4!JjlQlMv&83Zhw(zZotf}`?VI`&ezTV9H((>XtF!a*J23Lt{P_buEN)61 zCM_|daU-;V9-2z(>9ox~j+=6}F^t)}yIG3+mx|7gN>d~x#yr(p*t3l!5xWa!JCA2S z8Ers6KbNRYZ8ICaIJPsr#<`Pib#P{bLW5!kIY*nrKRyrXME~RJScl(dj6*Q6H@aDy!dbE!8exgr{mqPG!Tm3 zzxS$YR~nWZ@m@EqBCmr#RsZXJ*B>}mS@)_55$I__^&i)DaT}brO1~akd!jAy4lQCS zFrX84DB_%_fepzb7DQh{3Ju%xzX;L@lJ=9};W0K-OR>S5w=e@vsAUppiM9r8kRu8B zPcKzo%imLVyHp;YPH~jA-%1Tn%>AE+3yBFDa(bD*0<8~R zlecN|lMLm=@+dXt65(@%Sbv9B?7)E)E$QjPv`^Z{3DVh3Py@ado6$y4XOr6sa%~$;jZ@KL=ehOfN}Q3G&LuduRJ(i zmMpJTAIV7HObOTOEOLIs;E)s)W6;I|E2{>HiC?*le+zRa2D!L!jcK6BS6w%yR5P~Y z45BQG>%5CrnFYGm0C_5N;-hmRTUG_uqHjOr4wi9gG_+~+bQRqD9oEY|qiTKBEx&`S zPSH56Yn-F^L-YJ6myg$g&qD?$+f?E6Z)r69YSfUqf@U9hifs-KA9Z$ECv}fl*060HV6R)9p(e(gyT*T_zOGmmcL!WM*3c`22g0Fi0XuHP=p^7DPM%;og7 z3aYU8XObJ9R0@4?i-MV9K+{K1c{4kTpJEvGkfCmB!mmyUmzYJmOWEoBo>omzkdZFveX@*s>29;s6v_1-mToV z@@P4<>%N>ycs{uQvHv&fv1>&NF*rf^V&Cr&Y``R_%$#uU=2Y?f%gn8Wz)ZS~NGUna zxB@zr-0axFirP~|U=uQ~-M<|$w_*FYF^hRK4slzSDVe{m5 z*fO0;{u=421+h$eh!MsuxcZ~;)StvQT_Dot6k6{=vAj39saG;X0%K|yl02`{teb=+ ztGWjiAGxgjc`bk^Qf8>I#YLb+Di0~zZd=?6ntiIPX|vC)5P6;t2_n#~8u%M>LouS= z831dKNVPwIV~c|42NSgyvKiN%0;b*>i6Znu#hfNyaCHT{*`WtxyMbpyV(cWPCmK64 zgMIi6A;=}GLdTXq3)K(bx`iYq^AaFiQ1P#in3@t5)TDJjHTFe8gf}j%ICn(N~R|Sc5w4+SdnC`^G<>r}Eo#wKxcMK2y#IXzxhxV{!G+ZrVH_y4Q1MPnmOUYb=3LjN zN;+tc$l>X2{rgFRu1Q}8`wrrrlqyfd{gq)dNUivg3F|K zJOmUVGfzQv#vZ^omCMgb+Cn3zw83L_45~a;xG`w{*OJ$7TUaM6@*(a5e>cWHQLO4p zNb@G<#;ZiVZmoW*S6cTA`|QE#B;mQaS;%ohR=^PPL1%#pv4Px8_;(L~SPoie#2OZ( z)>A^YNt2=25vi!j)^4`=o~M5i9$Bu5n`X6}^HF$L=#q1}JL8L*LBF}UEDKng1>o9a zO^;c3?n8&nmN@GeK&>YtFrttc5{9$Ma>hdt(*y}t+r6;F>*LJMSW_dq&(vDdH&)mW zaG^(M)mrB+xth7$NRv_vE{Y9ff8}B(3^pT><;9x*O*8TiP8X}_hI#Cer_1gi=m3O$ zALmqETSJ`nH2Asv}b=tdK)gG>oigK@ohbsbonw}}#|bu>=wz38j_wVVQax@YmN_aw8^ znCXN-P%B)jbC)1tC7zc&GcR48jB z%Z}Xoz~*h(EpuPq57rc3@k(m($v%+l$~T&s19n@S_Y&s+@Vg65+w!v?Jd|g7L+`&tR9aTlYgo5tpnE9R!ii9Zf9T1QoOy_HRN96m6Tug&89Ca z()0n9x_Pr3&LB(?ewaep*-&_iaBt$#(WIG2Q&7glUaY7ouyVJj%jvq%UHB#8_Ye~0 zZ=Zhj>4SvepTBl>d3mkevLyKb=X&^L!RdNW@b?|tW9iLHX2p-JP5{LG?D{9^i<(0}9ZH9-t?Pgr3@ozO6PhME4lTuHBBmVF2|7jor zPGc`%>xH?D3C6%|S%sMz$s0+e38wH(3t!T67F)D~SEUXtjqd8{=l%#ZOb9;-|GD#y zPqFntzAq$O#?0D!r{FbRJNG)feGJ(R-e?i@5po$xdZ&HHpAT@xh_qaoHnvh?rzhk zBSVYv;nw@&f%2}}Lg7O{tc!F~QYYnHzJ1(|4*th>7_81&h3~ECP5HfN9_~e0L9meG zsF!d!cx8#;?f6ijt%_|3W)%GhP0|ss!?eO2LTjAwBM|)yU4h>l2T4B|;R!6QR~(CDc^x1%~^$l&-s%z*X} z5ROu*$Zff}^|LrbARo5Qi4&nBO>SEL^-9vE{nzkfk``8kJ}ez$q-ajnSlc6RLm-JK z2x5iOQpm8F63KyoQy$P)LA-SwUufv#Bs%!+?&iYKj*&aJscee)>GoeU2FX_bwkDwn zf1Yxf-mU82!pfr^#8Rq~LoLTvJk~|af;2=9K{UBzPo=#*V;lzX_MnB-RNdtnkWH{V zOV|Y5lGzc|0BV4kfKIQ%Q${5jrq}|7@;W20qe;=6k%Oy_PF4N2S_J-t_0bA$PY=>uH~Nvs#2Kw$fRv=#KP-9cy!1a`#r>GiMuh)r#m@b>EX zp%&o?YOcF|;^jOi`_*Xp;3g)Gt1lE5Xs`9Fv^z;L*ZaHk$J9Hk5mDa5(KQTtw_1!F z=2apIOO3^6JvG4*Ps|3_?0YSn9tBo%&wT)g%5p{h5~zS)ZjO6*?D^3w#{1R6x{Q@p z<1a6jl-W}15N`hF>04u^)T=D{K655rT1Q2+%LAW7>$&T;CpsdlX(=OG+&{gXtFbT4 z9{&8Uo^LzMOlV`HpAbgQRGwmUI_+X;W`^AkHfr)0=POO;-w&ak{Kwz-zT9qaUFrPJ zF6euA|FHI*c45c1jg0=()uue_^!PaA&wcB%6D2K`YG&C&)eG?h&)$AV>t^upFkp5C z_}$tiC+vT&(c9|7CSfwN#Jt%kR>@MT{tgLL-?TsqRF`JLcTP6i9xqIPE8>_hPRo zz)D7&3m{ccI#i5=i?_)pNC?w z*0Q~Ua*l6vvcIkdt|z;haKjcFSC~idvV_x!Eo#Gd3c@_!n5^2rG7B{e?Vd3z1Wap? z&S5Hk`ANiy%g-RMLqLfxTtc56`1k)jqVU8^bSEgI7u(t- z=p-PL>Uu1}BQ;1BX<}Lb&HE%8EksnQ{gI(HF6C;=)d|-`mPD9H#f-o2O+YCFfKtSs zoL2a~`ieF3bCAycmi%K%$N**Ed`(eTg>5a{QdZ{n&+loI!H#*ZlNF+T%T0M-?V;62 z&y0+?*J7$SyNQVg%4*l|*d~&tPCo64oZOc^u1NC94z^<5=X8*x<8x{a2EX_Wmq3Q= zsP_Ga_e8H4x2CMt34V50`+B*8#SJPeNgpl|=ax<~(t`Tc$W)t&>}DcaBs{p$FBic+ z=N!v1_IwKIT{HU6HjJ*z-$QdJOiFltdmGZ%(3GW(44chzGCdb$qDmeGm3{J>M#ZbL ztZedbsJVnupSQw>U-o97+@7Z8V;Lt(SD!d;OTsRy@P9%`y@i(~KD5w;Wd+>BepMds zwzu9$e^g@CJW_jYOaH!RM($}2`&i=~qv@lW zx1t25Q8=q7rPoh+m9U#Scbjxv`QwigL~~*|c?@EnL~ycKP@_Eg7w@L0QdzID-I89? z;mV3kw9Zz4H~lokg-LW5U&QfR)j|XJ)I}%3dP5HZ_zDjzxJGkk3~N; zr268=MZ9Dro}(2T`WZQu;nBd}!6&hyH*3-d-DbC}dR)Fx5X(n&VQ(HH&#RMO zf7^Vq{PmO59FmAOjVZe2H@gQd>`UWq(;wPbGuHOjm5VBGlTpYhMQ2J?ET{O}i1jUp zPHbz7`&J9>yc?98uzknvjJ5Of>-gS;eY0e?xhhMYlce#&k4)hBN(% z;nGZUEo-*;u(x5yy_d&ajMdUoV|+VrUtG4CS$wOLyt0r#zoRm}x7-@ZCEler>&ThW zP~M{1U%hulE}&k2+VlB=WX!gks8`NLQf*7PS3Y~?Q9{|!#{@%OdxQe2UFM+!Yf@Fq zPPF1uIJaFJHC0NgFMC8fZUg76Nf|Nx%cTFFq`Ik&B?rzcHa%P+&L&ev*p2~#)$yPa z8@l>A^SQG>bZotH?lE_g&-J+debbIx1|vU~lN^{{|C-luP2I%LXh>|u^A7EAlxr~I zo(Usjy7iT&!AwnIG1|ft#Y1G-a!}VUn8_LCFIkSAM#o92I0ueqQi9| zvSDk|Vo|numkKBDY7Lz6%DF<|f$cN!6o0Cgpe&}|PAJ~K@3VtEv3wc;lmA0)>gi+Jm%jr&5lGNA`v7qIU9E=F+-6 z9yTucCf3giW$;%n$ir5&bke*=BY#Cvt@8CrYV0)o*>v3V_pG)a_|nuW^WrCkRxZT!ls<;e|Xg05zSR*LRB4b--QqHD?_0guvZYzAKvxQJe`s=i z*C+A2izQMmwLz!9aRZ^l-_Lo%<;-}d0XO0B9s!R-rr~(%*IkaF4^2gHPh+(g_W^EL~b(|UFQEF-|{R*Oav-najH4_ zb*!$-NiHFNu9oxMTaClx? zIG$!i`WVa*Kbl6@z?Plr%~;V6BArsp$#q7HjAB@MaZg2Fm)Y!&e`W~c6x_P|XA$vV z0~(~Q^z*;2bM26UBRqYsclK7tjr{iHoENrMp3=$Y?c3`ey^SU};4Rf!s|ml{Aha_l zG|;BGLAiiAV9k@?>n5t?J_SuxKQbNBD_m|FcT?l;^_6pM$}ubHt>Yth;STKc^}IIv z_Ql8600!UtUc>9Z^0kh>^K|S>^bEk3KU0lU+!L{&a1G8SpCjsjk|K3@c-g6(>#an> zii}IaUs(aByf~LG?3tL9N;63-5J~MSrpp!U)-YjKvlp;>CMYu|E6wLs2rO=6T&#lD zd!(M}?p=?Es=3kwfZ1a0IyPL()q{6Aw>Q?5UBVj@CW>bzzx7tP{_tkW zbD9%(n@Ii^I-#3^?UUQ@QxV_(mh!l zl^G*^2N|iP6(A;TwZ@ELTUBJ&Vnngsgyw0h-y(hbBs6A5IcCrlKjx+U4W-fTpJ^{lKN;Fe>~A`Z>cOSC6U zi0J24%2=zhHu})!?$pkYSI>1qgLYidl3p|MiJ#PiUGt*Gy|~e9&6nC#mnH9VQ&^WCN-y2yFC}~AWoY->n@uV(*($=gI#Fi_iSGo%ar@K%$||{ zv$Y_r9kgIkd%x}4Xt?|9>kpEtyW|zuw;!Sc>KSg$j97Dj>^o{J;J>(o0YCVnUUt&w z>KqOF1_R<9?%k({-XVE+9f_m`9p~DH+jC$57eVQ3Z)o+gP@p)g#Bj|CxefJh9?Gv$I|Ja?kXjen_Dhi z!Ocgyv@5^Ci3n!+A25p7yCh)|_p_7A-W(<54}Ii)0_2UELFn(W0coYY3PZ48he})flh)HV5{Yaviq!-gLT#1ZN{GBl=_t}f}vy406j1p#1WZ7En z2XuUlYniF|v!tsd>v!w}?ZTk^7PINr`qm$Y^*d(MR9q@N!R;iJGLcQsaK>HYw)RR) z4}7|R&^|V%=80(&;#s#WdyodCw})ikwV|Nj z%+j$FI(wSb!RQu3)3@&r3T#~3Q-!zOKC~+ZFs>Ya4CBIW5Ok*Eg;R?SiHJw|33$%3 z+&Cgd3&EIYSLL#$#ekTgz4o4Khx1Ij)l<&c=E&8`)i`Jyy;ucZgGtU0h1`#v+%Jz= zvxW+Nwm*o?@E67Q24)9k9O#HIvl@=hEFRy>O7&^qui>w>%06`J$2AN$9(P4YngrL3 z^)%&Ku`;#h0WjyQ^ttgxJe8}u4lP1G z%a&!3GXaBPQ#C!}+~5H4Hooy||1uJ)8Td@j^QkaaX?R{1F;!RC1HB_Z0oO{4GREYi zy2xKTUQ{8JC)|z)Q6il}?s@&h&Y{$jf{c@8i4@4!M3u4wcx0}2hn}3}lSL>tO6y{V zg~bhUJNKCCS7n-p+hTN7i?O{wB5mF)YC2B_9yBs*1_qws;fTJ=%k6*O>or(dtC@x^ zx7}!D_u5r(Edt?Y7hSAKj(PWXG=5!h?IGngX%zfiV zOgG%-UMwf)>>usrF6M}DsW;)?(|LmJ;}Ig3nJo&+83Jv2UoT z;~V?+O6+(vuUzCxkix^N1#A+NiEPm%bxY7@>Zk=j$G07LkA%_x2=)rL@FMqWg;jQ0 zH@%WYI`#vO>2tfm09A`w_8Fn|Wn@dkc&IS!*%#$be&BZsCUgjswX@6t65+Fiwi+Hd z+W4Ogg$Xs$1iQ_r`1M@AhsntwBW><3%W$}Tlt4=+H4nVXtrZ^7!gNXYGGG09Bg|Ee zlE$8PNj77*dlc%=*n=(PdDG$NsIWxX z);KxE-g-PQ)Ez{#7oyk$fKjwc?W7NG8>XGe*{YiJ$as(x`(x@WDUgUyCeC&FbFdL? zJz>~)_$>R}?TZt7*h8>Ay>_yg_i0N}Sw|RxcJ0neKVBtX1IU1gu0l;F?bO^hAc3jd zh9bFL9%swsph(=3`Ki=LfA*#WPTKocqRX?Q<3Und@MB0ONGgD0GCOio@AC|Fu%jJ@ z-RSc37Txr>HRup}+xI~$(eRa%>6uJ1s8>X@-{U>{18D3rxxRhGCKt&KIn@wJW!B7? z>a_Fj_^n=2I`SX*tZ_eLzt6{d^>`uv%=JE-D;2rk&(sQ_U9y(k{-Rd87NrviKyCj1 zvYe8>e?Z1!;t-^s^E$gc-Bj%JKu<@Ryv~|hYEPF+1Eb4fx@N0K3H(DJdv9k{MyMOr zKlffbWMH2@QtiOU><%yTQF;pJ;B66{#Cwm1vS3?3hsZA#M#y()cN<6ABu~Oy-ibW) z?r2ZOWz1Pc+Wap0Y}$c;RYxitZ%%v4xRhdsV1_o3rAj2vBd;kkW~4Qe7(*I~J#eS% z+w3CgAf01^Rd!=eCQmdxPCWtVTbwm@9IwC4#|p2#Sr1ua_ml0A@zD6{ zZOgS(H(UyG+w&relC7qfp{+nJRDwS8TGPV<|0 z$wcnWrNCPz_L=jt+nR~GS8QH6)bnD`jiYkW#!x$Dvcmru|D3D(fECq`7RA$7{_$zt*o9x3~mQ@QU&O^?v^U*Fdoi$z>KKJ%|gU39?73 zpqXt2g$->j{~FtE0%SSz6;hT6G1oYhjUGlzqHV!%H7N=P~h@E=CB2L-)3fbcr$x}k&6lws(cjU% z=vwC~FnaPGaXCe&M1Th|7fE4hc$5)aeqeng6C#OL||+8+zmL z%8r~e;hhsy=rXl&L{)Uurj_;nX$|T-ONy9aM*Hoi3#3?B09mTPNk6)-bZ=kAR>=02 zl8qKufKd=NDz#YRYM88W-GHbh#Iu;sUSS+-^+{*q&&f*M_;FwifooIAqe!yRde54& z+&kQERyDvr1Ni>X6XxSqe4G&Grjq@L6t#>^2&?IhDegXSDJ9v{Rurjf@-H1*oe9*1 z<-AxS(iUdER7OJ@!YWNIO%qu5vaw*UlB2sK+DZ&ZVnPYBQ)++{4$n~`D1*%4PaYtjHsq4M|NZ|T%Q+7Y}B2( z1JWZ!jUjCWa%NJC5hyRJ!|2|p5`hM`7ZSmXGxn~+5!@g#+ddY+h2yKaOh;T*4{6=5_#2f15Z1Q8sj4^7TbR~+K?a$;yS{X;-ty@!KLZfVg-y{u1eWE6QiMDiwu5hoiTvN%Ve+ytfb-g&E-lOlvG^RYBuJ85yulk(WhuU8hq;SULleJRwJ7%t-zB1M8NUbrCZ71I zLJc*l&+BHR^dP`TW95%a?`C$tiijX1Q9fAxtc-9k1Tg?xZ#U8yk0aL+z+7H7QROLFFIEGPLdk=i-s! zPdtl~CvQ;>)C}g&Q<}e0#hC}KdyQg14@5?81*5+Ww{$~d?me~AC$GMksegZidS)c- zg}KLk2{{hSoXs|=54PO@4w*;*6nx2m%01EB0cAU=L6f|=e$gL9>#b; zTVX#p*+3~H zQ(9?v)a)E6i=h_~ExM=;)i3#Hhsgm0QlFBTm4nd+`3;g}$HG)v^B8 z7;~L92PM*lI9dLknRnGXc|rFAO>FJv1Wp0#}e>F1QB6@I}@K zG>dTXZY$Wj$LuiM&~;0_vkW)a!WF(87edNRz6lPMA}|ot{R1-Jf=KhsB3ohF@EdP% zk}Qo+^nxlaG?hkc7os{4$IVB_7?Ug_rA{FbVTJXTE&jD#xRa( zzj;<_(r*BDd_m!F( zI)9~az$9FD%G9rC*)Uv%hmv1udD|;y6Z|fr^=HA+{n3# zcogknu(^%mmAkZ5RIRg@FON#)OK+9Nd>cX&!g^*`kORmesIKzzn)2y_^^F!Epc+i2 zpoF~<5^!ndFZ}f`RHI*@Z;jm(8G*$%nw(uNPPfzv0-@8QK zmugI9&Aj*3`k%RjhiJqY)tgQU2lBiLgc$>~dUaG z-Q}?K-S1?m)5N}~I)j@d8mc&q~aG6?x@#y_#I_?iI>F?W5;wef^n8k7bQ#AAR^{RdXT z(;%F&(ot>mIB7do8rg5u`ko*Bud?-ZGl)X*q#;w{jFNQHbkeZKW+1E^{yQvWMk7sh zKvH#2d=r5Y$7m^8H0uuuUqDQOHI7lqW1bwk{K~F@I>WA!BF#q6QoryoloXc`paLjn zCc`wv-H94wpHHKcDxC85_=UP(Vd(e|73)G-=? zzK+(!|Hzq~abYEJ8VAr63Wz7osQ1nXHn0KV-%+3V9~RL6MeU@9?*Qd01XlvPg9f>Q z-GzYN@BQ7KM~DwX2zd-TyK4MFkPbBG>~Pip4!aqkIFRw+#C*E|C^tkA-&znD{_*cH zF%)e9?73+y^_y2ojHI0~>e3UhFvk5$~nuta{?vdFi) zgfx(4Eg?$ZFPH~hPLx&-PL5{g=RWfu=A0x9A- z(gMT#e}{PnjUyfD7jy;UeW`)#wE+_oKh@L+dMbaQbUhBda7%sDla15@&r(@^a{;*X z1jfGx2}e30k5QdSp5ZDwWDU{)^*9EmsZT|HK@yKWtbjX>_X0h%P{JkTa9%SAX$j8Uj?tqm6C%azzf>y{Jb`O&~E6E-Yi>Z zE**-ELZ*3xQ<1Z5Q9*_9YO&vi9(V_(F`a0Ev4qDvsQa)wRioH)WOp$(@f4H_YRB6u zV^ScVdi9dN#`b|p$(4%}u6W^N`eL=NDnOZu%Wm6RJ{Ulz5*>XZuw_yr-3T^7*{F^3 zLl$zJkPJXHGkShuj6ZgGF}}8Bbsx6o(I_+(e%EVTIh>vm??>v)^)<{=N zm8brXWb#-5CWPXnpMJJs6q%9x@Z+Px+X^aEQv0Ap^R#e^MwyJY2+>$Rq5okN`jT9b zBa!NXi6*oenhV$^aB?L4!4B!LT>MUNA#+I=UZvs93*j{;OMrZo#5H=p2w4f`qoYg7 zpeN?XqlNa>iY$U~a63h>=Qk~bMBisVc&kEqLYeLwdWQ5i;Zu#f-rXQqD@QjcZzfD(tOW{%|7(k@UiOoh5c$N&ur_>((`(RrtZ@#=BLPT$J zcG;f@Jhy?`LE(?d=rmIvToJB7HzrkJiH`gws}RJam6zmL2X=-@mV0A>pVM4;WI-2@ zc0wy&r;J(QS>m}{*jn~ZG)0CT6X7xQBhqCQ`485(f_&``>MoTODe=g@zA!zYcN+Z)%-&#NV zDqkPFVh}Zo4HQ!xM#mT?NNCJ|t&2Ymlg#_iAEztM1tKD-9WLH3oYi>5hhq(1t_$(= zybrLg5L8g4WEvY}kief`u&n=oC$Ysr6-efk1d5wM(&SUs=te_pDB5=T=G}fguS;jo zA^y=Xxdm97LK-iPnKXn<8Y)d1nE$fTFuYR{Pd)lCBE0tEQ0jJJE?tkOu~Pg_nIIg4B%>Q#_*qkK)%{F$cA!K)fOX|B0nIgs}G{34#&!pHFCw@I8Q_L z4N5_|V6vwt3k;_iG`Op^`*PnbTz&7W98*~+&$E~F?+v{fj@oRk= zQpom|7CYJBp>6by%zF)iF;w84Cc|uuE#qu$VXAaPYZY;3A^S~t8o3f7h{WH=ouaEy^ zG|6%%)p^YO8fibz_>h7k2&gde0lW95JT?{tuLO0=w8f1#LBvaR?RmGC)lM%> zIcKPj3a%@NpU*lRxvWI^H5V@>I!c}>3oq-I`VS3#&NQHG(;B%K0y4(SVU-A zO>Fs{wl^(5IiI%9wv23rvAjMeouW1+$s%vb`NV$6nKqXU|2P$G4#n1>wAZ^l@LDM1 zWLrHmRIwWs8i6Wz8_QICKJ!*3N}L^7pEZTBjYv)dYj$Xck=~qC}ROQ~b64x#5p7eJHrIu1EXMDr#p_tiF7fs`Kz zF$vZH<>9rz-%-kXi&TLa7T0_$(4k;h{FP$!DqZmUg_Dg)f?DtoB=UYeT3TCE1Z|_a zcwbkG0;V`k)R_DtdPX*XY4;gi;jL`Ew_SsW4id!OvaR{tkuY|Z zx}~IG1-Xl)p)O1(356Yy;+!x?XhNa^X~XObBWN%NKZE4tr%Yv2l3Kh*H^S?>{|CIX zXOi?}0|Yr1pUtQ0Wt!;M0dd&njkj(XP`o$A_P(-(1C0TaPcE}=`O-=vDO5Lj6i|3jDj?TSsGuOII!YnBfL22 zLJ0+;Qwad&BRs2_SP%h}kIGaJU>}CA7eP<|HUQ&rxPL%wlmJ1viu$H?Ja$7vACP%m zG~4?-lfS7>-#qOBJkRdPvz+=^R^d_g`Ju;a#jDtsn*3Xxr()3LFl`aJGg1S0a8+1J z?OW2d4p(q(atZYu6bV1KgX>!06S_du%+3-t^4VAlk03t+{}<1aT$S!H$}n9baQtZ} zYEiU$&%5Xu!305$#-GZK{x4FB1(IxnmiU?3ya2|yzS3Py@_XMOCFWB)m6F^u;DzV)M1f7in0LMSVA!1ldjiae+3#1fML4c z3BrJs@N*?z*@*$^zX7WI{5J^~I!}rsg=zoB67w^VHq%MJz!`ttywj0Tu;6&XFJlopO z9fI@0_;-jcPzci%{oj>3Efm5W5buD z)83)a^RG%2Axa7@J7q)d`oB<@h_ZDDs8u#?2ws!EU=*BCj-To+~#P0bgt_`Eu zP=#aCDzWhh1*{Vjm>4DzusGH6vyW1ypXq9C1OMxfXI=}Ee*6V*i@(E7pe92rfPK7T z;9`+p4;aP(JwKMCvIbftv^KJ})EJ76JU;A{Tn%y(A9|QJXA%q?LG+o^-Gn^^rUrPD zIOR(+cNfa}pcK^!s|(mzJGBBEWMb za}Y}s=2(w?+NH(F+^&jM$n0`Z3DKDn%Z|43^VfZZLd|Ohs1eVH=D}?@|CY={;o$k8*mJoqW@5jYeM z{m1q7eNqU>peLRGDA*N3Hws(Iw#SlBb0WVj5XdoUhp6_7ym?y$n+?&(+?l_5q%EtC zIIC+|=lc(9E&C-dRj(H58B<=YbTR?fvAt^mBZrJ49YjqR9MN}_3_!AV!pFwwxoZ_3 zVo%gKthA;k)M`bB-VMvupb%zwug|Jv$w2)h#;L)Bj#Tsq-30H24u4J4HWHbtV}pKp zp>t{%6}4o;sRTB@NUmO&%vej%x~ktQ51T#ov7M$}W6=4Koob}Fu6Z7av7;nl3tzJd zE+!BoH|3rFyyL<4G2n@O$Bw-dmI1df ztd!cabf${4pT?Zd$W~dx9s6GuzU|2D z*f%&@m?QuFRB!f(OG&mDsE67v-cd3H$`GZ!Q_(X$_YQVI-Xu7kjz?~{l(v(ZK$V1h zpf>!uN!tah9TEkHKj>Z@0*!PU=zGJt6oo8B%_E8uw{-;AKK`J>*6qlGbAes5KZxIqYW-_PeuxSAiaeBbO@iDMz7*` z8F_&Y$l2>zX4AGMhULVrN#2~V?4sa(83sDIRwc&%i_hUKPCErDmCps$rcPz+I*Yly z{(Vd5B5JxWo`D#5u{_^Ns@~4M@y{Jk{p8rY_<|goD|`f>u3i@?eF;x~2GG6XBU73!4N*Rn&H(_pK2Rmp z_?s%JnzKmL21c3R+4sR{qMzb-C8r3W6sZ=s`~A@Vk5sse)wu!d$cqkleEz;ODKn2{n>VF_@AA@3%40107O$_^Fkpa{|2BYT_Ke$A*9)PH>`BPOxzm zV}d3#EDEziXgvI%UQl(zzx}=#pxT zA%lRjnVYEjs{gQP6jJkz#HpT_3+CWm8ri@#T0}2E%8DQS(Mm}|GO`k^tFM`VLU+Jb zWggX+O(e%Guze(6nSM0vJo5-WMzWkxAP$rzFS61C-av`G#M;ziPXBGl9yi>k#$Ua* zUl!#fFnHfsd}yfpl173);A($ME4={AplM8ak)37*-c)MC&RSCogltQ$nsH}1Nec7C zyoB=rj{Y~jE_UYv6M{|)QpU2OSvn#EEF^kvApuR2Yb@4}CyQ8;;0{3A_+J)_Z^i-? zNyYQZtpK)S02>gKv(U5bqmuCpfd#e=1hH|73%zxnxrs>Vy(ljhFS>)ZIK(4_=i0D~ zKoTK@{DuEf!d)^?b(Sh}ZSRpsf3w!l?Xud30KI}_IzK;A4B2PlM3`;){GJudv`cNg ziwEv`aOLHdOY}ExiqhYpcpj_FVf`_ZZYSaPbLPu5cz9s3t3(g3Tuc25xr+Ev9T|83 zG|*MYZ%Ai-YrUdmYkMtAVbs9N=vZrL%XhqTG5Cxgue>6h0v|wKn4*56SJ1L9UJ>)d zfluD})X3DQE7zucg{HWu+)hXmu@Jxel6xC+#tRUxd5=)KkbS5L#Dc1vTnAzd^#^;x zAyHRl09`IS3V7H7Ch1N?f4=$wUP-(Cft0>B@kY>o$YQ^RL2`@YJd_wt8Nes90;>?NdK9{XjuN3(JUG$+1`#M|iA^PXt zd7IlU{?rNLm!a0hktF9$GY1b65!YSE5xoFGoV{%#^MTnxlpuF+ugyJVY#zHwJN=Fa;3}g*IW*}Txg%nX82XGc^ zkpznA)%O{kYrvdFnrbRFO_>yP^UmkmooK|Ej0&5#DCGm-eM)EIpNc`*Z$G?O1bp z%7YLcKSY8d5y5#Sv*4;Zl{AqwiK(R79*MW=y%64_cW?x6k}+OOB61ulfl5X?JW<`Q zr1V0^L-xU^5NntBJLhfuUN-^EHCr!RrRq&qTSjjYT=3btW5dQ*9Cuq{@|<>=H}`Zg z^cYgCklFROglFWh0L6=*K-Z1sh@D&twD|$#LpxIsrJQImtw3>;Zk^1pIWCQKtm`0q z0D0B}(r=GOpM1dNp4{&=0ZOABL7WI+L<$;L>-?4d!IS~Yh(Hc_zY}~QhKo?vj7mjb zN1NJG<~wv|pjXkx1*k1mw4XBZgETwhH~fV14gMj*h>H_~}7TNySDcCvDrl5880huY3A|@=RU&`{r!YggD=Y0PAECBdVA^f-tBnwpoXL9zfQr@rEf_k3+_FdGU;bQ9; z&=F9A=i}_Nh798A;Gbk0SONJ`wkmYN2hHAd%#F;IsEW^4C&vrFp@rc(b7kHNBcSJS z`~)!uV!g_xBTJr^u4@J;-M+X(m*?X40D z2JO+ADAiz`rz<3Cb7H*xbb6ECn6r^2qD1w^|kL4~WZ@jHFZm3z9vzIUFj zxMsu9IUkhATz{AK6TPI9Kjbdo1!*wEE@xX8T1=PiB@(G)s0e&i0(I#$4 zjBr(CX?vVEOHNYDSVvtq08R0{8K)wW_|u8S^&r(!R$iGZca~Cm%r#ad1P!L z0x}7rZ%yxG&;dxPFD5B)1Sufd^cKJLugP8X;0N_l9_8&R9_2U993uJw7|HAt;xe+D zBC@wSenfI3TJ__(gQ+k6cuKnwk{ZQOu!ctt$;G1`d<$Sfh8@}h6!O;A)?x^Y+)JJF zUv&5)-26_Z(;F+;Wn8{*8YNMmcs^TPh6aSsY1zO(9z-$-{J^B2evLF~a<n1>hAnVuuS2v(fg0z8XU`Wuyo1Aw@ zv#1&CzQ80M+xWBO^z9_lgrH0@^WM-iw{tl8NE5v6@ILxYCA2=Txgt0T?k5DbP98Ky zYl- zJFCf!T@OZjMBDDq_f#ujc&|>ivj4IMFvTSfucaN-F;wo!IU{UI@FyS@*bQ)H@79qwQcY2*LEU_}uAIzUz6fAHiwV$Rlod)bF^779 zlS?ZkSG_iIvNgSYEXXhNge5ZD+vtaFp5M&W- z+dy_WUAJPUY18ad4Qs)Yx+!O-Ln^MWyE+3wt!qsZO1uc>?EAbsBTxNpMeZS5gBugqcLM}%$+#!6n*-9HoE-cxw zF4K+PqsQKZ5uaFRwjS5T?ViPi-8Z02Y9Ow?VC_7ioO&^HlMYzZ=NV?;2IuneE+iAI z25u$^beHtz#c^O1W|;K+pH7bvteBmiL{(oKcDfz|o!+K+b*17e*)w3*f_!>Stu%k} zs@v7>WH@S!a{hc89MLE+bEGu_B!a|CLBi9=5!8NQ6(x$)8N%&-gcO`+1+GsgE%37Lts z&UN_i5!kDTUpumepk@9KH47>MZR1zu?ah4&#vI=jds_uZFtR`wNMc>SpKyaLpt&5u zJH{auABO}0Eh3J&Kp_-6k6NyqNfI|c|5_QMdlpCGG&bVirb!MXOKe_$xc#Sgv5&~U5Lt*%90IqDQs${)oiKE`>Le-#sUyQ9pjF54t zWn{A{&abp>UOQGYkSSa2^Yl5CmybZ*34f>jObb@<=B(n(mVKg>P*4p-Is`eTv~~Xj z)E7$(iLJa`AY=a?+Ma|BAg>{iskk5Q73VJBJEMeVM~4-34*^wdq}0k;Tw=@td+FrZ zy~lkg_?&o8$dAzyUpjROI>+$g%^CwoSpd%p>%cj*6qNCkXMyB&gIj)kVZ_jP&WK=w zYBy4fyQY|wX%WnyGhA+veZxcj2<}Z%MJ6(1i+MArQ61`mQNQ!kb9ZmiOLM&Z&s{ot zC|ll^e*BaE7cKAv!4&hxnNb2!1mTCy+%2aT(8UfNIJ|5a4EqV{CYu`4V3?TFITyfH zS*VKGo8z0vcR5TEy72r6j85oGYUsitv)bWKHb5HMZ0ahPGv`dK&r>DCcpmg^wC{-h zQYvy=f8i#10-T2)=V+@1ot+!U_|Ln}mK+U4Rda*XOtAYg+FNH2!ts_QpAkh=PfztX zG~&Z=TA?)qAkHPc8_*hgL13o!Y@)q#nqiZV{MlJd9MR+bz|5w|JtJhOyWT>*+aLpg z*vD0(1rlkhhFwQ$>cX4M&j-Ek*o=d}Z)k6-oo$ft7VY_A+?9#DZxwh3d-Tao$p2&R z&Euhbzxd%9Yb6wAUn*M*q3mnBM3k(_p6p9$EW=pplcg+0McE348H{~rMwAdDV;`ne zY7B!K+Zgj)_vrh2UeELV^ZfbiAJg3TeJ$rY=UnH!&-=Oud@FWNNam7yv!NBysjv%G zYK35akY5Edmi^&(n-m06Hk0_k)i6?2!d7FrOFd*0S@T9nuQ5q{J=f|yyT}n%wml)uE}8&GwV@@q~iT8Wf&}r!SG;T~IPHy$~WA$aDM6G$&r_ z>1x*L)FJ)dp+R@|{DzNNgJ!GHD2XRm9nROt)o@p!I@~>-xN8-TpAQ#Qy|(C$zkuhC z!NU3ZD(5xk6%E{2i%N9YD_0H_{=Gz*!`rD%zbna1;%q%V@0=P_rx30G=jfHxf~zW! ziZ3cIeKRzk$*s1DHcDkQpPKEDZ&Fgd+Hr;3DZimtMn3oONyyd;7RvW6x|6&HXT}Pn zmEqTdN-%X)W@(26kO7=p>@>A@P5JJAL>8sId4GslyRvT_{P%8f=|r z1NMY%qR2DdM;rHuWB8r;)Ols?Al6v3{TxWXu221$OO)vZSY?`hRgDSfn)dG<#E{)p zQ!yP4=cI2hfT(!@#8=;W3b?(+)f%t}^a||<2xH~l5^@;_0JT?)CIHBl%D-AI zfPwka8A?sq#@}ET`hAwyXKjd1Z@W;CJM}KDV>1#=XRPL$Z0^tC0-I@9ahZR`t!0{- zYr$VnVpfC$sLC{s{m}wj<^iyo2SxAfVo1Hz)hb$e|D){{FfdEK7Chg%a(ds*u?W{Z ztQX!X{)wh{%lR~{@=ya&F^`)n>-wFVsQ3tUx9%-VLS&Hr^}Ou z<#VD4Xu2kU17zm~!FHm6v?raBsu(V!wNs0m{hb~|FoU#N0$0jv=0M?RY`*XHgu;lSN{7p8Vl&g`aW?QADD_i~iUMLOk5 z{?KT_&!*B1eE`@bTO1)Imwlv;9~=#4DC#;Jn%uO=ez?H*Z54HX>H*+qB~;*z5-`gf zDLu1$PF}~UcQ&e3^TtnqiEyUx9WI4Un+-?Z^Zata*y72JbIs-`Me3Qxfgc6j(IIRz zbCZ#ZfhGilvaV{K{V$-P*p1zKJ``d#%I(*psE6~`dHx%l~ zz*D|}2f!)sKXVJ_H%NZoN`1C%_bVdirrw(&gEQ2T7-{(2Pn+i_tN{rjYS)@UAe-u; z@E;OBAYZNimm|1~fE>a3nchRI1=e(~`y3s}ryT)L7pA$Ju=d8mQ(VoQ7VzN%21>0d zZD)zx@uD|I%!X}3Smx@Tgh&`@z@|yvpFW@Xtu(~qCZswlB&Bjk=c}%NLFls8q{SQ1pGEMN!eGZyDNp{A&aPwE|%(a&{{!fhPj_RAjdA zbFTG-hziTs;2I#Jrm+2$?FoB#G`mA?F%AjNA!#?q zZjd^G<=17A!PgdDYT}CvT!}J#XPBlEPoa|?Vw0}tcw*aQ_NTh{vm0`lu}k$s*pV#a ziBj~jc+qf702V&YVcm~adxn?nz@;BsJ`Or4PMYG#+Vx3RKeClyOC;kdl+YW8HO6Zl z->{u}a2Im~Kh*)y>GD-4{1!g1!KyHiwX(!KHsAAq2eQqPC7a^T_Jfg4;4xx%bloYy z+~9U}X)9m7PSQV@tIA5S5sgbA579MFNpRxs>iY(oR}IC*GXhiR(Elm@NQ3E7f;(D9<_y?GBfg+ej*=Ln~WgR>c=6 zq^fY9xdh0Mt@!^~!O~G3_9=ldnMHMHuA0->#uUi7$sGE4ddyt0erwB1PxGJqfvy|N zoFw()Gc@%3+wopq4CR{N+K|eWTxMHgOP0N!0&m`x#h=A7nG0cO#$=09zED<}%&sB6 zI2xoB=??^agopQ4tVevXw9?Kkxi()QrE zPQi(>J@tDsE+b9D#ml)>SQ&7tPK=V+u3KTQ1q)S*TE*kN_++gv7M5+XL}Sy1YhKa4 z^7Vvs5Csdw^At*#GdL)GlYRGIFMI(s%M)N_wztUh>Y`d~q49q+g1J8 z@1h3DRcJS2mdyh;_w^$eZyyvd@9({Y4~Y>rPVp%OP~tTRV3IBVA_}%?4A};zHExAu}D~+waVi$J@SAkjC6f z_G}MSQZdXO1Q!Z?)dhz9v%>ZRIavJp0GB>^k60($bBkSAP$rn#$7-n9T_ORp*h+f= zEfD~z%R`X5P9WFfU6zM1R`OuwSC!YfwH^Ws0l>L*hbPe_dW4lQ8+(gyC$YwWbm`e% zjvy>M?PVaMj6QWh=cN#w+gIDpIV-z%EL`uZ9EtuDlNL?C17+LB-B#w=b4-4f;{6YH zy9xx}$jpJheP68@sJAGxc=pgFicL$%cCQvky8~#kxRkSj@NzE_qw*qYoip|Xn zGx*4^(rc5aHyyDbo4^?+OHXl_@Se_GRM)(QGrzMhlz__~(G}j?8OF-M?+E^e2TKQP zm#coB_#PP^lN8;wOcs9hAo`1ESQ4g9q>( z1qUxr4slgfMOVdS$7r(67>$BgY`TAgZJFjpU8im380QpD@PFe49@#?ERzynzsN$#x z7s$bnvT~7vVW5nsTGC2raGSj?pMyEg=B`*^7d5QmSl=Wc|~%Q#fY*&;AbBJtX%55J40-OSIXm zq{XbVO>=E^Ew+8v2R2bEic||IR3VkRgT=Q95o3?ovBvYe;*$hPz}1W!T3Bh2H{aAg z^Ua-9*EL^tE|kQY`&+P`}-C2lh>6NPm}4d?7^Mc{n0jWD)-*r>B>y#OBZQ4 z&#DLy-yp^UReC`IY;Y7KNB>Q z%?bXz55V(aQ~D1eUp{_$+z!ly&#Tc(_e)qd@zB%HHMM%=Vv5xkoWgC&f(Jnr3*1{O zye9G6cpwe`mVH}Bw&Og(68BD6=_NV>R_%m&j6f{Z<$Yd|-K zW$uuGO`b*GSUwuaRep=5zQvonLkX(L==;%O9fsue=+c-5mg|pDWRH*xjr|+?{Wi(g zIbnNJvnnL3PCKEslQrr3V$cQ=jN}P4sId_s@=G7X7A&Mhqje*Khm;7-+;E_v+{kRa$xyu%xS<4N9Kl`rsP z_%8h42vANkPE`ZG@I6g$?=lq7_?;&Ox-M6rPjgQZc)c*z5dnj4xrB$Tt2n%w7cjn}jay zEgn5Kz5is+fo89J?RAdI+uwevt5SHIez)yhEZQz}nz7$X>wBlSsFAMKV5?Cm_AFO7 zK8oGuy90ptB)zRjvLyFGH!OE_d%Q6LG*ysSAFt)e0DJ#ayJ4BoRkq_I?~yGX1ybBF zZg#^@^~q-HN!3nL_`QC}DZjK?a+k9c zb+pmp_|0Dfqe)Z#er^n4)a@K3`tGRxU+y~7cjpF4EWyK>`%gfce8ZWsI~M{Byg7|P zG3~_i(fkw7eqkr5$Zx`bD0}9V`Lc}WclO=Er->526yIWZ!?gC3S2a_OI|>wAWJw|(o_LA)H#KIF8AiujU%v7Xu$Az^#cj%iEEysS5!+7b6F?n!Mk zl1odbL7&jU3QB_;c8sQpR0m$|tGU}UQzZF9`{jXh?zL-#V5a~(MD|P|=_A@+bPOB= z9`ZuQI0;e%QueqkT$w|0Wu%uh8L{`*2n~#r)d$^*q6BQtUiO3rVr-EEJkkL|I;X#F zXYkyW@H=^ZkiETE-??^R@0rN#U%0K{%HM5MT`LEtCboE*UG~jMKQCcQlz%)tjD^_? z%KV3!(BIq@Dh*iWkaW6V!UJNO&mb#R%aZ4jnA*&VdySTQK=Cd0uEht#3Dj9aoly)* z^_OIKOUGRG$l(zzOjC9u0+~Sr2R;O)@2xVAJ90*zO8gECG_|`A#CcLO`b$M2`;3{v z<{l1DcR_L9!ylLNi~?$B6sH+SD_fRvwZyL|$_eM!dJh%L3C2b<$;EC>#MJpMwU2H+ zFee!#c?Gv(4s(J%_k3#$yg{)u$UDBr6(}6IMjrLIAOz3Wy*j=hirn^hT6FvZ8lv&2=H?uX~3b;?%zD zzj}{&)@9J)bH^onB1ysTYK{J4_@GxE#Vqm$?OZRi;i)Ox~2q^o6{F&n++gw@17HkN^xShmiVC|eYtj>pH?ID z>*mB>Y!{V0>F+lfUB^T*-AS^}1Vx^wK+?NDMb|lhun=Ef=p~^xt@p|2{R6P{^hmGjyKhYau=@j_Sc>Re1_lDI(vAeakF6xAUgQNB6m+} zI%lqfB=&XJ%KgiGhW&Ebws!mSN$iYpi>GP8lfjFlk(lSXToUKE)u~|e)7y%x#k9$8 z3Ws;pbA=eU_{dnEihtPXx0_1|@QEm#l2u)-OsL$EsQr1p?*ge!f1;~w7rnFG(mHWp z%3MuI`W-$e#6vv@%c>m&P0c5*WkJS9rwvctfJ0FM;urv->&$$6>OS@|(N2 z;AP@61=v44AO`eFr8+4fDNx8p1WR@5L)}+v>&_=RlmBm+^@vmMo8UWGrl@O6O~T%{ zC_L5JFl*DTl5$q5v@+rY%+RHczbF@8cF7+r*K-Rd{jty#(%vh(L#=kzJAGy-b9 z*7I}8@~h8;RYJvH|Bnj*g3IpyhaDdW3`kLF*e?lFP513$eyL6vndWTV%HyZ{X6-3) zdXN#gAl%_|a&W(KI(tC(8w;rIP^j&b#^z+?iBTtJD|o3lRu9sn$X4S`-i2I=nka#x z0N$$J&NRf<>5bPvj+81@?fbBo`*l?QO3S*Q^I7MUq(2}DpNl-Ow;YndB@j&P%Tdr@ z@(Dil3;<`no_CzWz}{c5xtX>m-fXqZ5Gp7YYwaRYug%1-W^JwJ8pX)jJ9^z#f=9qZ zv&J=cJF!3Sg6bQx#fi}1Y#!&pTHgSm_gW3s2b88Ey!wc=enDEES;_TQey@-80|WW1 zk{#iF!}wLSR8&qzVySqkv8mbW(cj@q`uMG()*LXd)C*8RR4!eE3W_5KX#r%p)QYZi zIE_3GzE53NeNvrt${p`!4_`fbhdIhVZsmL0GI|w`%UeOzKi`4lZcT<7Aw!G=Zrw$v;{XA zS6#)_7+Ss%knL?Ev}sq!4sc>_4f$I`j-s|nJMI`>{QD<7@UdT=m&cN55a1O3m>ubu zCZXm=Z`nB;>ds$#{GDz=WQ2 zU9fPDDoc|T;&E-OsvFNw7s^lE7)Iyq0>|QRI1APIJzL3J8ixEv>V;c)%%B|rf9+9h z+Ak-3NgO(Ee;)%c{li1?_p^hudjzq(v+V`aD#7F5z4bc?CvY+-T()_$pcvA3tRwv@H?MsAuQBZcKd9|mv}zpMSX$Ye7FT-WqYe*yr(leS z^y2SYs}Us6UMiN5*4-;R6=Jg;$`y-)C*&a5U_D%OQEzEA^tfu*xEd)F-yfZRvAth; zP&D7p=0IfYR&Eo2=+hlo;ofZ>%lzMS@5>JX5_(+Q1Ur$V`55-wiRzt;Zr*g#^ll1Y z;b2Y#4{E^Tr@~yJ}S%O{hv5u0V6d3o}ZTa%QJxTWr0y-lVH~~ zMSfa>xN*F!Y)RHDFqx$EszpR+NRk|U<@mFs%3v2MC@E#j+VSaterxESHCa`cEU+pC zu25d}TuE#Nc3h;Ka?~|;p)=lT_#t>9&~dA|&1jK<@Zi`QfIakC!!;BD?z98oPRxtd zF7>gVJ*>l*Vh@UklDk{@Z0}^ygcaURll^>0K1)h~BBb{RZ~}xBJm?lbhF`~XZI7%t z5{&He%tiA`e@>)P#by4*LiBv=R3+I`78>FOMLr20Ju@U_QStUBDXs%jX>HL(p^H(T zBiz1FRAcG4+AlQp<{Ok95Zri4yGd4qZn5Ff?9mDTdI$s9;_|NF#v}DQwR5H8{{B2< zizO)TzhD8*i2WUq9A)#){C*p#wDAuB+Q*d0+l5PIJOyA)XD}fxS1G2Z1IEILoE@@G6>%~H$w144HTOw0StsO%-+X&>xmTqckqo(+%&^@l4)3 zHz|QXaQ5-m@vSqPWtAJzpw0`}VA}WUPVEj=2YFCxrP|&#)!*UotMKl4uXFWlwgfj2 zxU8TN$b@75Tc#V0{c>f0!&vM9knhR^JWF&sHdE(599vNGcaMv|^x}y?6`th5QowOb zQJ5o|RqwT^eG4-Z^n0;!pC}wdg#~P9o5t^N;g3B7{->Zs!cF%PpxNm9o``P@-TkNitHDetePTr=Rqgf*Q z`YCFo44HD7fwzz|PQ3sURTdT1ZZvky{thT5ClCMV3O1_FE8^1>8fC9fQX9(Vy#e#h zU_qOy-93Q3pdTg-st)WLCasQ_QG&M}^_|0$d~cKfoQonp0;tPubO7uaJX}zE3R2+I zJ1X)Jq1GFJqHDxxZn7+j;eN8@&9zcEh?}zRx;BP`gUviKBio5xs^xpIby;4($~y_8 zgPOKz9=B{w6p8_BJ(;T(b3IajFU8RuCG!@FeTpQeK>cQG&@62Lr zX4Q1Tl>WDN6R`SBwPrwX4InYX_GhI10C3}MF-p>aU6Dm(1HFKVfVIx0pLr;|Zm>=A z>v8LG+~A~iex4WC8MuIdkCzy9Uj4so@_-tytGg7>E61IR7s<~lDv0p!-TyCJz09EUuEMMV;4FyJmGrMU;iCk&a% zA~T_gEVc0|gnPfQ770ACXzcvp=2#G(Kl)3I!vD1B0MzsT9x^~P4Dbav$67#4`zYGx z&k@$smY^gBYU^0GW^t`uYt8`IWdD+i{S#EQeKnAE)kCkGdoQIdT``mM#>K?Z76n$7 zL)KUhA~IOel{h8XBwkK(hl*(>{i>jwnn7qJ075o0WBI>%pOSAUkkAf8irI%|lM$6lR z8}i#7Iss_bUphRoaxqOYxiAlya`GK%WtdwU{aFdm(;?NP_=)KG81?8Q_%C=R{C@n* z`ZH_qV}P$q7sMXH-*p|V4vId&=P#G7SO?ztOs#TLD4)3J0W;T z*0@&{0FjB@w^C!-nebY!=LhaRYl+|UmbsLBBH|;U!FU}OXU7UMJNxAP4yt_Kz%#m# zQJnJCZyJ|vcdscfiu|6Q0G`kJ02JmM+noT7`I?LE(YtK=>E!2gBr=+I-2K;Mz}Xvg zM#k@LK;ijC8jMygNndX=`s-?|2W=%m^n|ZuQYoOMiZ5UxexL;8j>lMNrK=qt4a=Y% z1ZROkCVXKL&goIX%5doxCfh2&Q7WNzbv~5lfO5 z>BwL%z4+#s#ddsTO#BG)8kPGSY>uh4<3;2C*9o;;%>vC2?y{AH;i-V=mQZ0PpM9zX z(DZB%=bo4#AN)4!5cIf{PZp)`f9TBQ`*_?jh7GUY^_srdenoY}VYv&lE9PfLjQ%Q4 z#fkI+fEkFy5RfC^u@|_U(bqp79`B5fnh;F=!PQI-4mcpMNRheDTcZCF5KY_hJY7iK zt3O7|Q)f0ysAA<2L4!{kb3NMlUq)u=1#=9vzBW{w&U^O0)|h|5Xmw;L*>X#6AS9$( z8UW)!M%Td(`zDant4O7$&#w~}RW!cUGvsLDaDl7Ydl=Dydp)hP{IRFz;@K%cF(_-! zKE0Xcgt=}F_cwnYXn{L7OMsLu zB03I-kYczKu=3^EQWSco$KE0BU9?H!=aj#0;nJ7~<)`fRI-w%4tnvMmpp)iYHP2CO z8%pt<9|i;)2#nWmeKEvgeY{LpaAxhRw|PZ-l#Xpg=L*Ek+oVy=rEW5wU9@+IxPy0_ zHhCVEZ}t9`?^)6rZ~M{B{cDH+)dyvb+o7fvO~kZrjCVu|9n7}uj(bZPLd|`sU3{Yv-QxU!1y_cvG?@BqWM|hUxNag|kzBE_-nKl2L#hsi{Eb zDLwl4xzD=Q14n#sq{N!|h^UJ$4*ZD)R%TNE&uupJ_r-F{O!z9$7UM)MjU zdJF7bSb;aC+{w&Nqvdi6`CoOA0j~t)sDA)rytBR-_!r%y+Un}nQ**}U_;7zia=yj`pCMf8Si>t8q+GQ7@7ph^x zuNqDBgDqamjQ?$JV(WZ-nN*2fCR`2k{=j)IFr2HLZ?Wd!aMM0e?R$F}v7g{eI^`-$ zy$w$D=%S^lGHlZ`F-{88b={$PxP_~D`&9R;=tnVv3D3o#`GYcqm&WhIb=F)e?Ae;6 zu&R3E;D-%D12Tr6&5&d3V&Wd0(Av>*|48@!Qx^E9goKePUPWT;Y}Td3>d4f;RIq`j zry*Gl5j*!biw1IFFU-J5cfF1HHOYFe`>5AMDJCzuZ)8uZA(@LScpg zKYtyw=VXuhp?hgz=lZ)xRArx7O0Y~X+A7UmnceWvbydAA7HXD;StKTpAY4 zIV^sQ7zImb9}!5`?+*w=q+0sOf%GWK`N_?(c2LjK#wY%ZrHs9s=3_eJpES^>a$vzS zY~M~a-CqkUgX+xf_rF^Ue9|2mkp6=-k(PTpW&cR!$TYe4FTK}y*h7=Ak6QI2S5WBLn{-1oOLwhMTqsS<9BhD<1ejP*JN&+XDEM|*g z6R;8ZDvW#2*99y9Fy{o7M0bM&O3;Kaco}-reoLippxu`R2Vh;k- zz^SkOmK?he9yZ*gdhWl#FMBzze%Qb{kI!E!&?_3-oD=5KCh6-1AYltBcDsz7fipb{tP@gUv>T=uPQUA?`r%#mhR_n$Sa*#ahxt|Bynqc0G3#~mEx-~Wv z6*WS3AWT~;qqj=Fe)GvKD)U^+&iWFlTF_*}U)&n#kUKqEuEVdD)mn{or74SBuiCV{ zL0+Iu@J5+{QNV0p(XDK1Yr7Zj)?(1y^9T~pEl%aEoO}X1+K~Jmw-aYita`n59NeiW zcr4UTN3$fda>IARgd&B_xsF6m6(lH)Z zxY5Vop*HxmcTRcTxay!X0sGLJ_quhVPUES2(S{T6v0$gED`e=FSE(eA}aN zjE7?t$1u~r;N_!XdG+98G|KFru(Qsr<@DHy0DtfnvrWmF|a>r zB!@&@wUV_PmjxUxTkc@AxZxTEylCYZc`7z{2N+%5-hU!RZdq;l8Y z&YbA=|MR=#fJ3#9&9s%n=Pu#;aL2RRH^HsWZa_!=lMM~|+0L6XJzpEv6w>D(lJdal zt`@Nbd5897SfEL|D6+b7;6G?p@F$*-9HQN>al<~%Cz9oPqt>Qyy%SrPX>x>KVTms; zK_lb@!dbCMX)9(S@uUC9AG6YRE z+2HHgPsqos7`U;Lg9;7)v{5n^ovtYx zV(6e>wegN@kJglJfK1o)<1RqTp%*Ld^+%REYmLpVX?fMSvJh8$H`$86Y-;qn#cDTM z6Wz3}E)rb-#JrG5epV_c6ZLw79Q(4uL#;bZf`TE&`-R9Vr2eknumaFJUY-1yMMu zft+kxQ@Axc{~C8iO4isS$5PaF6LMtj#t-uGZAIKI8!C){_Vp`CYoPqzYI)OD8j;|J z$?Q)?6(Fa4>7TbPS22r2Iq=G41@a6Hi}vYHcDSOSkGzUl-@Zx_+v({1qSTU^2fQ9F ze+KIfJi=QS_mf~0_!!wX9>shg8-7gWE1iH~N+o#&?O{!Qc^GnY(fV@WYFeh%v<)hN z)==dpY|~$y7;IO9?}jd8*ecd(g2A&0?l|}P&6z?!O}@hcjY%(7~^3>&6HP!`ehj16CPFex6`jh znj-orqYnsGVyR8JS=*yRncNf37$<_>^y+nVbXPvap4hF7Df{15b8z)t1v!Q{ff)WN z8NBGg8uZ&Q&(b{S;){!H;lH^E`It_dx*SRRIodt4HsSoX(Ud=x4UK6DoQN%0$j8j} zB{L8-CybL{eY_YL6l?;Bit_v!IfvI>L`sX^N=ASWj&=_Emp!4&-1j+@%RPausmv!3 z3|~m=uJSodQh%QpV4poA@uhZ*tpMhw}> zY9vRp>6J^(!XtFg_NYntG!my-=OsignCYsdBr}(nhG3TKsGepy;<$&PXGsq$ejnS4 z@WQc*9*h(CL@!JD2DBNb1x+e!vU;PH9F7qO%5g)#4jFm2)BzgwN(OlJg{~%8LeKy2 z5`qce`0|7t2}!a)IlIVl82p6QS@ImzEQJS*7+r;-7Uf*Y)`b=@9qnO7&15YROyfWs zPedf}8ma_dkIt>KgT-`U{oAvNR=T+O?ki#y%!R)!8AzE5KH+Q}w72!!Y9v#VK1Y5* zz^dIi#|u4|(XMGNtX}eoxUkYjKFz!HoBPUeEd5VqF}pV28jbZ|o5fp|W}n4kT8ni~ zIIvcq*^kxyt|(=II8grV899AIFNR)BZm+^-)`Z{g$$phaBIKy+Qu81Ej|-5i!m`%hi;I=}{0F+a#-s!4Gsc4@ye^WG=nXVBw@DM=o`UG) zFkayw_WH`li&`;_E87G3boO5Qo5h0R)BwY}_SPH&^4t+!iqBDjX5A_aVj8xgXi|@-eROpKx)~l%mmwC0Eq<@0|J)WKAm~XP0KPr&}p|9{vGE z6y?6aeUV0o;1X;hV)Id+aVXTy`;pr9{?}1d-=;3g=zBsCX4XbJds}H%;5(;?Af%H(G(yvDuwIAXFMcE^l7A4^35Lav8Q&oh!6+|`5O;`^Cp80FU!O#4CT(mi zJUCakIz(!D3sf1ig|3;V7J`t=Ny~+0T202hj?drO@d~$JzdYGe+Ssl^*Q!JQDN30k zAcRC_98*aSf7S_K&?$8*O)cdcngs1_zg;d2W`2qnOeYL6O-58vsn=UD8x!R7gk1F- z5%YqC{k*ueAatfx2v%xP-R5?r8|?*=FU#SNxj1>wpuR?Xtq_>F)Aj!u1)ghRsa6ZoYWH8?oGt`&9AN}ka3oEFSpgE*m&`Hv;c4TTq@a^kS0zhPgUt)8yyfm zvB;Km8|k7c`<5n`_p?pnsm+Qh6P77hDF+9zQ=kYZF;4#fd?O{EgQ`|mbUedPLgE;~ zM!jSd<&3x)yh(!`RruK#EVHuRvD0z1;iTB{jFk?uf0dgJus5nGVd9@#U5h?3~(DCxBG*ckVDUkMicz7&CbO7 zN2884aZ3T6>6W0fk~+0rXGifftXkEkBeLlIQ{&Mx3?@XW2%Dl*lzU#Q$;Ev^ z5Iq4r`E|w}S_!#j+cm<1K%{uQKSw8;{hJU75~yYVTDrkk+h^!J1i62=OdM+Kak*0m z{O$Dccmwk-_@G=`ma%PqT1o=V5_gR-+#ounYU>7D(NbeO7IMv4`xlG?b_#9+4Yfl`iruX4X>p-&Ms#4(eZPbQO9|twf^*y0arfLQo zaJYSOT3lcjdJtAPFOGR6X8qGYgzijx6?^mNiSP^UjIeKP8#?*Oi!_f?eX~xC6QgUv~3pc1zPniU@?)I5K>*&w+>`+L>Ne9Xn^+6&FL z@KUmq4b^krz{!yj(cbL=b?`hB4DYMCy~&k@Y6D7=5vm0dhq~;J;hMEx zv{4aDhq5kw+X0Y#cE05!?WzCb$vmq|nUfL!8@^|<_~37Pc`Ttxy<`e?fo4ze_!pk9 zDE+@2anf9`BXGnkk7RfecXMrt9>J7zXIqFKmQiYSDQGxaoWe!ps3^VhX|MTF-Q<<& z^7huZ!71c>d z#ItMMY}}uoc)w{Z|I%}M{*Aqr^y2?Q(-Z^ygyQ`N0$Tno^Q1;4+y{b_l?^H8xx zeO|V-MqjCG`cdQq&;&+>%gS0SH>!%+?W}=j&TPh}vb#l1Jg#O`#XiEK@($h(FF6<% zUPWHu?IJ1P2${fQ9b3Y`E;QQPjJ(i^*Ve1pCua^2{FYHFw-x`ah0?wj z1IGI#_N$wMLU6eQ;kp-l@bootsa5H0ojqF4Qo|~Bj%tVlf%wTcF8(cUk4omVnOBMR$U76*s5|Fr)v?HOTonld1z^!~KMwh@ zoIkJeR1hZIde*8A<3Dz#aCMo?P6!v@%3N2d!qQs~Ye09Gcgltq-ae0L^M!O4rloXA z4f+dHJhIaf`Wr0=QU>Tld4X&wwAQfaPdSvKzxY&;5I`SnL23&9g_&Hs2ZhEkXJg|< zXzTj_*~o(=)J>v|v+5_MQAz1clzN?WMOm3aP6KDtSDDgYRp;ByvuqjKn8pyqhoKle zJg7hi*ErR28-M!lD*4tmZaDX6NlZ{79~)(bZ0EFHhp&W5~2!#57L=Q>pA2!!W#l70c$<2_K4^CSR`_x z-kR1%Uh`~Pm+FK)Qv0z9oaj}?U0UtfX!@rQ%->`mv7Zu(`A2>ZKOt{|c-J0nZk29D zEd{x6bK}(UB;Ka^4MH|1PCaXe`s@3MTixi7rPVKUSECmQi?UI!Y4e3*j)Bqz6)tu2 zv~>na>4R86x<>P!d+ycKIl4KBhf8vycGlPWuz%320jetr z5sjR@2j;PYuQjMMj1umg4!|14oL%tAG(7nCoe;g#s~fa^`F3Q0LR(WKgU*@A6Yho6 z51B-$O)U+yawzwBcCXVu`z0#1^;Eua^(U4cyxo*N@_^|NpLyr_;zV21v||ce+@yB) z=B>YygmfzpwTP#)KOKUs2HE-XqvaECb#T(37q2!M^?qo&jri&N=~--wihg-xC~KOVT3PyZY?@B2{yO6MgQgdchxaqDan zkzg>LihL!ZcVf4)2(A` z$(B(7|NUX22NuFz8%Na_TTRuM5H=f$%(S0P-Y^UaHocebuKr^aIa!45L5ow$4M)x2 zzO=8Cq6G~|%;P+Uw&Frmj#IdsUa*EgcF-<_@1C-E{Wmwlw0eob_(uY-jgljRDJLZ! zJW-i79UwWMTNO9+?)SKP(3~f2d2EYm)8f&_Xm`x?jx4n_7eg_nG3E=e3`YY%H#1>( zX%h41i7STn_iulFHDL|}gx=^I-b(vBq&+_EG89>5=t@WVj{5c7iJbP$yZ!adTID+6w;kMC~poLi@>SDnm$jD&Iv?a6rzABi8GSiGwF>Rgw}M6IRB^k#Gnx0p9h2Uro>{ni0McH9u*Y z7;K4w70QHGr7ObEcb~C{+((j~Nuf+eKB~nS7&P`KrQZc}q%$@hiybw@s9&4(q!ha& zGwdrimIQPP>=Q4#-j^(oKijX<~SCe7cKg?g-?hru(Ud>JcT)$^DrTC_<@QMN%Gv;J&Tt0{zeCtk(_x zdF=RDXJerRFzHAgT#6O$8e?v3Rk=iJ@Ml1d3+|=2Ke1FNsFq3RJ@#5-yfyG{)1wQW zxIb#0u`OV6kyKCS!`fEx8c@Q7(R9?5S29nyJGy~pmCqOfX2-~9WLk}A_psNuBCTOWk5V0HX0u#Lq&5y~#W+ptt)c?xHd!{r&XMloFA3NxwF9+R?Xi+$)VD94 z0;U_g)I)&@Cq+z3>;dKV!1&^V5Cza zNa3eF3e67o1fUxbxn^bA!8#Le!72un2S;+7ru4~kZ|$q~F=?~I+PaVwEQ99k@*^W} zKB`rJswdj7#LT$)Vjlbg8)MOtpCpzuIWC=9SG#0&AS!fdpE7};=4xufQ@q}ZiE|W8hSAP7R`ridU4ac_65yl8lh0Ny*>}5iXHX6 znd2;C43E0_&KlBzXeqd5e)@by$G#vRN08q% z6*~$~m8BUjHxgFz{H9N441;<5)T#a?uZR~0%{m`Cmc4=MwWh``G@Oo_2%Adn(K?`r z`FS8L?Ce+Sv0Ben3b~Cp>J{HR$Qat!TL_%5H5#?{Q9OWhw4GK5%IDO6l*lvdNtYJ4 zKJ@Mch!Pm5&!(=XYELj{KPf%$4?d1;YE(KjMyCCOe|?xLp@#LUzxcjg++ZOX8=FG8 zaiyhl<3VgnpJX-Il(lg#AsP1N;Xu=bt?K;h%fH?S`I_xcWYT%yrC4$A{|S-h|FL7x+I_q<*@l{- z^H{sY5*rY|s_>Tgft-5(daG&Bx4Vbf5Y+!4{dkuWX0O_KY-ubD)CoqC(nH z475g+Qq#bilQjq+s3o{nwIQt*hCC{}`x2s#{DK#UHNk)#2Q8)f2z9dX&zkSu%y4T% zo0h2HOdM2o+&c1s(F|}vdvR|CC(D*suUqG=`-&FE7j@TrL2+F{e1Yzyw&}P)aGiGZ zRa5Yv8h5M6p5IjZFwv!5HwDVJVtol9tN65mx``Op*s!Bf#zvZ~>I{-5pnOr~&Mlu~ zRL6nGn;W_LZiVAg73Xv9OFbu(RO@CaS8=$;^AofRDU4(7>BJF-kO?<}x$o!T=9V{& zzq4kfz3NpaZ!s9ZgjT%>v(^DwGOY?4viD{a0&+TME$h~amp|aD(*#GRTh2F6SG{LM zzL!{CKS%3}J-2NA)2^-QYG!7?XwSy{ChrHk4sFfg3G%ng8|$HGQ-gJng$C$))9(j$ zfFZ*0@*lctM`{uOS2Up3cs{?XCV?w&(6yem6&Qu!3PCl3V_#~q?Exe%TJY{U1T#Bi%1$=4 zD6;209K(_jjtS+Nz4!QjOtsa1e0lOQkAp-|Tj3cg6s^nMX5QZEmxtlaJfW4<(b|5n zUzj8zLvCDQVG%WQWFi$G6X(@>4UyWj3?Im^u{y>zSKLJ%5NO*csdYwT98sVlHxAzB z#-{dmZ`Sj1lgamuv5=mmDVVg)78a$0%U*>ID3>y%%;mv$A>T=PXpM0QQVV@c3OQ?Q zus0LAPw(i&n%YLrgzAnW--TbflMtqaYVa)g25s8FA8h0WWf8C*I$vE1`$ zRgYC)db*3go@c4{nk=rGIW4>H5e~>OFX<&JsT3DZAI-2~12bcG-hMnV-5Z`j=YB2k zJ_PgO*F2o7qu2BKB3~>i?9bw#%A4#J` zyMXa!7DWo1+3@AgAB|(2XuQ}?h{AT{#JpV!pJGUkg#x(6=x&X^*w zV)JAaRv#MuIc<%ZkZPW3QUFk(LvrGy)o&s{H7>rdb1f7}uE$_(Yaw{C)bfQ3V4e5j zEXVc#vCioBVOZ_TdtHO8J0euLGSap*k(Sq3YCn6;q(*gQq4xCGN-ix%bGJ#O&vDn( z$44Chg511>GR8;iLU{WX>5Wht`^{PKxgj3AG9L%Cv17_fvQ>Jy;S=o4X z6qzjb)#dyD8HPD;RhDo62$J*yhV+vv!wJ_0F=1H|@nt0bkpgAqrcIzNvli;l?|?eV z6xFM3W;Q>ohoapBA*^@Vwqgw&w^PU*@q9AaZ9mKB>w=d#{W%-}yL)8XYmY$z+ zH2e5)>Q>SUnU|gsll_ma{8%pOLhtee>G`q!glawBMMbxSE6-Xri2fv|QBDU3$p(^c~Y16Jt@ z3cZv6`an1c^uGRfw?b8IBK=k`(;gV@fCQ=Lu|dBz3N4myngkbKD@2?Z)qJ4ZmsB($ zw)f93c4)k#tlZfq#bN41kzux(6>UZ0#Q7|1Y9#hKvbXU3RU^k*JlpDrP)R%YS^koj zq%Sv2^sW4CF^|heFUvg$>&3H6^;nj)3r&`c3h zC_dLr9mOQSNsE|JAMDj4DHuhr<}2t580^Mn@#4{bNhCu(&FoRfRWMhq+-ijHyPzvo z+W{dajC2JiS7h}F6klxlo(dc6oDt?fnTQ(kKdE|hy+kg8#t%#$eH4NZP}8bR@fo$t zrLXnL$CfcqPjs6RU>1T3<#(WLDYKbntIH>C_8doo#9Nq0JIWxa?IQZY<)B;Lz?4jN zCASa_dUo+XK=Pegz)4O}41WjAkad|3{LP&4i7FGm`=?Uqzt0<~;CmkrGUpo71s$sSooY%upF-ol2Xfx)4^WVgIuN zl02OKMI+C@>!4fMVmlWvHf0(=Yt%b3=fq3&Mm9UjUc+g3Sf41s3%jK(Sn%Mz_kd9ip6;E*_7}^Z9|WFPeGt+6=De!K>A! z1-GTSTk@5j1PWKtpbMQwj>{Zw)i^@BA!S^f8F`;bJ}mciI5(Q8vO7W~b>{SR=MBtzomAqeSvY?*x9vv+)7|4(6U2z&wHt^9}X7> zXK&X>m67iK(7PBqW_?ng*c7}w504%wP>@&4zkk#Fos*JzlUi!GXhiHiMN|a0t+b&= zZw4Y7GTFLi#EK4c#E&+J`Xqk@?lc-#G=uDLJ5Z;*N1bRabm9B6!@bZcU%ka%8`-df zg^>rlK$~Xmo7Di$Mr;>`41uQ;#OfrxAzooD_s@e9_7V67&8n>+r_*IByFE zoG5?U8*<|;{%M1Pgq%ouejp;nMwQtkAqZUHOf8rg>#aIrCizp4;hh#%%GG~P1>#U+ zYrn!~>@h}9uv1^USybMnK@7G&qT^|OV?6!DEkal=aAPQwxjsB9_V3Yq;D0``XI@)D zDDXWFIfSzbz#Cfk$T)M3KbXX7sxOgG@4>a zR))g}O)HsQ(#j!^PXZ1E>U_5uU3Nw`a#|lVyl>hC92*F{QQg(sM{!i7ZRGaQkDas2 zxaA+Uu}AVIozxeHpCcjj@}p}ze1XBCBOddc_2Oy7iv7i+t5&C)Zp=6QigFu&mVf=VcM+!cKC90+w;o`Lfr6WW!$M$Xx`_b zAviHd1N?#d){j~Io#$qcTt?>JicO$SAMcg7vIH>p|M6X%G*I5zHt(fV{;s8NEIIaQ L+&Aq<&XoNZd%sg^ diff --git a/reference/diagnostics-2.png b/reference/diagnostics-2.png index 90ad17ee47cb7b2a5e99f1a5bf862f50a4650af4..dbd25fbb694b55f830dbe620e16db1ffb4603dda 100644 GIT binary patch literal 57811 zcmeFXcT`hp_dgo2prSAiub|W!QF&F0D7}uOps2t|@1RI0gkorsCZp(JKtM&M#DW3| zN$4dZB&dMYh!{dkKoF1=LJNUF$nPY~_q*=8_wW19UDvfFkaM21pS|~Ie|CA!!@uk< z9oVP14+H`ou(^EE0R-9=4+8DDxo0=<&FHh&3&6+jn^!Mg1U`X(>lg4Tz{lRm%kD8C zkV=N=zeM)*VgLyA8_4G3d8hb77A>wZ+}(Xb$RVf%%oN_;J{magSJMRATYSQoM-n;wu+`XI|k^AG@;?|ZM6cIDe zc7!?48sOp zK^4Q1GKw_R&pMyto)nz9jPNL`Kfi7r5Key6aD1a6DXJdLvQIhlA_A4=#KB;iI&U{r zYy~KBF)tlGXq^6|L|#^BfoWOCYpY~Tk!INS<(`4+eA&~?pVdmB+Xajw3P;bp(X^X} z%y*4@5%f0o!ff!=WIPHxfI>ONRV0@sp69lMP^j@MS7dD{OWU%jwU(V#ojws9klvc4!NO; zKiG2*yte>$P5pRlAjT(YO10r$dav%0)T;*p5o;sX^fC7>G%n8nOWlActeIKJV2=7| z>!b#(^)eK@BX-8z@ca<&S~lN&Z!S49d$jfY#Pj{6y*uM?EcPLNYCH8TeQ1q*G-Dhk zt+Yei%c;myUJp89A;492g_1Q`8|dChLBk& zUhw|M(RUs{aa2s>5z$-k50ZpGRW&!RDvf7Dg2O*9BQp%^Db`s|ab+!~i$*`|PAoUS zNetv7R|7Y+!vw79IOad_;$`3KNj6+7%CzFfL>ST%;VKI-{yB$F$=_$fT^10!3p=tlkI<+pEpY>@>97-q!C znkKcZulO6czrB8~w7rgwQljQB8(_(8gY4<30HSv(sB%ZCq4r3YZGzyts*Z4#G8&{Q z{6UpcQs8(lc7V;!G7xrjOAqtdyy+wyA9dIZMW&o*aEZlw z+q9;Mp`1O3xy`{`cUB41Z=1m$wk0=V&GNTMy~APp3CM8>QO_+O2WA@ zgvzL?nim8wUsJC6xo5=T13!9$dSDgs(XHx}16xF``Z#(=4XkdJh6}bfS1?TSZR&r5 zLl_6}Wg`}ABB*Z~rW0Wa#pV3@_TE7krmqmUYy)La8(;-7^q~q&FN}ORKMphP2G^V0VT%c!OBN2a*vxJi$-ttc6WigE@7+qS%ky8iTTMr62VwiF@a92muKt=C z))C}(!vmL6YlFf*o zOqKHFn;D2Om%r{DWQLW-#_ULJf0U5zEDT9ch)s+kxOUWV#;l4ud<~1g&dgqWk&I0& z&`R_iyxDiovMH0F4V_aeC5+5;TWCk{nyW%LCVi3zi=Nk63RZRpDCntHSq|I2|F%dB z{6=(7jk`Yj%3Ag#IlPL_)0aHD!5z6tcbVJ7=o;>di>f0TSn1LPrJH> zZ~e!0a#?c2uwlFgwzOMcHG4F)D=S73+{~}{Y}n+U<8THO?ZfzS;L>M=7MZ&NYUH7z zqxIdkD8#UpAhVh!xT7%(FLJw=6m=Z|eKs3A_sy)-c^ubTn@xYkx(9!<+qCL4IPxBY zGm@D2Fw9UDLeHkkOAXttz6jtj^FtolEFBtsK6{U%6pZXJ`o-)`MJx_bx+d#|7+Y(Asp4K-NdOD3a z^d^L^GlS^k=&5-M{ZVuai(8i;QQ5h%%qYjPriO1+=7F0Yu+M_eybjV!tSq7%$rg^R z{mvPrTu{osq5ZX*w_H?c7<=>3YMWKkpnD%ywdVY~zrDw*J4F_JhDK)J9L^luP5icJ zDWXGb6hW0o1r`G=#5&harxM@rvs8L`Ffdpsy!@6r%|_`2v%R9POqr&XwkLhCZmH}y zg=wtvW1`+zDZ8$AL-&DVqN4`XI-eV)eu(f2$qQ&HTQm}$gv<3A!}GpWT)On$JJ=59 zHM7Q4r%?5it1L!7JMwWy1}qcWXZdX>mwUPhw?n6_!{4sAgrv`5zpUK3t`jn)_Sp_i zKNC>gK@J`bWX`)y<-B3m)uS=re*S(N0p)tdP_KO6x(?Kkb~>&(X=^sPNNWk&>h#Ydl59at7le`_z!{=ZEN|x1=>D~>wgqrd-bl++3`K`6K9in>iW;!7+f-}J|%{myYa9^|4c$P zxk9z!{Q6NU)eg+ty|M=13{3xGs}vcGSNNG}R_vYBZe}{yS<8^1)55#0!t>P~-@`_0 z4^{419-2W#dzlTcCf-LcwHTq2OxG(+tK3r?7*vCJj&U9@OD|%{K3TXX_g~Y!3)<02 zW{K@)I?t;s-hx$s&_17HT|oUZK|^g@swq3(cOYi1FLcUG3R|o{M5}N*mbvMLlArK~ z6jPl?y|<2Loz85ulkmIe^?q2v({L<3pas^xgfa7PIj5LLhR>K1;VE;4P>JQoN4j4Q zp8Gx-D4a9~r#=WFK$F9|R)~55{5ZQ8TLI@roTlE~8A*I@kh@R;<>3o7A%uqBvf08T z%Sru@*0XG11UV0qn~9#B=T#Nh(H}Lv)t|X_jx`Z~WJ4z}x7Ao*uvmwpPj-*a@8aWw zH2r}rhw5`1qy=h*y>#BU&c+t-IadZFT1W39&RlY{j)38`~yz1m~#RrSppCC?^d|WbZ z-eP(F2v>8-;-(8|A(;F9$Z~|<#CN+MT=quSk!7u=7<6=M+_u5qWSxd36-gH4rYp$L z=GxK`)LozXe2n2V!ByY1a$)_wFQ}NllGgP;q4g2(J@>uYR@u0orTM!}BKWV^;rFwj z6GwIjln+^ne zdp4KzCmsb5-tx1La1h~7S6^Fs{#b{iHhNC6nKc-qcF4*r#LUZ4uR%S9zIcu$yRy%D z%}a`QH2X9vx#+|16VkgfV{X)>HxDG=8!r#*iHDp{LlTP@>D-3?EVAB)q|kq~ER3LF zf07uGKab{f9p5K;D$Vx2teY<$duXm@kmw!P)ogmCe;v_aM639tzuWKy&yD+!mUgL2 zkf3J+ug|=>9`}+y6?_g=-6GG{r3i~0y;0F-rWNnSy7#tRH4HXuUF?S6VF~G%zb}PR z^21+i;p?t!th z;4A!N%FUvCyf+@=@tEKEmI79^|Jxj!XgigWNrujGhV-bzw~ijd<3?oV>9FMdcwz*0URjV`44WeQ4 zW9OFptk->oE&X|6rT=;z0;t}l*MaV`sO^e{CDZyWYEEtNiQpSAWy$dz*2(EhC@Dje zea%(pyYr?oqM*aT-fZs^cnfgoxj+AD_A|n z14tQZ*(R|JIg%5#kzYd zskq88q5Do>OjVF)9zRFNJ44yV+F>qs6!#qwDu&D`E_?s}+Tk`q#N9~YPSRn*NTvm*VhOr0BNb?m2TvEM+#a#DtItdFYlp?rKWx@m|D8l$eOVop&y0KPdwzVJb!n^*!oN3AD>3?v{e}Uk&U;6B8rTCHu%%lL zCwp0XMkNo#yeS%(Nn3K~s(#|uT}ItDTmCurG60hA4{we18IC_S)lcbFT$d|lcQ*|G zNzfSWGO*O#Sg&qaPd=kXOz91p=(LJR&qSsaofV*wqQrJUabwa&!&8vn5l3;R|rBy?$;BoBxQ-(n_BTLZ zWC0IKiLIE73ecdQ1XYyb^(7zG_&~~A(741f%XVe(4}YBh)Q9y+=)gEQecCG^FTjkL zqsCsFI^l}=W*SypP+OI6`yzRe6z!Z{SXF_xkl{KP)UN-ay6ko`!pl)Pd}?Na`OEpJ z{4g^H^n8t4%-9^xbhz&Qx0p>X6MpHREC@$QPxUx0JPCZuvI0?brvdZD0}F@yC^%bw zb)$Chx*e6$#yJqPV*K?iycGsp#4kR{HgyrKscJ&-qfo$NjzK-k5O_fjd-L*E;Yldl zd28G%qT33bf5~b53+pnhwwlYpt-GAU};mX7!|wwZ+exbo74?5U)&*xfKV z%CBv|H%~*3n}zVLXt&IgtPA4!F9Ru5vK`S=n9zR5Gr?Br)2-`3JHGnyz|S{XLC&19 zKUEa!29@iUscYBZtC|Yk7XFtsP$n7G&d}6mSW>-qeu%Y@1-`hgMU~O zShq$1!kw~&k z%Bz%gEqdWYw7>zn(f-O8Hl5p!?H|~!KKc(a!px(wYrVLba4*Edg%GF&RYkSbBz9$a z)G8yw@012kC-`u7z@Mm@9;vuti9w)^1}`_9VctzD-KIF8M=`G(HlA_=EPGBtFL?qV z->$bE?IYyH1=HVE8c-|^3?u>98m{P8iKnivY zqCXb{{w7ePG&sd!ENas0wZ3kkTp?$Br$)9&G77G;*of-_n#>5-9^Mfd(VU(T$M98L zhmKcw-iA~F?eo=@L+`KE4EK(S3EYPJyghL<6Wqfqg+onx&wKl3)|O2TYbYs1~gBSA%#c_df$QouB>$dt@aP!3m ze;uC6G9TG|xspdw88JI7SZ6$gla>Qj#}6-r)6X{$*1S*=!&GO~9j{>qplNMU2O^CS zbA75ruxVY%Ln&&IM(wszDD7>O1d63ABy?x2@9?VXVv_UJo23oB`jrn0K`%=LEl{f_#&hSlw6f{Ze>(Q(rEF}Cb1k>`CKiRIEfZ7qPYz?dPRvnDL zxcWYis-@B0=%bFHxx+gYEk{0IUz=%9UU$t4h@hAOh8!l#^6T1?E6czOTkSj^Fmjb2 zA3EI3ZMMFYKC6$>t>5tH>xpy2vnH(22Kufun&Xhvd#ec%zS+1Xl}B}fJxFd|G~fEl zu%J+#4Iw*y#yter)d^o0Q%8NEj|zCR9#B-IcbzK`6Tk!)bPf9A{p{V5`6++#sgC9s z!AsQ%!ql&$yF`CS{xrk!bK9q)3z|ZvqH5uH@oLvFv7#%f_Y&>Y|JbN!oQJo9`ogs) zV8hnM<-XyGWST#G?3U;jkmi>~5GTSX+dCd5A^Lj=n#%j02{|kJ9aOgr;$U4}egA|3 z*HTqRx^om#^_agB3z^ED~PV9P7O*$KuiK&#+c}) zZhT|(KsmnkiJLY9UIE!7(xN*^pTaz)yNZniUaEN;_Nw)jG2=!&Abz4tpqUAO^sa#H zYcFQVRNI)$BT!mA?Y2&lztXn1Nu|I_J0)edI`h48lC^hfMZx^Xm~eH`(n?udX`{22 z94{WPwz(;&Vq@dO5vX_bJm)mK(Mog!DeX5Bp0{;}HXc`WwiiVen4_dPAHN>btCk8Lns?3I6`M7 z+4k6y#9>_GeElW17~y_Jo^|ri%?A(1vvVlJ%=b-+>g*3yj5rOU<$Ndwf-Vpy*KduW2 zd>n%v6V^ZJjXL<*B4+r2=q|rG3orAQ{{9@5UnabpyPagqldExE^0Vs=45G6RMtkIK ztX3D<#j=WJEmEcO?7TA}au_~@weybMA@h1!iFn2AHSPwqfDuT6BfEh^7VN=qNtb{_ zz_(XJ=IBQB7@jPO=ylUnwA!ukw3Dwp?X^jmL+lNxNAb%2r0GSt*N1GM*bAcTLqHE` zUMkm7l$ZqNFd9w>iR7;yaUf+tl<0Emj_D^1PepqO@ih*jo<~x1ibF=YnqzUdY}lrM zl?03K0nL1mrtn;|!%I$}`M0@DN}l3Ln-}LK=+mYSMg5=kqpv`txWkNPxHdy{cV!pG z)4VzHFKC<1Fkb0AFgrlF+11EMNzmI&9ccA9nE&4-&)(;&w(x^HeLV=;v_X;4+*Ew& zhlA#P;8~f@*ziZKE0c^j$Lpl;O|K;X&$|GtJ?1E0-LtajiVMyU4rydLkwaraygZ7OhOqDD{4O@9b#Z6BXvr#~1|{?$ zG}IYUI*>v~Z&(I&-$FIS3?r9bJL_!eKzn0?y2|S^KYNmxpnj6uq|qzvmJZ?4f0+>B zYREFe$-GI|ZDeui+bAkSZ_*Y2JE^-R(oSP{kT59B*ruKl%$?Gp#1M?@qjI(-x{T&9 z`ru}`{95^JekP;f<@ms~WHU=TI|Qt;_SAcj+s$O~Uw9AJX-YN&B0#9Q6-F{e$s_Z8 z(fDQaM5ei0F-T|QLzu_t@0hx79Ht(FF=SO^0uG9IMIROjSnr zp^2h&;GjJ9!bIkvK#&HA_F_Zx%^8{iQe|cvdPsJP%pyo1uc75XoCEqZS8$k`p zTc=XRR8-?t0~~Z;fP3NfquCbk4vq=30spVU&nXh`E8G7iXlJ}1t(ZDNVGdHF&O>LE zM;kBib{AoI2-Z+uOnacNl6_K;iShyT95%Dsf?+Kz5D8`sl6;!N>*|PUtbz z7QTHVObx3Y9-ddDr2Zdz3%{6QtwBj3GiqS81!zkN&Ue{nZm}*e1*?}KR>v)-mjB+m z17~XAmF1lB<>zf)gH0>QbQMmqLJMwI=TX}zahkaA6zSL@x;xfYXGKnA1ZA&$l&TBi zZQW3JDN@79(CsGP;H?x#`DZKMD8<1Wy(rz4T}QwyD7X;y5|VCh*^Yio3E3|n*QLzh zV<~kgS@LUb;4!HmStgW^O6jFV<|kqH+!6*AWv^N89XV0tLVJ@K>7N0!;o4J1HH0m< z9kw1bT+nttPZHuUOy$2&(8B*N+Q`PYd{-jvp?xN?dhrJ@nen9@*afTfK=NZRH$uRY z2o9;eg&s+;sksFm#1rqaJu4P1x_xpPk3l-3^%a;Jl$3#ku2-DH>LP=REOp{|I^f+7 zZiBQkF~ZHfn!nZlTd4l->#&<#7GvOQsKROMRB-}w`Iy77gX`@dH(O7koK_4u?Bn2F zUHHBVxg8RIO?KE8{J|l?qz!OlzKqgv5>}SPR>|&J5Ti8Ot1dB;`-Sl`uR7a_=pnem zO*>wfnRGEVE+yd(v};)O7qb`epyP!6Hg&~%!|otY_$4v;l{YGj_w8VoX%p3#08>d9fa_sUEp zSMw)+jJppIUg@5lNYHd;U1O&Cln0Qp^UvhIUGBBEZ+E zR4%SCQi7XZfqx=kjxxxd$kS+c){$`7UvD zU;Wjqj3k?5A{o_6k$b$p96p1#o~K=ny-wwW7H8wG%ZeO(KF%7*=+`L>gRp(cJPwyyi57(41aXnRl1`f-#Wv1Rlz)dI1b|^ zxUDgBcesmrmk~vARv7=$v>j~q%vH*=Y1Q%=3dQM?V{E(tag>K7Ydb9!kT2nAv;{L?hbgrcY7AJ zJMK|DPlzdW(5s4{#yCjfo(Mpc6<;@RO625@>^f~D=Ezj%$aL$!coLLpjQ~zXv70%H zzaqM7yL~ml`0M2x>pvNu$hUb*#L$u(Yg5)9yZ!b__=v0{&t74eDy7kMik^78nPU$Q zB~1ZqH?p>=J2UzzLkgAQOnv!8a0x(SIVAxA2+MPux>GS^`M=wXdj^hB2ukL$#9)Wjb%r7En=rwK zeRs#dIwdqFavw7?P$&SJUp}KZRu~@v$;!e1N^VC3si397B*|e_7RU}dWqrO5_=&%^ zYb!r|mdp6i9#%5DgyqJ~fRpBZj}x^u|K8Tg6Y3)7Mq9v^<;BhbH+BFTXFS`!TF?~B ztps#FZQDh6HE-e*DIL$gX&bF<9v7%fw?4dkY2mC_x^{xfLFSos^inuFWG$2ex zBS68GIIxG+5@^GgGyslp06YIdIfPUzQ@!q;;;{OVaRi`yo+g08e=D_&(Uj1g(3DrW z%@S4-MGiGyW>HrdDB=0Lcx~jGa!849{B3oWkNr05zWQI!Y(}YT?WmmG-jq!CfZ~q# z<~SUn?gvH!;0Qw?!INb6igTdy9aoI1mw5$lu!LoaEOjP26ybqAaw>C0TGNaIG#CK;Fs2`g~7_Oc~cfzuB_CsHdA#RRx2 zzM=3*k*^>SI3)4}jO8c0Etv&z#U{ru@$cFUOQA{)qFKrDfIZ~@5W~_h1s9-x;3EMw zpb;P(0+PxooQ@|+XowZAOi@P9(*Xz4wjHRqKgD?6GV=0vR(IsMm%CY)wjU1T z)BK~cNK0TQCyZW7Nxiq7t)9>KFp>dTzD6fE!nqZU zhZIxbxv5vSv7tWeB#Tz{@=kDA4xjK)Gb2RNBwLUUzW@qm8$JONOM^+a6#k_x2wyF>bDec0La7}-s@_HK+RW{ zrS;kybo#tlBR8uc7vQXFh%i^es-Zvt&0CTHo4IL;F+)1lg8$iK`;k$D4p1R&hW@I*!uz0*vMIQp`q`nx#&>@SU+7y_5J7z5s|I=T5Bj znY`_b!TDI=h2J;0))JN@MF=jr8BZ0VhO1$ndQAP;lc24U_`w6$f zy81PTAtPczAC;mfLNGvEnW)VC0lid#y;!Ls=~8DN0C0$Hd_=)p&B%RMyMN;GcI4MH&r(t_s?Ic^4M+xNz}Ymh4>PvYccrr{3V3%s7|OL7 z&OrK>CqtJELDJjAA3h@wv^jt)=;;2dyhWgOB8zsF0Za%0SXSl$P6YU#Q;pd?4x}_8 zO6nvS4R~9x!F}<&HcpieKw#8GT7GF$s3j9$!n!Jp9tV!iyZ_WVjrd+ z5ub|9FZ_!J`nd3AYeizP>lpEF(p~jVsu2t zd$sVlfGX$!(A6N535gC|41kVQ6|t96(>aNhk0>b@*TN?R{K0PmE+elyL>`2%Q;?va zLn%2Mf(!q^T=%Zmot%+E@|++jx_eTf>@!(F-TiUFfQ?tJJ?<;cDX97q%5b7g<=5tg zUySdtG>Bda=W=I&7J{kW(y7_0q&T`|1-wfSBtQvhs6VNeS{o|_(x@ke{cK1(HP5^u z>Jbhgj%YU(pa7DyKa5WxU~pm3+c|1??}=-pA*CQ!VO=65j5nf&R;B)YzN<16sBZl< zPAX;@NLJaGM?`*wcASvFCBX??7W&1*3q+4HMqb7F@L zx8)s<;^onMsy`j*v;BAg&M-b>Kb4`IKKyBl`O^!}{3qJIUOh+qsgfY7+G0MnwKF;}op95Xe?VAkKL))GCu)QCpXw zK4EDzS!W>%$6tE6tMasD^VLdf8ZAI4n;_2lmCy#Duua0$k>(4KQcgjdRoIR%yLHsQS@KL3Z5y?QK-=8_jHPO9hG&sM zuJ#r5dZ5&){2<=4UlYdNyq5oZ(BV+Ar+HIOaq9pYbggax#F?YW+HYAj@M$XF7STYB zonndBO;rM(QN!5owy^zk znXFsvg_+ADCNX-X?P}i4rw&Tu5#cL?gjV2`rSckJs_4-{J8R4OZk%ch2BR|`;4Rg^ z3ynski_?VBHH@bqh0@`PC&FCS^*eyrK~sA(`4VVv`z|l>IF;u4$8N?trZl&jI~% z08GEpJ+lg6I!-TAT`fBaN}$v8YMx5#%UwW!z7J?syS14f&a-u^N7M!% zCO{2iT5$=o{}}37kTZdq1F&VV5dr5L#?$LSE~A2=k&ZHwth!l)tWutP?1j}D_D-d2 z*ffp^Y3`mLkED%bM*_T2jNKHh-BxlmS2j;{m<5cMQ3xb`;4*%pjgo;vU@)#pDR0&P z17a!hBG}ZfAYclsfk81h;@qi7JXpQ=!yUH)zIfWx9kty4TL>bI-NNdn$kslq z|0R{ypB`t^7s37!TY>A7VK&X!aJ>Sw(VpN^=j<@{IiV-C`^bQ_sKn6h%VA(B-6o64 z+~X9(+ml9TL9AjB=T|~yog7UG)g2zQHGrhvp6pyY)0Dtn9kdYY)GeC)M>JCyg5{%C zza3VZSu-CBQkq+hzIkg{<7QXt5}EF49jBr&+(Ph=IdrzyfnBQ^~)tutl^N1Igyo6D{5* ze)uA4y8QT$r?+bpBi|Y>S25%$-X>M~E9b?vkmg5Vnt*bxjYU9h)OUS%1-e1f**y!G z2TW%y7?wse1g5Lj{;p&CC?a?Y8vB>HD9F6s1Wd_HJ@7=n6Zh}2d`Zm$5NDsU1Hkl+ z3@}*v)g2gD8ZObkdDeuM!+@DCUI$80050q%yD8Nbe>BaNfam8h{^<^r2QdL*m5#_7 z6w2B4!=_*3)lf-6wA zmR(ABCo{!m);YT@+0q<1zfJu(wZg!Q#tg+zyuSc_*WU~^(ME?Fw1c%m1kJuu6wzpJ zi-oALFj|iryscA~rCq-s6Yy9cNKU6Q9)erYh%nv-HRM(t6n?y3I(1$5^GNQVg^2Mf zlf{@~SHWdq$WozAQ|Es!*_?qlJIogA33YTzD6k76VtqaxNEtwp>tbbBX4?Hi#o46? z0Sszb22vc3Gq&i`1)0hiq_AaPC`9pJ0JjV%qbwW+%Rhh)vIB`IXcqo#pOE0Zi17rB z@$5S=YJUcJr+plZ?J2mEe~hwe^_ffPAQ635QD#%!g`a ziXxd51q9U4&)2X`pV=D9fTDSVgwfE-gm*4BV&|-#9d@CKA#^fy_Ze{c8s_17i3(7O ztEVefDb}4@Eyg6ZEE&g-4C5Kix>#QK4tNL@DOEe;^I7{S0%QYp&W~fNMEp=ps2xOS z**Dbt%;*}8EaJ4EU-0f0SMC{9G%#A|gRto{93{h5p(Tu`qH)RFGI_2)`<=|fz=gNMwssc&ged0z;Chn8}&wq~Xk-Sp#+tEGy{`+<3#eY`b-+s4GLQ>-B zFTduFak6o=uB6xJ0dfF!USY5uIpT>m8*X0-YNNTCPe%RL# z8;6ZEt)72;Ow~%w{8{v~NP6?Z&$r*~Ocxlj@=X0kbh+~=uA&t@-L?~Z%qI7ns{9Ta z3Dw`tv)6TWZ>)qGw;#7TB_r3o%dj{;O0^`enrAcdYV%JehmEfUNCY8Y1rCZpj|`^0 zxM;X?ZQ)ApF&i`+Op;B_pG%fmJMMQgE6OJKpN^f7hZTS7eL>jrE<#KX+g|&_b-jqQ zdk`6=6eii=3iek$WAO2CM($o8K!tLB@XkW19u4!jrXxcthl~Baa!V%9wicwl9_h4@ zDa^ei=>0vh=S{rakW8cYdb0T&KqGXL^7NYNLffKON2ku^aK^kUemz*`Q(_*aRbGnBaIK~U`3xE zU5r_{JKF4=;A#)3}_y=qr)Dr{amPTW(2i z)m_6Ky=4>ZV@M}i35yFnB>5gm=RqhP_Htp!YBk93?3n{=ignz{q|E29<}dxoJ8YR3 zkKNzx=gHAP#`|{pc>>nUy+0UAy79?NJ@a_?mesYwRq2VkI{*l5+}+YHd$nBVg!UGs zc|Z8ar|s_$$A=HU+DU5fm{$+XC&)IMxhJ2g)aKgvxLjPFcnUnK>)nocwFRj+!KKl~ zaVk-5f%53FV>ay0eRRpgSM_>`>2w>~?88t>Kuo5c)vdd(fRs}iIiL3Oif$to))hWE z7vvt(@7f8mGf9I#-1{N%1ax*s=|SgGyEpGzo{J^?1Gbq+NejA6<_1cRw@RwoIMiQT zn7MU=Acv>!Fa^Dhesp!(Z~MXT>rxStkjKSLnk-B9QKzo9jRRBU)x;C-1#VpKu8Y_q zsXR`{@rK0SP`?Ub_s7Z&R7eIFVFWhvnXkk(Da;AG=HoUF(l0J?_R%XMLX%v?a9dY8 zz>?ZbU%3-5vv6)gMTFN-9hZf`SH=58XtHrI*4m-G|BmYOLd^n+!atA2`SzUDw#juW zP5iZ)H)w1JFOb=f;%`+pOXdJVolbEivp}o6txt5%pXk%=)4+TKfZ>qG4bQ%AT^}rR z{e5eVO7+MCbH<cZ}dPa>n244#!)(~C5!46J5BC&F*$vQno1 zlYh)6R8p>adg=J2W4vfrj1a2{X_5qKva`B0H81U4nrrkwSAp-fKFJ>tZMxn-vTw&s zUj5BA(}gHaM$WNA1zL({|Kju|AJb)?BGr&MjG=Z6>B$c!LNbQ=$O>4KJJK6DSs1EV z>0TW!5ht#auyw99^)Q*!y+4+%ZilS>;e zc}TnTuo#~?eHhRZeg;^7;Iiz0TLvfUWdLG0aUcR!VUns#$|Zg66g$L37@f;4k;jy*-}rSJbXkRCUR#9~7i7O`kP|3d90M48M{n--M?T|b({ zpg=0>Oq_9~X=UYHzsQhXqnG{S-Vo zw)2Vjn6nuxuhcU`zjoEn1XZHnnB1SY89DN)r@=8TY9(3KGlMp*j#}j$Jp* z5VPOOto4T9F}Er#28nlreO*^i^N!gl?w4yeF2|e!*OsSTqSVjmHKN~mq|Hl(U%I}r zJZR&EbS4y?JkoCTL`=ZtMeyCL>NBHd778Xs|6O=|ti0&?L~kddMC#~OVC7zb?umdt zl$;XcRQZ7j=HE!L3T>i(>83bN*}+F9MoH4QiPan>(hudS++!#00ac<;%}I2&19#J$ zM@`;}mTLjamkvaPMN{hML;olLl*CqR>#B8lef3|*r`b!0;yy$(HmAmTI-@<8$_cZTnf*{yoQJR;?Q(GfTE zjz)mePMwaAS%KkveVmx@tki$faTC?o-kyGzX_G?cDvk|0bqNb!h}g^l<$loU*?gOd zy@c=Y`)&bWj00pAeA3T?rg7Ob?6JRV>BdE{^n<-p9+Z~boC4G8KK7&kTlOn=4&Sr6 zJ3e#8NFeVg>lZIde@^m%0qad^o|?BMTqV^c20m0&5pUC7Oh?XhR4}Dyx{Gp zF_|aSPks9E*4pk*CHu!ERN4NljQeNT9&M|5#1`~kB0EntpD3v;bxp*=xm`UwA?L5X zhA~rH$L1wndew)N!S=j*dF~i60y+SlIC4&e@shLdyPn%!i}o_s7Ai#k_l$+ew4u9B z#7md#h&PSgzwk?vhK3rD3!By5i7HxlPSbtw>Oak!O*VOl{=CpvCa^JiKA~m zzlrwRa(%-cs~kI;cdWeb`Gi*GjZfiKc@In8OZ`EEgWmrt_pa#T%88cj%Xi16yoxm~ z54+{_H3Cl`m1_o|ate8nL|-WuPP&r#BEok-i84uGFAJCY^U}K(!mcp{km!KQDQxcq z2;kX$oz?k3_9>Ml&xpw3>rwsF;<&Z30s=R3Vt_PsYdD?s@S;_}l9)2}f=|Q)%z3OX zPiA5VN$=*-AOD~pbbiA~%Fp})tatF^2gJ?q`o_xq_>FyaKjx8=n< zIWnJ0>Aef3C%~el>HzcDy>=(s)5LvMIdb2^Iln+V02apr-T*hMJs1usc7t8D_w7OIc>%m%z=!()au5+XS)3DcJ*+e;RdR*|e^ggUH$J({@Je$(L%h+m4ILqvah*)}VweoW1l zG<;kfrwP&q8T5*f=VS@gmDQ&r_4 zP1oH(dhKM?)wCjatG3DEB5$|Vo&b_`Xp0HOUr$Lj+pTN-vD11o21HuQr>JBe|SpDSls+0wuIf{=%!AlKDFmdVb!MziO6ih~p3q zR(Yc}T2L~(m-mYx_L8^)IHd|Cs~0w$PxD-oOg!nmm6$%hC7PtM(@-|#gYuI3lAivH z89)tG0Hpi}M1@FHv)nxMFLs#46#CDA~+u5lusvPYy!xg|%^=UCPuA5e>35Btnsw}WekBahEj zO=U0btw9qqj1IywSD=lDhU5x(wsDuP|%OL-HkvMof?Q|+3)fJh% zwQoUf;^>4NX_%ytmXUhyzTVf>bNh#mJl`Fjqv^TFYtJ>Qt*kahV4=fkr6})mr;Wab ze(6tl6FPSCYaZB+Svc0>aF9VTD$k*2|~I-kPsx4 z4ru`c1(XmZh90_0>6{Udf|P)CDU1qI14!3K5e|YNNJ);QbmuVe?!ohXKfibWgxPVg zd&PBKYwbNovvqocvt|F@$lw17btgNaMcm9BC0yEM$k&Mk?`0TV6kyc=UhCU9M;C!h zHomx|)$Do2rz{4*6JP-DbyXe#LFy5c%1_SGYUE$i5OgVPqSb1)PCg0m!`?9<&Pq-T zX@Qiai)N9YFe|VG3Vr}%Cdsg%mt*8iZ2-RMc!`P=3>h#&F()^&Cdv(F>r#^O?7#jQ z*d8X)g`UDWAMgk8z-VDp_c%AQCcx6{YO{l?2lRmfo#5Cmb=v^({>VF}U%81J_u*Rm zR+~Grf}?{gEf()1^VF4>3&5k*U{qT86)RGAjkUWx;DSsm$h~Mi`BW~i!oum?HD{B> zso`=E@#PA__@#+5kfDO)clp7*!j5^QMMMy;+P+6n=Vj6AJ!l?uomZtLoJoNRA=HWm z*KrDlkm4VRKbhlz3WGA6LQJ|%0Lu*W@#TW32h09YUGjz9(W#y}AEnAu($~u8&Lv^a z(0PFhmBU)Gu8vE!Cp^fyWPHu2EGi^^_we}0-n6Rhb27iy#}^b+oHXS7muZVQZmVFN=N1(V*+dO@ssN=Ne3aoGj6pFh^ppp>>4b${h33xU)1u1 zyjDW_hQP-_HX{@-NK?s);T~I9Q}^^VxhAsSGQ<5tzcHP#>R+GF0cy1p7#8WnZ2L&U zscu;9RYgFG7nmI1`Z9+3mgnQQ_IRRO8m$}i-wj^Vk6r5i}y9`<-8w6w^f?$u;FO~3J$`@r`>Ef_ zd#^Ay2Aso=Bn+!B>yrC-)5%j+Oe-4vo|GtUC`(}GZrvXN93G$~LYbu3FRYn5@8tC; zzml$cY7*(gqTi-08tG9=8cS*gN(G=RJ5-QKxr{lXe89Q^5-@A1*BnzScqjZr3*s}$ z88JJw>fn;Qlu)J7str_HBL3xMH9}eYL?q(iNa{saa!%bVWhqCQ6krGmQ#m$;w8Bw> z#(5qsBK>QsN-1`Q3knwza;Ez*Z((n~6PeEed3!gft z)cn=ZzyDrS0&AU1SJ+nvb=w28{5+zO2My056{hVH)he8mwj@V11b!&6X@~oL4mk|6 z{?bCRv2B1CKm$o#l}@NU$Om}U-LeW6(*01`;dG5-RqafBu{7qMb6U>M!WO^C)vbU;LFEHP=4_*`FmMtSW2iW3(N`LY2InkSUQIN7R^UJEJjk5beLnIaaMO+}NX|uqE07*LG z*#f8y`pMp865dR%o%soS6_$HdDBR83GEPx7gdpL z8`Y*9Zm9%L6k#~7Gma)}u9l^VW@+q>s3fL~60hibZI3_jj5L%%fkuP}{MPH%cc@6z z9TfP`tql56wB7LH-=ZXp2~zipHAgu-j=wu^M+at&*C|B+JHR<`+He5H!wSxmkyfM~ z-Bfmyb}&SR=a9t3TE<2Hyt3Z&h47G-@v8`~fx=o%+pGb&0n$>Ss6hb;_^Q2WVN8GR z^iY`QJb!ZAq2MTT&4gRim(3(gQi!-f>m#UPWUo>72&e$LcX|v&Y1)bDCEYaoWVsi&cEuKO)&*S!0IyBhnm)=Ngq0VZJ*OtClMJ48qiQY2AW4oOK$uimB6Mz1#X_`--xOCc}qLI z-)QkaEM-{1=*_uFxwM6w1-X!|HMp#=$*){qHQmpS-%e|gTstNJ;OT9xjq-rSNo={I#ivl-}iKw2>& zvg=|%Wf0lB+m#?F!t6^^97=EUFZs-f;taBCbd>25YbrUVT zW+RK^$H@-ZwQHav(LU#?6f*u#`JW5Rw!CO%_NrnX4riklG#|&buTvV~ygf zfZPP{U=noxekI@5o-(RKYa}A~RuMDNAqIo*!SJuv7aKwR@e649dtO@^&>^mXXAPr9 zh>S!T3Z9>p>j88c;`oaDQVS%M3L$t777Q7QI#9wc@OWnXX-XC z=Z}bk+M!<5KDETTD4B#2-aA({4cyEUoWEe%mMo|O7(FhAYxH!2e1pH}@;SFEN=~=7 z;lLV!#PblIINHo`?qpj3oWsAOFfp=FG6hbAis?RwH>)?}CPLMQc$*xe=jC8+(F1r3 zETXi!Dutpk>!v{Q-@7ZiN3>efSZ4>wc_&deU6onUa@1__oxfphkaK?N>YCqxMpXOy z`>sk-z$?0a-Q(}k*Wl+zoBdQrM&z@6d2Rno1Xu#}P#^v~`uX3ZQ-@GrP+`$pgAi`g zaO#t!boFy@ivc?#sOQ ze$zRkS>z{V3Ji7f=aI!rk{{(k-$)9~{6ubYc}H4b3347#4a z@SWb*!^Hrp02#0jD5^iLjj20!SPK0t`m8!y{eZJU%?S_vFa3dF(<U(7-_bw8XjmA~~y#3xvmduR#W3qcn)9eEA)^+Cl+!pT=}8VdU{ z2sPR7iHg3r?LCyXo^z? zv%br!Px>^dK`FTs=`iyXHVpnBjlt`iYWz{*bbb(*47||;BB75XA z2+g*TUHHU3ORUD#FWK8wZQgNoTE31Qzp@kc+)4<`w8iV~aMtol)4nxfxYU3M*#OEZ zZSaPQ$HWSK2;%u8o9ec(nn;vI?veh!Tgr`KW^{-xy6+3i{-hS$-EXMa)qhMpoNzAlx&(rRSF31W=i`U z06n`bo}5;>?=zz!7qc5ye*jr2hup|1!7F`@u%;#VhkNo(2J{IrHeXu&8$`^4fku=( zf+|JhwY?s(1tG;CNlIFlVo%pOp;?!W+7p7(39Up_NBb0o(ZIPcPnL@VWQkhAsI2BAjA3M+JBO=m9Bpt`? zd#Ll}>t0tc4^u~w8L!*r{07=UIHKBQ2~;t!gw+f8!`=v1*J{VHa zkQUkLCz!OXUN@w2Ic(#7-O&A{mtLK7r%tl5^_l4qSIU0Jh4_+4gYogp^$|3q@pZQI z5uwiRfT4|IrG}zJ9&>Ni|2O(eMG|6WK3ybEgb5Z`Nag7pNgrMSF^*Jbm=w^8L}K zsk8?$az>-}6uJjiB)V{2ff-^fVR-GpL^js>L_OihH9*bvqP#$Tgz8QdCeXT+x`bqc zt_hMY6XkP<&|*QQ06S!s6g1t3^gsV?k*`K1=KM7Ed^*|#WlB*@Uj@+blJQcQv^Vz+ zj6HSN0}5?=)N#%20y4Gs+=+(M_{Tm-nf&~N;hrn^{UAL2f)OFF3MaVW7Pk!9%i-D4 zU6#aUxr%TB&w)gsd3VwY`?!(rkQFOcnjBk8Uj90dE2_11F}i&X$(bB`^q}e~xCPOH z2`c2;7w6J>`0dJE4YUi;gsA%m-&BKWrEdKm(+SoF&soIvE7Ig$71QQ*xR4*dQH5&t z-jPTMm~D@iE`JngjC$GLAA^W68K5Ya^YCle%qKEp=<2JC9*dkFepA}wx_IvdE*F&z4C)gHX~Xx-I{7%j%6R(z+lUZhh$JC$b9 z8!)P*y?BnwKZ9k)aL2?Nm}zT*Uk6+xSumhAmO&`>S0t(NmprdGV;`@JmCU9PF z*<`#|<@M-PgxrvJ1*#`icQCJi{j_D3#GjvTVT5N=}bHh zK3wa!e8|07BW{xiuT58l#`a84Q< z6~&3PJFJ`2r~R8CP$pRyU5I)8d`uMA-F_;zaxniAU;`2U*JKAhs1V!7pLG%mZ zl%PR*tx=?BX`!@_HXAk+>@r$Zmo|c3Mk`|Sr+EkFGSm?U|04@MS+o)9Nj&HmaXKJ( z^!l`tk+s?guEue{3Usp99JH(VE%qvjJzFXLC12a8w}@YMrHB&@lxR=J+|AI~#Yg^W zZp5NJ{EWj0j_~nB{vs9~ezPlFlqK1sAuI}9hZHs3MB2pvCLred15_!NqfU)2S=HqK zH{1cX5HKaBl-U=01Sj=W@9$1n{!KLeG(D^|iocT9wYtA~(0Yqv9mC(U4E$ev>+;8U zBI8Pu$$y^bg8GXAt5Q_-Xt>@d>%vu@a=5=>StjwqhVCH9m4hBKZ_+m>H=mL1lMBwX zTKdEaCQYX-E_fnKIch5ey+elN78t5t(!CQvy_2q+B(^&Z2=`!lko7nC@U1kU@h>kk zSkvBQ{r4kCmsUX4-ikI9Re00G#JnFL6hwU}j%C8~V#)d?y#0`Hqy|p8UEsY+XSnm# zNb>Me4eGclPtJkqn@NWL4fZJZ;n^%w? zGnL=`t5hWOI+F6KP?OJdo-~{?!1s;z@Rgi?xxoQ<9vw!NWd^;ho*w{$nqI4&91-cJ=#pu8YQd1e+jIJ}mU-1qlsun@~4rTy9De>p}hka^+)-Ja|Rn zrxZYVd$`NI{jXxM&?ZcN*rp(ka3l?;1?_r%e>J27UpbmcOBCbaFY+t7ZMe`YI4Mt{ zQeeKAcTWG4zO}K^uw%)s>O-UdphdL|tdyemseVTJQ>PFH_S7p6^wiCXB97JoeW6fW zh*!?+U|sSK?aidYntPB&rszo;;>bgCS+1tVTTtpHZrmQft9;K5N^s$Z4RGrH%nUnCXzHITYb~qqpg8^>WHPTmgncFrP&lm3^%+o{X=IIQsUJM*uqdiUV%};T> z^uVyb=IQ^{*oXg5jZJ!;po=8ONnr4={{aL5aM1k!_{@CKxd~0_ZZ9&Gyl#ltw-qe%HpJY%HjA1mL{rI`JS4>Z7ZOL|=LSofy zH1j>d;k%^kpE{s<zzGp8SBWQukm&Dt*L#6vs7CMhM@t7Jc9w zAl^q3j45P!EPC9u(zNPz<1ilG3Kz zKHZb&#yJ9Q%82Dk^Lt1%HrQc^f6gTIa;OS??|Jim?a{}Ii9L-sj!uW59X;AL%AtS4 zQ{FfJvwL9P(&nL4Ha2WYocjR1;#$bx-txK-D})V_1$vmF+&F!N+Q^WCr$YbFVBS(c zPOxn<2$m@-VerE`{6mIkrAi_j5IsLX`Ag6jNp z3SHTHU7M2d`h!taYe8C3=}hy$*zc|XGdF8bVE*#&7l0bO!rKrvpY3`vpT}e0K8Enf z1-rOA4b^-bnt?&5Lj7cE0!FirPngz=579{xW;JMG!ul024PC5?`W#%eX0~fn>E_f<$Ey_ zb0akOa6A}>cuc?Ib$_?X3er>%L{wm^`H8$FY-vh9z&>Z39XerFT?&_p_WT2u6wFvG zv8`PYl9g)>hTg@r!H@SK0rU}WwQvz??0Sfn5Kr#Z$+;39PgDw=k+e%%N0We=tf!sM z3`xOpd${{^DOv%db1KBZt>L+XgtId~@9S}TW7k}eB8&uIk+9NMs-~RcqixP}RTxgk=<3_xh8@j4&YYI?;O@Nr(H^!O`Uz8ABE?@Gj0kr^;C;Khgx4w!iP2IQlYAxThI2YFOr6`)}^hV?O0>Z z!amag9YG`_TBKFiH)Uof^2^WCWTNSMOR%Z@MRlN-`X;PU%*S-0>obQGEdBn;x)4Ly z_&S_hYh6Mwm4~|I0fDIstjJT3$FqHvv(uuP|aBJcX+Dv-GadZK;Ks{UQOe~ z(y%3hTY>42a?{AxpgK)U?W&6NzXhq78AQS-jib;R%G!b`!VjNzDZlx%B_p6c^fNe& z83VQ@ko)fgw)YwNqU%+Behos^2R+*bG1lZvShsf;I>jfDCizc=tB=+Eq}xX|E&2fEshgZn;Z`9*zP zkk>juA3*ZRXhHE>GxSjEeZm$KYRSm%z&W@*$?%3qV)#verpGrvJ8fOjjPLUt>=|alZ#vk|Iwc>g(=0y7^I}zf?dU|8Qu;&4D=vv+D6`!rJId`cb>U z5sS%)WX-@LTXuG_v+%}0t@IvbWX0RTo{~7T`F-vg+#EO;s;-^sTKQdVyWLke*fa=tX^JG zj6Ix|q#5Nit$FpwNQLWAIT3MDb6&A%PccVNoBO)JuZ~rY&IbnULwL0+qk}tO>C6xa zJfr4(6{?ckmS-OiPR+iIwN0$N4pjiHrkJ0Qmj|(cgi;*#(RauWT9Kxb3qtjVB+HH; z?`p}aIy$&pvm|`$EA9%jE+r!~Fg;75w(I&Ch_uE@<}0z;P6v>Iuj7g4s4)uCbq&*1 zc5YrYN@9ICb(V433Pz)tNHHr-Yw2+?o}(iSySzdr{qpX&Z_GGW+{2kKue!l9s)CM0 z6Q?&i(aNZ}ZHgzFH(pJ6N#V>U{U95q$1SN9hH+s?p!)jYa*)K$m8M(~xEi1855+{y zbyYI3QG6jZV=SqWf2Eb8gjUq#OPya7-CL{6Wtc>a|BrP%2z)W`mo6Vm89QF!>7iI2 zP_KT()~_L1Y+v=VR5ZCnjO-*bYA+l)89p3xX(=Q^Fp=5wF8-A&+ZQs$g*#p8CP{dw zKUURhulACqyllPt^VxNdTk*{?2vFtf|AwJDM1Yeu?`e@TxBzvxx8K@bM&OOohpo|Q zizN4*KO7y|xv`2@B0JMCm7|G=(+A8IdK|HFnthKtWY34pd4xex(7ow^ zg(M4JI3_W|dX}IQF9MEibw*EbDMunAuH}EMpgQDO zS~->BGnISg159=ut9_KQk{zjy9$Dli8ws8b9BBPeVg{%Ahe7@8X(>i)vKI9uiejkp z)3v1+9GB>933Loy3rD_re+-k%CM9vIGZ71VWEH1@19WQ%9=60WCRGp;&4uFl2KY_( z)}&?z_SF)Ny^W^JbUVbC-w!{0PO`yo>v$|qruK7t0C4L{-^*k+nW_;ewYrgds+MjV zQ@FbZ^A!5%CU=?9#8Q38CSpiNguz3q0i{vc>{b4}Lt!9!r7?OK7RC-gNxv>-wle=I z$dvO?c=P&F%d!A2L|tOpQBfeMBn{1VZ2AFyNV0jaa=kY5Vgf(Qkf3^2i8#*ixb?O( z%M1du&0AnX3TCw%;4Ry8H#60mP7iW?dxe`!-rZg?%TA5O`!6uCbcU;cMY8GlhcIv2 zAfMz*pN$x)weld|x~^(yGA+uWHkhe<}5i`%P9vEi*zn3qB5= z7SMUsdnGC9ZmnRVeOQj~^v-4P%aL9Z15pg^oQb2YCpEZHu!>3>laFHozMl+)@2mlJPA;<+u%Qr@uXR$F46g96Ns*RwtYK$vO(L5 zOjXBFXYF27O*g&DFppr;`v_jf4|ioKN2wH^2CCgL3?^_WBp%XVp`$|2qN<`k9(Y7` zak4R{teG(I@DaedqE-$m2CMn%6Nx3aAg-^WVgl9W<0zVFx@CX9F?AjOcoEMl@gm&c z#FRj!T68z%?b8DUUq^u}r%4g6nSUpW-@!rJn|}+f{;pxA-riK%Bwmj%>065Gc-Z7R z|FIQ_`Lqm-LAC9EAvMKRbJWH1VxNhkuDT6J?nKPJ(mMyLeU?Bo;PfZrGvHsrsQ-KT zuJ-c-w|uAVRQ0JXT=)xo~GzVxB31`yaGAMNj7(OSF0JhY# z515)K$fP+BpH!YY=)^x5$d3~c3A6mc2HEXOdxEpRFxYB%~M4G=}Yq@({T^Y>=4*LCXMCz_AW#B)7 zxiy?~>4|_{S9*fnUkzjJ3rV@*Z3nH*+x%`KVb|E`rFd@lNS-O;On~gUMG4&89RsUj z@?Ksuazn<(T83s@jk${^{T>gFd5y(dGGp-$3k*aJz*Sx_@ExP@qo-`Pjz{1#M=y@E zOiypyCh=+Aak_{V@m5)yo`K;4fQ3=(0Ll2vxwVg6Icr^{*W-JxfJY|{dJ?A!PlE;k zD=4j?IDRUlkU2YBw3VlhIZ&bY4`yG6`%n~oUdFZ3UCvujiei-M=$X;|ikunj13iM>7eLO)P5=*o?zm^BaT_sR} zrkMf6jA9tDdCM0p(=60kXZBqZ=Q49N`Q(+IAXGxYuEx`VIOvfy_Cf_T3pln^qz3XI z(p)~B)fSRa9t1CV$gf4syhT}X+|N7TwIL>bqBnY#cn$DjDsV$Ug1PsJY?BF`R%l

4oG30wv14fcIaGt*sL3*Hf)&=6naQhxzOCWG#=SDJIpd76}BkX%R^ zUs6!Q0&B*$WQKFSw-tq&ma$3<`NI z#SoF&BY*;k%C;T+kwKXa?coh0Y`|3?@Eh`9^BVsV_PDdfGXZWs&z#4vb$4HD=1xC) zzW{9e&9S_p1gC$AGqN=`T>!k@?S#zxMt}K}=sBki@?OD@q#^`kjd{kR%p&-qq_+V0 zB-$xSD5^zhD+zOB^-hCc1KVg?x}oXd?nri9hC8UoHl8Cc5+=G@#Q7QPm0^7t!j>@BCS)P+F6yml|xZ{gOib-NVnp-1JqcJ|L( z#5wNslaFNudgQ@VdD@RRc#qlre|J6pC8o!(Va2brdP;uCq2DZ~b@wN9;{HjiQqZfF zyxfvA`6k9&NrO`z^qqLicJ<~M>Fo5FcT|T#OtS`x|2u0#T%gB6u}#lbSGx7}E0<*_ zj{!vti??Mv9x1U}E?P7ycjeScg-%rNUnwTEX;)o|0cLtF;e=^={Fgg!oB@8)o_#%63^G8W3_z;6Bx2Bp$7`xL`Gd$;-r5to z+Mme@mu&$yz!&1vtqe>8+T_MU!QPYVtLXwopgy_2QQ|Yf)kSb+?*O&kUxxdUd+Qn| zJl2Gl8U98=$QaQ2Yj0Ws>fKSPVmhz`e$8`~UWn-5L&CZ^? ze*v37hQj#%9M_97u+g&4KrI6;#V)fIrRYEp2?uW`k2t>IeSc`4m#u}_CoRAP^+8ie zH;a_>4*!}!(U3NuS-*=Xa2LjA|%v)S^l_lZB0`EULa*rhc{5#+i>fAsW16yHmj zoO;8{Hv`I=Ec6)74cI`I=Ef_C)&&X*j8pO?9zXk}cO$z##A%^-eYLk|9e)%!(fK-L zy?${jBWIG(vlve6p7tcmk|Hl*$Ny)Yy1II1+sB*AKbF@QeVF${cEzqsRWbkMcjMF1 zgicMlU2`8OB~d_cw|>IIN9t=f;PA#U-y{bCTqu%*7mKH5_2x0_^ofqzeKuRs*SrM? zvy7ENwSCtT))v6OMqQ5-shE!Og2b3OH_}LsS5H@kybu7-Y?Ua8fq=jI$;SII@Cw%b zURE`_^8!;z>Byr*2JeWcVHj!Fu>tRFM<13 z_ybr3nW{j@gdM8Y7XA4~4XNjc!>n$S?)(!{NzAt`8h9_+y${ED>N;kshTs@v`D9~J zO)~blcEzxM8!96!f8dQd&^F(;xjQZT#9KSvSstD8PVOR;ryXxwgO4z>ILOAdn zQ95bk$CY@UiZt+U@DF;?olnKxXU-FhG-n!H_K(6{`T{+bSh1oGS6O#sYuU*|NqS!9 z;-9So&Z&1O-qD33_uwxjcyi#JFNV}!!ZUwbjz=@|j97OCWc2tWhCfXE3vTinJMyY_ zbQh_j%zFbaFx3i-uIxblDM};CXb$0AGQs2!HcW?nn+H!`rvxg;O<^He7@};OcIRtn z7~MXHFkTyU2=K!Z4VqS`P~UBn`)=o(brv8Kf%E21rTLZW8lZj8dI!?S_>CbOmEyEX z1`na{{VM7{Q2aQYYi)-W$#nZ>6>8{Vb5eZUpBGrs8HK1uN^e?LYF$*;HS2ZoDMj($ z+nG7oZttdf^iPV6d^%*?P}#A*FXsWwoblT&W-Rp(RY8TN&IM!*vYLshM7!M@Tgfm5 z5yc%{{Jl3-OJ-M=7KHWcn(dBpg0R{Aat4Ei_=!7@zQHKyl-O0;iC&EFy+vJSr-&Lm z2XfoAM!y0qN6R~E;OW0D6E};33&-!`l|HQ|0)6=vgye1ZEOYwG&VNEOa zuxtvsmiy=)*k+U4SxTejbgA-)N(=U-R0&I*4bpW|&~p+YtQT7?%DZ{;ys_0Jo}hNq zXTP}ivT=t^*@|-cCCdmQ;|d*j*;;}<5}iHHj1rpkZ`t4CGFp9dP4wzyyw37)lo|Fh zdxE}2#G$b$w(Pj!@BR$9gTJnWew=0=vr9T&Kkl{ODPT;~tTs~=x`R6AlK^?U?1 zfKA$eYH?av?DY1K}W6;I;%H+|y6h4<3Zrq?}1QMno?neOwR z#X&S3(6f%Gn4rq=kbx#Z4;_G&xL4ERs+<@3eZ57Vw@&QuE%1eDpMBF&53crQN6SC< zJaAmzdX8Xyw;|!BwiP~tv3tK-*?%m02YY$?GeD+quGVrRqqb#Zx4!Vx#@o?$2Pzv` zVuW%tHwRJOdR;txgl(%*P)_^#>XUpu5jG2 z>#!D7bvbOmk?!UCEbB%fj?OR*ohh4p+qJot-J25&m%Li-DS_J=RB)@`_&(WEtG5=y z;mzjl7k#=dTs?h%U`@F(toZ?#J0)kF!$M8nV(#Z{H+;uS!mR)7SG&1R^B~`m>~{(VcQy$Mx1`_LoN92<>(Xz6|LQ3m>Sv zgpR9N-89$tHu>vkV3jH97c?D*TiRe*5G;z z$2PjM(l^eJ(*riSIbZx2o+{2svWbF&&d@2?rrOKM>S^(x`%((su~dVo{R4dV_$p(Z7nkUT$@rAYe`gtM31LQYpLUGfr7J!#^bRQl z42EojtbcdV#gTIJ<@LAsz_&rUzliH17yJM-clb0eHq<-4p6(jZ9CGS`Qw%tZjXgbv zIx)bKzub@YGIG^wWi7oet&<0GdR;X!xPId6DE-Z-QQfsnqthQ5U?(6=MP@wo3;PF%^cmWrm;*Femo)onLSNE_E*4<964EijI2J8r36~CqrzR2+P zhkuzg*Gtd<`q@E?#1kKZ$x9FaXHMV0=A_wVMP0d8X1$W8D3GiCa$ql*?eo*OTXF@c zG;~-06DG9R+{I~@vM}>cYZq|>FIQ>>5rpAL3aACo+=+x7yV=A(S-#Z`*;O_4?^~g%*Qw%?r5W*oib0-J?z)DC=O{cen*xwF~)F!0c)E%#$i> zwhqL%d|+#oBsAPQ&+ga2((%{-<)g&EWftBvwT%$7i0FzKeoSh7XXp}2r*dDc z;+{LSI70baK>}Sx^f%TX#WMV)zZxK|_A^ZPt00TH{Fvj#U$Q|?wi(6da}x)5JR1op zwMRF)vL!sc)v#f%jaMd*A3R zNpv%q_E+_bVk5{f@GbC!vo7*sfnwY8b)MUuTD$+n_pvmHTQVOOkOwxiijFpt8W$X_ zJVUdC+YcPLd4T*CWRaSOuvO{g?6ITAq>;r690g-`cnF2tT!wtE8qY9K)w*E0~YITs% z*LiT9xzfXA>2pgM*Tl4O{iJ|r<7@+V5ix~tn z+=NJmt;rY4XB1prxISYZZ@GnXVx!z-V0D6K5zYw-27k?usknB&Mn#~J^lJu&&GsGV zeN)uK78}MCAsG=T`pt@!l}^Rlqhz-;m?f2XA3SvV_}He`<8*aQ&D?QX3^=oB{6Mj| zKhEw!g>WIW_Byl-I9tx1ElTmLc;k_+b0X~xdDm@!^7`SFT{ZW`g1@WPtU9L~vQJQK zIGWGu4)gcLd#EOK>eSWRU}2UOJiHInSxELMpB>kF0I8M}57a(5H!zg+jo)V-6HfbOR@fsR=okPtzyRK#(DRtO0N>T?MefCi9tr}L$+iP&4 zkYn|yvdHp5u=`W_)(t4aat2=@r(yi3uT~}3TXnG%`@NxTO&up4a7Jgutzoren>^U8 zq42&4$XY**Hrkb?rmE>9TPR+W{I7Orrk;mq2E6IZg%W{Y9FE1KNiQgiKzlo$zU@TLGd_nu zxNFx4J*1NBGEF@~f0>Z#UFkRuC`omH7k0){_jN5qZ#Dg-Wtz+rp6lI5;5_8)wg^`n z8i64^rk9?TOwtLjPAB}ngADq-Qen8XVDyWGDtF^fVd)98f6E4NUl$^}=DBE#UKOZ# zv#$(1(Qo`jhwVB@6|ZRNrzV%{?A`DcO+Io#>Z*_r-K0dkir_-pxNoxl zbPab23xuUEy$;V2vK0_|?&uy6<3`NO<4j;{96~xU+5hQyP#XETC-Y}g) z+{|p_r8-DmrequPX>)*adH2;7w_7;X&p{WdPT(PQ6Y5)RoB{o{@ZW#yP0)Fg%}TJT*Hr+@p^I@bBd z&x+O0pB%8OR?`P}6g#Uf8)vqW`v>sZF9kJ!V6~^@N*sL@@${Ac zXKU+c{EG-EhX15 z+cS-MLUF5A;~K3YE2{G{WYqW4m%z8W$E#xzY~PoU~?umvavhD$Ydu0gef^z>C-8vM^43e z@6Y&eBL{?69nJRBBNHmJPWZc6J3W+_@5mdDe?J4)R|Bi8Hblo8_pSTu${Ww?f@br1 zG2##d@L}#Z9$mNv+>su$WGFpj`Pyd5v&$8gas@$mD8p+$bg&_TKFIj|<>SRg3Twk5f0JWLfMY^zkLaSHI4m~2h4cP1KGuI3iH^I;u@_9vO1 zGkpuNPjR?9&s;k>KPgp6_JrQQP<>>~LV#H;*C>yv za6cn;tGaJyFD6r=J+`}5LTho`hyKv7WKdn{N*%|G`W8=Zm1$VE?$(^&sS2}N?tQ;o zN4X0t9Mk6W{+H_4rV5XuIQj&boxB(KF4ay3$?_!ry~T|;5HA|%ZMLPA0rni33KSOt z;-ga%UQG9+8rGTeM?@Sh$&_UwMk~6$?n!u}Mke>QQuRY!i-sLjc9?~2c0omVbM2S= z{5=T{A5;@kB%NbwGV&f;`_rf9C<>UhDq!JY;kqn3yGP+(Stl{Eeqq)rz3M>)k2%2E!Wk0D**0M9|`a+Z*|jgcyCSYB{+p%_=fNKXNyhyt^b! z#Z?~O{mG*FWyPFN_KI3g(Mp;R0^34L)pSg~xp!f)Dz!%FgwsK+7MUD6?-w<`?t{x= z4D0=R-$#_oqqfOB?NmBnew&Fkyj(l$2s_rJdPl7}l$P_K7R29jAAK$IuT(Umm&!t} zBk^)Q;?@#M=beM6(3lSI>x=0$oPRow;s)jPAWpV>E)pG;@`Q$Q)LTzwp6fZQ++GO| ztU?Im)iAI{!G!JV?D(+1BR?YUv-q18WUF0(MvUBjlYSz`r+j!Yo=9B zix|>x5eW|ReS%F1{$0N|YM5IW?68?XTfaQrqGOmU$b)A!u7!3bx~>e!6(m>KHNR;; zp06-qIptKPJ0T53Z<-zX(b=&t|1C%PAj*5>3jTtyqc8R5F>0OyVeGDS*}TYjb%kXZ zKktZR35dAyws)fwf$QB^!87Y!^bhUu*@e?yCh_um(s#7xh?IR41{~;?4Bj5QEE=Mq zG8}{c=aI*O07+X|W2E$PY-w!Hcs(MTA|l+n<31e2G7)~_a|Gu0O~!pHB=Vmy|6$uv zfuk+A++5!>$f{0y&wBW6!E(BFF0+EIlhnHlNzz2BPZnubxTfPgfmNLQ)^kPcF!Sdb>e&<}*`3KHfKX3s%S$nOSS+k}O+}hJ-%z18= z+32I{3zmJq-{_CQ98xGM&i0(OTstnQjV&HwiQItPf8@!di~p!kw84xJ{Fwjs9h%lh z_6!;GmXes&JlqwfR{0dSA-%2|?v#HD62OEiJAw%I*)_1nTHm_G-IxVMZdD z@`kXV{~*`!`d^E|W58m--2G!_ujN-3(qmkYr+zri0&#A$#-XL*Au{rlEOxW^G3asy zXpjcA3*#34wtJ29!S`+WFD>?$So)9Ruy{`jgT$n1?;ZP0zgkA&I?@*u9CinFh%9l; zD{bT#7Shld43sci7ZxBqm=Vza`4zSLrtJ5=5+h@ebTrgV93uIwM1PHt(7A$}hACad zp{?PIa~{)qo1w>b2I}Oetqie8sAMOOO=xEFtMs?_so1>>t86f3T&MgK^VTV%AALYF z9Xr*Uf<##Xv+yUa%r%h5Ke9*jt$%GINO}5#=qmENT^g%pQSV6`yJ3QAE!>VkV1YdI zj2<-Gi<+0UMs-Bh(r30V0_CVu?GiCE)P$%38Z3K*>}Gw?hlEkIlh@0^PmC6rC(L0eGy|S$IE|P8CmYC8ND`nP zm9Bm(58bWyNDH9iGZ#<6@vmz2QY)P+|A<@%r*`P|=I<6CEe`bi1lyzixJ(;3UDe+| z^VD9pL~b>}*{R%oh_4~c{c^ul{}6WyI#rpo=2lP`J0uGx2f1dB)Nh?`t)vTjvO3%* z#zZZpv*iL(@I&(I^JX}NC0RAkkL~--QfGy`%Oiy{@M_FiLhF}2KVNm_Ml@{`TItq)~!>|p!#`<>E||&95O4%sj~o3V4^X&27KQcN+6G_OV0>2 zH`erg@K+OE@nx%*aBzaICYjBQ928b^+*(+Me*h?h)YvgTgj|Mn1;vWNTK0raGiXF~ z0w3&gscElb2LGt!L6_!dQiz@XUfT0IXs8=$b7}u#5YvV|&m@*=nz9CCTf7W$UeSbH zKhV@e_$=XbF?zvk@uWu3OWG!I8%)fr3pTZwv3&W2hilpOCK8A2t;q8x0~~#SROFvS zZ(^43yy=ykxGJixIgxAW><|Fsm;pohZS#7G9s@EqVh)B^T&xNaqtGG4d|ytlp>1K# zC5`ND(JKO-RA;-4HP|K}l_&MLQQ9g)?Mxr-l&!trkhIlS)_YHM z2;uv3e0?C>DTEtRtevNhs@aMS*^=j~%VupSoI&mRN#s88rr30UiPimxu&VHw2T9c_ z=SwA^WH&RX!T<}9j~7b8UF*{8z9Z@`cCm@?mM6DAiT^bv^>L)N0EVQCN*EN=Bp0Ul zO8gA<`+QT}bmX9xA<~xy=3DA|-sJ=q&-&uzEEd!F<`3qxoo#!i+U#N{6`Jx~hg%2i z!Mt2`1IfA6y^YEoOaVJ3J~dZ#q+mU!f@x+~>yE={ zr4ckcuN#u#{Weczb%5PTs)Ozs%e}<;fVIlwgY59-q26~+lJwrH8S|?|ATv>Vzk$S# zElix&_dy=4{sL-HN|fbi)%ox}OW!%5`^{%~2{p784wT;Lb%DnCCmM_@QqG5zB+=F`vchf{wup&iugq3leezIoq10scIThJ& zHNtbLP2tGm>65iQ_8z;5Ke_6YnqDnblMH4+g>voAz--zkMNZZIMdwFf%P2JPLnIL= zP(-iUNIkdFvh0;UvsT*;w}N$Diw$@yB!zD@bi3K$ z+ZF4)C$8v?Rh8JaUxE%dG|D!zVx*-EkW(kow9{LrUx+r>svYy zXV>V#i9}}cN3V~Vxqg|xCRJac;`l4C9Y%aRZU0xoU_XV#Re9qnKTW0`&&^c`|AjMl2$A`)8K zYUxu&)@K2?HtVBsmMm7!)lWF14-tp(nFzBA7MYDi+An|PV7GmqEk6D1*+-aNn`VGy zQs;dh(WYO^Wy>k9qHpQ-oA4w1CnJPtIQ`x5p&&-4Y-3;D(B#BsoL}~$ zZRJV`A=?XR*QGoncwI#Ny&H=t%6HGwf`pLtoD!Dpnq_GWLnVOSB`e)#JV(D_?xwo% zw>P#ynw$y8S{*kQ#sT)+5Nlt>atB6LvXF#t9B7FDptbOEe~)Lse5jU7j14z@$;QQvKco} zSz*?Ann%lizJ+1Os0XMP$V`n%#sTAJe9{vfxwQR+3qz$gzhao&8BI*_ysT}JY=Vu! zyttNVbR=dsHQ#WhcKn+sL9bWm?@ec7Ksj}B$*w+b;HMYl%=~6He%KeQ3%R~7;o(^F z(dy1{PzRWfLHN_yJx}UYQ)@W=y;VC6sSrQsJvU4eB%w2Mu+wN-{t=2Drp%ghVT z)etGLcWk~@k8(i9C+#{Xz0UGIrybeoiY|ts1sy3d)AkBwG0-%@WWzHxvKfhWHLJ2( zDhP*`u9%4fIw#6uJhEg6uyZ8)I6XJs+0z|fl<^`qRZuLLLf&n|A)1p_lNE-djmkIk zVPg}`F0XLGL8$9)8m>6|(UR$Q+vLGXRjsZbxru1npTgfY$RR)Eg0+yS$1BQ{I1p&* zglW^s{^6SM$|xjoeP{j9^)sHc_-a{sWK2aR50T2QO^^P2M`gQsT|{qB#H|P%BSd-c z9-#7z>}zF4MpOhyDc`WEvY;SNRx4%THR-T5aEh#-KKDq^#MIJ`K%d*;S{X;y=h@g^ zADP_A9bJWr9!`*yevR8VdSdc+433K=UT59jWk_SrL>BsrK9u`dDOT5a*$F+rSr3YxUB5& zA;VTNDpWB?*9rY02tQ_27?|l6*3i8E*%##isMWDssTh*jpqF1O&Uon0G`6;=h8P!i z(s!k+I&OR&{m@Iiw_NZE==b7f_YlONqlv!Yb6vK@#a|}8G;1eU|5|SDPFFHG{D?1s ziYaFXem>N?bwmZ-)azHx`NOj11L2&y3!;{@@vfc8wWB`ZF$+_iIw=w02_QUfrzp=0 z|MD84T#2RmE^6>BRV!&UR=+c1#`^;*=eC653_@k%uudU#eGy_WbS|3c^F8iJ;4b~i zy%%H6$%d6RDjBrFOq=(S(~=%h-2YkymPVl!62Ul34B(!9CyDG9(d3m%T;?)S-f_s=EG0;=6ZV8RM!#6vvEL$pZ{&eX9s^ zNP%RUUSx>!Lfe6-_$5jsNo*JBJ`$w+n=h8vpPa*vYH5js{czGrw0`4A+0Z~CzHy63 zMl&@MzcpXkFMfv)?TYg)CaHBP(WB0TDVx*%c$fLhM8aWfcLMF7P-Hl)gR#xSPWh>B zUs>JCHZuIOC}X?D(fx+AfDvmMUn6>)>?@FgNr!THl*Q8=s9edHj7U9&%RLbqYnd-U zYf`E{G{dGlnpXj}Ewsbp7NgFZYCQ>>^Sad(r9zp7g=otM9GtjE? zyJB{Ee=>oj`I6S{83$DqhbbxIMi)clNfNX$n$~=FPcSvY04(8C2ER@3=FOG}M}6v@ zy$=q%wdhR6FaGIb%C({3)<(Is=7H|yw!G)HpC$!OrvoDHwYt%nZ@aguWvYapTp}Fn z$F8mQ>+SxE9^BB2?4oa(P)!{b+>ro9THm8oovwz*tf13U7OFLWS3ya9_y~qb$yiHV zALJPECePmP&BH(X?Tz{Y=9f;dOr96L-YNEe)(iON3^|VplykpwOM6WgQc}OZPRn#A4mMY3rBS| zujjK2{18insR|9cv}i8kas<6Ka!nOFeJtG?OJhrBESGd7{Ny;Ll3x`JsBLiyA3H3? z{IrM~>i9r1Y>nQctLxg}sFbB+(@LJA9g>tQJ4EX493M`X3`FUb?@Ijk6Duc9C>Qx- zUwkY+;|Nt|FL`kDGlpc`I>_yZlu|yGF+=Gb(MHoEaQ5!nN#*>{WhE(hz28xkD?U{f zGK=s2_2=CKg;SfEjK9|7@j>YMjsU-L(^|myF%yjPL#CYbyss{pu#?$XWiqaTSXoq< zX&E@_!_q;AI;!FQSbd1$=bVbr9Jq*e;K0IA2qUW=8z_PH1$#+C`{DgOzsT8&gsI62 zj{&ayy*&2lcgtHE)Yj31DcP?qRTzt79=h+aQ9&63%XV^8M^?_exY|7*{4>dbJ>MLA zRc=sUh^U6Z%uRq|I8fE#QU-Q{H3TEJP3{Jo!{f68V#m!*4xPbn z&`4f=Yc7=ywYWp@Zcom17(G<6(Q2Z>|DCf$#(d6?#w3JGB=Z+lvt|C8c3biy!2Shl zC;8lVZWsC|3y-)wsxLOnrB*H*K2;q;8OZR-ix0hmV#e3QfE(hjlWAn_nFkmYkwk~R zM#CKk#RUwl{33}r{7j}vcY7UJRDm%anOCLIuN!}wuWYf$uF@v|xIZdQ4RU8wV+6Oa z5&O2x59u)&@&V7jmi0#sG8)YZ`c!)@qes$XH zfm)}Q*lvhWu&m0n+epyBg~*3C@aMO?h)>ne*rm+qYd<-Xnt{$Z1K{wVfef#|8wk-w zUTgEKh+HTdQA1-V#r*TsMn1k=bh7BOa_CawkZO7&n=wDm>8Zf74^w4=Fsm;DZkR0O z4Ed^uc6B!-Vgmk4&d-;vmAGs)a(GA+%&qPXrvB01qwVpG#AnbkmFkJvhGafd2K67@ zC`s!=KW|NBv3}5nEmD%>2j#b`?MH< zYxvu`kPEl*Tvx{RfatSJxf-iz$j=gmGxnKE&E?M0%~Owg8sUXuRlZWv7S$oE6=~SD zoCK)*#>3v&qS5D-dF*Ld}^y$V>iIB}uyGQyF0G#UYfs2la zMXzV+TESw~CvG6#0fa!NVHd`m&ts3L(Sn%8oIP`t!#MHw7oyx$y(7^*s6?wAyzhT~ zTLGl7*ZCL~OftnBE9RO?3M>YDROYuu4bw07m6KT^%7Z#^z~6e3eHV!V{FL}9;)gwQ zYx9%0&yADSTHO2u?rsrhwjPrnF3BHHT`7xedVFCVpVXvcyOeYTh<1OWmJdJWL;)FWy=-J{4rL7j);zpGafW0ObHZbtt-*%FKHvDup@z8xqRV?r{S;H4?|1ytX`*AK zInuI=8%pdHW8AqhMI&WSVb&+)rNUionq{0_-3;OvH*oLhv0@TBp5S|7=*CGGz45N1 zl4%x1rctN!In1V}Uv%;xSikTRy>wU{b|M8*&9+~Z@zl|dJh?Pu*&6m}mE8$sUvN1* zal!P9`YqQ>C;E}oiyn3uJvLE{&!mzBfXvro+n#IQ`N`klw7&_H${Rl+LPMibKxU0iL~m8krEudvhbCATNa2Fu9}6R9?Wh}*;$UAvkyua~w8&(k^21`->Hru5U! z-l;y>E_D${aidehGav%dAwWlQ%7VtF)`^-gcq?Q+2M)+FTCMKSDyXcH!-B_hrZeFU^XnpX@uPJswKVd6@;mpJ?f(J z@KY-5K6AjMYv>{jlByj`_+>WZ{{{7^=01SKVLQw0ARcolu}o%=CRJZLtIml(lJ@y* zz{xgQ3dxXiycI#6^+bv?&}W>;G8qW^xk4Rl_743A7P-#TajS^X z_<}JjCt@S*hQ+Khe%li&M7_!D0~@aEsga!hFm=!mJ`u5rMWZ-!fRkW|a`;8_&bLt90)0o+7W= z?WVRxJ)9yQ`c=~2eEldy)$3-#&yU_Fk>+oQDC|W7yAMM~=GV#{Gt^k+|0ZG)$E~XQ!LCcx>E=*NY#6c^^FC{F8affaa(eq<${A zru77e(ZXTAO}k7T84SAh+@DBJ&-!NaF1W9{RR8O$u9m5q@bsgz?)F`fl>;DH z_E=;3n0Vcjssz&UhB5ZK-{pG{@#^~+m=?Hjmx#Bx=G=4YHn@wtnDO)B%Eo6|Bn=`X zl-c+rr3A)`nk1#dwmkS&NxdO)Qzx=KQJsQl?2&)qqTb?GnA8=ml!aQJjif)c7n?o`V+^ zC_OUgelkLSZpcKC*{2(bkEK{V5BNRKm)z3J9y~IwO|D(aE{Fomu?uV?VXjP@-23=r zsS7o-#@1E4#eBqYjxfXZR++_ZTxk?^pez9@zsQEpWn6fSKBw$DsT{jQ7Bb`f<5o*9 zgK!qtH&P?{_61JP2cOTPUr&5MWE(l0p7I=LIiSI^qd9|7@v|0Fi7sI(x!MDO!_Um! zJHsCScrqb^r;_<9lN68QS>lJ^&{mgcFLv+QwTU@TQlZA2&L|7EG>y3Y{&>V}cDO>{txIQqOuiCEp%D+~zj@ zw4Oy)`k?g;;i>`-1kEP}oC&;l%~YX;7JHoJF7MJ56rQt02~iGl&)oOKbO4+%lsZzu zZx=2s{8Rc;-#92LUFQm6lq_mydv`wcRJ@e}?CVY1l#JS-Xv4eJFTy6Q$Ph0;o-G{! zKN-uxDrzT=mF;tY@6n+boIQ4gHXU|VWvYKZgC-vBz|TKPLXllO*rV%6Hb8!jWE5L$ zCA-C}h9I^vyy*MZS4WGYlL-x-W?yP)$esL+#Xyg~+6zdb<>4qs`j(zy39#B9oBMX+ z^CMu$kT>6eZR(TU+Ha$Dkn5v_iqJUacs4gdTx(J?Zwhl0S7uw+0pV&m<)y4UsTg_267(*BMHd+a$YWs3mCeXqpZC zm_P!@xD~|R-Ke7atv@LV(Jd%{#kTLmjqwj> z9)Vc3*i3@lUo+pQ*%F`N<)5k6XN#S27R<(BNSe94Pl*9VQ5_w+!P zpVLUm8DCinu~#gNJCE>?m>+nYr84mb_au3v*N4gWc)nAKXVnVuTzWfnJ)jT>!sT#R zPevKzj*`^~EKg*9kJL)`0}1^p_TZ^42=aYeb%i_?gEFtrl%Ma@@dX9@DtY`6?HyE2 z?So(F7kBe{wGSLOczTRlLnwYT_6i1(f1XkW;*>4_@PaUR{h-FED*pI9z3RM|hF9p2><*PxHhOC;C0;|;Yf2+E2I}72%A?lxb`MAu z4c0L0AP0-m0uLP@W0*JL_)jdu9PG7|hfYI{0)rhzxa?pjU0zqc6D6@#vSmf7DCXCA zLq#vGS-0G?0OW9KdN@Y_URQP94qyrL!b^>QN&8vsKe|KJ#>(}+iO6!Tak06Ibvfj@ zd%xc3$spMfCDYK3e|-w)0o=Quk1UoDRLzQp78rj1xi0orJ*yUA*;>36<+1<|`*j}S zbk}9xHqTN;sd|bICVm@d_~OV2sY`QAQehxpKi66bo(+Um){dNoCe6k?PH=G)H9E;~ zQ|O!&;N1)P8n!;oL)?*h;wdBBFNU|T?ZraJJg)nYMqMgq96a9fdhgW}D1)Dv4Xg`+R(rrFm*3At=3QU4U&{;3n;g5heEnd)toIO_G`y1+x47__@rje- z4{<*)zY=%ylcX9IwjVca(f;Ea#vRH)O4b)zqLpGxv+?&;t=isll#}tPvtad9&S|4f(8;4B4m;ISm z3K2EgME5SLs4l0L<}J}NjU*Bi|8pqO>@7Er?#8qzN~1$_egA&+(}_So$()Ma*W+IK z?5kBwVl>~Mr@Pkjci63eMUgb0LCv~uY|$_}vh*x1UTu{#YH|CM8=G!g_xjbZYh2hr zd$8NVID^)niy{!^ef%%E@2xW3(om=2^?Z3xjMi-UPk7>4&z9zaZ71&lC!4x8PG^TT z$f9vGr#Iv83g4 z{esAstXO(b-EY~<9jvbspOX=w+j}>~R481uXJUB&QQHVKAB`(#qe|mSwHa%X#i7RO zB<#SdEj>cnbL&Li2Cerayz7V6%a7k#4d2-Vqm3FoYs-Fm(Fh|g-FT8oeNu#E!kJj7 z@0J2xE1^Z6af4Q%>d6R<<%Oj8Pg!SV&D|U+hn+2-I&EbQQw!MP04u_Wl5lQUTu_lKaWz((FxFUYfBcOW%ONthVSzE^ft1=FNUMR)rY zMf3U)b71YsL~y^J2FulCR8Ac2)#CeQ(<2ffMmL`z6hG&PM@QusZ_3=ZABJkO4&}4k zBZm;qFg&0V>B|oo=Zc>(!0B#GL^=|Vtc3|_N zL%nw=bMao{)UuDh5;9X^VykgHp3XXiS%b0Q))EeE!ZJ*|aP{VTAp2;*ds4fzQGFNK zC%OD(l50x>KAbf5n`f2c9^eSAS&djfM11h6VW+B}5{^xnropc5o{a@9%q#3$V5krb zhkDfQ;b)eQ9(tJ@@&4T6o3D5=?j<&_;74b_fmYs5SLW6WCLhIJF~?TeL>V7B-O3Ey zsaLN0c0%@Lq$XetL<|Wjs&O$8{@5e)VAf0sL(Ke-W|6Qxw&~hX5Fat9pAX$Uio3BbQ=OaU>HBn#1LWXLBv{nh8W$HV*3?Fi+Qj7_aZRUIOggLab! zhpB)O{oLZ`Dr=1V7{?4wZ7lwUBDGx`X*V0sC1UXQuy_69Uv}lz1L*skvf9RulK@ub zS5|Xn_8-auMvSLpbe`_@;gQh7qsSE|(0I*+@`v?d8 znE6|4*k?4wvUr6^l3Eij%Ae#!7;&L96jEp80oColbq`V)Z9!k23`Khj8rV{!vfl&chg9yS%@~oWp^)b40MUEDY1x)RgcOoz~CajzEt!lRKwa4##z4V*pbL(l1bZq2i z*c{`?kDI}oGVix9h-y(}*>9}+iVB^DB>IvCBmwDkhpkyvRZ554oYsB5Bs}TGUGEw6 zD^I%plAnQBf5(@JcdNJ-o~kKt|2ifnaWsrxW~S3}%8{=Q-%x-{x|c$2FP{n4`MDD{ z?)va6-h<*OXe3rVzvru~C{4h4&)0ZrG#--)87gB*IFf_0PLi1p&b_ZG-EflO$BKVU z6ru4J1eyt!ZqQ8titoL^u12Md%xqS-#UqBMPA86JXU zDhcI~>#{`MhGd ze}iaWlJJ7%q}IX02~oGdwR(+%SYI|&HbNXAkZ%o;^FN=U`{Pb--@0f6h-d@wW+Uo# zsvmSGXByc{d2e^gI-CkyU)}@O<3!IT?#D;0*q0;B*k}k376xHJJ%E|dJZKgDy;bRC zbWVUM9Cjfq_ET{@OONJ6zRoLLbQ;bPkHx|(2y?6@9@=K3&wTZz_TT5EvswIbgk(M~ zvGKf@wg{HQdcB=T^m0nTO8Zfa_g_LDDd7f?*OjTTZWVq(LTY$9u0EjB4U^vPS0xRZQQhRt;=yLlVA8tOXYhe#XU2VGnyJ46&5_%FvJVI= zY|CHJPUeFGOY8B9jZcv!6D6Q(z0u^NR2y=o_-@;ZN0~)T$8e`cgHH0hMi@p0V&;?m zG=wfAqEuG<^yWStZbm$fN5?)mooU}xUr#pF;M>IMCjed zMB0$m0)Fg|lBZ?P219+uAX9=%EVjOg+S~z3*=JFFip0Nz`8MU$(HrW<-<-=KZ9oe; zaC_yK7MUh3!8$4%*uQD(mkhNjZI|_x+x2d)=?8Cs>9Uz8p3zR7QuN>P_8Gvf#;Ym9 z?4u^7C;U7yy%2lC=(WUu)2wcN!~z!EDL2>*>x_hb2w}n;GY_;5TKeCga6bKnGY#i} z=6S|#s&I;IMr&q+QtYRH-*Kzq)K|-UKC-t$o+*ryG_jNH1m#}u?2!l9?|%2CDetdMV53eo&rR6`ht&`Jd0y(*|c@Uqg)hSBoj9o&qg| z^C;RT{p=_Z6kL=}tBNwG2s<6G1qy&OoBA*^4`{w{bHdNtVYC5G=RDv7`4@zj_JGsi zrX&I?(f97iZ z6#v8oAJEgPS2LH=nl_uU(Y*Yx-Tg1D6gg;v!)z%>SOM8s#eu2PvETh4hW}4>T8Fwlu%;@S8r}#Y(&F{hcJbhVOIv>5=T40DDrG)FZ8a`b=@U?@x z+^y=L=IOKgS~p(Pkfi-_^~eG4o^Zx;RU7vMhu0q{=3IM*0HGG$i-F7SIz|#-Z%*gb1FK7tHOmh4Bx50n-@;@VonqZwX;|U zQOS#wzc4I7Wr`h{z7jL)6RJjPKC8uw7yg5LBNsTy&uvJ;eI>B7YxLGHY)VD@N|dSY zQ2}jQ$~KH|HLRTj#RsvZbx8H%Yay=R^Qc*dLO>w~RGq`XO475Fpp!>Xz9&pq)mwcP z|BVG;=ho}G9@e6XJ_Gc=_HZLsg+3biV^=%7qRIMNX6$^JEZAxz>cs#ic#YI}tBLMX z-))4$#(dlA-^a9JveTx2A6u`HN_;c=){Y0K!-m6z`V@`;*hFBi&ZzvFO|4*OcA@m9 z=wF8T3j5&Dafa8F`H1@+>KC!m|C7WCpjiuu5?T-Xs~4UBf*t^(tHd+k-Th$3E5HBNf>E}gj8thsB)!TxjFKeCua))K4l5Ud(T z%#TBRR~+sBMareVx$`r47&&e|dCk$TScj0e^#6Dmbcaw*b0)AdkJ5`+@_(Oo^14J3 zQecx0X_+2TLZ!j%u_l0{EGzC_`VSlU=(<-qu0}0ZbPqST zQ`M59Xrn|cBG*qadY`p|sGa=@nEx&uNMIgU5TFih>A7+cHGa1-Y6Ply$|B0rhhFM*2OLP6C;Ey1lQDO?RYN_VMooA5Czm+qY-mTQxEV_5 zLDWp0de;&tr>LjSl*{<1UPL%;t*u8I6?)19T7&nYIBjyT1 zcvUG>xq@jQCuTTQ^HwSXePv|1B1NP4qd2UAUfXt*{ZT5B?vay|%^wNw`)GwT6qjx6 z5cOJO6jf1M7&K5*RLM>0i7TY{c+|RE$R5-I_X9nQffdLp5yK9{&ZEtxq?3od4*DYB zk~R{)QX$ozh;3G`234*S4eYJf6s&H2{APwR5R$CQj*9rEcm!Jw0QGUN93Bn3O^2B+ zU8a0C3_Iwve@kjQ#-APU!uqdanUm%MxNw+WF z)U+d8u3G_;0`tba8&xCh(33g&=0zRvL-qW(6yDL$QIJVK0JERGT3J{Nm6d#@hH{`* zS-;g3_Uz`_-CVRnn=E~IOYliK#i|oRc)#uBojyDj?Gm$IYuj}x@qKPN zyp+(y3$z?30JY<;U^L3?&`ng0P3GPqvKy2W38bBBEhP6bdVgK>q`|$J<6x1XVU&C8 z5_|NE^K2YJCIt3I`Ij}H^atw_5mw@lUw&DBHz1+Jd{ezFbD*GuySDEGe{F(E+XJYz zyf*#Y7iatFg}1)V>cV!qt`)hElKe&&3FC`FKSt36;@()fOOD@=Z5Y04cnWtEfg5vo z@h;Dyr{J2I22)&;{}q*=2TF-j=0){ZnDU_6DkJKp0e2Kxy9Az?JD{5gm{BN#CPh zM}ew1pZ`-IqWXbY zeE+=r&br73zJM&$ZSGPkBvpX*%*-hQmQXE%E4Ky9b{Axo3hfAEu=47k^~i)XhhXah z!G=fUHUj{LI75!BHOIc1j&BP;JkqxU#n1l&HV^Vb07);qV39)yMrb9(rdgRBn37dQ zBWbH~vk78o;{_xe0LbA(+?W>DJqfS5Qo&CXY~fs6(wFD;ikx+G)oXt_b!TM#!~WBG zMX!rMe-R|^Ew z`ka?*%4+6CLVSB3@5ZNE=gNQC#-(To&A)%+Zv>!F+-$jA^l(aSr6ZeRv+}!_Nr9}} zEBN%!)!q{wwPd`E8$ev~8Yg1{o?~&Ihp$A+mkP=awpR=@+P0TXz)mCirn$M3@aX-h zwC6?HueV>N8HuTBb%T{9;^&7u+;_@EHkJ$Q(&u&*hT;bYI%*~eX(B8Jz7JAvno_wY z>u;Z=z1u)1MqRKur4;EeyTmZEKw97QfpL$&5tsPk-4uA<+{hiJf`?R%psJ$}n=xk& zp9{kLM%e#DpTql)`|r79-F2sOTcm+0eY?ea9Ml3n=gE1P_Xyh3B_6EpiVzG#KAoNX z2`q>sWkOigep67{T*=IsYuuOPxmbvPin-T&ri@c?beS*9iq+rixjRM9=qpkM&3DCz zi67!5BND*(LS}f!Z$%=YX1I`%-HZ}J^W|P!gN2HJ>DO*N-%!0&IxoZ5>WRt8X6UL| zkA2ALI^v5y9=8x;r2&vFja45mrTtpa-FDZ7RmO!@yloiDfTzg^?b?{YKw1(pf-_0F zJk`XUD`fA2gzW-e;M}WvNRXbUx%!KR+(|*de7!t=2UtT5S}*xxl)PSqocdMe;eGFa zPwQW3xM7Q+SKZcRQ#G`pvDA~Nbcn3|czmNeqi-5*nUW zF;Dl>NUYuz$QIN+ch9#tt-g@Bo;T;fyo%whe}eqJVnvty_!V4wz9zC+Fd17H`F{`- zgJ+0zcb-Uy*~XsTM}LEIk2uY1=ay)hu2p#B*;P3erTKLPV&;g5PgO@91}#nu?hnwgr9ZI{5Z=XwWMt-RiYGEQ0IGw|R#*9Ehojs{_c$>d3-S102s1^DZvzFW8j@F=VEQRK&c2K3 zgF^t$O0!XFCO{4P0y?W;033-`vw70nxaAHjNzA_oy`JYi{&@%D*n*cu!1_(=KYj4TVe-L0HVJVG8S2j}Wsy^tSUbn{S zgq+L?7no~0p^@P*l7G%p_uQi=J_iOVRxX=)QvsD*e=2h4*f@H^e9!p#H#zgxs+Y@K z@b9Re#CzcK={MJzY+SKA(AgJHxePyFo*YPrb+)B6UhUS^Ez6Qmb|tfvSBpFsRg>%H zxe3j^0Cw~5_%ODuQ8U>NT;GNQm)cjB^uV(>bnof=0<60$MxkzMeZ_ONMUtib3pQ*n zEyAJNzaZ~*n&9Oh<=b$PZcll7fsK2af+WwI^IA{z>M`d`$R>)OAwgo~_r7lFgk8^x zbq(yJfUgn9T!Xp8@<&nP0X%ef!eIo-fJXuT@1@Za{o`wO^P9k*)&B4Ee0tvOm1P?* zfV*PC8=UWZ*5f@@gfZiuHcKuV&fl-4mSMfKO;pTGxsG@uRJuEt1q-FUJ&nbXZ4>HX z-s=}_Z8Mi^<-d8zU#xq=tBX$!7lK}lbN8;aruhHI|2qUC zy)5;&w?v4kjrJ7}N53+fu8`l}Hh=W(wQkwn&*O1^Q)XOAm*WFM^oWP8oI53z#G-cY%iU4*o(O?E zb&+;7*Y6_m8v8GkJTy8*v`XNd8#DRn3D0MqP44YSEV&iUvtQX}G*!E66+Vr7x$nD`fSmM#?FX!+fR{70-Lqms8hP=bPla<(#%B8?NjitUft;4$acf z`fCP{-|DB>(7?F@%Za?R{`yAbAFhjY<2jWStMG8+CpAnO1^zQ*P?ag#@QB zeou3f?=~$yR&o2BtGhF+`h{P#+a{$^L-bQ^IpNU3sYmrn_h;RytT|NE@nYfEwp95; zvpt`2bVLeRm*LBXKEqpJ&pzNCt^ok6dwo_P@@F~I6yoeW$sq=G^0b_buyfrG_P9|gREUDpW^Yz(OzCNsieq@mC zB4Ev<_$e2rK!2%GR`k+VfJu(8l`naZS*(N*ZJR3<8esR7 z!aGGnDkii!V5w^L5i1kw()@eNxUJu7t$RlGp5+fc zU;j4zhTirw$$3qe9<4na_3omJ0~p!tltF)WpDsp+IiZguS*k7RAG{8@R69Ey#ywEHhf4JRfWq-qgC z+!_%n6*Dt}u=+CF?F!?2K7L=bseRKoxOysA1g;{yvFYooM-kq)k246lZkM{ft^h>? z_al3iE6H{k&`TSQHaw9eeUm%!T7?b~M%l;>L+ZxWrj4Z+3{cT{hRrFjcI7cQzX+AP zhr-U5Y6$2o-$eiav2YU9E=8wcV!LSw>xUA7gVVexzSUfN;gkAokNe!FSa-2Jy=7v< z!y~W3Yb2{5=0N?$G>kF-vD&3>jxU5M1=!&0m6_u@S5{{^tPkH{l8i2(@RM1Qjb^DTs4PGqU+HqeXygDqZYhWs)n?vYQ5Av-D{3#`^)(p`{WC{ zxtYG}b_&qgW6ScA%c%hK8!oOa%n`I=*i;UfWr{Av38og6DkE%9j-J2OH%(gp-Gl>V z^2PTW0JL<8|Ip%%wi_QKbd&f~gMxZuz8{6)xKlU$9_HTcoa0fxf(gr7X;M#w6bXK7 z5Q?D~y+RwDnppb_E+#55%yOPz%c1Fhu3h@xj`V=%UpkcO*=5U7`LYey%wK$kA5Ty8 z+!!*gf!lV{wV&(h9AECLCLGblQcJe{x<8b1?4!I+++<(1^! zvG0%XPv?A|=Y7t3&JX9ktZ27tM^;16D^e-_L408-tZe<*{Av9vE;scKP2d~SNF>-wAdExW3Sd$x8!;i@$dx+h1 zEj>a?+7Ar{*tx*RSF;B$0c3nd1vlt^ayQpa3^#LlE3`vN%fIF)0t{#Sxk|x2zpjJa zc7F%!ZOC0Y9m4|NK(lSHV7Db`kBA6X0^1dxHXib-j zPrV|Gr|t;T1j42C0>1a2$$SUFu+qm4gwOx19n@Vf{3iP@6ih$XD=3m#d{<*1#Zo?z zcahPyy8_z`OSLFd8#nE85QGUq+<5e`(Xnqgc&f~M9N1br*}3-b;w<~C(j=%FFK~`um6UrwpJuZm-mxLzFNJeDsxgj#bzJiTrL&2 zFk)LuJ9i`v%E2{-G2@k50ookpc(6Xt$9KPYnWA=s8l&i>k#r&{3y~J3ncS|NOVw3; z0`d;Z+Xjj{i0J=W7}+Nzl$iP+NONPkg!bv}TOy%ZRQT%H2B%C?aOgDo1mwCu?fayG z$wNbXFh_P|MXpr4tDDRe==&$MhVO^5yV|I-mJ}ve@=*e z97a5Dpf>17@Kxgug~6uyvH-J&qdZ$_w-KXNGrf(2P$}!;YTM|Ts9u|!5+diceCT`R zI^tJrkr%#cVjbwKS8CXm>!&hYvd(?7T7fvfFTZi|fjf2e?kp+8JK)*u6TB($>o}6Y z-QO`&QJCe}H^Sq6WWC0B%En*muymx^Pdpgx)z=7Rhbv!8-JR zo}&tLD$5o@;T4pk8}!r4u>fze8Lge^&$YWC8t7;WF=t8a6DB2@M0%QC>N0>+GPHX= zsNsiRMvlMu7@&TMWQkujZIseQ7@HB=N2*5!XZV0X5orPak(j~G$p#nWbKFvUm@{ek zncvNG^X*VGw^Uxa`57%K@H$3PAtgvxR1@KnnK!f5_S8C5fGC_46KZ5@ZhN}Dr#}7= zlo#GQt_)!JR9YiljKPd}bz>E?pt|y&C-+$chphUm4~INKxZH1HZ|+{bpwE7NY4%%B zK5jboaGJW5UFSYAC<#y)g-8Lc&+;n0GGq%U0_@ihfp>4`ev@S;2OKtL`Rq za9w4ae>6)RXFVk+U^{)J-`q9~qnudjVGyA6J4q_HN!GUB_mDxdsV94rm;f0Or=5-) zI&71G88PHp-*!Bo-~@=~zMU30P{I~HvSS>cgcfV6`}>SsrrVG+YYGEq>KO7aN(6hK zG{?Wypivc9DEVu)|0}>|#dDB1pqJJxfkh61PQ1-rU)6Bdco7WgaQ$KhQ1m zrBBSPKf9OW>p{#jyx4G4VWoOf)Z~baTK8XT2l14G2&dEG3xRr5vk$Wia@VJOc^O9X zMd%=E+11HUc?lu_L=foyP9<~zE2WEdY26JiIhrnCk_u1X?HFJB! zin4WmdM*wGvT#Nn4>}WP0m^e}W>2Mm-*g6cL3PK^c{z(z}j=q7)HGsG)ZV&Cmh?L@An6MzkJ8%acIikYp<)G=e4f2V*EpsyT=Zn zJuDy~aLn-Doks!!2f_pdgq(jl2z)c0{?97#a?ts~-8;Z5@Mr6GOEmCuDBzxTuz0fFBI4DZ~s2+Lh2gl5XwS}*eGMA-m!VG#|UZI#?jDKnO?dk8%Hy{3L@!LtmUoCF_dgn%*%lL|yFCA~ zPZKsNC}5fQC@Pp)gFjYm6wLlnBLN~+Lbo5F9m*gO`_{PY`-G<(!0mO&rDV$j6wwA- z6)3_+Q$E_}@*M4SB^;Vx&!D-9Gw<@cX6to21*n;ULh=!$Jf;A0-Eo-J~$LL#bBMjdo;~$)_{dD7Wx)67h58%@8INfBw?Py0c>4 zqL!F)2pHQK@j$vt+mviUvW+q?EPR0jVZ49dO>b2EZiQ>v7hbO=i8jlF2?4fSzoAKNM#yVvQe|0*C+fuetlR+x) zSMeT-He~AKu`L zU33q$y44iypz0z%o>`s9kPyR_Zx)y@@H}g#hg#eUZ?~31TS$H~2O6Af{6e!RxMDeS zyYXel726lA*GP#8R6*8>k6X5Oac$VQaS1l*rAEx5srt8c8Bu3L<1B0?Y@ zs5b0cWgUKfTr^apvz)y^>KPV8sc&kLQ)wpN6PM$A zy&Fpu?y<+FBxYJ}kZLz{cACUT{JJ2Lw_C6W{d(Twdf~8v<$0EG4L2}?IbfX58m5HU z+7V;xt0ZMblgkybPpNfj!CNLtvE>RLn2M?vtosU6XH%PQE@0*4Fua_`hOs=Gid9b> z)xxH1ji|P#WWizs?lWin5P|`8QQ^&!7nM@#$OE>rqp4!C-alvr#8fkA#F~WiiEP{WwJ4+v-9+j`IyP!yi(o^)$1K#c!&n=x>HA{xrUr!; z#g!IxK-`RD3zJJ9nUFkO8%)eiQVObkalykl3xV;@k&kc~bFNU*t4~-@hV=>;W2ead zx{6R%bCq|`cSr@*WI!_?;T;=DR)bXOO(Kh5t+ji+YPWtGYQ}kEaO@+_w`zu^dg20y zNpvQHme|c{F7A`KLWQ^d9 z#G~80jaTIw$|{uSYl{7^(e6oyZ+8Ul| zut9mhmIc^v#U|+foEC2$N&XKq@>XHUhRHHBBJiz#E_kCq>aaj?klBbsZ|2yO4^TU& zG`F@lYnr^v$Rk4<$b>It;Jfb$o+fbnh0WDr3R^fAXnfx)JL8b5ef%^%_^#!ak2NI0*hzV5L9-5jF(+O%3$ zXbSaR{Bxu{rL|g&by=XS#5^ZTuw_zGj^U(~&dPo75P(2*N4BfGhm9T#1;(6*sD;yR@pk1%I zf;&$4i;!rmanAK1<7+fqa`3Q20{&_*P4bS$#rXrc{NZ+NmUo?5${WOqstE3#jszmm)8&Zn`Z4~yf@+{T^?zF zY+$4U?JM?+^U^tln+j=f=v^O!Qxk)RvaXZl-3LN_`?S&3Q43r`1Siogig}5u+JB*8 z++;99KxZso=M;`|Z0pCjZ1eO6z&wBe-K{teaDG);3(jgx8U1QDkJT1Ap14GAa(Is~ zi@q}_oJYv+(RFyu_#RRrQPXDwfE6fG%X&O-;{H?CC3D?&yTZZlv>u1iDW5hi!__vQ zZfyopxP~V0ez6{^?9%39zQDKC@FAj$JdNEa+e4{HbjJ>@Y=IX@OAk@nc>l z^Bn7)(t_=ei1MJPq4_M!Y5SeGLs#KZ1^aTo9#oVY>dJ}K#Yp_koVO3{^T7CqIDcap zw+m`xm(IU7X0(bI7^98Dw=LVf5Z-;8ytdB92WnVknFGmj=3VyA;Ys&8K?M|1X}+fX zXIn&dc|AD9yHLIo*;H zFR7FIH{O9)tn6Ob*OF|ofw5~W%+C11xq?SgA#wdSKXfx;{%hTo+e+!o4T_$7B%<0< z^Z9ANl=1O$NhS2-GF&sSxzQ{Zk?rFfY&~LkZLWq_{qY9a2`kd9pAQCcb)Vht5IcOD z{M21GyqJ5q-5gx7HVHam8Lc!|L-mtR!YOkO^5&-h^udamh)4G;Slcpv-WzeoRH0fv zWA*SL*|FLQ&&Huw;h|p(8STD-&DQa6GyHDQt0?ofb|&RRyZkjaxK3Bab`QIQ+~D$4 zrWU+V6Swldt>wz>dPT7&2UU)Oef!$M9!0e&muQE=Lm8x!HqRqf%VSs0lWnokp8NzvsuVhMH*4G{xneN{W1-A$3{?SLA! zGR(lcXj?VnFK`nkrCU_2fSO9G@~Xi0-cYR`r*>6-X7r&*#R0$ETm9h7WhCODx@0$F zpM?7E18z#>p-o?{x*=5`_#%U^J`RM-T%YX47MW1-k8R{YGBEst0-zafhJ&nN5Y+-NP(ygF$J<{}GPvYMg72o)KRd#OVPEA2bC3onhE$OlOc zG&h9N0o7l7CE31q@qE3q!EVlTakorjMw31$OJ%K1&KD=@+33`onav(U+AvA@do%WR zfy>Z3cV=zKV~Tq1lenq*lGKW^F+R8uc-9dg`7u4`aBrvHkaE@+F(^zNWcNk`;IE7 zZXwUM`sO@9%*!triArlGA@2RJw zAlCDo-$VotL9EKa%34dcIjWN;8=c|>1h*p$9Od{1Vfu(0?i?Bs(&s_a*`2X>-qT;$`H zuh~MAVn&?<1gukJ7P~-63uZA+QZ7swRj0LRwgQ)3lt|R(qIZ zX=^nG_I1jh6Y0PHxZ2IZq1gJh3pZC4N^!+b`@2}*MLT3(=kk0lBGmnEtgO+8OLIO| z+A|=Es`X`zzAMCk(=HFJ1MMc0?4md#ecY!C;U`zO-t(q-Zi9%6OOKSkH@=zl`%8W* zxHvKTPT^^~LHpCT_DM`*-uO?6Vz2Y{^3%`ofa=Tj_*3o!@HAsxy-CE3u5BP>WcrR) z@!-k%nm(Nu(>^JnrN{+*lS)5PvFB{wx7N37pl%mbj_Qdiy?^Vur&`nm*y zn}kkGTV3_O`h9k;FV3GW9O6ROeJ=&5>mz_h;r zuZ&XMpn)^dhIM<4cxy@#T-&@h<~Al@7UZl=O4V=q#1~ugTw>RRVQ~4c7jPb81AqF< z>VWmINVvz&7m+?26?9nM*1eH5-x0~Lx9r7(a}IVeW7v0FSOdnP=7$c75z=X2j0j^CkQ zV9meX=$A%g{6a8e)bqSQ=s&)R6&vX#N3}@}B{2TBws^QxDPhQF8HC&g(SKkCR?wdPO^f?BjB z#{7G2RQx*qai%-I0cX-~OSXQ2uQ=C-P1s!xZ@(R%jNLzZPa zZ4(H>xZJtwB+-%O9v4p~&NsH^V0D3Xh-NDmdGdL&n$Bb>qL4fC!1O)VVoqfzSj~D2 zdZLwKgR$0=}Mm6HUdfuHPd|a;GPk&oKZn6?5{6#+x=Uv7K>D#Uo zcRT-cKOLy>F@9Bv)*qV&D@v6BS5wGc;jimHyO=!j?L5j|8LDAsdXP>FN;m{}TOLnkvvIMU*z*E*!yNg97Kq7rpXQ z{JKcW5P7@#jr{zkXI{DxY=nfHB)YAR{rbFq?YRQq$YS?8Mk`TR!Wgk!RP&tM7*+q> zs<7#qwc4_lJnMHTM&AYq-phkfr6d*3H_c$goN!x$yAdEb!YYZut;C5o11k?xi%?&- zXr?SDV2A^q(9(6dW8{s#_B~ae9f1 zN2_Kn1p2kR#3i8aTBu=m5W<1n;5n6Ci4{j;9(&w?)9g=lZC0~r@Z3HTweiYJ6`nbr zJneB+p#t%?>O9X`g2DB2$uS9j*f4%Uo)Wpy+l}0iZ4f6p)%A^MiK%(pKu?diZfrSe z41vQ7q)r2V@%Oen$%CaW?KG_sc*%aBf~!9U9bFOY*B-<9$hguc7g$9FWwgF8nPnuBL><1e$n7&`&Z}*Bc)+iWe>7qqj5cE(3#)fmNyU|Y^NQ?XD zXDIVXk@218Ixf8b^8EJ4(-{q$cgv5(yuQ1kb9zzG*mRW`9v>*k|9nm}xwNfht$D^B`Zesl zU*Qj0+*gnm|4PSSI_Q))Q9jIB0}la@`t()o~mw$_Z)tk9PM8eTz z`>@g7&&!&foEKejNBJLau4s31a`5={UloB*mA7q|VuWM3^RFmuyq`o~IpKXX1cs!P zQ5bk(R5Xfchb?1sD8Ub2oZ5ZT|Cj%X3D{wgx&^-mpgReLKgzP^35@f{Y z(Z;~#k?qxHuN_YV>-Om}Zy_Q6wQIss{_>aMu6@eUZP4r-+@Dkf>U((aIhXzXtByhi zQ2EPR<-xVd6*&t(#oh9%q0Pwy*9~?rN@b@9xFU#EG`iQyLO$?v#Qha)xVaruIroBp zLyXX^r=fK2R&zUD)h!!b&VhrD5l6qTpTW-Df!jmeK0 zvvL^6PVSCRJ6}p9*f?*f;N48K7iuZkG#sxPspX>e2>aMxBa~Dawrc<@GN}Bbd$Niq z1a1M_f{oaf4=;bHqOdOU^k`S`{+Jvd)(f($t)ml-6mLkJ`)G@DD3N@~b%gCS<8;AM z3q?yfOhwJ?1pj$4r)tg21(x$LWsrw?*pFKza1@ML-=tp~Hts7^jk62+oiCgm;V!C2 z?TTi#(23TB&{B#MKG_mH^;j$>t@Xz4CjlbPCVixv`@Kud@9auow>KAct=Wl18 z`-`lCcpdf^ES55cH%3c3VuvdC{^oH6+kr-fZ{%8U9hbE;o zLKvLG#B(L&4{bX!=kY6OvW1x9L?l)^Iv6!nZ|Hvpp=? zK=esN_VpDB37ucsiX!|_<$U{BYSJbaJ(hHlFB2>=oR~8{NHo6o=6viLnpYdR|T53tt&EGoq9qWLjR>XHV5HEYQMf;C*3BUd<|F(`CDeM%a_lve zZJ%BzccK-zTL3-Zhfh|^KBbcnX9qB&QE2+Npo?MT*-`1Zll>B5Vb0tT;gMa%(1t7YFKbYi4 z*vwEq(W2-xigGK+1jl|hVyRJg+O`z>o0po~c_A5Ye0Kzd*)>N5FyB+&A%D=wsA5&` zb%Z^WY)GSNd9Tv2dMKLC7H0{6UZO6dfm++UP3`CF8)IEzrc=h=F|ch>nVRChHV9(r zrT-?jEa9PyIHp0o$&^6l_|_y!fHC&q?k#*)aAIJ}<7)m$y=fki#iWXWT-(mra z!qH%})JQXC%)&@f57>AI`{7(4-*JwE!xXB-DJt!TcxV~>qrtnD_6H}AR=PNV?I)%b zFKLM@pxWGqpMY`GPOUZ1!SauHlSZVX-$E2aB-+sC&G9EuR6wS|l1?o^CWWB_3$WMr z({;Tmh~?%HltcDWsk~^<95x0y^xY)uwl%N38N^J{c*VC$K&E|5#GOJ$ZNF(Zwk6^b zGY227a9Kfp)dUTN=+p*wU>n(FieFl^!wqp>B?VM&(()%`mEEnVq-eDV0G!eDXwuTB zhAxNUFa})Da?v6-RAggBMDLzL2~k@dm_xu(3CN$BFs<#Rv_LVH6WC<`pNvm`$aL-! z44S%*XQ^a6Hx9YZ$f8Ikh<6e6)bGyv_jaSYgVJ=1SwexI%`3q#-dTyqE1^w+Py!|H z=d->**>h=phFZ4M=JQ@28bb7Z{;dn&)qe_4fDhAqx`kcGSL{2zVF5l$OczW?3Y@Bj2FOwAB>$;t?R3mAH zgZjpDi>FTmWrhMqkvwbbj#Sb;-||yH{c~F-I~pHeuJUnJ6zTqpi37yys^Q6F!EX-k z+GTlYn39ioL1A(ewIH1bP9jyp3RFdE>mmdLv(C6p4{9F>5=sYaMvz@z|K9AS}xh2qcs zy?z9uAb7w9qUa+Tzlp_V?x%l0UkU{i3Y$$~Xz`J@st5!#l~RZAf=iy~Ye>zri87b2 zf*1ETCZNbFCt5JpkL)^5%%CIueRTeWdTidD8~;c8NOD9QfKt+P{2^#c5MC5a_m>U*hh|JcQrX*DKFws62=^JxE*{5NhQw0h@x?a% zJ+0W`1)5v>nekgPo&9ZVjV4B4^KH2gVGK%{g7sC_XV>k)v)F5h*`lrJ@ITDx#}4s* z=7>L6+SWRpMC&S_cZ5KqZgX0y30L@dsa||CtwwLsMta5;R?ALF>uaK&bFq`z8)cbG zyr-~p+eagVf%X73K%DL3p7C+qv^M1FCf+`s*-!0bFZ~b5c2wJ!vWF?$@_8HGM>_S* z-6!TWePzNX#UO;K`0v>*a?~r-z6h>Dzs>2r=UYP`aU+;b3hGT)f^sP&6h*L<1<()J9tHM6X=d2Sb)GHQzm#aLQw)^-v3Ob3 zk+Ym1>v%j`%YtN0SS`9i$1koN2j-u>rio_LC}wyhpryGE7QjIN{zFHA46A6aJPG%i zp#_*Rj=(fOl$%K$9iy9qCdr;wMR$-x26cGj+ z>}}+gAg~elVYJlmPoo~}jm3tf0nsCbdSKekeZc$=WfD*3GcJ6uqF8<=jUQLec53Wt zUW=Xra07>OdGO+h$Zxx`EwHeZNNEFh6&e6=j%3;b?|9Wkjk7mXcfH^!Spfpr{0Zes zTA-9~Z8>L@A`O^DM0sy;$Q%ezqz$bZb%Q1)F?dZIqv>xL*!j;M@OOlqFK??znc$*& z8(r{H0P;lVZNQxV*fYok3fTVuC8MC);;bx+I6e*405Fbv?Y~zC>QHfD(b9@*;w&Pi z7tbr#Z3D#mlC~#S_B5Z3#>Up~VZ4+-t_tIy0a9iDy>}67j`H`F388C?hng{409rx= zI9Uno6YzbA8ma)A_pUH3V9K(55cfWlHvgXk0~dCwDxi^@Vep6rNB5g_V+(;q#o@(D7fqKPOqNqG<#-g0=KE9zl^UOiLi` zMU64%_e`n2Sz)D9`@c?P<0(Rb&=VJT<%)@=9sz1O(J}=caaOv4AHf4$z|ZL1J$^nX zcNc|$0-D08-8}2UD1shZ0rHn!hvc5h>Su;Z+R$b$tn{=%vSmBIq>8h^C(b|ip3PnH z#)}#~N1Jpe|z{?72A#u6Clu zK~p?5kO}Ae5D4kY4|^h~Q=8+CK9s@JF(zehnhz$SYe zqcQmti`pyZ0MbmD?hQUoz6T=%`J!fdS9Xr~9*{u_EG93j?5MZrrwKT4G-%4xffWLz zBB-5kZ@CQth|S5}MZ^wblQZ*g$~U|QkPv8oDl(q{mOl6EUa~Pl=M0pNik1!KCc=Gy zRBS-ufHH43W-pI3lcn)sz{HJYAQkyllqotP<5#hOm_6=T9(sqO17!*p?>ZBXuaQs* zA=LtE-TqfCj|v;^O=e{;$x;f1s2lF4#Q|X*@M6zkzBqY_Iv9Pr1Z&I00dC3%-W{p@ zSE?K>8v=H?jW%x7eIC8j2xKI>mnV4o{+_v-mC(Y<-pdHS69LdNE#o^;;L2X;Aal*R zj?6EVmuZ1?biSQVIeRnp`#$w2d&bC~20~|ZV{H9WG>Ko4ppF1u>Ua)t=}W35X~NUr zvmuFfC8BS)0*?t-f5(0fU|j#DIiP#l4s-`Cr^XLBO2Hv>f2rcW)g7_tuOJ(X`Tc4xSS;_@A4J^OW@7ynYkIrj^FketOs2ZS_np{*~ z5y#7BoIEX1);6w&$O`WSPTK+u^bj})+643s^vm%R+#E{I*H^#G#hz{bx0nm~I}a4~ z0EonC({6h!od&>OdO$?RH0{N@$lI$HqNS1$d!HLL7rZ&T*n;lx$W9=5uL3?NqXvDP zyFtKbr3LbAbpD9|F((07sZ`sIxfm|(9`iNe6`ICYG`|1r;I-D;<}i(a1efJ^t?by| zY{AUK7ort`IubJ+IC2uL282z_v%Rp{$U%ch4mxGcQ?4^{5`NSj_7DG<+rUX*z*-ZE z(BYDDc)P(00Ts;$h#4SzV{Ys3UbJ$%iw0I<9OoWm#($gP_7|7jEeJ>B(Q<;$Tm z8VRV6(}4OI#KQmzPp6+e-Qm4AE2vim4M2VsysNj71vah72Sxb;c~JIm&2=i$j9-mn zOmY(8e!x2tM!^cO$5rFKnbU#%1pwbcm!H4FK>l7GX;bJh+Rc)VxAyfB51F4SY@jYi z?f4g7ejdtKH|p-**jH4`jGWPwI>$i%@Ss(Lwxh?`FFX z@a_ZU?ficZR`T|;2>z{>q6I1DrgJ{_;>iO z2k}S$3y1a8NBB^S({YsDK|_art}mrW69}_7y4-M%WYsKr!0-yzO6h0%g*>oK+U; zUih9?h{^%by#iRQoJ2?412X&G*?n?JvwNW*Ar1u2PJ~A@uj2hJq-=pF59~2?+_V@U z@i!>7y^Z7icUa0(0L?m1?}AFlx8VCQ3_oFIfrQN`0RePjg}QI~$gUTG_CP(*PD;Ta z0}47zemjYh2k_aybQcp#Z^lcb=x7BsaaIMuscL9b1z9A6`R04oC0#_GokmFiArNag|P@I~j-e}|2TtHZq3#r|4@(EC}$yPk%8o-=J3WOjt zQ|NCU+j&!q*H-Z5=R?IT+U*GlpnsmbJc$e*<))wi>;x-fXPdM-F1v^M!5S!w7r;-S z@wrUBvBCjc9@rl0#N^;_pFOXkQyF1XSdMeS_t;P;4rM0)+l0bRNuedjOEM2sddq}m z{O|;NWG9cv%6ciHcB6fIPXMMEj{`W8zeZH?CwG3m-q>kk9Na5531e7KE?U0OCc zd9>%O{|3Re?=iT1$MXiE2Q48lqp3atwbE%~KlZ_m@c(~~(y@Y;wSS9Zoqpk2Vj z^IjHjBb;D?KDe)n58hpNPO|HO@bJ5{#`&%P)R7k$sN&+(-zs_cRuwwK@i+_c)ZDyX)$l;jZ`U&Z-maPkG%7GfpPa-p+jKRj>3eq()N zw}KVMnX1v&c5td>&imd-#ccSUfPk6S;alI6<@!$~{(& zdd&vRSUjr%RLB*=r%4Pdg|(cDDGkY<)xol#^pd1X5dOk$kuESoFR7il*a0+_CZcy* z*+#Hp$`Jl){WY8=TG(g@u>%+sO;hDp)PX`^sU;)eDkNBSEg)ev)t0GbiKrc8NKc%#$kC(D=nDUGko2~rP zJC%CQuQml%rWv}<%Ts@Z^?5YZBO#_?^0UJLS0ZW?@_R79QxtG5Z*mGtoJLI>XVIGR z4kqt80Y3iB&Rf87|KmuhTY#PPCIQ0XUhFQ{(NHN`!k~$6puY;ZjfxSi{+ZmK(bf}`d=7cT3l~$4m-xg^HjNC)4QUlX#F*HHb$qnnc39wc_=*c2XE|;IL?+tg7*S)w z@M%aCax@{NX`89?2-DVI4bY8a3UtELfqe_PV2C0TOUgL|2FMVB33K3hC$KMZeT(DS z@?c$3qjV;A`KiI(6TmTYSadt)f$A_Yw!`^+Y1><%dd1qnE4clXHGIL3$zw66Sf=IJ zpr9_mdK-X*t^L&?d{cS(+()e{d&1zND-e5*D!CAyH+3G_F8FYuBcNyp$jHgMbauf} ztG9a&0&Ma~tORYTSpmD6Kz|wq{OrUht-ZjGJLk&ZsX){D4eF`!D0f&6MH+8vIbPmY zYOPpB9k_^`(0I`|RqJU`2CaQ6q+P}ESkx(&OH z_Y`19p#Ikwf>~^+p#o{DYsCt-0(35rKy&A--CJ9~V#{P7zdRncc|LLJB7d#IFWnm` z@A5WV+21KXT2)fw0wJbPL*w&FQ_pC}@bBt1cwRu~Va+)_bEYi9)`!Y_;MaO=cjyN3 z9a>n8{aj<`=*FZ$FkH|VOi*wU+;&|&c+-@1NKpz7(IL7pXu@%GQfu#qDM`kNiX6*%8 z^wdMsD@R2kk)N+Fc{0Bk_$|2Lqd}o7pKQJg11&8eWRKoO`aq0qo7+D>jdJjOd~G3Pcqz$(gpbD@-mRs4adi^7H&Xs9O~4Q7L@hJ;_zYAXEgwuu z6&&o}HGlZQ^Th$X>=+4=!+aAtDnq>1Sf!cujTBgpW9@f0IbWU0R3rDvgc1xb7njcA`Yd*7GN3T=man+{T|E! z=3aO?0qBQ<3h0h?SfJ~CO;L@%^fWCzSqF5jb*duVnM*+JB5*{uvnA{ebVNAN=;;b~-#7c~l;KlWe!2ZU@`^s( zf`)1YGtv0EdUdY6>_<}&8R+`#{H_8Aa{S}mPs+4JJYm|XJC6h`6A$6__|!1bFyvo8 z%nlb727Y!ZJ_up`PkYqzu9(D*-4Z|bCSG0z>w%)))RF%Y1@nrV*#M0@A|6-Q%baMP zW;L4F;eydpC@3Tkf6?cTR90fUb)kK!Xs$9(QBj71{exfc4Fru)O7UbH_`wMCLZvz- z05t^|{GMEkUo4A-9v_hYTWC3VCwhaXWt3X&J+Vos33tk9JdvL3lp=F4O#kNbi_%Z` z>mNV$ck7ujjo7 zV0$HVbDWZgrX{|#cu0t6yT)KWDU9zOJ^1xltI$k=oUGto0X-9hURI{|Y-ys)YZ=4T zBJEc($;Zi>1tnI|2h1E;{eyD#Enf$X#vu>yjVKzKI4BL1u zc6arDs*K?k38BdNGymA?j)#k>=bh=jYUu5sG&|VqekZ6RH2m38M^(p_t!JQnYALz~ z55^|P|MRj9imAc0X3p~GtyK^B?b_>~=g8r+wjCEVx-S}fE1YcAkPwX&3H!UPm)P?H zU3p~Tw0&T!F}u|Lh!(K1;a;y!1%_%PiYK+s5GppAcrhwW4>}5*W6S`3{l?K*z^{|y%ArrwI{)f zpVzEx2lc16@b;C;n@NF&sV{r>`ya8+|MQI=GC!VZaxFVErea%5x?{h*F;^6Dv5cFS;M*S`(u#UE{RMgi`+ta~%anGhKUEV#p6Q&{Pkf~F z>qJg|p)Pq}`$Yo=aWbae-ZlEbC4saj(j^tA>2l6bn+wuRowtp?*WHkdZPWcL@q3g? zY#aZ{D&sFZ{`h1k&5)%^Uc6+&kzWnb1!AB`&Pe7&2Ifm>?ZUB+q)#s(UH|b)dlCQD zWWRzi?UH*2R-*BOb+ka`={nN^(4Dc}K(u*qX!F{thw~ScEp2+ir}H`1uY%HKV3+Q$ zp6;-E>$nrWlrtI?f2O=S3_4u;V$XZ!PBMWXq9k-=BX{Hj$KT5sGH-O|q$xPwc79q( zG$c%Rczr4{mmPi-y?1+8{V%KXvl?H6v85em>M?gyU&#ZZo^_w}i3aPa?Pb-suxW?VOQ$8V_T0nk~Zi5BgwFO2P zK7!rvNWT+~Ex$VEaL7oo;t!M7i-wORvJ6SbTdn22qmy>ETvt20c_Bb_X=~!~Y(~df ze!fxUfNZ@fFCBJ~|Cn;G>$3v0S3CaWN;uMS`A!h)b?$fIYZcVRKUejD&idZ}3(yG% zBUdciFLzYFED-Iz`YV5=yqn+bHAhoN*J_%`_j7aF-%X5xuT`w*>u1V8pE$-BG5E3I zv|zNXPF&`La|!+iqomg|mrc_>KgUQ1@+U9F4hTm|s{dwn(V8W)>f@Zcd^h;z1K=4k zhlpeAmfx?m@_o*%|1IFxO2x{D)ikeJnOUP*k1trUxJjeXLoT7r`ulunbL$&@%x5{z*{Y~2R*|(~oc~Qow zMe1iwj`yjHjzY8W4*Q=xK|2WTV4JA#y%p(q3ElfKfbEnUQ#w3ic&Ygk1N(>G?*v~n zTyb%mz4a9r-||8uDM@JO7o+k`Le?jb1PkR$VZlL%mV`fDfNj*>+ylj{6Ov)iJJXtl zkAF0b|^jnMv@bdY7hyNMvCtAnC;`3GN*tSE3b$1!ryJm>6Ii-FqEaPV* zPj|Ne&X%enWySe>&G&-~_HpprUvU}s66Z23_&IjjVQcA9&Q-nnHg}INV6*eLaWX4M zJ`FUa#cVBd)YDU$J_2zk3PZ0>^WI)IQ+s|00>s(nq^$-SnroT%So?`h^`z=F<;r6( za0#I?7vm-tVu}W1H@Dt8UkCEN@A!M>X{Ms(PZjJ?+e_~YI-(OvMeLsPghoqrb%C2w zVpZ0zAxhJb2ixw=JhBg0czp1B$L-XGd5=#XJ!_V=;u~jGyE>>KMcSyOJyV%5+{{?X(`_ zMbXqQWYpR5%-6VmupREHt8MN7@MX+-Nv9h3Nh;lJ2ckdqrI)<3Zc=f4r_{+9ttU94 z{^R6d%o&GG9zC#;+hRX{y^_C#hdjzDQS0Qq)8y?CPmvmYo`w#-q&t+=VETmGRfK2w zg}|fy=9rb3_LHGEX~r{>QI{(ZR7$RDIU1O(8G8Hq%R2N}PFA#Xr(>ZPOQq%R;cO}& zj8EWBVA<9(X^St(Dqnelck-fOfEmk&+SZ-p4+1`@LvOu^Pn5i%1C5qYKV)^er%|RZ zgYg2F5sUH-HUA3b3`nPXd&ECKXMZQ6BS`ofs&7O3o}N{6e3r{JzN?5w)`V@S#E(S} z>^XoSci`LuT<3XHAqUxmpYJ_N-?*UbL33XWb;mr=ES-xy_VNMh*&*UN`NIS6$@{&~ z$EsHD|I97%6Irq6xk-KHF+&_(k=#T9XvLyWyU|-8-Caj`i%AGX?{`m;EGF$=KDf)l zD}Ks>$4e#Doqw557K9qs^TLJZQoWs?s(G}0t@-qqTEMAQL+ACnwNG)M!!DGzNMEPa zhUSDs@4I^v{Q1gVZBZ3*Nd4geAAKpMCspFz6GoT#;5^#*T(ICmURPVrne8CSN;9BZ zpvYUw!*?HU%+-XwB;M7}x~>o8d6W8!5kEmda=s-2Tl<6|gs~;^UG= zrf;;PpJVv!$Byft$QEkXms-;5&;SXZ{#5-_?)sXwcGmhJ?xNi>xjb;pS8bqR`ujxXl|b0yEjI6F z_!)H(E9uF$lk#^G`|@tV;sL;MY4K#-9?IR#%TxA;Hh&HHQ>-Y8DpEh(nKVH*i@_TBwqySTSU*;X7S0NY7ayFqC4k6S6 z^s9FS9Ob$xoOcVc%P~)>n>hnDt z7nwZTr+e7w(xtx?TCy{ZR=gddB0$|Iga5Saf+C>gE5X3etnRoHj?S_^y|C{u1}d6# ziw93bZNH;JrR~PvAoy$vd*2m1+jYKV9L|iivqlv``H-iBG1f z&)qKo1TDoUXz^WwX71YOO6_1wLcDFxm5hIv1n*A=XstywsnhvWj8=~c4+*-b2gUF$vz+U^LiKhuQ}f<}epyr*#jbL&TdYQ*jHe*aFS zbbhYzV$O2Z;R(I=FR!F`f#B@DLz_~wrgyfUt#5sVb(nmLIRPl9YqVPb_xzK>#c(E8 zYy8D4u|4$m+g~XhaAc|JgWN2uBZ6OurJn5v;_bQG5?xy`H#L$+xb%P6ddq+&`!{TO zY@{?um(tQ9C8bDBN>E{hFbR<^DXC3RK}s5>6o*O=q$Dpw5D<__jGmw(4U&@2HTd7} z^L%*s>Aq$A#o5Pkp4WCntf1hZYh>1)Kzl26oN@yeI{vk9s(dDf13Atd0uQY_88?YL zZYi)_anB1p9bD|)o#>eFXVymvTHkosne~xAWUMvK(HW?>oa!EM7HV1R5x@GY=hOyr z3Q0rH*Tv<|Q(BPZ0h=&*@|7eZ&U5$qWzBY3_Kk}IU|0d!e2bhuqJf$@bC89S)WvQc z64VJ60ET-G-1MJ(t2M*{eHVR#Qz|@QlHow8)&9AyeHyl|v>%`ZVm2TDRcVXu$mVAD zjRTL#@{DRa`ymMzbpD%Cp(>X$Eh4s#%wX|shY;%&(cT^2h2XXv?WQTyQ`rzO3hV7l9M!7xf7!09cjxu7mXuAMgfn?XC|*&p<>Vi9gSSzMf1jo6;;0^wDbQn44Ix4ebju)GD|s4GbDG4yv&^UA+kw-Ju&l4wUApVYP98(k%^5Jb(D zIvB!tQqOFMy7{1Tuc=o7+d_qmv(J636Csmw!8k1}K)9(qqfo1A=?pdIY&i7r#e>X5=D9ujB#^IyC`|I!Y0uN7f$3` zvm%+WFqyR67(54H35cM7#YA?u#zE6z0i^wqce{&Tu73k>Sf0Roa)@aI(e_d@YjN_fs;DTukiDB~KZ z5Ht8`Es57|Mkj7IXB0vMu1CyTsC&R~AdM!wil@i-4$h>hfcJLjsa`6->kJJxy~^zx zjkvhD`baMu^h@v=HZplSJd-kAT}CT&{Vs_ntOnXS&sgH?Ks2bra0m1eib6lJVur++ z#Jrmr$}p}(E9@CnMZMK5?9~23`VifceaJpl7zj(q0L)0vT`-{&1)=-=ctbQ?mQ2F%O&W@6lSgf)iLxA97eQZJ)P>~n zGd1uTj`WfD3o$j+o|z#=@gb`$S}(mf{)|X?e(xfI3y{Zj>6C-MDg2w5qs@4auX59e zDXv|$dMOa3aNdGhAn2LXw^3IBL0F;L2gTsZBF>!hZiV)1Mo9>zGVdPGy6342fr!~t zr0lEBnO)PGLu)Q9{^=LusR*IP(vGDPD`QtD5E`RSkukGALpU0))s zh4TPse{PaOiX(mhRxkVVR~*pi=YrOfJaqGH-8Wp+%VgZ=N^(m=*p#`HNrFUA#XR)p z)DGaAHG} zF_Ak-P1}x^qiG-!NcKMw>X8Ba%xBhd>6QV>Ge{s~b?4LiNosC7iSLIm(o!a3=8tC^ zVPI0`1Z0pRge$nY5f$JG@C;=ZPE>1knkGY+RbHR!3*$S`8dA^vdd%w8-cq0|hDv;> znRr%AKBpdyRZ!{{yFaI_Rp7tVyy0pA+U!k(n5RZA>Av7Ty=S(-Rr_W zOXHMCl6=Q@*N#8WB=wo=mtYo5LfmwuW%~PI7)|DMu_Pb~1|1t>VAUG~l*b4XLF^Fg zH2tK}KvHcYvwydF{{CR?UG3yOBq7Q6XquuV4L&5sL?kXT`FM6^zD%P>G>_D=@}}>u zfeMNLMLEs=RZx9TJ#m>Cn}YKD^YYJ~v-tJ*a(1RnY2{bE#4P*6qtnALg89u)2DZnD z)sH;sZv#v-2_AYxt(oz%k~Y(+8NI@X(JDX9lp$7Oea?@SDB_Kme;@4*1)aW0zLYeZ zw2}BG%Drx-sP4H6rjM~36HHgxVWT?OFrN;|+@-3iP1wu#yoL$<0# zn)RO2TCTF>c(%H{E%vRu`K0Zxr+NJpqmCH^G&tDuLWjg>9P-pyTqQ`jX&bd3P5$Fv zZ#mT2192wlj*ZS z#f8@0CE$KAc|qH0gX^OhG58rCG%e=Y(9wMXfD`%3GVDnGRw5{1?Z zmMxVUsOe^w*6xo#pa<)2Q5E+;Wb;uUEo=cblOBbK-Do;+}CdjX`FdP)NY^zMIRFmpyQf@OTx z7W>9M0tDH7YSBdQx^GOMK>A2HV2v!jPhONImzX@qEvWEu_<;c-b=^ZQEDs&z1sHfu zKe2MBYqB(VO9D=WJ0okbFV^P^bw>`tUZu`YDmgE3CT#m;;W4IhLgpV#+h-&L#$0*L*9c#ujMv zxyB413Gn~La%DTBpSMRRH82PS4hRcRhRK{pRY6nh$GgDSx5VoWN*HtRu9ysslLhfA zzZ4xd!PvnQ3@fMk=95jqy|BV zpb3_yz5kxP6O*7@rgTpYJyBd|@aFKAAF=ijx!ZAgE(P6};yo+25O;HT;%7vwXI)_2XMPZmDew|)ofg1r5E?&juY@;weyuZY+48=AnQV6qQi zztVGS3wrbptXPBDS~_NT>1sJT3$>laS4lL%FMQDsy#v2_qA_nkLbAG69nH~kaHvC= z2UdX{ZKj2DxS!wRfwq59h1U!r#|HaqcgeZ0syz#Vbir=HQ??s^GQV4_y6nxper3V$ zNYGmutEMiEJ52lVxj}s+JXb63%bKthba`a*8xfo6f(n-WLRvo5tVnU6acv_dCJB8s z#vXKKY}E@P^+8`3I?6oIH%Fs(#gBWv*s*~_TZOLrDJ}X0cK^HI%oywzj409z>ao3$5 zTew~m4l3BGV%wMwfAL0SUn8d~__;o-m|Z)HEqdPZ*~OYd!)5EDH$kkB<{NPxk|F_i z6yaJnjtix+`m2F3Rr(FDxC_Y*Q`%JY;EIKu;9{&`o5t0IjcIKKR`lT3OT+!E0*}q^ zC|=Bs?fM|~BRmMVnypJ(@T!C|`>J8Ox$&}wVO&4Yhll4n9!y(F)pI9TskWpei2@x2 z1JrBrHOTGie`2g~vFE!YcICzSeKrKU?p?S0TnVl>!|BR}=&(AZ+JwgznOl<#e7!kq1BloT>cqBJvyaZOSFFW7YX)t$;Aup`cpqcCf^6pFl!9Y~_ zxJK$>c&XUQ?_hXClPk3)$9P7NRDW6J-G4R5s`82Yk(TH86lFQA{vG|3TZbVxI1eVD zjrVwzWK=cOcD8_#8`JL;LtY)H&aQUP%r?BQvG+dMR~(`YfqjhLouAX5{UZSE1IA!8 zW$Wjz2~>RB^(3NuP1s^X=^5kO$OgC<*pDPEpAR-Sg3ZYGvwm*5(-vSnPn0~Nim%Ml0bge9uX-5Lff~CX?%DS$kJ)g-N zAc))n^ShG=HBxb7S}mdOSA%9RLjh+!nj-oyty7-yh~~A>Roc(f@GL#-PeaCsj45vZ z@>>lzI+Kl4Yr`UE%^Edppk=S;pZsWn@(DETn#9xrxB5tS9^gj%`Z+#>^)jX(WD;S+ zBZM5SxVoO+iz>$}RvtQ6E{^whe95X63qJ_~NeGW#5A@v_wjJIMQtjj+{dN$+w4?GM zC#qj+OkmbfC5DtsJlEp3$m$sC_z*B_m=af zPFm*DXWJNmNeLpP=|2$FZ|nql5L99uryddl0jiEC=@R}hJ;t{cCJ;|3FOTB^ldR8# zoOal%fn0(fXb5Jo+X=jV4lX(^7voP-BHb;Z;kFekDqEV#qhQ*qtfF2J9cSFc*SNQ1 z`X;oYMeZ=%MCU-kiB*%(to_K4V}s_csZxS#$-Ryb-#iIAv;0mGtO8QT0kAcQo03p{ ze}!_=1IZSX9w+8zok@}*{kuQ`Mj@>B-3epcn!xInMe=E(#nXQ8urH|>oh{V1*T+R? zH#s+3QYLC8u^4|mx}{zSMwLqjEdtXicEy!b5h(!^TUITSJ{ej{GVz(%rK^NZAPFeN ze^XnI8Atg4C{ut$Jqbe&D*R7G{3v&@%K3LV83#q#7 z6gGDm+xviBeLGmo`}u>=CE-qCP>DPCpbh=t!7*dr41E!2tX0aG$Q~&sf>lc~5gVn# z$|)*%L;22T!!TSAy;IwmUe){YXCk@MW6{wKa+qdf21IP726v-~PHHL^v9l1?U2MKOwAS>hZm(eW708=uZmqs3!-(`+UE?4s*B!4dJYn!ff=*9;T2rL zs|oRj=t0w8HC=*BJVcS72v4V2n~$wpz#Ae#hj;ZdU}oktPlyY9&OWS>YGzFQsHzWX zxmDX|jEMJ#tqR=DkGC+Md7KBCiMa*5U~cQd-RU^^>(!xC&{}fs%EkyA zCwInB5$grlc};lzKzNR5ANC=!D<}wmavCbAa48L&i+`L+2pq&uPs;%YnA$j#MdvIj zWFW5o4cqLWyM?tZsJWP!FFgl~dMH>7d>GtYaN7}d^^s7wMmDs1%9``Y;6N5o4~#B? zRO_QhocMEl)L2<>rFCh7E|OCwsgCPjf#X3edVs_)i?{H$nh^397@Hmb%4^deT>^gX z*%I#~Sj`9mpw9{<$}j8KhwY};=22ljKg&pElG&ZSxfVhkg+U9>IjzQ$t)2@6$rC7T z;bvpE2^R>eKo|NBdPDo))2x`kv>*Lqjm4hoppK#|sSSjeY)On^#zL!;#62+Yi0EK( zg?6!+L#q1iFseQJub@M+|1Pr=dq2s$`BRz+LkEJQ2qENU8CG`kuO!oC({KGn%u)mk zc~Vi5G5ht_79}moAR`@l;7XLFihS!ts1P!2R(sMS?hbMrC(^rBx`U#@GFrkF9jI@t2XUN z!p@0;!ncZb+1C4Pk0kyZ??`?B4+TR#)88%hf{8%IPkR!{LovikARRtZQ{eN~O3LkK zOYpw^=iT>=)kj4N8SG?g=*(^|LN5@wNNog`j}`yF&2msbS#Xb(C|V~MJ*A}Mi2rvk zN10f_8lH`ntX}tm1QgUzPl0DmuABqe&mjBnL2l;1R=ckLHwzGYVh^^Ld0yLr5EEq6 zv?sSK;gz0rvZf2?3BS*jfcZL{ML1&473}LZ%%A4dUYYvjzcqYk<0!;`O8|6lE0k#b zLm8}1<*E@#VL0Xs5*zt~{*BW@oKhr;U4sDZQ|4BM)%*Tt;X7OY!8u{SK7+(Hrlb_Y zO>ZbLWul=qG?}B>MQpMN()Kgas*J_u!h8S9@hGz*gj&9xbK!e5(#K=zpeYbNi2K#N z(<@m2o7j}^(W1hiuZtFKxjC(Q%#26Zx#@xzH6x;xu^^Boj@&ZZ(I5|{LdewqdG2sI z=}<~jF%VLGXRJ#MC}j!zO4@m!eeR|Njl`=~UnL@_ujZl(CEt@)-;H&KEuHdH$(ThD zwZ33My+sFt{emXwo~SIe`j&_BOxG_T!ZTn8AP0K1n}9Ts_gq1}jkY!nsXYpkkEBRg z5_$S4BSL9g^Mzn_{S&kobRcQf!1m%!0kMNlbTP2I3l1uEtR%DHl-?-8_EfM}e5{?` zkCA5@g~10^0I5E@?97tiLbKZS(@v}#Er)LlPtbyecS_HJrJg~(W+VNcoQ&|9)P_OQ z{J*BghtSiehVMrPS+PL!VW9wLXcvPJomGwkc*9LIXpNxo`O--~TlnN>TnyWDusX#A zI6kg@B4Hw^DDGUl+OLow8V?a>WG=|j&jzMx)v`mI{-1FhqMTqHMux^#Wuvya9osa> z_)|QWJj5;>Wc}4%J9(7U%bBR2MGslRfws!)zp`!AK;VPK1`DEs&-i_%x|2Z=>M;Vs zP2sz)kta1Es;j9+bpyGWz~V`80H$By1}8CUB)=-5M$jwAW}YwE6}?~=ES%_$(@eAuXb+HIr+9R<>O?>gYzUvPoFoXsbW+mAu^1Y}~jWa}CCF30D=t`ZOJ=6%{7*~RQ!u@_te2ZY}@&W_F~)) z)}#nc9BEq0$5A3J_$wO1D?M3d7Zx`n?AUf>VZTsZv zH?OGG$PFRF&_riGtM<}!+&AKoyjdk7D0cAMc#x0I2!>=a;$-BoJ!3viE87Cd>xBSh zVC~6llpyZ*F}Ym8^?|jgy!>0lt2d;fQKIcwkI(zXV5{X$mEI?+Q-hbg1?^<$PTm!= z18b}au#<-wsbyS;F0AbD!cO#t?3)Vgk5mCEmCu=JOs0XgT!@2E0}+3##ad>Y_8)hd#u5FwXnL>=v7@K zFQPopBb}mOo-c>1lMIYc#j1lGbBYBW7<9KN!`Wc?0LTE#hlC; zAwOSqZ(%U?tL4JiqJ4(vj(~DB2j<|VDr$i7Z6X+u1Pj43>o;Kn!(4iK9ATg8rYcI( za&Mh<^|C$ba8(9QHT0Oa?YZtjlkk#>Vy+Zj z-{j#3P;X_^QE!d?+}j!8coBnqrshoXk@PDje+N*#R--K+!n+zgalf6A2!Y40$r~6a z|7mCf)cm4GxdDLdn1A$XsMQaU`=mWS8VXoMcZ3FO{#Ep5!uph+EH|bzHu_QJ zc5W3tY(%8g4`J(B`f-LoQ-9!OLBA-Xu^#2Mv-tj1cldK~wqWShQxXsquR-rri6^DM zvn(a?QTQH2fIbRm9e_-)RIfflc4ym{Tu!P3_BdVKi8C@i`oto|4D7Z3eoeXzF)Uc4 zS_NBeG2Q;Z@3eTG$8v*x;p@9wwns)r$HuCYQv2$-lck|62m3lYc6$Gtk_86}XPXXg z(0cR=MAUw{oPQX~uKX^LU!_@b%l?oJr^LrLE^ zp-Te~rpz>mhrR-Kv>$U&xKnXcO!g9}rVgT021=t-z6Y3F9$=@f9U8>;Uzt1G5n1!< zvX3#lYanLXBpZMK?opD2Uh2wA-Fmwq8s#WFACa&$6PIbV_P*Nz|IO54IBOuN=`8!a zI?cxL(cdQHvsu2sR}Ok&LErN)HEE2PfsOEhBp75s#AC-5X_J#rdPu)6l7FZb9N{f# zdQi)=_Lx|d4}pp-5?UtCA`7@JJCl0*>DV1OG2Pt+vzyffM@PsW88Y%(jWt~zX!VZ_ zHAWmxXB5v;!%ceDAm+uDiFfoxE{Wyg6Z>R3?-QxH8dE?s zdUwMe91ge-v}t$eY@;1wy7BesXV@LjQdVdJB=_RcVFa1-t9_A`RH7U4%d{4!SEz(7 zF=)~qGT?LB$!g_fXFY`YuT}DRpI_J4^w6CCN|3(~YB)>)&HTqw_;t%KEq-|6VhJ=` z>y_Xd`6|Uufxq-BG5isSZCNM1X9fMm^LJ+FQ6>y;EuPJ@TiDiI)NPh%$Z$}$}<(CN4+wK+`i8SY% zM0Jyc70+v727$!;a^CsAil$vYG1>NCd$l?~Omf`Lz~@kL!z9KJU&s?PpV?b*HYqSE z{CA69YI9~PxW_wf8^iEq^lm`})cngO4dS_vz!8e8A*M$khRky$N_YjLnRkz(8Fe$5 z1qi&x&9+G;nh-?nxX68RelQoG_m4>=wdJ4UYo-j%sJmJ8hKnlOXkS@Fclo*qY=&Hl zzx2ro`FcfY8&SSP^q`@C6bVbI&0v6k^+1)z?4#LsK2EXuMO*v>8#9F|rBvBEaX85} z*cz#ZN!;%{;3%Ci&UW9G!rFd>5|_Iy3N9yy&ZU|V=V;6Z+JJ(l z@rPEQo*IJ$s@eMmeyNAH*Xswe43;TsFC?cH^(l7Dsqo;vc_#u$THrM;iO0;XL;=16 zhh2z|6kxXRKMlYQksTK2PtkL+<`6>_##ojW&liMxXtzt}Ek}%b)hX7|UE6NgC&SOL z2jT7~>XH$oyvr9**ZL|hqelL<>c&M60=;0fW*bBTaP@3@W2#FX78;r9erpVo9^^g) z?Yup>ip0T3!Tkk)5f9LK{SlLOUlg)kY`o9&s*M;gDBSU3is;A`%dN&@r$BpOBPTcK zS=nQ^v=wusarLxdZQ|jJoIq6GF26XhFl&B0nt9^QD{#WHnBz15B?&rrlenV1t6zB| zG);Fm2f@;|XpqdECX^eITNk~@?agEQeP`-W3pT6uiw7+4uYpnXr8S49yhj zl+Op1@aHO_^GJGsF_?&q#|KSHmsH;URMqbHQctiTfGihD7%106@qj2FOm$UU>w>T~ zJ3fALmBMOe@EMDm3t`t+Y;_uV#K%1*P<6M}goC);IP!D-m3)LYeF-x5dV4GcZu^>l zzP|3ZANvi0RbJHfzU2zat$R?Rgcb1?^cGn-o=d!3PTJ-R48%Bk{#(-|=hhMo8&+Er z;XPrCNt(XC{Sq^!5Kno7r(8Q!H&v65SJ>5eElr{ex7qe>@TXrA*v2(CgBo9$iqN1u zjMk@IB|D6I$Uo&tps0)R5CR9gFxr!z=D8O`V=h(&^T|lMZ1NSUs@z(VYn@QugatAu zt{nm6F!$Q?-u{(S;>zPUKW|>bMSgVn69Fw{^0~HA>ez6Llih?0Pg;k%yfA5$8iS7! z{r>v5coOfIi2CP>N+P7i*u^*HI?pZ#nOhAp|6(|-yK&sZCIlvvk(=d&}Y z%YFe@!d;yiPSHf>+88_C0c%`OuL67`Skjdq)T)D;?AUFk>(UJ}=q;_-ZZQ^};H`;j znxmSczbr>B&ga{;040>O{_dS}rdqV*%fXqOicgu#(|il#{K>~wRXbv?Daqcj=^6Km z9v$VlQ}r(l_j~B6HW;dx#6?bu#w?EQaKAgAYGX=>NV!$mugBFiM5c9uy@4rlY5Pu% z>dPwf*SAS)naaCeh4m0G*ez8l5OoPHP3KG(LH;ys0M;QoSmD1_+-Y^bF1~7Kk4#&# zhMvTlWQJdOQuHL;SL0q$A1#HgfUR?}`Jg8c&T4MtT&iHJrP|8^d0<sj4C5*;hQFK zfVE`gXvxN2Yr_Z5SMJ1-dRyC4D9G7yC=oNB8i-&na<`a19;R_fa@|%;LUCO;#Qig7 z@#ro870lCUbm9KAIs_qMxyxkwed(cLSylae^rdcogDZoT)Mh*HZJ2gXXbs#g@ zuV?nAxSU`6#5wJeT5tzV_Wf4Gr#{V)(lvh9GFzhotCG`!E3C*R183$u+4o9y@q+N2 zpNSpKe}9tKnu1`R*p~E~JB$i)UlUNq3KMiUh-S1;c{j)-&3B2ekUqo?whs zV#U)3p)MC5(0QN3-ss%8VK%ndkwfaoF@Be_fg#UCzR>eFm<)0pjqGQxQ0#Ru)Xe1I zTlyjC9!Q&>1h6(Edr9!f_UY)jIn_O?K!FEmww^mSSZrX-KHrj3!OQ@2MzAVFod?o}xIwzQa5As%_4tH0fg%5Qkkb0_I~@@a>+h3P41|K* z%~6H|C!HbreUS;?@v1+!rNNdcQCNuHqy(#MYMXQ1+F!*^gl5gZ1;U+IrUf%Z3xZXn z>TcK>k3i(UwN%H% zo!g<-kU;tMr9C4;((}A|2pi-ilHy_V-)f5W^RS3;bzPfKaK7&PE(d{we7Z&B+;Xb* z!=f}QkY)OxUSM!u;>9@)*Z^a8z*Y8enHj} zpBJ4}yi!DsKfed|rA_SuuOaWuR-l5^PA4ke!=sJtzX}!k57o^EADj>XCh6Q19=W3>lnZ`W0CwhJky>i_Oj3X z;`fe@p3zw_UL2wIr`OU#r3=YG&XlvhAO^lpUavJpt7a^yIWbkK{Sutz{nx^GE^a`! zj33V&l+bS})}#g1RJ;QnF!z6h}#@fQS1d1A}_^5r!VqwyvxZoN2C z>nH5pA)>PU4cVa+nt3u@o(_ai+@r>+j%b_-?&POV&hKZK#NIxTQF_!tId8&H-7{?v zenROp_}VNccl&D@tQk@QE1`3z$kws?`^y+PsCx`f$bw+y`I&j9{q|tYAG)fv9+=;u z8}XDxFIhOa)>YTrNanGqk~g!L)b~j&w6lij5`tGzM!&onNASlNm6;lJE8UUf_3g~q&A4ItDc~| z7!;~{Vx}z6d@yFexZ-G5sI3U^TWPv`2Tx+)IrZrF6o2NJ4o@Xn{ztaLO#WdF=m853 z;uwwKb{B}o9)nIC$z?KWrpbnIi}rY$l2A5Tea%M!*8_9|6W~lFMT}{o1Gw;)9s#eD z)^8$)Q^GErYO=voiOG4=A7*+kJ{&!7mB23aHFyJ?% zf-V&v3eLmd&tPsCWr+DwcBth>bt1@HZelU`PW#H0eHbv+y~|gcpU4Ps!5e-RKLDq- zz$zY`Ng*+LEmVjwhc{2(c52{CDKEayZXgiH@442J!yZ z=N1R&JWOdeHZQJ7v;-nj)+{*OuM^iY^P?G1g}@~}?jZT>eaoF4R1chd7#uFNVg@|?Gn zsTX26gb|SxG(Gbn|L#Bkzo9tKYy3ZswP?f6uT+E0Oi+@q05D*CU3NJd7z18vOAb?k z$egPiyG?R z2a?u$%~(;^^&T}xBzSy%=5*A5m7|fL_`>-YwTk1S&J#SsPdYT(2T%&)Ro0wAkupB% zj~|U~kxX~>PlR(ENN7_|mW~+B_1H6bUyymlFqHE+?cRf}aiH%$Mcd51k*iCW$_C!9 zZilaKvzI9Pva-Ei^JXNz3VFzabY8uHHuiaVEN^C!mt?;=;>SBo>JXkyDVI&(mtM{` zf|?iN0_X@-qsPBJc`a0^p)D|B253Vbr0ebS%BmS8x3zy;@@k9NN^OU*zBn|i&i@Ei zJ6YdbsIjqFR_38PTyAi>SCYhe0*i~*xpl=_w{AOf0&;Y|!jr>v?KY%LfHau?Leu^I zD}Z>}lpcO=Q{6>@;EEK!h&`aeQVhcqaQ?ma{tsh;cErjO1`YT`5mxz_*UF7W-}_RS zk1Dy)5gtlltvjH*r&8muehn$tXEsCC2D6~bD+Z(`DR1}REU|S~mC5Jo9JZzvBpr$c z-UBR%cguFD`M0~Bklw9tbylbxEGmB{g3DU~t0DGz@cT$x&*i9g)u+9Vbeumf`Yw&neAsL*THi0g7!>C zVMG}I{%yz(>GYe2m2xeHozUQRUw1F|VZP5M^5>Q1WYfJWt`eAX@VP_%p@^J04vd|M zG|9y6u}*$GEot6DmQAi;Y5>ET&REET+%Bvn*)c9WuqAj)`1u4cdpQfUDu1G?BMnJy zR^nO?H(t@Un{oF3Y@U3Zw5(N5)}p;qVV+Fb-m-xn`n}lQLDXE>!J@>|HA2E*la^pE z!4+ilW+{d${=wWLA@5JO!{E~ z4`!*R^>IX6*%TbHuIO@idE;>8!^&HLUO(ci9Z`td+Je$f>(4L0xlg^GYe?xiMdwaN z8!&fOnTs5BsO1;1#(YWq0g)?lEA6)-~I< z!^F~GHmm;dld?}-wu6-nMmn&anc-L@w2|NF!%JwRDueKgE3dU0po$we8O0~C_jl<_ zJrg<-Hl3DDPh8IdcgqG;rj(^FRbP3-yX11ajID_;Af64q5e2MT;03Lz1Lv=v>RsEh z<{i=CT+<<55rn($B`sg@^IB~V%T4~!8Z?!BzIN#gXs4z$_yVhmP!fasQ+_Y zGhcqSweR2`YzN`(xbfmEREom9vqu&cR&#b*ew<+Cec_(v6@)wVoz*16I&*5DWu%Ay z`_EGY8DdqJAOfgh?A7rgiEkXcYo)xca)Bmou61QUS-phQTSLyRhbJbMsnC+M0*}k` z9Okj|tbv+G)vEN~GT!VmE!IlB;xpb<>rbp}ALO^_%V)wG%AAoAN*@XN~-KPhB6>o26jXp0SPx|F|dRgy;9TZQ7cQ z_M;(A;8~Pg2>DJbfVffqFYCimJp3#Is1Fk(X`fv8csO2}FK&eA1|{zyJs#4FAfwI> zV-p`HOdO{4kSM$iD>bY$pYHJFriq!(W7|_nXIY(y`+#k_2B3ilZQG-Chb#!ixy;qT zqn&|A4E*ZuVQr*|(lAx#%I_qsq~S(;6OR&bE#jxUx~TnUmI)U~shShhEK*9-#s8jB5D(Fzv_;`S8wnaj6M4$K^{7{@4h-x3Zrqd{BIWEd74=!oN`%%`jGt( z#jfsW1*F{`P|HagnZn+5HZ`9h);RYX@Q-j7SoL%$WdJVFGJrv?0 zmM+VYMWGz~Vk#uY+71xr6t`!75QDnQ#)lmJoUXE;^K)PAoSJr>@C4TCE!Q{M;zRz? zcPxAAGIAToH{Bnr+1=Ww)9PkS(#2)GNXr#Lgh&<4^qy@Mbeb>v&J)OrJ@zFEnD^CU zjI6e~S&^G-M`#>m?1$&ku)4CXi~CG#S&Z}-4XPP#z$MlA!nUM0FIM|WxFo*snKJvK zTEL1%%-!DOrigo^_4)!9^8(v;7rgVsJqV= zDSuOB?hUmOapKBihyY#Vx++D|VH| zJd>-s%P8JXkas`wRr}WyUJ_5{Kj%vq&Qzm^E**44;qc-5A1rf*C=i@@O6ouTEKN$8 z-VVm2b;LlV?_h?qz)&eXLIwIuM9ZY%kO;;gGW>Zw1D*sy&u)9qI*W<7xIBXdkMS-a z+z6WPbS(=ANdHHR1@2{2Eq*jOc|wK==@AC*KBTcX?tpIfZV?b-V^FTqNT+FO@C!ZW z{_F++%cAZL@SSPLx&=@ya~h|+Gq~Jtez#>bSpN?zu~YHzP&F8e&tV|sz<1(;PmO!Q z@>J`(w4m1gZ_Hh7WhclYL+y{&zOYIt~&8gv1 zIs`X@(~U^PEfn82K3ZqdOMQ7fVybDH@jzoUf;sQrwW$nB=3Uuj@Q= zm}X)n(rJ*T;%biV>}Cn`6TGNguhXgVzJ5pgW}X=>nfu?`iA%JL8c*(8e8k2a*$beZZ5j@!=5{Q* z}1XiG$yk$Bz#*=4P;c+dv_D>Wn#O&R7L0AE*j@vPkm9&h$#K1tVVg zQN+EHgmQYVLy>mHhW6{8CkMa&e2ib()P16O@JW$=9={6FvP8Rbv;=d{)&yH5Xhc#b zdX(R8uekl44G~m+t{u*N zn*+6IFmzwpoBhXH=wQ>3uO7AgC3I6DjK7SPC!f@L@V@w%H_)u{ z?y18iXWo*yr~w9Pd-VJ7SjfsN1Z!P{mzd(4@dr1`D@0IaW;GGzArTp#YUD|}6)YDY zaDf*f&$3xDx&Z@rp?(e~w>y}tV$OnxDXNxSOnp{VP8ESa;!deJva2W=>_r)&FGlT` z-6HY8IX{Inn2kaG*&Jh z1XGKfR4B53^J=XuumdVX8m`+RS(X|1pscUM85_bKcNA$3jx+fhHWbK%-ann#jrceK z)w5S}34a_`UbZ~#M!`!W1@XLS2!3z%SsBZiB;{H~Grd%?aj5Lv5=Plo!Me_KWn_*A z!u^EII5x(K)0+qDJ`~QbNHUsnY31lICsy^Bfu;o9WvV;qw3ePjJplPJ&h50 zAtxb&8$3o`%T5uYqtIUD$7!~T*9I!Fu#E3MI9a=;J&ROh$Zlqc*W9@Y!%er*HF}kU zJGX%T-kj8gqW}p?Ye24^z76`(C2s`=cp`YFUB^b-DVa}%GGY+l>THAqoWGJCCdrIh zH-?gB$KKHST4vt%xKMr}$fJ?!Fm8O(aA)Sz$@38w>{6)z@>9fkRI&ioXyIAp<2?lf zy435(j9dejDhD|$`#F}sk94S*Gydsqu7MBtIY^GcD!$exiqa-jIkZlDEwC&9bR;X?*^WyHlp&B1U%hUd}*uC1NKtzA|FPb(eB3w&^Prrq<*L8;#kn;`8l14Y6 zxzKQ8?3b^=33?Yp_{{cIW}Y4y#V3qJP`giTUv~^!-rSxDqu7)77FQfgv(wByBnfn} zC0lNI9q+xO5gFDsWwa1q)KyU_c()>EV#Gk@z~lFR6aMp2?5WZ3-aO5iR;WN~ceS;o zru&`|S}2c{)ZO{d!k_=PVtFp*P*O@jmX})h<19`>#J$O7_+4B0c|Km}6L6%J*3W#= z>)d**Rx$9I3dGQ<#%(pvtar7Z%uP>K2d6Q_g>&I^6F5G{l2{0K9!#B^kbo+ElWnL2 zW9$}s$;Wd-BWn#VMseLifU@=Pn&a}V{zJg4;`KYellO?6AD@^#<~!s#V)4Nf@wm9o z6spnZGb27uI}K|09=GtD`#lWG?-N}nN72`Ny11Ij@|F!b21Q=@3pyV1lie zMiScPyzH0nc5;OWR*QW3UWedvBeKec?(JpDD=>Vc;eW63Uram2vHtH;^NLN1fxOUvV)#IagPM4*ReyN2{a(};-8d(9$TKzN&fh(Fuz0b6Yj z#TWCPdy>lyl`P_H0;hQ*UhjXg*cRJ`5Bv5oPt1cJc+9B-{$?*;H>zvypY%+v=kQ=ZhRzj*L5&w5QhsHGL;E8`D%M|ZN%t@Lc<&BUhC+ji~WOZ;EXp4aIto15g*La#F+k(~SEWffh46Hn;Pm7gE_)S~o`MUbuaWcj-m zZI4qm_V!iG+uppYD~THTVx4j`{|%q{=HJ{8eH(~%H7OC97dLP4n|vbWd)UZGU1EEK zvd%Vv%qtA2)-<1P&7l9lnri$CR=mMA`Z6bqELM!n&0)SSJfaL&MppcGDe~LL$u;VR zT?&T++2^KNRa`W1H%5&aU*^rU&E%zq>j@e&B5DcJP2cUKTAn!atlyCGISQZoeB`CQ zw;IAC9?aw%Cq1|GV?ym}4cGb8Yn$=?S9U_VwHF-izE{v-7Y6Gu0Vd+^?W0zA1=^3T zDA8&yjxWy_Uk%cpNi2*WUWo65O=jVbEmB9~CF^A^dPw8{A?N?4reDf@no}G!r7f`s zRqQrnq=slwnzf|+v`i;Q{bfeZ&kEicn7gf%9yB$Iko+mZ+S_EMOl@e>ij~6=Vn=t=RVjd3dZ;$9d;1ov^Z;DjQJ6*(V97Xkq zJ@fjtuWlJBTSC%kvX}J$oQo3_!5mWjE3-Q*s)NsNN4Nes?T#{6PzLU5>pWs*xB&aL zJF>#}oT>x*_5ej~f?qEO-f)w`zS@5d*?t&>!pxWy5PX&^J|qsb@ucF)Anp{0N)>q= zQ5QC*Id-WoW~$L3pv5r@OI7<$m(6`I6Kq)c%5wu>Gc0$ItCpw#?Aa*!egxX`=qpm#YNvB+Kc~{xJlj*yNb=6oBeEhS3 z%HbyoUEiPIUApeOmGZj+7ND-4`*9{WY6+`!3F+T?)Yswy{HHeUkMQ}uwDDsn5SQk~r=ls~eoAq|!QIz34e*kR>b?6^kua$9H|B2ld zWB6El-iQCg-h2O3`Tq~V_J|OrY$B3lgp7=XhR7(2BYS7BY!0Gnm2o7ivMTEwn`0a@ zLY$C!j!{S)&XI8rj^o^y`n=zt&-a)6AGmKnoQHCq*LYsfJy+yii924MO`3@*mx8i7 z`xSPhPaT%GCm4|;Xx`rGRh!p;@Wqq3V@5H4itMxV z{lPJ@JSpf5xI>%3`XU~3S6Dl!n!$OL(D~al7vEprXZ(&_G%W%fATARLkEpZu&Ar#9 zj&OEl_m5{HnSWl3NnnCO@9R6TqZy)%B@S_orNcl(jVvxSpxR|sDT_MgONmTy2&_KY zRd)y46(+F}@a<6CA>2E#Cd6TZz4!8&vS^%=>lP&GmYLHQ`#ST9YG@+ldKu@vebi?G zh_St&RA-Zo{JnM+7~k|`Eqq>W32q`~47Gg>qC@621dA7(Agj%gAfy|eU8dmAU)w}B zUUXL<#oEe zSRi=H_ss5V43Bih;LMuEIV@$G~1EjFh?BTk7uF% zyeOgGb|)6h3rq`jez!Asi=RP=rUgH%@p@#FMjKblVxtrB)kRlt-F7bIG-)yrNizM%ZRu18scK;^d;SkHJy31KvAQNFEn zV&MHw+@uWR%XCM=<}p8>)vckTT9tCnHhikE|dLJIElxuH1_AQWw zcsz7w>3GEIi_9C=dw&=E*j3W+2Cz$nRr%>(Bj$QOgT30^_REDFP1L1D8Z5Y`-JzceqU z*Rz>#rI&nkc10ty?MhU8mFkRPuYr`zZ&&L|LW=Gm>r+|m zA14eoHhD#LxS38&AzNi@uRj6xs9>?*^zvd&7}bPjTe9ZC!cq{39$z3$D3+ab>X<8P zgV4ySuUH2bn5M74Bpcp?qwF*TY^K}tyA91wA|iS`cxib_rhT!S9?ck&3Ew0TZS{VJ95nE^=QACo&7Q(C%5?C=5Zvq7#n}D^T29VaJS$IMf4c3a zUAFb<{!A{!Vo?Gl;A07L_Bm00N6$uS9DKH&ODyL!C~?!NJY@9;W{g&!FuRrSZk9otYRhptPctTx)R6^yI6k-=BhbU=h5w1(e~7sU!`A2pUpyG=fqmT zsx|gZ_4&q&zH2FwOuP>Gg&xXDm5W$~hV5W-1b^5-UVJ*X{$~JXnuol5W`JgvgRD1q zhRvuRN#tx=2rvAyTi->8X}tK**fT`fVyj^Uv5(fwp0f73=AAU*G}Vl8oEo4pyZ?s;+h1upeWyv-?|V|?D4*T5mPJA+o*Jv(+oz+3L=#QIW4JcVK{tf`sJ7)sx)yAW(1oDw51DjJN@-=k z>mo=Gs>mqT^hso8!qiYW-dDz!AbJzre?;j=X zHdECNb5DS{(TI!P!4T3rm5vz;zy~b#vDN@HVbriOPs2CAw^{3@#=UYcI=&bRLe;BeWYscuz1cQmRM9wtm-Jg`jP1kq! zf!R8rGq&UEYeN=d=@Iu*wQn^8@z#=rXDQS0^6^@SPlk}GgtHc_j^B?hFSzJ!5E($` zvf7V5AX-y7GdRA<(*ZW*apt@%+LX{LLQi!PCBeqhT>A{t<3YLXr1QLGWAxrSm_WqL z32i|dpk>E;VGnX}K~5>!$tcsGsvI(6Y28@JxWh}X7wxBH2rrarfQ-EO{nF5Ymb0zK zv@-JMU7oS-OYN#L<`r-M2pDg@e{CELB4EbIL&aOMk$kaOwGfB(xCxv(w*@yZF zxg|SAWGiR*L<72Uj{)CH$4=&Yh`ctBK9v$6x)JLYs-LY=roVup&5_pTxNrJt)%yoA z#-O(C#`)~|-mR0o%A~k%Eo{L4n{B+b^BI1hW&7b*lt$kUPoiY}C+!ypl2el8=}doo zdiu*t&2$zG4Nu3^21jP8h3b!9bX&`A`3rQqH<@JCpREy~Zuep)LtQT&K8yR15b^!b zYpK!r!v+hP!m`9&U_EgYE;_{V`!h!U%>K~@^%*`~7^bhKo@l zn70XEhPC42vAByFOrFc)88uJoSJL5u3^(tp)psPIHqs%{Gl3!E48^G*zgE7i&{flS zH*aI|i_sIEb;qX!;A()FO`Po64jsL`O?N~e^S~bM_n-ap$e8-yJ|j6ZqvrcV9}{?MJ8%+73YV* z+~vlQWyx{Q(B6^jpYKO&@eim%cmvWnZ?qHas$Qub%D_eOjKlSK@o%v+>;oJWHldnA zFsgd7+GUXrWbo=f-nyJ=qZtAZl?K5hEo&)>9(dNbL{V%~7!O-fYA4;&T=&BX0{27Y z;o~mTpfzW?hExj@@+m{&3Ex0tx zkxWAiEnpdtZ9Xss@!M0wx26G?yd|H(%Bav%8!5FUG-~O~LwEb|&OB#AY^eM3;NE%Mml9W9u<85bxhg+pV)u}0 z9I?jOw*I_=hSm0OzeciGOZVGOiQ^^yod3wWi@;KYaEOKQe zKcvdHkOzL<`LXyhf``MVi9b7NNs-?x@R-UzqNKDV+hSv8oOk9?6>%Nxj@qG@r^>{r`l>LsR z^QVDH3!2(kb{XpAK6T|5NwiIEJK0@|`e=J*;9^4T;W8v|?h4}B(onbODRRKUv#3;W z5~Ez=e)}`VUd}EV<2TGkalaB_* z%pW50LTiubbWx6zqv8uJs$`Bzw8Bv$hs2{lmile_mQO3McGB62``pKVH(Q}(o&}G= zBH^)RoG*CeFav9&^5*a_BfNT|TQr?l-F_$dmN`!4Xuk^8`aZnhhC0Fx5B6Bz{= z(zl|WQi)j_95L+L;wtJNY^=Y@4LLw*c7Z6zO#Ac`^X{*|a$9uIJAOajX{f!6hTk~v z&SiZpEQ9OSy3zIDb_ojyLKgLBKZsZ)jxuMMenwEXSeK(>K<{5F3pPF-!Fe6yUDL|+ zZ|z=}myB|olMgZ~1PoOpcP`&MLV6L|Me66H&0Hsh1^&dr?);59eWUTq-Q!{INt-J1 zxOs2yk=3c`-gBZ+dkMo33)iOgQ;0Q;IhH_h4t9+p*u@CcVP0}=7!6GxYBU_mg1$Ch za}t66Xt06|&g2aUPAG$D_C1`wq~2BgDFc7q_-W=hFCy02GVhAolc16oLi}rjb9S3) z^Mqw-?K&rxFx!4;{(-&~7&yd}r?`^~GqK zhT?jiE=6@{FQ8}kqZQZ8uNIY7nCynSm9ekKe4mavp7g6H;7BXKq4H0_aY)}ohX^iW zmfn){m}(60C!Ojn)|l=Tc-Z8A z-FXsQ5z|$HRCmP^%pYp8k9kWC}uz5iZYcc zQ%Ko`rViI z0QSN*yS^Rls5@v+>&NpD$=tY*pL**`D1+Gh@Y8RL;_UM){n_VWR^a0Ug3$x5hazvi zyCNaBvz61mK7?6C0^wvbI3(Gcny5&Ln%~(LbpE{@R_J+L{3h3sW3kz(AV=M8t0H%4 zsloMWvcR#_bF-w5UuSv0X$j_p{R(UF6%>0zZNcO}y-~>bkRmXiGPChzl{`tp+?=_1 z{zxL3nMs^!WH1dN@Fj3Hk9;68z)eV3)&AtOO@qyUHIY z5A;_Xg3`m^_-k0?*d6KjtNOIF{9j|f5zE&RUr>*f>Zz61Cf%z}!Uilq4Azs9pwu&L zB^7u(PSjB7Y|?5UtQ(>#!xK}L_U?OVd}7yr8-(w99v1fr(O%G&u*D9i<^2Vv zVY?pzjofk(eBwts2itqyy9|-^D~`_881h`$V@KkdoC{`@*S02^$`;7n#3u4<`uV)rizOIHCM>5D|Ct{1x*Lntv3c2VmC?!%?-w5z&5#_ekMw z$WI%^7iRuAOPZ9<>Wv?V%f!#`k@`Sx1!o~n_bcd9=p3rrvu3+$d*4w{7V{gmhZ06{ zJYYYAro$I4T)N{!HRs0tU|nbn0T*<&#ZmwxF9~ZtgLC=txDR6R2uwqg>e;`LC&TFf z21m6g?Pr|=;^LQO^5UJbAwvPU!&d=gU1ck{ z7fo-;ld@w4s3A~TbhJEij zMSgm>(5Qy6og-nop!gE!jjfLv0meoxhc8Cnd@ml>o{lS?QS&YLPa^RcequMQjed2Y z+s(+D{!B<<-HWN1EKB#KSsR=(Zd$ScAu+cFwpV32gS2xRZEWY14}Y4%+Mh_-V4Oc* zdXO(6n2uh|V_!4b569nJS$wGPicNibLu)2E+C49~5G`AYCLmp}9x=YOCv+_%Cr!i{ zjO6e?>W7l+gRh@%xGN7_Nmg~rHn(p2Sc`3mt>RNFUyttU$0eClshltqBX4X93V3&;k<{Js@TGxI@QiBb9-)g-&2?{|a_ zDbO#t7cK^P5va*y4#uz>Vax;PN#rkPpF#!wuVt!;IGkfhF~+%{El`<@u-#YFh%b|-{oXiZJ@uE`3H)7U zlG;z=-)XbGw6_7P*tyY=X(w*)Tg}E(&=gREwv|Bm1F0Sw-aEVIwRscp`4tls5lHzj zEhJTmWt4w*;u528dg{t2!syL*K%*wawn!$K7H-!>a;a78k?or)<;D>Tc2|o|?38Yo z{91r0glg#J{SMn49K|Ua9SJOhw=`ACjP?UHPhIWz;6eg>F{6 z=*~L)?uN|F%FEQ|=!JcYx$yn^L(bQ3$Ia$+dby9=T2(UqG|KfW;A;+bqNLq!56u3s zbdsg`L_gze%I1kodK@%6H;CN;{H`|PS|DF)=G9+D8?}sOeM0UsQdt)#gKL~>+dbDC zQi#LMNZ9j?@o?S~9(SVQZ+s8tZ2Ok9K=XfehU6=Nr23q$E}6H*LTnU8ou4n3^Ok|S z91P2O>p%QH(?TiZt}3OApCQ=O1tI68oPd@f@K{;M*ANYd=*zQ$=bbt_HWy{VuJ(iFEWC4 zPttXANN+O0Zx!nI$`tFB7){A+X<{e0VSv0G z&vQ|JvsbpXY0n+;rnAAdV6mV@M$r9le3bKpDq8O)3vuDeunw}sOio9RO^JTH2p=WC zJPR{(Q(#Kbio%`c^UL(TM^5gV*TnmoRD}13K#VuD@SDIAFAZK6ytmu$^gBPjTnbLF zSKXi}Et2WoZ%4EiMN2Z@R%Z(fpCHcUl7YdRNHgP=?8zp9S3zWt@m{)(Ol>svO8VJ9 zp6RFClKu0UB?>P_UKh*L4J=`M6d^BUI6kshP8J4Sx)(daOk71^^&%Wdw&g>fv-|C1 zFpmtT;B<^%w+D@o9I_cIhEH~u2YBKF~yl09nO zl%!P03z?}+LIb&`N^}DjzULVBqotGd`?ptEufXp$9iH)JB6fMoR6PL_LRmKt4fjL| zGPeP6lI8oWYZ&4X? z1aBYlk*il<7XS=XS>>(s{EC)0H=udN_JzV}zKl$Y<1vouu`PKcs(#5M*Z)wU=#^pq&$K^leW5Fl;WVK1fc8zF9+hyb+C@as9GCiFD>bZk5P@I5 zExjJ8M=Nvlc2~b>x&7Oj{DcMVx1B1{GYg4S@7+Q8eMfotMIx^KxzkMt3g9 z2n$t7`RSG`8=pY3D!$_(b00AjAk!JJ$&@pFe(gK&`b>&%43+~)insQ1EeE(N?!p_M zy1Jp+S_CTuO!rvF@jVY6<%?TXD>|ViMdjA?Y(uu!Jp7gU9Cm1@X;C=*&KxT(&;ozr zHm1F4XMldLF_@W4m`uG?tZNms1t<9ZZcdS@SE9DB9mH~E?i;b^!}nUD2g70a^hP3c$XSe6g;`KEgTWU`qHQmPeU z*UTzx{i6c{+96|D@k$b^I?(-vyn-4}S+BY&nzQLAkf#%=YRlH|X4}K_usE|m-1tXu zaUkm`BG$VJ_u-P~>8cp;?|o~K#%4*^MR3|=h)rVfY0wtdk9^s?y1L*RX4}VJl;MLP z9Y<(8_@>8)xD^O0^_OODqU(CkLUi`F(XhZfmA*F*G*nis?Mb7|`1B6E%4&`n6)w<= z4%+^$yT^8+R{hzAZJ@*ok2gnW{)LU@AA5q%yB~1rq1?6WHtn3}3z~9jkA08eg9XL> zA?~vyfVP!cGR8UZQG;by$zNmR*anOoUTPh49?qQyOy@ZP(32|qsY)fCr%iw-;eKBR;u`0qgp`}sg2?*qc!`{qDje?eR%eg_>JAIHYJBz;ir znsTwL4tlz8nBZ4wswj@+xBuvvl}q_cEJcWabE8H(#uwA1uBe&*46UH+)7~PoIn3Or zj1H^Ya3Bqa0r|>oBIfcI&j~uYzSWB-39w9k$y^=WkASy5_8wolU2b$uYfooANS$2A zPcz+r-HecqKPx0P`1&~`b2K@m9EMkdP=2Y$4Hgo; z9Ca5TdTE^66)Y3OGMAN+)%{PylA)J*cLg51!s9dVhq2{=yrmm}p3S1C8K_;`2$_zCS-VV5+(h*&=R+Z}RU?xaxY@Dz*uwJ_ zLAmu<_AfKf5W8k<;$@eN!p3(n=k*K7HU;Z}c%0q@;q#vBO2Z7-yWTHpYe=_-& zD^?mz4kj)R{-?@m)`+iVMCK$sb`T38E@1J&ew2a(K-K)2w^3;Y8%8zeMwd9Gwo%y! zit;Spu3JKwe44gY`36oVPuS9ffZ~oD^`znp&|@~&dq+-ptYNh4vB z+@9wTIxJxypIL}*N!afQR}4cxAU7-M7tq1>Y#CHi#tHh3Om_4f9g1P6X)G91!~wT; z_DIq;zE-ZiQ$l@1f>Qq^pgffT9NxwsXv&|B2}Ni3(>7Sb zQDf6ZV9&XvBMwBj!`WkT532v(=boLrmaWB*lVo~|e^D_OAU~%yT74Dy1`|?z(F7$tD8hk-Z62OW(3vg9FW+}iu=x4rsn!pI zQVecgBmuRql@K6R@h~$V(4J;(5rjvj*k=3dKBsB(LvaPA5k9k%9hGxsF7gXO^|-Be zK{72{%RXxPAs_kR>&_mCe~u}^i@;tk7w}paHC8z@kuV}UQw;w8xQ7jbYReVjqTA{X z-uh3m5kKIh9C=VL#gM-#SKvsS=Z0SMtOe@MRz)vP8WsL|Y|zqpgaVZ5N6& zxymWrY_E?OMX|>AC5TRGRYu$E`3JgvBl?Es$1K>9lk7znTT@4jzRR%i6c=Z@hh=fy zSR?ePt4G9KuyC$pX)$1VMfsXs$SHOvT4`rlsxs#>qehlgR0!Cx*7oU0&}Q^JDPev? z@EI}4dB-*p^-{e@Iri4i`LiEmmc30I``{5NlrZY@zV>s*?=n`8U%ZTlTTeXkPoK|a zC*ye5w|Y#HR8z&V&{-+#Cia*hXMSS%-?zFQattur&(ma?tA8fS@^+P3SZ+nU*2rl9 zWF$1O;<{ZLUvoIG2v+NKnby5ZTR}C=gcrfDu%TYHP)WGU1Gy}J+z)M~SXTspjmTA8 zYOyjr@`*qh=RwbcD^UTtrowW5Og4* z_jT(*XOlEt0k?L#Y`^y$GdoyfZt(36OWZ#7g|N3EFwv?}(xeYTnWRf_4i_G{V{*Yk zH$nv4n*5>|`N*1t5HROuFpk9ONuP!;_a3pO4c#C!4 zBOqMvClwM>;<6rEx6`R)kGMbkk81)jppe{}KDDl9*$aCtkx5|F503)}?hX?|i*nH# zX8W~{+07!?s=!9I*^e^qHmVBV1lC6uqbp?hDf}bx&?? z%0(m85Rxh!CK=&(K}CK5Kg|88QN)|o71XoI<7H}P2c!q?Sio=*FM<>m0ffe`E@F z>SZt$m=s4ve-7OLim+I7x+LgqdW5oCbO?`*zI+blRJ=<&PvM;DP4$A(l5G!}nu^f4 zPjG{={<`oS1;=~&OVL2`exOxZZ*$0UR(QJ<=vR+I*sZ>j$0e^~qxmMGarKC7L&Ss0XXjL|6@>47e(aR)SW%-$nXAa!c1o7k4 zr3t;Rr-5i&l-B4XgV|i-bWia~-XH>5pK6by>pmof#gtxar=DAiI#hQ}!ZecdA5@hV zZPO!Z(_q=FQuoO!#ppVGtNsjHyx&`6#c1L%DQO+~NkJ6|)$6qJ+rM+<>#S?M@fezl ztY2E)Rzc$63mC9F7_2+90=&E_tPiy>mjVl<^o&RSaUPvLo2<_VL>a%N2VY8T#4jz| zV#jwCF_}X-FALXgE=@06O5@V9pZVaId4`*9&Gx%@TuYk^(2WH-=KHF`%*K|1U`(7T z{8`Jvq6O(1Iaw(L17{s=@!`f0uCV-!SVxWGLt~QSW4}KOkWjl&bQ38wxZU%$L;HVzLqC1<;g@`?t1!7nI+ty zWR@x`?YJ7b-llc70im-ZIefWbxcU5&lojTQ!tJ{!%8<>q0`6Y5?b#6NCn|a>E84?N z*qju;{?uj?EGU|?pTk}7>Cm?ot(~8enK-GoS|cSSd(ww=rGEmOyuLP_DjrQ&pZ_3D zV1VaN)nKcP*g^x#f%GS$yuXhhuJeq*Oy^|X6i4}M1X^w~e2-2>ec0BwII2GKwK_{W zo5gEQ(?4oyQNt~!D&dPNbuv`aX&n6Q#IagZKf)c8|fw|DB7%$LD_VcxOuf-E$pxl_ZaMw zXEm_v?#aJe4iavKe7~f33rGiyZ@_WWwG^1&lUEx&mXIT7HK6{W)DiLm@zj`jS6XLA zkEI;l`4E%2rn{Sq+@Bf!6(vd*D*yT5Tp^39Cr8;xeVK(M_Um3iW<4d&+6Hram`CN0 zX`mPh6k@!7h&BQ_bqs>)R7STy2?v`pQC}MazT*W{xcE_|eFCV?@Y>XG zGQUS?%uGoiIF6F^+p0^9CY!?9XI$RY%By_;esuz`!Y>tD&nNZ^sswAwt>yYIqSdac z8_~1sKhJp^X+IAAeB52(J95d{+o`SAYrb@Hl=B)0Sua%?=geBrT>x*7E4s^4mnLO) z@7Uk!^&(aCBQ~vL7=K^hDYa}F!7fHW>VAWx^81-cGvI1Kx&98vuMoFA(f!s-zwI`I zTZ}+8P=1vr^WrvWw(j2Aauz&|wGUy(YLih-m4=M})+ln9X@BI(LFHqM=q*;1>y}iA zlDJ0_<5g&*X%v>}ou4CfDkSt&3yIM;AD8j@ZR!1^iJ4V*(*wl{5ygn0*?{6}dpNs~ zh=Lz;ij?)#^H~SGPM65B$~b{vO@yy>{(|5ATrUvSZJ$Q_{=WLSfP2;8ug>s=<4Bw$ zScT{<2(;~t^}W?%fFmkpOxu>8Z8tYX>qq_?xiw!5Uz zPNZRWU;>iO07gu0zRz`gK^qC!VqIqjAw40}Z%_zq9f6jG4LE zg0ZliP+IGWu$;OL+qIXgtl9cx2LfWface zI7d_F4EO+Jk%-=JWO{*Sirfz(#9sgKzMQPT8bk*W1lBb4=7-9FLOKmDp z!YSBQ2@Uj=Ka%&V&AWHzq3f#fwO8NnAM;nY!0oJGPQLlif)YH8VK`@A;`q{Q!I# z1Bpp1>-S=X5GXv8udRSTJ?~`nN0WuWJ|jRvtSAEhmIi*NHBLcR(D!kmBPNFpOBAH^ zPeA;S`2Lmz7zr3q3S%%(Fw{arpgT=tNt3>+c;O$T^rbJ*B4wM2(Lt-6{nL<+NW-Bc z@Cy}Q&HnE(TAu@LVU{$@OUgrCTA4;f_i2$%aWj`@fP{!kKunA+m_O@3s>0J7skdSq zngky+UTU4Xgwmi><5ClZOjeM&cV+x9Zdm2@{C#b}(j$ccfx1<*`=5l%D@;~I(hrPN zPAdR8_Wxe)11Dox&Hy4|zq%%o4lZr+*b#Z3q6O)D9vMr#ob)fei|{~G9J!beB$|k? zG!C2~I5N#zmA;XGU^2S(e?aAN1~4KDvrnseNd1WWCl}z1+R0bw3Nl?IOBq6=?SG$E zJ9-*&VqkoRXJD2wj8Ep1zYwhTk6--{TuuOh&)=t+>!m|lHwIsuR{_DvFCu0Cg_$&v zQw#Jt;X1=!OXGvO<8ZlEqp?XCn2DGhsdcJRu#qMVX&3+RRXrq+Z4g`N;7ssKa5hIe zgmM*~Dt#y&nr?kYyE(t6j68KL>Ub2rHy(EVqF@<4_Bw&1eqimbJW*&Qr%m65`0XLZ zdiowA?&*WuasEN})I7046X2uuS|WMMV&eAG2eu+>?U%F}+{VK}W1u?(+HIys5u6Sx zHCp}`;r>$lDU2yV`D7DSYF=l4B!W}#A6(|w(}2ru7_~Bwlmla$_!#FE9p;YtNYakR z>Y~0LTlb|QzG)()$Un|3y8ob;225YsIfT4XbB{w!;0(Q>^)lk=gRx7KJiOqJ{6j7e z3w@e7db!U0ac&O_FFIhTD{bjm==rm@Au_OTqjhUeg3d#DJ`t3`?R-IYrioEFzh{`=jP?wK_iZp#ISv&FOYFY|{>XX#%Z2QeI6 zh=}I5c=z3AKG@-y&`r6MGyB7nMb2!_q4q7#aM0hP=p(AhPL@VtC>&3r?F_re_e6H? z_f{LA6UQm#iT@?cmy)G4ek6?KJ|#)c7gw%``P0wh=-V%+fF?^be%-%FXk=r>Z`b<& z;#3WgR*sze@{0tM^OZSlDG3d*{uiG{7J(N4O}*Nly85FYmI{rjO~m|*K7V&3`)!k5 zb*Lu3r3JWxdfTJT{`_PgKRR#axeRm2sW5(s+_DOcHlJoZu*#j*a>C`of48XJACIJ| ziCaO9qvG*97f=EyGC<%;lZ#$+4sn<^R4(cOq7%yLu+pW{z+4hSLjBbmju;sN*g{E| zuD-kf!tS$i7>!APQ(lNe=sf;)ve7@tboDjNP&Ii+br|g25mRmD&)Wa zb+yR+&O6d&K{5|59YZL`SBj0-c8>=}m!2 z&xy)YP+Tx*RaoNLC4FptCr{#z#CfgE)97NvCmK^ z=Y!`B9he*BS17M3?MnN!h1mMTpY<1oU(rU6We_>HQt94ua7-|A0?1)O0~l)hMf*tA2y}o8+fsF|MXN0MvH)hac4=Y#Zo#?QRZ5bhmjOO)vDlz(QijxNHzjYp zStdQ<9eW)A(#0=rhjrklnVjN4+sw6fwgJbNz3mk~1!~1fI}#Hf?fanYyM6|qj@OoQY0`OsOmdpP!bDVylfEyB+?(Zu>7U-` ztILs6k2Gw;NrUC+4?3eq4#3?FMXiZHH0zP?qaD>jo4XB7KD2hg7u{Jmh*`_EjUu4b z%55b#){V;2q-yn+V&JI<-={VED#{e)%0>XbHkw%vLfst6gI=E#cROzxdwTcLr)mT} zX-T5NxaoL+rQs9b-K+zitOv-%>C>=JXH#P^7^qH~>ACRRX*_9yIg5s^fn*%pMu?^5 z^d_spZ1!gFgipGSc;8`b;J8_dnEJ)O@GDC*e|P>+@Vin%-XxG9F>$j=j)d8wHSoqf}Utm#0Z`Bvkb!7g`T0*7renjqU4+nB0!;h3%w*PfJaA+X%%rHZY%m4owa5At#RQ1NW`t znGRg<=VLfEZvJzrSflwH`o3q_)zrP;&2MoNKMzxR+$E-jXlLbcX4aMTEe)P;q2>8< zJ4!^;CUR*3wN~PZHzFU!fshhdPRv&J^t4PPScDU5T`;!a+Ten`;Rg*t7+{wM^XW}^ zq=l<(V|O(~*ml+Z%g00d^=aA6z8?=L(^1}aLx@%qLm2XdmyZ>Y@{79%UXZ@q)@r~p zqbHP2FHUderrJN>w=`$4*A2~;G0Xop33O}3;NKA+Ex|u8RILw}(jstoP1X4xQ`kh9nn=Sf$;7cGuPuU9 zlY!xjAKgmd634zR)qfcpEr#|C^KA>IEmpaeabt92vs^=JE>N17_S%(d@ooj$>Z$8; zp7s!qM9sr#VV~&_K709h_l2y_KUo?9zN(Bg_jQiZON&`+C2dJ?Vy;?&3M%b#sB0+C#XgF;@N)wafEEEZnTKv^BEIkJzGTzL53D`D zyWhgJN8)ImU5m-sn*2X-n}l&1Z9cc#-;}7Dc2Nfv0FZgCrMR>*MUlEsxEUVS?`1BW zwwW!_E3voCHY-S`9y5PbK4 zK;q#OF58DuYCH!lDK~jl9aMUBwsph3PhRaO3i4hrYD;t8eJcPQ2x^mtDP~|lT=@C1 z=h&)~weOEN5`G4O{k;7Sdq?0f$~-ho^D0VOq!6T|pU0a+TN*9XsA(g;yEPfiZ3ttA zFe|s6+$Y9lywW!64lO;}*RNK`7u zNgd!QwmGRc_Aaaomv6b-46;@SmMzc$bEH*$4L z65*CWf!m>9>{XOIESs9ViAM6;ZSYm5vv|zg(=%m?uOS3LJW-@zew~zs%}6 zKkFlg8c-y=WolRJ9@0Ot^CLb~`#*HG8et7!Yq9~fowT24Ak5z}Q@LsecIGWD#VTS+ zUu9vvKZ2L0qagk7XNqbE5*u#GTbKikyBzv@ac~TmtzyDgy>O6)W#wRlX?2V|hXK;&Z zHMI9hbVUdPuUf6lkgC}iZr+d0S-d%h^HP1!Y%Otgb?;25OZ)+;awMkpzf2cE+HYg^ zQ95ayQsK7w0`yTyB!2?B4a%ZdQ5h#vDVs*aUys}3 z+;gp#G@J~DIKK3FZ8;iW;CO&xQ))aPCALsNxA)|3n}`dpeHQKfKcdST5D~x3tlJD# zLM*fxoR(M2z=a<)EL|(5nrzuztHW%YRaAdh{0e$7X5uvvnbuNzf$*@g=H1OBIKJ&C z4;kT=+H3nG#}lGZ9D#KbWW`3cDD6I3#a&YZ|5Vs-i0LMrbxBJ)UcK3_H5rp<)u&^_nb00q0~3?LsQ&xC^ootM_*EZVSH=^|u_djj z{xfg)fLik6cv& zVxO+nm#4K46Ft#hd=ylAb5gXpb~`5Ha`k0E@v(ok;uC@m{0#i_Uh`LUSm&!9xq@3i z+k4`pn%!>uG_Cun0zF=RY=60HdVaZ_UOC{GYo=;p4k%aAs$Y6mL`r1+d~Qj?KVfCs z1$FrCO!~I1`P|ma>+5F1v-(!=Z|%x|)T%O;cE$#hn1Wq`%Ok9XIW~r>SvEq@A4y6* zjA6a9ekR%P67W`ctbKzp#=sxu{{BH<_H?Nxc5FT$e{TnReZ6@~EiDwgiRBw$40#c6 zb_i7YNPtb6Zbe`0OH31-fhP?Lo$F}aYwtdZHzSZ1L{JSV;L4bnYlQbLDL~% z=G)yO>RL28D^XgS^e)_`|0IA;@1_H-F}`{L)5wV{!OoMF5+sAoW{KqzENdtx75He4ZsFpY_F{Sk>1b?~q(AB_X@@llcy1c81$&4Of)#o>M z^0@&sSIpW{5BK#g3$)rT8>-Gt)jirb9^F>!RLd%^eXCUe$~|)i>`Db#ShP|8vU}vv zpM5@rxN`~S@qRn7VTwyV49w!I->E!-D^PQe?)4ByMe3vxTyHg455n=tvYmXD?WwVk zXnZ@cu;M^KLI6Wp4r5ruLM{_<;`@sod<+*VFP$U2ry*$Y`!2sYfs?b2RWsNjrAA0R8JkwBLF(l=uqW;0aq`Szy^vVcU@00+-SPiW#m^V_d~av&3CMm!sNjIZGz+)*yz__+ z&0kgqR?-m5xs|5}B5pxiWgI{M?>SCSlmT zpK_h4Fbbo5v<`47=CJg=ywRgode;g%J|SmEBmHFiejC{3EaqlNVPY=!#TW(-K3-~* zkAD)l?(w3XW5Z6ouQy^v-qecl%d^#fU=vtkagu#COgAn5`eOL~%;iGqUYE4eJ9|}g zW?Jb#djsxh7^Z2Q3lBHE<>yD(ito(`2un*(Yf z-==!*eu!b3fa!U!j5>)1({RXamif@LE%S#PrYmF7X@gPVh4Ciqw22~YTf1tXWtyf& z-`(rpq-lfvtVK2hIg>!&wDuc;>C!vKX%w@PQ|i)v7&GDh;M@IeG3S;VvEqZJT=%)> zTZ^*%c3Z%T?FU@lk^{fZS8Fp>RK2MZsfHdrV3R<{Dr~Q$Iy}oAMnh=%gFkPaiD=QM z8*LeHhM3Dp*JV>*oBiy#JF9xBTpzH_BKm#$C=(NT@Y$`%aJlud=u>np2Af~lSNF!> zqAOqODy)rUJdraFGP*k}QhTS@DrLc6V>*4&PpO&0Zi+-m#V@FNsLS@9INs1M(p?S1Wj;-p_lUE)~Ho3_` z{-$jId+?pCRs-Refdiy_@@Sv5gN0jd0pgfd(VpW1HJZ!CY6NG+R1&ate!aix|LNvB z|C+qoaIh4#3R--%A|qCYeXxRtAseYxny_R`BLRxc5D-uxkb&Btv{ev8kP!$t7_ve^ z5|OD^kRU{6gh+xf3CP9(2}wxk1HOO7dp@2o=YF1hT-SBZxesxe{H+k(TCeUL&(r5s zG7Az3(FPryAvM@ex_zt*l|FVUMKTACGDcXHrLWrC9O>3c7n-Rp8!i-YC#$NO>OGO6 zRg?>N9M}t+o5nBX;R36L+Lnf_Iu9i-(syY*_#bQenGq{ZB#&iN zIumwg1{Lj8Sm~RJ5-bH{Ji5N`B}nuV)i~K1dfXJ zjN-_;zTK4@k8Xs&%B&E!M=(X@U%#Sy3+xCk)YHCLLM#HC3fpO%`Au!iw(gax2OIoeoLI}N;a_5_6L&3onh0L##OH5uocl9h`7w z+S25bTWqf#w<#WX4Wp%yzvIH}GOyV@w+$uFo5|BYNlb_40#oO3Q7=U%%yr;<>EZlqJwR2uWphyXtQfor~UiR`AFaN`W@>Y$(+=L6YLFGO2GAn$I3fR zW=^E0_LL6C`!}xM+|1Th7ZE*o{FXhmfb%}HT(YOEbUl~c|M%dKQU}uY4Vy319JyRP zyE2jLB^<$o4yW*R^8p0hYwmM` zqN%0B{3nfAx33_Slep%ikdAtrhTyg(@0pJ!XUA2gqa&5skCh!9vg5VZ8%P_jhzm`` z-5Wi>z6bjWpxM;dZANyH{|VWTw91^ecw=h2Isdo`>6HJJ=t_8;C(>cBK#4VuSa@U= zo?Vnh>lT|s-?vB z^RHli`Ee8sbr8~Fc<9A$NOi&SvT%6)DN8dPCs`*eLYmeX>9#0O?INcMAEnZWRQ}`% z%%k12CG*cb?zmzEmMHEK*3%i4`*5x4b2Z)Kh6q2nkZ6j$lGHrzAo!RFkEglpt?z5- zHOJ_=uB?6e4M#e*7NVHFO=>l=!^sHpGqq?;jdlC-y*)ehju~Ljo5*v=j9Y2YZKkuY8)a!rdGo>GYRo$0+Z5Mao1i62Hu3&~cgv|L!!wIn9b zS{@R&Ua@0p{+a&LQYkc-zh7-6vblFypu?%-I-P#YW=~nEL85O!OdxepwYeDyw9JHJ zBRT7AvHU557t~{JWb7)GqNGilw#&1PCvtcPt{oB0pSW*+ck*Jhez$wdOmo@j*)IB^ zf#yc?m7?gv`rty4#tb59{UT`*7rZ$if19j&oJtY4Ub>g@D2G<5)Euxbq88p zqJa&VaFqmr*A|RzKV{dW^2Gr=mv=y_J~7I0gp16Gw#UjTeTStRf9VI#md>gAV207R zP@B#q8r?h5Z%D6>(pPTV*OD1h1I^>)@Oga?Hfk!N%i?zc7L;M%j*I^sK{wzN!%rTT zKw)?V&*?40T1%V6PXI8&BDf-=bBz;|uvE#EtpV7(Z#tn}1rgh+=9u;!1}uhE*$tBPd)I~oDp#*e;7zCEw9&N6fmlR?1eH{- zjJ%tF7JsX?4bct@)nBqCl3?{_z+S0!2r6ex#qaV-_hlVZ?B!VusU>L9+(_h{pCGHy z-?Zu0GnJW_ELe!28_E3uhqR32lf7zm^Xi3!!;rjtTYmaW-A!1dzn2;G{MIBk~JDKxkX)Iz(F8a-zfkkkPkr?yDHh)_p=SjSbO{FWi`X*H<9{!~`>+LjHfWs~;ZzT$Wq%kj9CF9&(gtNPf z0}J^?(Ezxg2z24b8HjdtbnR$#SKNnOSpDZGkruOSHo$cmjrG9zQDH8O#JJrff zh5zj6z4BBATb#r1pXnU>zPw!7ryLt(7`S^ZzV`uJW`5~Bn5cLgf#X$&!V8@Sz@Q`U z;R}&;Dh@25rWzApLwr4mLma%<6nTTd#1#g*Vt|SEr79Ske)Zfa?6!F?J3|H&|)E917LXOX3HxRH%$)?Z+fqR@a-3Eq%zjigXyd_3A%^T}DT|BVz zKQPYs17#SY*+}-s{T{AckM0EC3nB08#VsD4W5)gNb7~3900`t$7KrXipc=$G_Jqck zhpI2@-hc5qb)t~opEJ3$D#+#w;Xga22}1V5Yk4^rYMU-(yn?AFZ(5edgom~1$)8`* z4n7dg{t}4)w0zZq2KN5=tDwKQ2YhqzN5O*&bMP3OY0R~cmM`l$ec-YYL9B1aFUwJ(6yr>T4ZodS-!hj+Fd^CA>r@U|zmCjY<3)uByQYIx*N U^w7B6tuKY2bNjjWr=T1E0-ypj$^ZZW diff --git a/reference/plot-2.png b/reference/plot-2.png index dac541a749e53d0b7c09cead46b7ad6ff53ef31c..fd0a0a648b061b2eec597c71716ed79eec7da0c2 100644 GIT binary patch literal 49511 zcmeFZc{G%N_%}Xd3?ggxHCwWiHG3pm(MR@OD%nZQ*k{U8At6iF)FAu5Zxe;=jeVU# z$UgR+=cfAp&iVcS{PCRg?W8#;?)P=Qul02;x7YV|HONVsNkJeGxt8W_eGmu=2Z10D zNr-^|8IRAv10O^Wbu?}RpTM63wYnhS=zy_=4a0;L{wsU91?573-9NV!`Z(qw;hDhrDBOv4Ca|TIYHzH z=3g*U@$rk+O0J;VW+nzo44DTs=f{;t1ZPE*=x?@A?&gIUJr^RC#$0DUeD*zU5 zi{at`j_N(NSE}g5@?t`sqI)3m1GOYT1j=c;4CmE~Au5!hQh<(>2A}fLE4cCp-CX)Q zg)+sYRBE=M zUr{Otfi`S-R(I}VP~t%E1~aneV9T1w>Z*(Et_(Uc@a>=jjhM1>j|AEmXNwz0Mb3pT z1;HvI_VfzM5#2J~PADgd!pG1yN^m2Q5MRTPG$tRXIv0o~ZBvZdF0+i|*n^>)z-|K5 z$3(bQ)SeSHUIUkTEK51pruYKcVE?ip^7y6;Dt*-ExlGUgamhVs+mzN`@`kX8n#LrI3!oB>W&%YXM3a(XT?0>fw9ZiCu}T{S(&?49U)eaz7z;!VLq3N zK8uE|_ge*QPlk3orQYuwGI2ll#Vj|(uUXqo-(Z{b#l9)Rs*oP|vUs|36zv_-EWJTP z(7J|&5uV+f{XqMt0rF|YY&M~%UFphLGDfqE_!B*q7o$u}bj$0FGGrYJs1B=zEIQ4FWMH1_UuQxH zYg!wMuJjwDk1Ad$iGtEW-tEKmh!S)Lx&eCPx@s%*#S(p_D;?DET}P7kOd*Z$WTkRC zvdpdXq|pm@vV+b+4;_fJAR$O=x}9Z*C%<_4;^-dqCG;R8Ui(6fJ2`a-*x3uapuz5& z;ae_wzex#?Na18^)84)m{1AtG*q%ncp8@UuvdLk(v2}|O{@_EVs(X#E4SF%Dj+ zui_7|vcT^qYswQxYWz@%&psUXpP$F81KNhLr+~%2DQZfi{k^koMjF(EUCZoglq~fb zQ7(K_VaSamhgMAVcQT$dxZYG|up=FFUDAmBquV8Q7})KjQ`Y31`bm}0@3Wj2vjNb0 ztngFiyr`rlEf!g?U2IjdQUXJ{-nv~q+o(eIvIy=3=1Y-PTNZHZOmw#|I|=N@?EopC z`Hn|!kQ46rBnpijA*iru3mUxBiuyUbD{C*f+gx764Czc+t8^8iN)J3uTQ~U*( z(O33jz!Ricy8AnS-M9&DPi8&95d41$Adcry>q){Ue>SoydC)|X8(FI=h=Sf@$9lz&}G@+wS=B`0GnMljio@?MTzthz@i(6PASn+ zC{W&()84|KU48*6`&kLc@Ort^f9BI&9U9uKZib>R-<|q)Wgan)!xG+@lO3m(6D{fE zHfVZGCpG+PuvHH!6J(!EJB^kk@1|>Z5 z)fLjiW5Rs}Hw$I67@kO)p7Y!wkY4m_9jirJq!b_2_OuaYl2^_^ zHtc<>!*`D9E+iyiRsXKIXJr_96^~-Vk(wKwu z*tpx@yfI}l1Fze`7|Bkh){85wE*o_)qvs49_hn7aZDG}NCh-9&yRzlL?jAb$c-9b| z?|&wYl*6nOr>^(&XdAyB3$4=*5|IW|g0Ns+&TgteKK!!(5kH#gF`Vr@C5!*Lb0qrg z7suHZ%Vg((y7bxn&w^A_A>B=f*w{TjAaCK}WP9*HVf`0l8`%9Pw&oT{?e@t=9Y`(@ZC#~=|ogdcM6 z=gxs^Azq4C3q$n?EvOY^V3k0t7(}q&0&3--D0lJZ2w2u!KJ~8soU9~#aK!5VoMYCd zcm9?ItkGC(ia%hR?Ow-8BVF=OjiXAGY0W!=aXR(ks-VJa>2cK%^8}c58gm=A6_Wg?}+u>ga+uYWu4$(?CzkL zG87LU-oi>fKhrqoCOcHnARVuLKs;g5Co}KFUuk^HPd>9?(M*F>5w@PuAgnyKNz=Nd zGksJ(e6`gH~Q~O2_xatSC&3`u6NsBCbX#AWpI%L-(_^G@ zo9iE015Q9l+VIMEUks6M$nc6VE~NaHsRv0lWwH9L^b%Cx zva|jxrbVBIp=c_6Jis2sfATK}7M}~hzOQjubC&-F+cOyfv%GcGi>UfZcXbF{7t=Uz z?cc3WF!gn4D8~%!Hti>tj(M^f|7`MEfJoMSRMX{SZoCnuwl1}jD?pk|d00mWPX0Ho znpF^3A=tF0bv<4U^}BHL+pPRpd)~dhyjsaF+l2Gc1G_1@J1H+M*GK+BFmxO>(pjB( z<0@&|Qm`#>w`C2>GXs2e5u%EJ=d3(;7q}%|X6xt_eIl+xB zrhudB7QK^hsw;~MOeYXo%UA{DuJBqcf3s@+t$WikuaW}-gL&3-2IX zE$8iol(G0FeKmiogUQl221U&~`O{UC?F+bH56}}~9R zuqy~8A7?V&gOWmU2z*(-hEu3LwRC&nzS{T%A757K*o|Aw-y_61evB&*by;v)a;89RJ__cku2PFEAI#4&kA~)(5U9at1vl zU;bkcF+6ma(AMBH(g{6M55HPPkR&7wRKq+V@VDgekO!OGThDOStKvhN$}R(O_~IM6 z0wC|Aj zM1}sGCg*wr>DyJJeC9_k6?hKxf}>^dpU2#9cpXc#Hf*gqD|;V5X&bJp@;vGXaj%mc(5>&f5FPh&P%lfkrjSwwE;CHAedhwMgJrpA$PAHe4JWvuPwHJi^ymYKrWm zeSJhH*+9cR97Yu%QNZE1<)M5sq-lb|v7r#gFKy7~J|P_6vWagFC9$^xx$j&?Vziw3 zDL$>IH6}8Gp|XOVrBzw8)Hroqtxz$Kc|zUeA{NmJlm3TNJWO~aE0(?*S#36lnh<0M zox+sZD~~@M7;sZJ=Q3?kM%;W-(JCuQwfkmzXU8)=>YI~lYs~Nx_W5|DaCeK>0o3p{ z*lq5FRhIt@ZjIY}$+%nqjap~@Ci_Q3xt~aEANRj#>UcbwZ%g4bb4HLWt=qdd-_!0GBghcJJ7=;`S?sMgEQZ0Bku z=<%ezl)ohJV3Dz<^xfyooths_a4cK*YDJzw%LjlNOQ^-=2rvcV8h9Q=xn~z415pN1 z^eAHqg@o+>qDz67BLfCiH`efLRAr_Gl!YHI+1kSuhXM#pnAKc=l;gK2Gcq$jhh{nk zivb2f4nXGBg9SI@Q<8k1kjkcOE{(ff{M7}-l~8ZclosjBJt5{TLR^J5gUE%2qZ%gz zA9B$4?D#zuJLR59LVw{Pzry3p3!Zp#L_3p{SlZeal&I`dzMJV@ zYx`C>RL#}e7eiLV`yjz;|LA_P$V&q)qWZxd0(=pgL34Sjk$8k*1Tqp=uDecz@f8x( zT;4wA3Q~R-Ir_)Y@c&V=64f(|e2|=W;$2Lx?-UoCV3uWu6FbmMhNC$&W0%r$2h@$z z0uK}SJE}jcc6D=^d+Gstxrb#u%|(v+;guqHRYU9Rbdpc&ZvM4jN7Wo7 z^hgKhR)2wgFTV*;fMZoBjJ)S_a@QzfPfvu zKSw~BzQ0jW`IObqBBIOeZ0yiZjl@oVoM3_hqO&ySsgq^lH~sl#pwt}fIv#>i(n|oR zgNNvLYFOcd4t`YuTFSk9pd!PfyM{^sSC$`g1?+oGdsLFW7 zJLA{9SF6lAHw6SfQ|xo-SNn;(8;J&-X(oYBop37pRL9@78NMuCKwLl?xsgHL*mS+# zY1fP(zJTwimS`qag`r071`5G|v)g7}^ByBPmU3_ikJZ#MKW;4Z7|gN1+b$g(`%pwi z@X^NgSCI!?UC*+*0LtAt9W<4X3Dl~Vp9p(Yx^By7}y%&N|>UC4*m0#9Vpa#Xqp z%dJlv;rC`5k5g#zYvJJaSGH*R`YyhcsGw{|Xnhc6ivGNK)TiaV>lX$XDIL4D7a**7 zf5i}U#|#jbg|&eFe`=aPl+%Zpw!C>HyIzTfmk$Y{e}Pu1UEd;k**Ia7R>BOse3~3f za(q1ns|!B845>xbXoPX*zB$GkzI3=`@}ddioe>n2`u^PC98f--LCQJl3of@vVe*Wl z$@x2nTc+Z6UqyB}doGLjyg{~TmVJ0F?mcnZH9Ju@|C;!04#6EYQ8BmN3xl1K;8~0L ziXnJ+<(}~joPQ)0QGH9NJ%8_wOD7dc<=l2RQ*=q;Wj7-EF4Cj>wgzUCl$gN$KVK6+ z_}2sO1K9H1!BG!WO?gjZmEC3XduZqODRL^vyP=N_{50|PN3ETdKE5Y;_F(0jm1u0_ zfI9=O3Y~$fc(ZMizX>RB<{N>T2vFcnvK}fQCLqoKBfBmBUjJuO*68TwRO$) zjf=$TF=otucf@h#y#+~n=Q{5&(FBRdhSN>gk*c{FV=`SbbS8?IZH;g(H*n6-i+ItC zox(!bEU3C6;j}I`PzhwsBfOD8-TW^SNxKr!6L=!W5luZDf<}5{PfwJ$dV3*h1$U5x zn@{`eU7ne?{GhUjJ#x{2e!)5|YdsPVuTnmNSI>Sh6ihcgTiQ-eH}MIQ$=16Xl2E2K zy~p(H$~3hQK{_aqJcaO>B#}5@V2J@i3BmHYSir8hn-1n082;;14c_4ic@~SX)0!S% zMc=T2_K~ovkOuDcq;L7)f^w}KpbGvoZB@( zHTL)GL4tVdlm_{k;Kn-5$2;a2g3Vzt-*7ekg#tof$l=Z)r_trpW-y}|Y3rseGj+q} zSiUZnD%R&<-(&bqmT7=#0RX< zmvL-pZ*(|HWzQF*59JOp4Q*UeCGEx%IFl?em8@vFQOpuWY49lNQB)U3*^9iluIzp=utitFS09 z^)}Szj{2K%Vu*O8r3MR@M%G?wCbF4GNVJO8d_4HdSR)r&``u6IWd2PO9ef`T(4dGZjKl*MYh&_jg#$!L1FonFt}ck$)d?jBU`4FC-qK6iO@?LzsI zLbpkxWKuoucRedJpQg2Oy!E_J06oZ=Ae@GIw&+Igl{xk=anZa}os5&{9Z642ZV+(S z?i$(JX+_7P2Oo{jOvYRKMr9OAN&-c}aEpp`yZA1@2ImD+TB&B)=?6n508h-bDGucLW`CuSUu?$ruP%1}xVzcY9OVCOxt;-J%wTj;}EZ-+y5lr%5&b?eZx|AXI< zea&dJtbFt7w_(0th0yp=A)z$0v##Fen0N|M{6Mb0R)aWjFZti3a2S+5$CCeowu7X( z&t^7^+c=1nv*+6E$B~MT=J4BvoWb9n_$ns7@sAT+av!J0Xxjr7$R3DnGYb3Wuf}pe z(Miy+=yS*=UF{;G;5U)mi&LpD<^(@fGb=A@B#@ zMN$YR_e^j;>FW3{CLg+@NF|qS^%Ac3%GP7TcQUdr;OvOS(KH+NRRZ94=tY~xK<@d> z2k0S`o;dW>|A)gTeOgmtWt_GE-#JYtS>Chi zhRd^&{4I=sZc1q4wZwE~rgdUlGx47JG3b7RnE9hJ0ny=k&4_L@9g;dy53T`3+&@)V(o*ww73Zhk1oT$t>=3KboyHPVXv zXZ(`igx%ykJ3Yi%^&-kf-?6FLkUb=9C)gMg3jR*cW>MBDm5^WHRS=Wg`8VV`keE$A zpBj1V++RXv-xe{8EIH`LaETvBP%*$BvFYs9&ztuSRU2qYUG(A3WpP``trstK{ogKt zqbuu`VgKt4ANr#!QW1M~?so5mGBUshq{>%*Zbr5_nPj0jJN{*Z4zA#~|~sQn*JZa z`{L9e^Pz5jsYQdpgW?;c|0f7(Phi1Twvv19D|+w%Ln1AK)PIQd!yo0lkl&+PP?1$& zBL|66o5qJs7)B|}EWX{F{5fIODaT75^pB6nc>HS)Y;H;5$`8(OH#3A;=`xf!mRw2P z)p#tv8x>7St{!2r_m|ChBZ1oH!a%ej<(u36ZNUj`9BMYY!B-ICRImEL8?B5jpDK5E zhSvg4VAeT+*6v(8A7`Ei%E0Q27I8Tr z>HnP{@QTXJKE*?`eNHzr|7J-0F0`O2JXl@axCtH=@1|gN{=;|v{jlQx*0$cdv9U4C z(didAx|~toe1?=H{Hjn=<@QXNlgTI4e?9+Hq~g?X+W*RfLcHtsw-dPHz}#z+@a1Qt zh7Zg{PFy~IRF84|_V-64eb0RlDU?EBtJ^h`vG|k_&TgVAQs-C|P}L+MDPu1s^dM#m zKyViliPRRGr}JKHfO*n5=xL5^Nz4G`uSg^v z^IhfKRPr*!GuDGjoERx$r^gPbGG3Q^hUKTf>8ZAq)Jgz?groCCe1qZf-?# z@I1-(e&oVOJaU6$=?+1ax{1MXqHwD3V5aB*;9N_h|47Vyo1dTP2peLjf7q6jPkt|2 zmY-uu_17@^Q|+$%&iiFi-_ooQZOm1sKa(#MHK(eHl;_v+jM;%9;^8ie;^pNGkz?^Y zg&j*XlzYxKzj`b3AH;P0_l6Q9qW$-bD zV~k|XUuQzu+JBFL)=Bn>%ZE;|zFNOd;x&A`x>h7q{lS#J+>!ft)kha`WP`2dN*QZ* zWgA@b+u`w}$w=x`Q4JG=1gHItLSbub>sfu?oNIrJ7|grUnMA1hKxCvw*t=A1dfiu? zZ^@{+o`Yl{;iVHZdDCPd z&8vLHr@Jbxz$G*0e*y@~af}|WEGA5Br#oqPCfqZ1#8y}N#GL(}$QomBau}fawU7^`@qKduVii(Ik_}ebL+iHs%PO@ zl@|M9%tHcNEusJNOgT5-Tc*10{nWh_*?}N~UqTs~pHZM*HCu`$`o7*%J*5VHTOI%>|jUB!7PqD_? zYQ_(Bm)>%R61_@YUJ~hs((7L8ouW1~lS43UW}j4ZB*2;X$=${9-nfOwftO+=KfM>k zHIP<=swvw$B(s262drWc0ExgpWoIoyHsM_=ja}k9w+=+I+AFfQ2sYR%1zE4PvAY>} zv2Y()VX#-H@EWv!oU#_K#XQ|XhwmYn2lWzI69$45tg}jh86q(3BtNcM>{47V6|17t zeOc{ytA8CL#N%pKK3>}C3(Qi%EJ$I52fCL1(93@L_(bqT#4P5{hi9Tc@z-$42jgC7 zW2B$E(VsR>OY?apRB7*0_PUFA*0M;3FfADVSVN=Iz1OL6=l&%%bsV)#5bi!Mn>W5s zC8QAsQv{>{E#5d>WgcJoC&vRT%pHQ5S&Q0ejV=^0y+VNArA#c_` z6_5>^xKOvMNwpvRaQC>j_GBXnh1lzV&yG(caE2UH!}HUJV^RO{z4xj2#gX7Rkd)s2 zr`$L}^rUPato%^e{i;Lg-Vdol_4D9*r+~zEFkb>o$L-14MMOG0*pM0K<#pu5U;`B+ zN~EwD*EmbnJUUt-IVQ)S+_Eso^uc)X!{~`)J93qpgr`r5T|2Rr5M788@!g&(j)bNL z&@r()v^c9v>H-uR=*Y(e?oCF~CMjtot!&z1)?1`@_J5G={{9l>X>O+w+0G8Vw-?69 zpn7E3ke@eh9Rxn5+t&QYN{B1XsGn%2`p5Sp5mkLg=*t-Eb#GBezYp6%!3hvO;~EjeKLv%P z|2^K5p4};6z{GnG&*V}jy2mZ7BO4;=vv>_7G*E$}I(~_cK4@$reoLJ8<b>oXS+8jO^ zh1oKbgGI-CSI4e3Rc1{8L3GS%yL>J&6>N9~cTR^N$TqE59}2J%w4M)pMuz&K`1$Kw zbOW%SQKTvHAID-ARvyU#@{3WO+Pgph0RWY`SqEXQ5j7~&p(|VWn1ao@g;-@=yQE%P z7{kP_y=zXPg!ChX5q!vWa5zGF;ERY>g)Q2gXpjQVg4l~~9_QBn-NY&jHZlG2$-wX; z^I-52$ZfB~9JDZ6LzC031msUsomjrm>3~x4MAb1rm~nrrqTVLHotT3m#kC zB!wUUg8DuGC8tZqnL^(`lFAOW)AHSBb1x9(%|c$S$BzK2b5oBB`05~An%4aeLXLH0 z`wELiUVa4WP^C1t@r3g6`9hT%dU(Ql1lj3b(41ZiK)>E*wYh`4fw2-wAh0Gbw0{&d zd0K#She6y08p41Py>lYjF^w$4z5pJhB2vFJAaU)H%k+E3mI;c|maD&-2w2icA1SxL zB7<4`EE!Zf+A}-X^6JyMm_fm?fTWp%54S zH3LgKEvIbNF`m34&=p`M>oF+>Z%7)p@UDYebHwopmyOr!h2uBnO6%09Oj7y;-;%j| z-I24U3vZ$GPgrI*RP0XkYKovUr9x!Jck_a>%$Aq5V?q(ni0hH%BK-syp$UusjwaDf zu|qD7>yJ~~w5HviP7j{{NzXa-Q)Cgufw4_-Trt+=gIhT_>nTCj<&)D z)Wa8WFMFWri7Kg&{5^I9ua;p(j9)p0O!E0S&49&kZhal-&ZVC0EmaKThYyaH%1#v4 z7e8%bZ3ep}ynEYIhqM*Qo2@dIhntD*NQ|os3wbVeFyNJR##9RW6j7OUu25-mo33ca zr@CAxA>J|=kql*Mn&8p{jii%fHx!!*_y*<(V)G+l$Vr0^}tky6)O`LPwWSI6fM>nqcxg=;hhjGU6`7ipl!0wPe$}Af#OuPOX zFY}mYnO9Tyyo5Wkqc2k{qks~`zaV*b0fg;Rb|qXRoH8BYBW6u)5+>B;3u!zjYv7P7 zaSyh<;PW87ha-obQ1_bfV-GLo9(k^yv%bx&`Bo2)ZgKG&GUM%+sAQ~-Ws2R+;Jev{ zd4gI?x-|q-ep+QZLCxqV%e%kEZoDU^pG_Hd|Yo~ErEPxsX16*x7V82_}fHx>1mnY~jP z8(AK@K}_13dO5$qW-@Nm9CM9uIQq0h7+}NU_Yt{+L~#(P(Mp*$RYQ>JQ%C# zErI96tlyOQJ;#zT9Qe^8-ET<2qchAqrLy1E-1X>iLj``F+v?}L3OZSI78?Tc-@e25lWt9kg!Qgj2LVQ(9!3z>CuM$c3wNU8_mwd!I^MoI zjFu3RLgHWa(C|EK>L&yNZAxH_;peuRxjuxZ0s8z9ZsiGRqTb8uZ|gYe+-#!CpHR(mxP<4_9=*^0TDqn7rG@H;UEwsWL#2Kor8>^BP(#C&uL zO5ug>447y1WC&}>(Lz*e_x!YL_FI2!9a*c?MX$_&Tn21S+`|oRI3uzE)f)}0H=udZ zN@z!1tYLmh{OR38wpBCCqm;I1?t?dv>OEKUC#QV(v&g3{y*P)Wa*FH&G~}z4D;y_B z4nsY&rRryo*6Tjk)M3v6ZP!X;teJ^7hg-j<$g}2uT;6dRymyrNVpnrrzKed>(s1fV z-h376P^06p1CRse>3Q3P(QaDD*dM-_k2DgeU6ISMVWdLQqh1TI&WWS?jyZby1d0dsw*V#4t zHqoh%ANNIZiaV1&Xu1n9b>;;M(n;z*Qpf0f^3m`3q)C?TH6gtW3kqA=l{fNJ$5=}H zJ;hmRx9TSA2P!>UFou-M2QT9~6O?y5$eOMSV~allt&f;HX&F>_>0j%97QumuU$(;Z={$h@aK@>dP7h#jRUd1tLq3ktN#&@N;1_@_$fRzgo#s>>oh&>)vht=68 z@#L5}GU17EcF^7+%RE(qm4xTe`Zka;ZAH+>-v_VJXS-rU9?&R_rQQoz7m7L$J{g}2 z)~;|Cnu2V#Pw_g){ZygQ@GRj5xB<~r3~G#76YVE&*(vZ`z(0_o;Vkn8XciF=-c$Ds zRB@SD2U)fmB?=9M2=yulN#G}sXWhW*M2%Wz{Y$Suc~thMV;xL+-(0kAUDkdsZedxU zrKGz2+E(dui(oS*Y?c|Co0&VRw7^UT3dZmlepexwYJuCK&3{iq7`NDQXGHE(?s!jq zlR63hkw6j?Ei<($PvcQ*NIF<4ZGDRo7}&ZT>~d=+Gd>q_*x+*LzL*c_LvND^X7`@i zw0nrSJ1=ag)W=Jpb00(J%TJ9(MYc)NES2&$3MbwAAR97Z9r;F{wS z2k0sr+Sx|YUCy1ZkHkMSL0nmNto}mF26xT}tabe3a5KT_ly{9jq{W<6^p*Cj*omzq zH$}qzRBbKHJMni2*j<^nF+}YP@guXlO7VU6JU$?}Ab)*;#?OswAEnOxsf(|;2U5hoJ@8E*Z$wAJe3?5t1_2iJYI z602MfuI3`frqphKnga>tn7#%ESaCX%7pI3dTr_jjJ9{P=4`{!=1`($5%zg@Oe_Utb zxiQ9^a9vAZeOm_Sva;Y2H$052eX(F~yjZ(VaLRE$y?n5>cbXgxP?dZN1T*E}_8QJd zWe>Z~-m)A>aat97KRk+gDO%_JAX4W&PtK>5ufP=2ek)Tfmkyr>=@QvWjO|oN1D;0x zH`C~|#e7Y1SoS5lhKiC`C79w>`0I@q4xJ(=h6PT*!)BM^hHpF(9AyV9(@006ERbG; ztxKeu0$fNhm}p%p1~Y7@Lc`%qlz+gR7Jji3@YPu6L`G=BAcyDk&hbzD8!&RmwNe9Yn&_t5}Qsd zcD4|g4qEh7>c4Q3VMphZ!iR@Sm9%0)b5BDnh(Y9W*Dspul85;z9<3R{?jpga^^GN- z`*hJ{L%Oc!e;WA?NWi*1M1J1)12aM*xKG;d662YR!JF21F6dGJ`XhdzFrJ!8U?(IV5gqTXi4BM=6+f13fx>YfP*j|EE5yo<_-a$E23q{ zI;%ImoS#AY$Cx{PvF9nCjH+?+XPRZ{f>%O*;o|^+1r1>Ts_+Uz2Vtqb(iC*M>xO=S z9!2Y?jGl)x2S(Gua+~ygZh5~4xX)Cr^OVYWUokkBlmtwl^-iUR4I2&~aRe2`qOQE` zA~2H^d&On3!L{@qT=)sW@RVhS?p=na;61ZO#UJs^Jl;AKS0Kx+04s zd_#JD0(0$gsQzsv1=H@~Nr`t?#&gZF)RfEX!&@l}`DMLR@>tf6SWhMU)%CHBp_`q8 zW*>pqMH0boSQ4}XZr^KVi>8=>@se|8=mHFsgjhy$dq|)6Ay9!r($ewq3j4=lb`jZ+ zOm}TnPjBPGzTpc>{9LzY`$m2*Fl)s~#{dWI3lven(!o8DH9|8@MOdf(9Fe}>lsFoR zw$}uUqBW3w$bR24n{#=NQT4KVwq6sAFOsdCLuO`!+&W~6Kq6uIRSy}9ZLxQS_khtl zOE;owuK~R8JUV*^Cy4q!Fm#Qe2o%)qCIKvM7;i1;K}87TX)W>qE_qzuse5Iw7`$;I z2hL0+bp})6UNg3IE#)TZXvkRNRYL$Lb+~^6w;GUsoyGccN*Q>e9Z>`xk7>3<@S_)G z3MDVta;I*N;aZMpR89n zWAFPF1towN-j!|`OK)0Oe-^|k68`CP(%}a(9%vM>T6r4iMC^PkmQewQE7kNfA+z*d zhnAUu-#dKy?Qs3bP30bCCE1jjbl?;2-iqhK3+H(jWmWa`VT)^~KvuyURt_$6)SQ|L zk*%xw2@sox59`e_3PpH4-*x=zp4l2JBP&ZTuS*m&fuCMh)X4|50}iV z%68nG?d-is-yyH5=!XZ_jXSh=`T}ovnQuVhk~H=Sp>3UQK=8#1T4wWTEj>h!9~FY1 zfVnlp+fOKDY2ekw3nS#!%p-h36GRrKHWwRjp~YcKOEPS9H*0xA5A|EEP>Z!p?w*%D zc1NmQ_hS1-s>N65fzTx?4k%X;`4U;T+2#g0C6bI)9mmGfTl+=RP8dPVLF164m}Z=% zk^DjidUHy|0uU1hH*}-qwA&!WL3~!$X3KvI!}x)$i>b+Ghz8{P#Q?aVL%?PDQR^ho zU~r+!-E^5n^zPvmnDAJ1YKY=BZh*pSF0Ht2wpn z#Ln9fc>?ADG*~K}x(v@lZlFzYJ1U?wh#5iyxodSidh&A>T?xDzWB+@!`MC>PW@~)w zd&0%R#ZDh2y}}qBv+xAz5#QLhY+yIt=`!IP`&pwbWmn4q`2KE+1YQMYM)Ln6KN$Y_ zvfO556y4u&UoB_{h6_h0Xa#s-AuHgO%MsUh7A-F+ToU5hSv)ZeY~myb*I6nzF7Xf zK86U}Og?uyx~1tB-4W++#nf%(-|p+RvV*AQt_ocbk@d@Fd2%AuH=1$_h>MTZiRv{r z#@zSl^_^a{X}PiAfpA<4@SIqr(XR{bB+b8Q9EPUwR*?HW|90P+bYp~Zloo+5<0SJO zBk{bjcTyl#$B-HspzDO)y+&u{kx^yyfhC@Z0z@ZLZObJg<^?Wepb#JiM53{P2iZf; z75PsdzRFPIZd48)xhb{B@J-Cm$00d+*QD=hrws6tUCt+hDTl|iSO^E_&ZuQF1L6{T z679F;vV&$I&All1i7MKbb$!+RjHKco--TB4-6p7Ko$h#>Z?`KVW4UQ_?!a0NMPCpw z)loR}G6hWj@j+v%o7}a(ZF(m!? zIW{~7qMz@L5+I|JKU4=^Wjc>@JV6s|#PN|u|G0LiA51NM&_0$G>byuxGCo(crh~*= zmOAf_BtJPTD5cW|UY7g<(00XTqlponh;)cv(L&-XLU3!N2q{mRdtnDe!6PFkj;C7~ z%3vDuN2_6~*XQ&ULAJY_`rd==_sXmapGE`wBi4cfxJckV#do_9^k=jr?hY<)aF-2w z7bL=2;knQ2aLw(nJO+w{Z#s^}k9J@@geet_Ikatu{XJQtm&yt@Q&N&Xh&ExzaW?tp%plUf41qoGzQz^ZP; zLr951}#MP}fo5;UeC0pq&g-(uG~S5AWxA0w268$UX*YBT5iH^@#Le^ZJi`+i|6c7Tr>Mze}<=ov0j&0R9Jo$m|g>!Mb z#=4ynBM-zMB}6#Y?nl1?;CBpBNE%Un@{Ts$h2}}VwYKVarl%j>zaA1w!hvLbm{fd} z&6p_V_^aKis%i6haF`!Jvtu@jt&VgcS^Pc`et!T>#0WpV~u!C_}TRNZ}eFH)3z%R`BOqpNYi=gQ#=v zc1A3ZWQ?Ll4{KgR?sk$8gB^ZIHgk}4F*oM!)Uvsymeqe!2TYK&;5P#1iLqAq~BLLZHrM|fghk@7$DuwVV=dvE) zyKqo`mR&6Rm!`k*=!2-+)%h+a3K#fJ;e9N%^nd-gQ0xWY)6#WFC)B2Xr`}u^D!;oNEC5P@N1w z1ZLrY!=E4;Ha#Tp>!{8I(2ZJxsmy}{>U}WY4;aRrpjV-TT!0v~mIoB3Q6=xS+bR@_ zx8d3mC&o^e)$(`dBgY>7da+uha27`z4;asYFu)&&C`<20!3oO*KdtGt1*ExFnO_3k zA8|Hx%z9BBlGg19s>+-qQ8AH5)VE=>&kqBZrr?H(yruD=v?S;+J%i z=VJ(_X!v;=i$7lY%4?F0%t~8puGsOiA#P6RwBA9>OG53}yE&Q`hLp)7BS#&>*2sZ_ zNg{N!XFPCi=*MVCz>Yjng%s%g2VSo(-B336D^%#SRKx|8I{SCJrM)+{S>}v0K zbev)IfgOF9?^CvHIGa0z!|s{@js_=(nfZwXmh3Lwg(`tpv>bQv&(@F6OO9n@1N0GX zvCrtu@s2dV#6kp2(25N|^gdF9&LAA1gW~-4^EF>XMXo^rLFY^xr)#p?8p!pUSkS1E zOVzrBz3zBz&n;5-BA$@CaKsr`Ks-N8FR(7S{B3(9+W%wWM{6KZ=ClEs!BFnhAIHLuC%+)7bWX3qx7h06>xqoA^!%}S3MXq0FlrleO4TS%S8 zlcleI<);KwK&=Rs2=kpvDu|JkkUg-*JEisG^0p@6)f0U%Km!=Z#z(bnE+O`a(Z-t_ zGDvyk9BQ-A-5^uqC?IwtvETbnz-yLu`?sM~HNPR*FsR(pnkyU>4-3H-Wp)a*3g z>ea@7aFSpOs~%rGL!4oZ3ca4dN?(1i8welJ=L&5rs$5>LLLFMms?(%H((b#!H(eEzjn$Xl9pgrgm?zKg3q0A`mj z(PAIHxE+DE$JkXs;V_x zbeDSRa^XF~9IqBr^lQ|IIwm|f&a>XP^`ds-ysip&#%!PcCK>$|*J*q#Q_RmvkPmF@ zT(+G8(Cb!s-$)|e@n?Ak|EYJT=+w4|i%g7S=NG`Oz6}DU_qa)^$g>QwoVWQfS2ss& z`(Z0ze!O+zyc=3=eicPY8jbx%wE&CwQtLXLXMcJH!Qz`4oV|IJs+k@=R_8MzhFP&h z*uN10UY5?0KfHkx9yZEIKZoZz942sl#Izx|JOw%D-LwtBez`!@@nvU z*ob)1LC7%H2R#`%nR?6oJ&6UxpIVl3Gt-1w4s@F)*{yU{$6EK0`fGvJr89lJHb1BKJ21WxBJH=x0;v=ZEXXCNZK6Bi6R^6L3P zj=zpPa4}tcW699v|Ebi_dz=k$r#$i~qN#YST!ZT2#Ma|_=Kp{+2?30DoWM9ivGK~j zY;l&7*#(T&!oG!AXp_DOxBwsIAZpbuROntP`q4*`=4+gaJEYOeb~%zkE94SEgHdK; z+uvf*2DnGKNz`irYWU@Swmxh7t2#hv0{|Y(Y;=DQrSoB^Vrhj8O^8`4U+=COgjiqy z!hWvY2HekS(I-FzWvjL2&7YwmSizih>x;){j~RCT?tG#?of0+wpGm8~XF#iE*2b z4&RvLe2g>O^DPMLY^`JX6M!RWITeg#R#(~B4EgZ-3U8>Y+S47Oje7J8Q3Y0qvwZ^t zsXxw>^Aay0D^bwrO%HR*w}L?u)%kxCh0DhfFNw;69yz5c)x^84X`IJ-A!{7m9)b59 z_N6{2i@-BtfL1I|&UqqRMX8g3q#>uH-LrS%B7;o+;B;SH;R#C~Z0yP6EnZp9N23|h zeFryfnZD&cG?EHBz9(^J@skT!C@H@KF!28a+wos#ywJ-?kOJiRbLku)CWm5&oMa`D z&QiVL;^#M_*}z;m zeZN$|XgJ}X<3#h9lxUNI=)rk*RU3bk09I}&Gu?E52_SZ&}q9bINh z@86U)_K0&^dL1Wz!xc=*lhZE@Jv=T0-Y_E1URlQNGn#omG2a)bv03*bF? z$oGr6Q%h29=SkRKYEk~e5r=J!h=ILlr)e>0knPOL?pytkap<)~sXrwDGNfqx^*DgqR;9O5!@_g_&cBb2Gf8Ix> zCs-wftYl!^Fj?4^@%7C6Lr^O?L5ntQd$zJM0FDkBnSM_=PZFRe;+3cFn6>2%##S@E zhXg+E9jTK#P<~NX>+$`kd`$hpdLoOsK6vi%28yDAkKzIqp(OJ#6DkZ>TYSv9mq5); zdvGbVK_a)Y#RP;K64<@vW%vP&A0JvplE+U@&B2U#ML(Jfa}JFlosd^d{K|4pd!crc ziC>M_s0E-`{`J4ope)+1-6?Nzp!IHnv_{9L2b;BHdu6#4aw9t}P6R#tsFt?PPK=Uu z4P~!MlqvU@#?upeE$c;*#oZsu4#zMSTICO^-l)L>;qvfPBIY2f)o)jpD!sQ*rLX)_ z#%#MMW6ZYhhl_6KI=-i#Am!=iA`J``1Hu@pned=ow$SXI`#%p5EA*B;%NO8HCl1nO z%-F1zh$^5ga%sb@6VA9czXgBvEipT#dXh>`Vyr1J#4Le1UnK;#1A)trgM5e+56~-t z_svVDRIi^q4`AEV zHsi9B+%yN0c3=EM7OKX!QluR>w|l{3_yFK$cn#&6cob5GE}S$f%8-fnbtFCs8tX(Z z(IDy#vnMyqvL}z-vbEQJpx0;m)O2XQ*eJbBH$>Jx=~y9+Q30gvarjdjPd#?Irs->BPtIO2shZ%S8lU)OXaXJ+xe9!eQg??6jaXWD$I1mV@{_Aa z3gLxDeE4G8&c~zwiO)O8?X-E4p++}OPn&ENZ6=mOu6%tFeIL6EEh9*G1T0i$M0#Jlru z$Cs^H{7H9Niu_xUwzh_IZA>q9h0AQ4=C5+0HO@;q=2W`}8sB&QG8jz4)N=0vM`{d{ zUSAW!^(eBbm311QCIHuOBMlnh-Zg*@@BU>?tz1pGcc^2&x&9%h?uUn*T!!)GEmsaM(ge_G9{WO9fonGIc1St6?T~FnA-`KYEVT%f9Ne&G% z^!TJ_hfL32VYxT3iv3nB9IG&8?bO6wUTfM_DNB{<)34w)CxG6Kds1w>ZSM4U;nz8q z6z(Fw%t0C7;R>iT7nxbByQ5j2TEgeA6O$*Iz$zH|Rfu!PL2ZYm1n;A*4$c6CFS0odu2sHl zCKQV#Wlb4O*60RAl_5x+uNbn7NJW-sOrB^EpWLP)qVbbNXz}jOv}Rk?c~33~iAOj14T%i0&3%gcKQFtFcnDu_JH41083 z`$*>PE{ioin%ZJ%$o))XvDLS25M^fb6Ge#kiOE3)47UuTBNo;@y(3~!kdPa7i%SwX zTd$RqHKPyb=TJ?b^IInzF&h{qWciJk8}lLcVf_id^yo9I9C)E52qm37d+C0 zYiSZGxvw3QT4nDlt`jZc`9Mp$9?C25;A7qvOVUzEcSF*;n{2iOLKPwgcZfT(coBMu zSIgMQg1&(bz?LBq*Pqm$oBLd^gKXZG!LvC0?1iWz%&*ivEJ&2e@7UxACmK;|Bv-J6 zo3H-(i=ko9S2;~)?8CVmxZ?t!OexC2;Uw2@XON~@_i%5so7s#@jwG_x5?1Qd`}Mp^ z0=ed*H>kNQGlL_)4_seRMG${(MW2&>=2TR8Y~<q4 zNk>e^kmnu`vOH5@^|_7cO41FlMz;FY&EvowdAy+m^M{2AJn#Zc_R$d`Z5ZFBCas|r z`9Oib&1U=Az0cP(^YuxP_JZfhIaIq968aOgB74@Ol^TC(*c(wbxjX~(Bt=J0aoGfs zy!+yn(p&CD86i5JZW{Z|4<`gTLn{1iTEje++&bihdhB9wk@dT8w|cg%kV9XHADv-y zzQGT@D)0Jw9Ubp5!9&HV!G%8t(XBu$T^+;q=69kmCOiOx>^4%1aOP71Bs6~SAbq(< zSA5&3jx|s`kJ2!-g3`&O*2lV@m)lolZnL&YK1$?9c*)L_J;uuZ!Q&d&D);>#NCsos zp@C+%L&sNg84;6PtD47W)ZCr*TzIV&)zpLQs5<-Oj+&!zX@PHnXO_w4SY>_nfl)o5 zRc?;jFol-TwW|WA};8Gr7fwckwM|j4Y;x$7?6>`_+?i ztn>>-V_L?rr6I0sZUtl~>^xF(?9QLbeD;_%3?iY~GG1V?S(uS_A*diNC%`vkG9gqc zj+ItbP%T84F_uT`NTvDMgE7WQK%8it#&=x(&;{61{B_PR(&l^7M%D>I=I!}xJHK+* zRh>lTe<%aXXFL{1$ZCKbyp8Ovih~h&*c+fIN4hW}73Ct&<0WL$$aeJLT}D2i76$?6 z>$*?7cTTr`+nsSdW62)Tx$>-W=124P>WhrxzWL~gLcQGu>14MA&@-ZSI`i{NwRj0B z*kH*9UgPTg3c`s$;yH~JRhktfa&}q;qvqCD`&lA-|L65|O~8dY`-e2ss4$*YYQ7cx z?rYRu()v)&xzAQk8n)M)GU z=gH0!4##I6H<*1Z7wxY4ykaHRKw<#gDxO;)cj34`EzwKO$&-p&uV*gTFu}7Q-%{)m zD5P)V2PFNF7bx~aL?6~2p0F3duy{2JZ^P@iSGnt<+b=WTCN38TjZfBm zN(FTL1);;jni8tcptEW-1k2nH$JE(AFlL1cs?LcxzKwT;f1EAOhPNkh5{C50&@Lk_ zP9~m9zq!)R=>!h#^?ennf5+F=?G?&g*Q0g#Ou*tWiz@$=R`aaYuOl{!$e*3c1CMNh zRjKQ~HYoBdXpnE&htPEAHRpc9q5slC8T-z~xz-USj0G|n?#tivc~=4-S@PILVXHOR zB_oFT@ni$(W~3Y-0IFLl*#{fKQ!{Jl@W?G+2tWnUXOi`J9h;`?DyVdtXxWb!a zI*DXZ9hIxpq_Y=T`oh~vw@G@gY>j%n{cG|)h4iB4oNXw|yt66c7YI@vR+130Lm7%? zwN>{_wcT1<%B;6{XGSADc{BX;o#2i1ObFyoB^r@HZ zEk~t?8(PI(Tw1Svc`S;pC}!~8<#+flJ(!p4Nto|*Pw6kI5F55=sHqCslkQCa_WjzF z++gG{+Nvyws&<`?^Ev&vKoKW|*X({looZ1r{ykoH?G=YYqzuPYFz7bAnf;WKc}Lpm zVI+vXP?AJ(TtvgS<`l17KHNT%F0Zgl2{So6oduzC$Mta*IBS(_6X1)N_s+cE0Dc; zMvgL5n36!JMYjhG(55h)0CUyC)khWanhOmc&NMzMl0SG9{EgO|T*m}AaCH?E-|a4^ z(#-1>Y}=kq8^gFLmc?xN*3Mz6L`^{GhDCsSb(jGPC-w94(w>9E3n~)hz=>hyRkrop z6khxAlImsV<$oH5Lg{w;Ad|Tw-sTE*bJ%mD7H`2H%NV$6k*M8le(T#4{X>b05y4n} zAKG}HjUK%YrY07Rg>e9(9lU)*f_{+XrWE*m@pPH#=Z5bV@9^7-@Vj3RSND@V*=J=r zx;3hj%1PDzqZmAj$5fX>S1zbm#mwdhlt^S#UIxEr0R4lowM+9WUF-;L)N2q8M-!5{ zF6`Y?Gf^Pr=K3km8G!7+p_s0ev^=k=?{&4!QMKjy37aVYqlcD$GGzavcXGEQdO4q* z3t$J^SxJP2#@GL4DdO?c{7ouZY4yq!7X-rTI^=qsi_lNOGuXO&8Zd$yis%9UlUL#x zbICU0XK{ftfB3r`W{xzJC8tLEr2>I3A=5hLFAYiJN!X9miaUm%#e;k2$aG0w8E0=wMC2&nclxY+4$Z9JFD3^}^kOrXOV! zsFZDeGU$ly-zUov5XmI9*+ljuy^f?CIU3{qlLyqRmG)-U7Ug~Em)sJ8ViauXB)K;R z=b6-VLC(>4Clm$jKrPp>qSd*jKB;ie&c}{y;qTwakYsuwjYW|)5u2W5G$~JiGxzHt zlg%(a<`W7wQftd<9u)W~0k~tZ-{k9|uU3i1Ka)3#jFCQb^RdE746g4AYx6~ikBjvT zK41?(=R0t0H>G2Bl1n{}Skz8+#YEnMGZCxU%RM_M{MJyS=49P5h)}`$=4Rd1m!B5r z;Tf4#yy7Ex>uk^0MpcJ*#WD3xGg<#V`HB2wi>a_|gGvP2=%sza6%6QyRP^NC;=**= zg^+AKP#Ob3>`#Ys5xd(Khd|?&<kdbIHpXx?!W)Dc=!%jD7jph@^ILIzw)AKCb~- zB<4-32=?By)4{tl#x_K({@_+mDcy{+#WxsfDh&SsNVSRb1DwFPNb~GVHOjQAkKOvN zYRGBhFu*`Ox(h5trE<;huP;BD@UO=NZA9}&qzp(|?sTL%i0A*=V?_2FIH54i1;glV zJ9&u7-&nhcE2JC(p^$+`X;D$0(Ad^nZC<}4Pn_9Ck2e1iYX3>zNWG=XM%JIr#N&+Y zaP>T^)FszOs@RMJ&6fi}0o^S>VKi6o4*(WCY9p~Aa&vx1$wDRvVkO!)QJ$ILhOZ6| z)+!Mc9sU30{W8?20XmGQAMcgi*0sL4D)W`LzhElahuDp))>`7+q6{&)#UFX7}99#KfpqQN)4~kkx&Gg58!Q0(Wk${#u7iw-w8&HBWd0sBhTv@9N$F$VcbP=Q-aSLD#3X zvb8|6$||>yB+fBfDqXU(QRevZ5?~1$Pu9kz0^I^V0b(Zd=N5kiIx*klvbDo}mFl9V zI?>M^C{Yqxm~A;k(qMdQapEyqkg>jlVcIo(wl-cW-%}^8Zg=@{GH045qE&Q&~) z^L+Nts}rO@tNgJ1A|tOXM%tED@7Zy{@yU?Ww#vTa4^5gsxRM}!Y(y&1xFpTd-p|*f z`{3QVTDFEIV~ir>WLoIk+DKd_A6Gp=VN1}_Lkte9c+5`oknI3E#_EBABLwp4BA#L5RZRpJ+}Lv!)});-+wugX_|N+5ax>HC%2PziMbGz7E_Ey7ua&0=ob?;lVMXH_tn<+AR=Z#HIRUbZj3(NG3P4IJey zI~?6tL^{1WB%S&uyvp1y>nHAKc4i|Z+rb9-ok8cRkJ1swu~D5L@qLi#jhKh`0#HDl82dRD7a@7Q!a zqb?SJ#7}Cr)J|`W&Qt*vhhZJia{_oB>;&o*T545WpAVSyew8$cBP0h_Y}UFF3v+}I z*?g_HjOCFF?%YcC3%LI?oBHi~kFVp4UY=&_89n$_R)dPG5^bFO;DYS|-$B$26eAf4>5r6d$m5M7#43`kZ8Otn*@Z z>cadaYuRe8mhwY&h$74!$=WQp{C*@f-z%6j=6>TV66q*C;wc>RVBut!v5ETLtw6@P zNBM)x3V2sRc4fYqW9mhQar&Dd(BfEw^MP@u9F?$oc+Z5w3_FpQ=%Mct8Dp7W#OG4v z=I2O1MaSO}`)``*(=QT_7rAWR8~i-3MT6`GoHPizBTZ~`SDER+B-|3swsvubAUeEGRUDNc1fDbPotR~(s_-rLL& zySZA^xv{@QTky`x)LhA}nCZrIDF;xP-%YdjW-xVYgW$E4J}YXP4&E-fDG&^LfCqBc zU@Fe;*x`RjJsO$zsx%p9*DJhd_D$u55Hk3!=f`h7fqvr-yNBA8gZN^xT(@C?mJ#Op z^%)&efiLe1_qe7}wO=LV$R3(HiiK5YGKk^gJwiXg9!vra$j zJzbsLX_pI`KRnVo3*OSL!`s35>!i0T<^v#A^ErcajtcI{Z;q@ z!ac9GcO-CM4%Eg^V9LY#iXD&d;mq|RiflW9#YRI^q#Q4+9Y6bedYIY}I%;d@Ze(~k z0FbOjCzK88w>ZlJ1c<=`XhAf>#gbx%5ht%D8rj?sF-w)UhLaC-%9acik%Zng?|K7* zhJh3Pa5Y#jOc5jTb31?RWKC*6e(Jpb8D(qn%znxDr&~6rn$$SNog!>6@+91wh7luAHjnu{faTU}Z$*+ZHf}dnj1@R4^x=Rtnyunk?+$#4P83S=810aJqU2_G_yV7;z=x`)G<-(MsPcnmi#5l_Y6)u>DTS#QYm zPGaTvVM?^fpCisdqTBku58QZlM>Ln`<2#%czZG5JuR2C{&D7VMBL^WD(F&{TlmO%~ z?B#w%SwrDRhn_Oss!!`Luddb06ZvWzsWT~+KNWh`LnL?L>a+NK+kdr{CS_c{inEeE zZ*ZZ!sm%DzJ0pEdVnP0*TxiQkg#VlRj9_r+$zKW2?n4Dcw&^yccOEC=r% z_FhUpWbu>E)ms}1`;K{wLE=y%casEjFPb8QeTs{`__Aw7gq3#^B=?8@{#ryT5T$Py`FtU`j5NL8vOK=<$daN68bZBjMnXqm z#MgCuI-2%39qoOD!wMl!re@=J+CAtTj^DKWB;5*p+`#u+Ta$M;3htr`K;_ z4W#sV6utXDPqof#^Q=irl`yE2iflseEj~2y{cqFeNn`-la+*vn`c{NIFnrn-LWr_uCmoJQq8eQ0uuC(Nsa9AOg@wS zxw2;B`KqdM!Mwxg^*oMYQ;VhYy>%njBmoF^uNuU;qTRjTc6_`_{pJvZL>1NA*pOv@ z9Q`W;T&+*LDD#c ztnQA!6qAFYy5!|gO(&&V4KL@BOCPNLN$ZmR++Ysldv#=IEy_>|{iVPQip>rKZO$&{ z-n-Hb*Y2Y!actTxW#3t+Gph{tCD-GTX-~mirbK!_INE$esbZN6n^0 zZfg_hpt#O1iY3o0v~x`8uAE&T!#i0_@qAv?rc;Y zlmU)LJW9e{f^H$rTEE9H=DSuM;60M8n#%sZAfPpZqG5k+6hxSzuDDB~RO409P7px? zxnGZFKi}}l)+CHCjLGlivtnc8fgne(@06l{GAqGcdBd`6t)AH$~jX{-DrdXNqYt-7px@xa#PdA@FyAKWjw87M@T2OiTgIvjgC&>#zNH+<_ zATU@`n0Q*(C(|?dqupYM>LbH57K(wAx9AotV}ki0tPo$w_C+rZG(e%qxcQZxll)C; z**X$TI~}6$6kKB8k4P9-DT0m+;KPf47KV+-Yuk!QQ&YP*eJ0A(sxJv=pIB<#`GI5N)zjeA%i2c$U2BbdHgnz>TEn8?e`;0?ZUlRTDJ1;Z&A?nI>Jt6TL2H4->)(HkZo`w>KjlP; z`dFRoSP^6?9Ex>K-!d&~C)ozd+jclG5EN65D!o>d^x{@-@xK-%I8*R^ zsK0yJpj89ij&s*^0FhR1;`3QpcUVqTH8Puj#jt(0kJ25&>HvyabJ_0aaUAp7)QBM! z6th>3#UmwiFFu_l_z%8#=RZXDe)B5ye)W^NLesf8`;24(s4z?e*=m9L9u{411e!<4 zo1lM>D6!_57C)sq$HG`h-*&zb`Jl(W+}-qr3kfC!$#`x(j3AELh6O@fkz))Mok?}M znaVsS7n|Nhd+OL(-~t7KK;MAXMn|W;Md9}|cC+HB5{8mgoWYd?BX8SQ?f*v7Sa!m% z8c{?sujn6q3DK~h_^f^}_IEp1iZM_r_wZTxuC@s3K1WMJ!X^zWSm%8XN3wS>kt-aL z^YAiIRs(vdq59Ch4@wZjWeP=S+^WBtJjSl&UHBq^{A}{Qbk>zi)U=4YZB1&zd}CK# zA#nJ2mvrkM7m9oVDsDgS$-*!DhqTtAeNU`PSyK&8-gKq1)*D>W2$Yh{_7l|%72#MJ zYp>n9z;Rp~4J0@ZnD}L4Igb5B%rZ~hq7#%tFU`M93^eXbR&GU;t#d!KNg?r&39ari zPQgu4a6wg9%ed&usExJMEyjbBeorbSKz?6*G4EYn zj83ZV2ZWx-l8-;#YuDJ;#Ciz4*9*Ql)IvH1$Y3KQQ9nH~4n1p&n)>sMxlpe#wsF3nm3r|!qK#LO6&!#2Zl+}>b6QK|2iL{C9C;H;Zs@`5ogEdNIX{8-47M9$7Pyp+Ie)o>EZOR!>ce$0s>Z0%J-7O(sq85qO+j2J z#MjX%1;7qs?1oBWr)%OreQVdy3x`eTah+3(bGb)8hhSvCH#a+H;kR+v35O=_GUfzu_7{G!ihM&g_|0Qe@R#;7=s-TD^bk8NAa&Iva$0q07(=IhEiF>hdQU3MxdfD8Zp=;P@9pgm zEqy2I#8&=9Fo$=Hps2tGM7mXjA+)dt4;C5ha?x0R%CP#sB|l#83v|^mOTSl5`Fm(W zia{@Aeep|;fJRu_YPoGoRh*Z%$JtgK*L0~?2DjU~#kcq9mQ~hY(~I;cm8)zzZ*=yD z_;}mtYnjnAKb>^p__{ZsvXWdC&T)y2Y*qE+NnC-@%usrx3%^rs*r!r(UL%+~8L|lI z(4xoWCHu`vA_-tK{r!yW+-zCe_yC&lk5IysHtp1;Wy!gczy-67KT&sfHU1lBdrH^* zJ2REf^f*?q@!kK<6`bi+>6@=U%NL%@t7LgPk&cz1o4#i2sBeP%MFFIK*7g?<$K_kh zBE|eqj}4V&_^!BZKI`(GHBBZPktMrm1X92Gl#8=SY66d5qyqDgDjcX``7|inBzr)m zb~n+NjGhQq8f(G{&pqC)eyE?ydyo`kX||GIa&D45q_ z%Ry@Cn1LX?=tD@pH0I{&;}E0QXMN-f5fPBg)bNt zn|RFq-z}Y|1^N^H5z|}J?tSmGC54z6&%xrUY{Z^%Nx9%p`45qkZGG}$+Rr|I+i}8D z_SO2ExbTfI5#mp#*4@?kL)>)17C0_l>J}eyf`(-wId0G0LN|LV|d6_rE!HvuESv}YQ z-$U`nv4x?a+R~u#*@iAaRx0?D2mayGAFqJ7h_F zEhpLRuqek;I={}IOG(RQ`K-+|LN5!?j+dt+8{GNo(Q+wMU+422$ARvK;O!aIubqDH zOw%C;zDr$%VsM*%sVxb5JD#eTigdz5qdumkDuq`hjk#Ht| zOq4>1pKa^(-vB|s80(AM55un6)*A97=UI+SJeOZp)y%v}MypCf{4OCbus0olHPZ+V z#{M^7Ie+j8AY6t}tmBM9Bq@~Qm0gxD>`F!AR)4%U8=}8oYu%^xUi@A_W+M4M_Xh&& zl}TezG2H-hrQ$|#n?49)Kzovm=U$v+3`eu}HNzVI>oIWZ@a9Su;LEwVmb>fa$bTD9 z4>ps_q&dr7vm$=$ZqTK-AioX93D|amI?jsubV$<4k&}0MZ5q6~w#4OmmEBCc9nO)2 zq=LxWs{4K{$p~`>v7XWsApbX$bZF6R!P|+HNT^faL?LNsmsLISp8u^w7C8O&j86NH zx9-9lU}A8a>%|fve9BZR^3l=`%YWK+zFmXv3bpsZ_jAXJeT^Uf zrCuM%9HyOwR#6Rxvo{&uzAfvK)UjYR^Cvh(1{-FQO1uwo2j3i*2v^7YA(5IG_9HFg zm-&>0tlqy9-XnEz)~`;!b4Sg(+pf#_teX`T0w!^)B`M$W=F#PnYq8|XrI5%!d-sr@ z9Y!{6`}ebp4C?f1u7%WAghmhik92JkVkwwg;AM!=ZYCQ2G1hr`GI@6?cG@| z>{2990{?o_X2)SXVApU!ZRcZN1F4z>{Fb>r$7&{G96J?+%~mCj*q(dlT6FXM$?0== zfweyVsb}*hcV=eHQpltKDUpxyWgKMmHHOGT8R5lK4vJU#EKK; zk0_>Bvi`OGe-9rOhzzVmIMgV(X$!vGcLyy=%7K}T#M-U(P;5~?i66rb`w&P`c-xnT z{68Z*{v<+FDYFYY8Bvclc*&Y6xxCbs*U~1~CLI+y(;4m|;GnbX_Sg6H>#yfQIma}sjuzDJlAT!>mQf06# zYjeF-988Mz{3b7msDpWvAva+~R7Y%nif?Nxo5Zy{x;^u+=$kkzZl$~B-meuAPN$)G zMblCGe6Abg%6;I=XC*^Nq>~ zsqkBP66c}P*kz2#msjvnU-RKuwZiEI)cu15qx&*H6BTuyze51}MER=`b1(adg1=Ai zJMuDT_k6lYoZ#_;uw$pvfBx_za4)~igDnFyosJlu)Yq>jJCr3$UbLK)C4wGd`Dk@u z9$uB@ko9Mq_9B1{Da3T%ZB|>PB^KjO;(aI%2h@o#v7LSJoVXA-1S}Fh6pxs;q99za zgN>rE=~p{(TI`3sd?4NCo1^(dPs3HEI$)-PEhQfH$H(Lzf{X8B!nRxlQH3AGAMq>} zZ6XJQ-B{zdrYwxs4`MNM>H>2^g%Q6Oe3T;^uovY>7M?%1?j*b3C~MB8aLJ~Cy%$!q z=Ba=7I=n#6MCrBN!6l+4z3&jG;YHPi&DM!ZBbX+1^1SL1x6^9cPhmgoUMcl!f3JyO zR|*0|vQeLf!u>W$>usc$QLb7>g(Sl955Y%*)w`U16UdNV_6R24{c{uuPq{B+bZp2;O3tl7DV0RFp z)Y}YUr|6FdxW3NbZD$QjB+q)J#)4=hqe+m_P19!P??zI^kxUZYtgMsVoLpn;eo+DLm?LxyaxOl^!WcSx?~`b5#!PIHQVs5nQ#|^NI;P`_ zwu0kO{riTvzX$ZZ61eofB^QV);T2TH`VvqxmQF)ls*m}pumq$A;cb|wmIi^Y{Qt;>Fe=W$pbdaAdjne!MId=R#f{YLv7FmE(=$f6aWA*d6c^zn!pb=G>uPWiJUd zx`v$J2S~v+&#@DysLe0eJsmC6YPj!rZ_Pmd_8&VJO0sh?70rtggcCs`Z-;*6Xa2(x z8ddT5nx;4vf$D%^_)_#6@T;)79IiTh&$h?1(D_|GUo?<5VRyw-ujsxBVl$&Y4~ zWbiA?mypbHI2c28qW!UG);8E`pH=~n)Y~aGi;Vg-L+ClEY&PmH1Ap+wyc3a49nRx& zkK9cQi;4TDY~q$zrTEsrKTzccr@=9|g50cWc7ZG7fxHvr`tzqaU!=Uc*+2@LiDcgL zFQy-M_z(h3IG53BtoD|htKVDcjm=lv&}w+S+mCd4tw~&6t)>Wh0-FdmgsNWMnO~ik zhVYKSC=FQ~>4#RHLi0(&{CGeW&517pOWI9*=(A{Hv|L2r?M0}l%9mq54Y8xgNnC%>J7L3L2uXBZ1JH~naRHV!6__zl) zsFywU45gqKKCCm>9__IA_hloAsgU|sr0>yW$iMbGmL09WJUofv!W6R>2j9Udk@r?; zs!Z#_iCfgG=7KlbRc&urnQb-+tX{(R2=&=~pISEkt~GX-o8lQFWY}$hY{CtMY5m#G zAcOm3aDibgxD1|}<^A@3z4DLOlgJq(`s56Sf`rOR)ZKxy2U);5ZC3&@&7JJfrb+0M zg*P`+J|8G>m7>VonLBP*`EXlZj#@-9SHhM3Mb3g&U`Ua-5o6=>KX}~vXnBgQe+Z1d z))&s}2}Et{LGu;S6Uz8O_*lIA#jVkD&7nqV4kpx-c&WMbYo*~W!|~GZm9h64Ros?_ za^9*94P~m?Bsh|XEqJCLvwiuM$RqzU>Zjc%;tQb}f#8mD?%e9|bkA4|(%0j<+pwZl zLpLWfV2FFE#K`%(YClH#XPexQt7pxi-TWbq{&Oc1PSjU7$$obZv~+A%b?M`)=_)6i z*^}0cmX&>TID?f52-$wTHiZa))~tswg8C8+*3gnw1Yc%g;6x z`yH?$UzfStO*8a4Slrhg3<)_0%xJgP6Q>Gql~K5pyvmU+c@VxhAxZ>?I+(oyCW>ZxD~ zOX@b7*7x#XXqOnD?mtvxS&0?2cwS$ZF~nomaBMrnLSCQjF9y&At=4DlxVWJ1+l&D( zfaaP_{yA38OMGr}Ht>FDnndW~;`vS$^uKJTsn>@(-hZn^ZX}O#%?5{DsjU*F!MWm# z`;15Zd+NjF@bZa^AIVvG*mQtNQhMB@|}3Fz=nDBps-?=1=DS^UFifp zg2`Y*qNWG1vqwqtR5;RpX0O}h%!CJzT8}Cl=(><+EDGf)hQaZ8@;s=&o}PU*&wPn~ zT)E_p%}CPrp?Z)*f6cH=ot)}UibTg-pOM2#m^qDWf^Yn#0JT-FSBc(g+e3tzxS}70 zp9;yn$n|;Y{iNf3C&%)zYcFdJzmUYfC}%>MH#%{_cn;JBqitq@4s9o0a~)ZVWw_q#W|p%W=0p%)y#+q4+Zc&f1!Nm4*nzgU^V1;x=&p6DB3u zI%)FGExkSbPSjGoluT0+j|DR=Rr2q-|Bd;xj|B2D+t&wIa>kh5a8ucQW8#`CuqM;> z8s3_RI@{CFa1V&NKip0_eF`*O+w~0N!aU{}5^<8Y2@bwDwb(v=w(F|3s5M9UM&wHK zVZ|*gRF*4w4f@}%FMiw?kpw*)@21-FOf2X@0e`dHh)JvSmq&BAp))y1K#3zF*S#K z$@pSOZnUR3;Zp;)uInImjqieBmpIO{UE}-x{JK|rjzi6vULNaNxD21yH8&T%~>PlJZZ+MI) z=sUs*60jk*PQI0YxuY>A?H&~Fi~lM&PAuV01C^mV@iNhmICtVpDHWOvjb8JhTYXFK z@?x*@u9emO%*KB!<-ojaC+p|=v;zTfNmML4(ZyJl9|04p3}!6D$S4w;D*d{#)pIMV7#J)40uke|Pa+h4}6 zxmW}p+H<8;k5@uGqvVk))r2JE*s>5S#xXhh*kACe zW=BjRXIaI%w&0Y$bu^R775+?V*MQa~sLg+8&c0Auob^cmqH1Auap;4tVT`eU4w+Vr zduPa~0b)gFqGmo-)uM$;q zIM;1fWL`S|;E7{GlhXjVhO+I>?})(lA~O0Zm|O4dK)I5SE5LU8Lg7jZnga;W1KPWz zPfY>ptn+q3wemsx=jO}GY-bQfJTiV?Lj?X(Px@-#Qdk-wwqb9>XhA27x48SnIUnEAU~oH@}QeATsQs0x8#S@DI(@Vl)@#(D!A%7zK`E<1rd1lnM0gC%4l@}fM2Dr3Rf z2)dUioG!KfcRn>UEI!hGr9NO=ZN=JVi4jI!#8#&-^q6y4gh z3Ci+PCcyAij0sRitNr~za2Qsan6#K^uRbOqn zJQt7FG{Xn`xx?R`p1s?m!9;z;{tGF6~bvW{m@ zkcdB0-gU%Cldwm_|4#F!Fi6L_oZ*&B?`wq;OCQ@hGg|SaT(_f`OVgAuayRi``@>R< zk}et$P^2x>f=or@FOrHn7oQLv=>X4R%#!-~k-M9G9g*_`qy!;1G#a3&v1(240FkOn z$k!mcXh&9X+x-DIuoX^4#KaeAyRwceqv;j8lra=%BGiPXVt6jOd{$d8{F7DZf;zLr z{%LZmTxQFITu8*d#JR-(Kka>IRFh5gX8;ikh`v%(1VjS7QMw=?%?<$prFRen1f)wZ zf!BtDfFbneE4>BjgaAPiFq9x&LWfACh8`d!*(aj^{qLSVyZd4H!=AIx;RBFoGBbB( z?%eXb_wFQ2v$0dH3(EBVSSAX~7%yhe4G#cS33xEtk*`3{o1elHD_{1cZ(qE!j{Jq_ z1tLp;Fq8q|R9&^esGYq;8!7PG{+WV9nPT@XR6{#@HvVksG9bihU^&&LEi~F;I`QOp z)tk{Wa#bA1cvr$kbB6!pH7Ovu`+(aoBczwn^g^Wa*&*_@JY53cu2~H3KOv)*dTU#$)z$~6RMq?FTKVcPTkt_iG+ui@k|C8elK&uKn zd4}$N&kx+5vA7WOG2kaL;YAJpzZDt`hXDVaFTO!ol)Yq3);bxCy>p#=RsX^ON19Ba zV|em!KLPXyP-Rj-U;Mlg`Cl-&_T&iPg_G{D-4ci<^rbzM{~!p4u?j*PYU&Rc-z0e1 z{WY^Q^DpeaW}C5sF4g|e6t->wNC~_f&C4mQ#`jKVX~K&)|3dH0WOVEGVC=R-VP+G3 zvOt!@Rjr8w&<=P@3}|rG)w=unzjSjNe)+}CRtzV|5mOO)oVNE$np`b{WpI7AB zIpcX}EsSgRZdd{XWdq2%oIs}&efz1E{%*SF?iXJQ*Ax^GXstb7EVg!y)drduS))taoFu*j< z{v#m8I=eT4B%G`uTlp*w~S`>Kn2c$9*Ke!&#zOD)`W##dVpAN63|sf%T}sB z9pbk18D}8(aff^}wRMe_b`6jk8O^NhIjsw`g64CiJW$@PMV(N1C3JGh>?GVXXsZN^ zky3I)&rthL=wj*u)N_h`e_4>h&a;-EE^po1(9qiT(H;$Ay^N|3H0e8Ry;0`#!xC7o=uAfc!{Z|cZ%dkA%lQ$ScEq2_k%!d7 zatXid?F6!5js^Aj)j0m52G}k0azL&ud8yZz^aS~aL#WN3;qhRI0KJM^q~*H(SIwSr^`8_!#?t)|a~(c}aS*e`Nn$w?Oq*tjYjx zp-X+-7`Nu#=I-XJ9$waC6X1X&O|$5$ri${SRHV=`b-^r@-eVgz`@=H zSI0Az8HxhT5A*8L8X15*9ol)|@EN7tlUgB{ofN>X$gT)d1S%h}Gg}{`9om&R>Stj;b`w|kLMI7t1&cCb~oV9n#-)#t3KmLK#D$ARHVQ%jEKNfSpeJ$-?|z$-k+)h%(iUazsgCKXZ-NR;(s`#i?7~gJ zra^gefACt8+>{N|bo#>Q51atUZv8FE6bkyVdXSZ?AE|KHm7MkgH{Z7X+qv#IP~69B zSj)g;_~}y0U^jPy!ma&BLEy1l7K>+FV15QZe>ilZ2>@gc(*Q6wKW8jYoAIs+yk_zk zc_S~+-R-7)?}DeumrsnaDxX(+S?k$TqQM87_YzPnA`HN@*(}UhMk&aab$q?jo`JIQ z(O9;(}} zrlJcI2rlz&`2)BYv@fsjpIXW|>v@ColgC2BpBi~+7;%?LWtfDHrKhfWjLN<&w!6uH zG932h>%6ez)qQ85;RBupMFMlGtwd&gj%a??Y|Wo;&k2O<#Ldj|OlhPT=8wtoE71C% z#Y>Cb6$KrQc>Sb$e_Ys6SLS!O`e;VCrT!-(`$AV5K z8KR=+xzpX9tGkd^TzVBu>D2d9(uuhLsUUS0rBL`hr>e*N-Ja6CRe}kstHiPC9$LZKBE=i-HwdB%<1apck-eb% zS}2TfrbYrfn%bGw;L*&lqeuNH5B;r8!V$-TG5pXbRLWR0t0eSVYRjgIU4}8YF}H&z z!-`L5s``EYI@j^&oJ?3lz)zE`on`(O-ljGDM02C6!9i(b_@?9GhS1KOhU0(VqO&v{ z4oQC6Qf*TfdU0sLQ2YsBkgkQMq?qjAw-W(WEujkwwWx=TUYzpZMf|=ve^j0`T+p#* zL0*c1u`ktbzkY!|VG}77!gq#CxVBW_dxbyXbD}?f=Gl(jlPu~Y%a!N~0*b`U;#0`ThY1))LiUs8T$KRZ`<|@H>YP*@@(4e>*9JHLA1r_& z$gTO9E%&^Q=T>w=Gch774haPHDn5DULu0l)F*aU#;Is!rJ%GwWMAj+WK90t_ENo9^ z#zva&^}WRi9EQ7>Az@L?R;{CGP0HE{rbK2vkkk*816Mdar-7e!Ki*exi}ZDw)t24) z`dHG|(63Al!1xx-Y94>R4hXw@uR$SMPaS^Z_>`Q^ek=%}8~ZVzgIXNf2|ZBq;g9Zr zzlCJhl?(*zXd-<)AP-@x+7pf?(*`N7Skm!ymIhPrWn#F8e{kyoMd9Fy*1b|5Ns;k; zrNYOWU+{HZ5pOvc3_qyK0EHg{I(~lnKM>*9E!c>f;jeS1f12m}mmiox0bo)(a5pIf zP?I~n#MHWXfd~8#%+OxOJuvV!ZL4(GwYvcNve??Sdb0{3&)=cGtZwb_Bp>7*s|_TuU)dOBjF1R7c|!)pvb3}4 z`P;^*hL46nivm#5ZV}vP2fxR+F)I+QfHd`tVFkT7w4*TfZ^QBVV&Fb#`?p!}s^ZWu zE99Tc$vJ>>V(Mg{bU-Z!k}BuvPfi$Je#!J~L-Hm(sL+F1gJqZr(}@D|z181bBIXqP z$BuNN;5nIIhwdMjV@{g0jH+L8n6d$8P~HA6N3iy-Rb4fceNa6BnU38Pn(x`Ccc4!~ z|B91rj{JU210ED#o}-?Y|HCSBfUgc~-m}Xs%~h8kL!NRIvg)lCmR6mu|3k6|Kv+Pf zHIt+eM<5xb#=dks`jDT{azFZ5fIzYaKA-#tmi%j;hHdNt8@T3k`k+J^lJC z6v4o+{#vE22Y|MB@cV$quXGWN|LY4nFoK)^Z@+BlFaZ>k%h?j2n6ic=%7Apkrt$tl z@ErOqsSD_Qp}L0oM62G2roKmo!bgn>Ak#NZj}?HmI{@zJ--G@=jo)MafA*hSP#e(D z)2Z!OAsvXEigI}%KtFKm@YK;Ex)KGci$k-n-kEZ0{%eW@Fv{!OCLt5Vp$-y@S)H^n zfCc9W_#Qi{?1`4jk`*ZwKi@eA!>x?H4pcu@GS<~F$$WFTBPpk%pI<$RN;Rh%Gn8zA zT!ox_;8l%2?uImPwbfhfz$w>PV5BO6z(^w0SM)r0K^)*-TcF^>)mcp7$aABo&#ud}%=MU~B4AmT~n>=pJUDt6uKRmR9RKSH_KiEE2!djerZOYKF2+jr_z( z16hF#FNQanvAwsLotV|x5<#6%lV_oVJL1xRw*#ljqec(A^T{urzI1r_<&(~L;6~Oz zV;?_cXHfei2VKT@L{oqJT4hR4k2W$8ri|k(q5Fh-ws#_O!i0-;hV}u1zG2{@7sd|* zLAUN*jH3-AT{?@w$7~3%YGG$3DkU`F12<@4r4@`^5Bh3}OaL`$c!7e8RJu3!yzZhH zvs6O54cqzg7QpH=@gxfFrLA0M_COZd1*C}UyLPa`)=r>R*P+n#r8^-$#_)=PlvrkU zbMNlVX`!=mA&a)VdF7}bq_U_qyb4WupFqDVJLC>DgVgHz?v*$lTbOnJD2m32m zpE>xCULmaQf_ZUZgYfEyl2{~@1=Zh=96l=+8@ZdzPEQ-hgkEU8$pY%9qn9@1L7+~T z?`+?0jMjjAB0qzg?YeTQljA|kxk4)>C(=K+>3(7Nx@av>{F%9)*V}VJ!@dttUP1DlwOcXd6xGz**obQdkZ6zHIIkr5a2WRq}fi3NqEs zqaF+u^#7m#DFsX+0x6G7oRkAokf=tV#?GYqAaPvYrnN9{k7Cl`V;+(W$X2k*eds6% zR3dGoS@w73W$X}mv0ah=DU?XkT2F=$6*+vMSN&>G4)u=YAilgaK2~sp_y!>?Z~R#D zBMmqo+%l111;uHtzX!AFuGLfC^_-8kzQ_q^ExMxU>%k(-Y@U(i}W8v%&012IV;IjfoiwRzG^aS zS|8dYsY^OmITxr^r-B)F*tPD_aatV-pMftS|bRPL2d;>3MIK zoPG#ZRlt(rV`UDMQL$Z1xI#O|7Ze`)oKqD9YH7r5Y(SwWTzYBIF7(iTy;m_U@Q}Ja zYCe>vh+Wpdn}O6$F`f-a{4r@$(oS9>E zq8cZWK;n81KuJ)umcCxEr*}17Lju=W)W4k#$qv)${rIga4}cp6p=?h3EJ`Mr>Gpai ziKhomYeU@!J#k?WAIV{&s>@NICw6Zb$K%YW;~?p=+W3(AO8T3ZHSMBGO_lVQGG$ki z*10zoL{KW&ZA5FfTB3fJid|Pg8eFB(hbCpfBS5(icgl+nN&j*RYW?lC&#ew-lS!@h zZ3N0QX~XBo{2=YP!OF0lPIehz{22N)F$->)LCDiZn)ume;AMyMHhGrNbwT?PP?~72 zZBw>S$o+E4D!4~?eFCB6;_tV&g#wppuZKt1#!bD3P9*DFPQD{3LvecEWEs0?*(3tS z2m`zP!`jVF(ZdPu^l19$F05;6c;AjRuN4w2QKQFLeAk<*|B#0utzTA1?a_*)bltQJ zNNZz_aDYb!A<9f~!Sma;801BnsK2f^HB!+ceoSUrgV()a@2U$$3ogNd(s4aR;vV!R z)qFLrcHZ8C^LWiEhoY=*mC)W*@xk{u;sUk|FY@W<$vuv5*S4_qw}N9_Bl|Z6h1|v( zfqK)ifi$7{#-X`*m9Xn+P?B?n_oRK){AtF*rS{rPjUyiU6Uingl$=64{%+buyz_>l znMn^I!gM^>)Lgvfw>XLngmo@YaTLDqutoVe)Bh6jAk%FF4Z*$>UQaWQAPW!5_dI?) zI#fl$*EB0?UO|4=e@s&O$)`y6QJmqHP9VIR$O9Xbl>TH1(ZE zqTO@?!#KOA-i>=Ky3$v`Vo&#ayJzEc!^-ZN<&<>$dT6fy#G$qptHLB;u-i8Hx{5c0 zjw_2dVtPI|C~Wd)5i*gR zg?77gyXHsTfQ zK*-*#SZU#gyqG-A=gt2JvWIWW6Bj=$ApOB=e0cFn&==D99$r1@)b60yU5UrFGRN~J z6oWpyA{WtfIU9TKD^WgaO|!ET{f~YC#Q(h`t`syYClT5++9elUVfP1VyMwa;?T;7F zI>{5Ngd7NuYN_v)pi)IK>PVppw|>izBFxN0UL-2l1-24*6&RJMgWSTl_>x8=RUA8+ z-}UTTi6_3AE7WcAlTnGmtEzdaG1U?wN7YN4WxVe!=)R=!Z?vwWW#`k@8{e8-1+G3! ze>81)jEag4){9S|3#8>793k9$W)FBnK~RX#){a3@du)M#$EDSkf|%N~Ugqt5h9{9x zW@+YMD28`=v+7xYWYtCvZdKxxviQ71QduW*xQ2UlHqr}%^?CS46~Q?D&FWI&zRnHQ zE&RX>wCdT3SY%q!cJ|y+cYPajo*b-|PBWt9>jiZ0g>~hl6xBO=iWNDRl&`L+>KN04 zpTO0aK(5X2%g9WikF|8`<>8H~rlO6FJ}~C-*~M@$#eW-ysJLzsU;p0c=43fb|7FEc zk=!^uL0C9uIjI6VMNfl*28M9^g*0JDWj!2(dgEUFuU<=Cx!rZBLg?zH$VRb#o5#1KLF64Yn zMX6LQbZLdss3YW?93)hpA&i$F?|-z_*pA;k3NjVmQ=hsEg0?;<=dN>`xfAw(7JeuI_!NAop35P>f&#fv$Vf z$%lvMmB*PO>29)|StzOeDsV1_jtB=Zf$+*@8yidzpC@YB8^btXcU~7ve)8?rB zbKjdLHQqiFAZH?9lE0h7GC&}1R%=lBwpxmH?;I=Cx^IL&T1DybGf_RazLQ8iZ?sH~ z#TCzvmpU}qYn(5hrD|)*xTL$u*c96wql;j-21#4Pqe&mir1ZQ4oalJ4o~HLJ#Dn*X z25Qgzd(`ckccUKYk$cq>+FjQEb)g5IZVRxhrei9|1Dvz#z@=?0{;PLC(Lg6By3u?n zKW*8*Z6wqB#?H2xqC<aGSfh;jd z)8E`u%E-b%y?eldnvf0;y}&gp5Jj$SsRfOB1K*{ZAwv z3iD4(cx|r2=PeVcno4d1P>l_Ej3cD-qd%tid`6k0=k$4=EYv8uYNqp=xCtmv?LY?C z_#wi9uas(CD3$Cqy}kaTtLl2*-{VXd<3m2UC{JQ@C#{NS(f#gfBU_Nx1!Ybp05C)< z;wjIYpEvtHnN5k&s|3!*nGL9W$Is7%(7p9*Fio_MQJS_n!LPQdPUl72!?wm1FCz*x z-}nrds~VPALH_)RdQ~(~V>0mBL@;(IRQu1724q4dfYsHc9&7Lk9mcG@PalN%tFd(^+2yrzy89bZ3?r1+p!cn5$A0~dMDfcscn-7nX2t=3qNhpv|>Y^uDoTZTUjQ!fSx!y&mA-@ zrX-408leOx8%HQW`d0qp&-gJGx_^K#YyYeIFD7--&%Wq)a z0}TXVp6gWzXX%A)5^lA%OB9uVnW~!Cd>kNu+>gt^`)&qv+RIXhIYwzREys~MH@Lv^MmZJoHK10M5;jtULA9GD=bL{*xKJUQl9aGZ2gdWXH&=tJZ=DIxuX9@p(RAh z;X#>A^y5m^AH`Ey&R*T)5E~NgLC1`(PFS3N7tJrKrgM1~x&ogjJEn#fd{Gp} zT9{X*eL;f7L;|UQwc1E}+=DoVWjj!^z`Nt%9vw8%%kn_3zC7j~Gqs$mz21x{WJBsg z_V#75Vg@|eYu;V1q$Gk_#)f}RNHuj9io2Ime*t2kD)&~hgdb6HasUkvsg0kl0o!P< zn?MB+bDvoH&wWD6IAo59i2<5rJKQo}_NKp{R>blf#JogiLhlA2r|jD%Q3vFtPrPNy zgwNg@;z8l~@X)_zsizvMB_L((v7#uM9|CSVW`|a`pt`sz03Y!A$OPU)Brvdp>x{bg ze7jV9$R(_6{Fr*SM%^$^u%5|GaMuxQ#yR;v_=L+pG=N)WEYF-JR{Zru55=3*bL}0^ z96aQz$fS>BT1TpvDLey0-n71gV`X%E&P_{pazrx4OY-t3BqG>ru;jG!^eG5xMa%pC z)=paAWjw~cE16Af#5@DG^r6x+6bD6>nTVMwj2beU+sd&{yfD^|0K9*T2Hwk3Gb@1j zFt1uB7JZ7$G8iaj9gCWHgY5Gm~x>=QdMzHZyBS*%iY`3p<oFe zYXx+GSM5jp=l3WA5r`nr8LbHae+TbRsfsibmu?8--88**2DfvBmH`@+xR9d@9qQ{t z#Tt9N7%zXk$Z=^EC!!>Q9gVk4dlU>W6WQGWYg9*~WE|dv^MZHt5v@h;3tvzbr^y4+ z;_>s48qmLmFAXN+Jc+8ESn~A4WJgt4!1TYxtR3 z?e$c!jZTFG))zYQj!>7VWDTE~ap60MpO9!I`n$qe4p#+w56<-=h*^Xe^W#a%xZe{g zz%-*}awD&)+XV;R>e80o+h6g!qg7ss?KE#o)AN2D6_8y8Ssfy~-r|wGH-vEm)RKjL zq5=Wtcq@#}*iFi1BtOZ7*nlQ|e>V>l1n6M4=knJjHD##IS~BKt`@Y_Gw@{APA3b_S zPr26Ez6RX30W% z)T^v|y<&RHZ1Y(nLjnf{&r6xEXhM=tRH$J!ifcS<2)>ICa-Yq;9LHRvt=+M7JwMA6 zP^MKe8CR3KKx{n3tG85D&+0@)TN<9mKcwcnAmealy!g}U{1G7P+&|6 zo_43Dx~CXFVXxV+vbM}o{_@AhizTb4wDF^M)zxa)Tk)336aR$T=&aWxUd*RjtEa`M zXUWR9iVqk(S8=$j#OSX1K9#lenR&W_)Fr?Di^$O1+(baG4XJn8C=jP=;=GPEDCBbK zXrQWGU_e~}y#jpZ)v28ugKL-h>^OW3wH`L{5kDWDt@4@_Pk&?otwz{ED>lAA&D!3o zVcbXS;XXzzX>xcSE1T74pURYE*M=1NA${@|`WB zuGSh-(0q8D!uhiND?2(-uC*xLet9w9d|VG86O$o5(|ZWDF*U4U-grX?J(YliHYriL zEDEzKyRURGfo$!LH2~I}M2plku$d{>Qr3s5IPm1xpD5>cUwe2ZV2?nXz=2R*DF?GlgjlhjO6uf>+> zziAY-#6K1Fdt42pc2$5t$=}QcsK9=jSc#L>s=>AtQE9yiJ@fnfI`H5;@vnYXT3+jk z;^(Qs0X$B6@J_f2ICm!vOca-$)7oBiq3Z&&AiLWebny)tS61_f(4hC1mT1}#Anyq>u5EH-cmpdtG*)%7+S14R2l(}9*cNaY{ix@ z{$=Zj?h<&H$ZjpZ(uKG);^*Mo(@Rk=rk-|6Y+aCBakZ7il6<$zpc|1-fl0Jq1Z>Te z#GV{3XW;v1UIGTR-QMtax;XZ12GtStb*V3{gttdol*iRy zjNG6`t?@xaS%#OSYxl!>?jFDZ#gKPF((g3#xP<&glswx|B_gmyZyOAEwm%c_Nw^4L xu8Wd+lazkBYw_w9Lc*7~!6td*6|-m_G^%QORZI-*Q*h|Z8BvyG}J}d zQN=IY;Il(EY8x6rN6V&*Z~;it|M~qt8u&jN_ZIMmI8jrPuYqL(5R;QZG~3@n-~`xbwR7iWbp9Zh=5}XNX_@KfHM&ubbf6eXHt3i| zyRo99+&oDjmWr&27;K*53olN1fjOZ+wB#HX0V5WT6vP-**h&*D2uUI<*3&wD^JL*@5aVLUeZv8aqsEA%e4=}g2)CJtn+T*lI~5;|I=WD&Hgl4u zK5k4posK>6(ZF7UYwIKaV&OX|YYel4dbzU(frC6N3wk1h1G#^xFojbdt$q3$hiYod zafQdC-lKGp5%ZC&CqXqpS7xRN^7zZu@a{=w|#TQE@VZJd^QaAHe ze`X@(ace8Eg<{RNZ6^Sg2`L+?M)APY{)Th+62cU~Aw6U^9Q*R(NbH!yqme%3p`~Yk zMJ@WsDRd+yx8`B9WFV*)6i%WFvA&8UMdNoLVgwv&FA~mUIQzhcU@RaO<$`&p8;@U^ zZ|G?1xo?8nEzDbuTc2zYssltN4L$F7}>&wFJfi2eCbp`NR=DJTj zJIy-mFGrJqbK{O*$sN=bEY=!@8!16+OYvAy&Gk{^Hb27=1|M#v#Qr%BNwGi64?LCOFUs zkfS?)#%Okkkc5#=6#zQ@5ThQ5Uh`T2jPw zd`5)X8^SfRg~G5k^F!}_x{ewGf=*&lHxMI#!s5VmWZ^>}>~8UEw^D{)X}uqU{yq`c zzE}fRCsDN@>}%sIrWN791zu$wdI*yYqxsV^9|~2q8eGuARPXO_QIi=1b^&o@EitFw zOH`vtP6Kr?y_oWD?Ub#*UAVX4TZ97?=;L>FQm>Ei9&gX`ME|aE1O1zs_SD>gKi=b- zRJj{2T~eiu@F0W!{Z0tN{uULAK4zTfmv*BENt65oHudR&`Op!DE#W8h{XdDKH=pR4 zyc-$t7d}>p4jR40F?BxL!0E1sxgC$0W^o}Kr4XT}xS$!mlw z{8B=1{FPX*mGC(EkvA7c+LXrpR^wBAh6jXNF`#OuHS<~;%iEl>8?eTTd%h!fC<4zm z=gk1uw7gyDMsCk-vZgtG>URNLRtLYm$C+|8^5O}pgj0u83fr#NzB5sC$PM0!%WIid zdtM#;2VR?njcLg9SBuR{Jy(rJ01FP3W%nr5sekiQOdQtoQBxT_$hm)iS`QdF0uB1& zv^m*0XRw5I)m?9-4pw>kqgrr#$k8ag$4)J)>@I2|8$VT1&GJ@s+IxP;RN~bt`j#CJ zUL3zVEUz=wka^8+>h|DqtY8)PN1X0a*0pmXCb2OSV}Il6!;TIiNl59BjqwPgMhZ__ zOsk-(IV-L6P#8$n!U<}VsGd!WBXLL6v@k|#`>Z_lzW6qG1B^^4k~|sds^3ILeB+IP zuWorcw|Gg6M?V{i(>#24aRX{hY9cjU5r98Ir6ny$$2M%LJ#RNCOO6~-IgIex-cm&oW45W03e8NOX@)PKx#;CDh75};(ETKV^u;BIYYn!nxR zyLF%MauwJsOn6S54Vv?#0^pND-TeTb#Z!;paeEoYtdTa=pwvn(?50-!?f4ybq|UZF z)`ciUFL0J@f-bvDrk zsxyiCCVh*fm;q$s9y!n-aYgyYEYJ0WIds4t;jI9~Iq3w<3rV`GUfa+1s0XZ`jFrr* za=)O=2peo3RJt1^F^*M6SJkzSq>j!E+V?Wy@&5K)*}K&#GUUEWDeUTW=Jmw5V-I!8 z31L~+n3|tlgs*QMrJyz+6G{;5Xe>Eb*+AUuQqJnwM=9aZDiA%81uT@HN72euC#eAg z`RcJ{N1f*7v$XfqRkmDU=0ri6Wvt<2&QWoJEW>oNxW>UuauD;n#-I_5%fFLb%bi+2 ztUS$s6%nw1tYWa{BX*VOjziPPJ6T~$d2TS>G=JLt5hD~3xh!m+?9n&+@cH`gsRU+* z_2EM7D|lTMUk#kS^2|&uQwuR`vPYipz1k)bp92WjfQLu3coFn@ygc={jsxr7XI?Yf z9|7SI>IV}M;?L?fY|RH}D8s6_3{NA2{HOS>iA245Evg4Rs}Eb_E_`i$ht=&@x7Jdd zFY@}xL_Rj3b*X_J8$*lwx_|5v8UDQK>|&x{Jd_mXj7Ca*_ykZj9b72pKG?r|C)2r6 z>7+Doivz;174mmJuf}ufIDRjRsoKhrYNEjuJZU|6ZK3*6HMD>KnnC73btK~xW9;ux z!|54*;;l`a9dU2HzAan&F(=c&4N6S4d&h~4KR3|YFj5EiI}=?ES@g&e5s+j*fnwlU z<0RgOskFpWSc81tZHq-27H-J3hqlNe#@aPtmca}^qBegkz^n7R>UmaeUJ=EJn-Syc z(!;V?Wh=w5q6;V7(i>F_NobBTt* z6W*-PvxR-qX9Al3GCb_~5i~tJ;=uhO_K)~{%ls4Q%^&ftG>6nUGIUcTR}EjYLd?vF z!fPDonSzr#s&c7N8mLx2Hd9F60R~vgr>e9#_d@Rq8Gf8x``gOmL=@0~6M@(~^$vTeZ;# zHWQu4`EW0eh@o&hjKW!=@1ED3(1bo^+}?Ika(66QeB%B&d%NPVib0(#hkNPtXNZ5% z?mZ^q?qg?4uN##_4R8%7GPe>Q^Q@~=+Wz`l9|czuob=R_40}|-SxsA=i3n*>vQP7= z2CvoHVq?r6YkX*eW|K{8Sxepe&nT=vFEnw1aM#cvZx}DBz9hI7m_ru0ve?|2ys+C8 zD`$;o!rVYDKMJpE34Y{!i$6HV%gFlf3KeFvslx)^h&Umm`+)sI`u-k?Pt?OE@2RO) z%?$fF8I$x$y@Tu{mhzC7)$7+Yzo*YHQt#`O-Ls{Ie z^f*pzW;JAPyld5XKOYPwL1%r33Le?k0x}_vN4lur$U>=etNcIvztDpS^BI8YfCr?5 zfOQm^!zG4KmTCX(Sr`L26vvTbf{+Zg1?zn8E(CMj{-{-QuE-?hWIxK|34K7wcs5B~ z=be%N-j+jxeA$}G>mrDsJ^Yk8fwz$f5ID!Jr^N%3qS zg@lDaZ$X@Np>(6-8bKf&32xbd+4g!PcuT+UKeIVcuwzsmoU5tX3J>dG^XtIF4@-Xh zxO-?Pj}IaVTGM5WT$xnGoGxBNI4G*s{EQh8Gbk-bC(!Vd-8cPtis_%3rd6#BduYJH zcX$~{1-SU9(-^F-QHL(dbN;hogyJ$Q);>SOP{2hT^C7Y}vL4#61l!nnw&q!o*TT)| z0v&qDU3lz&;BoZ~uORQNi1rn_- zjp66uS0MH}SyM_7?b`uiPMS&Trk0$rCgwWwV9(<^rn*Y8p??chczm)$v6fRRUaV7t z9p1;#qo^<*7oYAe+`d*UW+buXnmg&0I`I9fCF6_yaXTKJHG$n(1 z=uqpyWO)w;o;1YIWKvWCS%77Q=7{FH=(}@}Aqf`&f0A?Dn-uxU4#5M6`V)@@d4sb_ zYJ_5~j~H-%m?PwcVtTr;H)j5-!UA0Ms$g5-;l*IK(d6xBCAxIO1N$(5rCo}FU@Uta z=G>buQ;i*Qy6JdXkE}X;Z^5k z#id@)9VgX4H;Wx7-2?C>`J~mXd|v{y4LIHGWnN^W^WU-<{Q$C`HibHwzcL7sJcL7iTx=L7$lQw|ROIb4-JYASty^vB*N);GEH zR+g$ic4Tu5OxIkgd5x4;lLN5|78@rVY{8h(gXDH(Hg@Aqqym;^Lg3t8A`S9S;n=t^#gS;?l&vwexw} z$m~S6-`eT#Dcv90(8GH?m%(sZscQ!;7}?X>-p+5ipA4EVzIk*eD6)U?_n{|jF?!wY z#J8+OFX4u3RzuI8-zD{N&aZ4PoFum|QBCf5i)=jJeVKnLC}*=DKixlSu4Mt-BZQuO ziDoM1b496CihT?Oo|{Y?V~(D6#9k?(y=%Z*&*f{-a?(sSB=5pqrm>3BV(tSNU#_Ip zd{G>WFjU8*Zt-|n?=KCZ2+SwTUmz$$!AFldrMQAG?wPeyjU>qa=Xq$~t;@dZ%LCnM zU?1|~9drx8Rwu(|*BFy+z+y=$dcQB5VZl!j zEUX+g$F{JAmTI<~SF3Hph*9ZyTo=Mu*Je1dzePb}MR{I_WC4H&b^&`;P>{*)Ig6cev)F^(!O)d-8P+0_C&_PAfz z{Z7u|18TWM9T72*!92-hz=H^-$0?vJAlLEI`{rw;7*UkMQW!gVERmb?_vIpg?*Lkh z@ALgL^JC0i^kjuB1hHU@eEbAPKS^@f;4zfKd+i#t`Js2uOcZ;sTUYw^cULraZd{J> z@a(Xwuo!sUM_*1DLP1a($$Hx@adLV4Y#4j=_bJ+Ep;YW0#2b~}2yY10*dD%pwv9WZ z6Bsjf24rpq zT)O2EIqwN{hW6&l9v8&Q}FX3dp($Quz}FrF$+4@*|#BA{a^B z=H|bkob<$(;22vya79Dq*>|?YU3?JD5GnU7M1+k|R`7bMMRsFLw4lc;SqztTJZOxU z5bUf(m3WqmO!~MpZ+7}v}CiFWPROpE~ zs^j|Z$Wv4G^SGR1_uzq8aq!+4KI%JL0+$i;)W#Il)N>PM=?{C_ScLr_Vbg}z^}M|z!A_=Rxvk)n)%&|t;OU<>=2b8X+>r;< z`A%}fYP%KtWrY)y;U@kx1=^}o$gdabl&HnBxU-uD<>ad^s`U$bi03P-cRQIH645$$ zH!+)2uTkmXfj{QL5eb6v8QZ57{I)uWUAj?@)%VcIw%N^ui$hFY=xD_;h1 zYiz6?fz}IZ?}>i~J4UGvhbfUr(C3!B84Ns~v1rsQwEgFIa&M%H%7dt|Ov-cF<<34?q9u4E8}5;n&_@$ zc?Y&o>eB6PU$Y?RpsWe6p%}T;)>b%@19SbJZ0}zDKMBg2I5?<9xx;slzDX&#a9&c` zDmLTuy+gB!b~j>Cw;Q_rLFAtgqss?WJvY1=SB%~5Yx4OR@_{;Tw!W62b|O%-&Ge(ofj3qSp8fA|mGwvE9pi<`Bb-c>1rf#T z`tKMJL?q_mms$;N!N$g9lX8}brXcKO%_q@B1W?pKyz_O9lyh;;=E<@S`s_ z^Ma#y_v~-J!+@%d_Y5qxuRI(728>A9+Yp^Y`uo3+t62xE9fpm2I)VE-O)vYU9pV-= zAN3Z0@L}bDiJY0c(1%k&x>PNn;dA}E3zl5@^5l%RrLE1!#)oD3TiIpz zW0NlaGdB>o=jV#Gpzxw~@iYbo{v5eEp+hqxPE>PRHY}dF?(g>hL~y4GS^K^}=PA_T zEc~th+b;gXz+eLc=gVwmE1P>%Bs?M(n)~yf!OA~9qgl82x*wO72!9)RF}B8?|AatFJGHNkU25yH>5G<1W0<)_iL_!3zWO})&I691o+@nE zT)Rk`@M)krXHt6g3vXOo_?W2*DkQ=$N7iYF2Wt!18|L2MtjZ_Ft5{pGzxm%sbBA^o zZ$9X;j;D6<=l^Y|yT9(kXFGU}&-U}o5Vd_NQ59r;{|?A#^?0)BNOsoU%c`pr{2-_A zOSw8jse4rWfREzI2vK4^`hOB%@D4aqx@0rA@Wd%S^NWh|mEj1Sr^DvLFzraoalYY* z*=IdSisOG!L{97I@xn6s;P7C#SC_Rh-Sc$-sOciV1&c>zOo5zue~GE;zgd98fNIaz zcdh>U6aV+*8+}tA{&wq>3=0?c8b_7J+K!~lgSB7GjI}PeSrl33A^BYXZ37a^Q99wJ z8gtM5E#NS5h*QQCY5txi-r7AQrmp0>g8x?iIyfK%3qsw*X=wTG zmkA#346gG<3d+j|C~OQpn(kOJyXua-YJmz-^}UP}!`&k?=Y5$S@w1RAH`{)2kdfk- z#_xpW`*n>!a6#tQrMhCZZ-#iU23((+xC#1&>4q?SAX!U_&kXr7M;*(JopS~!?Xh3{ z*i;KMn8H?|H=7NRz9*>hLR!pf|L{-dOvnvqo0P8Ca#|^(m?`>na46ZRh(_Se7B%ui zAz!l=$@9&N)B^t;ZptUmzG85P2P-l-DOanKNEA}8r(uVxmR=Sy3%lPX3f_2e4}{}E zH6mcZ>71O2L^%zt0-Of~Eg)MuRW*`;v&95gSS1KqrQjx7CO z(2@q5_7{eLY%5zBS{q>lq-A$YG$GEt#D-M+a3W|@6dn(rkx<67qYs;);EgLr>p1^I z!}C&DQQqjNrRDyw&)AoIa#i=lJ0nnghlBnXB+7&tCElQ`F!)o`r^^oleYkMyCc%Ua z`|)OQ-KAg>MRv9%ZU+Qh2WW&u7H{XIvjQo0i*) z#P@J^H~{w2S9pCr&4@6aw?M>7khdaiIAfCgfD>aXj~Fk&F?k(paNg1$7NLYh;mMKp z4?O;M`iokAI$!atIhP77r$#H#gTnI`qMYLbs7kjD&0r}bsJb=xYw*u3jyMVLzGjuwxFqo|9X2M7hiO4t4m2Lp578#hp?(-UwxJ835ZK5Fa;;cB|Y{^yC#q9?}L);eviM0@L@BGn^fZh@iLg}nl}&pcrco&)w- zN9O}Vd1p#V?$2qgoF;W-;=C6zUTHTf;cuY^kY9{hO!KcpFSPwUcpTO7iVQ6jFO<08 z7%bf38-NJ@G5CQ+)iN%G)`Zu{XrBkwJC${!fZ@aNASR;9B_RBo^`L12!R8>P3p z`zPey+NX?OB*B*jlZmX4^Z`j=hJJfn2!TZ*F(YRRkh_?rmC;abqhA469q3>+xUzgk;f>|RGr9t0=LkH z%E1n89E5R;hm+Tlz6VCgTM$^rYeD^_$nV3ND$8Z@iHr-qy7uJ~rn12=;knT_x; z2!9auetiz(+j!(Mw_YAOWG6lqXMd`b!N&LcIa;wuhli`)<0K}idI_J}@>YeHv9S^J zvWr|TvvrS0N))~AyQ1e7+CxL`w{N;0|Uy8S|h^7~Ef?p?=XjIdHSnzoCfu(Uq z_HTQP&tGR*c$bKI^_eq1tCjZ^7OpzH>`wJ`LkGi-@k56;6(sBJA6J!es9y6t&X$kZ zHO)vXd2@;C<_~&TR1aUJ%le<;6BU=u*@xldby?H2-TbjG>Y%-Q^y}9WnQNfbS>$4u z!=eu&_&(l2OIZ+I`Db2>F=w0Sji=7hyM0bw@#$4bdRx;s4z5z6#vZV31iJN2Oq&jt zoo7#XMU_~&g0*H8EcMs1y$Qu36veW{hY33aiJq(KoM767umo0RGV_vGeD+Dzf7ioW zVZT>o2BGd;1Crq>*Hpj!%(^y)VvkLY!%-R;v6+e+y~DLVBB!~so_ z+letwm*BCw@wH^b_+J)&6K1%P)|+tx^dNHZj8IR-nSR)t!+}j;MWCC=W`>tOzu79> z4&ka|tg7xm?MW@~Mi@kgaEeP3(xASd+IC#w6O|{ zP}p$1C$UfD4~kHYO1?QSe&l?G3jh^1>9kzszWg`BCDO!=0|F>g7@|0><#H zC|>B)0Z!I$ZB?J?^UN88HNM>&x0%M*_sp$KGZQh?9vMa@7nLMz#BwOIeMs2S|5Xuu z@VU9>Ni{9<*0J&B*ue0@EL{lu<03Ac@zrr2O8+^UZ#hf0tX?qpGXYM6v4z2=4nG!59F6|v#SFqd@Wv7gNOn05`7!PEQ*(T1!Of<(M4AZ`2C z$Q@n6`yIj=U}opKjAQV<>dT62=4Ovz>g*%3R3~t5HFtVl-?fP?ldk(9v9Tv@&wbVh z9vxTaiiUhw)ncCtm2y{~HYspd6gz2n)lYDDgB(dE!0~~~1!haP5BI#EoV?KCJ*sv; zkr;^`e)-ymx8wn3Im4d(GLIj81eCTwh=C6ve1ICD>?L%c1aXih)jZGgEK>bk3PHm0 zoM@*BSPyk--`=3aV0Bm%8@pDw{e-me@1GX-Pu5^C7&g3Ct$KDk*2}BFEO#OIFG$$= zv4#}SUi`&UN>sttQKI}@IWl@#`NUJ$IyeBOVu=U&xIQ|bF9Z}jb?Nq-Cmb8p`W)}6 zqoEjkl8(fdPUt)Tiw8kqXuiKe3=4$kw_AzBRLWo8<+9`%^0<E)zx zWe092!Wa&ut%LHBO_mXR9MSX1vbvYJ4z2tmM5YN=XlUmBB=Zi=*xwS!#T~wy(C~pJ znxF|pJb(i+wqN0g8qxoP4MWvGP=ao1NXdM)J5?BZ^zTLAgKQhGuLU!EH78-gTY-Hy z_V~V8T>v36D^dMDoRrjIc1N}=C1T};jJ*9UL*4p?b_>w-j zwIxwQor}0?J>q7+RBooTxTevaoUjrnHbXbr3{{dQU|nSIey~d12)Ktx^$=4Kgm;j& zK4PzgsnFz1Ju;8aNMOy+I7$TBjfM<0Fj9y1kqOy@+oO8%ZKN);Tiu`~eX_|_y>RF-* zo*=jH{kSWHVQ^4E-!QcYWv}K>jUccIk@>C3+i6`I3F?)bV6^^ulP>Z@N@vf627fnV zZ4MRp_-5ndor8eZy*3~0UVGP{V%}Vx`EZ$1bzinD?c& zHRhY3{M_6Sw&iy;i~h5()8Nnqxv<~C7zp|H=~<7%$M%GjY@U z)seRzb~`nRESJb?8f13P8zg#g3P;_e!&Y&Z3WQiTtK(|u?r4Bc=?^VSqCK}@Ts2u9 zxo_n_Lw7z-O#nhAX9Nlb=BdtEFq##Y_GT;af%x;}jF=GK6Mg&9#k zG;~J+!!^=3CsMYhFB%u981iC+5Tpsdz4XbEGXD?s=*?-J7U}qBbFO!~OfyiVuYC+v zxS zfKy`qPK)mvkv#}qAC=H(LVOR%Wk|bOf7}KodvS_|?_LB?C(g^hcFlNx{DiD7?`Bw! z5NVUun}f3~lY-eisGnf2^b;bR&C(Clzw;zSo(lk z>D4|K`@4{J?q0RkZ*+5OEoSp{ACcPQ$ZB$6K+08}Ge_8&`D?Y6|6EJ)gHlX^i9;Dc z$4$uB^p)R_pNoMF^UXnWHD-;*5R-d~y4pLW4xn5Tdma>NfR#AS{i zuf1Z>0{fCkM;;E&=|~j1Q>S6W2KH~66H6!PUrRnHmD0;*uf&0hB#IXm>4Hrqz0!b& z2pjzYXBVb2<5NlG9+dne!fw#5P1d$Qhq(KgNQSv2VW08+-e03j*tjIQNX4f?Zd|ms z6l+#a1n|~+49XNWhN4xhJS)U?yehbLyoQYBPJ0PDejUE}s=g7YneZ>fZR!qwK&hbzw9=bE^?(gbG4j@{>F3P{&$dX!~pB%56fC z>o^w~D}>$;nN`M&i**Q|v0q<6fb zvE8mCcGlgctFv_+)Nq7Q8%?Umtw}i=LM2??w`L=(%|2U0& zY{X)jCRpS7IsT2kdRiVa28md!rUwUT>cgshfkKxf+I#e% zl>vB4)leWrO$N+l$0;Zp+ z>6&!A`qLtEiFXQ-;gz-mv323xER&?1$yhA?VIV_TbFSOT;xO~3B6B*MLMJ{#Q~dcOnZJfqn}5Zs!d!Fm+a=AaZxfp>r{);}umCRU z$9$in&Z1Bqk5{*+wx#7v((ooN6?2X~l?NH_R;uC2Zk6@siT#^VOGUKo06 z?H)B}Fst2Jw-$uF&m^{~yg+dz-hDi+Y^X~bxnM2s2`B8Q8lG7l3^!4 z^u0&WrbyVHuKZeu;?v4vYi_ezCX-ec)8}BR!+@-f`=HvSc8*o2y)W4c_BdO4&lG`J z@l%(lBX(`8sO0x6+);~!v0G%JBz4sfQchK$)WF0imJ_hR7jZj%=w=oqwON7$t_inr z`g7vMC+6iohI>CU^JuxjV?-3fo=L2T41)#`g(wN6#shU~IWUZDTqGF#d+EM|5QY=u zzwP7LV2)Ycucc!|HQ2iI72UO!w&ttSuoIYv~D!? z>24Adc@c;;*5vnPcXuq`s7hw0Aza4YCG}t}wFk5S4u#z9r-DEPFaZ#fxUf7$q6$>i z%P7FJ?2jPCy3ek|%2($by*y9_;g)!@UXNbI$n6lXC?PEeVXG#;_AQl@Ltx_vwtu=Gegu2kGVP z)Gw$DsL>>)k%V#iLxE1qvm;n{<=wh9T3V>i$>qdq*l~g6Af*brCo1(>*fXQPv)D76 zqDRG}i>X8aQj%=(G>8EglQa?p&T%|Caw-6W;j8fXF%#i84M_0$fwX6iOlPhTc-Skw zt(3~p*&+Xm#uG*#&ihSK_PL_x_g9~C#BCCi1iT`fE;d~<=%5GY@a~LFCCsB(9k_k< z{U&rUHcIVh$YDc)Vt8;KW7ZHFn!^yP2(&Ze9K?M&Osg#@}j#~ zY`Z?pcl};h7i*CKq`ph^3n4CPbB-fx$NX06D}1jo^I5Q=XWm_hk-gSYqGWo7U-tOY4gG`E;e!9*$)a|r0kA<{)Rfu>!dSr%Y(g( zeQmr3I8FE9hBf>U;$UXQpCquOPm~R&YxopTR85I=gUjLSe~Sh<-@1Ei(j&%FQO3nj zjE|u6yabFGMDR(#+g^#?myPPn+VzFk6>bGo#)F{bdKJ4t8)nGak5~XqT-!DY$t_Yw zf>p(+V{T)FP*`}{HNS2;RA0;-IlS><^jVo;ut%&^Jw(&l943dTaNz`2`25gvhrQ(M zEq>v+upyg&R6>0v0C)f}MMyG26@c-H;}UkmK$cp2fQ zt6n;1uo$h<9~SRfQXIa0O%g6775dhB7@)x1IXBK4e|m8WIUaj=|50NXo%7?1adyT$ z10-s~J6O|=Xk@jETLVVBmopngt3>xN3fB{q3*pPZce)<~6{+i3(yde%;!(xM(RY#t zwX5a7gmB&->Tr%^;^BB`$e`92WEqHw)^KV zeB77nG;vAS;`J(VT+i&D&T!78cmTPtgfE+~v@eHvJCOlaTiJ`B^CA%M@F3&Lf~3+5 zhR$K#xKF%mW|bkN&sChd@0S)~Y6*kJA@3g`7UnEX8Y5TgUz@$;&7n5Y?b_%iR5D;u~UnU)7;|T8Y>~(-Ql=E;q36E zB2g+~R>U2c9WRxvb2KN}Ea2V@aMSgSO=p+X!@O-;p$dK2!k0b} z6Cvp@XDQseEUGiUY&`t&{BDw}h!u0U33{~F`G!J#bagS~S`XVZ==A_qVo09o=l zofz4%jsi5aq4Wt_Dub0to70T^{rAeZAWwO7OOioDUH%c=ze3Yvq9!pR{q4^o4}jBwNXvJ>|g2o=s_! zo%xCAvJ-;?d+;*zVHjj4K%Md~*k4%%W%T&CZh-t6bK46s8Ik9TMK9|V{7PPJcrq-I z&2m;Mx_&Qqzg6?lu?kdJjZ%m%vjD>Y+59`N!!)Ew>Yl&m)QG%GJ82V28;sb-^FTx8 zKqmrW^b(AV&BRIUbgM{KL5SLId&+70flAPl7ACA}vgUPv62{IXbP&)AIW~T^DbAcF^*FQ0EH=s|S4sr+ zkt~>ACxb{DL1ckOxarXHV~LkXr%hP=-P{bO&NR>m>S9uiugT6vI7$`6 zYtr>}nipiM|8nB9e$2;pN*b{Z7)|<}tSxIL5HUX9bR00Xo`=CV+c)nZ|9E|V^3DT{ z#dDdE`sfvHR9nIN@D#oPUs3T-9jEr5-@WDll%lA+sF+EMPbvYFf?D(&oHy5z!?bUm z{C37{Tq=&Wjo996QM~8n)-k+8i(&`iqgWSizwl4>9>L)d0|g2X7ACl@Iuu3X^Ew(m+ckfe0@~Y_c;hV%H_Ky8XA`c zgQ<}=!KL4Y&w8I8F`pqnrU(ehip_|&41H?D*7(=ovPf(P?;zAv!$XJOeF&rT7IAs6 zMf0Bh^8r0D%p}75=B5t!E52S~mk1@M6f=6d(q=I%zlzw8f3pC`wKJmXBjwADl2C9* zQc+H4lKT57|G0uiOK_9P2Co1_&4y@SN5MH*$>%b;+(z%G_=u#<#PqX?vB7;%A%+BP z%~#?M{iSaZIDOsPS)i80r?|8w; zk;YosM78MOCnr0jV8!%7!`-M7)%(&?ZwHGorrXn})7V@RWh6e%KZ2(g4h`XUF>~T@ z1;gDGd&RJ;=K!TpJdjsV`h@hbl(w^n%si3VK7>OUIDVf9oQ9HT#$LS6^x z7%_QAjhf-_7JjZ+P$_)qU28R<{JGg~iz^ck5}oj!Tt|{%Z#;}Adg;;WX;~0n2EA6} zHcJrei%noll`l4CG8;LjVnnA%8e~>s$;okEpG`3;6q-t@bKT@DAtreW;)sn@u`r`v z1gqXqgkrSVgfxS}r3Pw#KVv@T1bsE;wHs-wO2Gac{il zlESb3>ir7nJ)DnEYo!LjU>_~rD@?L*o5DY8*x1WcrkY>gV%>YJV=f~mc-&-%m@>w% z5;4yaN+@P7xA-mQh}QSI-yxXzwY(F|C;d+Y*BaISsg*fdBq$09Mhw?zjJ|nPJL}<4 zLN!sKE+0-Pl273$`aAqiEE|^M+u*u_6}O`|-!~;`<^`I!(mRE?;lLof_NTL32;vzZ zAImCr5N8C36J4Lyj_G6ilSW{q*??U>J1KEsIDHe(XsOF|)j6I+)>u+@gXzG=`8(7v z-&%*Z1bv}QCNK@VM6o!rlKL_3tU;5y1yLLq!g-vsv_GcHy38P8wDR&+aWL&02V8|( z`@F0cX>#PAX)@Lo5ug@HzmVb z&)_}O@_@~-$eVs?m=3uW;-NLgp!M&@#OvaXJ1Pjy#p3c*tixNQJW}o{pDri_hpDlELs1h z1H9~kOSS;y=XK)l!+S!$-kW!HSNw*|LT;XcO}ooDHj_`0c#^%iDJpt_ddgH*GTD4Gtg&KY6@XtkNP$ffYCJ7oOCQJ8Fe)S{B%<%~axZ|gR`!c@&F&bKpq9%k5A2eUu>=!x;+PoRm%u zbT5j2kNA2DNom^XfG_0A;yd_JYg!J0HA9(re0fAaaSh3Ypr?2p%z=6LCtg8#D+k^!ePSw z_a-hpqxMRW4|qeMq=+5y|A$xafGYCyachSku;SkoGf=-jnU@|g{3<|Jv}H;^f6Uhr zqQ&e=|3-fOhrq~#uTsLbMn}57N7c1g7XIJN>&VcmJ6aO27cj>rrKM@rSdQsn(H1`~y{~SeI z{f43@8D`atDjx3Q*euk&&JJrsjMrf|e(Y`1_CEO}WY`h1$QW}9!o2VI*HM1`%%FFP zI_hiEo!g_=7)@&~WV}$-=bJSBp5E+2IEbRlQg6;}xjtDdq3ikrQs$7nNFS_Hbh9(_rZI7Q=fr;NlU&$k~%W2A2 zl5w?HreucLj|@9nd;VLd`|Dh%1+De?B1Y`n*O#xZ$TewbAyS9>?c;r+ypxxxy1A`Y z0vwg*PBkMzT;@1Bl?2-vQ)c7*=*QlOQajqTiFP#cQ9D5f*Y`K_w5CyQ{~WhgC%aqx zZW%}M-m2rH*tZfO1;ab(i`aPS$xEQmQOx#Xii5*7_r>XnA5Zx%`bCAlj$V;*j}oVX z`C!EP8I0SS-2-Auvz(TDK~l_hB&;pHEd_AN#G((x1~O8@m58ap>`q^EBgDAvSy=7f zxqnv{%~4|l;a#MA?FY)AOi$O^HRh=%65V5mlc+y_UjboA$W@%26fhmwRNqUSeqzP2 zo2W!-B#1ozOx(uf094D|Ne%zOk#2GQpeb$&bsR*5rKRM?9~Q$;2S-+}WPdDO9>}p! zXU(LFib5?BDHIC8cigxN>f)W|aB>VZ)oou>^C$~0J@d*P{eKMGr*P%}&aiz-ZrXt- zEji;oomHp4kR$k`=d3v11o8P8Z5+pL*RPvat_xs(%!U#*Q#hbQ5fhhL7bM0=7mw)Y zvylN&*+iy3_g3@O_!dGHp%{V>3k;PT9JEX)HfaVC;~5w=x{n@n(qE(FX_bm&7gxR2 z?PZRq$QIV9LO=Z3shV9)X&BO_4ZNxujtA3R6RDQ*(H$qBB z9{7JT^_>AtEnTz;p%+2vUAjtd0#b#m5EW2*2L(i=_t29oMX3@Lq+c|m^xj)kiim*H zJE17jgH)++68zqKzxczM%$b?JXRo!_-X~J$(NZ&>6rpe&JaSLWHzQ2{YD9Gxz%^5aEVq(aS+ zCks2>rf0<}@~83l7@PQ{F+Qorif_IfxN#SoOZIhO4$U@}j7^pSI!vk)6Sq4GuSzZ2 z3(c3hEm+O`C-gy?oDo#yQ`PWSKRF1;_F^C7%=QX56XCd!2?^j7 z{kXwal`K8K6jaln!h+ff@4EJ%LzA7rVo;4k2<|5-IC2fmB%b7WaXW0#ZVtT)X(rWC zKI8oI6>&pd7M#S?IVo*zH>95EsiFRDBL!#&KTtF3Cf0 z`e(2M-QaRd4J7PF!JSB>{9u}V{%T&l4baLxLCwJCQ7hL}zx*DfsiPTv;(IJd^9t6a z*}%hj-NJHipnX#W+4_R7S5G0}AKf3J-5bSY&avWs%C3v|nL|Yl)*GcC?!-@Pn{!L?5f`~+jyIEf*g|oS92|Z`Y3yEU# z_4t>I{hTf!C`JeMb7@wfxI-qEIJzV4H|#+QyT`CdI= zKdrZT-RR;IK-oSYPTptsWO8BUB;04s9no;xI{y5ifWn=xf9`Z;?zt~mZAhf;C5L=k zl}mg+*ZOu6rGp;S<-UCozQkE|^t4HOMxrFOgR>T-Ru*EL*y~rnWJSu|3)&BTqhPQ>9Qj_f^2yU^}Xvo#ZaXs!hl-L%v0A zmFDZ1LE8X@ezz9_2oT6b!?kh&;_r94_}9ZJ+uWcp`hn*9MD|I zOwH}t`$>m&I2=|&E=;1G9F(DZF*G04+(P%wD4N1e8R6mKl~3Sn%)O*F;_faNL+=Hr zRgvtLqPTA-u>aF=qeQ9xP{mWfGZHXh4evi-T%r_EOT{X}0^*m*^EX`e{h2Q3{;{-3 zos9II3NrMX6b}zcU|>ne!lS@)=a`JC2Vai3OT)#@M_MP)Vb(M3u^uuQ+8TEJ{YNRo zed^-d>zWo%*B$NH%EGme3DNoER+V7Thd|uxUA6a#9wugR1=;t#vM`VrrpLb%_{6sn z_oKZt8PgJ&n0&BcP0nQ-QY0KI@wV3R>hp26?S(#Y&lcPI+>WAvk5CoM*X|!>hkRP{ zPFK%Sa#L~VS+XdW7nf{^b1LYYZ02{lR-S;kfZs)1hx7fe%p3Kc&#o*9tab?Ano&p{ z?$*ia6N&BIi)sG_JYYkz3S(2UxpI9YZQawsk<}k_HQb<_aWUya({mQ`K$88igmT{- z>LSL|(n*_Mr#GTL*!-y9R|cz^5O|Nha(p-*jp=-a3L}cz*;hyY0ea`fiUS zthN?qJ>OI|AVms9+=tX@<|#A(8CI03sj>=IA`iR%wS-q~e!26iCt_=HVE8mFUA<4@ z^batZotxl3q=1;dXv(Gzc~(1pP|dclZjcd0gDhpKwWU6atFes>Q1F4n*Pme(9v$EK zU5Ty7v{c6vNK*JRc?xR|MfGOg&p+Ku^B%c$OodG(muTBMYf&mQ_6)sYID0VVk@owJvc7t<@0w~_6`QvUi^U;Re)YI! z&IpRPRyn$Ke5XfJSvZ}r$K2L9uq+p6rYqu6fj_f*Sm6DX9tG5QEEKx|FK!!7t>f0TAl+jy_GXLfjLwdk*JX@HF`S<vv4wrpuca+z$v<}Kwta_EOEX(Z(x5oC zK8Mu=uMH(e^tzy=k_UO#yzNM(TJ|qhlhiTQJssXzChl2;uDXegR2bKz8w|*>u#D4U};VA2y2O$|*-{Bj|=qfWfU$hUMsM=o7EJ*O@*D;uG=GF#f`%aBrCZ%#5e84k%ECts|KXuVt%%BoRZkS&&XaQ=h;v^?Th_?A%x=#jvaL$|N-7#p|11KA}CC;_Ogr7drI(3BTk zYeQU!(7NT{44GZz>n`EF<}yCh&GH{Gj}b>Qk8{5ZaAanhk9#~RJng!6`Pw@VRH(V) zyQWIq`SY*5e_+UHIeWnXJrnK&{GA&yvE#%I4 z#M1ibT>|C{2f1rYidAbaiXsOvLj#4)?Q%v6Q6@C%u#-*_xR(|!^_?N9*{u9il zFGSVA*v|F@*b7p^0i3uTrL0;7N)2@b-g#;R`R!YF^1@%hxYybkhZt+e`DLy$=n2cn zbUer?$BLeJzxZ&3KF4dv-tn9v!J;vMVQ3}ql}OMgsa^1$&b|bpAkhZdnB%K50cujo zFEmbNpZg(v!M~~+73E(RJ6P#IFYPH~&ZTWZ%VtN{W=S%85P6$oO4i#(*IsF!fQ`oa z0mGVuoIt%n@xpwN;Xi!WvlkxOagU7$xA)aq>U})9@NX4pqe)gRkTv|hE4tFkApMO&2-?pP0xxc0A@=n#d zg%H4CLV*8o&PSB|#LSmqLos0$iO@dg&I}oecZi1cjdFkQJx81YV1`rUUKUxu~Lq5*AZA_6K&E_WR^qusPnH!|2Ql~hQ$Ad}Q_mwf=s zo=;(}=>L)85>u~`Oq8!RyTDh>-8u)v+KcEf+&N(W({umV{W!&v7tbu->M(`PxOXba z;56+R#AC-oq5D67g47{;u(>@w{p0IS8zq@2yfI}o)5bFk*pb+qxx?VEb>7zl1qi!# z%>>xa&Q6^1?@jb3Sw>(9jWZk{#zjD<`Kdv#8}j;CHiz_wdu+WWa?A9+w$!Qa2(*bt z59tNh7eNV`qAWqM?dh4l1B}g$4o&s8aw)Dj@G!jjV{&JR|4NJTu^MlMkZnxFR7{2~ zrL;{=gV)Y>vqz)<4RaWA0%_tL*KAbF9KEcrcWe5t-MhqIIvuwK9Ic;dACJ$^1f#3j z=Sdh*Zn1>}C-H2O*5>7(;txTkXR5pg;f&k?XN2XE^FZ0ZJ+~k1%C%A?h$rkpPb%0K zgPgkd=`*}Q_6XxXyR`f)*hDVUhcf;hBowN-kZArim3AT^dL|;Bqf{B#&0wJ$NblSQ zciCsZnp5aLkEa4tYQwK)_cuZxg2nMr17i0`aLJs0Zk zWQYspCOTI(PZffV``u2E0{Ahn>EcaDT1gXTuqRr`Mx-)IT0={D=AB60`8w)f6kL!a zN&ID8*VWAVHLN5O7F)`R%vof60|pOcELSA5e5VpHCv%U{|;f3u#=t#k#(Iu#nak=1+3$2pF4gsvOQ?P1pmrL=>+K=KrcWPsTrFfrO;Edkmy0v zJprs5mIrHRkTX4mrNNSbzv?VG6O~dKU%iyexU-SFBvjr!cKwae-2 z@;<-o3p>FK2f3?7J~W1R?a#)44K8vB(NLa#C*pF^SY4e+dZVvdOx1N!w7tsWtlZ~? zQbVL8W;E&$qdkTvY!_uJC+`tVXUZ`6LX&c8oT;0`G>1XoD2Y@V_XdCv822lh2>;0i zEgC*$g$`FaD2ZGLoBN}f_|$c!mGsVTZg5J_gN#)oA2@Gycrp59TrzPcgprFG%CGah ze<9z_FKepQYV1zW4b5dRw$IYzHt>gktRG z+y{N~%+*?r5pT{;df8>yJ*PPk|t}UF)G< z2J6-4n}o~(hHLEgb?}dz%zT5~>Pv6hR;?(tS!C;UvGLNPRx%;OFIrR1`~$0t{=a*r zYbpdi^OO!q&YHbgQ_M@)H-4b<9#J_|z_9P->UuC+W?7Oi>hqNF%B3UO|EyiF*X9F1 zBVj*#`Q5gCyNSq<~TnqTLlfurVrW19lYUUXs^lnYrl{=cT+L z!VLV(&qhsiDi8_7@YC4#RIFY?QnKS$H2E4Gbk>GWO@HDEdsK}gC|@u(L~Rj|t+!l~ zPuKq4a=8F`{6I|JM|%HO$1k#H25QhqOmr`Q_!|PPMl}4n-9oZzJ$Yn7X*D!DDCgK` zKGI~-yHDJF9^#!*xIz;`tH{N6t0629`if?f{HW43$?txjQDV5|=Yo#t=UL1GjZ6xX zQTQh>BUeR;BBry8Et75M#O0$4~PPI>D3* z&)}s>72`DvA0X%qUMOgS7lQ}N5HcDKuOU{Dkmmh^4QxEtUPA!yk3---Vd+8rPY%hl zvTDD?95EO3IlYDb*@H5ckpF1`L>QM~8nmr6WD-2yTZ1#?G5KINApD6T&Wc(0qEJ8v zQW9#)+}X1(XuQTlXGI@JmItw2os{a{_%pA^Yi5gE;d4<@>nD|M3pET{4t*!n=ug zHYR~+MSk*)=y4fHChgG!*cN|2#l|Dt9u{Hna%1D#HEap)2V>uu_m7OiUU$k6A?#IW zm!``sbALX$l!g^FeJ9LiS&XpB2Btp3-{@a`h)QmJdqQhP8IobNGx3J8N#AH>drYR~ z;E!>k$+0Qr>Z_WlV9hvN&TBs70zcvj$KSw7mbgUe((Q|)!RhPn`L-*a9%z;+n#N*UH+Yk&@#GCaoA7TVKR$d zu;S^rF9MqHmEGsg15UzpWjrRozk~+k5jW-*0{b zi$hgATLe|*AnZpLj$6lKashAh^;k+gbSDAo-lqhlpM%F@0>{4^xq%Q)moq_p_l=|T z^mV_QhI!!@S(bgC2Gez7jz2a_EKxz-lQ&^q~_euEC*MBX7g# ztl+n(^`Yz7E8rLeHIf??MjnGC_f)ZpJ8M7pKZQCY0#p41oqAkW_t+ovXOb`>jY%cm zl`o@b2|22?PlOwEkPJ{kbQtQ%pAPF&*nI454b{8V+4dZOT1ZVEm*=8A^3VfXG0eIP z`Q;D65}x$MhtPe|_QgizOTe;36U9rzrub@xw0{b$-2X-B-q4y=Zk)Ng)9&3#h%xe4 z2)qH*;9nNpJscyZ{od6d5(fXW;uHx^1LNz|H-^20>&EUWNT2H9;^y{2YSMK5f7#Md z6WHb?!@qm`ftNsl+7@Lcou1cmlwI$jdm9?+ptQ*g5p3Hc=Jo=TQo^g*-;x zMr9#6aPfXWjY-}?)dj0%_s`)|^qKe_0(Q+LD0w!ttZcAzDY+ASIrA^+bEn4(eQEIojgipn^%bH$-F91_pJ!LH^!f^ zoaEwEuXeZLjTlRU^6{~s=lQnt z3>Wba;>sU>uiy^51`ttd0-@cb!AL5g+^*w(fdmNtR#%IwKG>>?a=3_E!M51U!X^aiYXF|pb;(3T_%iBm83yl%XhL{!_#6Y$w5c6L~FW>qNJ{a|b}%RLBfj3)Gbc z;1rspP}oMGilq7|iwsQZau%4V_ZL+hQy3UcC6 z?F49-<}NIbRE>0%?1&D*{L5Bm(Z-I{nXl&I7BXL{1KhTQvphWNEst>(1%0I!^~kF@E+Db7ZTK}u*h+X1ZhMK&@f;yAHIN*>M>TCwh)PwS z4FxacUF|uEX%^W0_qii+|2^-`$kQ466XJ!lm4o~05hAdBOLHmz-|of^i`sMfeB$RC zIlyi!G$KC7o3@&qy;;6FumTIvkA)tiMnGUwy>rWz6mpI`i#IB|q^r{&ljNDQq@M(P zuE|TjP*x)tj)f_B#2z&dly!vwwI|L$0J`&hPQ>P~&EpXxx%johq2+;C)qE443+LE zU6b}1&pEpa1>J6epHxNalPr=qMB<*>*3|6M@DRkGi;uK;av_Wl0j=yJxE0)(I zSF;QOPK8S)cyj3t5SD~q!s;^Y{#$o33eT&xH+5o{+z8$Q-H`DOwFv5mNiyNf-y2JY zu*TSG>`b}s#=&5+n)a{J@WS40%FDCiqEdNZfs+bKa_Z1ixfJ1fAE`Bvg1^9bxLW~@ zAK_69ZHR3nLg9`7LGy1(##M9xklDKczsz!uf@yCL)?yXXr15yx(~*J@6$j-KX#6(} zG^}l(H`{ejK`W-2gD6pAp!j#=Gx96P1&bhI#v!YBmPZa>&av5<;;4fj{u|KQqgYcF z+0m;}(|clib$$|<#iQ6l{fX+!g(~U~H!IIyK@LSA936iJZ{o(gQ&P`1`-_&+0j`DA zirng4CiM}9R@yhOy{gK5luNS2$x`2W;v(F@oh3BrqrZ8mVyQHZlg28A9NEXjE7b8b zJXXOyG(QrE&4zy)C6I2IVEpN9q0^>Odmy)<`Yl#FaicX){|Eb6I;di^L^6ODcw-9D zLpH}oXICNS+;?-T=_?=-bFfHw5E7pXvFzH;IOlK)9|U2?26L~;eBeZaG8PIw*g=s~Zx2AE(ErL|_Ltu|V)ZbB zdvCFF7CG;W-@R@Aggep#6={bt3@kkAOZ#PFHjvG=e;_>1*ca(C{DzuQbHq}S+*g-2gxX>S#_l`cMm&2S8oY$;aG?iU85H}Ec;b3rBd9XpR#jbi zWTO9A8*h*EKx8a@!b;&)8^D_3 zKFD-{I5oB0b8=~;wELs+^Mln3uNXD&|HhAB4j1)#MBGY8a5t%5dbhPLtcz{O>SD!k zs#qA-4=af4skk8wH()=LaCA$MsL>=r`keSeoB@3HI9EfA*f7;hU$~L)Vbc_u(~UfZ zy2Bm=VL(8tJWy(0`~JE-SuHbC$n^TCx*OGAo8|!fS@4}ieCLse|JJ$$QYn(|Gvym= z8JoXJ63l-h4wQY2x{C=2?itySauI3fVn#t@bqxmrXdIM+uBXE499oM2ANOnuz4&Z&7< zTJ%}enGN?MBa;w6@foEJ&6DNC7YY~}CiTd<>JH9M^CZ#q%%&H=igj$EijhOuNY~?^ zLZ3>3(DJVZyZ2BN@Y#J9?(l=$F_}D#5GM<1@#zcHk&<*k>0kC0oE>m9672}r)sOWh zdy#V`MYQUl`G+9T>;&^n71v?8!)`)Zv_S&k>`s~%ta6sy?1MA9kum5IC*S_VFs@g$ zOx}tkJnf6(-in~MBG%ks8l?z+TLl-RE=&+evEuYybMQ$4UN>__Q$bZ=jKvbO>Bz>^cho*doN z@Yw(CX-syBC`hA<8dO%?{H_|37BVhaHFOI%o!MK>{|>O2Ut9?ULafL3DYbM6_b-Yj z_SuO->L(?mPB(Q!&!RNU^na67(_upM?T)dp4__IqLjaZVo>O_2(d))+%(qEP)!&6* zV)A^*M{Kq<(|}JS;Pw40t9V^Wa>`;lNOJ1_kesi^T=aeb+k2bj$(8@tC0JmwULg=!iG|PqK_;?oT)Q zRXtVDgYBrleuFpw@6TcoxbQyiR61p?d&AucW^s;*Z!kW?*A=8-*`=5+V*Bj*vXzVc z$Ggw)CfW!{fJ)H?p`{e=@Af1rSah179>SP47@hA`4!Jg6umB_Md(Z8j4HOI&BS=VTclBzM}9BBe+2lUX*VLil7 z*pn6S6y$Ni3O)Gj4BfQUFR!5Te4cJYPuQQ$SXH@3yWH$8bQU`Udl(i#fR#vgy#gsS zx5wd%s?*=Ga(1;Qy)(7@io6IaMcAwB8@dU%(bw)q0M$&J7eNAgpORL>{m9wS^_mBf z^f&{>@RcOf*eH}z*1LDqAa=OSnN~@1q8=Q;V`FN(5q{LHht}*?VY=HUEWU-ggljYQ zBxlcv`cPUE#h~vPUFgkW6G@pb(t> zv1(peVkDV6ZA2mqz3K((J0@Y4O<-7^Lu>t=T6@sZvvVsH+Q>}$UP+JOJq zlbheA{{uvRa0B(!MPV1M_5^I|Egl7u)Up#3mh%X1#A`&xEsozdCLt$xaO8IPJ3xti z)Kkjb>Y5XTX5F=$)6{Jmb%8@=HCz6N>qTz^M+j&EzRUre{>^DClTBqc_(bUf=wL7C zTt_1XRcsA-3qF$e+9^TFZ(~@q-3W)9Th!*!d*I3@>vZtxj|qWmfG?MLlQnU|Hc0#_ z9_vid`L>%o7KrFazl@Vy`eBt?DU4Gk^mQ;$_*$A#cY}}JpRa8|M?u?~1!h|?7QC?f zZS;{x0AU;sWW_mz0)+&b@E-o)0~>zbTE=FwyFR7J9yr3`%bJhaC-7+u_0)5_8W-$e z-7~(oGnAEH68vmptAyBAde9KGne>4EB(ZcPk|5oA znuN6936XqhEF=`?QJ*(7FUbvlO*?orT}}9XbWmy8tYL#n-)V*LWEM>bXH(KFm^(j90xyl6?1yqtm#AHMH z_kYU|&wAZ(h*eks*1&FNu8s_$P*$+7$Y)(o?Hr2|0&JN*j<3I^DiO#|jc$kguzDJK zsc<4BmkOrW3$EDMUIV!g7eZsP;m*{sgwe1YadCpjN+AMS#;n7Wfydo)i`Kb>6L$Hw zc`@$zP8WjO<>S;&;4ArzgsC2!^@m_im+{N16e>Cmf2;ylsgGC`%l3h?!9*B*nt?n% z(l2>>>R_~=;;GkFsS9(Z0$pM9Jp=ls^;-w2TP4I;=tZ-bDZXSE8`MjqAr=@S>l_fkI*d)6p;Cc2^#4)D6ux4GNhXumzQm?r&tXvORM=jRS6h^Jf%P=0 zf^@WfLs|8H+7-+Ff>iG`Xt8q)b7ODZbG$6g4i`%Z@8JBr>k6*;GJESm)Z(r1@(_D$ z<9mmYOHX8RWcxz+%l$Rfg%ieu&!Z-$k|3SXy@w`gg3j0&KR@Q;uHAWMbWQg~SD5e3 zx?G?6k2e}aoR&Gmc?fqOXirl_G7Uq5fhC(Xi4~71IXj#G!1#+tvmOHmXdj zOd8sij_Nh6eEUTID(Ip`Cr7iK$5kf<&(oT0Mf^G;xx+rB66#(ONjxP7M!=qDkUh75 zx=IGFUmhlHvaIySg0dZ+q6t`k;(X8yC`1GLozm}Sz5SiOHBpG}47z;^ggYeM2g z@G`GCSra{^leKfGh#P;xR)k+;afR*!YNuZ#Z40Y`jPq|6#7|t42ws`0Oj$g8oBY$yS8#5NGg=b{ zeaSWM`_!H?OJAl)f%rSI+VtoaTF#+5p)fo=?zTJ0Ef9U_Hy3t4gh) zMl{Yb<6_$_nZKcUC0`0sA=`6QgOi!NQ*Aly72~UTwOrz6x6_pdHfp#DsSiPC>jN2_ z_)zx1$}RNZMpZ(wx*P_Hqob zmRgMk-Vn^RP}xpp_!Hu{wXN+fPEh!u9`q{#W98GUng;wF=7vvHOLz1!)2mLV`DRybaVw~1yWA)I8wLslHyfW+ z>++O$MG5HiN5NbF-`~LlckC$aj3Y`VtgilU&gA6) zEl|(}5F;M*U+dJ<_Z{;!(U|K$#{@)LtE;c{Ui3Di)xfdxMI^hV=hc484DciV_J@zU z!=PU1Zp621H77nF_kqr}l9;l~_(UDW;=I7|0IOO1?|h0n1=cv?fzYzsC*g9NPc2&ubE3O8H7YO~&x7HY(x1Q(_D7 z);j=U8oHX^C6QnNsZ8)jK)4S~V4+?gf593OsBRwm;5n z1OE26#fQf60ipSZ$%5yC`HyBtyLf-;jGz2NYfDPmRv2Af-TLY8$>;qs#gg0XaP*z< zpLBsfE6WPpNfEah=a?=+^dTa~3VjHvzs||xT@!4&0KF+(Z_Eeh=x0fA+1EjP(%hx< zjl%v|D`k}!`ypaz`r~Yy;VUl#u!qy=%{RpVM*keqoqYY=$U5yGVHWyhrMvqfJ8Oo= z1pO3FaUzTnRimL8K6Z7D!bpL0oq#^kHwNr-Ski6c$5Xl>c#oeoxU zBHF}teG&&cBsqUGld8FIUz{t8~uQxb3BA)ElhqsYWo#FZq`2M&g~w+wU6gt%e?Vph$G z)CWcGr%RKF0#ai3cyUDY_C2{k<~QUMXQw-HnhvIrBHS@?4f z_Yg;7=Nupso>vmKINX^sNj>`n!si*>Z=zKHvxL*;*NvV~M^aBw&yY-B-v=&kpH5Z6?|iyC_HtT8g6}w;6&CDyR)DYo8}QO2`6PQQt%-*HGYDuKMVAWR45h#np!CTl|Hw4G#N;kA;qKb8IL1XrcKS>Q)%3V2)hY- zIgpne$L{TYZ#E&>W8R>LJj!=N=>K@Ski@2>uIWg5$J*xUAuZmM)vj~y*tRinYI!Tb zYQvl`3WiUhkhy6K8NkxHOZq}EUTpfbIb%eegzcVr^)aKiZrzoStVoi!Kxw16()!TH zrW5Sj0o?6}>nB_`p<$gteZ-m2u>)k#T|aXKJp`6Ue}QKiZ)8AG12!;bsves_iFuCkcBemnz77l zAS@0XcE>~%!3z6!Y4U$s0H|Ti{0eGHHr@2pJsF)LxMQkLW(~6(X z?gI+S_rs>z#4S3nPEMX#$XueDx9g-w#@Z>h(Y9l*Qku@eu{o5hC3}k+`&MXi-TI`T z@M`(`AsO2NS$zxEPlrb-_a$6NKCe%cSNfRkjZEDfAAc4}e2Z;GZ^{gv?A!x1f7LpQNKLW!(NH5L2zoArs15$FUYN934oYZKEtdb?j^&(tp5 z&H`yqA3V{^*s|M8uQwX>X0~W`6_;L5|2y94M5Rc!Lmm1KU9!!6i{F!d>78vaB!RR5 z9xnV(e-5)QmKIkXa*Lo+6x?wFw+>wqRX{2%hvXzNmwUBj*K0V$!$xrJljXtfgIXPh z31|M}mZ7Au89nTC(|%kT#&5Mv*5>iXsDI)8PwKSz)Kr_0wMp&p%~3;1$zZ0s3}3^V z+@tIfl1!T>IuSRIa;9IOD~VrDG&rrz^@ms+H^BDGv69l0)^4s{`$p3tWW&_`YOy0M zyu7zLjvnp+zPtV@gGGn#NeHd6KGUbEk&Ab({niS0`!m?xtp>S6zV7%ay3wPG#4PS_ zkVHf9l()O~7ukE1%((8#oU{k^#$wGe8NV{MIMPc=I_%9PoFR{u4hENpW4@F!&UX$7 zY>H%YXI5;{zf;%tX*uI1*9rm&OLp0z}MjFn|YWf*jQp4W);5R{GZ|86BTjEKr=LGV70bQ3e^$ zR@g3#Ll#6oLHDO~4X+lA3o7Nj3b~x8uAdz#RSpnB^Iwe9e>VvP-N$oQ%X zamiTe{~}#2I6w!|m}AEo(2k#xy}3hUXA!+AqGM_1JF)^QTjsG76_;+IgC1-;^-Vjp z$1tZdC}sI>b+!seDu&$|*q-?dC*fN6OrWL1ZqoRrxjIqKqT+5*j2lPqy59{T$|>%= zbApfgA?i+k6PAS?dKr12b#2ghD&~J{{P_zA_{81>lE0x0QFv3If_ASFhKD{R__izP z`=&SMBIa^inW($qZ_*#0NRNCZ*d5&9A#|f44v=L#0$ZK(TsAs&moEg6jz3tKV`dg8 zoh-~RSIE&JI3PhdJ0b6}G@}ywvCS>I+IULi$TT*Mf(BdyZ_@MBlFq=Xpfl)}2-Nq_ z7%aeWtR~X(r1Lue@ndf72y%FJ81Ky{d-7=`s2h%cq8BgL;muC zpflhVTqwi)FLv2tnsXnDP}Qw{q0D$5s*sEGN&tbV!KWBjmakYOuW>xMAQ>%1V#e}7 z(QPo(dB$&uh?3y2XmO4~W=3RMQFBn;yO!$>F#%rWKJaDKu>JDhBi)bU*h66Phgop% z@!o*R?FWA;CX74y;bSrD!~K&EYzr1)S2EL%-7RsE>^iRyzvR-JXdn1QQPo*cbWqvkLL|N6&8eN8$EL9uaSF&y*t~bq4K#Vy zu-DGUVzn+09coKwX2Zh@#6E0i;7Ja#(A-5phSzYxf#6$jPueFN4s^8zXZzXGNJw!@ znzZxUJ!!id|JxYXAKdtw)HwBYOXfe+n2f&oi^u!EB4u1=@P;qu=myuYwHJvj=!J*> zar}x)68-qI)K+CVW5z1Y$NB7l(EdJ$D7@8?v0!pzh8lZ<&D9Vu+X(6nrF{hh5d@pg z7n>}=s{HsRTNB6ZW=etHY}X2>X3{GFg{lnOG$Mi1<&Ow57r|V;5GK@s~Q`Sp9AF|3Kz1 z8t5y!%(`qJ8<+{?6RKx=;ZH3@7c*1I=qX<+x6o6VAyXlLy=UmZUMoG--&y?lqg}p<{2RE$?Pfl?bf(YZPkqX#kDSF z>U}m(31=*gr&t-~zNQjQ%3$~nN}5hRH9q04c!nBiiWW#Z%tbo?e`abh15jjhQuQJD zVwnj3Jnk(R-NT=>#ppNC*+*=z*rZZ6om08jq$@-hC@HEIF6;>_lbW{>+VKGpxMBVy zW-d=hh3n$SKF|a&x53%s_WyRYCDkc5>i@#oOSPLq^J$pofJRZM1jS8sR3n5DxfN`h zjzRHjKFTjvuNR;)g=N4>BiMQivSr=;%?=qM#I1FvB*NShkCP$tqbF61t9L1d&WWlR1E18eIWE;7HX^w76avwRhDEUyeg54SfO9}{7v;Pn=9j;NTccFA*f z|5iNDT!5Dk`2#DuvM0ar3Yv~7=ternj}o}ztfUjFUjU?O`D=P;l}bZ?kq@3n8* zU~__`M|gzhZTBAVz>f!ch4qTYgPe!z;ph-%Hgd6;HqhGEX)^17rhU5Pj8&$6WyEz# z_h|V8mp1H8%zOsYSheVFYh$cDbi)QVSBdtyvEy^3a(gxkl@_<`F{hq?g-+3<$z zio0khX-8Ye=$teC63cJL1OCo1Z3I_HXJEn{X5Wdpy(|*5(puPR*Gg>Da@Wi1zYOxFNbW)2Jo62zo3#eMoxeVf%jh6~{9_$a$Xsp2zV{$!#tD&$+{F z^@H#=;Hx$U_km&bBU$*w-e(=9-5uKeC*m4zM<>&uvhOoJ$C+=(6m2_@dC(BbZOQNk zk~ZO$=*@p^z6!vPJ7l$oHUznza+Evgm8VMi3!jGa2NvxP3OkxCtPhF1}MOj0)TP8}V82)Cj1nJaNoy+kW zUHc1Qt)B_m10EPQtU!P5U~2DlH!X$aD`i<%Xt*VoV*O8eM%XHNmKxAXFpG7*X;N`nWQB9(uquYKkj=nbCV=2;Dt&{?0V^~!k|xFdywv+ zyRm{l9$sI=gw{@le7D~i4>~-!&&)jgF5Jc3dwgR<^(eaU#BYTXeB+wlm4b^-MVDju zgyns2>0?45h87%U`E_yaGCQgsyKdd&?}Y0U8u2HYNX@;uqo4Tvq;UqchcVFaQTF|E zQ@omvwR-q!Rqf!_wi%w?dW2?=&1v_6I&(QYUbg@A_!O0Wj3Uy>m=6mRm{yT+;SEjl zitMUK5Hspb$kBiM2>pJZR~OPB$uCx33EFOkAJ^p1s^e`WLOOSITGNuiH+^^pvde#_%t3n(NGSYDo$CPcGX?0Nd<9X2sU>9->nOA0dBrH-&V7Y+?eTz}49ptW1M*UFxT9>V`y2~% zma%CkgT4gM!R_4VnQ{frKY8H__h5)9x$U(AA*?#GSm!XU^_BUDvxEG(iys#$R}{*z z@4abqy&?B5^HOJut>@f%*cQHVdzaZuj{e=}sI^X5UQnpGmecZpNYnX%hlwaI_IEA{e zVaaOyI(?hot~9A+0aSK_$t+7Bs^7Z6z*m)!b+q(FFc1w|x_MJN8L`?Z{?h$ujl6-i zvh%@xc5fPVirL${U&ui`VS~4SSb#hbtfQ&iaJoiHP*z~m6G^FFdNED0An@nEbXGx( zQp|N+`aMs zf=4UC7^@Odjn8+dRH+eAMK%QOE85k&A!^Ub8(ATVB#q#Ziagx$BQjZ-+#cp8bkqyL zvwpu&t1c_J`M}QJ4j$13(%u;j=T}oKAY7D35Cpw*cT_&8?cXRDxYgSX+gIUq|8chX zgF+x7C+DEz^EE%XR(RrAq7A`Z=JkKt`>wF2y6?>Zf&~%z6j4AB3?M~%hX9HSp(;pG zsuU3-y@VP-6i}L;P^9}w6EO55HIZthDM*Ka5I}0^on#K8zxmJ2%v{V|%=65-f+y#k zz0clzt-aQ}-nG{iRE@x+nC~4uf!`WkkmYv4TQse2Djpfbhh9B8X8(5hnE$bh5r5SG z*Vlp|2IT8L&l(mLuGw|9Wi2QV(nXVVU#9C5UtjrT4XiV=eH^-Ff_WB;n~udk>IGjHU0K0V;dzxj#h)*TvnP`<#aM&Xg%*=pv$ z)_*L|;oDmFt6!R&2l523Y6)@p3UQ@Kg3dGNpHL>45_-x9tnu;St#ZN7<(qm^36dj@ zF8{54+JWma{ZE^uSdxm?k333BlHf+I1RBEtmYyN1g-+^q_O3y5-STd5e8< zE`Qn&)E9Vy^;<`j4%Ge*`;T-G!<#djj=?Cu<9;Bo5LzSyc~i*8yf_mLLfRUgM*t^u zLjmmm?hEW?G1sQAQF-+jxb5y(QN7hY0Zz5jB z%wZoflMR&w7{cd2x7i)u_FK8V=*$xgUx__&tYH$)6iEwww;R#W5F|I*F{G%x?Yb z%-iF@62CwAxS#jAGPJ%h(25Fn3}&Y41eJ(Ma!#8x1uAd zf-Jl)Ogv9beyoW8az7J zPWn+<{Rxdh8F;}V6E7{QcvRT;+$4A_Q>_6xEZ8txBdKi${J}rqA+c1>Wa=U@QR)v6 z`QRy>hUwx5DyzeY?9Y{Eck~ydU;)c}P#xA$#e=24(#hI>+I!C&vU&UrtwV4?zx$Fk zjvYKRvQb5Eb1u^<=`b{VvxI1PVh=>0I#OR$xVK1l`11TQ=>R$f8Ul#$f=9rcuyl>( zc-NfWR&Zhc7Aff0%LvNN^m1qB;`>b0GpY5%fWETgzkGatM%)Jq|uC!qiC>?y`8taq+JQ58b$Kw7ePB7IaRNLxiq? zdWrTS+;1tq;41@&P^wXJ(sY9OI#o371uBbccAvYG?d5hOudCi}jT37**-ZJ|N!t?R zlt#Av1Asso?iC!nj=dZ#5~t_{HEZ^}ZZEqjPa(K*U5HVp8o8@TsRd@bpbUXoNY_ew>l56w1@69 z+8Cd{BTb!IerY-0f~^P+rs5Ad{hOm~Wp$ld@&bWNC>UN>FT zbvSBBpfExVmF@kD>6EL#c2A`8hGn&erJtqjGID(5nnFp`ZzB{jb`rxCzg8u>M-@?1E6!Nd=h>@9boK z$5SJx*iGCPXuFlwYiYfWR=ngzqsuDGjz;F|$Ja~Bz)i;qQV5UcOS=Jp|d%flb8Kw%pc{b}5NI4Z0rKf?O*G9-&vGu^_@uzTeaZgQo^H3nFNHTw z$BeaEgE&>Izxwcv8{v+Z?r0n}0^Q(?fiQiNAl=kp*BY{u0na^rba{q3DB{&jIo0va z+peSK@0_}wu9t6M9daGRXEEexyO@;yK65P}`q}=GQwtSoYkBHMJ9jKk7MY2dA0Ds* za)D4|yd6wRrT?BQcdB^u?XD5T=^DY}jA?nA`#JEW4uqw+%Vm4cDdTC@8sdKkOn*{a zUZoakg6b3`N@U2b*R}+}P4vp%6dXhO!e%N!ng{Fn*>Sug6ozt4O4>a82yXV-kj z5oWd1ieOz?lqFWYxA*!Qf{%plD9H=6ChA#UGDQ4XajnxxU?=Hz^c^_Q0{gAIo_G)Tka%>b3 zdDSHHn*2GN=U-9R_LN-ZwqHC-=CxQ1TmSxH(SUQZL1j6`e`XLDgtV-R_UI|>)d3Oj z1Ksfmo6-rtnTdn!OYLzlzJn3s(6X5NpSw!^zU@TDLV>0SxQka_x-5n>HHr-UG%>=a z{cNkP^Hv6-b#u2t^S)85D9>AIsn8qVhjZK-BDo-X2Lk^iRQN;niR~8^;&0m@Y1@4$v z8R=V_B$}`KSh83m$A3DRR{E`w2iuRxA|R^;tZgP__onOBm*-_U4j1AdOX?b;Xtj<- zQx_~vNd4=rgrme|e2{U-%^&09ee^K$2T1;rhOQ8k6do%+m`)(e+2j0#%ox3q#|c!m zXJV}l{*3Oc{q1#}IP<4}iP?lbrsY#EXA#n-!>_I3H0>;Knr|gwlmo%0!+lbh?gPVe z7l?z@b$y|H5Do;%)HU8?xFj-uUf)vtF8OkGy=&^xg!$r_Ygy;asf1|?Aobcq&f6;+ zDOhC}cUOO|qW7jRu76CGtbWn(5yE*$XY{y`r*pZ-qp?&nVcvk!(TLj$nhdT9)-779 zpwDj{)uk$=wwRBgKH6VG#c9k>7JwzBS+&S#woloIo3Ij`ZdSkA;O>qZM1fiR?9C&G zY_yI(k+ih4!e>O;jW66(4EV7q;Y2?=wje~G1My>Vj(Lq@tf#Ft^{;>CLA&0sj*Usp z3|@Y(RCxdQ9NLG2He9z#$(c{gvcY8s%~LqA9<`+(Sb_SpaPu1LHPwOYcV6A~wDBXX zC-+!D^z+`elw!@EA3P7RhBCDp)g?PMxMtPr7k{|`t-)-;h~S+}uI+1<`4d%bL6g_q z=T9B&$XTG;J1kGhlqtxi5ImJxr@3Z~k-Lw9kkMtAKN|(n1gjEUI%&Z4rn(1M??X(I z-Ga>(73|`qMXB)@ZnDwaNJ&)g+%5P0#WRk^eaG430wFbVieop2+_zZ!J}w*?iF%2k zMz2#DYTdZ|?!o{PHlsw>PKCNTL@&kf=c#IPY)OFN1$BfMG0f)uP^O7!TY0}WKgT#x z?&2OaYW=Wjy<(Huf^ZlOjGNr><)TKOcTT2q=5yp)L5@3bA3yo~TQZgGaKn|+kjD_` z`H7vq^Uf?l=#w0(j*FQaFK)+Hg)Qi-rIig9<^4wc1kQo(V?^K_}884OFj&5 zlaWkE0;FojMWPN3hxmth*#4?+80`;YiP&^2qYA=3zRhEDdwC@`2HmC|N<0D-gw+7E`q!Pgu zX9{X!?{+>j;8>f>j{K+v%wP3qy@KQX2PDxY+mZicbxJOO`loFFC>HR>gPByG$>|!H z8t7bgHlj5h)W&In=J+)`AQa1b<DghAaKnYoEiDZVt?^piv)iN-$!)Yi`QaFE%o8w5=+(c*lC4@!}hy z9n}-2r%%(rG5PgzC}Zd-)(wT*PMjjF*3g5|?KFnk1P=peqyclGNGkHmp17zOiMyo8 zzPG3$VG}i0f$M_=nvlCT3zc>Q11ZfDeIY?(Qzl?A>q+ti<|^qX6i(5*S4(OyKLzi0 z2wt!A;a}G4EdPM?YOe|Ue1&L+J6j~S95VsKr3al0%BdD>Ex;jz4kBWPK`4IeQtvL0W9Lm^zDMPQMw%-s7)bj>)Eu;4}5Hb`1Z7f$&7YbW+`EN+y zseV)3-o*sYN?3xhtFzLP_CpcMCr3=`-P)Yai*l2=!LaSF^SJuB{P>JqKQ~;%DE#2H z$Hvkyi zOaBH+HA@{Cj&XNy3RgZ;Krh44&-^49m>OazzQ2QV^ zbb0;8{}PBlQrej}+Jj^`k4X4`)Ogb&^YOQAOR9j_!_nW}5L?`Dh93AYO)MC?K2l^1 zcR|1L|NhMe(`G?n(s>&oGolHs#z91=9DP{0;kzsp_f)C%I`5)WX0-@+G{QiyVJrBvcHlnrefPmF?}Ni_KiX&d^4O*p8hgIL~x$>7(| zw#o3Kd2uDn+o#ECFz@GHy6Po9DmBiU;!>6CRPm`h+vb~lNz91e%ySS3#Q2$xhMTv&R0jjbOd zik=LrLS(2r;V1nK+DMwiXVeQuD z5ZtLO96bc`ZRC-COwHaJw153&odkY3zcnVYFcT6Kry0xwfxN4-&ff@hI7<=f-96Wu zLJtW7zeR{Tho|Zqz5_0uwNAHp7tjYjrdygr7JhwkI4Gf8Q6>!_9cpJG-(HOMLm=%n zzW;=y+OlH@`=F%GcrxQ~5FNTVVvZ@iWGxIS`#pZ|ONH?>J@u&zE!(XRf?Qdr495lY z0?s&p>gwoK+G9w(iqjBJ;9^Z$-b=E@CtrkID8%qf6gWG=>JdOAZ^9V}9CZ&v8oYuM zz}NRq4*Stki<0*1A3x9=rv(p)+k~>*kBM1eK7o6-t=zjC%rJpm^8SdU7kz-TC|$U= zOpTk^%5Vrse`!ml0+^a$l*?}HkLGW1W{v!F8fUW;&{6UpoRbKPfZ+kmxi;z`=#F7I zIg)NA=3}3-*t99+V$|V~3cXE5Kh^Q$K2iCaDzfVudgr5dN!Ac4T&Xx8FtuprkZ{X} z2sZlbmc(x#E*a{FXktTIpudxPiSPSMR6-&d7ycobE+TJhe6LJ4GIW(`z8nh)X-5Y4 zlMoO{%Y-YuQ^(B;paB+Q#oK)K$TNZI&=}p-9`F@9d_F@r`A!wJM?F*@;KNrqjJ2Uh zL>9R}qu_+J!Lgr#QfaYN@#XjaBR+zqfySLe!+wg&sl?isHm8adwRi@HY;&=8m7aqr z({yRh1j5*0Y8zjVup~s3OtQrmQbCOG)}eyDOr&{zyw1}>rmX}zu*mtTZK_4GkC%|T zhwx0(x6_c+mV>&5Ehz|u-ofB&dtDcNR&F^JTA8^nI`EcQ0wrlD`UK>hoH|jI(ry$i z1NVZjHbB$0SNCF{k&x(=IN~?4G#Z?n_|j36prri&>whu=mc`y$00uMliB^6(yKkky z^xdSG%zQU0##HvFY5aS*e+wjt`N?k$XlzrT=ymTg0$_j}G8R*cFYh^PuYMAnkv*di z@2iN<1>exV(id6WVF1@rUyX*2X}D1EU^~`6I(f(q1Hb7C7e#_j+>YsEmu)jgfq!MV)o-(RkF1nH5eg?Tu zec2r`@7*7nTW5{l=T>7!Bqp7xpy4NN6E@z?1XWu4A1*3|e+8spm;jwK8VUC!az zQQ7cD05ZICLikSp!nL8;{_Pz&%B(ppjTl0Y<~^K?2srFkqigT3h19@SlHtOPp6>zc z`$rY74BwZ5GIy+SOJAx8n*IGxLLzLvp%T3yVVRz)*J4_*rC`h9&fatul>KMlz)yNt z$;q>$fjH=;v0~JAvq2nOR^_l0n7XizZ*JDPBIKXOxS!Lz+%{?EQD9iJl`%;S%DPvBBc_2;7al0cNXKpr2OmnWVE7Wqc#*g zau=C>zF&rK#}#k~*p+Uv9cc0FKF8ef(h^N)rIyY80Du&U{}{hl5k7cfN9rB zaCj^qeDGT)@MOJ}UE6-Gw3j;gY7o#HK@5d#3B&8-2J6n$Tn|L+ZL<>1;Z6%ZouSYz z^)?(=H%YLIcI<8ODPWO#Vpr`cjAZ*}Xs0_Q1y>r)sPnz{ zMv7mRRT4kR%n)58fLA{A#O|B&b4gckwd6oWBH1tVz&u%JwMkek!@S341=TX`rgJ!T zZFlT~k!FA+rnPXkxN9!f+`oq(HU&JUB^>DclBM`@+I(_Im8G!E^KXxrmx|#{@>}a( z=_2%eeWW``ebBuPyt64Sq06vU(NpEA{-jcWHZ5T`b_Ch@?PhKew1n_xCmXWme?N0T(+e)&q2@UU7{HhzK}8RdJ_D-AnP6%s~$Yq>_9 z(Ms7vGvR&iA*X8f6U~B#15aJTePWax`;Ib32_3sYz zYC0{TbfC)YuKCrGjC7omj!uYCcU)5x)nc%li)l!P(3C`&K@9bdxm%sv&#_B4R zQR@=-Bggzy1AcT9OdhYBS3&5{!Bo4*ls;AW3E0xwN*g83hf~ynjE6H~=vEHQzByVP z{s28mh$R+d0_L~u56sCA(%tPR=JGJS))q*2o5wSC+17j4`aOyRTkgp5f#V%yn*+vv zbn|97x^2@F)1vxw%x+z}KaPoL7zWt;uBPY4iUrtNIcsfkudO7SU8~kic$;}XTDW6; zq6e0@s0`=-wNWBqYgLuFy|)q0W)zI9jO73}o4=W zHd@w6D}L$G+pV2k*y>c&xgku)!Xx@KtSfKx<)h{1KGn}F3{@doHy;(+muxFrXQUij zhPaX*3{D}AXoQ*RB!!P*UIpIU*ndY&^6A~|IZiC&&6*)<`B#d;y9z6mAF22qf9$f7 zTi;v{ZR| zjV5OGuFdDqq#MGp&cC}g?cj&z$no?WJ=NeThA<1+tWO~~=OjK`?O+&6S{d$BvY0Op zNTDTUp6~DaIxcpvGDl0gqC!n!&9y*#G1)6ke7oo#iVVuFf6f zCi|Rv&B}-->%M+#`H+aUgAvp6wW4Up#zO%*norA1zr6f7ArOUK&R$>GnI(itpa^`m zCe(2eu$k%G718H?!j>ugi@mqlvA>L7XAI7td1iG`Y1m665hBb_Td9q)bw>>9T{p?M z&Ax)7(6w@gMZwJz+{la?t6yV>2b@XaCUL}e=vZ4cZR3t&e{SDqKXgYAV5=^3*JlnS z)!UhvqKVN;!~Ho2jC3+N=a04i49q!yW)Do?ZM|0EspzDqzL=G!{!}yl(~W+~2fpdW zyfeojLg!M^44_3l>J0cxOvUeFHCMrPCutX|d2!lsyL#DU@oa0lt9on2Xx;{=%u~{? z(y)B%B6|hP)Q9G}dyblJw-Jdxmp8Td%6E~NnP@FHC&2FhUT1$5M=WuTe^N%KmpCAE zdcb^(jzT!w%3(7({yLa;oY!gIyEYIAWcxRDBhie#KG(>S&Z5U=HlQU5Ty{lTzdqB0 zM*biM%cy+KxA z;KK5ZfsS>#G>>Libg3ps;8Wo!V;G0zlCwydm*P@C+GhY!eO}4B?I3^}a{s(H6(ng- zZ|HV13!je<;sBd9czsx6j__Jddc=<6P*;jHA0-5^Rv@3GJ9_$A=j^WWal=BKFK-D)8y zOqRn#1 zMb4RUvsCf;g~&p$mpk6`pqmyb_O6ZwNRhlUt!m(>d+BV=fOeKvgS543>!xek{9Kuz zN#NCx)`Eat_L%;Ts|EXBq$t)Y&~!%ZAt@? zMqyPxM{T59V0wbCYBVQf^u~)8^HA6llfnK6RY4B~LLT2=GTCI4+Q+-2(ux{Y^20CB z#0!zT2Cjk90f7`PoEBJ?mimBG=ym)<`Hc zMx&&@JV5*FK?dzT#e>$25P`qk;F;bpJO^)fX?t22rpwpQPBWs?LbDr9;0wCU>eZtR++zt!fid=^;#S*$W^gh1(z z#eb&T@zD_5Q)94V8DarO6zU2)WV<%ExB+)&lRWhCTMmvadGVj`KFJZhS=I3 z!z5^~>Y{6}beOk3+KD{;JRvvw!4PE2eIP9BG|a_O;$QDA~zFoaPG$|5$MIZ8T4(N8~YDtmN35Qf=h zoAx8nACsO696tXootpGiGYeNEkB{Q7^19%P)L6|gv*^zVeX@n_MTsQ)C24jm*;|C@ z^Md#cc&%sQ6o&QqmzBg8`xgt$DwN+1kt1T?ldi;IHmei`YqsXp^a>igN=gc84sVZ0 zIeh=WxEg^)j_L#R(#q_Ep?W)&WIvw4kyoQ>L|j!)RpzM3A_BSk-2HG-1f`w#wlg_J zOPK6Ib#M^)oV0=Yya8+9CT*S_f99=)V%zGn1KCAF`{CP*u6YVB>+r~l;rGy{={EWR ziPy&(IAANQlC}*GV&U7FiN)tRIhMP7=8v8eAHk6Jc;sMs7CqlWC%BuYVBs2CQDSn| zQ~m?4MtJe$7vYa-%EEX*eW%&66t}cOof5SK>7{rg1H3@JL=4XWS9(nh50x`d*(5q3 z=$Z(8i~UGdz^uASvHVpPbZUdo2R_t4#c{5a_ONf&b3)4n+WhZzwjQKOz3YhR38W-W z<;7afTq%4yK=1%yY-RnrXlmzxx;~ptP_4CPL&J>ruuoLTISgN%`vo@lLuc0W9MWSv zo(_vFx)T8L&lj8Py6c_nv}AuTx?g$1#wfXvh#HAD_uaC=GMqwcH+`kWy-mDoS@}0w zf+k@4<4O(#+)IZ)QbsOpZwpUq5?I1BblDpKg82vJ_Z$270nPjw&atApI4gr8QW%2o zXpTJ$ScL52JK$+);mjtuCDR($+D!Qq(Z8HqvV>z!z z<3FSQH{73sPN!K#A*Nz$eo8^7@q#xcQ`bZvjGC5jWGQSQ=mGE->s`^?tVYj~Y@W%cYko6xAibgP> zl{PZ1)H;6->=`cBzEf*A%6qFXPJzjV@h=mS^duK&00HtcRk3cKmF_}GK&8W8FU`=L zEhV;LUrS*oYCz{4xZt(3NQYYGR)GdM?U;2wd4uA(6C}ZvpaWk>hSX* zuwL3WHrA!JeTQ_ljqpT`M4<&Kc>NCtKTQoP&&Rp+QFdETW?si~k86!=#==K*bXSW! zIENkyhw?9PvI!zv+6QWSE-9XFxSBtJu6YVdKMEdVy|vn$mwLS8-&9oETk?z1M+sH? zstu;>22(Db&)p!9i-UP^(2v4B+kMpdDcxxPxYr=+?$_<=G0jWy<6UU>6g_q`lk55U z0lv%*&g!!rJDpHu=Kh_4rvNfXYqx?w%hE@yairDWI^?ZF{)QusRnGCJg<%rgsv*`g za-Hw2qvz5vSS);%Q_sAymw(2^1;A>Ry2eqY@O8kxu!dcJ|AH+l;PD)T$go!bCo_UV}AWhe!Cqcja8oadZod;tQv zn$-6E61dsH)FdNo{L0Dm(T;^0B}l}uK!_C*y}Y1l*cug@K^Y}{A{z_j;ar}iw9 zuLnR$BK`|c1BeJXLE=`jCLC5gWX2bNTVf_VGF{<|BY!hNx5HWf>Tu~ptgF=n2qf}} z+!hMNE!2>@vpfo4;JvXY4;*j(GyF0cUigvrE{SW$elw3zi4%TDrnJ<$43uw&(;UPVK7)%`w&_QIpJR^$5C zB+UDZNghB~dEb`08(ib3XSPa>ylpo|0&V*JN`e%eEM}WRFygCn*68ZJRFk9CtGVF1@)mXK|Y|M*)Qj>?^-dh7wUpa1rd z8nntqWnmVM8l2kc=aVZhN8JPj_sUkPp>|SV5L-}6Rr$KR8bJABJv>)N-=SG`wGnGL z9|K=~3Fj#}2EO@|8gt-Mt<5orXjl9yqXh&KiZlVxX#W6}k%;b^<3s~^TK~9l&ZfO} zOP4;c$KJh=O;l=k#zrVzvF2b4lu}wwUN7?#mO#Z6^eHP93qc^$Du>>})L;^^DR!bS zP?tZ&Nq03QmZR)A&kim~x>M851*n8pWtUSN`6pY`-q>KF>G0X>BV8VVNY?2N7Z0FR z-?xbH{p;Eu##G1QGHGt9LrB3HaR3^UpV3-2iGJ{T(iX7)^qJ3Zjneid4=R&=9w(CI zBHY#+pkF}p_+AJ>vinEJIJi||t&89Z_LL*yXnj;z$%gEo$gUzVAo zvZo5zaZp33bD;H}k0jajpPVU4sa2Y)CX4!#4q*hynvDRy@;wVlb}>$zf86716S&s@ e_b$!v6q<+|4)+84RLF-q5u~@B#D`64QC7v5|NZU1Z(AFD zZm@05y5--jTZE2oIvsUvB(C_GzvkK}Hj8HmKgDsjSA6;I>dw25@7}%? zx#7o?{+mYDqQAU!_QsOtw7AcMl#uhP7(^ubCuk*wKMS+eeydIn4KGte*Y z|Nra%m%#tK60q*#B3H-oJ(N=(wxul5v~o&QApEAZBe2>Wa_KCtkt~Ct+^zHkkA=NQ zNDXeMO*HLi_G_2J&WDeWf366$>TMzs-A)LCmXq^_XZ8Rj;`m!Y`VO^Yb7!GbLiW`2kW7lIFVN@a~dUT zd%UkDHydf0h;LWco5p;|5bgVB8I&3J+3YgNx^sO@o+zYvx3`*ZDb)_Ve^c|IgKCmG z_51q%>Y0HJuV%06lb-Xd>S+jgP74^lHi&_xdf(KK(=A!4DoG>t2RbR9%R2h%yg0qgiN2YY zQD&YHnxd%4+p?rn+x2@&9uUXH=gTJfmk)b+pi@qD{0=b-b>}R3i&>H5(kq5r1*w=9 zH7gz(pxz7HJjRmMkmft~JaTnSADr<+WaN|EdV}&& z5q4tju(?o8Y^o%W6H5a$u+g|jf;!@$qsaA^*gi#clz%8@95ZprNF!4er5;tkO&M%$ z(#%ze7RV+R&At70itA;b%7S`h-CCIqyI*>=G6;&ruBNG!6CIKV7h&6;@FM4z8c9~+ zFY{T4+gp2sniJO);7!N<;r`qb>=&~$^d*c*Bk69`jyK5r>(Wa15c=~i#)66p#ka2Q zAIf*=IVp&zju+JhSjGQX@Ba2?r&YoU{3SHUOZkI4$ zD;|J-VsTPxHHwsu8>5LH@X*hRC?K4 zIa*KG3@NlD$%{5+(K57p`;Sdj&7}bs6O4W5aQ`*cxhFzM&!CStxOWZUo zjDOD)IKQpm^q57J7oMA6(Ka5rAkLb_*sD#4RsMBRU}5z*YLF`Ukx`FvJL zIJ+p~og)o9S~-jcVX8DHNduT)GVx}An@gT;H@t86#&u+KUHJ124cG}Gf@eXSX*t06 zcX!y}NxJTY5UGC=ZwkGJKapM19-A~!-Q<;hb)hFfK-nts9G*=nbtP)vi=Pi{cHafp zhDozit~b_ulS=CM^G$MiGcg`XIweYtug}CsbVxWCVOe4vxwAqO?M?6BIO|CqoFL*W z(BzIBO4B-RM(kP19rtUv`lI}+Wx_eh-_nQ8j-~bq+QD7C!=KIyYxbkPQq&VnC;ftj z@kO+G9&HmA@P< zlE%1WoF+PFPq!&%o}^rpKR>GOT_$XN`K}}7T4PL-(;HFJ>2o@v-Y`!L5=Z{zUvmBQ zW7U<^@N)U~GKG8Z;iZYAe0AcPbI}}Pr_nfk$2pUq;3P?%O#ZaAu=ezA;y|2Mb`$Hv zKd_=L!d|TWc^7YQ)Zj!3b29>R$ql+~2}RB=B{z75W93ikyYd4pM;@h>H?qU0h=>^M z%t^Bgg7gM5VfxMt8gYSEoalUg_Kz$?4!ofv+>>8jkc7%@T3(j4YlBGK8R6eT=$KD` zC`kvZ?4&Bs%EY>l_xGz)0ADaSh~YS6-gVaz{opl%DpqF1+ffWrS{7OAC;`c)eY5gQB(ANFJ=}ALU=N%z3LRpHZNqN$S zKRA2BLN(n}A5y1z7H`!((IqK$iNv{j$)o;^6WlPWvPk)ognt)Wrs=}CC^Ti7oN4@W zXfa}0IF!knbFRuhl}FD=ZqiQoHd{X&PWxdJIbDo#D5+A-?CNA_Zbg%3oVq&4HKhG% z%|%I1Pi=HcS&GvVcbMUyrkrtbjqOWqHkFbi^JTRrrG=$$8QqbK<>G04@bsXNuR3P# z7pIAJEh7vjY9AR+8!m?uf8u~>?p&QnY7$-#ZC}f+H;SfphZ1f*x8s9a{B?cTb%f`2+*I!uWW~<_EkIBt#-t&mOO3#u zS-k4q1tKpep`Kn&)>ia7W6rc?(G%&7ANt(~ajzt-As+Vl&6llZ(Z(ZDwEmG<`%(0D zr*;RorN`!-McnfvY58VjE^4>;d&5T0)@POPwX({~)x0&6X;uTvsX9p19_9BwRLv1B z6G=PXBKv67g^jHHRm*uFjoWdB)Dn?HDjJzK-ojGwQjKEps>K{HKW1Zl)Ta3dLtJsj zwB&=8spn3eiA&BGFB6jB)!s>L{MFMFYtv+o2`L9UXaiMyaf6EI)rc5D?AgT*!}Ed| z-^2yRg0F#0`a>5T!*0a*(JY1tQ1d_l@DYa&Un6I&FVc2Ks!d}qVVW|gb<$jy<^^w% zU?(n#FPAm-k4%u7-F41VLJfB?RqjUQdI1M#g-@dwdy>&n8rWQDEiBy(zmt|}ECtmY zb<2Cf`}$=ucdvo0v#1aAQ(OnDjhG~TFoc)a=%_Kq{t);uWnluJ}JmEIw?lZ9+`J{ zSn&>9+NinX(|PONEi)ejS;%Acv!Q&nOYIo`-7khxOl_}v=B!cqQqSV#K#;ANQUAuT zQs|g4Z<%{rG3QD;=U#d-2Q!2tPp;;>1?hrQq=913%c`xPGibdR@ANi_(DU23Cakfb zmqcINNh!7T5PkDf5WzZW(pZ&5{9+dA(I&sQGL@OMX?Ex=klWg{2qf!lU+J4U_cj@b z|4;jSl78s&8W=+Vi~OKMkPSTfSaE`-?FT!dQBTuk(g0R+3ZY`3%=OgC>~I`?xzIFb zA#AvB>u_GfJgTcdeobqW4vr+bJM{3rd6}fh@QY(_kcYv}4LFGPb7pfEB2n|fOrF#6 z&cm`%vt!TSESjoFyqZ!ZdByUpWTS_azhoUz z(kZfdQtEh{f$XL|1zVNTyfuwUaGIe~v?De5rN0SZi+>bUL`h$W;#!Uly{UH-y_l6R zl>+2#*L~K)o8X&!AFO?T{&p4)EfUSnA3x?%#Q^UC&-9J`b}l9(DM0&TGL23$cRQ3` zU-YyW;Y$vaFN%xJO^<|Bn7AnUACgiQ?tA zJbCTs;sbSKL1wY+8kHA(&k&7fu?fd;6E>YL&s08}^%sYiYpZ%?e-LZ7HfWk$yFS&8 z3heq$b~CQUU05RMb7t#j0_T47r}#BmJY|=wZi;E*3Al`6oR{m>F5Mq)V5@tGWATA8 zw0y)E$rb(8E2nr_HWI@_v)h1M2S=vIyIbI5Hs%E;LcSi@bJF~;DByX)QR8ic@%WWB zW+p8ixPyK-!%sf`@j?LC(6~_e29B@SY~;BX2vC|ca#sChd$AM}DhUp&mFz>pOQ%ed&01perN&4R*N(3|3M&IjD>H6KM-R=6Q!PVNKh;0s zC_K(e9yvh!#z6LpbX$&~77yAj$6KwY%Hr0fx3g7r!>zLGn~sRWLyKC~<#2bt-a4Uf z90tcd_oAq5^g|WBka#^z0jx1`P+Lx+hDsgNN=J^UH|B?}(M@p(7rx*3>`dMI;8RxC z%*=6)SB?VP+Ra9xjA`M{#HAPTm5qbCTn{o^zM}0aek@LV$f!*FC(NQW`}iB_E+o@7 z%-RU2z17ApJ-cn_GvTbs$KCqP&iw*Y*OX>iVX>QEI=KoR`r&(AzBoI#fk?LbR1B7$9xjZ5@=UJ;Y%W*llCe>4Dmoo_!EB{3i*{4-_2{ z++jp@cx(y}Wz`U--~F^4f)r2BXCa!+kEd?UetS2I*B_C(6@rLUMsRmXdoI5PAd7I^ zcv5Ez>V=SF0!5DWps%By03=`iT_SOgaDA-x4^JJ_Q`TIP6~=ZLC@Z{HlJOo!1iQeo2pX5*H&&?L+1 zzQUSRDD!~*Mf|cDU?7|m5^4s^t!(Qk>3jLyE*`s#ftB~eNz_u_U%jyu%WBVdx7M+c zrH0^ka#bHCoIA9257@`e7^k^ZoNfTx1!9wDy<%00;=}L3r91gyM~DgX>R?gC=m9S% z^VFV;`G4AlABz$veX%ypAandtzvFS`;;4Q)r1s(z;|f3n)db~H!jB2638C_f zaK00*izpLU!rl~OAia{E=z0pcdr1#aAkN(Dom8r6HM!(yal-+oJ=LqQQT;7$-nFyo z`{huL*m}Uuz#fPwa<^|qM%7qnXFn~YWvfKc(?!Krhlh}S+Du z!Az=UQJE$X#-mUuZROS}a3M)2=E&U^dx+5#ZWodko(p+noEtqa<1vfG|q|9NJZL+jhb{uk)~M-;@!*5+dodmk<8s-N}7k3_HP^l zH}2L!dgy9x)8IqQ&~pLGBY8hy--mzCG=ZQ^<167txP!_Ey61(&S9k`oPJD+mfRaDa zg+9)SMYP-U`kZ+`Esr?JdYK)=WAcC*NX%=rjVN6L8R7 zHF>BA!3JK&X?dOamH1D?`Zz37(C$VYT3XDiQSx?m^6@Jg%??I@;Q3Ui3kzpM>V+qCJ))5& zE{8I=P3(*Wvjh9pO9^PmU7ghbcb!Pk*6D+~lROxXrZQ2^G|wZN1M&-E%J!j^kXe@v z#RxfR%iI87s%+4QiVEO5EovH0yC2ac;9k|OTT$>h-B8O+)kn-5abQ)MWnCl+9;vKW z1fq~wicN)ZV1udz*dBq1D?9c1TFyX+&i_HlXBRGrv8GE%uOpfaV5+`2qkY6kL&5ynS#zWR|VtNTHfmyyGJ4ePPxJqi9!uO%p4lK^xlr)uza0H{uF1x0`}n zB0pI0?6x&$ZD}hFWi_hqh%I0fq>`Rd&7d(-aF1vjd_cJ*tP+?`k8TGtrwIqL`<{_P zLT#yOr@CuNmwF@Pq z^kIVhm0GIMKWxOVUikuU46?u1vJmaNJ^bSdQ_F|KCpfKjF7z`A2;}BJiB8Lm2n!*M*yw7N39FW6sb1$#`wo0*BwFV+iOq;S3>IK}y zCY}&QN}+nybM?x_XMQJd7|M?vZef*e9hO%ekA#EoMgcG|lS6{*sj}hwy;jtnrZ-|+ zmUeVuhiayl=Be3}5pm$na|81O{i;hs1kG;cj41h?EG(YwMBccJQ=%F%(r|~AD6b=e z+Nj>Ya_Y}0d&ArJ%Qc4e_%03kv>zq>6P?S2ps(!Hfhyd8@TdmCO+DCCEV|Vhp@e-t(e!Yiz(6P~@YvX(qAVnDPB;QwR0oWv zv{#0E5i`Q&D-ThPGRpu#H)nKBfoCdaei)yZ7j82Hrk`2X9}mk=#v(7J0!N!5k zqt7OsU~JP;^VoG|-M5)nTA!Hi9Ak!Py@XdO*NszdU8k)7A=)GLcd?>Gr_Yfoe&_|_ zTfhSV>g{pX2x~PWMzxIgF9X}1V}s&fhAxh911BYCuJKVOxgh_UZ7dG_H;5ikOLbB6 zQuDaSq-0(cE4A%8X2?nSY}PkYuTAIf%OB05gYJ*{!0wbuC+i#9^Wt$h&~Wl~kN7^E zk2I!Zm{C1+swZpeA=s#4dt-FLm+!6MonW+UVj`6p7!joDJ^^qo#o~CFKxIAJF;ZR0 zPN%OgEzlKdAg;U|@D@#?A~|vK^%n-#C0p7yxNrLG7M={S zEojm0;|49Kmb_MMh1e(LJJYCVyTtR_xdcFGa!9YZwOWI2hi8K zC~a?df^Jyo&rG~+8#RjcZ{07M2MY~#Jp|D3n{$W$(+f~@x96oG^nXO_l2(68HY!4t z?1PWN#moKR^_2DsBbzEWp!WXQxRxVcL1EYnz!p10512R(X6SwH@P6Y8;fM-13byNA z-Ukq--n3;+-%iO7d;CrP_Z_cT=Nib}r@jCn|M}kgs&4TR{0JVWxCh3f@br@7q{t?% zSRCH{H6YT4d$xs^{yAs3@meg1V?c@gaJUY6zaPp9GcfaB{GmS8vKrI4y3qi#1_Z}O zyNmcap$o5_|C|EWM=uW2@Fa6@4Gm!CRHyMpaD* zi&h8rm$0pY_H17!WX*YR%*9DB0d1~vX)f{zuj$S(aahsT%&*)EL2L9-R2Om+@-;)e z(%Ph*Ac!+EePgXPI zw0u~+3vRZp{Nd$hp!tGNKW4k@Q;V{SB;jF#s6J0)P$4E@anCP^mqEFPRw!F^OX|W& zc^MpBHm(M{)nC-;8sw3YhaP>BZip)e_%ic@K52YXZ(2{ zW$;gi(6F$IvXhDiW;ZgaO==lh;2-z`w|PZd%>{rTIdc;+hSM*rNRIC!sG{nUU=0X$ z1GOT0b@LzJ7-R;%+h)i$>K7d-wWs>^s?2vehi#mFxK3w`U1k0h%L>n7LV>$b7~nyh z?wbKshMoxL7~Y+lNh1S z^dRb+u=*}{X`RU2`TgYPFLgly6(b4fi<<^fT~66aF%FPXgvT|ZxDU&OfF1!TsKqXjLrj%hQoT`l z;eqx;lvtE)#S-bRp00(4AF#zsFqL|7W1txK%`S)! z)X(V_0TpnHDb8o7dic#Kzr-LszPTRj7q{k0=@C{^M@xPK^NmH2p^jgIpd&G}HjmB^ zEgznABtgV3ajUuM`!k6j_4mj!;Xz4ir}TlC4B)!OkX;e}r~H6CS|6ok&)l$nqOLy# z)engC;%!&II(ab<=@qPbZqddakPK#}oK26h2aX$p5R%kYvhYjH?sM%2+^K}Pj+>7F z`dP~wxB^F0l%N@>lva&tF%Ynn_Ydm_?aa8npSvlX&&Cc;ycS>B#j8qc=g(aHPOBZky}O1ioS7d4S75Yv zG->kHPvPJm-Qu>tEdD#@yH}|;d#`yiPv@`9Wm${tcv_*DGxZ_Rus%J)Ul6b0DIG@x zlFHCAN!lofnUoz>pX(kC`kHBoZf}Vi`g$IbJw)ffUO+hSZBH($?bPHwvNO}&GJN?! zU+1Z0MV!{Z$V}UlHCZZ*p`GT3nx!6KDg$A1e30?Nk0haF?vJ&dy4}kh=V6u$uj4Tf zSD^yS`xHt?+Ri;q*z1!Be&Ueg<~G|TOkOoR{?%@je8*|s1j&Q?pc|se9$5;8?;&zU z$sO~(JaBWbcQ|i!>5#lF3&Aq4EX5W)QZM~ylA8d(FV)I3mEXZKjLT9WqJ&J6lbbeA zqd~ut>$~R@iYsEj9j4P=v3a4r$Ml5`mxR&stv!2#!omfo&q@@AV{d^L z`8l10XAi##r(HD_d+DhWkY@)>I==q?Bh|JRCWaWt7$dQCp%WqFI~+^=bYy-f)v|KN zlb=z;I5D^s4IdR9A;ukeSaeRtG{a__rf0&Cjt`6sJPz=qw z2Lo4GlLaZ=DI#o3q2NXHmU+G@MyOw`T_GYsOWhw!or!V3Az%}dvX|OG%ao_$Vvi2TiTqdHkF>}hr9E(W2udL~Tp7lZI#f<#S>nj7WpB(SB8e40Kel+v?p}4YM<3;VeSpm3t zomM;yFp!~g6%ma-OcJ6*J5gbD&_j2HV{`b6*$iQvw$8At^N@YwCut&g9{Jh#fI9<+ znF;6`qFYF@$I;5?150w?cVZf}Uu=Z+uaJDa;G35uQ5;#D6^*r!isCwIum7Mf_X*I` zIGoc_luTu*w>mb_MNv1fByciwk8RLS=m##~gY_(QCX_PAh9j;i$amz046DHQy>5!w z{~A2#dk#@#*cBcTwui56%W_PQ2q4uk`YQzV|DIu-(3(B{O8lr^(+~LCNI6HG0~Z?F zr&+e#>5Zo1{XQ-Q+Q^KOUlW%Z-jO*P+NaCvdhQOVm^j|j&i~J~7XRLt#a&hu%aSCk zK$P>XZ}rPH>Ih%e7LD5VR!6S_fVjn9pvyXeU_Cy@Z7AsIKgFsq8Y>*r02^2B#&pA( zXi8WGXLL70xgP$j+mzIjK!L(ey(W|oO5NG^%Np%^$t^n?*2@l!;Rl}EdN0*`ZHO_*+7wFV8gH; zJo5DS(fU2A$*Ei>ROTq?g>fHUY18gNj=H=|W52^xU+B(E0t(=XZy?LAbn2@~kqG~l zZS<-PVv{x$j^CK`aWgl8aj8ow@`oVI9e|5>n0=hzP~qp$Hy;yS>`7c&2_r!1gkEV= znsN(!v%*5Zz-S@Z=>62|PU)I@%Id@K^=F}Lhg$(PtUHKtlr3%C(m1`d0|Eh|^3C_- z`b&0JhaB|(p#9@%Ilt&rFbMkZ6FjNUkj?0`Nt@8NjFy?Y6#Xkf3CcSX6O@(o6%K^o zBV0Nrv^Y2{gw^O)Gx!Vey1_cQlgT<=DyCEN0!#vJtAs(M7B{+EZ2X@9?$@OvW=oDs z5lNw}j27^kW@z8aB|ku87{FIRq9a0Sd3I&W-|D#;UvVD+3py&fD~`l{Oq`ZmA<09@ zn)$clE^56~L#vOR7F=`@?w6c84=Q?R!vR2U1(Cg=6z~o%C3`E!c$3@UFnpYP7wlNC zFb+x%gCOta|H0I4Er6{{H5pzSrfCp$0n4FeiLPj)=k0edMdN;u{|-nv#fL}Yfdpr9^%` zmLx;567RYJHlN;xR-{de?=h#82N0^|5T~Ri5EtBWlVMwlVfgTi0?3|dVmhv9ptcA_ zziI9sM54Ii4CHlYz<9ZO4bln~fev z1W9xEKtfxbsr>4lRaJIvx#X^B>1ccVaI&Olpce0UWSjSDeabY#RnbO4E1uKgpM#hq zb5CHd18smgG{ID`4?~&vHq2Ta@Z_mhzHOVnTD67V=-z}qE4jIC*RN$+I`t8PQsQ4x zF*7{5G}iP6wk6>`&zp)p4#)_o`^%TboVD)Gh22X7OK+J|&g^vFK}4>(nUoyE)#dF2 z0H%8(FgF!D;dbY9)6x{v>N4Bv42o)TahnThHU)O5&MVWX!OHbfV{G^d=uDca1Lo_( zYbzt{19a3U zrs8b6Tqu63E4XnIia_kZOxqjvQG_8LxA*5`f>KW4+QmMg>ysXa)CjXu@mr+Y-tTdG zKW1j{v_8_f>rdE&>g=$hr8G9>%JQlGgH(5xdd$sWR~|hIEoTPP=_0yjJHq zIGa4%qZBisl+uifXn7P=p68Tn4pfKeyg}zuUD(CkUpML!U*t%@AqU!r<}BuNQG1k+ z0PPf?k_0Lb=MC)%qJ~F7`FT!yPvlgPa3!nuA}s1_@^DMRE+r50{^qsx$-|qMD7E(x|l8$3cElk@h|q` z>myNSRm?H;tVLW^*bo*af0osFt^GLge&|8K=gK6yIyxxo-aNRnt<(%%^niH4JAjTz z>i7JyT>yJIjAqWPTJ4f?UF-<2FIw!?=N6f+4wbiO8>6M;JI?k=U**EAANXqH=dwyb z440@Q<>ycJd)!sMxe}=B&VhQWz|dspA-4KbUu)PkTk0%*=X=*y!o%V5$$+ka<_gS6 z@P#h?$x$2=7Q9Bzfg@5K`nK) zE0>$gAX?FniZ`rx3@M@~_rTk`BPHpk4c1mat&k8wdal8MwXz3xN zGu3myE$JJS7n%`DS_0ga9^s{v@l>NI_wkZ>WLQl4msWZD1EW^Xv z9=3Mwe_wBPOu$=A-v8MBAgXZogKo8vU4;Q0qU2Ivy}4$8htD9TWF$GImTogW|M12# zVW`9C&ysI3dxkPJf2})yvCCnwg}7`|HJ%mRR$9bq)eQjMPe92~hfNTn}e2xW| zdv|GZ4in!_rVEDCXGocz^N|tzHRb&bPm`qjR8DpjV)VfO}=yMQS6Q0QvFrw}0sId{5EA)oopY?V*~U zRb5ym=u&?rE`%+S&NNJzfW|nA8=P7g0R>WTsy)@V@2_L}Sq>GQQO$w~nCZjvZ+w+{VvmGHx@_9cNbL=g8eF0q4$-?$`X#acm_ztXek!XhmbBbX*&} zoON$y?q>HUvShf0pXWgq`BeN?6&2Az%uvyE6)q_9zAyUm72jgq*7?L^_Gw+BOQlIc z-l>iBV#GZ{C9$W8e9QT15K@BWp{3lZEww9 z@JT?B+H)i2Bc}A$U40uw{1C#N%x%mINljc_l_=VM=Oh1+dP!&M2(&CXRYI#(1l};` zyAOF1_I*qMBx|m(OVg&%NcT>42_1&mg1TsDb9Ct!x@jS_Q)MQ8u`_`inksROmXE-{%DGy-^UaN+96pG$HOLweWGsDn0LaM8wYCNDjeIi|C4U+ z>EGda5x=XCUgE-2AoHEt0Q3S!A}3~5+qg~Pz_dP~BqFXeo|x*d6zTdfz+qSZPdPg! zVH7d3Uu~Zw6*LwE?1zpdv9+>rjcXnBL)qsTXPqC7U@Vl+AvO&n&-!hdE zpzEUxl}Gd3OIUg=&iBsKQdM)}OKS)9!*UGFo&v;M5gs6D03|^t%>AJYbHt-vbxh6! z2Exjo{kW^vDIh0o$wRdtHAe~VsnoU6%4*>eQX_$Yt54uw3jdfablnW#FsJIoRq%eq zLt!>5HYe9S+=H!(ls^&IZp;A0C(vQ@Q_sOr^nh~5o?+H^@;?Sr0=bnX?vJ>7!x~oH z-!hx4{$6ecTVkG1>$Dk4BognRTiQk?B0*&7s*9fV`2Yxha5Oc>_q_C=F?6Bzq4>{T zmznt}@=;PK?)m58`Vbn~Rq*-~;dQD%)hfWs#$ADhEd#UxB+>=CKAzV^nNb$Pg+Vw_`PY0q;KU(L4DC(n`Iu7i$g?brsN zr`2mq^qLYG>YfOC5_Ct+Zm{#}62n}*LPTD0`fN~`@hb4+HB8K_Wt=;$>A0V8-QuUP z355i|g{@*yx^X$LrPNKP7mPF0Q(0N)k%#N}r{D;rRbPcCSWneVLsn_2-XrKb1cKV# zk@SQ$*mfkVfdCo5MMPDMmo9avQ9$}|GuS-)5gr`*z?JH7>!saSl)V6 zK6A7^&&gV(o9{EwP4Kb?r_jp9Q}LglfxJkdp z_YbRI`&8mz;(p zOL4KGb3yupsW~}y8`8D^Q$xI^*F8eG9L};+ZY>*+*lf=1aGPG98P9;@$e0dgI};UA zy;MPn10S-jrg+h95*FBsYB6n~B~+)$p_~%2n%dv|j&^UJYL6KDYA>k))W8>iitaNn z#`jNX{D)8K-`dBJTeIFMoQE(?npDPrLp6U&t8+u5MbU_dg1QwtRJGBm*V4fj zyN1-h=Mfjm>^++^kbws+RpiDx?Ux$AxP|Lw2e`$@Ktc*hj!>)2*Fe^;pws09jtgKB zg7!=~WH>DoHmD?1t$$)3>qLln<#)g!Qp&dDd6lW2h z!^#~OX=lYCVh;Io*7wvSoL4YRP+Ut7yi{CH@v00z=D}3`CjM(+PL|j*6E^((Gh;9b z5bcR$ha48^H)b}l!`H)H#8RUCDturgWi7Nrx(yZucpcXy;gsSRa0+sYd`$l8sCoL_4q*UEuTX0R48Cm zm+b&Vj?&3`Ah}C?CAz=8mEa?<92iHVl$aLg!rfS;tfJaq(9Qtg#&mc`w^Io(E{RuU z9$ZMqWs93BT~5GUy6QYlkbd+GuWn5Ge>c!8pBD?egeAGON1MsRC*mOoLBB!_5xL2J=)uct1tqY3zSTzA8yVa|jwZ)TaM2uaa$9+bkVYCfBWr<*AZLo1hO;)608@!D|e*4R`1S!P?VU?F*#~=E`jRV+OKEfXh)jt!S|dq*HCEODq+rk1(7m?C8PR(J;!@ z8y?EXwF<*Y#VWP`F~7uPOz@5|yh1ZH_a9(vCq!e~=e zdM+2Gyvg~XlU;#dd7#&EkG7pQZ=PP0g02t3!H##ItnY3DeYlR7h}T1wr&)|vM-^Uv zMDNgI7Y>Hs_!Bhg$-(l~FsKt(V8U1|6;&L2Q-w>L*UUTWutER95@R>QJ``Vm&Z}IS<@1$tc z8|a{``8hf2%Wwba+_X(!YregrZR76B?WQyKLreFD*fA3NwZ`Tb)_UlYSy>doQA?wx zc~#M)R-HWjt^Y#wAPFh!T@e7H4CI2wiak@Jno|7wN|A3LT#7rf2R##5(;cAs#v>A_H_HLw(wvI6 zO$?%pz0=(Z1=WMu0w}GTLt=KXN1wF2LK7qk_5+U@kx>k#<`i^J-eLHQOW=v1@ISm?$rLRb3nlNy&R;#uO0xHY@L)Y47XMS~h(v!k?XWBJd z%{U~Ni%ahx0n9%Cnyy>#{>4_7oA zS1z#`ymcfjApRNY@;hR@Q`xtmZAerStaIx8VQ-2*FbkJ^s%kM7bh|}Rs)I>>@|Ow9 z3ay5^KISOs1mYwp9D8D1NsYPSfyX%%uERMaw`ZyG^4Ka;75L^<`m!Obe_weYl718`KRmP zzjM$3DA#RG(bY-lu(eM&NvqB(RsBU-JgU< z3I&ynzs5ooe;~uN#vY4py)}JwcDg?Wps)hVnAwMBpbRrFsS$f2s-yiPqP6*x3_$HA zf4MBYV80H^lkfn_+rvlEW+^%1hXXAL-%1;>()547EQY|hXdIpZ+dw{z8!+v<<jPS4FsRrsLoCxgJJ}K$YtUI+#E28 z#NPS`+v+A@_6L&pCbYM?rT@9qObfS5@M=}5{s46ZKt6sBGDz`zzbTMuQrrX0nIKnpm&DjZ3=PeAL_HVho- ztqFQoT#$8KC)A{3O4e6%j+K7`v!TT@U8~n=tBq1Cy`mDC*$=%z|#w{{xrtztpGy?RO-ASB@0q zZb3)5)PJK}KxQGp!YKk8;X53r@d&G21&c4?ZjB#;QQjZf@}ie(0pWJONdp_x=Ju+) zI(y4VhK;43)BALf7gWA5J#!a0(Z_pr<19wX8!noOLRo*QuD0pF+2fe5-B>RBS^Ob7 z&nr|wWhCIv$bS~M4b)mzE;-3`Is$QS%x2!W5wLI$Coxc&1+oY<(V$-aw2A;}|8Y0pK!zj=iILB(BRs z)M<`@lsLLKqiIIzIOueR^I=DsX7@%HJyzrdfYjsnbWRzS|ySqQk39|_#AdiO8 zz6t7PADXTyD6^{TGefYoviD(4eM{@%en9ycV}pjqrs44-!C|2{ihNvJ!f6d3wY#dE z|7T=L+%n-?_wsuPDu{LGnKv(skAja3ms7hOFSWJ1T~-afdY)BO=JSxdd-by--%yDyp3AmR^A#Z*QxQpA_nRY`M%MT1rfsH8Vjr(>+tB-sqly_?L@lJ|b7x zIEROBeZc#vkB;%zJl~310dcGWJl`hprxc;AfZ@ri!##O6MS;5Z6Lc*-q~brJ^nqdf zLWIj>#Zp$p)N)AjdATF-wz#3oJ@&dnFz2l1oLmXRR6H`TqFQ8kQ5jP zKTH8|E@(OEm&h!B9S*+%;k@LCG~|xxH#j0!MQUX{xE}y|ghT)FUXc4Ep?I5NDXF9( zYbo3D+z%lY;ZBbjfM!?+Xoett;2QUYol%xmC5)`4e3VxhiA4yK`@Gm`2)zD29bfq3 zv}j=IGQ1saHa{Z9l_^L&z()`eKlfvdD)Lt2=_#WpvD{& z8&8dc>gR!v0lGg&!Ht+~na)v69#hh5RxZ~gcZ3wdG%O42OlWQu*IwaWI_}3g{i0ZmfQ5ciIM*VOD=`z z*z=NgNRBsj_H!>&9mDkw%y;Fg!1oW8S(azPRyLXGr61=fFA#4uEWLaKD@$l;y;;Zv zi0H&B*$O=-eSrtD6P~AFD>324M~eA1mpZIsky}6<)OWuY#oi&v0Lh-YziDxm-U6YX zwI6E;oLm1C|9kYJ1p4s*nhBj*68OuY=FPHO?Qp$fv3HXHgjN)Epc10H?!_6j?PU!~@`2d5!o`QN#|g z8=RAXU8KAKAe6HTz}gBB&d0>QtEcLzgh*Upg{X+iDhdFuh|}g$H5Pkc?`Tu5J3>LF z+81{2N)6oXOlxG0?vv-i=9GGn9JMzDuhd1B|Esz0jB2up)(s$_A_x{*C>DxJ7wJtw zK|T~L^cqA!3{|AJh=@w{0|lgtfFLCV=@3E$0hJ~tB(#8_L=vhPN+>xKaGiVC{d3Pc zKkm6KR@Nf#yz|bUcV^Gt&wlpiS}Z^rH5={yto+>cJ~#5N-K$&3aj3;J=i=ie!OW~y(6sS9{v0OW++(1 zuO=2H*iENV%+@^W6z56`8I~hNBW<^TmcA-%?vUD36c}$ zyPkFB-!~Fsnus(m!kA_y4L5?`vC7~aN7;=b3*aOFj6zGGJ;fJ6Uot(1hzH~!^Ffqn z#(^$xDrPsUEkfQ3%RRXc@;+;#4@-f2<&OhBL8$92!6)n<@eiMN15L&FQP%%I0~cQf z(Ur9&>L1h_M(pg&!^&vEo?Vs4r7^olChBL}$HonRv)b}()271jY+4TRItq;h7<=*A z5nfaqTrH_-L>ffNECE%fxuJ^ofI34a2}TAoo&{qE%WF3JbvW=pUY}{QofC=R zAguLw(i6)uV>bq@z0yGOo}HZXg!Ek-95R{(5KxdO9OmG)pKIbma43bWhm$OBMiPg; zSE}VyN{t!|)pHy40oci20+rDqu@skIZ(I_d+G1$Ndv!%))xq>jv!rpk`X;(r>IC{IuNpy9?lWY7 zIdx4sFWA<)xQCn(U+EYRtK$$aqK8U*j zv%M;+cUK)i2p_mI09dj6{jP%ygfQM?F+*lvGOUsR+86V${g~z~o2|8ihpv=Pfh=rL z?4TtM&Qyc3!!6hXXKge?!_55cs+ZB*4zpd@{NvVo-^FI%pCo^ont7-_|aO?Ws?{$<5i!Pb0Z`!e+{ zdC|p|14Y$p2!;X0{7MnYN}z?;G+2PZBHWd6W%~|5=>>4my+5p}!XV`c4<28=euuhY z#i!5lK_%;dkg6?`8(j=XTYm=*R; z#8jsAL)bu9F-uL-q6d}IHs$X~ZLK_el%PxO8!3l+d96R;!9LO~@j`pr`o25PRJod0 zw(Z-lORX7x`K3x&nPH%1s5hvW(W-&(-xaT6?rJ94117t(-j7oHTm1P&SFtGNRi2p)=3>3U(%wklRpAD*D1WVp=~DRfcwdu zVo+PewKeCK=y<=<^ylcG(CqU=^eA#rhV5xo^}L5=djSA|BYIK1FiL|*YtjSu(S-|@ zWQfa;E|7)p-t|f_eBBxyjrOkj3Gtl-h_lI=#54~zEbs3h(UcZY3-i*SKG5(`d+NP9 z9N5N$qM+O_Ze#;0S5AUwyg~985jPOsOiP->viQR`b1)K(i+px-z zwxf#~WaUSH#j1s?IV;L+&eP2;dIG6^zSSB+XaOdhys$w+wGMFj5kWo~onx+vp_tMG2DJ;m zk3hWT6Ft(X^e5z&Xun4KhlU8h!9x`0w6g#=g8JR{^K7L~_mj_6%CHkoh1ZSfjPP=y znq+d+5RRvY8lgyzUUjSwXd2s&pVT7wJNn(PhATTWcLAr2@XQW3D`Tf)oV7biOXfQt zDQdXBN-0i)ZaDgTgSV%J?Qge#5qy?aLx=#MkX84u`_hD&B3`c2b}?K+v?f%I!z{ z{if%}k~s*Mzq{JfZ^TRplygak8rompsb^eu++J#l7O{2YFtl_&!{l zjGcz(c|i43P6V>VwhAs7HwHEZx`m(Sa_>sEX-LrwZ?A@AP@+;=Qa4NcK_Mj&Rk3OC z*9-(-y9)w=)3rE_6ynP3rN&s5$q6!cCids2tr6XRi77ku<|@bQ3$JRP9H;H9zq8=% zN_MzEJF@JghSR5Qvx1R%W?DiiS#;JeN-bhH|U$?X4h)~sJW{cm?!dwY<;vk&WsucOIhf% z56())PBeSSJ6Q>#r-0FH)unncmO{&plujW8UK?svFE=Ci1R;DG%OM?bhdLo+2X@sc zP!0dU-LgN<|xXRhBpNFN#I)~_B{EmAnHss)o=0EcyWWHUubLBPNMl@$&Lf47)0;N z{|96(Zu?OeIV0>sNh#W{LKb$WVQ*-OyTugvdjFm0D_%{g zvCH_A9$Q}P%1pA}(T?}xGZii0sQ}!fZJd&;tsHb3SfVw;qV6DU0XNZmQ}ydBuGYfK zVS2qo2I`Q(_hvz?bE42Eq{OL&VsV&1WTz5$v^do))tKRuS_1eN0?Ak;;R%Zbvg3es zl-`2}R2AG)Xo~|t=pF*E5YfE?swiz1OO@r)Svp4KGD6i#C*N^a=JVCI3c4)YR|BdQ z6vx+2n|PxRuhL0tH6S&%MNypR(d-ax4I>Ol(2M}IKDr={K5~yv7aV%#>}!jeTh?to za)@N+YTi7GVp}vxpsJyRJMRIHB!l5`qJp$-o7@I>aAq|7@`jC~?Kn>K5R&ZAnfp7W zm;>sPg{h$plRx=oQkKZy^D6jE9g6L(wy*mAV7qVg@D6n#&o>OyP~<2vm!mXh>nRlh zNKLc>vWQb}mhJYZOYOD0FVW?Fo6wz2wFL;N&YYTm z-+_t)q>U9p7xD6rT#Sm;wvDHaRweD%uT0VR*=FN+mz^tL1JSv%}fwv_uc1YHoa7q*_$n>s`sHcw24!v{%I(Lb5O!`;Uon+J85 zD35*eaC|k-XT2Tmp;FYN{aFoTX;h_(D^fp|D)OLoKyUl7KI+1EYq(1t*GvKap(U|z_fEL(kb9h_g;(FKQwtS2@& zE0yWZs|#9|3B|^f>ubb}s3St3fwPO!h_XX|O|9a~aYkcQHql3>*Nlm`}v~-?T;`07;iMmI0vjga=S~ypU@c}L0 zO(Mp3aqTuvNzykwY(`~V(d>(yYtNVS)(6pz{h7W*YjoDJK)xd`y}WigsRt^HdZl?Z z_6rea!c2p_tS35U#5*)4T+z2RKEsPxiNzQ_GY1yKBr))ddsB_&@D_LTk);$aJT)L) z2)A~4haELoDQ)G%)?;f7C!+46SugOtOz0G#^qrY8o4gAP?yqI_zGrmpHS=P#floPv z1ksSFr!w6}v?89m$tE}p$gtWYe)es2kUl-UHR&PLiBQ9)L{Svg1R~6i4V)43+$Sq` z%x?1l{U(aNJLh@G2>R){#p^>M8!YmvsH)3bL2)ZKDT>6En_W0;wxM=>{F21cl+S4# zp*ag2XtVIA#Td5Tu^Sd&GJh06|5YF0oH=lYAS1cG5%8MX%a)&bF+BG}A`0ns+Fv|_ zFFi4a=J5Q1mlBiZWnUhta%`i`v6TzM@XyMBSOP9DZ#sX9d&j)k-M2wcJ38R@XiY)) zq*mu#3gOb^yjn%Fo9up*?q~05#41c`fm%6-o4nd9svgD^?HxayBd94J8<#z@iVov4zp&}PEE}7R%4jG`? zbDiT~+&Z)RD+TlX=7f^?19;&t5z`If;@^T-cgOHv!iv>?zfOUdrjB?p$b;ONe@p5- z7Kp#BFz*6$i66G^iop}JOz)J2yj@2#d*$)3-g&+(xbre|WgrgIXF3_bNV*P2a4gWF zAdm(9hStA*}~k7I~`_V!S^7Z`zH_(bf; zGA%2|P=t?J&QG405|#6TMbjW{+)7NgOPIU5Fp1YM!thMY@s0Ax9hvvxO8*=wlaZW%L;_B4zh1LY7xD@o z41fDrNYFoiWZ>okA^1^%dWSbyy$!B>>_E}x#L`n6fG#YJT|qU=+2jC{|-v6 z%^aUR)#5(O^2qm*jiGCrsL{GfvJF42*%!zKb}Oe82O7*UwLYWj#UF*qsr+ruuQIXR zv99|UGN3s3r$tStTuZf#5~wMWJAqv}JTZ=0Le4`>$WCO`FrL!{_v&hD@I0}UotFjA zQpn>16+Ni=@=p%iRv6#3`Gzp#-6`x1yOOu=q+3Mv!`p@MMt-=G+s#0}^a#&v(&wV4 zI_FZV;bzv$(Qo9s$Q>LOZn*g@$!Rsl#9*H9(Zuc}wu$chMA&9tgnP=(-^o1JtOt5N z-OgMtW_YU!>AA7ui=DPhIPNvJ`aP1s)L$LJv;d!NRtlP9CtAo4U2Ex`jvYG|A7uS} z-CiE5szY1h`_)}-+R@S!By5>fHE}sWF}7rPI^y^5O^5Zh75(cgzc3dA^#(CX@*E1i zdXst5<&IA4dmG*;cN$;!IOWu;-8VofK7M#N5C0(9?7fY4Po?)j1Nh}^y{>(cVu0{_NUm3lawj6Tur;Dbx z(V2TXW)HT`{W+S#a!)A89?~ObyI5#&qWrtE^O8*>tE|7zkS=-W{x zcVQop*R);-@>HV33M-`hk?hxU4VT01BE0kdlcmX#A%ShF$%m6yTMpqj59mB@etqLd zcY51v*Q1VM0~v^;h@+2A?^jfsfQVdgZ_Zls-DrrQ?XWq<Bm) zJjRYk6$o&ha%Wx>nVigDJUbcjNEEWht(~K1_A_8l*X|vn|4%>3STUI0gE4bo*}RYU zTdD)A7B2tui-nixcT*M7v^`D$Yu%!xg_^PbyDW5*5g&h8-e9y=2dzs%Yt=_DDC#il zKU?^#v8xVq-d(fU&b|#Vfd?r~q+2b1Va&hERgUk;^j?bt-5p$j)qs?W{TQ+SG|n8D z{RboR?PDEXAZzV;ZsBlpjd&BAMfk2fGK~x*IZwX(SI&>)I?pcc3f+duRmmy8mZt4fhQ5-vBr8Pm4)*L z!Se|vYJ7VGI-APq|HhlK-4*uqh?B9HG|!U4WMfo!vHkUStE4!MjGk~BM$4PYTheirY(4o( ztb7COaJ##7;4Sl_SU=}y&)968BX#LZ$va9>Ye5H4X6^hMEII5VOy*2d2nwRfXr>PF z(6{;kYeh&BaU%7RjN%<_p*Cr;v51cyhUJ}}N~BYJqj$b9vt%rG>?ZrDkSlLoJz|xl zlF$})$MxTcb85sBD8J{+BWG_<#+T#wrK?E5wai&Uu8?vpUeGsKH?GIuA*F_z#@L@6z>wm3XN|dd&aI@NEr# zcs>W3 zUGA>`yUbrtMLJJgvSePew0|S_T#bMIiqTkCrb08DZDwXAr=z*IXf8~dMU^Q~U67Qn zyrCu9W_R840qmdi_M*Ao>KqK)?O&NCE>_G>cxY`_S;@fQyV>e z2oeH0e7Rz+>Wdsvb>2f5U2d1RV$Opc81D0}{h6bVY@>fysQ%AY-Ce~ijpsi2&Wa78 z@s^>(XiWFxDC)n30jfh+Gb{%v;n{!Eg-vgB?M>w^k)$`e^s>vRj3$#O={I9Q&49OcQ#tnslXN^G6*1mxG&n}ekOuyeQl?4% zN&SA#O%W!{RYDr_*NP%*T_ozl72zpyUE}hz?0*-v1^nX!>*u~x*V|TwTi{-N@hbsp z3TyfblIOP+)ilm7Vg5OjUQ;O_Gf{G4^(8R<;&$9_(vu=9e$QPz)1}g0U(xCFHITjA z$mgywe7{k!kYNK_U&nE!Y2^T3bul+|u!l`p>9f?2+y#@9q0 zD^Vt(MlAEepZ!j$RT60f5r}^^CDaZn^B+Oq%;U)ble+z`LbpHyO1zsoe*;8f%8IjQl2{x-@x?73cI+YXr)1 z)JXV8t%zl&5dNr3lnApetI)wrwyk69!R$_}Nr6t)!tlhJz!we};H1P2A=Op=eya@ps;rX(%>4igVbUJ0>~fUiNk)r(Pvb zAb*8{a(rr{~+o?Ya5-Q*p1NfL&HAz4T9#SiFv?^sgMI%%mz6 zCZjwI6YObzm`)pfFuTvkf7qTqMQmP$XNV>otIRW`6peE6k&_(U(Sh1T~~*uY2^ru6%*4IOzB#>bZwK2{!p5($TS2*W7!GmG=G? zgT(q8>Gs6H6-+_>O|Sv;Ua~R_iDlPwOBcM)&pzN}!D6sYUsgDCJk$cX>rT6Qu}X`9 zWH;6krj~a$smzHlKRW{}sYSgh6|%|gf>gdH>HdidJFkpA{DmmJ5Zdz2o$_m5DVQ#K zU-Xs@Z`1pM-ixA3sfHnE+Z6kOovtseVwDUea9B8f%#8%8J^slaqM5q9MM5Met-4S4 zDLaMouHSl&e#hcqoZvsiLVq!!a?$$U!q4Z24qusHW6>#+`d4Id))iKJW{2kZ1-u`( zH0p1MP|)>YJsvTQ$T|Kg%V6iw=QgaGxIHCb+3A9&5#ihX`yvtiu| z=+}PyaOOjCfbJlsx<(ponP@D-?Cf8!P!&0Qs_DP=c}oryzfVVLHyg->GhkA~E5?_Ry0FOq0Jq{> AMF0Q* literal 29456 zcmeFZc~nzp+cz4Aiq=MLt)h&N?W5F+fFiSi)e5x=IFN)nAPPc&pcv*5S~a$np)HCa z0xHUo9TMg_B$i54hKRTs0!cuW;D#h1hG;^cLpKhF8%tZ%QSEcU+l zz3<@~e%J51Zhk%P>5l%?;8PR|g+B7b_a{-PPZCk66{lCP0(VAo@6LiBt4<$v{~r7V z*M~!`6!2qB><_+iD3tM4?Z0K&ujkI9Q2#(3`Tjfa#M?81q_#5&f#M}xLQBr?D_37G zL_Ib5?)Zl5>Z`xitp29tmjhcqaSJ){P7nF!<+_Zg<%_XK;aiLkplg0vT>jfHUlpWZ zKCt13GpB5aI}BEDEA&(KjQ&G1+p zUVa5>ihjo)xusFjWX0z*YpWo>({Q}xnGKH7816ZNXC)`fU1uIg(V? zph&(@mBgmb*ZE3X{nRpfkCU%X*lS6iq~Mt?k#qdiE!B>} z*5J;Gq5&mak=ek*WHYmh&l_`pPGV7=LTdR5^-7I>xY@PksBf$jm!T#lWo1zbFmiR$ zcQx+q7-AhQQ>6KIn2U;U9X*UfRe3BALZyF5d~;^01KxS6j`D2ky=54F9brE`*;mi9 zd3F@BKyQ;4QF%{O%(97i^-biIlm8C)UnUI05Mfx~7442#xlU|1kh(Z({@AGuvWieW zrTVgS&)E-|vxStBbwTmtfjQ#R>ed!qKdaOzD*xuWp^WVYsPrp)FX^L#U4(d6%!S44 zyZLE{NYhW|WX6Bh$72%cMS>03pwTMq3`8@t?LJUAFb98aMz*B255?wGyJO5u4n})0 zmM%ZBFOFzR8dlN7`$m0Y%3O2W&s|*9AWk$&agA&fJUy6EUDQGL$Rf%+11$}mDGFr0 zVT>mJ2q~>YH61yfasCp5qs`Npwu>1{t&S5L7%XVpP@1Q_?+I_d7r{Z(QG0}U?Qbi( zE6}nLa!#866~$moB2z|q-^^(BEVyPS7TF|AUpczHMjg< zG`xIw!qj?k8CayrGy5+o{9v+sw%ywNwCLxP&#Bv&HCSu!`TH$VgC`_M(AxxIG5o5P z58Xmj@3tK2=Zy)hmBY3pLZR|5e~2DN5uWa;C$f^}5AD4+`0D+MR@}Zti=_)W)fS8x z8)Ru{H$&azf#6dlELaq?NBFhf(hcu^7PU5+mntroe3Em1u(tKmQmgu5^oz8&Uy>M6 z6bHmkBf7#RzO~L!KP~44md>mIL*>|3q7$>33tlEmFISPX2zkzlca(xBas8{>1|#w+ z?4uvQb1%psl~B`@pgrw=>dC1&w`H;-By*%((uKC(X}1?jS45N$+83<2emr_m&iTj6 zThx5If2RBj)psEK_FKMa@1uJB$iTSt=|cJLG&_GV$~4~olotyLcIW1=mDpMig-Na& z%t|9xzgq8I95qczbYP6LTUVfKIpnn)!5D)*2UfLVmRRs?G%I+LQR1=-Us$|jOaMQu z{a%4{?VG(J3q)^wz7=h4#r>|IY`0}P(Aemi(FfTht|c>>%%_WG7{aO44OvdVJz}}=yj2@}TbnYv|B5}1|+=DyfLiHKg>yyuVbiR^b`8N9f?r@mslGdj<&ZlEJl!xSzXt9(x9UyD@y7I6Agy4z|N5{!U26CEr`G z347Q1vPTD|>)OL!q(S*lT=zw$FiE{kbfOm+pyT^hv4%ZV!HmsqZc12`(NvM0V_Il` zWrS09x+2A0ZPNZ-fms%Rlx!Hf0>$01_T36px9FN1cS4RWb{uAxDi>`#oho4YLDxR3 zl(=0J8)o85CUX4IB$05#ndq~%`IpW1jh>@Z56E9WiGOmY^6>Cw{VXtKZvNr!A#kxYmF-F(x)hqhPLKuI$J3?7k`F|-LCT=swny7lR3*{3w9B5!UuM3 z&m6M0>2toMZ!R%@Qm@o#x}@NCtMV4ttll84XlMhC5tZUT@*A|z74JL$-f_CY zabIn!$H1)}!Nymw6E4lvH+*`HE3`Y?nw^=&WM|G1!iCm&$b>c7Y#Pz@Vf@|Ad&zIn>x{v$0Q5LtEK4!<3XmsD+Xo?oABSDdT(@n%sF;=!RDm z$J2ZG(e>9kUj?2}cTLTOP4i8pq|!Y-gqm|sbG0*n^U?xvL6G8V{8)?shl#$q(81fP zH+^$_dFwKihN7Ks;hdt9de*BvE$qS~`&Nwa3wI z!+orj9-o^YS+b#rc(Uj*+0G&1Jaly1X!O&$_~*r0Su(-9y9-#YB|8!`TID&9ZBMwk zI367oDwO3rHMZmea~pH8@vR@LZrB1o{|yE299`quKJM(RCkmLeTMvB&bOlu!?+GQe zu?HN*?6Vg&2RhL70adcnE1SQ_aTF8YKVA5-V5#nKAlHLY|2$3de5K`?Sk(DM-ir-&l=J%*Jj{5m!S6;#MjZ15h}tgAHF~g! z>f5d77YM0VN=y^u#@ z_I=>ltc;%qUS|3wu%C@v3Pqxe1c3?8xei9fRQduNVZLXNW@~S>((sZbGVk*ip|VoD zmG{#X5c;7eIUZ+eSWg!282p!d!}@H_W*X8tgduT;$ZLhtozA{(9sn$F{|5yMjwU5V z8wt$eHpZ-e<+?9IRXd&G02cd)PZMzmg?f!G0UhVj>>N9KL_&uLqZKCDPb<192AOgi zW52)VGE!1vD~jJzpN;P~tCJI|2IQ@8Ws3(4^`> zqaRLac6K)1R~Gh7WG)vv!-R$tBTpMnEhEAmet~|$ts}|Hh&@sphm*^NgBWJv+wi2n zHV+CAo7=BbCQD1^@i7xNe-LdV70tFm#6*bCJ?fItNY0TwGJI#4BDmGg%)hr@`)%vG z{$)h8^7sSta5yn zKgIbld7^6e2>fe7h64amKdec_?@3zh+?|$NoOiD?0(j}R@CEFWZDhjWZY23-xny`c z!_Gs}YB<0Xln<~+?@?(ozkab(*^~|`eYX3nvC3_~E3=UGkixe6Z&tZdg*<`l8_!EN z(%ik2LC-fJnrL|wHr&qBaF${JKskU%u$(&B|p+ls&8q({itrU2#I9rU{#Ey4A{=Kv~X{`ynF3@AtBLTmhWl=FZrJe zAmH?PCxc|A7y7CF>*+x!$@ecELVzD*l`QDLo{ZG48E4y2OjCE%Xbmhms5 z-RpH)73m(xapUsv-kW?*Mck3Ctz<{X?pp3wzKg{;|8Y z?}2OP%W0?G#X0U=eM`EQoj|3BcH3c=%37*IqAL?HUKO5#&MhiG)*9_H1Isri_FM97 z)-yObVw!)!Xqlz{9;cPIAdbF*ZaBk<*bs59`;^7tCAILpiTUq9}Ki71ZJOY`O`K%u2rC&ZP^? zyxC1tI-6^Mx{aAUeD9hMcDe9_>LO%^9T~A&k+4gTW=dF{Wa_OJp|{CSO&%9{`sX*R zenaGI>Do0*f8|i%*!B!=$2(m+#AXt-|f)<9`ywKb~tgl@X&cQ}a#X=S$%<-JcP@K9F4cOIZ2hL?w zgg(w}NLAT=CqMD}XC{)91I+bS`Zqf4l z*|1fX{fQ^#2|Zz}WR^HPhQ;lNJ}4CTmJ^0pXtdOb48vtRvb`W_U|~~wi&hr@PC_s3 zja#_4b{P==6vNyZ$K%eYAJzj+`FU%bb?_?L+vd1>!iA{(6{z&r)lf*%6&W)oFp#ya ziku>^L00&`TN(q0*E1gNQP+>+xqns4<_5(+DZLEk?QtF2)S<&tx=u z@-<@ty8vu)2%GKYm=Ab=fc#B(hR9 zKJl?DPh*Fu1=nbUw&o*ahRHxBFI#J)>ZH+9<&PcWVts5`%rmJW)abz{#}>v966Mxo zWJq1#+A< z65G&ooH8klAW>D2j11{}6tNRuOtKpdq*-c0N5*)Hx8ewAEh_eyl_6kDCMOEaRFu&$ zww>of<5p+IqrSNjyEm;DD*cJ`w@@haoz{s711f{|g9-MjK6)shb%S{`uI!#PyiY%y z3S9PsmdFB2c@I4m9 z%rM0A7(Yqm`(sPdu>TH8P@uYN8x9Q=;8i>tU*UAzIeOKE#4xilqnA*wp3y3G)r#Jj z_cQZK-%td<~N!^d?t_3`iB;3Hfyt!lC0SZ+3(R z1+fxqfbp2o5>@G;eI%MIgKb$V>RER z?R=cb+;5ko#>)Qzpnm#?(|msQ!(BEL}d5{@NS&cwz`&k$v&iO zJ5`HUkpVcIX4hR|0p|Xd)>q|aQz|w0`KQ!pNtwI(#V6E#uii(%?H_IcTN-<=7h2~X zZrQQ{c)Hj~xdv>%X}PrCvp@iU4Ox2dSzm430}Nw_FS?l08*p)3R}@dnf2NlV-K5DP zR!6fRBnOhx>i#hi2qv1O#KZ?F9{fX4D9_N~y--_Z? zKl)6#)e2ZF)TE36_e0@W#krtHt7VH{rh^1N zC;#P_w{Hhh0IvVXH`0gg87-mmU9cf!>8+0=7Vl4BJpyZCWhlnz(Q5SrR|AKaq5iQ$ z*QW}}OieB@II6;@zfan6yy%`r|mH?*80$&r3|7jzSQ(>SIYg}VCJ7eK2y z)rg*f#zgsSvxI?T-EFxiznL^NxM7E>UE`0-;;GvW!Z_Mys4D9PuLV5+eh-V5?X954 zV}O;e?5%Ja-Jq0Knus=hiH~!6u)NCLyiYp{r-{#V)bn=s6bO+SYOo@lI_XeeiW|vK zUV#v41vo`TOn^F$)Q{~5MWr{_d=C~mmhMoQ><4vO2b{eW4{X4P@qdx#kjxv&X#;AQ8iF9ezcf}wWQDxW$Vdwl{!ayBmG$T@P z=*aRQpM%;BAM>ecZHejd=);ChYQ`KTE`yOis)AD)DW~OLB`(ao!__FK|Lzu&_9GY2 zT&6=K@q*NP`u50UyGDcAcCwqz@|k}wlYKT5bWw|5VlxtZ&QMb2Xv4ZB|3gDgne))K z9o&JjPwd^a%7zLKpW(k6)jZKSju^$AZIIy_@as_SD|Co+CPU@5fb%vDjFUn+YGYbX zsgZ0MnlOiDiD!RY5$vn$U~D$9GC5uz4ezY%9dKr}d?$Z}yv`A)u|kZ6)$?X5XBaAL z6Rvg3cCAwXxeV37^BB;oRv+xo8XpcDiSwh>!2JVtDThcm&=_k2`T3z`}SXd1u$H+qq>OTBPI@0m>GhCo}QEs?dKsh3>T3icEFsBc>hg1Ob zBcu10GlIws<0FMcp6D{FswA!U(o((r6r2N%?4#$`#bc$6C-aSrw3d(sY15KS@&h~{ zvPu_?oLyyk^d;5Us8!9l*DxV7gMz=0ay?=AnVSpH81#CCUy^P?UK$8Xv7>*&;uYsre ze709)m!0KG&I=7}de{V-7&*sd6i^V3%m7YL0k`hR=Fwv6s}Pj^z14|gqG&3yl^|o- zq_Nu5@bkzaV}E$~rzCvU5`nbQn$B zmQ)8N<%RD4t$+?*r4xzr^=OK9ptm}TB)5r<@l&6GD26U1v$ZSp_SpG`?%dx3FHJZz z9W@)c!~TWV2GiBn6)|F+9tJ8)q37GRB-$^|3@?itMZz(EM}7Dk{i8yG z_KJ13qvglOiWsb*e0)**P(HreSiDRziR<1*P()6woxhh4k@}kpizj);H={L zAWcPl9+M!?I5Kk7Kq^^YmC-%+I`5(wu>ceJCQlu536Y3*!Nu_Z8>u=!|P~$Ov zK#=oAao5Vct;;OA_sNxv(AEsCXF(Z`VALn|mL!eLma1*<0+Xb*FnP20*Btul#PDFn zfCp#-!t*=h!tLSSlxI~9QX%4(GcN`#LJXFb{P`!q?3~ZB0j=!crk0OW2fd;I#(-%& z+|AuJ-=MPg>yU(f4LQ1I8RrI27@5-AgjZt#UO*k#J|F*}Cd6A}zEr-5SRJc4x#7**s#@D9v00nmee052Oue!fL&nuLDbD5hlATU}xKLHH4 zT}3a`1TScCWVM`9`?^b1xsDY7l6OQrx%+0Y00+*y|=}uD53>(6%vF>ZJyKJ33E=Aaw{^ zdVmbN{t^TS86(=@K$}s{?NA%KC{mjo)1JE6Raitf?UBjF-ufucAAbQXH&i>dJZsti zB^c-yt=ORw+bw>r-sj?{7TlMqY2w~?bAU^CEEg8e>0293|F$*j6BK80^mL7Dc!9b% zVs#?18gmGR+Mt8AxAzWHNIG?@iP)tz2a)nj^igVBsq(m?XhnL-WvyxAq^2gKl|^idb`y%wx|2vNh?7UgbZ-^2xV2tMZpT?G3b7vE1Un2|DL zoX-|twMoS)zpqd5BrQX^U!8ykZBpak|0rJzN0iLB(nheBMRg9xokOk?MxXkkNm`;M z{SDBB^w1}91}>_$#+HT6(L@|M>AA*iGC&_ywV2jA9@k+uqBPAhb&UWtO#kg^{<>wB z=G(x)W6hf*LH1f)ydI|@=6P5*lx=&aetKVUwD!6IaDs-on^+tOvub!tU=kCilb9FV zHq8F@g*HCm-kP?fUut{{Kc-X`;hmx66Y}A{W>+So=J#)xrJsE}k1jS2s>yUI!{Q6y zIh~AY*)euy`#%BD%{px6?Zt5EkIZut3jLkycJZWu7vzaR_?YcCQksB8HY}*%r zz9>2j@H&c{eiRZxMS*1Z4#%W2tUgu-oXh)(Rj6PCyIV7&#-21;@r+k-$ZqqzkNEyI zh-`sy-fc;(5lLIrT#p4@ch%<2-8}&G1I24jy;#GR*s26!9+a%*AECdG1;uXIHPw*J zz>yO=YK|{i&Hv`JMTg2z<~Q}R`ZxvDPW){FPZZd9?sOYH%U9i{^UHCp2O3)#4hob*gAz zL|l^m_d?6KQ-DZ|p9DlvsW$Nhf~?F5+7dRf@ApQdatoSEki^hAA%s-?3EZ?508XEK zz=eX3_rHdDm`12*aKo#h`j(LT#$+#f7u-X`S(dv^evGU@vvpk`;1a{!@Fq7>J(ZNq zZg_leXzRzh+dCSSw_6R{yZx(2Et&AK>+2uq_y4aOlKhT5GmIUxw>;)#AhQMFIQbi- z1Xj@~kVR34TsQNqHMO56dNDPJ~f(?Ibz9aS9h#BR=grAW2@o8mu6Vg0Bh+d z(ZpuG+)G=vP7QT^YunmtCX8Bm)Z>!Q@{s?$Ze6lN%WB;=ezQz=EGnT>@)N?w4$@5c zRs{*U7Ud=<3bD@7ogh05E+b4s>na(V#^aUzZqt5T{iA%wxM|>znZK!nQ!l&2v;}^s zfgve?zpE4UlUPYkmC3Okw;lloXANuMJe-X)Wm;6UpOg@rmI<5_N{?yVqdJR59}?Cw zqg-tw<5Eezt0dS4*J#zl#XtTw_&8>pMBlHniSy4EzRQWH)E#cU5uHD1wi(zK6zcf$ zpxnQA!mlf-wWbwCKI${_hfm`0^ccs;`A%dKZB0t>>SdK)Iwb6mpAFC3{!vf2kDWcT z{~mmNL4fYEq7V7ANEc(yvV}deEJ)~LFnwZvR}w>q0Z`Y|6Lt)&{lYFzy6xR?)(G$X z%;683zBwWakdth`rWyB5FHE-?$_{lgl3KiXMf+tZ(jb%=Y&r27IA$_~iDM_r_v%_5I)e{W7 zBfu*lD=3x~`=JwMIQ5%b^CH&d+$Gvl?L!|CC>3W-rJPsVxOGqNxFeNe=>0tDrQRe4TF@)nHQRCu&{7(TbM3v*TpoagO2XI z?IXDBSQ5g5b4q6v)^W7(KN#gwJgauwOyzh&&C9pQUGy?(HijaMwQd#h&vb(nev;0v zbGid6l``Y~{v@Z7zL{Kj#Ob}5JoxHEb#cUmi1z>;GPhUDX9Ik<_fo=+Fo#PDCHx6& z6J|fz_i6=f44r}qwse;21BtJWk>5l90BV^7DX>hYh6W-F?Q(FsXJYa)TlV(9TSSTg zTvwNfnF6a&`JfxmxqjPh+oY#{&%wNhx(F@*VaoT-?s}pFGnf0C$(8Jt9ffW@OI6K^ zV_yFi!kq?qvvhCT=S4%HHVxZbS>)oNfsnebuvP^CC!L4kq%`);71%{I5_%?F4d87R zy6qpLf*i8Q-m(2$PxIXK&j>4oUKv?3yAnX@flFt*6xmsWjQW)EsrTO!dIMb?+ov-k zb(YP3NB6g5>Q_^VyjyWHLt}hgPcsWte*DX_arT6O1hQ*(mX~jwlvFa|#BfOHoO%z^ zap1D52cMlVgvcGY;+RIpOEHi&Nr7d%Ix2A1G#!*3%d-OICr*R6Q*fk*uihIP4!j~` z~i)Nv7P3Po(f9q*No!`8{s%Kl51aLz=z=NvQ7MobZTSyf2Umm5RtT%RHeU?X{+eFW zNsp<~nKI70jXEm>2>p+igY)ODL4&qIX3UAgpu(oiG+v>XgRTqrVqd*B5yrW!<-@iG z{f{pli^x5?Z!ti=-Z;5Q7ie>AyCYZ0c0=J=CX|NcWcdQJ3;tw;s1GK0r`+K;mYv5)u#>R0pl5r1=(^6EeIRPbY!+j zKI7^ZAUM<6+Ccm$r`oe+Al1x(He?OK_USTEcg5WqmvPY}TXEc96oA433A1hJ~r&@sd zWCi~hH_KUP&rm{urp7~Q6^_v!1qE1MKET=PPS4G&QB?;(ZbPHZZJ_$Kg2Vl@Y+vfa zhg8zl-F%n(Eve5nE^&;tApiA`e?#0&gS7VN3(H6Fx9cbgfMGyor7ah3jn&4DdD%`jCXYSzf|r$}fH*N!Ij z7o@zH^aXjtOi0gLaeF^y@xCkp!z?&a2>7v6E{?+@MzX|KNuIx@0XM#m2?%^qRVpRW zrlX%P@L{|cKPW(O@uGAUTwo?%=Z&xQynTpe-kF4EP7hzR02!-Z6X9&Lc(jy_e^h}M zopCxYh}6bBMmu{W-;c%t6dbZT*mZFB=i7r9@rOnNSrO00UGR~TI4*8U82MQByYJ?% zgSx=y(G$4L&_%UB@~I2ODq>0L0Ix*F{`2!$lkd{%V55*9mZf^O^_CQ0BMO6|3LA#dZvBZ0IBM%0;^dZ#$7L zN=4zvzjj}xi<*XEgg&|gF19`Pi%;|L+#Ia1rT4WypX_tO?*Q;`bz=5E@aNY;)QfJ|umr``vFNozd^7KHdNmz3~A7AX8}$ z0UKp$V(iLpQGQAGjL4(1ULGd&7TY?eaqr#$hTZ-CHOR~RrUgjopmIm(%Z2)NjuT^b z2r%7_iEpTzxEK+J)z~6@)qIWS>fbM2D4AdvYvlx7?wRuCLx;{skQ9gjIBpV+9o^)> z_lMTo(w*by5k`(}sDf_cJ3k7lnDEvmjylUR#OW~zlbO6<8fulpzCj1`;?Xb^UuHha^N~`)lWzN*sXrivg~@Xol{4CT-fA{bIL+DI2S_aDy6J;QN3$;d`%cHrF}jS8g&U2BwmR# zc4(+3&BP?i1P8QL1;Hs!54M>(CJkKau0685uWE{IC|#GTpxTfu1xJg!XgG`_Ca+Ib zy{VU^8PXX^&fXlqdm*C-<+*(e6KLz$Y+Agxh~934=#VyNS)Mm1<@-bF{x^%yw?5l2 zl}0$o{P^VY{pCWUcdMJkScN>M8J`M#Fg~3WMv_K#>DI)y;7H}e*2emH-&SMzkm0~y zjhlQ9$vC0PK-z0}X_Gjpp{O03X4B&7(W_*yjr~|5bU9iF^Z2TZgMzL(Lo5>t zdhv>wrL)uBcaMB>g=tDKb-o)HvniomYQuMF%TDvE^z>U8b%(OeQ>356OfR~lw(H;+ zk8j7wk9<@y8y&^iJ?-?r*p<)3e3RE{E z?>aiwCURM2(tv*uYC3Q z@^&=mP9K8o?7GcC(bWpLcTEu`NDxdXKm3#|bso_4kZ(^na{2515)Nx$;%>i*kel0 zr-`PcuP=2U*0Z~Ovr*VpEqTd?{4@AmOt|C$FCv$v_xs{+dOm}Gqh-nmI{<5% zT%rz90fP&!nVZ|cES2H?KTVXuRSl0XECmV3FMwY-cO@?K>J&cz2NE>D5!BWEGce*W zv39G|qr*=wlbzV;$iu$lq3upU$zdHmkJ{_$ylZ}+CKCCvU)Qjj$9+^DIp4-^GU-1) z@o=O4Abwx>OZD58y}D0YVVr0@8#=4?IIB$d+208m{1)S-#=bmOp%@)1ZdL>-yDtgQ z@?yv7gW3`1Rh%-oa4#o3aP`UYXMnjc9sKE=>J^VX{4tPAfF`))v#Erv^1 zcGQ|k&Ho)ZTEGPPH zhV!6Qta{tf{^XethM5g4hp6ERORTF8IqfB^6XCdUzh$xzINIRnu4!*~`i0Sr3!<|O zR;A-z> zAUWLO&SitLxU?EamXd$$TixQ=)*o5bhJ##A2A=;}JoA-}taM(hLEDT^N<^Gsjf%U+Y8ym3POs#QSrnAQU>#Nq0>2U~OX+VBPhQTV}+@Hc8Lcxt(oV2LLv=+z73U0Io;bct%m zM+$<|U{#T>=n9n-c4Zar8EAiA6WZFzcRyCH3nvEiY=0&?_$E`Ld zv)xZXqKo4G>-$xytWmi#R^E9+mE4uJ+grhK@irc@x}*?xDfgEu|GNA!-U$9HtD*=? zt^_E)4xsqTaNjQtV-h-46od{6qQDlHdPY3{)w77SZ9eLxbs}zJ6gg57jRVOwLy$8E zs_htchT|lCxs|2OUja?uQ=!Wp0nG96V=#}3`%xEBp{&XVYF7b1*f_`H%&YoSjvr&T z+}fgaMKKfzZl3XbxaVUhp}*>Eb-F`+(bl$!APg(~i!0hEs481MgIO24~nS7jdO#T>|C=suR(#Y@L zvq23>R^fq6Z4=bYqn}34NZOD`a3*aUL-8i3T%2iv=OHGJ$xN%_lTb{Z=yLYzeKDJ* zx+r&o``|)|V&D`nLwevwS{W!bi$6B?@q-POM?Pu0W>G2hb*|esLrx@hP7Q5?C!lO> zaixjV_@HiTL)ab0psO&_j~y9;X)MJmnStDbJC1d}U**Hk|_O-SmMK!mnv68}o;=&Rtn*FS!|f6tZ4F zOVU0@`Gh$ylYIvgPk2UJ>TvZ@NQ~oEx_Iw4I{xuF{Tz6XgC=e|E3%LXxB$AguI?M% zn+rtnWKXCB=gp(J0Mq~KoIjIk%<<7aOpktjU~o)5-ev&4*uQ=U?a&G1Sx)!B3xdT1|Xw+TUa9k@O2Y9^`OhSb;kbHXc6|FuV`*Uj>r>)hqWAA5c;c3I=0#AiqR>S)=dn?IpZ3xI7(B#)9PdAWp&T4Y(^R19(Y;J2a%aj;_#7X(7ambVA+= zuQ`>Rxyx>4tG>-Y-$(5R>74nQT=ZZS(Kgj|^n{v;RG^RA-X4f0r(Edp7&MSr65g96 zzeY2_A_ZH6(%n^_({Js5|4@d+!w>Zmg_oca>{8RrqRfdiU-Myg;!jBnt)MqHEykNw ze}h=l@NAYWL107oY}4ks?Lai5{FV#X_)LF+PM~{6`lM7L58)KU7_0f8`zEHnuS&)H zuiB217w;oXh-h=UdHq&nSD+XR1p0bZ>6^_ZYG1TyNs1+xfc)}ZI1n6+1ggXd5EsPA$-=p^gW3(V(2b*c=o_#XmMp5 zXMYOjsHimv)+~K7`3w<+h8Eev2>A5mwe*DL>n@hgJb*{sM^1op90eUjO&3ikT=-Tc z3J;j#EjA7|Mpb>@Yamg0XU8-p@!JEuooOMzQjOv8GRzjx$w>b{ZytOfCZFtExKH)< zaL3}x<1rvf3?c$TZdjt<{r5388LS1RR8fESfR;R52M|Q&`+*Argl_wCr$r0~H zf3!OT_9&e+S9T9ol^mYEz$;G!WlSB)7G{O;L}9;GmqH4&+{muat0otj4RutlMdbwW z1+fW#p8{xtZar#l8+|Lw#U62&5lZZ1ezBN?nJxpD%?MP zFdYWL^Zd*z^iR^mFv*P;Bf7l;y%-^Im*`UVG)5OFw3mV@mKc3!Ac zxOxTh7Jj1UAHPbRVy9=GUS(+|V+4S548MlfmJgq*r9R}a7c%mPc3>^5ZiD@Q{LdA_ zx%#!T)<2e3+g?uBANn-LhfEt!j`x)_;Uz}e-Q*wT(%kl97PEyP^%U&H(2JFA8?7p~ z8>E$k9d+{dGDy)#0NudLHo=#)By;TS^V2#Xt(}1r@cZlsl+NdwoJ?I2|{F58dV8g}!{OK&?)?||3QS0J% zjIr&N7UIy+n)$K~Vjaffx?_>cDPye)oAH7u#@eBUFX?sNZlEkJ+# zZYNt8g8VP}m-R;iUZXm*^k#7cpMle(xbySdvbZPZ8Q zI*8MuCeDCO#nv_oUM)g?LqD7`qq%z%-@Kik!5WWN38mL)P*#x>Gxf{3{>T;tDz;cOA1RNIg0=ca^4xDGquxG?$)`J1r^lc4j;=e{;To`r1M0Eg&q{ z1suUHg(ubD%V#av*LPVrlqeq}571rK=H??7l|jQBq#lvzv831$>eejNtyb+r?|OzQw`~_beJgW6$SO zDuq{33%DUL`Fz09FK_7oVokvlcgV1DUyfo94u_n&Y5xFEQNfxSB6>*9KOrb@IZB#G z4A3EO#n5^j5hV323Z75%E**tjD}#bS5h8>LU=fBrlq&Mkx%#|Q39`3#8~r0xKayly z;ih3DZ|71_2vXi#DII=IJlTl(m<3I*`M#sHwj?=5wLbnP(X#vG=hqlm7Q~_yHhlW; zbW`CkM^-^>Z|C@#IR|(nQ0YOV=*CJDT%p5&>;#(dY;SjD`>77W3d^GNyS2mS*q(o2 z;X3ke7-o>)iG0;hYWCoYE@aM6{)j&6V;o{zNahthwQTtEMLQ#;nF=Sq9%{lD zdPYR;{coKG6vMbns02@t6FN1WJ}J9;PU-+;UJH;uk<)d)#0JZ3QPQ67Y|+>)~R@;^U9rpSdSRAWd6vL`TY4fU`)Hap7a&ye#1K|i-s z2NtV7buznHbOl(&GFk}~h_+5zqJaY&f1D^T@E-KFU09?(FtE@`Tsj8mxjzX@x`foj z(cB{Tz`2oven3a!^MPMQRrv-&UP5{pSz|g4)&|D!t_gFfna~5LMXn*cveLVt^@sxVv+?L z)4Xt^Q)(sETMxw<)l$ryi=(A2czGo<4nI=8p~TC}PpIb5M+*T1=%P)|2RoYV<+IC` z#h9$5aCs3mRw3>G=2KL9Q8Z7n?k{7uvzZsr11$Z9=Ty>wnjXy{1x($|C%^&G*dam!3vbTJEsx>K*$cGcUd zv1XnJjNZZ^KtD!p(#myS))k~0{hj0xjY4Cz9TXX2WPqzA)0G{W z-+(&u4~=mHVCF0+IJLf> z0=zpI+bbnJZQ!COiEh2090cJZaH3_G{e$t^XHRM^&J+P`h(h%%Dv&gIH%-sh{88*9 zkWf&g*^8RRZrTdKd+C;YA~hDAMCW|p^u$1`p`6>=5*ToG|2u*7Ki=Rdjs2Wyj`d1! zk|*Hm9>5*6OW{~;W|i~h3}dswUmMbs;k2jr5}9cTZPvVFvmQ1fZ(e@St?zqc2nK-)~8?S&W8zZ5|wA$SK$2y8(`&LZQZgqttMDN|Ye|iCzDebdp^t$yX6g`{n$>5GYSA(b$E6S`_+-eDCJF0X}?b_dQc zp4LmypFXTCA}O__B2E#<}Q&IJO8UXlaQcJwRrt_%Jek z{F0VpI+h7mVqN!Hn3AQ9u!oMvyw{17RoVYWY5c!>BT`IX8{Cs+L@0Kx{T2)a_+1e6 zg$h9JD+ybFoP0;wgACc+o|uLk-E=v2l;PN~;M9e%!5PkGyxpJD+1XPfK-d3oMC0TA z+I|*&FD*6&HMYE4B>vOl$94b+fFujb@rV8mC80w={XX;)c%uP+i}$gpL-$8LB($S(ZM0g zUFB;e4;e>yIR^MRw-5KcB43p2!&<8Lr~x>iK>FBodb9_}i5%W=F|;0dx>!Z{-DK}W zk5wGxJYa;0o_E{fru*ZQ=W=ExYYKI&e1o&y+^zQPtom%leS(Aw*%ok~~ z6YA@~{(7V0RWH~K*f0DEire3maM^=ra*t@Ap&C%jWbar+IvFBmu**SN=aVPbbt?i) ztniJBdB0Ji23^@COss+{XTH}SP3Y?+2^nn9aPoOEv@s9BOSCAX0K&^Xl?FOK6;LiX7 zwK;9u!mwUsGkgJb{@cgSnKX+E0Ei=RgqrkKEl9;sf|u4(HEhtL$zxnGB*ucjG(=~# z7i$`sMb43~&D)GXY&zr}k6R1tU~%vYqZ8_IP_1c+bNye{eRot-O}lRZDT;_nlbY8? zQ7KB7rXV09Akupf0U=b8-jyO~1BvJy1f`k%U2qc8uiN4== z&;93~b;EMymkEwQQzY8Ay`Gu#cx&N=tWpZwD>bDHm}^a~J^*+aRRVH00fJes5HpJ`0YY(o zIg(4+N_U{#P6v0SFW`8TLz0Vu}0@FYUQ zqJwdC&AMAe+tXa{GbBRE6=0x-2M-VwG17V&!B)i5!Llk_8Z58~1je&~P;aNHZIIau zfr!I{>u%&Tyf&i?Il#e-eV<_!JYiTU3S!#j^=Wv=<*}DwlR@UdF4L0#0}+5V95uFE znDDI$TGig*TsirZzdX9k#|b2(8j|3`7Jq^Es9F$})L#P!@x0jzajgh{a>63M3By-n z1{7bEJww+52qFd(ezl7{7+o=F{WC||iddOmwQ~LqkcprG4_N5xum)g1>*(?KwN?@X zUy5skQ6Yjm@6g{UrrRw=cWQz>PzXv0Yy=o-PuL`=pa@=7o%Z`xc!zvTQ72kxor@MN*b50L4Lapl=m+`|qt+ za6Wfea|i3y|D4-g%d)M4@(m!rjq+gg-(ucTqxoVzB`ol!8x6OL3}!)n(&Y?4Lq0QnE0miXt(O^0!DMj4kh-Cn@(1R z-6h2)2yaHT%v3Epi7t0&gzY`R5G|&1$(}_b4jQk*+yi|;ENdEJ86&H_Z|(QPN}DkR zPA>TXY;$B&n6=I&b###OZa8DU!q=t=69r~nO@CHv@*nE4ma2KZO;b*~C!%@Zr{_M1vqV#0G5 zo-#0J_0Rnw60id7-FyMEC>(l6k~+dS*hiUkuZ{KyoH^4QQA6orESl4o1Ak#Q% zpl8foY`SUCcBXYW=q{;Pe1kJ~F>T8#2h}7#(_BPbQA}5h{1(EX2ImK)?f9@?SFO+} zzHJFIs3=xl6;!`)YNDxmCk`FD7Kd(dOzFE|U)$rK;zZYxu>P&>RwTs)Q-Il3!E>sX zf@D#_ruB{y)nhg)FfIu9`mNlq<$)*ViB`TZ7(MnC(MVh0K;4VM3EJmD z7kcirAaq7U3mh=vJ%gm2B=d%~f^RqI$ie1Ej|=aVx=Y9Iq$j+LdeuxQT>T)Q7@K)T;Tb1W~q)ZVPaZp>LXd(P?|jpi^IX_tVJuVTgRMghA9DI2rs{`;3# z&32?zLgk-d5R`U;KPK1BzRxqFl0v9R$#HjEy}((R8_0yXH+UynkJN0#56BEp-GUA% zvfw(N=ux@nUN9|9Wu$M>pTXIxqqP*rqTjvgD0buAkZ}G#p059VLjOxGs^8aSEi-L( zE3#N~Vh_Tk?d4<`Lp6g^_1^^%Scg?;m&g?;-s+f8dZ{sUb>9MF_Z+GSbIsvaWdzx3*~RG`3nEGvKBV&^+)VCKJni zE`$MX`Wr}T(z5g|m&r4DhH`t4XujN~ID3c-o3W@Av9+xS>=sT4D=TQeX&Nd*rIvC% za2FQ<;v+BQ-i6@nMnDe|zERP>(d=LM+;U(4m`NQ4Ey#&!aWfMi4*CMPHbxrA(Wit4HwO+m z<&_)xrlQKg_hdA0iIGhk6F|Q|3{e6Sc;pR64WZ?kGZ5aD0GoSIbM64{>6SUN0wm*x zCh!RD*{@G05X*XjVQElActam!q+Ab(_+5KQLwN5g8G$Q>AXg6si%3ea>u=`GML}bIg$wmre zhbIcx-UBJSzf_rItFNLAT|q=cPS&K$vWvSVtDFh&xJ1L{C>;2V~f`I1R=%U>G2MF}^F$qO`VGw%tj;m%581#It8>sOZ8lubHS^#z3 z=7E4Uva7sCs0x~GZuP=j6(zpLgDDuQ2aZCAoqnc+Jn!&Rehwj{j_G!wsX{v&vAuo+ zMBR%5yA~`6_+G=7N{zi2DE{jp2u|s7V#7MOBf2a-$H4<7zAn#&jjw6m%``~?4PRr} zT2sbr02Dzj0lze9dpN5~RCdt!Q|xK#fe;Yzw6!+^?0HHL5a!uR_B<=K+JFhFe~<_F|XGCRURm5VovJz9zt$o*vlP~+6 z)cDJ%a-1DdOG~Br(XX;eRwt%eN54NJkfa@y+cU%OGL1is5wNZl#mL(=yR}}Jk*QW{ zxZ^R3*ADy+2I4lID7;74LN<45Quc?$)?IwvT>1vy%jIr&2-O3Or3n8UU6URHNC8>2 z?}u1Y=ru!ZW-q#tALb%DeslY7A#D?spITho1ta8Ucou~9P@GHX!Gt%*dax6GE6j_5 ziCI+=vibhfsGjCXB-3EfWVnU-qw8t zpQ7GqGmYjM79LcXNUOFm&hd~B2^+K49`)(qQeSXJ9Xj8J?>eYn0vTO-NSG=gPZy)> zlKS=s$Fgj^e7ChAk6?!2JP#qn&TnlO)tuP}D+0D;Ty7CU-nLm&y%Ja&AndmyLKET% z;eh|ElW4(F#!QyJJMZs0^*J5*GiNJ}gaBy=;XN2gq0F7&R-8~-rXqOCb!;i|U(yL5 z30atp=7>h>-tKn}>*qlA0R?S9C{A7TwXUOgQwpJn%Bx0Jv6l;1)(hpMyoxwkaU5#4 z;{%-h4Qhk0tzjj5FKJG~mSgEJF1Mk)q^tVcB3kan&kFz+jrxnlIw?k=G%N&8&s%Gd zFMC>6!zOz$XnB4c?{g34##Nn_`x0`_c0uo|Y+2O1i@q!Xbk%3IMGmTTP~r*Q!uFiP z3^fmI8fDD5@F=z|02EgU!<^@mr)t?mmQtcI9hP+YCuf*qLO02nXocOtwR~Gjp8vhT z%ixIALPS^LO&t_+f9rw&%>v;6@$RP~lgKgov6aTl$k4rCB+cr}$l#ZAmH5h!z@Y7= z`WsorNUzjp-A8L+u;mZ1a(mS5v?;TEg&83UXMK<%u#9_&wU21a2gbT}vPXm(h{Gqz zVus71WmQVEVKz`AC>8c|8^!|6S8Bq{Z*;9H+8e^iXL_}KzHN^+LITxn_B7MREkrFG z-iD!Y8&2f~)@|>bZ>Zr>Xi$~WsGmRjoLQAUb56H4ijK&okhcj+7^1m*2C2g*u;)&PY+~wQ@bG?Y zA0d<*NH+#ttoGjnzC60cCcScKkFHp8q_3wD1X}`c)3L!aW8_|`GZ(&4croBADSZg2 z>Po3#&%$OSTEoUmX}Q#e@MVH{(U$z^nyp&-xKi9_Xz8GDP9TLs$S$89^{dh;Pt52k zV3dywBt5}6FP3@_`D0{L2T2&h{ez>WmGh|V zwPnP`ojQDpEUM#LnH{k40#q`8WW~M`9=%goM>X-c=)GUNw%!@cX11F(nn~d& z=4r_fiNlWGV&ReZmilfx4Yx-0>e2co?B7BkM@Ei*vF2@ksk;P`Ye6+V4fK71ek0I$ z{w=yyD=eb4Wtb%r|Dl!9u!oHre;|rngHxuL?@a1zJaeMLj=5)TE%b-ob zTD{q{!=+;yxxtZ^NA*k#9sUY}s5EwmJ`DwA{2aX>DV9Anwc!0j5y$LnGxh2{GWK`> znP%67p zcyL*Mkv*qr$n;yD@m)qJ-MH6q*%@xu@S*MJjSbzZfXc6fKV4z`&Ynrz8^`7w6pA_o zigMsFZBHURIcL&NUVnU^bDJq&Af#{i(6dOcKeU_2)-n@ghu}m5)e_5UJ3ZPO@dPWr zQLgpzlC~?iv*VQQ(t-MO3Q(TqXz9;wHd@t>dQMnc#s-J+Zk$^P_&B=B9IUs-Ui=}o zn3*UI%CtN^GVBve-miUJV<5Ez$26TU_-^*jIS!MnNm5k2LSbKKDmh+`)j*x=hWjpx`)U@^hXXK;3P>jw0(3Q{WS7H{g{bIILGOWJa<`>VlnedY4=saF^Ny`-6z)A6g4k;|mD zp+$E+B$2nxu^82&ltE~=fT5Y`jkyH3~N!WlD zza53oJ2Gq>8_c)EIW7J0JNZ+RM%rk1*L$K-%lvwQK7| z)kF(-ez!P$01MCb_I_WPQcoJPJe%BLE8=zPA+*iOPCJ^eFS%KFG+NWKKgofwu2*qc zm=JFE!`@PVc}X??N zmX&riVnYWfQl~ukq5h1_AyS*vU765s^iR|ZN;#G*j^5jU;+*yNS?$XdpH7kH{4*PB zBNeIezYH>;er86VGPoHycS?&}qTeOlc%91Dd2%6tEDy@8!2k5U7*ux5%F!M_yD%wJ zko7uM>STgh!$dANCS`xo8*a8icAp~6&fSnssF9EBDjhAgp$7O%q4?bDwail%^J0Yf zViQRAsb%_0TrJ1Dkhtl+=cZ{vNn?HTl(80=lW*TQD0zod`+P-yDO$C4PeLi&@Oq#PxtX1ZzvWtr`!kJt1WwL~O z4(ySYuN-;t4|;kBYD7fq1Qbbi$2~f7Z*kh@KdOo5S`GWESq>|l{2pLR<(np3oc{XC zr$ae6MnC5Hh*m>(;1`qs<;}KO1==3->g~kHZq9~C1&R6$%0vf*ti0SIz4MJT;;*+z zskq+RjR_G_s9x;0j~q*mC~eQRIY0(8Q(=jE+AjIc{=*o2Tmul6z-#?+K*dEyNvdnT{t9DP0K;?-0-qD?rN6wF+}V!W?M z0!iZGZw`BOt0>rDeTQ5;sW0i{WROF=mn-R`UM=8vWc8@Cxhp1M6{I8b+-=)uttT0Q z^@8l(-$p#C}-M*v&>K zB#*v#f5-b&>UP`1TPMW|C3tHKrEt-LVf%-fM(WSWGP(0qk!!jhVQ&bRk>^6S9d+^Z zr>Es$JAdJk{X`%#zdl+-USt9%?Xwlv>DAk6>^TOK)@_%Ml~Lq7OS`oAel2=*suxAG z=Is|TIyOUr%$(o0ysYZp>cY5vln1q=Ui!U%qb& z_b@L$S>8$x5Zpg{xT<^BLgMBn?&?R6h_0BD3!c~6Mvqi2{LMFi;tydzg*XqM8sGih zny0Fp2ed{R#Mxt6c#5zcx@~vp&y=Wn`zlh?qsL#?ENNyRsaiC<N}Fl# z5ouPuCXDqscJ9QA5-MecxOmxnlUnqv(S%ELpsMyH3GR2dyXl_?r2ly!<3@*XOUaVf zsWCdc_K-5V;#ZD7u2~-$mEk9v^*+#v{SSF*e*7WAfjY4b*%XdROY#zYgt*)gK*>8; zVRTEGsfE!&5QGE|*8X<~&(EzY5fYe*=SPU&j!1u}#GW=?dMxO#fkMA-47k=;+d@mH z+;RK!c8@F9fHa2mGGm$gViZxx*l4yOsW0=#I(eB2A?+sC6`mGf(cg=w1Z&B^sDr3@ zltbJQVlf7r**eD*ZKPUcym6q_rA+oxQ1~Wg2&EXOPr)7?+_(vAd8!%2-o8(rt%5C! z1+2x5y_!Vc)hgX zy{S0Cif2Wc9QaXt^q9V6s(@Vm)66$tL4III;_-j+s&JF zb#)7WnLl*jEN_I_jE^$AA1M*|WpL{dYZQi8`E(K5mnr*H@6x4Xd=om7IYw;8%mrzb zrh45dSv`O3;S!N!g_~F%$vk6LHzqAu2_xb6yB`9wd0Xj9gK*n>6P}%c7nQ@7x0ZAoJlCM=;^uiNfA(8#{M`MYw%UIy z7(xBqdBZ3Fno<_Cc%h`c)Od&P@E`;k1n^TNGfwbhw)-XZ=LSrHNSDNA>r9Qeh` zG!o^HG8z$B3O~4gz}dOE6^#y=zScRyYw_?chic7hkw1MEUmsxYOJYq=65tz;K1^&g z8$nOGewYyG&g=h@@x$vaswMe`g175s-VPJvB@ff3cT!XdJ*vR`<}+6TZRhq;w2|nR z*@u=pdC4ce?F@6i&fXym!#9uePvsgl_Sj%uR77+%u!d(pU;eY2pLqp9y(IOy*`f0i zZXY%e^K()~{7k-*FKRQ@)py7Ds0z}qpX6nN`{#0`G&*p!W^a~>vK8es`y!g|!aW0s zhaPEhb^4nw?U$myy+Re>4I!Qj)~B_?57TPbkJt(XjZd;|B*y)%BKdjdbMjqqXcMe` zG5deZPz?vUm7UTyyU%-NaXW$0IyqU>G?ZA}_g^`87E{tcof(mlNS)giuZ~^y9kD@K z#OY3r9zKwz&)?s69l`m*D}78j;1>Jct=?h5R-5UzlvWdbco1Rv6IzQo+ORP(GA;ne zvMtv=XAyM_#}o2?mzOh%_-*?S4LPii0N+&h&Fvn3`A!n2uKRZo%GX0f*}KJ&MMnIb zdXSu-rk}8Ltu$&auF2Kc^&VYVNk*x@1!c>(mnO#?E>?Yib!QAXA0{pzqqT{?!i7h! zUqnG;ggJ&!iZJa)S=adR3Sh97S@8h&C9>7P62Rg%quW_$@j`V@o?~P|SYmP8!Nxeb z0|BSg%%m?_S1)6f*2f{|uGKfi9eI_=WW|!m;ttVbZ=VEJ%1$|2dt*PpmvobH-kVTI z@+7wfAN0N`I``i+ssDE6G!KjE;P6IW-!ER-~DLUUy(a0S{IBwmr|+U8ZwpHFA0WsJI!yMl7xiHSC-w^V}AAH73nguQCYWxt>oa0;X{4R24R{UL{XdM04x6^t_Fq(s>s%0@Ht6ISD?^b~ zBPaGPG1)VzKNg{1bl$_I#OB8q9@XP)xB!{Z$$2p&2Rr1vZ!zH%dP=-Wq_B1B`=*ax zezZ|kIxF76^+eHx#FN4frYy^x#DC5q(_#VZ%aSql;_vo)2pR`AI7W_-!N!dH*_;A_ z^`jKu`~{(bllJ33w{I8y^He6u6xtmg+TE0@^rTDxZSpAz0Am!ck_C$uKw}Mi4}XfCxcRK;}Wl5E8YORs=OD^PnOE z36qQx2#L}_M+8&|frJ1G5)DHbOaciZZ|~S=xcA*Z-dpFsweC9a?6q`D?XRl7s`|d) zHx=GK<6ygKgYpIl1hNT!^7vT@L@o{jk-hlCI-rG_@njBot-EMvdmMNJ&+@Tm4DebX ze$pcf0#Qo_|H$0?JbxJi*#&_gKjIRXH_gJ_=OVmD=h-8uV|urJAXk=Bf7!QVPTuE< ztBSE);3H)n*>?E3l<|A^JM+`j>K~nD+;N7N#QgfCVZcr9*|y`aKHZbS++471J&{>Q+n8@V3$k;(%rHt;cWEh$@5G&G0#lz5U^?(VcoxWT^E)>G)<{-fKpTW>DMBBz*z{uJ+c2 zHDLP+hVD{T*7_phB9FrHroHgHz(EuI-881Bt9cO$S)v+F|3pF9X!*yd-OC#1NmrRI zz2_+{(h+Un_`7g}v;)NRa>I)^(?z5r;*!OC^! zD=x1%eH_tixOzH$+Q`9R_bNA_PVq|RSW`!6FoLQ6mn5(=L}_AgNJSpnCS^$dV}3fSM+HA} zsA=+*Lg@w0k$lq8xGgiYa`YcSN^M^`?#DSXEjC15V$W;w`}jF2KSvdLkZs(T+`_8I zDnGY!A-zoac70YbJbi2v*rl9$f)~a(mnvj%mez13wdpA9_@0F41YdnGAKk9-=MEqd z_R%3Xae(LU&yEdCv{Gw>CW&#>U2?3yd`rrp=Edx_(o>?m$uCVJ)(VEbI^1MOEwaZ& zlRG3?)TL3cqn0U}V{*VaJ^}nOwcd7`z6-J`esvG6u`ciNf~jUF-A#Y+@=Bj(r*-{O zBv#GhIWaKPP=)r0h9WRyccOxLDa*UT1yWw0KTE2pcvPYv)WqC%-i2kJ&3ys8Yw1P` zJHWTgaHl_Yf7Nwip{Hl$m&;pb7Tts(fMG3bug9tiDpqZ4T@zd-c;Re@%9$i0@rh6? zmt9p^P_ryxirY9_ayvEfBgEf{SZl5v%_wH)Vkw8iv83s95AX*#g6(INKn5NNusz;t zB9g*OHjh@;&0kRKV3CPI2Lw!fC!*6-q%o+owxCjonq9;3l+%tg4=m`L_FXle(pwAk z9{bDkNYCao+(7L-Rt1Y~AxK=ENV2Z$TA?45R9z)kehyW6adM4!nz9Ti)2atL2fTp8 zkE<0&u&<=d-SSgB1EUXYbk-*nh&1QnCA+cyP-ZwU6t`Z%c$uiGm<708Za(~^@Nl4)v zBJ5(Nq37P82j!Qdx3*<`sVX<5 z8Rh2Q#?sDH09yxd>MDb8$bTjF{7*v8CR#FqNysH=R1`R|P^r;U9ohKxIp>=nYVfC7 zNou-?+aFq0NifMc(^ivLrj~YxeNdEz=_V?Gq}#^#-V-a`&E!>o54-|O*7 zEFH$pZ%8|?&LoFuJCYLo3iXq!O^gg`c$m4ARGl8sKE|Dmj?JsZ^ zU*a*keZf@@1Oqd&qv6r)XBnO4FEZjiUUfP7%KaT#k~>Q92>YI@^N8IbeYndHaURcN zPp5Io4g0}{vEP22t2v3VPYd((+$Nx4XI`3fZ+g4^Y(OGO^$k7))VQ6Qb5lIEBJMA?tqz^TgXoV{ zfR25xW|Xd?7L%Jxa&NvWB;7g(ZsOSWAL7i*)#)RzSw=I3l|}Ag+v}mIEn{=bceWwH zg_hsODviy>zq?ZfYRbTIibD8OVq!ZT>>l*Xn4DSSszA~HA~=FP#&*sQ8n(p!Z(!U zL@R-Nrql5vTB@!P%FQjHI71*CPf?_sX7CrOd6RYm+aWi8`ZvM97*0n02{JvDqZtWdY>txZY5To>9W3DgW4j-!%KhlLa zb?6y&vMeJaqFWM9@@n9cXqvHI<$7?^u`@5rK8L=adrcLOI(a1)MCfPT6&?0nnWJpq zq-xv{0MeNGWbB+P_%e--)o5%R^rcm#zi{*j*X;tdrc^4|08GE$Z#Tfc)4*quiiz>b zF9a^8_B~`j4;!f}8m;k;S@?&LLigo%a9kf18GTq&WMtyF>Uh{t%uL6{E-CqQ5U!%M zIyHb0Lyg(PB~i|S|^tGcRQM-BB@*& z5qwr4N`sa1o7l|!;d7Q37MG0JJIGF!K9Q|oW_He2wqCg=fRQLDa3so`_&=0k%VO&M z4fYO9By;(xtkiY%0qlW8l7HmNgn5Vc#mJS)^7~SlDgJ4$CVezZ6$$HHDmk5o34B!# zG7Mq<5I00^W+uF2>>+f{8t~nD`RR*=NH-_&Bjql@Ng|PWA##<&dAfL4oE#GJe(njU z!meD3B;WxKc{i32l4m{=r*bQLEL};7$q|C8*_^lY4V-z}eD|uniNZBUM@E$3Oy{Be zGNu0{O`ys4300xxvzJ6)?=S>zg5W7KF`>)65@yvDQ}Sq7qpZM{l(e{#LXgz9EfrQK zMJ7vwGM^*C?+r3idfq=zD=fnJ$}F}%8ItX{B6YpYbnWfIgAfjJU#}gPP1kqLbfvo@ zJ-uA>%R?)ZDuoaHw11PHwa?dS&?GB@8)tSY_&wMM@~?)Dpxi>Xf6_-dvM#?JH|*t^)UA&`3K@W^?isf!x}aHBM72mr2hX)q;e zoR|E^*Y0%?ogQ`r&p5_uhNX=Lq}bp`fF+3gGl9!!->i0ARb^#qQn8Ta)v@|%4F@oB zWA|SGF6sc=wYzmQvT^n(pl_GdYosC9zuKvOkNE#PEjI_yME4h6gx)f%THz&L0Y^5d zLh4Fk)x`B27VT?Poxl}|2q~{1l3*T|RS9U`N52caR9Xr?SwF5atkhxViI{VpjeKsT zAq$~!NcbW8$Eg7?V2o;Y6`Cte5kYnrr*QQ1eBau^Vyl};B%)zM`Aa;pC?DBnckaB8 zIJNn0J&APr$YSMnARZpD1>F_f!P|ZWL}PMF37&jtr{H?j-Q|!tiKw6rgnxqLhgF$OzU-RoFN~Cm=R|K1R+WzL%}wG$nwKS zx8~AUQWeUBvRlh4XwM~)Y4i8;?~d-KQQ1`Fe5UkhT zm)8ZP?(0nJp$l)d31J}(`(wTD4XrHhs*E8;Mp`(c8-tr;irUv^(@mMm<8}m;si<*D zgEoanhHh^KU_6d0RUij((3(m)CV*udegMu zwBsaRykwdRfm;roT2P^2Wq?D#+q!l(^72E)s6_{jznJ#oC;q{rzqbjAg4aIkbG*`| zh;MF582pJVwaYp~3Z5%gr(pF=ylLaMtV%|<u_6{|B57VlFl&(;-=DnZ;Wwd1bc_nX_#}Q zx}kK3%$Zi2God%I;Xn+{;dB}sO#*xgk;lgsMt1|ti>6`99Qah<-SA)u-`$EC4Zg{H zim<|zC!lLB>$ZQq{a5#)y;O$#)z8y-C64ziXSZ$=mp(6l2>GxHd3Rz{T<^;wVQRF} zi#23x^8)|oo9WD+Otra!?D1_hQ@{@z`t+yw@o5mS=Xzu#^P~mUaScQBBm}{;?9isG zT=G+M(B_W)@zY$|1>&h?2H>8AM6Nh1R9@DShPWT4IZTNBfDJ9b+wD_9rFt{y?};>h z$(O#;y7Ph?E_YOd5@Wyy9D9Bz zEi8K0Cl)2TW=#7*H3Z1)`RuK{(i(Qx0Z|pi-e%BScvt*n@$NE=-6UYa-iiwKzO`3e z17>#{ckPy_PhMTLjDq+)06>HC#-e@*&&+S#mvE&yth>4pD>y%sPBT3?Q02M-0G8!~ zcR=XcN7K#6!1jMf3+-q)PZtpSd!`DBVR-NJXnvj`OKZ&1&CAKMYUs`IDBg+@EXUO% zs1PuomK8(%O+|n=O<52V`08^7m93F#?Q3i^0A_rEKosKMiky1AW`yf)`-1WS$XWWh zH;a|6fwX$3SZ|If(ys&3yk^fpc+=@C^d5`WI2QmUEW%HMX-@a&jpa*+fTK_Q0R_(B z<;0?m@JC7J3R|$W8hL#P1q*bnR+bQ#+gK=kNmYsc*biF)z}t8d+{OqeUTwG1T#_g! zaBZ3i5V(FPKh#N3s@wK7IE;+6^bMiO*yjI@SCR;D_sFd2sktdaiLvKrg=#%u30N6` z86UJa4QP)BvcbE6p=1}YUIZBXcRu#tX=iB&`+t&tA2H1TPZ6}@pU9Q`+Lfk8`>MvU z!>1lQz&!wj&JcGJ!dP@Dkp(0uOaB3!URsj!We2XHE~hAX(v7(_Qqf%7LOB9tk{}tg zH5?buClgG9mYb3>GjRMB%?<_&Mo&`y?iZ;-K{)yPcZUP@>e8@0Lt@o6l@q%S)F-Po z-ebGK0NE}Y@F~du;8RfI5gUl--I0;e38BEHWb?bJzAB{T<8;+f)X7lm$GopVmzCA= z+?oD{)fp~EFOc8#ej7j9mw9oK0fruNuGc}D@;L-$!M=+(j_3F@TBB5`}S^{5wVSyfE#AD9}D zjxXf((j}9e3*96BBO}4C)PC7qaYk=;#p}?o(}Iou!rb$cF70xV6WbC=E6vmuQ(Mss zi#;eBUd)g^BV`CF5$BL>4~>e7axNPdzMnRI8fIxL`6i|%=T!W~@-J1~YJsH9Ztt1D z-UXnV3w=VZnFEeL6<7dHK+o#!o?@7yb@*cCo9sg}KuY;DAy*E{_S`0z=Md{%~51I?+r)z$Ym`= z1WFFqK8@`G7yU+^&qmLkkdp3HXXw0SWks!Yv{$yLc|RXe7i^JlkQKgyPG!vdIK>#WJMq)H~Z&=C}Ul> z%)Q%D(lh_^4K{DcF!!1>%Guz|Dt!d*OGDOAf#*L5z91OjZ>Ow{}`A+Xk!SVHi3&8)2dWvq1TT#dgpH8)mDtQ8h>`f}M}_)sL$98w(%GVwpt zoML&5QY*61GnZXRicc(z-nQ1@dS5OO9GNiyTt>+r*-*V1=^{?>G;gm%w+IV3zccW% zW)$$y53i5A#*06}E9+64bzthdC{>l6z{=VI5DEdxw(j?|2~4IXSY~KTc(c~*<=?t2 zHBBnU_SR`t6raV)N>lG3IVrhb5H7gNTZsO->s3rJOA4}-EsK|x;#ir0Behu$fMnn) zANZ`@ns&?{oCX3RL^FZv!i$@3ub%7zWFFXK8u1EHeNa6m&2KzRE|(!RI*DUYm_Hb! z=WJg<G8m55#>b(}moi)^Nc+eDZ%>OJOR9i_qY%e4MRv zQS?AugUDz9b(kc@^3@}}+-@rkbe*t~M(aN61L=_l+rX;K%ql~JXnJqkJKloa{&%J& z{=chPaI+lTdI{c0^h@ETXkVb#^HHH-N(JwX3Lq25mZf>i&8Y-D4BrQ<%XCpu$ll4 zu(Bs9u(ba=Pp?q<@pkvo@q9+6ZX9qAWeGFGLf^gYkJgyuzU`T=r0Xy3?TDE%+wgnJ z<RN&3i4I z6K03G7K^G7$cZ24Vmg^P9RXkBh>J>3gi*J`3r-33j@U(z00I$Fk^|=G8O`2&p<|y3}K7yj2n+bB)F_i1oPA&)!Drtt@qJfDJ zCezUwZDN)%peEBmLfRXvqkRX|p1?BvSTcd;^@Ea5Wu7)%-68Tkcm4rfJ&5Qm%ZDzX z$3ui6x&`dtz9FR^EG0vL=_?EomgjV?l$uRG+}DHlz!B2(awmRuA^+_D1#M|g{S2S& zVhpuZ<$VHbAB7W7`g5IH3IHS=9Cm-9-kbq<2oo-*i>(NdQN(wDfk%q;r?p1dbJ&qZ|NTj zLlQz$qc&E)LQV9O3W6PRoheaP{#$#@b&UY~g8hA?x6hQpjm&7zylDA`CpTSc!#hK6 ztTqf*8BJXkP{teRqh6Ms{wbaQA+Mzg1Ru|>b1`lC?MeANTS}BfqrH>eXT?b`Fe{q* z(h5w2t_*jw*_@^`;>7IP-8p=28tFZ*s;|$NT=HcN-#5A=wl$dtP#t(Y2Ov4S+EFQ_$QR&t&7c3u#`Dl6Ec6Y(x@F;UixCtitZ> zV$#EjuJ(A1Q#HO@dtkaCYTy4M?pnn$ibB-%5;VC_ac`L2Ld&-s{ae$|J6n)(6ZO6f zlpXFEX~uU?pdNey1^3RFcm{1gtGnlc%d7c$xZdf7SXnljbqL8U2aPWls4@qut?|x^ z%DfbE|4?Z2Zm~g3R^#^i!W~YFx3+{>n@_fo$?ug+WkI_O`W>Fh*v#mt^!m^yL)xbP zf~+&KUbwCg-f`yBlJ09za`r@{=OHa{=>|Sm2Go35p$?J3IJ#E+Wt@UDYb+Rp%f%(` zr?NKXPc6b*A5E-4m7wM@YHhk|I_FlPD1F5hR|Rd_OG_OC$ACPJ&HzhvKiM6GcqZ>v zb~gq70X|m&ivYeK7lF1Ac+~#9=Je&y!t-I;%7uPc#I=$4_+d*o6Z zr6uNZj&i5o{7NjrSr~?tKpw-T6HI0w-i~eZ+w|Q{`99fy1Hb>=5a+(H38+X8KA7-; zZ|~^O8xRq-s3YrVEFVt1S|^ly=b=pkRqJsG5^kLma1oX_A(t!MFo**b7HG!u(MD8{ zoz^#E4XOL!Nw|rUtqf5zRAAa?j14_-13U|?LsYsk@P=Ujhb;Qf8wdZisQhzV|NoYY znG9cCUjD=aRO57{E$&!*Okfv#G=HKImuO7A0arg=qfZ5ND!7X+tx$a_w@WX#A9M(s zUs2LDH~Y8(Aj`Xp8aWM&FzLa$bsrcbm3A~C8heXjyQ{vd*x=7fT1|VYG`JqT#+16H zEaOUm(U_$PZ9$R1ez}LLkgij5?$h`~DBUmQ57ZR}alno5{j$oq&sbQ&o2O!~=8*Bz z+1M1KMv2N445&7MLXsV5H0Je&5gl6ydmdv*y?2M9WICK_0)i3*@}*AiZOx^ao|84r zjhHZ;*f+57ROIRTB?OZry%Tw6%iMvU`1Vzefl^7|MG0MbR_ekU9Hw-c`EL`60{cf{ z;nPQJSyEr-)Ee)O_?Q^LSkC%Xq(hiwCt$2`d1ov_ z6XI`m-dP3bqcmuZu@V)^tW{zLKm%2)^LqAL=V^H<#vQ&80RXC9bM2sY;|cNC_Emv1 z>#Eco2HXZ_VC4mF=az=Br-}T7joU?;^ioXx3yIbyfzfKh)jO5^AwPOWgzXX&1!I+$tBY`A`yFkC>(D)>@Q!^foLufV`P-mf{ z^x=mS&hXg+S2jrW@8_T0fx)X>$H>w~FLK&=k4~B>0%v(FFby6VgX>C9JV;e*H%!Lm z5kGp%E|ylz2kfR&;j7U&?Q{TMMxpUg>NVg%R*nFNGenx7m5qAdUHBj)-NKX_ws$!U z&fgoqi#iUUbzDe=a!*GNtP^d1TWHexEFy-NrfuDsU(;g(!Di_0ZPKQm3TuAcVF*hf z_EKH^wA(myd+$AlLvH01CGSd*1yLuxvxqix7>_(9Q)jHX*Y&Yy?0KRw6|R!FiLw$9 zWv|R;SfI}XNK4s%)lV2Upm=#9EZW+w9}{;x6{|G(n@L9zZ*2>KDS95ig)$uAYkz7$ zX|58~`1LAiuqDV|`LkU6eDWPM;9~_lA)ZTaiRFDcdODn>`y9uO$xUWdU3jHKBpgSA zr=6^~2Ow@o$=CTWI4IJ7;W<>_KJp@dr*2AFMwpo05AMpL=O@b_xuet~|E@`3z)->GnNQJ{Aod#~TG%E)xeW~nL zPItpl>&USVz&KZbukFM1B|)hVWP3;5EhPL+1%T(+|6=F(djqn2ohbaq%o>&n!Ej$$ z$5UE^1l|@R%j)N6)is(Wg>g}UH}mCwY>A{pY}+nCIwwj7TrekIZdv2~xU!+M=t7z< z!~06L*JF{NA+SPO8&T)MVUu@WA*pZ}Zg>c`D%&oQYk|Dm4J^e}Y|2eJ%W7H<7p6=V zn%Ri{I);N@Pb2wb!?n=d_N=Q85v}M=jhn7|dis7KbJZ}81C>mm+>T9KZu&ObqS4Jb z!*_LV&>fQ-DC(XM$U^EfB=>ad6t6PYEt(tA$5393m4H*brjXSHrIhE;6%EcF$Bom;F}W zuDv_ZpH-JN!5^8YZ;tl{QW|Q&PfQO~?UN$q00c#$9N{_cbY(XckrLI?`jLNa`Te)7 zZ?`ro#vpKs7Sw_(hZNqDo_9Pm6{KNy(ez33fHV5|Mn?MZqt)D{S1zU+IY8aZy{e(3 z=tJ@yzIE>YIk_FrzZzaSPiZDvwBk3RN2ud=9=)u#O==*;@y+;jHZ>nZreZ zS$*u=V<+hr%|b`_tCJJnG=Mu%XRfY$X(supzRgR8yY$JdgKvkv_ToL^k%8d05N;cO zrICb%msUP(mP$j>*$QTza8jHH)hZ!=e8(wVUtsY4G)+2-+M$K}7^_FQC`eJA*yzJw zG<15FVc-EdZ}t7~0@ry(e&VxL;unBxfG~ZM05sIb_VKvbzq) zxwT7W_m~_fAjpF8h||`?c~N**1uv5x($RaeC=XdDZokD`M=UEdEZZ1oO7wdFE@%xz zdG75uj1kI=mhU1jwolCg3_b-Kl4^^>4QH(Gxa#$5Gv!h)4_u7{W;h`XRG9vWEGQtB z<~3RM3JYXE`SN1Z(1^lJNoPRKwt2ubD}Lq`t*#YbgLZ;M zQI9JO%k-om*actJ1IARKM@$#DM>Mj(#y&>=@kMdpc!Poo|135wD9S>4V;sG9ecT09 zAb`Q!=F%8exq;a`eMG>IcrbbC*>Bs2NpB66?HqMil{8#q1B(P@4$O7}H0SJ%w{lbA zR{5OCdy2(5UagTeIa0meF(lP#7`}Qy2|KRvDC_;1D4F{Y)C!}#xnWYvr z8a{h6@^Pv7uu~LS3hk^K6RCqG-Jib?kP>*O}c}NdK=>6zYaiiD4 zC;V}n8LF-z2)g9M1De}5 z7t?m4HE54dMTQQHTnf&*36)q-ZPSMz?1!QasPyy}UBIq?p|6LJW9pd*h~@ zS>-{4$M5!~1DmAX&c8G-zToMBiaR>P;kV^f`Q}Wa9>-R~0tL7Yj9JW9?u+Z|lN9N7bR&`BHJFB9fW zZ*-u*W{kB(E$5=5@Y(gz4Ak=dhVN;ScTXKJh5W%^hWcxn|3cGYwnICi=2}z{t|k7Y zih_sAMIhN{gBwTn>h3i+q6NQOI8U~Cj+7La0*LrwotA)c?hB8*7arQhFo?|RO3BH* zYwnLrd|ry~_?1CBj5<$Y{?0qik!v~aReNB}i#6*Q8BtaBnS5oLnYp5}{c*8bZ5Bo@GCrQh0<0|a} z%=@Lx8ozzli?sT!9?pZyG|g6>Gl}nBCp)6?Eax`tZ6uyfK8ND`M!fmdZ#1h_8mAaP zGP1I^uz``0b&Fihe!b$HO~iAO;oZg>ZPAcUn`v<+OM0E380n zD_=Y7x1>>|R*gZXQ7fsmE4L&CYk+$_&q7N!Jj zW7$-${pPsb7Qf3B(MiqGAGtO*VwDs9fT_jmUI21mKrD1i^+D1Okq^E)Y!4qg#9~TB zQ0uY?`<;I&u$&vNbTJLK!)?W>ewoqVoOpU*-912~daEK%xK?{PV>_`(=Cqc}O#<8Y=QF z@HE~BSqB+BaEk>2g4I$B*V@XBYvm;?m=BQhbu(knK2Y5zLmp^-%| zKK`vyidZA<3RnLuP&yon8JLOd$|1H!zwH9j{sG_(7;Jomf%wOT?6QGS)^D<9p^yw{ z$>oJqDsE!sqNMp4Lv$rf((;XddnV_3Wtf^*v!4_s#^tvF%u`G5h)1)Z=3DFW0Sg&p zixd2OPm*}D+dl!Rl-`ms&dO;5J9&z89(6?qKZ?eIr~0^$|9r!UTVsmJV2_-QioA38 zgxY7$Q~tG$g~uaKI7OLJtt;LqtChX}?7t~~HrfWIpYyJ#B!vO5eW1aiu}nWL17n`; z#(BeQFuyMXXP$54i6p%5$+i)1^W`MDeCwUq3Cd^yh3BDiH0gk=Pa{!p>L|{#Y=DmT z$Bpjz&~X%p_E1?^O%Td_y@>yDUO|?f(4LiqzVw*S@YaagW^DUxgUM*YejV?xJoLNr zH6zcmrLvJeS?S>^6SmBi3}jKIxd3No_C!PZrgfbmT;=yY`^pCLDwsX&vo~{#boMsI ztIbq|dg_jaaD)Tv<8q09A#yEMJ0ezrbgqIi2;JK-C)PqJE#?m=is6;nHTj~m-5W`y z6Ei4Wi(wG`vf5QM8g5;f<~^GHJ-TnsK3 z+jR9TE*9Ff4@iR+*c;pNa?94dS#*|*7}tTuN8s*hH5s{nSxSdWv}vgw4#S7ZX{Vyc zt9vz@2=vJ!`04>_GOh(WuI2kSa$VS!oGDL#@D(&LuyN#DPkhkS7x4G+2;lz<5P{Rz uY=Y5@-7WdIl-bfN9N_%_gC1=6oJ3|q_vH`O&gJSLUvL|TfA#9uy?WJMO9Ju>}hgh({H!9`u!%KHnG@P0eoKmOF1AER{aC z8vgOuPse}#2-n{C%PW;_-8r~DI0w6c@6UYq>iCiS$BqPCuy#28-O9FYnfv54zSpjn z)8FItqc-V<*uI(ewiAfl&6RnW`G?+{!uZ*k&mZ{lj)i%1xsgS435cc&-cYew2Wy{b zjDP?5zhk+Zl_lwh5*gVTeWzkqI|WrtD6SgUp1|5H zXP7$*tK)^JSqV^z+@KEDJ`(SSol`HlSK-jaJjtah9x^oS88I?Pf6J`?M;bXZ~uEZXASQqD{N*aq8(m;Z#ti4-W)%I zk1K9ZjuQjB?tX%BWCp1P@JA%ZS$8veL}Kgup=r+(2ROIaLX{!=CB=;eayJZeESct(*&BeEi-)a6XYrVv3H|#=ku5U`aPmY7nNScH+!K9(K zq2P`bVJK6TT$AgwDX&WIYbLdT?@#vF9xGiGq(U}F-r}@IL?m<`nhvE!FLp`vN`w8w z0tzb4#)DITHpX^qE+^H5h9VdtH)q%OWV=spf(=N!({XJO8NV{FG?lO4Cv;->OA+SI zsgjk7eKtQ!woSyaHjAimS(naeXXoOkrwG%^cuRJ<#DqxvB!Tb@_oTiiSbOX!!6%|G z?i|%kWymB}O!uN`rH=Ds8y{d_RYjlUT z+JFiqKQXf7-*h|jv9D>JT4{c=Mc5emu*1@S8zFUAMx$0bzu)P5_=SXY0h-RAnhi?r=Eiv zgpIzUhBh>Ezo@#=E{tGRScI7L6=dj1!7D4wjmK4!9}jQPH3Ua~&T#!~3BGe-Bnc^H z>fib-K9c==4-4s$7}G6vEW^3DT65GySjv#@(_TBzF2Xyln6+>hm8p$CR0!KPVn}C} zEB%B^(GgK>59%&zcgz8VReg;?;gG9C)Yr_A;D z2qaHQGdq9|>N1ysrYf{OM8vV*{#*_`htz&Y9`t~8 zuCp2M8Lfy{G8y_>X~b^RcBzFP+M zf$Y3Mk^(emCYba3!Y|C^&OcnKea;=VaXWz*lJYbV5=??7+RPaJQ9G#0*VAb^V%X&+ zI2Dp_AB#rn#(qQDcrt%{D>%a4Qes-EU#cl9zCl=#=DT+QH*UU~S>OBD8xf`4{7ja) zi}Mk%Q<%&4Sl6F@s6lym364thZx=zJfg~&MSyuEMa#qzJQ|r~99c83oYpOJBG^_RW zc>OVlY}Y?WJ54gO!h40O$moTTHES5aQ}!$|xmsR}+I zwL^i(g}BDL+g34V?qT&rB&G-u;~-B(h6=(s4)rJ2F9%ib2OspNCTHJaVAf=oibCie z>DK_wl3D(J7Rh(!)SMF(fEKkXTRefk&ZxET2L5u{E2c$y$)fD{k_7&$x}PjNIl19A z7dJ5`b46s>>W@>Z!Y_F^Bvum5uPo73T zvC5?Kjo&6X4%s!&FMv%AY=J1$dX#F8wZXIAcuZ-6H#@&wj&Ml`VV5$>{fb#gPyUZl z)_7m=3Ftt(^Zj*s1<1u#DR5zAreC*;oDMR%xjk02RR59Jft{1j?D)IE|H^q#=uX6F zp^NPK0c<>D=9%eD3ahxX$c)2H;HpQWsBlktQi1G24Rtgh2-ao#V5~4r zT5&Whtp3Gbx~FMLYo*Z@(`WG;&xEavQRN{K;DsF?AC71Wh@F}dgw|-9k(*^Nb|pU5 zPKxtR-L_la?G$L73p(99V>6;=+uNKMPpqAf>b|}}m8$kV0C=+A7Ehpof%i`?z7(!| z|6qHYzOz2iXo>MWlU3v8B!Ujo!{qEjlemb@Jj1Sz@QBTa532tGRLtLki%9-8B` z*)vu>;Sy{JzK--O&^$pfvwjC)+lgZvrZO%fFRJYU(XoB)9c6_)Cx^svU83kcEQC{& zMss-|PO)VYAwr!;TL}v@zt60v8`iYoaLF+rUtiOzWXkNFN(EpV;Lu37hfA-j zll$J6rx!g(`iQaG+egF)mWF-DyRrU$jv~0N`WZ0Q`5~+ob{-RoDY7f948bJfxM)AM zUqpE5{dwVK_f;S1uT~V?56b=TW#Eiq0JFW1EV-E`Wou_lY_e`qotY=svKSt+S40IB z^=@>}Hp!Q1@I)Iej7Q!33~R7f>Db_dV2(0K8F*sLq# zctTu?o%MNU2@_yAOnwY_3#j1ViP!%tzXVOsrLG&>hcm0--eeas#Dj3#MK+<37{#`v z0=$dkNOy-<;aZ8tmra}EJ=l-^uCjMgQ!y!8vDKkio23%|?Cm+P@(;!05E6sfI>MQn zAM^lZ)GEqT?J>ob0xPySRlM)ytZ$*|@C42CgPfa_$@5lXp?OwzLo2azFk(RY}^3p!Qxn2KoBY?fekj5G}vH8=~Uy-z;!Ob)C*ee%b zs{uJh))_F5P8sftUP@l+Wjv;q>Gv@)o}Q-FBZJ%Q<@2YLuAW@;?A8(z+(*?(X8iDW zTzo=n7i{o`tf?r%15NP1Jx53 zBAQF|lXl7{tLZU$x>D6KmpzA_4sWb6{)l{-UwuVzTDE=h_fwO66j0zwIyxzl%>EWg zDo97zWj%P;*iVMsj8lkrLudxdbe!|PC#Ze?HpVU8r?7>&HMK3OXr40;_p3FYvYH+HW07pvmHf%QR{hh z8$lWyGVJ>{8!m|Zthj`z8bM~n6x&|5TAQJ)1kK6`yC^Fks=9*O6oG9-FLkb1~l z3!T*R>TXsAKad?M)jn5BXeTbB+q4gK3=w~6%3pffX5ZF0q8Ohl5Wcv$2F^;Iq*m>5 zPW4iU6~en-@+MPnDbmT^7_tBwq=B@soNG>%$ILkcQyzDVvuR8naw>LKm>7(~u$eu^ ziBHE(uqazcCG1jLTv8tcZz0>*quk?U<24bXtmAIGVNKClx2Nu|(~lFHF%P zwOXK-6TxKWSy9K(|H*Ujm|6L`NUe+ ztkgXC(Ur#hIi)~6Beq|yI71&{JXa=rvx6KeFl2OyL*z!V*f|HJ4@=Iw(9CfH+uAp) z4cY1Q`+kBhFOAWGPQtq`Z#5$nv&Zd%dQ zb@oF)Y`#_?K9BQYR;rZqM>@kzCf1zC1PRNDhRfo#4b~>dBBFUjETWH!B zosXIOr?1!+9uod>J7|QmKXcl)Dhv$4kmSVqSoVmYTDYw);@xP=Av8_@0MFN|CS>-< zdJP?$KE%fdv&20WK@t$BIVmi&hDKlDEek8FnQ!MLAyuOld5PAo91!kzS1SdpJ=)~^ zl`uz4kSCXH-Fl8M`cSoOXZZp3DFcf!0C99FL^uiYt!+5w%MWY!8F3ndmn{(19>7Jd zVqByA-ORTFrHx>>GYoM|cJ!?Dg+AI;(!b`@A@eEKNAq=on!5SeEPv26DR};Sz^JLs z&TNDTuyQO2e8EDeo#JBvdo^U)yVoLXU@7yux{A3nHD+Dt5%rh$IS6w;%))W zoTjNg!h^F8EYnDc_hX<;NP3fCUGLar%)j*IMKnEc>g*O;eWR^2eb6NoyKi|5Y1Oov z2qd|fd}B_u1El*f02odT6vG&+?@$~pvrcm%HpdSXaB@^9P3=4Y;2wE1PRE)J21_t2 zu<{rsY|&^i?_NKUB6@EK;tDO+ZvjU*+#9?4*)#>@h9myQT&}H?o03cJ8 z8w?4ZmV_irh0|Gtr5AUd0MC~M3pvTY+~qh=j=vNRFrD3^3SRe@EK!b3I&u}DSuX8r z7~`=qL7Tqsku9}X0QZN;Jre2crH5=r#IPIKzwS764OpFIG2lhsy6MgxqX}Znm>Tp? zlVN*-wb^+d7!@|MA^wcpkvD4q)0ZD~QV1Ic^Ve-qaN^rSqdeG>J?+vR)$xJ#j_nX| zJ-)tWaE=Px_i9=?3jwOGCr;R^is}w>f2l!X1rL2h&YRuPAPY9R`VvQR6uTtTFubtVj8WC~*ju!|jo$3gH@64RN zZpW&l)i8VW$$!nAmA(S9_ig~N|C&3C&55d8vxg@YI-g`t%g@RoS@gY9!@>$90WtV7-MJVZ zWM28TK9QJN=cPAEz+MCMb^{YVj5MB8F+lh9cyTZORwqS~5SGmMcGEhM)Pbwu!8zb2 z;^J@4H)?`tj$m{rO@#~B6oEP~{szR!f+Qt5>`N_#6G^c_!0zZLKcOhxr#|v$hIPzi zGxHbss};nUiJF}A67Itg8chN{G5bu*a8THf} z=a}H4j=I*U#E%dX4UECS^*^!5JQ!5Q{ew{xT4Wx`TBpq)-|oG&LQfu?%0$da-?rQP zycOCTxHx>ogB!f->_lo^qoZVP2B=Unz!c_LyQuI&)A2&Q(A|Sjeo$;p10=ja#ogPq zx+(+%i>?RezSGB@1J52r`a5=uzz8`pA0a@>Kig!#KUC% z(NPd??S_rMs;TGqH=p{?Iso}*X?zH~m2s2`l5<%{X|H8>x>Mo!IbM%MpET%SVc!47 zH0qviv?pe_;G3G%189y09y&7DV+5aQ>zUkJvRDomJq^UK84)>QM>$l)bQ`3lUzZ808J; zSK7tr>xEsmdc!i{RGl~~7OJnVy5YUTm(MgYD_^54Z{*Vi_hFu+*E+xk$%fx8M|U1O zP}PR8MJ4VHEWQxoyTY$&q8Pj#5Jv zJee7G=-B7NNHje{QHCvbGe!tCxl;+5hcahM2J$ZxvUUL#kws+CAI&%;GCZdF8 z?wB5Pckmf2wBMA?=smt;otOXM=jsyXm?yFcncgQ$FK!o`1NV!PHLOWvyJGh7qWqSN z+!ur=9?xgcB=3p|2i+8ij1Z^Y5GsVgqg;~8jK;3r&H5y5m`h3)( zCo|SC&&(NugTBF7_DmPF*e1gH+#L5BiU~DTrL@3$&##U{Ez4U=M%$st$1@q3;{}YL z!ay02cScs=_S}8tgULOe-|ec(RTkCPAx3{5WO{cQ3=hDXrAK4}K?)*6U4aQKP^R{b z=(To1K2%b5K;h!*$f+2gAPB^7QU&-~JDj9-hr_pqJHtQeK=23kU4420vjiORa-tq( zZ?4%Ljv?A_g=YAC$s47m|4s`M@DNCLAjuZ&FjUa S6W`32(MQ{F@(?2cy8c-n$ ze;zpb^yj&v)0ThIm46-YpC_{ZOGQ+EjEezh2ZB%by09t_%TgIA80T>bP-p8K%nDew z&FcDshxn)RCp0jmzQYS2pONVwh+ev9Ca(7!)}ftjF(e(s2T%V(8Wz7mJF+N-zuTc? zRa*2Zo%W-=8z?Ph!-4Zmh|%kvqE#^JvHrU8^WUTH|BOlh?;gcs*3ry@$1^CXvucYe z<>fWtR1k}KVRa1F{&?mkG(%-1f94#l=)6-5@&huSgpBmw$>eX|L?NJMiMSA9S`p=^kD0kNc z;XFJFJjo8J+#Z`dvv5slrOOaL8y5E56YYdUc7D5jlJfbLfOe40*{RSr5G-s$nNJgvF|7{}Mh=KDiJ<;!-cgd71P-j%}sR0pX2sRL7cJZD- z>3PfRd(l~X!#kI(Bm6>zxj+C%9db*ce_7p`v7axZLmIZEwv{Y9q}~ES6trA__Bcn^ zSNJ-kcj2rhNdBn8D}k#n!&Y+*nZqatFb)`p)n9_t+)!gh%k$xmXFu_=5BTPR%>eQP zm(&~r?f0e{8W-IOXP#e;?HAnG8`z}W(pH&h@h1s!F#uK;77^Dkh|x*nPjdE0amWiI zXii2C$}hJA21Z+3*%3vC8afnA1HtIx3nFJd99FHa=mlH7r~5^84%K@~!*|c?EVlzy ziU(KL4Shxtmf_>76$QNCN>~?1tC?)k>8OBQ^D<_Z!cqMDwQn=@zs1uYF}4NTUPQO) zQC^{MivZ@SZ#STCVYof23`ICb2|^WQUw1|&!a^>teul>MV1X|v{C)lBXCSy)S{Wb_ z)oz{P75mA2D5dCIT}u_iqX4n1wuwN5zkLZ+#kCEQz7GsCxpE=mEDDL5c>$%LU(JRo z!d{qDfH0mjqYI11b?`{HZ?H_?r$e>Q0|+GWK@nk!fTf{$nF+=eNmN05Z@YMEMUVCk zRA)T-N%6FeyN^8Nbaz(fc<%M*O@(gLIfbyL0nvfN`Qt~D3Uj+Zo9=r4*n2E8QnsA0+m)Zj3$ciq`{^M%?1MRIxV2!Z_RkI z)3a6>c6K7pVj{zie}C!+S!jzPWj{>wVniTn0-bdOz_`p)rivapGgufcZ$=rGZlzo1 z>xTI#pMH^Th3365x)k^FVV}6mPU{R9Y_$<8)T3Zg1qBRKJLE+pb;>cA8H(!jo?UOU z!~1H3wo2NIqm&8aG<_ln;AfEh@inOV>q!fqQd*_q_td;6{Jc5bvmSvDuQtgGy5 z-|NXcZyThoNrT!o+Q(qMeT+w(+IyoCtwCj7&jebzYwX@*fFkL!A=|V@GoXeEpH}1_ zkm-%RkpKlW(z|AI@MCsrv{Fc|$J4P{T@_`j%RnfPsXMOs&KjNptB@fVkMeQ>9%M9= zcz_UwY+2u!Pc5dS7=7D^fbk7b*J4k-xok0}whJ$HlWx-W3>x<|K=}IJ*tS+IPWuJ| zWgJgNHm|pU60RdqO#kIS5|c2-`buxS!}-&G0bc)*vE$Xo8u(T?OD?lly|<}p3V$mk zDCi=WNLz{VXSWi8aPTRoxNq_mufJ-yua~jU7*HY67(JBn(*~}TkDNHmJKY5TJ*UCc zF*f1`imbCeFsY6oDO{(~?AEtngx-a?d!?l_XW==r-M7>v3T7 z*q0J0xgl)#Q(m58rY3Cvq~f9er3)zYRL(_GtaTb}3^hJzEXeydLn>D6=^ecCMu-zV z_|t)14Zx{@K@4uCvf6`%BvDN3l5_raKOS1FHY&Kl^oLA0@D*V& zC$cK;PS0k#+vcXmtGs#HXd27Pg69>|41d~| zCzmM*zl`|7@duL-w*&S(e0k9x$h(I_e#@mqeXMv!1ibu-gZ@@mU}i2^0?T_9ZMN_w zgYPhYX;)6jQQFb8NSppOXZaBMPvzxZ&rVKyFr#mr>jT(5ss7}8&q9eqjGe+-q;6n2 zP?i1ApsTnDiwN50^RDsRr7a)e1Bhqg)o;AVxu@?eZkZUE$pLo-C0=M?WoMB5pGWog zMInnCQ;q_bi2@e%Xy)eA%8rN&rl()jF(3bQEZg4&wkmxvVDG2uxO7-d*PH=lcz~Aq zGL@}gKA@?*QDeb3_nK}2s%234Lrby>5RuymkBhdrossu>{|X&a5FL%ljWyQU?wN%; zR5W7&tL|omaq#P}_60}DZ?wR3fc%7{5*@frYXI={(k^XFRl|42vlOUmTBYloQJFbr z=vf9`6kg4@TQ7Hs9-f|9{TQcrQ(XiXql47M{y zZAJky=WtWQsSl<@x<4>acl^4dWTyh3t7d}YW@AqsTCVopyZqbW0AM+qlL}3VX4I29 zq(SOzjzc!E(0XXBPVD3MXazF;(jj4Q2^mllG&!J(*ccdjaWpGXh31AzP@(oHDP7QQ zTRM$ms%~6ES=nh!LEil-<3AtZ{+CM#=vskkTCEmBfz=-#3sJa?@IwVCB)N&riQ>HyklI?X1Oz0&9-g@~wqz5%O*0`U(_Onf8Ua*j05F~VInBgb zJ_}_+8|%=ej6?!#x%O@py9YS>6YL8hm`nYd>`Ak6Up?b^uf*ytkXgSmf-x}1RU@gW zh0lw^8mQ{?y!&kfW4-EuULFg`lazk6ndFxst)RAg(NgRr=us|&8Y3?(sy-Oqdu3_J z>BX-vqb7{!+943PoC83a`JJip1Aa=yfTGg^GqmI@f5jOXQJBz;K$KEN>#;#TEW{=v z4pskxtKw6puDp>V;wqR&UtU7#7gl?r1#;iXjF zPlLnKm5kQrg3O9l@Vr2i4A+`a^8}jnw7XJuc+usds!;#SoF0d(%l_pJoLky(10Pvs%aA|O_JEa7BU5xk%U@d+lKwauON+&bn1ZC`}hPq#=M`lZ) z*(!$RoZ$%62fLna8hvc+UM`!N+L~go0S`M{gM02N^embgtlE9lvgKK2+{Vw5DwMeg zqy9GNMaj|3Ei{$tP&+MP5P44kdevr5ks!8b3Cllr@I3Z%@wm#isI%Y~9UzxJpj{RI z@Tl#L_PpE>{sZNh4QTrpc8I60-P%51lb<6Z*mw|D14_6zUFCpMAw|7P6KPC zv=C|dJlc>N{4R+v_0vECG*f)+Dp{88{4h4bQ!LbeNIzF`Sud{Vo;Xd`_Qw38#iAN{ z0NkJggj~(IzNanPkh^@EnUim6qF0mLgr3j8C>@(m z@be|{&X?2oFrQoS^F>0Et*-*9C6GSeTj)LfF!6-raFZeeOl5`EsA8%?`ObZPa`6kb z4*J1XD4)y)=3=Nk7s#F!W4^SvS9WdapS2%qO4q9y@p|@+uWDSwFx~XI48*${EIX+` zh$vqa7L^o6WX&t+W^CN36Bd+^?}Y~A{nPj(>S8{Bb}iehIG-;A5r+gHEDM1EYB>~P zT%EVw?nDaA;f9c+UR`lWB@8eUQt1!bc5KOfh^V;8-?rVu<{D z9T!!65ZLeLV%~bAnqMELa6tSTBY@!-n9VVKJZeK#}LbhQaT^xO`vc0#615d)j2*<39t?Q8?z#Feby2L9Qbn+ z@H&qAt%3yu(%Wd27G3O}m#{GexgqizM%RBH&${a{HEYlf3%PO*!H3sN5Uf4uMxc#W z;gUI2pI&5bQ{wZk7NDg0N8c~N_k>PKW)i-qJkh~NdSP-)ny8hDNL15xc57AV?&nwD zPkO+LF#WTpFwG0Aod+A`(dc5V&ss!?fCqw0QALL{a|f-d$y d?IQiOE_6!{GdE#Ouv#|NG`mFcu{{vWJ7$*P# diff --git a/reference/plot.confint-2.png b/reference/plot.confint-2.png index 187ca13f0f3e83222385b68d1ea824dee21c21bc..33711bdfc0c6f3d845a6a508f5c27493e4bb8e58 100644 GIT binary patch literal 15580 zcmeHu2~?BU*7hriSP`h#DvAuY-j>^o5G^u@2ClV2Eg~wAFbAcIOaWykBta>99e`S^ zAVW|oQ^F`SNeDxQDgpw&fIt!`C4pcP5RyPblJ5j-`}YoO{p%mT_5I)PS&KK}9nO39 zKKtzb?C0!UJ8|4mdxQQ42!gbae)+{I2-1jyAoVlr*MT#mcOT4wk9B999KQgcpe-M! z62ZrN5np;nLXhEA)!&-*srj=Iv=ch|#UZ!2oL5ZZ&9YHnwnTz2Cq8C$*jIM0J)^&~ zd8x3r^g?w_qNwsh+Qi$w*^|Jb0FM<9;nI%pr zD&<;4_TeqifRIbs4Pu5z$z0m+22v1D!1pN!{ zIcP%A@Wp|Ytq?RmlKFQCD&_tVuOXaKT?TEpg}W^O@aorpJhZGcaC3xNZ*PqB$#uWF zstjtNz99tpcRA~M0X2jKe53|dl5TUh(29Q3l^Z`@2T1cT+K!0-Y^65*$^HcLB3E3l z(Mi8J)!^dR>leogWbGH+x--f(H&DkW2cmj+7^-bM*Yq6BO3Ozs6uUuM!gQ(hsmzA6 z9qvS@#ls)>$R-xAg1cyI$TvOt;c z^K&Am?&8WW@W80z>Z$B z7?CU9!kZ6Ty3Ae2QE_Jg=aZKLAmYH3tD8zUF+O(@*-4ROhz&H-&i6g1Z_JXyk_jEL<|CmF-9DR_Gi zd0uRqGQ>39^w)=3eVg@S(Ba1A;&o?fB}T!Dm$VD3B4V#B8$V>$+x?B=)hUJkLs%WI)-#nga2^fk$ zP0|ymmJrmr95n>>_@#_6v48Z)BQ>F?Xv?lP)(J-6ipBDSzC%FX24B|5q{%Nr`j0lQ zq6Y^$l}ktx`pvt#700@6Py^uuj^EH9*bS~&#CN?}DDflHQ0R*T6l-@3fvYGIj$wG- z6nl3$1D5zY?`v=;T_}>LQ`kGUuQi|ex#%;&khNdXb$(2&i%f|-4?MiT$)|HHtgd)i zYvLefipY_{R6(L#8x~>?nKy)yB8%kKR|=D6YcX=~{KI2=lw;Fipe=%v<8&tLB!1$l zJkVWO(pBh69+iPP z=4KN=0sTaL?8jWTyJlQL2%1t@Gr8MhE69oiaAe*OdC0hz(c@J zpB-DtvDVU|{tJuuPwgHLQI8mul> zv;2CqNyCiFMw|0xrmq#cu!YLX2>Hu_3y0sVJ*MBt^7RqN?1~6NA9u_#@6>q8$KV08 z=0fS05{0$g0v;u6UM-+DswO;Pb;6<0ijq#hFZtRo{gPBuIpKi`n>;}n%N-`U=P@`Q zm8sx)XA+8DCk=tAB~7kckkJkq;*ay&&O zd9=#Md_TlpmZ*Pvo9yOjt*=l*~8|L=n8JEZde22y!vsqZZHf6`KYs*Q_{8Y6K- zmnZ!iFOHdz1KIfiJ=&j?7w{NlBQk*^P3BosbWs4&%{!gbw3>~iAdC#vlDsFE;fz!j zIIr&>Ag5ajm9Z%N6y9LrCJz8y8t*+RvZkL~f@Nf;7q>Yt=#tqbBukK3)VC3bR+@W> z0(Gcm3+^m8WsogkQ7)k6-FFoBum3E+`$1eU*~J~v{K|TbPa_+vU?%oW?~J%%_$G&l z(6$?1X?pFh3fL`Si*-F(WkSMtgbL3YNgpR{8|f!DMUl@7A!ne8#mi?t({<}DRd|S! zk##@GSkcYzjeqs&TpP#GT1ir+U_*bqqz6G()2+N+xq4n0T)JH^#mH|a(j6B`2unA6 zZMSf}Lt`+%MazZ%5{^YF1ENpmqU_Olj6_0RP;l7QLt%g2Ikr<3f-6sBUI5%a!P~D# zBC?+@u%jPy6)&C+6PK=ct}}PMq(>SXrkvu6vomA0V}DzJQSv>F*73IF90C7 zST3=8ObUgb@hjS<>B=(;C@u6%J*tDK*pja8lct6^SY?k!j>!3Ym4+^#^?ZNh=A#2D zL_e;7&;#GFaCBzK%H^Q&_!;98zl)E#E3fY?Afp}!sAm+lXi3EV9Jo<}+tf$=ZcEb% z)o3Han(u>W0?8Q9My1r$wlf*#qS$`&L)^!c_6bKO)n`G@fRo)4FdA?YvBlx<+PWXM zXhG1>bQzLxQOdIHka0L_f?bkrl2R#~+=~fF9OnVeP9jgp+wbbd5g7@BBwEC6m1JXk zTy_{Hr6vT53OW4E!HU1|vIn~);3JZ05)T|#5kSEP0cGKOkiTOdXF{*-0*rTUEC6>*0 zQ{t3U9KJpPo!aryT--VWOih;mVLM$+-L~llqqx zYckObKhxpb9w!FiE-7SgjN^`rHTeN^ie4IzX{qMi_<`iByd4*kD)p^`a`B8hAQs{EAmUy>$J~JUdb~=fGekR_@A331&=g zPv&ksy21K}8Ulhshi4Du-L!jg@DhFY5|4`_Des!vN%B0m%Y=UO!!1*PnQPmOJDJXG zo4$rME^CfB;m{DIvN8W;zY&_e&2u4UqeR*;twP3K(px%`C}B zD|+Nu(eTfLt4&fl{!$kJv)u=<3giI;!?op?Rt0Y{wMCTM`5=XMY4N8;xY)GiP*J>O zdV!BrOp;?|_I-9Kj60wIY3$D%XqEB8a0L>_1U^SwB|J8Bri2>Nj-vYHj#U&+a}07E?4DX#!V=B;ffytX%eA9 zC|!W7--2#4JyLcST9Z*C9fc9rdg1n?G^wN=c5!Eq(Nff*R}V`l^z)wrX#dY`?1Mj& zG}f5X#RyfN>n}N$uMVcUaprTN`G~M%fDasu?5ACpM6IU55Ont*S>E^IKX(bv_^a!X z^Mk|R-nhTKhup48?UI-lsXD;FO%-aH0he35chefkqxa~-2G+o8<_AF@=g4A5Kr;S| zmZWV{oJOXXArW(*w$N^O{?2TRJUwn3K-UKCya`sh>BMnuTfh=bW zgNadZSTNQ9|6?0YO6C=h?09=)8l{@|PO0yd`p#0{E&u;JKDFh}(k0%l1NE_HHiA2* zo%n|d;uNlNu^&qQk{8y!d00tFXpnZo6)0i39~wFPdVY;Rg^8CZMx5W^zk^PbqO;kt z>QH4n3573>7d`hB-H}{)W4Nama{TB0Ky|HDfJ;lh&qP?1uSE}G;O+qbo%fq?i z`m2RdT_2N9#q8M!h$-uiQCrMOnZRU5l68k*Tm}H0T=BUmmJ(j3c+C5_+mu+uNxy|; zNTs~n$QVmup2va=4CJ+fGsGB5)oD8(e}5UjeUwiOQb;B#Dz`s=F0NAgCCCVdSoysR zS(4}UQSOb3aawN~fi5#OS8oZ+Z|RDDNl_&8&{-7^B2e;t9ulT#a(;fTiqvsA2p;V@ zV9Ii|dKuwU%fhC%1p@rEA+M?J!kY0y*YPP^TAj3vw34-+NKN1rC;41gfdk1RJ(tl( z?0q^J?h(JDM;$?CVx9+>Y=bIIje-e$+~oAmF|Ude#ZgJ@#Ax1=XsfzwZyxg(P4uv* ziD9+u#JzRZob*NdFV}mQAKh7y^8jXttY0$e(`-B2_4WOcWS1!7V1MSGBcrMn&n~J|;0v>R*rtOx# zryB{a0RsPdw-3Fyg2Y_$lgg8;L3HH><*Qeo)J5S;C3!Hcyr+!dK4#_>6L{AdKAFn}t0?U>HpgFRby; zPW(X{05d%C5fNLlc@lTb#cPu+ANk6bzzLq*8b-S@_N#WKta~X3*vb4!7*RH+EVS$- z+?V#XNYKa^C)3ZI3dMz&aX=xTrkdinAhPAMp!e z-vNnniC^NAsv^#vb+Mg_8J~jfNlfvHg^-_jIBHIyr1{-KCP+nzp{FPma=_nZhtotQ>+=qc^#@O;N6SDYGQedGG?!#K^gGbrc<%_Zu63s)l!l5Ly`O37SXrB9`HC-D9S%Iv)R>>CseW+pKF5EMs~0NAg} zOCboR4UI5Adesgu2qrW2P>fh^W-lr)Hr*~!1ehv@DE?E&y(I zJ<1m=!p;!Ys`t++LNf-zn=G}`2>`lc5Yl4hS@;fHvD8~-|3JUe?ztaUfr0=Nf-}Zwm z3InMSWDudM1$ehN{BFbjzvzbhe_I-RMagI4OT*%Q+4B;nMRNOnpAY6fPm=za{P6fU zR;P}v|D4=`OQ|xez3w9VaBrP6{Eb!Jq0PppzB;w>+d-?nS)U%ExCLw`B&I&TD(Kk?naCgzi0&Hx7duqNL4}pRa|+uMcHG?JTgnfrRg|}cP>_kSpGpZJwWfYUK zQ^7z5hNP49nx-%ybqvcFu1C87u{aztFU+}DIZ7c#ej_3h!VvrK1n|6O2wG3#303Qcth(55R`-rjc<`ZCp%1Zh8re zTGMko`~oKY$u529KF=iEP8S2VkSnVRhF-ObgfdEAF=@ZK zeoinV$QI>iZTpk?-pjGngTsf7;fRu%?2fa_su{-tvf}8#dOv7<&=+faZPfrPx5lC* zsPIsIo7xriE4twc9n%%=h!EcTbxF0jAT+~w^=ctvxq&SbR|$&s&^fd=fvXcs)xoHvUdULLIL#i4u*(Z{aTN_VeGVah_^M#*~q& zlu`u6#9ip!UdQf-b(_IgpLVM?{%JjE_6dBLh*fnm$xtMNZ)an-uy^EWa9$m&w|igE z8oln)_5(I)ghpvjt7l9HUxm`^-2*fH*!PrNs1nQepcf|`7r6ouPo41}Pdl*hbj~QY zdBdv@lD~5Kwx^jdzRtT1?tZx#avzfuE?(pBt6HQc0Js;qVLa$T5nD5>P27nQT0)%5 zfNnOm=gLfMo}i3n1tzVpl}aZu;lR1(eCYts6V`J_loLWv0L!z=$TpuY2XzOpXqpsF zhpS23si))>JPTAJn^CBx%Y%^S2*W%QaP=@<{rX6O2?TMMFh>dh?)VIDrquTgU;i6*s zR0b+MOutnok||>xMR^McKY%>0>Y|BOV6j$iwLe8Cq=*<4X}9*-HU5rrW;x;Z631xd z8nIBiT)-g0d&L33W}qA$hq<-{CcNm;o}J2)lQ!lgx8EF336L%ob|PL`BGV?k>TlR_ z*3TNG=zt0-8^fr%Hfe52bB)y4Id;~-M@gtm2oN<+K5Q*1Opb-v`@+(Xh;BQlV~S^z zng;m~h2-W0;&NS~x645?;F_7syfe`;z$N&HiL>n3dA@j`fyfy9GU;$(uL7g5rwtPM zGGDpFe82M`(pA3LFJ;GR$t*7GL7!w~+36xwYTmsoZjFuE&2ht)^(_9}3*H@B7ZL8x zE2E2UMD*Lmo!5c#myTWb zj&Kxd`WiaR#7ht5M=-YQph8WmYGLNQ-0hj~SMtfGxA>TULc8b_PG=72U&<6azC&oW(&Er9&a zIuecjx4iKJ{FwLZZIt1hszv((`&6;fH&lg~=deJhz-yoJ`8$Bzy;FsoXy~_TiscR7 z*uSmB{MBQx%HYvm5M0r;M-`wdaa&a+|Ff~5pBsQu%pV)xUjx~Yx}0~#Rjf**3b(7C zZuP-`Jou~kp!F!#zscnU`$eBt1zvy2ZdHY6X5-@r`#~4iE_|p4MI6k?c9`?q{wpUA z?p`WLvrZyyz}XD_?z;V>QAYA-JePHW_bd%*dvqD2 zFD|K+Rq5PZE`8AVA?KC2Z%xv!<=jFY7ST%;vuw(XQ1(7@Khc)t>K0qtqXeud3`T71 zQR@^1!6DhrK8mNUp8ke@?ntWiE>BN0@Y1Aok;mfIQ!0#dGzKRuVeZ$9f~uMEl=$J% zJVu$c_SPYPZ5?d-%HKvTMkna9NXslhYSskSwI51t&avuVVb<9*5d3@mIdr~y=#5q1 z0!BEdZwN>g&@2j)LD2zNafK>u0ot?gRiQ%#Gy7Y?z8wJFuC{==0qxvZnji*&<#=pH zRSF1}=coUBoutIaNfavxP(Uh*>s9#R&UqL2g>L5G3(I$|b_OD(T4}%fzS9l!J>u-J zQ7?tG&vtF;lS8R?7Pjk4pK#GG28L>bzf{3`g$~t75(arXYQ4wpbeB}s&k+7Aw4~dj zpLhb^$1sJ=E*4<2NR<LqcS=;w!^7DWVJWF*0$)u(-sFpS){pb^^w$dSExlJ z)F+ESY73N&uqO7Ak_fvsOcXoRP%5ZT6gn=9h7No+@{ir_8dY^mZ^*ANl4Ui&@UXVj zx7p%AXd$+4665#Ktu$`sZ->isDlhuvkCb~o`=t1B=w@zL=w?G&=xuk~INd^GbBCPL z*HSY7F^q6yy8<{DESf7Ejj~!^qbx2Q#p;OXcfb~u1LPy3B_52d*~zNDWDuHhiyyrF zjc9ww$S2eQw^8>SFW1&)hD|2k3;T?W1Zzr4FP2sn)`_0+s^Ipl;9u?)cHSCul^@kD zyOY;^1rJ`hn^w?GXkml~$pAn5B6?7!=QJz7;QHX3+3hdO@49#h{o2LDW^V`mY6BSb zZRdLKsr>ESd`fIot(-}{5=I97guYf+h>fH-vv%Ndb;Yd48bS47P6~f-lkfi1Q>fHn zYJU3mx`FAKf~}F?ihqB?1$3~mX;9gISSaec?b8($jApyhA0(io zF$303_HMrCrJJ-otjK&)VZassg{+Y~Ue9uJ3j^M>I+V)!0Z9y6c1&+Hv((Q_b+${M z(Jm9O+_P|+6}rck?bjVW9Yysb6b`2r%E%SZuG*siS@`49?X=*1CNn*}-t3Vfb-2?o z5*NIvUG>B}ihvIqbvf`ej#axz>MU1Dt;6S?hKar-+`M0$oI7fn`wc9f z^%|%&*JOh^m!0$DF8#F6Q_to4vEaHzDX-2l3=QU86HzMAfaTVif*pGNU9`xcckNY!nu=yhbgS73OKpp;9X6JM`5pVR+ zevc<36YG@HPKq8{w>(G&lnT5%oEy|sJLNDCbRj-ydEU`O*>kuews4!E!F_bmX9Si} zl$DFpnIZ36xqHd{o~g{!ew_aD7iW%B8x5Q)-wWQ?SyfD^l-`vO*`x5Dv$JDnmeQY8 z3YO&-O!eBeNr_=W%Vo~>`&v#%2BX7$z3c>thR=v#h&f=00ms1*Is38)R&^O^iVfE< zlhw*9Fx~*OPgn{aff5X9l}&kJ`tx!0nbVUG@!w#)ya-Q#d3rl_**9}`=lD_TX7<-o zrbeH!aBVWq;&wQO8})3DF?e0@-lCT|X&(=-wajwIyNN8|4Dd6EOS}*-A{SfI*K#xT z^@p-pH)Ed>MG?!Nc|?>}5N#i;S|gD`=vb7o$4I?*&oT`LE_xBZ zE_-nv6^j;``i5Cl1nGZJ^J(zDJv*`$NlHNhUzspObeMC>7?f4toa1&J$5ET;K!Lhq zxnNM@RQ_zVxDGdxzMV5uQ*T9d5m;cxaIZ1y24JYEgX8mjIiR{WM+*ZCi;bVji${@0$>m<5>&yicdl-$taa~%d;qCR7{?Iq5Jq8-C}G10kv z`?zGha=dJ%vkG>oVMYt}bV{kdh6T=)$D!9%?`Rs0Ea|&heek+CAxx4m(CHJH9lWT& zy?mp|Y+A^%E-bZ!J#;dY^?b2%UYGebeaH=g{ppXkkf&C-M{vi`iAjQ!g<4Lbfzz!T15h)1) z0|-nr-p%IR><^>xEE$8s-}0;X#gNmF!5E?0O(S4mR}HD9;a-XvcO-kW`YYkLAf z2+u(SysgPO~fH?@g&e0wAym{cdH1e;RBp5)DrkALwH_!j%zv%|l?FCX zEuw{9UW&Zz4S>+ETPd#ceS9WJ-LERkd=!YUG6MK3;_fuN=JB-IH~tkwxyblDCZbiNam}vI>SF>kHrOu*hihGKq%Cx2q^P zDcdGkQ^<6hrSsQbTmwZIu6A3>D|70~^Fb2a-iMNWi&RkB1JYjHHBif~-0k2&$i|X17L_`u2U9fzS7&2&wErmw ct8t}z1-5YJ;F*aD)eDavIsQfY=l+-f0}1S$=l}o! literal 15619 zcmeHucUY5Ix9@8KR1h2+3IaMt(Lsm|O}Z6~fGAzMA_nPIdIB=aI0%eEjT8xrfFv|Q zIwYVY8Kj9AA{`~PPy)mdlaS=>Ff-@e@4IvUxPRR5e&;^!=Skj|?6&sWYwi78zrDG0 z;k@bQO>&zc2-=J|d)f+u#3CSQ-IWdE;Fp1iPZq#K{EC_BY48MzbE+N<9vcJCUJ8LA zg+$S3P3rifCj{+<5T{SrL}bklMc?)3xs0&cmnL`V6OR(($Um)r)sgcof3H>T!vqzt zlUuI^9{%y;#=K6kQ^&xE9;d;G(;dUx%~{XvlX;~lF*rVdXl zX}yO%T22?Mhu!k~MRJd?rO=^5t1CNXz^BWgE5Ml9;QIbOqjsg&5oZ|Pg_>YL9^n?R zU6uC#_b>Mw7Zhxxa}!p_S=JsDW~Y!M4Te6OeLWO{;#759yw^aGcFXbg(5UzM4CF%g zYBmHl{b*fjthfGe^;6V*BFttkS=5fGAenM0?3msL2r7%t?*^?^4TctqLD0ut>%N2H z2)fs^o1^ta*&wxi zAqDKLWa3$*IAdCr4bl+}TVC#|)z^RiYLeSyV@etRt6+%pW81`4Wz-|(6hLcj7Fb81 zhGg|EYoMBpw29pf1^=llo4HhJFq*$fK7s#grPk~;b}$SkHePQ=xs{cV@CXHP1BP`M zJNl|8@8vCWT;>#!Zf%kXXdl?&sU$$YWUF@{NEE7TD*)2ydx@55#rL$-s z>(N_WB7Gah%v55H_UFePxOg|iRkaVyNY))H7u>Kkl4p|~riHoTK}5J?pYY!Hh|83O zju9EOr>~UzDHM?tEg1hpjpV$abjZ>ADX@`wY%Iv6 z1RNPug8VTRBHMs!cFzZ>eHqTM;CZHYPhO&!+Hqs%U9u(pjxJhNL)2G#bK7#1 zKT8LXw&7RM{U|;J+0E^trO{5;7QpZVEsP41uFRO?kB{UH6$Khtz1kjNNWC?Y43_2e>+3^uyjCgzEr?w z@`cN9XErqi)=OBAdh!}d$ne<`e+GV8+_S;naB!tElCo+=gHmiAnWlivEu^RYrAEDP zEV_+YYAHOINuJPzsn<|_XyMhIqIo=aZYgZ&QV_d$c_j5tWEZz%qO{Ei=o^AYC%(3; ziGL3b;;VisYssFDQlo~{ptAb zH4X$FyV4Tk*A-4;7Y@#%;z3y)J-Sp`ZqTbsFF@Eh!BD8dx)6UDJ0Ck&ng7wh8g*HK zmbL&g&%(rpGv@^Ur0+U=90lP-x5nv}MXC)6y}5QYpVz=#9x)mjJ=k9=Na)@-ua3R~ zmKMmJeQ06Wx0GNMJ)5;XHQ0@&)s}KiJ2cWzbzE7h!WRGM;r4JmswyfXaA(Ai z@R|AEYeE*?m^5)@fS!p*7jt|>OAPgMp3C5d$yf@!)IeCLZ_rX)j~AY2wJT3e9`ph8 z6_Tb^MV75x5%)n-(0bp`8q)nb+|sbCI&11!Xs4fYk$PoJiaNo1!JJIB>59g97}RqU zm;&@7g8Rc?^A+UABB-j&qZ+tr`(F*`D*6lR8oWbAYnA`)>QMC!!ubbOx5g!|eue}q zb+W7E3*RB+;@8Eh3i32BnaYy5smgTU)ZmLn6KcJp3&e&=#s?=1XLK@2YNZMaU>%K{ zWB;NiJ}MI)gk)q$){)AV1Ud%IL3WZ2;q|dSTKshP0fR?t;RBPI^%dVUgcoAp=iFuE zWi-)#s0fi5?rd|*;ajRpD|C`RdS!8<5;A_VB)G(?q$p(@3llrSPe{b+*rK0sv8haf zDM86g;2U|>`bpJqrd7G5 zf&w^ry09^UZ}h>LR?Hb`KE+`})N!1>Qqi!k-iEU87+%Ege&HXR$H3%fmm{eQE%hIP z%kxQdY8nnt*C@{6eVo<}jOFOzmrX?81w=?6n{W$O{9~6>#M0J5&K=+OBcPgZoBY4| zCjSjNeS@R_GvMg|b4!(9PN3|c9LU@`%NA4NHIkyZ9$zBQu?p}cM?RJEnj%3kevTqU znX+OjxQ4dbCWo#PVqoY7XkHinjN3zr6@k|#wTPUk045iWq+o}ejc_)N0iHNnvRUov9aSAcOf~}vBAq6~@vsh@4BB6`6=y%nEE|Wi zg6NK0gM=sqE1Mok4Lstm;Tky19hVwxOrSsSmseO{(p}t@Xelq+if^>D!__mFm2o*E zZFXF~BlAb8)X7OasmCCCOd|tM%>+F7r) zO%NEmrN+dVvclkwD2edJjaGh#hF8E2N7Af1*MPwN{T!~VF+T)-rdl=<7iB>f>otp) zoglap^SA{RM3^K0B&(4U!f+Q>YoV1IV_eo;hD1B~E?NkP0Z`APTJqRRj*-HFQqG`~ zqwca&RJXLUgBqH`%VZR-SWuKgFB%AneDsXUP@UWA1yzFI%3sfmOcIaGg05w#4lpFgt zl81S6*gd-8%f?||h`iaF%n%)t6wq6 z(gt13P0c{E1*e(GJ}BD!_v_?uI2x96OX!9P6;1gD7Zh~R4^>$ibUxOV7f*jfkr_A1 z9o#cw8ym@ji(-^G7uI{VUa1&2*%{w#Tes@l%-GAU#RnlVT)ECQ&c;3qrH{y4TOs|QViFG^XL zDFgOg(nJt9){j|~kJavy7Cck?rI~Hp^<2QBTMW4l#v-XCBD_oy1gK%;juBJ9Vl-)4 zi9BF))MeQ>6cE^@+-=W^GqRB(81EV8c*e}0~)BEwgPierY`tb)YxreTK#KlNiqkswJO$tQSHX!IJ%aQqWpJZQQxCNEFjK7( zRFn7EyA}%6Qtr@*uw2a+#XN=mN(#UQ{wDQ~{$p@NFVg#_R1gk*Q|dQM{pSAv7uM83 zRa99NEhf6>CZFi;Nn+bulD-IHDUx_&w^%e2S{6PxvWk5f70ybdv=Iu1Vq>6>-ql9N z45f^<9}n^H8@=O(yPmq=l2RjQpE`j+uJ$d@22=2R?{N_DRB zO%;}NgvkkD{fwJKiZePEUib??Ej&>)lxLSK5sa8Ciz5U@;+5M4_QuxyViiRRsH!6x zkYkFXj;niTQOobPLruv!P0=9@1>AThxvLPhvXM(H;`TDh$`rQYd6Fp}M-W7@4p5kc z0&TaOdRjtvF2hdAp>L95gZ7RDLvcg`5R*3VL;N1>Dm5oo$!01T@@MBca4PeX@lVH11h?3#^vc)-;hxg*ozkfnaB}>iNvRtD1fPl`jP`iGCV(4 z#fy-E<&=Q#;+(AJxJ3e-1z^8d1e2gX~?K;`>K1SNmU>mA}!(>$ECIs#`%#A{a z+YL5W#xj3>c0>ejoaISFq;wwd0@cAu9y7!Uf(AE?bmt;N8$35pMmoy+yoxP~ng^H@V&mD`XmQlQ)ZW3f!XnR# z@Blx!;;#?%k>YSD(63#ywlAOlm?Dca20;m#Fw)o(GH9=0E9~Sj1D>NMOOGxvmqC zm`c-6Yj`~!72iSb*gXw+0P~ej zNv!+2Psq%Kck@1Sn5Ov2q45_5bfuC#Jf%ss4rsP2G1GXPo0i@No%cvB;cV5jCf@CR zh)X8{l8saT@=y)c^q(BJBPy*?0$*LSXRN?#P%Li5SKu5o2bAw13<`H0G%U>4KX_15 z6iF@AxOTsh`6?40y=Iw6m$e%f-WDUrdIM&>mngJoll%>c9h<|cSWGkpW>#0qtv8Ge zVpH+5(r01D56`b{Qf2rFVpgiUPt+_5 zVr0#37Wpgr6FGAg(rAnTD)T`Z z>0I)tFv{ghQm8iYlI$O~rNaRZhT=>)fXpuYFEX2XjGt}KZ#ie|Be}LIw-K<}?z=@j z_%mODa!Q5SVG=xp0&XKS78tdNZSbph6R=-Qj4RAvtxuBz!`!2VKCgIJdaZ9V&Rc*U zvlVd+M~7GO^#+~@U$fq#7_-ar<&<2>1~YBY_>DKXVw4^(w&^iXqoX1Mw|e+F*7#%~ z09EzjlnT#{sCyUqqCsuK#HEJ+=7QtpS+we-bb@!8(v2Xb)C&7vLL6 z{uX(B3+Mj5!?^`vbvRqSoHDM^MA9EjvcIr%hx3LDF=y~630ir!`|QTdhIW)(FNS+n z5@Gpp6ALd7d2cJN%7bs9>zN0W#qT&4mnU`i;wis9r#NUm;@&JNdCtoF{%6+7ng(Ct zv5LMB>`=XiK5{~5vVAfwD@!B1vz@aQHJPs4m8~lQdDRX-)CGI&Z^yvt&8`k_yha4| z+@B|X#~NXhdH>DDk6lL&UONAy+n?7-USC3#XJ0K`jr*6soCEhszP0;*tcPvOTv#Hn z$5?u?uEM93cLFnZ!-4S=Z1Q03vDR@!388U55Yw}KADr<%+DV4h!dgr3ORqhSZ1}#_ z`dngM)kiGNsjx&?olRR=;~L_NVSI268J3<=C@QY#3FQup$QbLv9lIuSeBRXf{LO)Db@;+Ip{pK538)CvtV$H7R#_IMp z?%O4}Avl$z&&(VK$fkf8py`VC$qbv% zq&@7{lNlJRB5vR83Z2E{G)k3g%R;xredo3C>fQv#K%Nw+B&*+v+Kvuy{-D?JieEj1!aTy zJR(8XBov`-960R4V^8)9_!_(CBR^u@npD0w=}^UA9a zJ)^h2Q%Iw=^{q5TI^x%LCF36KIUl_A^T0b1VL1P8^wwL3=fcE%6y9yopzf^IBY(Mu zZJKX)XPKAQTMg~;d#!~q%EB*Z!r*6@(h!LvYW1+r?C#o-Lev?_3wOl>!iRpPQTXFy zX)E4nP6mvjf)R0V`PA!u1~(L2t~e*j9`bUVhVD`xAY8L(>U^^CjIlVBQSpd2j&Q}$ z#S0+6&?{)ceH-kJgi9}}2j|vd2D`6rnfjIYK>DbpW<>qmBN(%iEb&>W3u(^nK&YJy zMqy-jcCIb6mnY3wb*OzLRkzSdMs7M9-D zAA)J9zMuw8Wl(G+LVW=6)^s;i>u#ELG+P=$C>qjc1X^m{kQ3)f{C7jj6t^u@UeA6^ z7RGzh(K7fLMeC-?VqQNFXY@IG&GAf@)#J)_@2*)|u!aP=c?ria%OaT$;lECU+1`oR z)HBy^!~1=6UPAj?;{&t#g!0I=pUg1MIJ(p@mL>E%sQ1u})X4V=uz?GeRt*Kq-BF^;TU(=lQT3 z@G^a1#0k`^6`$(L+v+DnDrOtUaVVzD*9?o_xxb7dQQ8MhWHX2#p#5@jEP>Nh2=DCIKX?YMFl zh8{9550ooEYq>P%tL+5e^|?|4EKsGs=%BB)d-~cHLiNyJh1(&oyf!PBOh%SSAg^B3jwooV|vRwaV)Z;Flt=U740|2LYH?ifs+M>HqP?%^Ztfc1>nA8XW9|v zbhwD31}^fc=viI!loeqeX&j|EHNkInjm*xh%bh1;7=ab}WPCLW<^7DA$0_ppD(CXnNjxZm9$| za(3zFt4lc>u?K4Rw)&*Sln3tIMS&~V>QR)iZVtyJH9sxEEYB{{VYnZF0IcUQ`vV+r z%m_S7EF;hpGjg{g+%&&ga;|I`hgNBoJtrP7?z>{JRJE%s^tCF#R?Y%DC^wew|M7V@ zK|TLE$%D&0rJg-~8;6yCx1;erI3oe+qdWj8AjLg=55NORUWfnHKis-eQ)n!_-o5?Z z-ArD{SbE8Y-07|0p`QQeBR)OY3WNMj$#W`2`G9V2=mxLfO_H-!6xPcvIU&x&71qiH z2V)9Mlk@envuH2h@5|XIb5{=BX#Dp`X<;WZA!*K8v?UnzfUa}qd3olt42+WiQ$hHf zFD1cnW=mWc@^0inDD@eck`zKiRSbN&qkc6<{v73W<)ferNzOm{SNMhK7g9=Hqk6o|>$CqhMZ6YzyV?sz#r{4BY4wj6C~c@aXfc zWAwaw-+-Afh2qr~;rH=(yw%5YcJ}Nb!g~%JAXms)^kkH)GXUvkDn zF3R$nY2gdPP7P^qb(b;Tk1kf;2Fl)=9rcG=qpg#R$p>|HTVE7<)12{b_x6}Cz20+4 zMTyc>Me)knLA<|+YI1Xo76PZCO3(1m_%$j$`{90B8fFYHxWyV2A5QJF@}9-NxtrkF zUbGOKuC|*UasGqX+geMEe7UZm#Cz0G)D94p1UGffo$x{%&K%&N{DzovohQTZE7}vw z%I))7{HJ4Y`~P5A^5M$CR<>u|=>%*^bg(vgq+>r3D`&WO$aktL5y_N(IARfoYEW@fkjOWVR1KDf(!?y7j*j@_7Z$*o8gckFX?VfVWCqqqE{Px^6O))fiw z^)E3rvu@2FE%72)c~FgBAKPXBPKvknc!l(bha|oKDu30F69UQ)sg{OKBC0ej#^?_a zB^JRRm{WygzEa4k!P~5 zSiRHds7vOj5@QW}C$wQ}(B{b}^5;?sT&*`L+6w2EUVXiQv@U$%6oq?|c`g++f>;8| zOaG!3LGd~`eH?>(Cg&D@uvYjpqrgPw_uUQe{0b-!(b`R1C-_ZNOhwSt&sBE`V;JYh zv|l#*rB2&>&sKTjp1Ab?2vnHw;748QY@AND*XgU1;-=R(h4-wbs+Ni++wkQ@!0|?{rrKWCDH|TKJ-t5F>8!L z%-R9Zx(9OgejkxuIPJTlS@C*JTtAj$((_X-EWlz3$tN?+ma<^sT3-a90}x9_fN-oo z_~muSqTYv=3hw-MPKsUT>RCarQ>KA#ozfa|m%rZAFaEv#kk*ZX@~(Gke!IcwdrDM! zTkj^wbsUO93_k=>9GPLUG^j}(wD>R;4?@Z6*y5^{8DK$XmE$wk{AX*bynAZuh*bu3 z1?TG|phpXy)LeIdP~J|Bj{cYM=3~#hXWtNQkTb+*!mo5#mt}DH>w$~85&+u2<~iUs z6vH!8RAuKBjjWxB5pgV>qZ7*Q^`%FyKuYao0=KK(KYgJp-3Yi)=JM|TT#K=Ds@F0q zudmL~?%qaB46L<+mnuBmn$!~$qH{4fe&_DVGs|q{+Qwx8Qpt136(jFGV?_LPB-GTY zg%S^|rc})-Bku!E_94BnRU%Cu{7N*(nzvc>Zq>^8q=2O{`}Szq=j$Eza{l0zqt(J+ zBfQllT=Sv9d8pKWpUGgF;@+33&G47O<{mH%38 zfaukBBSpK>IE|ySXO2p%kqb2-c_p$*GlvFH1FnLxsh3+ls;B2(-OeXd_Ify~UUL?$ z+!=~pcjPQ|SruO4a`pNa?4eJFlqqptm)!?_gxc0a>H`KNr!UuOQ{J>NK6*B)q!}pN zUi@juyr-sro;iB~UtdS`y*rTi_+0YP^?u}3%5^zlb{3+w^{`fUb*@Rzv$>Y}^VZuw zOu5VgboJ;_>H%H#R>?HyN3@$ZvJ~Mtj7(k~b3FXqt=!6kh9$%4w2Hz`-($wDwFt!w zdent#RyFSy;CzhI={Hx(9$RT$RK2$6!xgXFau%}ByF(xR`|Rxh9{A!PrD!tDN~e{k z#T;n$LlDzxzW~}vY8BTtbvLTDMqwVnQq9YMy?VGcnU5yvwF<6Guh#$A+h(m5Bs6Rt zd^maDBDhAlB2gWwD9VaEDGjSNv|Yy@ROpR7CFHPRmKo+pRx8~Ian;VOW)EL}>_#YN zR&5+#3%N_I0?W9SML*7ou_SOMbFU`2Js7t+!P%N!)4zmHQ2_`!p<9GG zZ!gveR!U&@52gMHo%0j=8i?~mzih?EdE8|av?IETi`m7ZAKWEM zn!(Ax)C{+O=@cf*@dt2Mt*B>p7-7*EVX+~~t8gy_Rh$>~{V|C_d1!g)A*j}JUG&ds z(Lp&?D@j)lL(sJ>(W&myqFR_tsiCXNj`fgx?`o0PQGpl_UYjtD#uKZ6pmt3W9Cz18 zN8FzrwsAuFVOZ+ORp{<6D`BnWLrvRre(4Ep64pmWql{X2RE7=+T0kmHn&IWWSuNk%max_^TR$z?CYNSk8|5#}1UmAJ?{%!c^(N$4jU*dC~0R9Mi zc~dmRvQO%K&SX+P7=(LB9w31s>#@s)Dc_+oX!)-$iTe82r8xDk=*#BF@nzY)?V?^0 NXU?B4Iq81$KLAcv0LTCU diff --git a/reference/plot.confint-3.png b/reference/plot.confint-3.png index 889edd273bdd743cb1d0c7029ef2e6cee9e7a99d..f89697fa327e4d4402b362f608b443f8cd55245f 100644 GIT binary patch literal 22106 zcmeFZ2UL@3+b$Yx=s3VQ%!rD>%vcyl1Qh8_#{tFyh*YIo05On&5JC&V20FB{0a8_z zk^rHXgr+D_X(GJzBp^z8Aqf~lAR%NwZ~VUR|M!2+TKoKGuXFZ3>-7Le-|YAXg+j?4|MQPCDAf8e6l(2-jT^v|;glzH;KzmwC$0VfKf!DH7>x*i zYzqAIY%mI?5{LYgN&YK`{={OE%FT+5;U#x&3fdSNl(&XBXpoxDwcT=eU&KZPCbeEM=? zpPiv|C4H1sUjC;~jCfIA;kpr;9!=dQ+2U)`TTebxd{m94vvj zUb@Qv`tQG!fPeG5a^=S)9a5yTLZN0!W1i4Tv5S>2e3OaJa&bTGF}a@{=O|DiCUiOI zI}lGdltgrG5Sg4dEv8mRv@gxeL0pF>7csPmX3rpW z;?!IjMi(2DCgTvjK{czEx5o$q`O~nbPG8i=4SkUozk48WcqK2z!pUSMJtN`hQ}_YQ z2+$lAC&KC^bqA${{-OR~Lrm+arNSB&<#&xf?;?DiWYw>*+)bZ$+kGb@1(V56#rVMu zLg^_F;7S65Ww`ZD+;^toS=34EUN`;coH|9ETEGvhYmmuikGrbO^-YDv?ou1iMw<|S zr)SedkN2V3WK4Piq4#%V={Sus?kSPODvG>}{;<`TaC2DnMO@2+DtSk(M`0_^#?f-f zP-zy;G`wj&btY^z39dl*nnYY!eP`Gg)$?j)U&icaX_Nagc-%oSxs|Lex=pWZ;jY8M)L(;f?jh zvdHMC5BSJ(YpNDI8N0^4_(l8rJ}!5uXHCdq!~UVcRHubr!{LcXA9E2I#H#b zHoU(z*OIQD>E{0a*Ix0MB`wm^iBT+kt6O4jaL^O0K6gcS?*!ie*`Q(6(}?pp$@*e^ zc;^%8QmdPP37xayy|<(}Cr2gl`U=9uuXsvbWfQPYn62xd`L2_H<{0pJt*F3VWK62Pwk%tB+xK^d1dnnaGA+x-%5jIpz zCQdG$`>MAk#f@)=oI_{jx*Mais7j}L>&ZqzKygm>66(*d%r#s0A%n#nD0>tmD1@4d zRoxlIMuq3Lo7bGlaxyIvE+@(1B_U5SRTX68y;oRgO>1+lj56&TE(X?YEu`@53`<$du^N;qlCOzS5h7HdH)WTu~NHyy>ITaP7|u_Mk53GFJWee3wCf_Ju(Su?VeFY<-Oj= zE`&x%pX}WzT{LRLiLaw;pI#%i)0k`D&q;0Q+Xr74==J!&9|N`RR~ap2h~^_-_x)c( z{Ff{cefUr4Men9IObn^Bfa7lZj9M#9ht;f2h&k}C;G&8%jE0DTuq-V~W5^0x-GO*k z?8i@stsxe+v}-NYLpn*OC#bPbi*5MvkY_-kDKc}+QCg9a$;C|b$#b?@7mIg|^PnG< zr+8&hF^EAyxqpZMnzSHw=B4}Ez6ncCP|LW;P{(*RI3LdZ+xefyg)LaEjX0m1tDs4; zDP%HQ*D_C%Jt^6arcaIXjS9QZw(U<$x?Wo(bfL$VE2NiCJc3@_8Nw&`n+4T#>L5pQ zAI-lrI@S8?aQ=7D!(q+FlpeBzZIPtS{z{I%9o`-H#R%7xRUo?DQhP1ut91>0@49`? z$rN)zY)i2ZM&gulKt8t-&bu>Yb)cxHc-KGewzTbD@qEdh-B)CiIy%Or%R;TP2k&lI+!q~>7ivGe# zcV%OH!Jm&KFJ(rIWMK~YBK{)k2@OAsrdcE;>qT^IY`#ADf+i?(XmVoUR+hFytP=Z3 z=BpK*;3C4O*Z|)|wHzl#`TW-Wh|{>7^^{G(e(Z7zqAR-zXY=ZwMR?(?`HkDFux~dg zqZZSOhhB(2-obe?7jhnZnA=6N4Evk>KBfojvnJ9x%&7qL_|@Zw!19&xxZHk+E|1V% zsK`eu^^tA1PUeTRB~JYIJlRZH^$GRP<%4^%%uxDDamVNTkYk6L>=h5&bMK81*_8eO zV$k{L!a`Won(XQB?!hn|r)H4ik|#Y)Ch2u;uf{FZx&jMwb6S2GXh6Ji^W#ln_$C6> zwj-;`l|KXZq!Z$LND9{NlZKeFW)eMK{%cIwBuZhRT;ZFRG+fTX=#{@F6!2uG@xi9B zB;n@06WlKOv&i%VXVx$oGoOH(>nEv6e&@40)Hr=pHU(C02d%`?c-KsqB8UOUl7Py! zi-EY+4HVO=h{;!ct$+|Sj%Ah$L$9oJZGJC@Y-VB?`F5`vGt~IQelYZZ5DTqqJ47Q{ zfmuYbXLa3AyhTKVJO_VWaBouxS-2f*>p(2OlPm=krThH>qHs3~Rbp@6`kp=rsVJfw zDjL5jX`Z|+P9~;F5}DeqO!it6SbIz zc?Cq$_SOk}j0;1~0!#tZMf^KIwe5;L(j=zg^%lg)GbV3u zh*4>l{{FAP_n&c2{~wQgD6c?y>G|=D$-;aHm*`XLzO4Fkh&_TZh)8&|d*Z&k9@5Q?_}7bix=vW?4tS466O}8-_d3d>7U&NJWJp zr`xp@hJz2KuOC1o3IV2TPFj2c!?36SX!@j6jlZ?=oPz3Uf-UYt0yUm=1M=)Fpgk8( z!;~bN&Vc3DsZ-R7RNV+2JFA?XwT3@nygubPvS_2a=4Zt8^%TS1N)AoT*^K?!c3Dnh zTn|fyP#fWggMO!8wB8SPm@@T7?MR~nnAyj;F2XMNNI)fB{L1F%J738+` z#v6i9u(@N6BTN5cgDZ(ugz@+j-?C5uH#v)xYA1-rjks$wWq*0aH=IJGQyL^FX)F|S z;Am)AnLQxxfbHARoBKi{_;oOE+^~XCWfW}LL2*`~G(L~$e?V=4B%UhgPN7lstM_$* z;&;%f-Dr}p7Hvz~#|6tKTfvu-k>Wt>T*}OzHq6bTnpr7cM-A-!Ux?dg_3-3uPx08& zd?DmYRx9arJ7bH|7#N!eg7g|M!7QZ1gKd~~PT`igU@K1nMKy<%U0*a2dI!COa6s#9 z=&k|aUBGE`=Cw$YGg*4iCuZR)NFRIBs`T|&d^)>9p?I|?vuZ!2!&rl!rRuBJESpir9P4fxsNq87vsaT?0pBr)BX0yvTo*`g$s94O9HB|j& zs9|&qG)xlN6b^ct)^saG&)#PGe1+GsoIGF%1;V9Yln1?SN<0`-8xz8#ocRY_`{mJ6 zyFzJ)=sT*7yuwKux(6GI*xMn3URcNG@_4-KSG+wS7wwZ#GI%nZdI!z%G!5xaEH(Rj zva}anjzsD;A&U}yF+O7OfNEt&f7zz56Nlay2H0t4qJZFv3(wUFJInIH9+_;#4gV=M z&}PhhH{1=yle#GLE54*jCr{&S9fp-&IKxV5XnnKMSC{f{!K5_Fo}{iXBnSmizk~XL ziYGEcbK~@!c4K)bUya z`PTO^l{We#L@Z%4rW7)Fjo0s?;9p&XA30#PL?cdwK4$%@{kn1Wa7f4+A z^#|bfp+#-!4OQZmJtg>87nQ}I&_h(M5+}W~#d3qEz+rgtc6K*^m&u$GOn0RBk6+4A~wYB8Xz(UYM#<&U^$Z?^X5epHg0YW@-MS&X@n;&SZ{XOM>eD}2R* zUtP!3Ej{~BrZ6_PY#ejRRwSuqgsoJ<)wnC34unf4<~7~6fQLh}*4?At>6?usIGjXC z&i;zRSN5X#3PS9mwr!a^)RC(`LCMTrMWCQYtu*QMdZ-9siSbaXO*_lXN}Nb8aeuqL z2DCp`(Ii~9qN{3`R41J!X8aTEAqlQH^XK~^n8aJjS>~mzWT)= zRHIMy36#vIO`IeVQ>~AnHUm>h=k1-yd6c_~5J5%r<2~o1nj>>8CEB2i7dook&MT6; z9VgnsxFp)8178WTRT|T5-ufL_>$N+}>|l@JlU8e)7Lrw}EB}QhRtdxc2tX|5JSCkyqz)A^P=B zzHM4sQ^bn~FbWDqHn@@MXZC)|60Pp&dB(Iff@M@CB2At$S$$Sv8;O? zk#xyZmc&XgV;+E#_1_&sB@I_4CK(vGWi`FxduRtSXe31dtvml<(3M*`bGyVy4&K7M zuR;iDDwrn>3%7sUubbHDk*Y!4GCS&Bol_EBIpk?t->pBVqny5H?;4a8p+aGFT+ z0oV-CxmlGr4!LGD-l&09AvTon)5|#1;4MRtiEKZSd+|G`eaIyQq)>nBehB3=y!IP-uU`E%IopYZd5a- zqRA*AiAsQ;7{X?rjBqy<(4%=P@PwrqnJ(_0?v>5DEKk#CgZk;<;0EM6{X*38{NxiP zkreplK3p7GLRr@9FFg*NTQfz%R!|GlVK<7o<)%6Vyu;}ktd#c(VZC3 znVug&-Q@!yM`^~$SyN0Bbw7F1S!+iZn6@Cub%Zk!> zk^+Jv@8?1`%-QTAP=)A9^?Omx*;4+d?`o|u8%F!|nufUr6ZmnUp9|rmfe7@w4${dO z#^@1#4-~EgcdGW+=Tn0%*<^C68WDYCF&&uaVB#7kfFv|XP6idIfkX`23j&$TJR)wG zEHKnU9vEkS9mW*emCj?mF{kOmun|!CnDyU*lNmNG5k7~XZO5rQHkp)wTqNcw@;D>QMeJ5Z>=cS2sBY6f zpyO+Q9$oLHA9(>cwt-Stz)!vkp2esD$k~ipylL$rSh^JorbD^@fjkLi?xh$LpSUBo z@m0YX)VDL3vzHNF2c1InEwCM#-;BO>XfBJCQRmWj2zNASzfm4;!6ih1o@ zS6_-BDULYV(~?z_FcZTV%TC0k)!tQEp?IFiZ&62-JO!|Xk!>e(gAF|G2_@YE$z*G? zmWsK;tg6H+!}x~iWJ>pJGXfxDo_{y@l8N)q)=skU@a)+~c;+2xzBfAKTwIk8d!yCPcK3^1Iv8?O*nP#OV8 z=D+W2s~M8{@Tjg<5oY*0vXwRjlno@xJEl4ljeW&4WOB7MkZfhog`pz59ws(QC~g?# zX1&@1AunmQp{cKyYUFoTPJSSloa(5CUBIpQ^OYfer~Lq%fmQB8MC1M_MrrY$A_+@o zo@RWQ5=rtbUvPG%4D_GQa%w1_ezH7F;-x@80eS0h3_H)I9+J_Tb!>t_L*-P)ni(=t6pI(#Dk4;^` zO_`HeX3RWP=(S}3FVtksO0cn*vX*g~SygpsS!1EN;dan)n7bE#so0V=%&MKW+%RPq z!0GDdx>;7BP?5J(fa>n8akND*$}`s{cHXRiA{1?}>QCxlKQP0z0|eR|Ipkm*U3)-) zEbT`U^~hwEdivx?OY?w<&C90xpC2kn#6lka&*xD^s`wN_AwF-%KW0^54UM!RF4~5_y{ho?ad2AHdh| z2cM>fh-e%|rBoH^)qK!qaMYk7!VBc9jmQX4L@W+RGcxZrs7%=;G0s(vKjU_mDGan&X0K8g{r$Tg7zfwj(S?eAGuv4- z-vRDobP4e(DN{GS^-I@#II+2x1M!zHM2D>`y;*qxpM|haU1VkrAz<|eOEnpiFP=y9 zmY7Mgy+jXpH-_H)3Y|neOQ^RiaLc{8&!ef6?zRwtY#Ftg_a3H@f>Ri8e(SHESE*MI znKi6aNIyfPQ2m}R+6|X7Z7u?xY@V;U@eiMMO=Xk{%aZVVL*2%gl$>N+dCFwvyk1q3 z$D#S9=7#EPzjf*Fy@Lb*ba?Ql_+kh!pgorooSVfSOb2&dHDLcyI1V zJPdOeZ$K1PUt3@~dB*gMG;DcwcE`@{Is1TFOW*v^*^X|f>ad2aRs_AzxE8KbJ6O$O z4M76-%5G5cGd2#h>SRv^{U|6htAFK@L>KR!P|L_&?Q=}FEyN7IL}p8BfqIZ|`wIRU z5|O*Q3dCNy8N4;9(x28asV8%H?MPapdFz&=Cav4eb*#i=a1Vr(0df96(WdxY$2c8L zx!X}O6E2Y;D%xC9t-O|*U%4C{LM*2e`41DBNsCKKs*E`X)TM^UyP^-> z%od=vw|``oy`E8_bR8ZFAb_%<;Pz!GBo*FGr|-Z)$3a5#pcK<14>g}L|52K`+QABF#_3ZBNz!%QkA1CX8(aXnS{94j-@);M<;+nKY z%u(fcHf;?5=SG!xW>j4paF!i~2;NSfQ2?cTY*F+RVVhiZy9K4j-|D41OBUr{vzerJ zc>zCjSWsd^GSklGc=12L1Uh3onC{z~AY^E?DOA?s=T0eW4fb_`hXY$?-7aYXdy4Tk zET$F>8i#qF%W@-Nal;R&H=r4^t=2OT3sBoo#$hr8(-_PG9-0P}4e0nNHsqKFcngL4 z->|A!%G+6x?UH2>z0%~6uO)?Y1K|jrG5dooX+OCubb(vAYrGFOcktC98-hIy97mww zZeM5O2c-=(GMx`CpM;T;dFZ#mSsK4?ggZLq0S#o1t{g@VZxO-L#;xEFP^@C+8I>#JGTbrPssYjJ zobY&mAku9JPuqNz5w){F8gpI>S(`!L6qDukTsmJrYb5^P&`-V%EocODo-WTBKkRK6-Nc2V@5uk)^(sIH_D|j1lB$6(UvifrH3? z4|{qN%K0}KP2@(L9|H{1EdR^sdM|b1Q`pm4Qk-iXK`D$bqPBexvW8ncrU#J_yAZj38=+hWzTIb55qq=hq;A<taHllG^Lm3RV!9LN6R4585pq%XIMD;D zFgp98plw09?AAXkUGIOQYWe?UVW0pZWKgB!riBrf zRfnGYJdX(E&%=s3eWDE5iqxg?6wypCtdWT->Xd+{BGw7E8xNA=r4GOfQK~GY4RF)j4`P?4m5+f}Scqs^}mio^` zBMCup?JC8$mq3abTC7qi%_aEaByznu15;@~qqaShN~2jd#1a?Eleo@SZtnt=u}Mi1 zDl{3(c%|#<3E(9{!ZfES0uB|(zKOO@0=ELOE-zgbVmsucPzI?S!~Ux!p7tty|M`@5Tv6S zZVgf#IF1b;mg=umlcVhTIuN_KAy{Aytxf4uK{fxNKsFm$sQH;;N9ftm7v-P(ci2!m z0EJt>Z1-0HRkn{H=^7~PEM7g!pSC1Ai)rwSlkANsufO6mBt?awoM1*zw;gGYpjsq<2a))iuCw`7-oUZMg9^4+K5|ON%nBpDk*v^8j<;eJHuH?2{tk79bRV!@ zoIe;=%B^xM|Dib-cervT))1y-6`11_CvB$&g7IpHy^9Hnzkl9Um7GqS`3xel2JkmA zSvDZUFFAbEJ*6Fc$U)p=2zweIl)$>#O{GTK*(?`^ws-L{5S&%b{gRRu5TCPCR))(d zC*I)4?VUigmk0~5Rvrcy3G(hN+v^PgZ2$*$6clAY58YXAnJ6HBd9|_y#P8>dyqc~u zCPJ7#8sCAm^18pSp4K*_K4CuGJ^o|gmz(fi#bhnFT%Rxgq~wnId8|8s>49O1jMowe zq)cJa0+_rbYaHZZ&0BdN(fH-(mXo6#GRIyV&d*8=Wif{?Td@tH3X+l|K6Jq)P7K|F z*ore*`UfTLJJlrr>%|FvF|K- zhZwa5mBQBAA!dX$oxO$9-VL}wv!)N1l{jtW`+2ycQN?@P&g2P9`z`*CkV&*`iaqJ#Lked zljot5a2G4Q3!}bu2PG$L^`oKL#0ffQ$S8ov#%`9nna=^US>MN{b0>08r4JE*ADYF5 zr{cLaMe{4R;Nr;i&Y7$aWm;3td8t}iKz+wMuPn$XCaT8qDga9(#Uuj{kszA_Pb>2D z0l6QkKEazEZScCVx_UDoMe7F9?M7!}*vM0mG@*_((^45^A?Xgism`)PSCO}W!iBd< zk>`xf+lLCRkHqkBU?UYLc54=i z{<-j&qhV3}dQ1F%^M+jGUuZI*NNDXpY;;{7si9c|$4o(H4~-hiC&EuliM4rFHw2S)6Z{ zxwUo2k4L>L?@oXF>r2$r?>_JScJG=e!FT`u)UHNOsv=z_U2)E8K=+e`QQ5wxzU&GX zpTmmIag3x0YFPY6Hb(fkxH^?PZH$Vs_xkklMewup(XX%ts*tv0iy`C$stxLBKq;D@?|Qp+e3H`17MGrNl4ox2d;K_vc%HPDAYs`Mw^- zVOLc zL|3ARDj8!(cp_ZT`xzPPk(WU}4rsK6LevqSTJ_oR~0Hr)CZvZejHNt&X?+_{G^ zpWu$}|M)>cZX58qV6yKF&bS*KtLq`7eSgJU;6CrOScg)?N8tb%jIoHcM~mNw`#U@0 zN80pJv$o*SK_3k!jU0)wpJ<1-LgtP+%)D8ab56!FHcKh$KcJfbI4&LIf5QjJku+Z#DG?^Y3jyy4XZg3_T|kkkLIub>Ulj>%&11V? zY;K1|B;U@u&KXipMsOCgr?}X4TH0jEb0NK2^+jX^e;lfUc-4hm8209El9tg7{F5k{ z_O3y>fQZlKYr!$5J;wS?**9PYuc3O*-_=D%`5&Ji%IoTX9OiExDc@02_r#X}7B+-T zQ@8(sn#F%#&r?TiM4R?7_7%tX+)OTJ#N%vMMG;EI%l!UmmN}v>F@vT}9g4JZwxqbz z{Y(O?6nlKGGY2`OW`9+d|67LQFwxB>4OL3~*YiaivRQBE_w{sgoW?E}FQPHfcjP7i zNY+7#{jnCCga4^{;p_R%7K^xFYGvDXzZpI9w^SV{d-vr(49#5>OQS3Z`u)!Bn>xbrofw6WidzkA2U*2Mk@7M9GyOHZ^J_1uY0*@`^Vo5fhKt{7=@#*Zg z^Y!96J)GGUSzN=@>D}Rb!X|Bz4S4xBmI%o;7R#>4mPG{cmpX zwY^(T99zSA0?}M0&x2O?^0Qpsjeiqx;6|tnGSVvYsDDyI@00`_xVetIB9-CnNO!E? zR?nXI`N9l%A9NsPnSTng+$c_GqJEmE}do2G9%3z^N(B? zcrE+$C&{83N@G-fxfNM$n`w00@pmSdDkY@t9+Hk+F}>@wDxxn2>%Xs;?NTJqI19AE zr!YFvE?&j4Tj~Vl)kW`u)4r(7x$jUU17=2O-?|rrd*YW zq7U0WMdP^_HAmc+GN=~(X`e_>)PnyMNb$t4Qr$bUqfQzIl_t%{?eCc zz4Q*=12vHHOIAgW5KbAUhE@{&Tl>v}E1Sw1?QytcAC}uD99Z>=?~#d7w9xbD+%uG7 zOpV2056N8hAyIhzUH$omm9;)$;>6%NW=LOi>Z^^+W!l+e86FQU7D1oTcgW;P8pfyz zc-Ts0?oRNJFYk9|=|-%~-hZ(C{xUJ8yTlh0X2M;@4>oa}8>m7NME7+}b!_rr1ROsI z){km_R$o$OSE!KwWTkaWjc-8MYNTbCDK=KfIrN+4+TiaVzwHXMW%xmxha!^3XUM+Z ze;{5WGyy0{`$pysZ<9SQG2f>uPhN@^U6vfz*(rI`y^7_2MT#d~_pSbe++)xuRTht*{LeFB}_L&WaC7fc`d zCcYz({1W6-M@@B!UtN~-fjwtXG2-z!<-F3NX{PK1S=K4Fa`olhmW&FyTFS~*>w;dK3@zy-H*=b47l)pJq@1|%Gxw| zZ@$IjQPx$+gw06pK%pfip_@w z?Sa~#SRN|Ud@Sx|89YPw1b4HwaVpXQ6K+`|9wBfe z@L~BM-@!q0cbJ0gPs{isGf9?Q{1-&ww5|37^pP_4Y7Kf-eqvG+P%lJM<1?WoMOhxz zyxZLY+%_AA2%}yA>kkCH8)=Mi0VQ+W>U|;sWb3Uhhl(3OKu|mVUja3(G=4`(p{9H2 zPt9%(U_zCpy3B%5ljfay*bT53Z7zKi@-$y zuM&-N>E*!xx6r0lDxfQV4n4=8f}H@?2*;i0UkiArLSddEEc6~j1Q{b{FTt%VnT+>& z&YH%5-&vyeb+&{DV266}0ExY{kYmlHY68scCDFOApq- zGfQK+9^i^+20h~DCb&KvHF@yOU=tj&9b_oLFUX+w{wWQkhDnaL z!>@xRE%ji1c~V5|W!U)i{9mzIhd_fRUuhoD7L?(xipSvYhi_PeI+ZHLEmz&D+Qv)B zX69W-P%+a|EbNjbV1KCJpO zX?vvr>GSe^cu*&$p_*Dty%018TwcgdPexi!h4RqCJ8#*m&GijW+|}x5!DP2w3bXCp z8AG~oD?7JtE7&w{Hv$Xr2f>V^fwk6rEUC$Vi36^(=fTs^qmv21f*1E}VlLkwb^jL3 zX5glIWr@=i0`MS8lw*j56;M1lAq7S#uct|x;6n1D#@dJzIN?@r8xwpH+xbQ#HR3F8 zx$x`f40q~Hj4~b(hbPEJ+|bC0?8Y0@hd@1WrzR2*eLymyP4+A@8}8c`M&>xUyAm#C zTy=JCiiXc4Gwt*M-lxdS!xTGs6q&fR^%peqQ<`g)60X2Do zwy7DC@*oBe;s8W5m=Ked!2{IJ-{{Wz16oPCyV1#9ugG@k+|y5ExyvV00dzvm0+pM! z^7J6&4c?=fH$B@X6Z0C;u9)qA&Xs#Io=4y_)I%wS*=LJ2_8&ocJwde0YXj)xoA0RP zEb+xTw$uqzp$f8=#|1Z3^G5{THGjK1?9pE}`k7<}kIvmqoyXy)ATm^zENix|JMH#_W+gu=kUgE@o)ZcrUb z@==RFN}yIsR-Zwt6QFn#cPY9WXTU=D+Q|F@DhRSf~9 zgzhO!|#Rhq&D(?@=21fb4|v$2-y|NAcW(o!uq_}8vsYU;5zhh^`++?O)8%& zRSas07A(dF^Iw2q2pYz`Hhj2_Tj$yFWc zoEK-hwsauFvqEM3AiQ+x_T3Ftt+3vnBP$N13o17s;IV@h|eG_^OoYgndFfsZpPy5}y z<;ahhCCiXp#siu?ZUSDlA`1fSCgq@b%jBk@eqaaSrDI5)MGXY+hins7n=ZtcD{N;s zU5TZ#OooUnvHda_|K|~xapZt^j0=1gr4ZAAIBH_a>ik!)?`2NKqU{w|#`L_2PqGeV zhC0nCxw;M#(js5}Ag3|hU%iU;Q61*8k+TJNo!)I^woJxZin>^Nvlh8x+s@MhU1e3) zGipT21Z6fU_>8Hc*O*4-7mS{LP*qtF$j=S-BkYoOEz5;&?Jj2ZnI24~V|} zhh!1Hcr_xne<=jVgjd%?-o^^x3aaw=blzMYL=+>6h|)f8Ij5>Q{u+vIEWS^xs%}09 zDfvVtl3h>Eb&6J~;e2Q4R&WWTPpG}euM6gYi!_Z`A?xf6W?z;JBv5p0zQLv*VHRpR zrML%$<}eDaGv;)1$0bjHo{l`!wd0}4!7@&o4P}6V9SSBJ zcRq=h_WrN`{--1mLwe{fi#j!A2&s@GofHaGJqXKF%UXr2(OtRec@N<}s6lz?%YHJg zc$L)+w?KdkcEXmd`t7r`=_-Re{K%p=}1W`!WAvKXPy22)7 zha5K>gZuL;&`JF1)h?2i#;++it~?(L9xa1*k&PX}wc$MBeON%QanA8{iV=;7l{;yS zrMK{{;DpbQjn0@BMY!?*j^$D=LUc0T5qo*5QAla~Ch)oq8GOA#HT*)ZALXo@*@i9h zs1h!fy7uadAISws(%>iLWR^3yi;9Nmp~`dXG@e@X8z%ZU2tCjf;U3eGGN;~OB##gK zd)8M@?0xX`h7P>0$bOOlR?x?~AjL zJK*!0>NB+!GG!-paO$nQvP=B7%|{(YPfiWW)zl8v8E{kCrYrY$Zq)FD5?WwP>hs zXi4W}(&wMHt6#@dd~(T~=wyVgd$5k%`R80GOXr;VZ(k6g~Y&l&-^s7lElL;BUz35vJ4nNL=@35!iWon<@q@K*wu zjAXqLsN#__Nhwj4IR5ndb^B-Bs%=7#U_gp$n~tyF&upsvRX#=JP;-tUA(FZd984)( z&LPwELOx~Jd~zARXjZ~rtZmanl2-u%2g((F&n*s{)=;7`ILSddHoY)1qNQM}jZEHQd8DBTl*eBGHo$DK5~-0^ zgU(*tc}P%*p;0APkh#XelzrhBaAJ6M5A+%em)peKac{E#?Xq!FlPnRmS8{!rx_qM+yhP0IJ&-n4?o)3a_1%g)0or4O!7qZT}_q}iIcdT*2 z7~KEzEY>lLzTY^xrsi`dY(mb@)_xbtk zT1B?#)8|+nLt8(dJWmTZXZ#~?ks%j=Kda6)ISE!+w27%Wd=mK2OZAmi)xu7ArH^u* zP|jA`fw|_3@AMNZY#F*biTN;B(=cc#WX2lW3=SPow)`XKa*cwM0+ua*`yqTCwmNrm zC}DVcfEi1}vM174Unw-vU6lhGvuu--42f|EZ4%dk1(M|Cga7>kCvO#3vD~8*u|AQW{ybu3VlK#jyVNJ20I!+vmWES&t zgOi+XU4E~(ulXR{-N8;(?)((xi4MS9A1hzE9^1ry2}t#J=Hrr{k{iG^NM28+owb_tFf(f1$Q0X6_G&zplaFMfnbJc(s(EMv{alDIuA0W; zmNc~&UpAa08s{$?=nHPf>IvO&i(5YfM>1a2r>^0{KBA`Ag(Xam;R3S0mAtkaRKV9- zPPexZ&gFz%3RS9JrQaS7uv@HzlK~UoI5(BYosHeiQFcAKJG$uS7lComApxe?n&S3* zf(QZ{$kH~NkkNU-GLYq3<5ee~Awo16KEgtmPVr8#HhZmcyVTxww=enkNSx)&fe*pw z&@*aoS2aXXUGW~Jrt=x)-`B_MWPA2qIH|6mt?88#JhxZ*T@LO2lzg^xWnXBX{NSVc z>t5!1$CkCWKa_l0Gj4P$yYE~^Bkpb4tU9eOPjajKVDckC4R;M-0CB1~eK z8xf4&#fz>ICb@ZO4Ebfu24BtBEjrvdSbg?vziK|mCRe;aW$WwJ#nfS?x-EBZF}8P| zUAY%)x7v=0Iw{0-9_78xP9Ls{E_>g9VE^B1KeBVh>K&(7@8*hG*})px`w5iK?*-{P zSsF3o&qcAfVpPk7OT++n-_flzWw~Pffdk(R3_XIHc9=#>%GV4|nhg*AIe8H(uGvTQ zX)!5RkGinssLBy(dMNn<+<58y?UlH$)6wH=LMIYTbjBHMqWu_o>(y3Ev={(xT40o2r|j9XR$XNiTdSM%@z_2%ebu zxA4uV^XA{}8{+t;AZrL}`6LEkw{598<(K#_T%bJqGgDHLh?iR*;76CciZfy&%lK<8ArvQh*A zgr_TEeA1p*wJi2x`s!8)2Y`|tBezOzcNbQie1%TNX4$?GWdlW@%>#;FU7ewa_^N`3 zHjSkpmRf|=`zDh2-s_BI#=GS+su(`Q9Vy>&e@JkCt%~i(ev#10ZRMAtdVo?m``9aP z;;QF=7?~>RCj2#0q@s_ZfST(4kkFZ7PM)ih@8;wyi@^@RU)4(vSgek+kBihCw{Yu8 z<~|<4LSB387z zZ7UW$iygk52FeY-_-9mmesApEIbQ=7*T}OZ{r0ex$Q|D|xrX;8;8ZA>#txBidOIBEi<=3! zAZ3gO@HP}Cb9NJCZ#}0FQ-Q~22nG5A`9%t|0VJRnNZcepo)tGfJzl+_s z1@l3>Vd!q`J~?m~(S^^*=;g&j3dJeLl=JUm73n#y;x_n0_sq(dz5J*P4il*)kRcUVk3XkXD+F+;OBW-`MF7FNA9+Vq84lT9}D7)2tRRhl~yA1ow=$F z%(Keb=D`ai88%}$jy7rXL+m=fPm)8E@o&Ur`!IK8&oQPts-K0ykqhYx+Z!fY^pGNe z)l%n2L$=2G$Qirk$?TUi(y?bB?LT+Yp98H_)a-1S5M+K@u1U(4iDf3yNGF|^vRbWr-y4iOHvj@^mU(mY!ATjx* zC2qx5`Q1p!LgsP^V%afk(e-bJ4%j})R*X+~x6f*@9*iF%To>G|04Qhd5>J*`Qneh3 zulN%b16&8fHvb4H!ktYT4XavBEh=AXIvioZMpycP&J%xigkmH4*bEcv{_+BxNK7OyUL?>ASg2w&wMCO>20I^de_ z8_#NGSI)a=(0jP-YweP%Gg;v2Vus1ZuV4LMeSfXp)PkX_qJ8# z9cIe7ZtAo3!?L!OvUyvho;}N*_rNxBY2vvi^j!H{^L1XErmEacgRh6zoXd;I zdHeM0($yPdBmYJ^C;eW%Nx}pibP0l+XkK?R6^& literal 21366 zcmeIa2UL@3*Dm~ELkE>{coh|eafmPs2q@B<$_Pf9N(mhlkluv=p+r#`M*$5WAk7h_ zg(fXh5>Qm6O9?F`fK&s7nji@w=YHb6-+8~a&RXZ3@0@@A|M#yiYe^u_UH853y{~=k z9UojVG1&LR(H|fP+K0UK`!xvK845w$Z|vR$KA}AQYYDvVx?yPWJ9r1L4ZXT(@V3YQ zl64RS9gl_o2_#G{yF$><5c2o)=Ajw$R7}#moBa%Dope(3#NEgKLMKL!yyL#uwKpZ; z$5f&1w*`(I{(MA@{wcK2`WLl#=Z`Gwcjm{oosQowFC2cwciVooMz!$$;yJr<<3Gu7 z)7!mw{3n4E2p2c$$gTWgFH|*^Os10Ux%enzKf8F#VqiUtZA%P6FS7g0x=Q(r{I4JX zP6F6{gM`^#`Sdk5JRpMoz-k=8c&7(6@V6bwakUazidS@IOunjbJk9Ge>X zOmYQY5Jf04DP*bsU~lU8k6#^!jP-^%Mro^$=%0RH5d0V{ zr$gIl#JQ#S8wUOPVT12CyxdY(?L}rxY5oTA zpC`qs?1Z0}?X3YJMD59#XjDq)JPGgEV;mz@ejC(Rqxx2s*Uj!6xSgb zzq}A_5$PH?93<7*pwcwbEI%01w!DyTG2mVQp+Ni^HP|GGTEg~cI?kMx0JE2?5o&ui zlsR~cC8|?#)WC*QBMl_9VDpyK^B~Nzcg^P?I$BpXz4F;L4^F%Jkvc4>CFvzUW;F*i zWngwd(BWEJ)PU;fj6;f>m@d}m`p!k#iXnNmdB(3Ki##j5U=weYA@OY4%gCXAVRpW_ zW73e^Wr5D_jWBJ~=>uz*W?yD%lC}E_>TGlFsbv?E%1jpOo^5T4Ku)tF2bag<`~KO#^O0} z-P486l$Odrd&3>p|7+1Ri?V#`D9N1rL5d^}kKTA~u>A*GMeWz$hEv-AN>IY*hy;-c zwSK`)5xiotdyTRp&Aro0!RR{&>p|;ux19>m*9MzeTH@c> z{~7{_&)@PRY(^{UoS7qZk+>`~?nNe-oc7TB2WSw(7j1=R0egymsX5!!SUlR6d#TFr z>b`9d<{>P9ClzTFub3P|6-huzP40w3u-`vb@T>M;A6%aQP`L-1KMBhn%cK%DhCgnj zDVXQUy|Bg-Z}MJ6F87X#n zb%-ub4yN=Rc%)Uy9<||(PTS+>#JF`C)6eMl$gZ}2`>>g1J~?R-fN>%a?J^hSxKyVS>O|5`w#GDhK?0EIBI*`A5JmXB@!3TS;Q8`Do5^Ilp)&| z`dNsUD2*zUvr($;uj;OAm}|ePC2Ir|iaJYl%1x-3nT~~~K15|~L)-VEj^{gEiOeCR zbfQS%AK%r+kTd&dM`y?neO-PQr);7wHUt?+ycKtu`UR85zmH;QOXfFv4LK68TjDVE z>-(CUw6Tr?}BSojr|WLzU$<2uOK?)Dauh3|vP;urm{ zf~<;JeWxE}LkZ0%<4C2Va# z;PA@=L{-C0m>CyUw@H6DgrbT~QuAyHQn)6k+>zT!by?r6}7Cr+AdfMDjL^ID+ zel?vzw)Kdd_A;AHUK0v)ccv&i$kF|vSHni**;*SMlx6&}fKT%M6Haj?s* zd!B{WW(<;*z~KzOc_^lx7vA|o>^5Cfb4x2ar#TZ%qP|rxWjlFA3pZG3E8zbU{WA9b z=3q~;H>H}3%^fq`Bn@XB$S281%sfp>`hxg_*Taqt7`uzvZLRvr5?}{w$w*%bC_zmOV*J4&PDyr3)P-b$RFB#t?3f4 zpI6Bo)}+%92k9|+9d!r#rM^1>%T)>0 z)6>Cm?}9`A;CF(oIym@;s#kcbWK$nAg`)G{eL~UHsLC+yhPGpYd{N0DEky0f->uu8 z&|Am}7O3K@s~j@gJi6M<_^oeHcrcHCgxppre3m_~9+FWpwh^yxr;YE%tDr1UsKtV) zTn%($kbF<;H(2fy^1f>sboGb6J95>EyBm7(qSQ|~wE{MS-U}|BE@e7M%Ic`;eCX#l z{QzR~OuSvs?08*L!~nX@>z6O3egRx!QVlINFmu)bHT zA>6p>hcMX5IhF0Ge~8v&=8?NpZ6YyU^gen_oeN2+kYGHr<;3)fdpaqR@9Rjs@ny?R zW%vr;@H%zXRu=mdD3)$GoITBmA-8z-5&d5+M4;cIj@g00eB69s-Iv}JQ&@}k?7KV`Sfd;zriZX41U=72Y4v1 z60kLVgg&Yqur;Z^&iB9>V?dRiP<89?H!wHz8@}9q%_(m_1=@c;Rv1O-uG7d)U-RmF?aaPGx z5?#7t_iiV~j(Q`d4MDb-QeUaLW3jI~DY9Z(VoAKj_wrrP7C94YF(KR=tb&X07^6(+biopgHvGSAeS$jpC36( z>5b!w`3cV2};h(=nJoP!i3hpIWtJ0Rs3J z$k$`@@)I`hKB|#gifvG{@sMIgBuoU`Ox6_@)FV44?LPx!gQm zIuT9nHc+%nIm?c+FPqgbyOYA?dNR%89G1hc3J-y`#2}>vS!tZz_D? zgT}N!#1m8_clwc!kh|&hV0uZxmgk(00H%YaPx(0`)QA**i;pYyRxRuY=Sy!9Jw}>- zw0a9qToz!t#P~%oRE+E3@1E@3bK8QEedt9ehD1=Q#SSy)wBr8-Ox`_pG?gr&9B$a8 zgqJo?@UA?+;TlKVzg$RPxv0z!7aM6e9>Vg)##LNwlK=iY^uGWJ^J5bE11*C; zYADAxOLP@5R9^YMs?`#@SxqKgRE2~p&uq=kKu_C{#S$Yr=!nggZ>iIMKQVyhFiji4 ztlw7e+^8crq)tR+Gy+rmwBrfAHQ2Kx>)RU#__8=G-=min+7_FkSLu}j+}5PpWV-gM zM_kozJ^;oR$`;1T)$URGC*t}Kxp<8?vp{TE`#JyMnIm*xhe+r9wF>5rl*@V$G{VQ? zRvjdI54|3&wSyi{Mop_pLycK{du&;8jflVcS+nB^*+;Cno%=I2;W3yfH-c5(0$`JL8zj7Rhma&)P$T^{Q=`6PgB z!003ZbB%TNAEgff)Bfg&r+krkSxpGAhi>rRt#(P2kQ$h%B^_e-#ipoI_N+$LVuqgM z_dpCpSutXGRM(aD=lTMRb9hxhFAzGHZD%Re!q){rC4>J#;7~SjEWh(ucD6bR%n!vN z#&$ZDzOi7ok!SD{N1_=99|_T65xU^f-aoOTSmM|ndO5urPs#8f_4%0H;B5yhVay58 zYlvDGZV;_HsNL=JF?gNEiU$vzOaS(htB54y@#$Sw(W`Wei2(3%*&F~8RyT!9#cSW5 z9#t2I$EeE!!@IIfRn!?0T~+W!8I%GpQ#null{ZOeM3j0K-6Fch5(A;Y|**r&^Tat~{>IAlBg8Bi>l=ahBenDXYp$t ze(}>UKS9{zQ@TLK8}+qcvMcD$WTlVUnBSQx6J6Q?=OYE6d3C-NB}oK!Fa3@(qro62 zxu>Db`8arVo&U%(AwQ}@W>v`NGbTEO5v8akgT* zP$9?9zx`BUG-)3Z1ljxxe{N19?&zvoiCCAA zT&$`pdnl^sh1ikjwkkFs>bggBMyvn0DFCrRTq9s5HDJ+IB3@}il_3-H3FZSOW}L0% zdI&>B;U5-8H{3qm;K(JjDuHC@gDsb~HPW1SF7_WQqIG-AqIDfIYf@FfNc({vft?3e z)|RoExeZsg;_27PsE`+crgQQuzat8<#AQQgW(3Hk<|(S|EC&l>Et}yv`ek?#+iVOik2{8R97MGn!Sa+Ju#1+Mjx?P1iT~I z_H*smHr6w5nxv*9U4j=hR!Nn^gy$O}G0u_Op|Y?pkG1H+hoaQo;BvkT*-@X6dA-xQ z*^dzQtLEZHh!7BFV?P|U9r|==-#_v6512*kOq)pm#MR8JM4vA#LA)Q{q;S7Eq154Y z08a@og!b2gr*<;AU)~d_P+J*3_HA>79;6hHxyr1VSQWMyy=qUmOclasi)A|wxhF5h zX)2ET26{6~vbRH6GWU08YOrT#F~cIV8un1x`B9Zr9uK5A2Fnd8-wy2)toy1{vz~UX zuHmYCL=o!*+}jy|7;M#o*FT0kYb^%kn)i{5(JSY{uId0z!Pe9o1cydMT?`&d8Wsck zo)YJ$TN2)-(j^Er`WKncpw=Dpd>w=H^sg`No9m0JWv}$xf~8RXlw?C2qHnY-0B}wF zo$EQiP(MTQDdNXePM_^ud}>B8Um~88D^MAVtoKCs8EwAM6%Dr0rUD5MR%PAt8(4QK zdETpV01h=C8;U{KWGDq}RUM(D3QH{s$3{uk!5u1{1Pf_Er80DyVF=ETUfQMrm(5g) zugRUbJ^z3wKCL}!ndzXdA{zs@c>dFpe7dB_Ozh2LN=LqkQ>Qno>4o~D8Fk!@Y0l@2 zX}Asc-j7T2DP0!AN3%z7+-FCUtwji?BPQ2rs~t@!KFI~mhsl>$+v%tWM6vcVV@=;g z-uM}uJLn5x)xiuY2__lYx_Vrgv8B!a;z3dWm+iH@-%z@lAKm_bLk#W2KX9z}c#poU z6Y8kFmG`08!a1prnX0b<=1zMsEEM8IqE1_t!b3wrRcTlP9mdt8zrM8ZSe2ra28Z!A zGuorRzwkv1Re!j-od(me&ZD+ef`%fA*H6AEvR-O#N_o2xA_CuW;8RX=3MKK!5^sO) zwqQhmOHxM8LXpYzKA5GsB$cSSk3ZN z{qZ~RXg*R>=D%)ya`9=waeFhT+2^E_rCTT8EFL3I?+Z;IxeLsUra^Xr8p zo5!HC-Fbv4e@s}81qoe1Qh&u@)4f(bVBm89t#~~&AA(Y4+XfH65CbEI_W{74uYH15PlRj{u$^DHBa!+n@zJ6SMiT?a!&s*59V z_U_F*{o;_#3$%Oi1K=z}l4n%42Q#&{n(l-HZ;G`C4x!OEpn?AJrf?{#aM9-X9MG@~ zM63dXr?wVV4lzp1c|IpHfiq~7hjFH=+7+&km~d!Nk!Uk-D7r(D&|f*!+aV zBo@vM1N$UP_Br$!sA$mYFCnEp&6I=7<7RMmX*fBx;0-X1?M_{bl|J z!y`YWIyVb1MzqQO0VvJ+L!;D>ysnkCd$&O1x2&W3rzO$}%n}3UjYASq${e0GttXHq z0(52Yxof>*GhWQzf^FrGo_N2}`i=E^)vVAB)!<0XXAgE(?ScG7c)8tC^`mtrRLW6% zrLm8}bRZ$tT@EU{*q1n~KL`TKZDo{s{FXJ7w8bc-wiPaVtzA$7jYP6+>}l>76)>^z zfy}eWRdHLERIj%H*g*51(#qj0YZ4$OqzN(#jlSsMoCb@$Q?&pDVyTS#%j3UzeeY)i zhYdzk^fpO1Rkp*t-&)8e&>tL~X``*1g!5%MY zG7^PhRz08y7TTT-$4ow{x%EA0eHMQ!!jBv$E?mlRi1cH2>SI>K>lPgsCu5up24lcl zJHZtK;Z{X57CpR7&W!kR9#9WZT_${;Q$3Fm+|}woEazFGi?+@)-_t4hhLR}vhpRwI zz$@qmNbuBU!sK$JIY*Sr{}4*Ac*JLc%Fr2h+9Zw0%-V`VTXUXsX02GEZV{=T*$;zX zKruQIDlTqsWM>U+DwK0=HGw&GlI6P$r%yBsu0)*WjLB*eeVQzW_cJP}`->g7QMn6h z3<2;7Ec*us?8b(9&S(MJ_Ld~1XewXMCqMpgx* zoS^{Z^rJ~JtJtifp*G-tO}zPlUyUS~(8<*Hhy-M`-Wt#A%xGR_(xWulyYJ7@^+zju z;oRa+-~MIqKrNxUjmylA+|n_s<8j~0JL|Se?F0un&}=jZPush8!ohL*tp3wS;IwSf zJbE79?<_l$O{Ys(3LY8)88urF0HsO@EV6*H_on&a36-p;=OqeBLD#7QP?_sCAnyZ9 zzQO_ujng9qwJ(_K_ZmvV-vQf#tr={9Lwv|7e!q%M4TiC|3i#+^2C4YCK%+|F6J-dS zx&E1+OfHz~%RIC7jifJHW(#Q2QH#aFa4#rkJ(9d#^-6RF{Uo`UkarveQx8GDZo2u< zKCxA9F|T?&PF!K6+W;!VaCLn)(X+wi4$;rDkT*Z6p}A;5mZ;kLftGmGeu_H`yO-=| zAW+vMl!ku-eznh?yqMidI1UX)0i%HZ@Ft>rA0+peSz%N9F-*Ufm;g5O%P(GF@p2En z@P0ml^P}w*2cSV2INE@oez?pOO+So&S$nIK2x4Kr8!R(&sCaN1BuKK*;Gn!qol)&O zo#y1-*EE?p5V$sGq089#cwTfgaYBqtJ=7xuwcmzs2qc%7LryI0YQKW92NelslwolH zDequCehq8%vqQQB~^MJqARySdqE8U z{aHx1=Nh3kst%GnSZc+;l^{8Z4m+MNZo$n148kzIkX}p{Hdm#*&xpkXBXXn*nCL9J zTVW7^b_T2pf`r{~eHg5gmn!R-Z7nw)YRpLR{>M+I>8pTFuF<-adHvxoutHD`QI`ph z1$$nt;p>U{2h9y>*E^eiok*j;Y9~tnZ8bn_P6L`%Y)ZUfN;ZBA8N90h*W7LTesUMO z_X=y#_@8wUg@UNqqdv<4e^)|8Nc2~O0J|NqGFU2X1?R)N7`fw&%E*vxwW}PKOt8YU ze2!D_%F$qjjC@W+)8MFeqmZI5Z09wBxhk6@=1lxGH33lMtruJK77X1%<8>;rE2#$5 zVI(JzbzG)PL;)%D-+LH(?8eKbQC;%cB)}}63D{Z($pvxp`0~aKq{nt_G0v&Vixg0WKK*i=NW{y5YRs7g9k4JE?L7ph+1slm zwzIh6SeMQ?t3|qvKKyhlj%o#ZF|TU_=Ny3Rw- zA0d;a0{!T0MzzBUXzzoA^=&igqs8wcje~oVY8Q)X0qy8wHnvRhGQ z6Q(4dOEM?g^~;u!Tk2wxFZ*uPXvFY{3b12w6jWqUoL}r}1IQ;sseq(#l38%PwOy`H zNxGBgp3KqJ2+(Q!fyO7#$7LGNfC7gu<3|{JJq$6=HP)qM+G^kU!dfi77Q_elsjH_& zX8cBs%z)mmQ^sNDt?@U9fn`ER)C)4fObygvTt(B8HdxLnb+6g@`AxFj(n0aW84?{`g+lRQDBxwCMb4|oYxo63PB>k zGBp0IRU3YliKSP@m$qx$X}<|~Q;mEFtl+d}g@(pe9!;O4Abxl>dXD}=WIAFvLcFya zuu|S5r|@&2;)vt*(ESi31@IsCeCUk|-JvLhVE_B-3L}jfexA$)@eoPa*4O98-K$eo z2_HWI9YTVex%Zu%z~Vk~0^#+~tZwp?;OWS)rom_9hvBvvwvjbM+i5AMa*d%kd%(Rk z^!QcwR2p@QzD3q85vRC+==&O%^#>1`bLuF~Dl$kUDBDK6BK$&5Bt{sOV&PZnU|~PL^f_8;gHX#A*M$?hT-_ZMLFn2+=+8o>A01m(F zE!6e9^~3}k^qsNb71Vyv2zFBrM}4Uz*C~UdBcV9jy=?&c-rT9sxM}x!7EM11l4-!# zDIDq9`5GKFKuO;V51{{)fd*LrKSMTXdzD}JzQ%3Ek967UP%0y~xw&#QCC?mPSW>K0 z(HViVFfG+lO<{m8SZ$A26DJfPFN}S2v|H!Io4>+8#p?h=h&}20cez1@`W0#pGun|> z&%PNvp%Ls@Oj3*`@%!>CAwYRe$3=hy!R!BxI-9|$(!%(nAUj8@)$z=~SiNK)^x6Ta z4z{`QlF9@#Y>q#B&1(E+ z-pMs+mhj8?>(KKRPq-=6==42{{~y@j7LUcyZhcxv68T2p(1b+a)H}Y|p1)h?%8v&H z0{+ksSh;fk`0qJV6O#L7b51|N#eO`z@8hR4QeTWR^1Jh|rU?IWIO4{wTQW}$T>Rsk z)B#1sUj$AxCbtpSHeZ`!3ey=u^o)|;;6l!-HQsXIE6rkN0AqnhMPdfzHU2Jn`h1lS zfFLZ)|HGTP^>@|O^BkC;2Cw6PS53|SjeF1iU9$lF2ZqRx^AUw^ebhmk7?<}x4vCej zQEI8u8>VJW)*}cd^>E!5mI;hcACrUZ^bXDDNN=p(UkBB8P?_)U(A%|JQZ3Va#oyM+ zw5;O17po*DSqKU5Tz)LA#f%h}IDfbn*^WolfLt5Lde0n1o=%&&+1k8e@& z_{~F+JD^>uf6qW04mkl!=5*p@3sU~lN^g=^VI3|)yQM90p61{IDN=XTgS5Xfb`Cu>M9~37zgtXSP#0n#H>!~{AJV!5`}O3Q55TGr^qiD)ZJK=iAM=b$E4b<(c3?fE{(jYyHRGhcQ%BDfMb%59HqKjcZ1Pnc)m^BRCf?+~Ua%r`F=*bqQ~}I*?iElaff^ zOM8~(O;!pKf~r^7eiK&X_xKuw{WP<BosP4!_Ta3!4in3JrdJS}3cZYj$sq%|cN=<5 z{&mv1k-xsiJ{{byC3!$pzI*z8E1Tn4&&!jYGsSm{!y3hJ92AZ_PGmkz%y{aum?T(q()D+S zBrf7a3m21(vBu4%3=YKnHYYj|x`-F`(X6o3gF8Y`L)>u+ZsXerp4#}DtRx9=)OB+@ z3N$O+d3Euqt-{lSeyi1>;y5laqPFW#W( z7I_DK4xLh%6PFPV!mmcgm47}a38%R~y6sR50dZCu@ia&C)|8cSp)^bLpNW-gGPb3%9tBiKL}YM(tZzOuEnFBlfZzg0FOc3%13@ z2v$-bPgW$e+~m5abCOGS%Rh1yvSQGL+IxieyJ^!$zVB2L992iPJru`IZe>eI*W5fu zIgZS74C5A_9FAxxcW|q{*YVInRhuUdOYq8xF?(B+qN3;$eU5~A|KgJ~k$PmpZ*#%= zOXAn8c_xqI?fqCrE0Z*KF2b~ZE#V6slFyz6r+aN*@5enT(XN(=tFByYQ7FO+1KdxN)&6m*C1M=PLTm&`T5}V*iQZG(DzbQRt-XdQQV-> zQiro67*U20e)g3M_78_g(kAB-(SsN+3DL~dX&5x@&3-Y?MmUPU^4IW4NfKN>el=&I z$xJ_3SKf8Y4cLB9JzVUX&i-;YT(OL>srclyTto=i-tlVnDTIGi-{dJ|R-(%yLMd6L z`DBfnkb#v>NLnN#(FOC0io$8BaYcH#W*5fjq^$0-^|MI*rIPlxGZB-FFH`Ep=08A+ z+B95u*I)NfnOc(awJut}NT5tX3ttu5}gG*R*(EX)F zS9owB45@QvLi=lV8lvI!#}GF}m}yfLaF#7@*BHJ>&)z}LAPjPiQbImF=2Go)03CBY zDDbkP?Mwr=v}1|VgqvKJA;j(*9#H?cRjgY}3B!tSE?nz)Roleq#uC59_PNBl1HxyfCCPLXAfBi4-r zZ{oVvbB+FGIL^rpBh6RfWx2q?&bi1F0w$F zMaC()(Z`4T0w)Wj1RKrIfP5@)X)7kifnOf0C?Vr71sdZhv6Wl`V$}P&{PT(LkS7ss z;V0nU=ly*$NKqVi*uZ7~9{`{K3)ty@KEyCErqJBrZ6qzrrQyT^%eWkklTB>j=dPME z87&=#mL$WnHUl2?b5>KLR={0W)15IyjSe3HTB(A~FKpbvNuJSq6X}H$l-^iGZiStz zt3jlwm>q>a-`R&0&z}5B91uio`1;Zk*_KPxHc0PQD zQqy-4qnCKcf|pmGBz?^UDk9EzkBK1X01}feNXDm?amHp~Fiy|5@Boy0?K_$&i>E5I zaB%bHISX%PB*ToW1ffl!i2zw>yPX{JxyuqZUcrkL0$t~)#LsE6F0J&PuEv-E_ySS+ zVAZ`@FVXv`bKOK@`&m07=sU*6hRiEXhomRY_qd#Z&Y}5`eRz4%*>}AcVVf?u1DciR z12auhmJ8)Dg=>bZx$h>2H;Lu8ookyNT2EtR(){Vuth1cE1Rn%j0L?hl9`K zvJC@=uqrcB>MAW{{53!p-onZpedhM({T4;Q#uW)yAjMNAi)ErYe#n&-gh916AaRXk z|GO-iQ)NjFTvWCFZb*@9)D7z@*mD-?hetOO5b3)jA_=tSGz4e=&_H#Pv_9X1J!=2Q zzMQZCc4Ytia>*7YOQzIw+9Q}qoF4b*>h5Cv0FjxrHvsd8T z(^v~cOlM#5gLTR2a_Fa{@O1y1cca%wr3H9k6Q4t{Nr8G@N(hZ-HO{u!;_R}wUe`*t z%)p={7a&CJ9!y2jw&Z@D5?YJ-E&?Re+3 zu8DL=a>-)>uP((0{mQ#TzuuvOuw=?gyK2e?)DeIcL!PUTm9bw#Y}vvNb)*h30fhbf zcLMc)65(OVtF}mAB2|k@qVp&n69!@s7k50jx*GYq&ZJ>VHB_oVTo4Fv4}{ z4Y!lsf%;xo0zt~DXLFHjL5-Dlzqaf_n#>n(hp5%+OIAbfPy_NaPa8%M31mq*YVH3rAac!rYR0jC$A$_UKuS1T)_pED^6+$->^_M zY&1lDug9?(<9-#)klyRQ-U_0O#QA!oI+XdaeY$V^qTJXk+3!ATvpwr;Y`Ut;hGNJ+ zgM`lSL4xr?&GXwFYC*Xim|CttC`ZnN_BEL~aI(fLEhJWYXv7xaw1eAOVJKXMY-x1Z zJe>Okh`-0^P<*Af(>aQ$`7p8MBT3?lhwiU?vkvJm^&I4%3uFj8n4(%|+z6hqm4Gaf z_{=(=%zWrI&!JzWbpDS0A?DcA$q6J&tj9Nj)@+Ix(s@p`!vS6IZ#9IiPAyi*o4V4x86Jgz|E{=Oi?#hmQz!Ra7Xq0)m z&*~DQVBnH}v9T_y9T8?R#iV$7R}`0%3Z^;cdgIpxR`MA}D>+G&;q)@~ma2UVu&5!Y z8}Z1RNQ}HI{ho%7&Cv7{<>4+}bDyXopS3gmt6qDPB9FCL)dYvpH!{shW@_~Q;_a|D zy!|^nX6e4ZWvtofAWFT^TpXB@8P?; z1>U@>q|ay>H_Kt}ullikmryiV*CXsOXH-!(s3Wt=>RgGh!27u>xzoyKY3%{ca8s4x5NoF?i`DF~yUz8z<%pH}9N-S}q* zV&gn}d`?enaHa(5kUDt>L3p`?lp>`r+d>o@)a4KRUqAkjBybMbUTF_~_P`)&(70Gc zm5%2zAAlZkfo9C4?|N($^U$fdH{w4N@m_GOyTtNIM;O>`70a z^vkuyNV9lqHlpU2mV3xf)0K{=o_1a#CM%^#7CwUU88J|0X5zMKgCoR!-ZDgrYyM@^ zUznCOx;;-yUA<)-32p`zk!`y203mv^CZ~8?-pFg2W~!P)+9Y#df4OCcl)4PSKpCkk z>t1F!38|X1Ee2*=4qV{ZLO$O|=%!4jA;pse_xsznzK%GLTW30yq7yapMl*WW^AKUT z7MTZ;I$4v)ktIh6WBXHo&#q;8mI&Knn95;xHLPv3&&>efwcaxGA_sSQ9HC{ew)r5l z$R=r-K>_sjxr;K=!A0%rHJDNHKF^EPrTRWy%Nbn6>&!EnbDxqPw!X7yhoGOf;Qtq( z>N=M_^prk#$60Ckw2gfh-D71K9h;QFEYVsg^7sW>p?it z5{ujX_+Hk=G3#-l+xzJg3sI^qbrmXl4*mNF91_Qeg`6&H$+U>#GLi!+}K`J})Ts)>QNZ3Qxf8We9e%th=&$fsCby~UuqWE#8^oJAhEl8#UE6S}{b1 zn11crCo_{@+VO5n>qXp+ymP%XYnYQmmP4%aq#%m1O!M0L8V*$_Ph~06C=qEVUBmLM z2FHHTSOQf-g!&&FRz#Vc87@01aNOSTGr<4mXv;(iLBm+@^b2w^;QNQ=J0Mtj@WBGm_q=eFT^mz7nHwFv{s3p6I5$S ztlYo zv$+;Cx6RzlhqKk+*4EA^eqHZQ^sFq+s$*lws-5cGk8&Ak^k?_xp(H4Zv=HEo8a}>_ z){=TlqNv%cl&n@_hf!|dBYJK<0yry_mqn2_MRtx*ZFzCs`%>6XzPNgg7PM{A&S_wc zb6V$gjcQ!eTQrH~TeS#umBl3k^Mp2yNM)3DL-n{#|DT>$LXmMSiGm`YT~k$&YHXhF zB7-c0X3EW!Aly(6yp@-K-Z>b!pnRl+cofuh&t}oL%aVp{4tlknMzZFLd7}tIrIq2p zrX^1BrQIiD^^}bhjo8aeGr=|ZDbg(hVoDdZ=vOG|-hv^J+`x}Elf!r*5J=;r)|JF6^_B!PHX4JA96pt2 zmX*9>K0{B;#J7n~q#pm^-CA54BxBm-(0;5wr=at#rhCn)mWqjALQ{1wHFVJiIU~8i zsAgZTIkA+(JL)|17S6X^hgKi0|N}rR2XxAII!yM~V&-p)7az`C`xO+K^hcwlN zIA{*GdagrlW^D#lU7(c5FgnEImE@!h$xM%BK0>nIh7(zyFHG$*0=F^}AGM?*)1-Y# z(b-gA^~}`_x#+i>C~J=BL1WDM%cER1Lq{#4Py;j7u}nwW2r#6})oUDj7?RcXF3(A! zs{ZuUq0o;N28XsJFF3~grX*!AOvQKmy=)I?b>iec`Xg(Ruy``eh>bqij!^%(Wid}; z*qjsAOMj|a^-(=9o7cQ($Ij`9t$AJEu_f6*s0?efxkS;7SE&>*prYrR)mu_C2J%J; zi}42{a*p1@olaR9otmk#v?m-(-TJT^?T{M>E>zx003;;M-aUwu(VY-W9FcVW$NOOG z&~}}$7VRfVH4-zNuODQDa|%T=9Di)EZD!7WU7zr>DS7qK#I#(Q8Q+UW4AlT9FfmlX z6R!BcbLu600MZ-H_YN9;M%gSY@37Hz{Bg>J&OaY zXV}|+w{n+q?fZJbdXNw#BN=W*Gs1PfiY~7^2IBOP%PSAoILzA6tapL5w0ojI2FVb% z>HKoCJ`MS`OVD+EHlqe%>h~9|B)#R`*3586`)|vi;bE`j9It6N^kTuCwnPi_xt0z zGlt}j-DBN8T&#*LMK+X1=S|tW4Kv}E~7w{?at!u+4)5h6q|#+3kPHf zRnjfGFL^E_uby%&s_SxBHbjdoUwaLrf18_|^61QAJAfc!ukgESsg3X{rnXqA`@*m` zSFmgT(nsrFjoSk7FByvOt%;C6IeS~>4a+9- zyA@5<0eQh&Y)SAX(8+->JDht|sU)5H7V7Rp zAI&l=zIDjtY!;M;8?x1!pKshiO^?Y%Sj~p{94yzjGq;YmjAKco`gKSAPhCmzDh+wV z@=Sdwhy7aa)f$5pr+{j^-iF}EEgDtjQ663vjZW!_o1RllRbUxgxd`r)P5=zmUUH|C z!dzzTH6Og_f1ZYjHV@-I1;)FK{>Nr>pL@eMfspA(_Gzl-uuY}F^G2vn`DOw$u!$A$ zaZAjw4&yE(5ANI!=1u?yFXJYjzr64y@cQY|Xg9Zou8S(COg_C+9}}nfs(ZalUaouY zA!eqZ(y=}lclyiq$7Vf?c;TB%i@g=HJ`JkRj|*8yn4CN;)&)Lq(mWGNnjK1#QJkhk zhkPLy+bhYK`j&1j=oXOw%lg<@fdGmyga;)w$08Dy~^nv&2oqL*n=@yM+syH=SD}UafM2uj680N~m~WN|R-C ztp`iRf3h5{>scgd5S)Y1>1NZ|ti@(qoR)M8?JG}wFk|u!Ley>iHGA-b=7bwyTa#s? zX9zCW9d+b{VpeJpi(Y?y^iXA}b9Io_sA}$IoM0YLxP@D>lcrU!}Ioo`mUhbUM)deUp zt;#}~Z8UaPVs`==U3tx8{n*npzXjGr+11w*fNk_JJj9~<#-uAXid^FzK6t4=$dkT4 zC0#+9Ig|BXJ(9Wq&+Bb9)|m0me?h+Gz{ga1Yme*_FzWnO*z%cU|L~rXmwPc-a$sbq ze;aoJV|w}Ut%=|Ix5dZ>7tx-s+?|;z^_9sCc5VHYiubJKHYJs1hMVAvcs{MKTS9d* ze_ElLS8%gGz8=0?hpRu^qL91e@SHWkiZgjy=N39oEOMrkMo$Liq-Zgv0x~Cuy#gc4 zvPy|kk#KO38mM$6va-eQkWN7==>zYgxU01x@1k#yH%{_e)*X(j3}H7db;WVA7%6Xh zq?fHP*`fch)*bMNzwE&7O_#jJ=dxCr~ zfuP3?F;q(I(eRKG%4-O9$CHbWr{gv+;0RJRfX5`WlA^Cpw05 zMH!fw1QeOaBEr;o#SxeBcoK`yMXqGR(W@|$^vtFCCyMXoKo^`yqLxOBUgC&S%SQz7 z*`y(omOl9q$tb+qwuLk?U3rf%I60)+vVe?wJh_4pmD*@V43Gy0NXV=wlY5ZyrsW1W zeE4W@UE-!$$20zdb2~pGN-v*5Ifo6M;e2!NSWqzC6D6o#F-@Ar&8tsx*b_%NZxAiF z^*mwP3QE<`JX!NAb2~YC7vQjcTUXxBdq~c^U1_X4-6E<#*afWreZD$qOq{Yle2b*& zdik#XwOmxXaazw#c04BfJZ&h1u~b_I-=+E)m(q zu$~vCKCMd!NWt||IXkNbEr+wK?yU1kDl28xJPGfT{>=)GC2e&e*YEm7jZmhAoa^~z4S*gz$^Dtxyl){$3a}eNOh7I@LjXKyX^gY<`QZ zwj74ST`({~Oo*CyEJj*!^kC=rC-_r~dE zQyH$TDl|^@=Jh2Td!6LTt8Lzx#y^zh9IE5C0E-P?MI}<(Y1+7v)b6Ifscp0{;4PES zBsU3~=~FEUymPI3J%#)E`76M&P86D*-E_al3HNbz)V;J)nN)Bn#Bh(3+iyPWNG=xr zdLJ_0I55Cfg6DiSo%)-jQZ~OJpzNlFM0xe%4=g3#m5O3y^W|HMMHYx{aZt#*rQ_#Eft zkVp5x=nzLOee&zRzXjQ+{)^B|cI3OmoK$2vk-+UZqIH9ndU25ux?_=u)AIYIgFACM zbW0mO$%whMzqG!Yg%Cc%GJd&(oF`r57gr4n12P*gtx&ubX$xXL-QPl_fFcT>+*m*~ z)V|m0EcNDXBnbkvUnzENdV)J~aj^pYmwWDus|3VG3_^IGxL!|9+?+w6%vk}9Gou5J za?1|Fm&=1*b;!$HU-HW}Vk!=BXx|n6dLF{Dh1xVQ^)%(w>x3Nr!L5Tw#FzT*t6$x1 zHXKTwRFY)yD}_KZtuq%<+VxGq?^>?q;p&A%+`L5?QEe;}85oH38yFl2Mv7}qf>MW- zFG(K9?k_ABBJ$Qe`Foko*q&IAXlcfcB>nUVc!s6Q3SbCgW}1nBI=?24t=4ueyl0wg zv{2?)+L2|gGnT2Ec*b#Y4riBf=GuBZA|=mACLpl2PdL~I88$dvmuNSHU+70TUfxrk okPv&GuRZ*U{=f6%T<@0dK{KmM<$pXn46h1#(d74%3r=_b8x3^1UjP6A diff --git a/reference/predict.bas.html b/reference/predict.bas.html index 012ee92d..ac878b81 100644 --- a/reference/predict.bas.html +++ b/reference/predict.bas.html @@ -221,7 +221,7 @@

Examples#> attr(,"model") #> [1] 0 1 2 4 #> attr(,"best") -#> [1] 10 +#> [1] 12 #> attr(,"estimator") #> [1] "BPM" #> @@ -305,7 +305,7 @@

Examples#> [1] 12 #> #> $best -#> [1] 10 +#> [1] 12 #> #> $bestmodel #> [1] 0 1 2 4 @@ -326,19 +326,19 @@

Exampleshald.bma = predict(hald.gprior, top=5, se.fit=TRUE) confint(hald.bma) #> 2.5% 97.5% pred -#> [1,] 68.62119 91.82234 79.74246 -#> [2,] 63.29775 85.54146 74.50010 -#> [3,] 94.48040 115.82387 105.29268 -#> [4,] 79.15137 100.85550 89.88693 -#> [5,] 84.47367 106.49832 95.57177 -#> [6,] 94.54526 115.49217 104.56409 -#> [7,] 91.58605 114.59415 103.40145 -#> [8,] 65.54286 88.10031 77.13668 -#> [9,] 81.24821 102.79794 91.99731 -#> [10,] 102.05833 126.80887 114.21325 -#> [11,] 71.72480 94.41610 82.78446 -#> [12,] 99.41758 121.75984 111.00723 -#> [13,] 99.54825 121.24594 110.40160 +#> [1,] 68.12625 91.60963 79.74246 +#> [2,] 63.76404 86.08573 74.50010 +#> [3,] 94.19385 115.83767 105.29268 +#> [4,] 79.25694 100.87410 89.88693 +#> [5,] 84.07642 106.05662 95.57177 +#> [6,] 94.06427 114.76926 104.56409 +#> [7,] 92.27166 114.99879 103.40145 +#> [8,] 65.73624 88.39721 77.13668 +#> [9,] 81.63243 103.42745 91.99731 +#> [10,] 101.74987 126.71517 114.21325 +#> [11,] 71.39277 93.48001 82.78446 +#> [12,] 100.16265 121.79709 111.00723 +#> [13,] 98.87462 121.06708 110.40160 #> attr(,"Probability") #> [1] 0.95 #> attr(,"class") diff --git a/search.json b/search.json index b58fe23e..28c8f9a3 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":[]},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"interest fostering open welcoming environment, contributors maintainers pledge making participation project community harassment-free experience everyone, regardless age, body size, disability, ethnicity, gender identity expression, level experience, nationality, personal appearance, race, religion, sexual identity orientation.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes creating positive environment include: Using welcoming inclusive language respectful differing viewpoints experiences Gracefully accepting constructive criticism Focusing best community Showing empathy towards community members Examples unacceptable behavior participants include: use sexualized language imagery unwelcome sexual attention advances Trolling, insulting/derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical electronic address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"our-responsibilities","dir":"","previous_headings":"","what":"Our Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Project maintainers responsible clarifying standards acceptable behavior expected take appropriate fair corrective action response instances unacceptable behavior. Project maintainers right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, ban temporarily permanently contributor behaviors deem inappropriate, threatening, offensive, harmful.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within project spaces public spaces individual representing project community. Examples representing project community include using official project e-mail address, posting via official social media account, acting appointed representative online offline event. Representation project may defined clarified project maintainers.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported contacting project team clyde@duke.edu. project team review investigate complaints, respond way deems appropriate circumstances. project team obligated maintain confidentiality regard reporter incident. details specific enforcement policies may posted separately. Project maintainers follow enforce Code Conduct good faith may face temporary permanent repercussions determined members project’s leadership.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 1.4, available http://contributor-covenant.org/version/1/4","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to BAS development","title":"Contributing to BAS development","text":"goal guide help contribute BAS. guide divided three main pieces: Filing bug report feature request issue Github. Suggesting change via pull request. Coding Style Guide Contributions BAS","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"feature-requests","dir":"","previous_headings":"Issues","what":"Feature Requests","title":"Contributing to BAS development","text":"wish easily extract additional information BAS objects ? like see new functionality available BAS? , feel free fill feature request! Please describe much detail like added. can anything just idea code advanced user!","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"bug-reports","dir":"","previous_headings":"Issues","what":"Bug Reports","title":"Contributing to BAS development","text":"filing bug report issue, important thing include minimal reproducible example can quickly verify problem, figure fix . three things need include make example reproducible: required packages, data, code. Packages loaded top script, ’s easy see ones example needs. easiest way include data use dput() generate R code recreate . example, recreate mtcars dataset R, ’d perform following steps: Run dput(mtcars) R Copy output reproducible script, type mtcars <- paste. even better can create data.frame() just handful rows columns still illustrates problem. Spend little bit time ensuring code easy others read: make sure ’ve used spaces variable names concise, informative (OK using “.”, camel case “_” variable names improve readibility. details see Style Guide use comments indicate problem lies best remove everything related problem. shorter code , easier understand. can check actually made reproducible example starting fresh R session pasting script . (Unless ’ve specifically asked , please don’t include output sessionInfo().)","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"other-issues","dir":"","previous_headings":"Issues","what":"Other issues","title":"Contributing to BAS development","text":"sure something bug undocumented feature, see possible errors help files documentation use clarification (issue) please file regular issue","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"pull-requests","dir":"","previous_headings":"","what":"Pull requests","title":"Contributing to BAS development","text":"contribute change BAS, follow steps: Create branch git make changes, ideally using commit -s sign-commits Developer Certificate Origin. Make sure branch passes R CMD check. Push branch github issue pull request (PR). Discuss pull request. Iterate either accept PR decide ’s good fit BAS. steps described detail . might feel overwhelming first time get set , gets easier practice. get stuck point, please reach help. ’re familiar git github, please start reading http://r-pkgs..co.nz/git.html Pull requests evaluated following checklist: Motivation. pull request clearly concisely motivates need change. Please describe problem show pull request solves concisely possible. Also include motivation NEWS new release BAS comes ’s easy users see ’s changed. Add item top file use markdown formatting. news item end (@yourGithubUsername, #the_issue_number). related changes. submit pull request, please check make sure haven’t accidentally included unrelated changes. make harder see exactly ’s changed, evaluate unexpected side effects. PR corresponds git branch, expect submit multiple changes make sure create multiple branches. multiple changes depend , start first one don’t submit others first one processed. Document ’re adding new parameters new function, ’ll also need document roxygen. Please add short example appropriate function optionally package vignettes. Make sure re-run devtools::document() code submitting. (sure include name authors function!) Testing fixing bug adding new feature, add testthat unit test. seems like lot work don’t worry pull request isn’t perfect. ’s learning process hand help . pull request process, unless ’ve submitted past ’s unlikely pull request accepted . Please don’t submit pull requests change existing behaviour. Instead, think can add new feature minimally invasive way.","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"style-guide-for-contributing-to-bas","dir":"","previous_headings":"","what":"Style Guide for Contributing to BAS","title":"Contributing to BAS development","text":"consistent style improves readibility code. wed particular style generally draw Google Style Guide well Hadley Wickham’s Style Guide noted . Using package styler enforce styling based TidyVerse helpful, required. Function Variable names: Use informative names using “.”, camel case, “_” improve readibility, .e. variable.name, VariableName variable_name, rather foo xxx. tend avoid _ historical reasons going back S. Assignment: Use either <- = assignment consistent within contribution. many style guides prefer <- suggest using styler enforce use <-, OK = shorter type! Just consistent within contributed code. Spaces: Include spaces around operators =, +, -, <-, == etc improve readibility. Put space comman, . : :: never spaces around . Additional spaces newlines fine improve readibilty code (e.g. aligmnent arguments). Comments: Comment code whenever can. Explain clear code. Use # start comment followed space capitalize first letter; short inline comments (comments line code) need two spaces # Curly Braces: opening curly brace never go line, closing curly brace go line. exception short conditional statement shuch else code may fit one line. Indentation: Use 2 spaces rather tabs per level indentation. Indent code inside curly braces. Semi-colons: use semi-colons put one statement line. Line Length: Use 80 characters per line code. RStudio setting display vertical line 80 characters visually assist . Turn going Tools -> Global Options… -> Code -> Display -> Show margin File names R code informative end .R. Use - improve readibility. include spaces file names! Contributing adopted ggplot2’s CONTRIBUTING.md","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"supported-versions","dir":"","previous_headings":"","what":"Supported Versions","title":"Security Policy","text":"Supported security updates.","code":""},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"reporting-a-vulnerability","dir":"","previous_headings":"","what":"Reporting a Vulnerability","title":"Security Policy","text":"Please submit vulnerability reports Github Issues maintainers address soon possibl","code":""},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"expectations","dir":"","previous_headings":"","what":"Expectations","title":"Security Policy","text":"package utilizes C code efficiency allocates/frees memory. package checked memory leaks prior releases CRAN using ASAN/UBSBAN. package distributed via CRAN https://CRAN.R-project.org/package=bark reports additional checks. development version may installed GitHub https://github.com/merliseclyde/bark checked via github actions (users may check current version passing badge installing) Bugs reported via Issue tracker handled soon possible. (See link )","code":""},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"assurance","dir":"","previous_headings":"","what":"Assurance","title":"Security Policy","text":"highly unlikely malicious code added package. submissions CRAN require verification via maintainer’s email, protected via two factor authentication. pull requests contributions github verified lead maintainer. Based Code Conduct Contributing Guidelines modifications include unit tests cover additional code blocks.","code":""},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"installing-bas","dir":"Articles","previous_headings":"","what":"Installing BAS","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"stable version can installed easily R console like package: hand, welcome everyone use recent version package quick-fixes, new features probably new bugs. get latest development version GitHub, use devtools package CRAN enter R: package depend BLAS LAPACK, installing GitHub require FORTRAN C compilers system.","code":"install.packages(\"BAS\") devtools::install_github(\"merliseclyde/BAS\")"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"demo","dir":"Articles","previous_headings":"","what":"Demo","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"use UScrime data illustrate commands functionality. Following analyses, go ahead log transform variables except column 2, indicator variable state southern state. get started, use BAS Zellner-Siow Cauchy prior coefficients. BAS uses model formula similar lm specify full model potential predictors. using shorthand . indicate remaining variables data frame provided data argument. Different prior distributions regression coefficients may specified using prior argument, include “BIC” “AIC “g-prior” “hyper-g” “hyper-g-laplace” “hyper-g-n” “JZS” “ZS-null” “ZS-full” “EB-local” “EB-global” default Zellner-Siow prior, ZS-null, Bayes factors compared null model. newest prior option, “JZS”, also corresponds Zellner-Siow prior coefficients, uses numerical integration rather Laplace approximation obtain marginal likelihood models. default, BAS try enumerate models \\(p < 19\\) using default method=\"BAS\". prior distribution models uniform() distribution assigns equal probabilities models. last optional argument initprobs = eplogp provides way initialize sampling algorithm order variables tree structure represents model space BAS. eplogp option uses Bayes factor calibration p-values \\(-e p \\log(p)\\) provide approximation marginal inclusion probability coefficient predictor zero, using p-values full model. options initprobs include “marg-eplogp”” “uniform” numeric vector length p option “marg-eplogp” uses p-values \\(p\\) simple linear regressions (useful large p highly correlated variables). Since enumerating possible models options important method=\"deterministic\" may faster factors interactions model.","code":"data(UScrime, package = \"MASS\") UScrime[, -2] <- log(UScrime[, -2]) library(BAS) crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), initprobs = \"eplogp\", force.heredity = FALSE, pivot = TRUE )"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"plots","dir":"Articles","previous_headings":"","what":"Plots","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"graphical summaries output may obtained plot function produces panel four plots. first plot residuals fitted values Bayesian Model Averaging. Ideally, model assumptions hold, see outliers non-constant variance. second plot shows cumulative probability models order sampled. plot indicates cumulative probability leveling additional model adds small increment cumulative probability, earlier, larger jumps corresponding discovering new high probability model. third plot shows dimension model (number regression coefficients including intercept) versus log marginal likelihood model. last plot shows marginal posterior inclusion probabilities (pip) covariates, marginal pips greater 0.5 shown red. variables pip > 0.5 correspond known median probability model. Variables high inclusion probabilities generally important explaining data prediction, marginal inclusion probabilities may small predictors highly correlated, similar p-values may large presence multicollinearity. Individual plots may obtained using option. BAS print summary methods defined objects class bas. Typing objects name returns summary marginal inclusion probabilities, summary function provides list top 5 models (terms posterior probability) zero-one indicators variable inclusion. columns summary Bayes factor model highest probability model (hence Bayes factor 1), posterior probabilities models, ordinary \\(R^2\\) models, dimension models (number coefficients including intercept) log marginal likelihood selected prior distribution.","code":"plot(crime.ZS, ask = F) plot(crime.ZS, which = 4, ask = FALSE, caption = \"\", sub.caption = \"\") crime.ZS ## ## Call: ## bas.lm(formula = y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), ## initprobs = \"eplogp\", force.heredity = FALSE, pivot = TRUE) ## ## ## Marginal Posterior Inclusion Probabilities: ## Intercept M So Ed Po1 Po2 LF ## 1.0000 0.8536 0.2737 0.9747 0.6652 0.4490 0.2022 ## M.F Pop NW U1 U2 GDP Ineq ## 0.2050 0.3696 0.6944 0.2526 0.6149 0.3601 0.9965 ## Prob Time ## 0.8992 0.3718 options(width = 80) summary(crime.ZS) ## P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5 ## Intercept 1.0000000 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## M 0.8535720 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## So 0.2737083 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## Ed 0.9746605 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## Po1 0.6651553 1.00000 1.0000000 0.0000000 1.000000 1.0000000 ## Po2 0.4490097 0.00000 0.0000000 1.0000000 0.000000 0.0000000 ## LF 0.2022374 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## M.F 0.2049659 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## Pop 0.3696150 0.00000 0.0000000 0.0000000 1.000000 0.0000000 ## NW 0.6944069 1.00000 1.0000000 1.0000000 1.000000 0.0000000 ## U1 0.2525834 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## U2 0.6149388 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## GDP 0.3601179 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## Ineq 0.9965359 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## Prob 0.8991841 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## Time 0.3717976 1.00000 0.0000000 0.0000000 0.000000 0.0000000 ## BF NA 1.00000 0.9416178 0.6369712 0.594453 0.5301269 ## PostProbs NA 0.01820 0.0172000 0.0116000 0.010800 0.0097000 ## R2 NA 0.84200 0.8265000 0.8229000 0.837500 0.8046000 ## dim NA 9.00000 8.0000000 8.0000000 9.000000 7.0000000 ## logmarg NA 23.65111 23.5909572 23.2000822 23.130999 23.0164741"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"visualization-of-the-model-space","dir":"Articles","previous_headings":"","what":"Visualization of the Model Space","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"see beyond first five models, can represent collection models via image plot. default shows top 20 models. image rows correspond variables intercept, labels variables y-axis. x-axis corresponds possible models. sorted posterior probability best left worst right rank top x-axis. column represents one 16 models. variables excluded model shown black column, variables included colored, color related log posterior probability. color column proportional log posterior probabilities (lower x-axis) model. log posterior probabilities actually scaled 0 corresponds lowest probability model top 20, values axis correspond log Bayes factors comparing model lowest probability model top 20 models. Models color similar log Bayes factors allows us view models clustered together Bayes Factors differences “worth bare mention”. plot indicates police expenditure two years enter model together, indication high correlation two variables.","code":"image(crime.ZS, rotate = F)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"posterior-distributions-of-coefficients","dir":"Articles","previous_headings":"","what":"Posterior Distributions of Coefficients","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"examine marginal distributions two coefficients police expenditures, can extract coefficients estimates standard deviations BMA. optional argument, n.models coef use top n.models BMA may computationally efficient large problems. Plots posterior distributions averaging models obtained using plot method bas coefficient object. vertical bar represents posterior probability coefficient 0 bell shaped curve represents density plausible values models coefficient non-zero. scaled height density non-zero values probability coefficient non-zero. Omitting subset argument provides marginal distributions. obtain credible intervals coefficients, BAS includes confint method create Highest Posterior Density intervals summaries coef. third column posterior mean. uses Monte Carlo sampling draw mixture model coefficient models sampled based posterior probabilities. can also plot via using parm argument select coefficients plot (intercept parm=1). estimation selection, BAS supports additional arguments via estimator. default estimator=\"BMA\" uses models n.models. options include estimation highest probability model median probability model variables excluded distributions point masses zero selection.","code":"coef.ZS <- coef(crime.ZS) plot(coef.ZS, subset = c(5:6), ask = F) confint(coef.ZS) ## 2.5% 97.5% beta ## Intercept 6.668044e+00 6.783787269 6.72493620 ## M 0.000000e+00 2.192320648 1.14359433 ## So -5.751335e-02 0.307426845 0.03547522 ## Ed 6.476458e-01 3.227313256 1.85848834 ## Po1 0.000000e+00 1.462613496 0.60067372 ## Po2 -2.798292e-01 1.425802768 0.31841766 ## LF -5.305761e-01 0.989284449 0.05933737 ## M.F -2.390702e+00 1.728841837 -0.02702786 ## Pop -1.287358e-01 0.005151215 -0.02248283 ## NW -2.381958e-05 0.167769999 0.06668437 ## U1 -4.897097e-01 0.366114580 -0.02456854 ## U2 0.000000e+00 0.669002969 0.20702927 ## GDP -3.073416e-02 1.216292967 0.20625063 ## Ineq 6.537824e-01 2.105661202 1.39012647 ## Prob -4.100642e-01 0.000000000 -0.21536203 ## Time -5.249789e-01 0.052986444 -0.08433479 ## attr(,\"Probability\") ## [1] 0.95 ## attr(,\"class\") ## [1] \"confint.bas\" plot(confint(coef.ZS, parm = 2:16)) ## NULL plot(confint(coef(crime.ZS, estimator = \"HPM\"))) ## NULL plot(confint(coef(crime.ZS, estimator = \"MPM\")))"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"prediction","dir":"Articles","previous_headings":"","what":"Prediction","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS methods defined return fitted values, fitted, using observed design matrix predictions either observed data potentially new values, predict, lm. Plotting two sets fitted values, see perfect agreement. always case posterior mean regression mean function point \\(x\\) expected posterior predictive value \\(Y\\) \\(x\\). true estimators BMA, expected values model selection.","code":"muhat.BMA <- fitted(crime.ZS, estimator = \"BMA\") BMA <- predict(crime.ZS, estimator = \"BMA\") # predict has additional slots for fitted values under BMA, predictions under each model names(BMA) ## [1] \"fit\" \"Ybma\" \"Ypred\" \"postprobs\" \"se.fit\" ## [6] \"se.pred\" \"se.bma.fit\" \"se.bma.pred\" \"df\" \"best\" ## [11] \"bestmodel\" \"best.vars\" \"estimator\" par(mar = c(9, 9, 3, 3)) plot(muhat.BMA, BMA$fit, pch = 16, xlab = expression(hat(mu[i])), ylab = expression(hat(Y[i])) ) abline(0, 1)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"inference-with-model-selection","dir":"Articles","previous_headings":"Prediction","what":"Inference with model selection","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"addition using BMA, can use posterior means model selection. corresponds decision rule combines estimation selection. BAS currently implements following options highest probability model: little interpretable version names: median probability model: model predictors inclusion probability greater equal 0.5. coincides HPM predictors mutually orthogonal, case best predictive model squared error loss. Note can also extract best model attribute fitted values well. best predictive model: general, HPM MPM best predictive models, Bayesian decision theory perspective model closest BMA predictions squared error loss. Let’s see compare: Using se.fit = TRUE option predict can also calculate standard deviations prediction mean use input confint function prediction object. prediction new points, can supply new dataframe predict function lm.","code":"HPM <- predict(crime.ZS, estimator = \"HPM\") # show the indices of variables in the best model where 0 is the intercept HPM$bestmodel ## [1] 0 1 3 4 9 11 13 14 15 variable.names(HPM) ## [1] \"Intercept\" \"M\" \"Ed\" \"Po1\" \"NW\" \"U2\" ## [7] \"Ineq\" \"Prob\" \"Time\" MPM <- predict(crime.ZS, estimator = \"MPM\") variable.names(MPM) ## [1] \"Intercept\" \"M\" \"Ed\" \"Po1\" \"NW\" \"U2\" ## [7] \"Ineq\" \"Prob\" BPM <- predict(crime.ZS, estimator = \"BPM\") variable.names(BPM) ## [1] \"Intercept\" \"M\" \"So\" \"Ed\" \"Po1\" \"Po2\" ## [7] \"M.F\" \"NW\" \"U2\" \"Ineq\" \"Prob\" GGally::ggpairs(data.frame( HPM = as.vector(HPM$fit), # this used predict so we need to extract fitted values MPM = as.vector(MPM$fit), # this used fitted BPM = as.vector(BPM$fit), # this used fitted BMA = as.vector(BMA$fit) )) # this used predict BPM <- predict(crime.ZS, estimator = \"BPM\", se.fit = TRUE) crime.conf.fit <- confint(BPM, parm = \"mean\") crime.conf.pred <- confint(BPM, parm = \"pred\") plot(crime.conf.fit) ## NULL plot(crime.conf.pred) ## NULL new.pred <- predict(crime.ZS, newdata = UScrime, estimator = \"MPM\")"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"alternative-algorithms","dir":"Articles","previous_headings":"","what":"Alternative algorithms","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS several options sampling model space without enumeration. (current) default method=\"BAS\" samples models without replacement using estimates marginal inclusion probabilities using algorithm described Clyde et al (2011). initial sampling probabilities provided initprobs updated based sampled models, every update iterations. can efficient cases large fraction model space sampled, however, cases high correlation large number predictors, can lead biased estimates Clyde Ghosh (2012), case MCMC preferred. method=\"MCMC\" described better large \\(p\\). deterministic sampling scheme also available enumeration; faster enumeration default method=“BAS”.","code":"system.time( for (i in 1:10) { crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", method = \"BAS\", modelprior = uniform(), initprobs = \"eplogp\" ) } ) ## user system elapsed ## 1.398 0.000 1.399 system.time( for (i in 1:10) { crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", method = \"deterministic\", modelprior = uniform(), initprobs = \"eplogp\" ) } ) ## user system elapsed ## 1.325 0.003 1.328"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"beyond-enumeration","dir":"Articles","previous_headings":"","what":"Beyond Enumeration","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"Many problems large enumerate possible models. cases may use method=\"BAS\" sample without replacement method=\"MCMC\" option sample models using Markov Chain Monte Carlo sampling sample models based posterior probabilities. spaces number models greatly exceeds number models sample, MCMC option recommended provides estimates low bias compared sampling without replacement BAS (Clyde Ghosh 2011). run MCMC sampler number unique sampled models exceeds n.models \\(2^p\\) (\\(p < 19\\)) default MCMC.iterations exceeded, MCMC.iterations = n.models*2 default.","code":"crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), method = \"MCMC\" )"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"estimates-of-marginal-posterior-inclusion-probabilities-pip","dir":"Articles","previous_headings":"Beyond Enumeration","what":"Estimates of Marginal Posterior Inclusion Probabilities (pip)","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"MCMC sampling two estimates marginal inclusion probabilities: object$probne0 obtained using re-normalized posterior odds sampled models estimate probabilities estimates based Monte Carlo frequencies object$probs.MCMC. close agreement MCMC sampler run enough iterations. BAS includes diagnostic function compare two sets estimates posterior inclusion probabilities posterior model probabilities left hand plot pips, point represents one posterior inclusion probability 15 variables estimated two methods. two estimators pretty close agreement. plot model probabilities suggests use MCMC.iterations want accurate estimates posterior model probabilities.","code":"diagnostics(crime.ZS, type = \"pip\", pch = 16) diagnostics(crime.ZS, type = \"model\", pch = 16) crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), method = \"MCMC\", MCMC.iterations = 10^6 ) diagnostics(crime.ZS, type=\"model\", pch=16)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"outliers","dir":"Articles","previous_headings":"","what":"Outliers","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS can also used exploring mean shift variance inflation outliers adding indicator variables case outlier (mean given regression) . similar MC3.REG function BMA, although using g-prior mixture g-priors coefficients outlier means. Using Stackloss data, can add identify matrix original dataframe, column indicator ith variable outlier. call introduces using truncated prior distributions model space; case distribution number variables included Poisson distribution, mean 4 (truncation), truncation point 10, models 10 (one half cases rounded ) probability zero. avoids exploration models full rank. Looking summaries","code":"data(\"stackloss\") stackloss <- cbind(stackloss, diag(nrow(stackloss))) stack.bas <- bas.lm(stack.loss ~ ., data = stackloss, method = \"MCMC\", initprobs = \"marg-eplogp\", prior = \"ZS-null\", modelprior = tr.poisson(4, 10), MCMC.iterations = 200000 ) knitr::kable(as.data.frame(summary(stack.bas)))"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"factors-and-hierarchical-heredity","dir":"Articles","previous_headings":"","what":"Factors and Hierarchical Heredity","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS now includes constraints factors terms represent factor either included excluded together. illustrate, use data set ToothGrowth convert dose factor: fit model main effects two way interaction without constraints: image model space, see levels factor enter drop model independently interactions may included without main effects. may lead parsimonious models, however, hypotheses tested coefficients represent factor depend choice reference group. force levels factor enter leave together can use force.heredity = TRUE. force.heredity option also forces interactions included main effects also included, models several factors higher order interactions, heredity constraint implies lower order interactions must included adding higher order interactions. force.heredity set FALSE sampling methods MCMC+BAS deterministic. 20 predictors factors, recommend using MCMC enforce constraints. Alternatively, function, force.heredity.bas, post-process output drop models violate hierarchical heredity constraint: can used sampling methods.","code":"data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c(\"Low\", \"Medium\", \"High\") TG.bas <- bas.lm(len ~ supp*dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\" ) image(TG.bas) TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\", force.heredity = TRUE ) image(TG.bas) TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\", force.heredity = FALSE ) TG.herid.bas <- force.heredity.bas(TG.bas)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"weighted-regression","dir":"Articles","previous_headings":"","what":"Weighted Regression","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS can perform weighted regression supplying optional weight vector length response assumption variance response proportional 1/weights. g-prior incorporates weights prior covariance, \\[ \\sigma^2 g (X_\\gamma^T W X_\\gamma)^{-1} \\] \\(X_\\gamma\\) design matrix model \\(\\gamma\\) \\(W\\) \\(n \\times n\\) diagonal matrix weights diagonal. illustrate, use climate data, available url includes measurements changes temperature (deltaT) various latitudes well measure accuracy measured values sdev 8 different types proxy obtaining measurements. use explore weighted regression option group terms factors poly. illustration purposes, eliminate proxy == 6 one level interactions estimable, convert proxy factor. can fit weighted regression weights = 1/sdev^2 following code Examining image top models, see levels factor enter drop model together, well vectors design matrix represent term poly. Rerunning without constraint, allows one see factors levels different reference group.","code":"data(climate, package=\"BAS\") str(climate) ## 'data.frame': 63 obs. of 5 variables: ## $ deltaT : num -2.6 -2.6 -2.9 -2.4 -2.8 -1.2 -2.4 -2.6 -2.4 -2.5 ... ## $ sdev : num 0.7 0.8 0.9 0.7 0.7 0.3 1.3 1.3 1.3 0.5 ... ## $ proxy : int 1 1 1 1 1 1 1 1 1 1 ... ## $ T.M : int 1 1 1 1 1 1 1 1 1 1 ... ## $ latitude: num 2.5 2.2 0.5 0.3 0.2 -1.1 5.2 11.4 14.6 6.3 ... summary(climate) ## deltaT sdev proxy T.M ## Min. :-7.000 Min. :0.1500 Min. :1.000 Min. :0.0000 ## 1st Qu.:-3.900 1st Qu.:0.5000 1st Qu.:2.000 1st Qu.:1.0000 ## Median :-2.900 Median :0.7000 Median :3.000 Median :1.0000 ## Mean :-3.111 Mean :0.8579 Mean :3.333 Mean :0.8254 ## 3rd Qu.:-2.000 3rd Qu.:1.3000 3rd Qu.:5.000 3rd Qu.:1.0000 ## Max. : 0.200 Max. :2.5000 Max. :8.000 Max. :1.0000 ## latitude ## Min. :-22.500 ## 1st Qu.: -3.450 ## Median : 0.200 ## Mean : 2.187 ## 3rd Qu.: 9.700 ## Max. : 29.000 library(dplyr) climate <- filter(climate, proxy != 6) %>% mutate(proxy = factor(proxy)) climate.bas <- bas.lm(deltaT ~ proxy * poly(latitude, 2), data = climate, weights = 1 / sdev^2, prior = \"hyper-g-n\", alpha = 3.0, n.models = 2^20, force.heredity=TRUE, modelprior = uniform() ) image(climate.bas, rotate = F) # May take a while to enumerate all 2^20 models climate.bas <- bas.lm(deltaT ~ proxy * poly(latitude, 2), data = climate, weights = 1 / sdev^2, prior = \"hyper-g-n\", alpha = 3.0, n.models = 2^20, modelprior = uniform(), force.heredity = FALSE ) image(climate.bas)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS includes prior distributions coefficients models, well bas.glm fitting Generalized Linear Models. syntax bas.glm bas.lm yet , particularly priors coefficients represented, please see documentation features details updated another vignette added! issues feature requests please submit via package’s github page merliseclyde/BAS","code":""},{"path":"http://merliseclyde.github.io/BAS/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Merlise Clyde. Author, maintainer, copyright holder. ORCID=0000-0002-3595-1872 Michael Littman. Contributor. Joyee Ghosh. Contributor. Yingbo Li. Contributor. Betsy Bersson. Contributor. Don van de Bergh. Contributor. Quanli Wang. Contributor.","code":""},{"path":"http://merliseclyde.github.io/BAS/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Clyde, Merlise (2023) BAS: Bayesian Variable Selection Model Averaging using Bayesian Adaptive Sampling, R package version 1.7.1.9000","code":"@Manual{, title = {{BAS}: Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling}, author = {Merlise Clyde}, year = {2023}, note = {R package version 1.7.1.9000}, }"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"bas-bayesian-variable-selection-and-model-averaging-using-bayesian-adaptive-sampling","dir":"","previous_headings":"","what":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"BAS R package designed provide easy use package fast code implementing Bayesian Model Averaging Model Selection R using state art prior distributions linear generalized linear models. prior distributions BAS based Zellner’s g-prior mixtures g-priors linear generalized linear models. shown consistent asymptotically model selection inference number computational advantages. BAS implements three main algorithms sampling space potential models: deterministic algorithm efficient enumeration, adaptive sampling without replacement algorithm modest problems, MCMC algorithm utilizes swapping escape local modes standard Metropolis-Hastings proposals.","code":""},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"stable version can installed easily R console like package: hand, welcome everyone use recent version package quick-fixes, new features probably new bugs. ’s currently hosted GitHub. get latest development version GitHub, use devtools package CRAN enter R: can check current build status installing. Installing package source require compilation C FORTRAN code library makes use BLAS LAPACK efficient model fitting. See CRAN manuals installing packages source different operating systems.","code":"install.packages('BAS') devtools::install_github('merliseclyde/BAS')"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"begin load package: two main function BAS bas.lm bas.glm implementing Bayesian Model Averaging Variable Selection using Zellner’s g-prior mixtures g priors. functions syntax similar lm glm functions respectively. illustrate using BAS simple example famous Hald data set using Zellner-Siow Cauchy prior via BAS summary, plot coef, predict fitted functions like lm/glm functions. Images model space highlighting variable important may obtained via Run demo(\"BAS.hald\") demo(\"BAS.USCrime\") see package vignette examples options using MCMC model spaces enumerated.","code":"library(BAS) data(Hald) hald.ZS = bas.lm(Y ~ ., data=Hald, prior=\"ZS-null\", modelprior=uniform(), method=\"BAS\") image(hald.ZS)"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"generalized-linear-models","dir":"","previous_headings":"Usage","what":"Generalized Linear Models","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"BAS now includes support binomial binary regression, Poisson regression, Gamma regression using Laplace approximations obtain Bayes Factors used calculating posterior probabilities models sampling models. example using Pima diabetes data set hyper-g/n prior: Note, syntax specifying priors coefficients bas.glm uses function arguments specify hyper-parameters, rather text string specify prior name separate argument hyper-parameters. bas.lm moving format sometime future.","code":"library(MASS) data(Pima.tr) Pima.hgn = bas.glm(type ~ ., data=Pima.tr, method=\"BAS\", family=binomial(), betaprior=hyper.g.n(), modelprior=uniform())"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"feature-requests-and-issues","dir":"","previous_headings":"","what":"Feature Requests and Issues","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"Feel free report issues request features added via github issues page. current documentation vignettes see BAS website","code":""},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"support","dir":"","previous_headings":"Feature Requests and Issues","what":"Support","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"material based upon work supported National Science Foundation Grant DMS-1106891. opinions, findings, conclusions recommendations expressed material author(s) necessarily reflect views National Science Foundation.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":null,"dir":"Reference","previous_headings":"","what":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"Implementation Bayesian Model Averaging linear models using stochastic deterministic sampling without replacement posterior distributions. Prior distributions coefficients form Zellner's g-prior mixtures g-priors. Options include Zellner-Siow Cauchy Priors, Liang et al hyper-g priors, Local Global Empirical Bayes estimates g, default model selection criteria AIC BIC. Sampling probabilities may updated based sampled models.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049 Clyde, M. George, E. . (2004) Model uncertainty. Statist. Sci., 19, 81-94. doi:10.1214/088342304000000035 Clyde, M. (1999) Bayesian Model Averaging Model Search Strategies (discussion). Bayesian Statistics 6. J.M. Bernardo, .P. Dawid, J.O. Berger, .F.M. Smith eds. Oxford University Press, pages 157-185. Li, Y. Clyde, M. (2018) Mixtures g-priors Generalized Linear Models. Journal American Statistical Association, 113:524, 1828-1845 doi:10.1080/01621459.2018.1469992 Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2008) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"Merlise Clyde, Maintainer: Merlise Clyde ","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y ~ ., data=Hald, alpha=13, prior=\"g-prior\") # more complete demos demo(BAS.hald) #> #> #> \tdemo(BAS.hald) #> \t---- ~~~~~~~~ #> #> > data(Hald) #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"g-prior\", alpha=13, #> + modelprior=beta.binomial(1,1), #> + initprobs=\"eplogp\") #> #> > hald.gprior #> #> Call: #> bas.lm(formula = Y ~ ., data = Hald, prior = \"g-prior\", alpha = 13, #> modelprior = beta.binomial(1, 1), initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept X1 X2 X3 X4 #> 1.0000 0.9019 0.6896 0.4653 0.6329 #> #> > plot(hald.gprior) #> #> > summary(hald.gprior) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5 #> Intercept 1.0000000 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X1 0.9019245 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X2 0.6895830 1.00000 0.0000000 1.00000000 1.0000000 1.0000000 #> X3 0.4652762 0.00000 0.0000000 1.00000000 0.0000000 1.0000000 #> X4 0.6329266 0.00000 1.0000000 1.00000000 1.0000000 0.0000000 #> BF NA 1.00000 0.6923944 0.08991408 0.3355714 0.3344926 #> PostProbs NA 0.24320 0.1684000 0.13120000 0.1224000 0.1220000 #> R2 NA 0.97870 0.9725000 0.98240000 0.9823000 0.9823000 #> dim NA 3.00000 3.0000000 5.00000000 4.0000000 4.0000000 #> logmarg NA 11.72735 11.3597547 9.31845348 10.6354335 10.6322138 #> #> > image(hald.gprior, subset=-1, vlas=0) #> #> > hald.coef = coefficients(hald.gprior) #> #> > hald.coef #> #> Marginal Posterior Summaries of Coefficients: #> #> Using BMA #> #> Based on the top 16 models #> post mean post SD post p(B != 0) #> Intercept 95.4231 0.7107 1.0000 #> X1 1.2150 0.5190 0.9019 #> X2 0.2756 0.4832 0.6896 #> X3 -0.1271 0.4976 0.4653 #> X4 -0.3269 0.4717 0.6329 #> #> > plot(hald.coef) #> #> > predict(hald.gprior, top=5, se.fit=TRUE) #> $fit #> [1] 79.74246 74.50010 105.29268 89.88693 95.57177 104.56409 103.40145 #> [8] 77.13668 91.99731 114.21325 82.78446 111.00723 110.40160 #> #> $Ybma #> [,1] #> [1,] 79.74246 #> [2,] 74.50010 #> [3,] 105.29268 #> [4,] 89.88693 #> [5,] 95.57177 #> [6,] 104.56409 #> [7,] 103.40145 #> [8,] 77.13668 #> [9,] 91.99731 #> [10,] 114.21325 #> [11,] 82.78446 #> [12,] 111.00723 #> [13,] 110.40160 #> #> $Ypred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 81.17036 74.83464 105.0725 89.69881 97.15898 104.4575 103.3893 76.06454 #> [2,] 77.70296 74.24113 105.8554 90.46267 93.09565 104.7152 103.1399 78.80193 #> [3,] 79.70437 74.40553 105.2175 89.76253 95.63309 104.5709 103.5254 77.08557 #> [4,] 79.65151 74.47846 105.4218 89.83174 95.62799 104.5962 103.5068 77.00839 #> [5,] 79.84321 74.31409 104.9063 89.65651 95.70301 104.5285 103.5476 77.15919 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 91.57174 113.1722 81.59906 111.2219 111.0884 #> [2,] 92.68123 115.8058 84.50293 110.4162 109.0791 #> [3,] 91.98604 114.1759 82.78145 111.1196 110.5321 #> [4,] 92.07571 114.1088 82.68233 111.0429 110.4674 #> [5,] 91.83513 114.2353 82.88128 111.2384 110.6515 #> #> $postprobs #> [1] 0.3089304 0.2139017 0.1666632 0.1555023 0.1550024 #> #> $se.fit #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 2.220164 2.265862 1.546911 2.181188 1.310135 1.523300 2.655096 2.176560 #> [2,] 2.716798 2.389723 1.633637 2.179215 1.321062 1.581232 2.721957 2.078129 #> [3,] 3.203405 2.501485 3.279273 2.357164 2.589756 1.549136 2.623290 2.765255 #> [4,] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [5,] 2.932580 2.353352 1.538009 2.141694 2.507848 1.498758 2.616407 2.680289 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 1.883610 3.264656 1.908238 1.970691 2.054234 #> [2,] 2.013244 3.298134 1.933819 1.964374 1.924460 #> [3,] 2.353516 3.609909 2.821295 2.227363 2.390135 #> [4,] 1.990817 3.485929 2.456636 1.951456 2.212238 #> [5,] 1.889302 3.569065 2.665166 1.934336 2.117189 #> #> $se.pred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 5.057182 5.077410 4.799885 5.040193 4.728892 4.792328 5.262651 5.038191 #> [2,] 5.415848 5.259391 4.961773 5.167146 4.867815 4.944766 5.418438 5.125333 #> [3,] 5.489152 5.111401 5.533771 5.042342 5.155175 4.718984 5.172102 5.245534 #> [4,] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [5,] 5.337427 5.042456 4.717369 4.947217 5.116386 4.704719 5.170463 5.203081 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 4.918734 5.594992 4.928218 4.952735 4.986566 #> [2,] 5.099370 5.729582 5.068538 5.080274 5.064974 #> [3,] 5.040638 5.735890 5.275291 4.982985 5.057839 #> [4,] 4.882702 5.659428 5.090431 4.866787 4.977090 #> [5,] 4.843301 5.711946 5.195307 4.861045 4.936658 #> #> $se.bma.fit #> [1] 2.688224 2.095245 1.769625 1.970919 2.197285 1.363804 2.356457 2.302631 #> [9] 1.822084 3.141443 2.237663 1.801849 1.991374 #> #> $se.bma.pred #> [1] 4.838655 4.536087 4.395180 4.480017 4.584113 4.248058 4.662502 4.635531 #> [9] 4.416563 5.104380 4.603604 4.408253 4.489054 #> #> $df #> [1] 12 12 12 12 12 #> #> $best #> [1] 8 3 11 10 12 #> #> $bestmodel #> $bestmodel[[1]] #> [1] 0 1 2 #> #> $bestmodel[[2]] #> [1] 0 1 4 #> #> $bestmodel[[3]] #> [1] 0 1 2 3 4 #> #> $bestmodel[[4]] #> [1] 0 1 2 4 #> #> $bestmodel[[5]] #> [1] 0 1 2 3 #> #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X3\" \"X4\" #> #> $estimator #> [1] \"BMA\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"BMA\", se.fit=TRUE, top=5), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 73.02758 85.91377 79.74246 #> [2,] 69.21028 79.60766 74.50010 #> [3,] 100.88762 109.54189 105.29268 #> [4,] 84.88418 94.51978 89.88693 #> [5,] 90.13514 100.07147 95.57177 #> [6,] 101.20724 107.84868 104.56409 #> [7,] 97.92546 109.40844 103.40145 #> [8,] 71.70785 82.78229 77.13668 #> [9,] 87.25943 96.20461 91.99731 #> [10,] 106.01639 121.41578 114.21325 #> [11,] 77.45482 88.11221 82.78446 #> [12,] 106.64729 115.23668 111.00723 #> [13,] 105.55094 115.11600 110.40160 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > predict(hald.gprior, estimator=\"MPM\", se.fit=TRUE) #> $fit #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ybma #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ypred #> NULL #> #> $postprobs #> NULL #> #> $se.fit #> [1] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [9] 1.990817 3.485929 2.456636 1.951456 2.212238 #> #> $se.pred #> [1] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [9] 4.882702 5.659428 5.090431 4.866787 4.977090 #> #> $se.bma.fit #> NULL #> #> $se.bma.pred #> NULL #> #> $df #> [1] 12 #> #> $best #> NULL #> #> $bestmodel #> [1] 0 1 2 4 #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\" #> #> $estimator #> [1] \"MPM\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"MPM\", se.fit=TRUE), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 72.85939 86.44363 79.65151 #> [2,] 69.50215 79.45478 74.47846 #> [3,] 101.93102 108.91264 105.42183 #> [4,] 85.14928 94.51420 89.83174 #> [5,] 89.98634 101.26964 95.62799 #> [6,] 101.30948 107.88283 104.59616 #> [7,] 97.81813 109.19556 103.50684 #> [8,] 71.46153 82.55525 77.00839 #> [9,] 87.73810 96.41333 92.07571 #> [10,] 106.51357 121.70394 114.10876 #> [11,] 77.32978 88.03488 82.68233 #> [12,] 106.79101 115.29472 111.04286 #> [13,] 105.64736 115.28746 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > fitted(hald.gprior, estimator=\"HPM\") #> [1] 81.17036 74.83464 105.07248 89.69881 97.15898 104.45753 103.38927 #> [8] 76.06454 91.57174 113.17222 81.59906 111.22195 111.08841 #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, #> + prior=\"g-prior\", alpha=13, modelprior=uniform(), #> + initprobs=\"eplogp\") #> #> > hald.EB = update(hald.gprior, newprior=\"EB-global\") #> #> > hald.bic = update(hald.gprior,newprior=\"BIC\") #> #> > hald.zs = update(hald.bic, newprior=\"ZS-null\") if (FALSE) { demo(BAS.USCrime) }"},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian Outlier Detection — Bayes.outlier","title":"Bayesian Outlier Detection — Bayes.outlier","text":"Calculate posterior probability absolute value error exceeds k standard deviations P(|epsilon_j| > k sigma | data) model Y = X B + epsilon, epsilon ~ N(0, sigma^2 ) based paper Chaloner & Brant Biometrika (1988). Either k prior probability outliers must provided. uses reference prior p(B, sigma) = 1; priors model averaging come.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian Outlier Detection — Bayes.outlier","text":"","code":"Bayes.outlier(lmobj, k, prior.prob)"},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian Outlier Detection — Bayes.outlier","text":"lmobj object class `lm` k number standard deviations used calculating probability individual case outlier, P(|error| > k sigma | data) prior.prob prior probability outliers sample size n","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian Outlier Detection — Bayes.outlier","text":"Returns list three items: e residuals hat leverage values prob.outlier posterior probabilities point outlier prior.prob prior probability point outlier","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian Outlier Detection — Bayes.outlier","text":"Chaloner & Brant (1988) Bayesian Approach Outlier Detection Residual Analysis Biometrika (1988) 75, 651-659","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian Outlier Detection — Bayes.outlier","text":"","code":"data(\"stackloss\") stack.lm <- lm(stack.loss ~ ., data = stackloss) stack.outliers <- Bayes.outlier(stack.lm, k = 3) plot(stack.outliers$prob.outlier, type = \"h\", ylab = \"Posterior Probability\") # adjust for sample size for calculating prior prob that a # a case is an outlier stack.outliers <- Bayes.outlier(stack.lm, prior.prob = 0.95) # cases where posterior probability exceeds prior probability which(stack.outliers$prob.outlier > stack.outliers$prior.prob) #> [1] 4 21"},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":null,"dir":"Reference","previous_headings":"","what":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"Independent Bernoulli prior models constraints model hierarchy induced interactions","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"","code":"Bernoulli.heredity(pi = 0.5, parents)"},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"pi Bernoulli probability term included parents matrix terms parents indicators terms parents term","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"implemented yet use bas.lm bas.glm","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":null,"dir":"Reference","previous_headings":"","what":"Independent Bernoulli Prior Distribution for Models — Bernoulli","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"Creates object representing prior distribution models BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"","code":"Bernoulli(probs = 0.5)"},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"probs scalar vector prior inclusion probabilities. scalar, values replicated variables ans 1 added intercept. BAS checks see length equal dimension parameter vector full model adds 1 include intercept.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"independent Bernoulli prior distribution commonly used prior BMA, Uniform distribution special case probs=.5. indicator variables independent Bernoulli distributions common probability probs, distribution model size binomial(p, probs) distribution.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"","code":"Bernoulli(.9) #> $family #> [1] \"Bernoulli\" #> #> $hyper.parameters #> [1] 0.9 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"Creates object representing CCH mixture g-priors coefficients BAS .","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"","code":"CCH(alpha, beta, s = 0)"},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"alpha scalar > 0, recommended alpha=.5 (betaprime) 1 CCH. hyper.g(alpha) equivalent CCH(alpha -2, 2, 0). Liang et al recommended values range 2 < alpha_h <= 4 beta scalar > 0. value updated data; beta function n consistency null model. hyper-g corresponds b = 2 s scalar, recommended s=0","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"","code":"CCH(alpha = .5, beta = 100, s = 0) #> $family #> [1] \"CCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 0.5 #> #> $hyper.parameters$beta #> [1] 100 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the global Empirical Bayes estimates for BMA — EB.global","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Finds global Empirical Bayes estimates g Zellner's g-prior model probabilities","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"","code":"EB.global(object, tol = 0.1, g.0 = NULL, max.iterations = 100)"},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"object 'bas' object created bas tol tolerance estimating g g.0 initial value g max.iterations Maximum number iterations EM algorithm","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"object class 'bas' using Zellner's g prior estimate g based models","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Uses EM algorithm Liang et al estimate type II MLE g Zellner's g prior","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2008) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"","code":"library(MASS) data(UScrime) UScrime[,-2] = log(UScrime[,-2]) # EB local uses a different g within each model crime.EBL = bas.lm(y ~ ., data=UScrime, n.models=2^15, prior=\"EB-local\", initprobs= \"eplogp\") # use a common (global) estimate of g crime.EBG = EB.global(crime.EBL)"},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":null,"dir":"Reference","previous_headings":"","what":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"Creates object representing EB prior BAS GLM.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"","code":"EB.local()"},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"","code":"EB.local() #> $family #> [1] \"EB-local\" #> #> $class #> [1] \"EB\" #> #> $hyper.parameters #> $hyper.parameters$local #> [1] TRUE #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/Hald.html","id":null,"dir":"Reference","previous_headings":"","what":"Hald Data — Hald","title":"Hald Data — Hald","text":"Hald data used many books papers illustrate variable selection. data relate engineering application concerned effect composition cement heat evolved hardening. response variable Y heat evolved cement mix. four explanatory variables ingredients mix, X1: tricalcium aluminate, X2: tricalcium silicate, X3: tetracalcium alumino ferrite, X4: dicalcium silicate. important feature data variables X1 X3 highly correlated, well variables X2 X4. Thus expect subset (X1,X2,X3,X4) includes one variable highly correlated pair subset also includes member.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Hald.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Hald Data — Hald","text":"hald dataframe 13 observations 5 variables (columns), Y: Heat evolved per gram cement (calories) X1: Amount tricalcium aluminate X2: Amount tricalcium silicate X3: Amount tetracalcium alumino ferrite X4: Amount dicalcium silicate","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Hald.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Hald Data — Hald","text":"Wood, H., Steinour, H.H., Starke, H.R. (1932). \"Effect Composition Portland cement Heat Evolved Hardening\", Industrial Engineering Chemistry, 24, 1207-1214.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"Creates object representing prior distribution coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"","code":"IC.prior(penalty)"},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"penalty scalar used penalized loglikelihood form penalty*dimension","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"log marginal likelihood approximated -2*(deviance + penalty*dimension). Allows alternatives AIC (penalty = 2) BIC (penalty = log(n)). BIC, argument may missing, case sample size determined call `bas.glm` used determine penalty.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"","code":"IC.prior(2) #> $family #> [1] \"IC\" #> #> $class #> [1] \"IC\" #> #> $hyper #> [1] 2 #> #> $hyper.parameters #> $hyper.parameters$penalty #> [1] 2 #> #> #> attr(,\"class\") #> [1] \"prior\" aic.prior() #> $family #> [1] \"AIC\" #> #> $class #> [1] \"IC\" #> #> $hyper.parameters #> $hyper.parameters$penalty #> [1] 2 #> #> #> $hyper #> [1] 2 #> #> attr(,\"class\") #> [1] \"prior\" bic.prior(100) #> $family #> [1] \"BIC\" #> #> $class #> [1] \"IC\" #> #> $hyper.parameters #> $hyper.parameters$penalty #> [1] 4.60517 #> #> $hyper.parameters$n #> [1] 100 #> #> #> $hyper #> [1] 4.60517 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":null,"dir":"Reference","previous_headings":"","what":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"Creates object representing Jeffrey's Prior g mixture g-priors coefficients BAS. equivalent limiting version CCH(, 2, 0) = 0 hyper-g(= 2) improper prior. $g$ appear Null Model, Bayes Factors model probabilities well-defined arbitrary normalizing constants, reason null model excluded constants used across models.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"","code":"Jeffreys()"},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"","code":"Jeffreys() #> $family #> [1] \"Jeffreys\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 0 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"Creates object representing Truncated Gamma (tCCH) mixture g-priors coefficients BAS, u = 1/(1+g) Gamma distribution supported (0, 1].","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"","code":"TG(alpha = 2)"},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"alpha scalar > 0, recommended alpha=.5 (betaprime) 1. alpha=2 corresponds uniform prior shrinkage factor.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"","code":"TG(alpha = 2) #> $family #> [1] \"TG\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 2 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\" CCH(alpha = 2, beta = 100, s = 0) #> $family #> [1] \"CCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 2 #> #> $hyper.parameters$beta #> [1] 100 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"Sample without replacement posterior distribution GLMs","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"","code":"bas.glm( formula, family = binomial(link = \"logit\"), data, weights, subset, contrasts = NULL, offset, na.action = \"na.omit\", n.models = NULL, betaprior = CCH(alpha = 0.5, beta = as.numeric(nrow(data)), s = 0), modelprior = beta.binomial(1, 1), initprobs = \"Uniform\", include.always = ~1, method = \"MCMC\", update = NULL, bestmodel = NULL, prob.rw = 0.5, MCMC.iterations = NULL, thin = 1, control = glm.control(), laplace = FALSE, renormalize = FALSE, force.heredity = FALSE, bigmem = FALSE )"},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"formula generalized linear model formula full model predictors, Y ~ X. code assumes intercept included model. family description error distribution link function exponential family; currently `binomial()` logistic link `poisson()` `Gamma()`log link available. data data frame weights optional vector weights used fitting process. May missing case weights 1. subset subset data used fitting contrasts optional list. See contrasts.arg `model.matrix.default()`. offset priori known component included linear predictor; default 0. na.action function indicates happen data contain NAs. default \"na.omit\". n.models number unique models keep. NULL, BAS attempt enumerate unless p > 35 method=\"MCMC\". methods using MCMC algorithms sample replacement, sampling stop number iterations exceeds min 'n.models' 'MCMC.iterations' exit 'n.models' updated reflect unique number models sampled. betaprior Prior coefficients model coefficients (except intercept). Options include g.prior, CCH, robust, intrinsic, beta.prime, EB.local, AIC, BIC. modelprior Family prior distribution models. Choices include uniform, Bernoulli, beta.binomial, truncated Beta-Binomial, tr.beta.binomial, truncated power family tr.power.prior. initprobs vector length p initial inclusion probabilities used sampling without replacement (intercept included probability one need added ) character string giving method used construct sampling probabilities \"Uniform\" predictor variable equally likely sampled (equivalent random sampling without replacement). \"eplogp\", use eplogprob function approximate Bayes factor using p-values find initial marginal inclusion probabilities sample without replacement using inclusion probabilities, may updated using estimates marginal inclusion probabilities. \"eplogp\" assumes MLEs full model exist; problems case 'p' large, initial sampling probabilities may obtained using eplogprob.marg fits model predictor separately. run Markov Chain provide initial estimates marginal inclusion probabilities, use method=\"MCMC+BAS\" . initprobs used sampling method=\"MCMC\", determines order variables lookup table affects memory allocation large problems enumeration feasible. variables always included set corresponding initprobs 1, override `modelprior` use `include.always` force variables always included model. include.always formula terms always included model probability one. default `~ 1` meaning intercept always included. also override values `initprobs` setting 1. method character variable indicating sampling method use: method=\"BAS\" uses Bayesian Adaptive Sampling (without replacement) using sampling probabilities given initprobs updates using marginal inclusion probabilities direct search/sample; method=\"MCMC\" combines random walk Metropolis Hastings (MC3 Raftery et al 1997) random swap variable included variable currently excluded (see Clyde, Ghosh, Littman (2010) details); method=\"MCMC+BAS\" runs initial MCMC calculate marginal inclusion probabilities samples without replacement BAS; method = \"deterministic\" runs deterministic sampling using initial probabilities (updating); recommended fast enumeration model independence good approximation joint posterior distribution model indicators. BAS, sampling probabilities can updated models sampled. (see 'update' ). recommend \"MCMC+BAS\" \"MCMC\" high dimensional problems. update number iterations potential updates sampling probabilities \"BAS\" method. NULL update, otherwise algorithm update using marginal inclusion probabilities change sampling takes place. large model spaces, updating recommended. model space enumerated, leave default. bestmodel optional binary vector representing model initialize sampling. NULL sampling starts null model prob.rw MCMC methods, probability using random-walk proposal; otherwise use random \"flip\" move propose new model. MCMC.iterations Number models sample using MCMC options; greater 'n.models'. default 10*n.models. thin oFr \"MCMC\", thin MCMC chain every \"thin\" iterations; default thinning. large p, thinning can used significantly reduce memory requirements models associated summaries saved every thin iterations. thin = p, model associated output recorded every p iterations,similar Gibbs sampler SSVS. control list parameters control convergence fitting process. See documentation glm.control() laplace logical variable whether use Laplace approximate integration respect g obtain marginal likelihood. FALSE Cephes library used may inaccurate large n large values Wald Chisquared statistic. renormalize logical variable whether posterior probabilities based renormalizing marginal likelihoods times prior probabilities use Monte Carlo frequencies. Applies MCMC sampling. force.heredity Logical variable force levels factor included together include higher order interactions lower order terms included. Currently supported `method='MCMC'` `method='BAS'` (experimental) non-Solaris platforms. Default FALSE. bigmem Logical variable indicate access large amounts memory (physical virtual) enumeration large model spaces, e.g. > 2^25.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"bas.glm returns object class basglm object class basglm list containing least following components: postprobs posterior probabilities models selected priorprobs prior probabilities models selected logmarg values log marginal likelihood models n.vars total number independent variables full model, including intercept size number independent variables models, includes intercept list lists one list per model variables included model probne0 posterior probability variable non-zero mle list lists one list per model giving GLM estimate (nonzero) coefficient model. mle.se list lists one list per model giving GLM standard error coefficient model deviance GLM deviance model modelprior prior distribution models created BMA object Q Q statistic model used marginal likelihood approximation Y response X matrix predictors family family object original call betaprior family object prior coefficients, including hyperparameters modelprior family object prior models include.always indices variables forced model","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"BAS provides several search algorithms find high probability models use Bayesian Model Averaging Bayesian model selection. p less 20-25, BAS can enumerate models depending memory availability, larger p, BAS samples without replacement using random deterministic sampling. Bayesian Adaptive Sampling algorithm Clyde, Ghosh, Littman (2010) samples models without replacement using initial sampling probabilities, optionally update sampling probabilities every \"update\" models using estimated marginal inclusion probabilities. BAS uses different methods obtain initprobs, may impact results high-dimensional problems. deterministic sampler provides list top models order approximation independence using provided initprobs. may effective running algorithms identify high probability models works well correlations variables small modest. priors coefficients mixtures g-priors provide approximations power prior.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"Li, Y. Clyde, M. (2018) Mixtures g-priors Generalized Linear Models. Journal American Statistical Association. 113:1828-1845 doi:10.1080/01621459.2018.1469992 Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049 Raftery, .E, Madigan, D. Hoeting, J.. (1997) Bayesian Model Averaging Linear Regression Models. Journal American Statistical Association.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"Merlise Clyde (clyde@duke.edu), Quanli Wang Yingbo Li","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"","code":"library(MASS) data(Pima.tr) # enumeration with default method=\"BAS\" pima.cch = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"BAS\", betaprior=CCH(a=1, b=532/2, s=0), family=binomial(), modelprior=beta.binomial(1,1)) summary(pima.cch) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.0000 1.0000000 1.0000000 1.0000000 #> npreg 0.5684414 0.0000 1.0000000 1.0000000 0.0000000 #> glu 0.9999949 1.0000 1.0000000 1.0000000 1.0000000 #> bp 0.2198720 0.0000 0.0000000 0.0000000 0.0000000 #> skin 0.2653924 0.0000 0.0000000 0.0000000 0.0000000 #> bmi 0.7425039 1.0000 1.0000000 1.0000000 0.0000000 #> ped 0.8860972 1.0000 1.0000000 1.0000000 1.0000000 #> age 0.7459954 1.0000 1.0000000 0.0000000 1.0000000 #> BF NA 1.0000 0.4406494 0.6209086 0.4628319 #> PostProbs NA 0.1596 0.1172000 0.0991000 0.0739000 #> R2 NA 0.2938 0.3040000 0.2901000 0.2703000 #> dim NA 5.0000 6.0000000 5.0000000 4.0000000 #> logmarg NA -101.7878 -102.6072611 -102.2643268 -102.5581467 #> model 5 #> Intercept 1.000000e+00 #> npreg 1.000000e+00 #> glu 1.000000e+00 #> bp 1.000000e+00 #> skin 1.000000e+00 #> bmi 1.000000e+00 #> ped 1.000000e+00 #> age 1.000000e+00 #> BF 8.659168e-03 #> PostProbs 4.840000e-02 #> R2 3.043000e-01 #> dim 8.000000e+00 #> logmarg -1.065369e+02 image(pima.cch) # Note MCMC.iterations are set to 2500 for illustration purposes due to time # limitations for running examples on CRAN servers. # Please check convergence diagnostics and run longer in practice pima.robust = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"MCMC\", MCMC.iterations=2500, betaprior=robust(), family=binomial(), modelprior=beta.binomial(1,1)) pima.BIC = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"BAS+MCMC\", MCMC.iterations=2500, betaprior=bic.prior(), family=binomial(), modelprior=uniform()) #> Warning: no non-missing arguments to min; returning Inf # Poisson example if(requireNamespace(\"glmbb\", quietly=TRUE)) { data(crabs, package='glmbb') #short run for illustration crabs.bas = bas.glm(satell ~ color*spine*width + weight, data=crabs, family=poisson(), betaprior=EB.local(), modelprior=uniform(), method='MCMC', n.models=2^10, MCMC.iterations=2500, prob.rw=.95) # Gamma example if(requireNamespace(\"faraway\", quietly=TRUE)) { data(wafer, package='faraway') wafer_bas = bas.glm(resist~ ., data=wafer, include.always = ~ ., betaprior = bic.prior() , family = Gamma(link = \"log\")) } }"},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"Sample without replacement posterior distribution models","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"","code":"bas.lm( formula, data, subset, weights, contrasts = NULL, na.action = \"na.omit\", n.models = NULL, prior = \"ZS-null\", alpha = NULL, modelprior = beta.binomial(1, 1), initprobs = \"Uniform\", include.always = ~1, method = \"BAS\", update = NULL, bestmodel = NULL, prob.local = 0, prob.rw = 0.5, MCMC.iterations = NULL, lambda = NULL, delta = 0.025, thin = 1, renormalize = FALSE, force.heredity = FALSE, pivot = TRUE, tol = 1e-07, bigmem = FALSE )"},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"formula linear model formula full model predictors, Y ~ X. code assumes intercept included model X's centered. data data frame. Factors converted numerical vectors based using `model.matrix`. subset optional vector specifying subset observations used fitting process. weights optional vector weights used fitting process. NULL numeric vector. non-NULL, Bayes estimates obtained assuming \\(Y_i \\sim N(x^T_i\\beta, \\sigma^2/w_i)\\). contrasts optional list. See contrasts.arg `model.matrix.default()`. na.action function indicates happen data contain NAs. default \"na.omit\". n.models number models sample either without replacement (method=\"BAS\" \"MCMC+BAS\") replacement (method=\"MCMC\"). NULL, BAS method=\"BAS\" try enumerate 2^p models. enumeration possible (memory time) value supplied controls number sampled models using 'n.models'. method=\"MCMC\", sampling stop min(n.models, MCMC.iterations) occurs MCMC.iterations significantly larger n.models order explore model space. exit method= \"MCMC\" number unique models sampled counts stored output \"freq\". prior prior distribution regression coefficients. Choices include \"AIC\" \"BIC\" \"g-prior\", Zellner's g prior `g` specified using argument `alpha` \"JZS\" Jeffreys-Zellner-Siow prior uses Jeffreys prior sigma Zellner-Siow Cauchy prior coefficients. optional parameter `alpha` can used control squared scale prior, default alpha=1. Setting `alpha` equal rscale^2 BayesFactor package Morey. uses QUADMATH numerical integration g. \"ZS-null\", Laplace approximation 'JZS' prior integration g. alpha = 1 . recommend using 'JZS' accuracy compatibility BayesFactor package, although slower. \"ZS-full\" (deprecated) \"hyper-g\", mixture g-priors prior g/(1+g) Beta(1, alpha/2) Liang et al (2008). uses Cephes library evaluation marginal likelihoods may numerically unstable large n R2 close 1. Default choice alpha 3. \"hyper-g-laplace\", using Laplace approximation integrate prior g. \"hyper-g-n\", mixture g-priors u = g/n u ~ Beta(1, alpha/2) provide consistency null model true. \"EB-local\", use MLE g marginal likelihood within model \"EB-global\" uses EM algorithm find common global estimate g, averaged models. possible enumerate models, EM algorithm uses models sampled EB-local. alpha optional hyperparameter g-prior hyper g-prior. Zellner's g-prior, alpha = g, Liang et al hyper-g hyper-g-n method, recommended choice alpha (2 < alpha < 4), alpha = 3 default. Zellner-Siow prior alpha = 1 default, can used modify rate parameter gamma prior g, $$1/g \\sim G(1/2, n*\\alpha/2)$$ $$\\beta \\sim C(0, \\sigma^2 \\alpha (X'X/n)^{-1})$$. modelprior function family prior distribution models. Choices include uniform Bernoulli beta.binomial, tr.beta.binomial, (truncation) tr.poisson (truncated Poisson), tr.power.prior (truncated power family), default beta.binomial(1,1). Truncated versions useful p > n. initprobs Vector length p character string specifying method used create vector. used order variables sampling methods potentially efficient storage sampling provides initial inclusion probabilities used sampling without replacement method=\"BAS\". Options character string giving method : \"Uniform\" \"uniform\" predictor variable equally likely sampled (equivalent random sampling without replacement); \"eplogp\" uses eplogprob function approximate Bayes factor p-values full model find initial marginal inclusion probabilities; \"marg-eplogp\" useseplogprob.marg function approximate Bayes factor p-values full model simple linear regression. run Markov Chain provide initial estimates marginal inclusion probabilities \"BAS\", use method=\"MCMC+BAS\" . initprobs used sampling method=\"MCMC\", determines order variables lookup table affects memory allocation large problems enumeration feasible. variables always included set corresponding initprobs 1, override `modelprior` use `include.always` force variables always included model. include.always formula terms always included model probability one. default `~ 1` meaning intercept always included. also override values `initprobs` setting 1. method character variable indicating sampling method use: \"deterministic\" uses \"top k\" algorithm described Ghosh Clyde (2011) sample models order approximate probability conditional independence using \"initprobs\". efficient algorithm enumeration. \"BAS\" uses Bayesian Adaptive Sampling (without replacement) using sampling probabilities given initprobs model conditional independence. can updated based estimates marginal inclusion probabilities. \"MCMC\" samples replacement via MCMC algorithm combines birth/death random walk Hoeting et al (1997) MC3 random swap move interchange variable model one currently excluded described Clyde, Ghosh Littman (2010). \"MCMC+BAS\" runs initial MCMC calculate marginal inclusion probabilities samples without replacement BAS. BAS, sampling probabilities can updated models sampled. (see update ). update number iterations potential updates sampling probabilities method \"BAS\" \"MCMC+BAS\". NULL update, otherwise algorithm update using marginal inclusion probabilities change sampling takes place. large model spaces, updating recommended. model space enumerated, leave default. bestmodel optional binary vector representing model initialize sampling. NULL sampling starts null model prob.local future option allow sampling models \"near\" median probability model. used time. prob.rw MCMC methods, probability using random-walk Metropolis proposal; otherwise use random \"flip\" move propose swap variable excluded variable model. MCMC.iterations Number iterations MCMC sampler; default n.models*10 set user. lambda Parameter AMCMC algorithm (deprecated). delta truncation parameter prevent sampling probabilities degenerate 0 1 prior enumeration sampling without replacement. thin \"MCMC\" \"MCMC+BAS\", thin MCMC chain every \"thin\" iterations; default thinning. large p, thinning can used significantly reduce memory requirements models associated summaries saved every thin iterations. thin = p, model associated output recorded every p iterations, similar Gibbs sampler SSVS. renormalize MCMC sampling, posterior probabilities based renormalizing marginal likelihoods times prior probabilities (TRUE) frequencies MCMC. latter unbiased long runs, former may less variability. May compared via diagnostic plot function diagnostics. See details Clyde Ghosh (2012). force.heredity Logical variable force levels factor included together include higher order interactions lower order terms included. Currently supported `method='MCMC'` experimentally `method='BAS'` non-Solaris platforms. Default FALSE. pivot Logical variable allow pivoting columns obtaining OLS estimates model models full rank can fit. Defaults TRUE. Currently coefficients estimable set zero. Use caution interpreting BMA estimates parameters. tol 1e-7 bigmem Logical variable indicate access large amounts memory (physical virtual) enumeration large model spaces, e.g. > 2^25. default; used determining rank X^TX cholesky decomposition pivoting.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"bas returns object class bas object class BAS list containing least following components: postprob posterior probabilities models selected priorprobs prior probabilities models selected namesx names variables R2 R2 values models logmarg values log marginal likelihood models. equivalent log Bayes Factor comparing model base model intercept . n.vars total number independent variables full model, including intercept size number independent variables models, includes intercept rank rank design matrix; `pivot = FALSE`, size checking rank conducted. list lists one list per model variables included model probne0 posterior probability variable non-zero computed using renormalized marginal likelihoods sampled models. may biased number sampled models much smaller total number models. Unbiased estimates may obtained using method \"MCMC\". mle list lists one list per model giving MLE (OLS) estimate (nonzero) coefficient model. NOTE: intercept mean Y column X centered subtracting mean. mle.se list lists one list per model giving MLE (OLS) standard error coefficient model prior name prior created BMA object alpha value hyperparameter coefficient prior used create BMA object. modelprior prior distribution models created BMA object Y response X matrix predictors mean.x vector means column X (used predict.bas) include.always indices variables forced model function summary.bas, used print summary results. function plot.bas used plot posterior distributions coefficients image.bas provides image distribution models. Posterior summaries coefficients can extracted using coefficients.bas. Fitted values predictions can obtained using S3 functions fitted.bas predict.bas. BAS objects may updated use different prior (without rerunning sampler) using function update.bas. MCMC sampling diagnostics can used assess whether MCMC run long enough posterior probabilities stable. details see associated demos vignette.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"BAS provides several algorithms sample posterior distributions models use Bayesian Model Averaging Bayesian variable selection. p less 20-25, BAS can enumerate models depending memory availability. BAS saves models, MLEs, standard errors, log marginal likelihoods, prior posterior probabilities memory requirements grow linearly M*p M number models p number predictors. example, enumeration p=21 2,097,152 takes just 2 Gigabytes 64 bit machine store summaries needed model averaging. (future version likely include option store summaries users plan using model averaging model selection Best Predictive models.) larger p, BAS samples without replacement using random deterministic sampling. Bayesian Adaptive Sampling algorithm Clyde, Ghosh, Littman (2010) samples models without replacement using initial sampling probabilities, optionally update sampling probabilities every \"update\" models using estimated marginal inclusion probabilities. BAS uses different methods obtain initprobs, may impact results high-dimensional problems. deterministic sampler provides list top models order approximation independence using provided initprobs. may effective running algorithms identify high probability models works well correlations variables small modest. recommend \"MCMC\" problems enumeration feasible (memory time constrained) even modest p number models sampled close number possible models /significant correlations among predictors bias estimates inclusion probabilities \"BAS\" \"MCMC+BAS\" may large relative reduced variability using normalized model probabilities shown Clyde Ghosh, 2012. Diagnostic plots MCMC can used assess convergence. large problems recommend thinning MCMC reduce memory requirements. priors coefficients include Zellner's g-prior, Hyper-g prior (Liang et al 2008, Zellner-Siow Cauchy prior, Empirical Bayes (local global) g-priors. AIC BIC also included, range priors model space available.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049 Clyde, M. Ghosh. J. (2012) Finite population estimators stochastic search variable selection. Biometrika, 99 (4), 981-988. doi:10.1093/biomet/ass040 Clyde, M. George, E. . (2004) Model Uncertainty. Statist. Sci., 19, 81-94. doi:10.1214/088342304000000035 Clyde, M. (1999) Bayesian Model Averaging Model Search Strategies (discussion). Bayesian Statistics 6. J.M. Bernardo, .P. Dawid, J.O. Berger, .F.M. Smith eds. Oxford University Press, pages 157-185. Hoeting, J. ., Madigan, D., Raftery, . E. Volinsky, C. T. (1999) Bayesian model averaging: tutorial (discussion). Statist. Sci., 14, 382-401. doi:10.1214/ss/1009212519 Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2008) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337 Zellner, . (1986) assessing prior distributions Bayesian regression analysis g-prior distributions. Bayesian Inference Decision Techniques: Essays Honor Bruno de Finetti, pp. 233-243. North-Holland/Elsevier. Zellner, . Siow, . (1980) Posterior odds ratios selected regression hypotheses. Bayesian Statistics: Proceedings First International Meeting held Valencia (Spain), pp. 585-603. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., Iverson, G. (2009). Bayesian t-tests accepting rejecting null hypothesis. Psychonomic Bulletin & Review, 16, 225-237 Rouder, J. N., Morey, R. D., Speckman, P. L., Province, J. M., (2012) Default Bayes Factors ANOVA Designs. Journal Mathematical Psychology. 56. p. 356-374.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"Merlise Clyde (clyde@duke.edu) Michael Littman","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"","code":"library(MASS) data(UScrime) # pivot=FALSE is faster, but should only be used in full rank case # default is pivot = TRUE crime.bic <- bas.lm(log(y) ~ log(M) + So + log(Ed) + log(Po1) + log(Po2) + log(LF) + log(M.F) + log(Pop) + log(NW) + log(U1) + log(U2) + log(GDP) + log(Ineq) + log(Prob) + log(Time), data = UScrime, n.models = 2^15, prior = \"BIC\", modelprior = beta.binomial(1, 1), initprobs = \"eplogp\", pivot = FALSE ) # use MCMC rather than enumeration crime.mcmc <- bas.lm(log(y) ~ log(M) + So + log(Ed) + log(Po1) + log(Po2) + log(LF) + log(M.F) + log(Pop) + log(NW) + log(U1) + log(U2) + log(GDP) + log(Ineq) + log(Prob) + log(Time), data = UScrime, method = \"MCMC\", MCMC.iterations = 20000, prior = \"BIC\", modelprior = beta.binomial(1, 1), initprobs = \"eplogp\", pivot = FALSE ) summary(crime.bic) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(M) 0.9335117 1.00000 1.000000e+00 1.0000000 1.0000000 #> So 0.3276563 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(Ed) 0.9910219 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Po1) 0.7246635 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Po2) 0.4602481 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(LF) 0.2935326 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(M.F) 0.3298168 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(Pop) 0.4962869 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(NW) 0.8346412 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(U1) 0.3481266 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(U2) 0.7752102 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(GDP) 0.5253694 0.00000 1.000000e+00 0.0000000 1.0000000 #> log(Ineq) 0.9992058 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Prob) 0.9541470 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Time) 0.5432686 1.00000 1.000000e+00 0.0000000 1.0000000 #> BF NA 1.00000 1.267935e-04 0.7609295 0.5431578 #> PostProbs NA 0.01910 1.560000e-02 0.0145000 0.0133000 #> R2 NA 0.84200 8.695000e-01 0.8265000 0.8506000 #> dim NA 9.00000 1.600000e+01 8.0000000 10.0000000 #> logmarg NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035 #> model 5 #> Intercept 1.0000000 #> log(M) 1.0000000 #> So 0.0000000 #> log(Ed) 1.0000000 #> log(Po1) 1.0000000 #> log(Po2) 0.0000000 #> log(LF) 0.0000000 #> log(M.F) 0.0000000 #> log(Pop) 1.0000000 #> log(NW) 1.0000000 #> log(U1) 0.0000000 #> log(U2) 1.0000000 #> log(GDP) 0.0000000 #> log(Ineq) 1.0000000 #> log(Prob) 1.0000000 #> log(Time) 0.0000000 #> BF 0.5203179 #> PostProbs 0.0099000 #> R2 0.8375000 #> dim 9.0000000 #> logmarg -22.8118635 plot(crime.bic) image(crime.bic, subset = -1) # example with two-way interactions and hierarchical constraints data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c(\"Low\", \"Medium\", \"High\") TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\", force.heredity = TRUE ) summary(TG.bas) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.0000000 1.00000000 1.000000e+00 #> suppVC 0.9910702 1.00000 1.0000000 0.00000000 0.000000e+00 #> doseMedium 1.0000000 1.00000 1.0000000 1.00000000 0.000000e+00 #> doseHigh 1.0000000 1.00000 1.0000000 1.00000000 0.000000e+00 #> suppVC:doseMedium 0.4500943 0.00000 1.0000000 0.00000000 0.000000e+00 #> suppVC:doseHigh 0.4500943 0.00000 1.0000000 0.00000000 0.000000e+00 #> BF NA 1.00000 0.8320043 0.01650685 2.812754e-15 #> PostProbs NA 0.54100 0.4501000 0.00890000 0.000000e+00 #> R2 NA 0.76230 0.7937000 0.70290000 0.000000e+00 #> dim NA 4.00000 6.0000000 3.00000000 1.000000e+00 #> logmarg NA 33.50461 33.3206946 29.40063248 0.000000e+00 #> model 5 #> Intercept 1.000000e+00 #> suppVC 1.000000e+00 #> doseMedium 0.000000e+00 #> doseHigh 0.000000e+00 #> suppVC:doseMedium 0.000000e+00 #> suppVC:doseHigh 0.000000e+00 #> BF 7.895214e-16 #> PostProbs 0.000000e+00 #> R2 5.950000e-02 #> dim 2.000000e+00 #> logmarg -1.270492e+00 image(TG.bas) # don't run the following due to time limits on CRAN if (FALSE) { # exmple with non-full rank case loc <- system.file(\"testdata\", package = \"BAS\") d <- read.csv(paste(loc, \"JASP-testdata.csv\", sep = \"/\")) fullModelFormula <- as.formula(\"contNormal ~ contGamma * contExpon + contGamma * contcor1 + contExpon * contcor1\") # should trigger a warning (default is to use pivoting, so use pivot=FALSE # only for full rank case) out = bas.lm(fullModelFormula, data = d, alpha = 0.125316, prior = \"JZS\", weights = facFifty, force.heredity = FALSE, pivot = FALSE) # use pivot = TRUE to fit non-full rank case (default) # This is slower but safer out = bas.lm(fullModelFormula, data = d, alpha = 0.125316, prior = \"JZS\", weights = facFifty, force.heredity = FALSE, pivot = TRUE) } # more complete demo's demo(BAS.hald) #> #> #> \tdemo(BAS.hald) #> \t---- ~~~~~~~~ #> #> > data(Hald) #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"g-prior\", alpha=13, #> + modelprior=beta.binomial(1,1), #> + initprobs=\"eplogp\") #> #> > hald.gprior #> #> Call: #> bas.lm(formula = Y ~ ., data = Hald, prior = \"g-prior\", alpha = 13, #> modelprior = beta.binomial(1, 1), initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept X1 X2 X3 X4 #> 1.0000 0.9019 0.6896 0.4653 0.6329 #> #> > plot(hald.gprior) #> #> > summary(hald.gprior) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5 #> Intercept 1.0000000 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X1 0.9019245 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X2 0.6895830 1.00000 0.0000000 1.00000000 1.0000000 1.0000000 #> X3 0.4652762 0.00000 0.0000000 1.00000000 0.0000000 1.0000000 #> X4 0.6329266 0.00000 1.0000000 1.00000000 1.0000000 0.0000000 #> BF NA 1.00000 0.6923944 0.08991408 0.3355714 0.3344926 #> PostProbs NA 0.24320 0.1684000 0.13120000 0.1224000 0.1220000 #> R2 NA 0.97870 0.9725000 0.98240000 0.9823000 0.9823000 #> dim NA 3.00000 3.0000000 5.00000000 4.0000000 4.0000000 #> logmarg NA 11.72735 11.3597547 9.31845348 10.6354335 10.6322138 #> #> > image(hald.gprior, subset=-1, vlas=0) #> #> > hald.coef = coefficients(hald.gprior) #> #> > hald.coef #> #> Marginal Posterior Summaries of Coefficients: #> #> Using BMA #> #> Based on the top 16 models #> post mean post SD post p(B != 0) #> Intercept 95.4231 0.7107 1.0000 #> X1 1.2150 0.5190 0.9019 #> X2 0.2756 0.4832 0.6896 #> X3 -0.1271 0.4976 0.4653 #> X4 -0.3269 0.4717 0.6329 #> #> > plot(hald.coef) #> #> > predict(hald.gprior, top=5, se.fit=TRUE) #> $fit #> [1] 79.74246 74.50010 105.29268 89.88693 95.57177 104.56409 103.40145 #> [8] 77.13668 91.99731 114.21325 82.78446 111.00723 110.40160 #> #> $Ybma #> [,1] #> [1,] 79.74246 #> [2,] 74.50010 #> [3,] 105.29268 #> [4,] 89.88693 #> [5,] 95.57177 #> [6,] 104.56409 #> [7,] 103.40145 #> [8,] 77.13668 #> [9,] 91.99731 #> [10,] 114.21325 #> [11,] 82.78446 #> [12,] 111.00723 #> [13,] 110.40160 #> #> $Ypred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 81.17036 74.83464 105.0725 89.69881 97.15898 104.4575 103.3893 76.06454 #> [2,] 77.70296 74.24113 105.8554 90.46267 93.09565 104.7152 103.1399 78.80193 #> [3,] 79.70437 74.40553 105.2175 89.76253 95.63309 104.5709 103.5254 77.08557 #> [4,] 79.65151 74.47846 105.4218 89.83174 95.62799 104.5962 103.5068 77.00839 #> [5,] 79.84321 74.31409 104.9063 89.65651 95.70301 104.5285 103.5476 77.15919 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 91.57174 113.1722 81.59906 111.2219 111.0884 #> [2,] 92.68123 115.8058 84.50293 110.4162 109.0791 #> [3,] 91.98604 114.1759 82.78145 111.1196 110.5321 #> [4,] 92.07571 114.1088 82.68233 111.0429 110.4674 #> [5,] 91.83513 114.2353 82.88128 111.2384 110.6515 #> #> $postprobs #> [1] 0.3089304 0.2139017 0.1666632 0.1555023 0.1550024 #> #> $se.fit #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 2.220164 2.265862 1.546911 2.181188 1.310135 1.523300 2.655096 2.176560 #> [2,] 2.716798 2.389723 1.633637 2.179215 1.321062 1.581232 2.721957 2.078129 #> [3,] 3.203405 2.501485 3.279273 2.357164 2.589756 1.549136 2.623290 2.765255 #> [4,] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [5,] 2.932580 2.353352 1.538009 2.141694 2.507848 1.498758 2.616407 2.680289 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 1.883610 3.264656 1.908238 1.970691 2.054234 #> [2,] 2.013244 3.298134 1.933819 1.964374 1.924460 #> [3,] 2.353516 3.609909 2.821295 2.227363 2.390135 #> [4,] 1.990817 3.485929 2.456636 1.951456 2.212238 #> [5,] 1.889302 3.569065 2.665166 1.934336 2.117189 #> #> $se.pred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 5.057182 5.077410 4.799885 5.040193 4.728892 4.792328 5.262651 5.038191 #> [2,] 5.415848 5.259391 4.961773 5.167146 4.867815 4.944766 5.418438 5.125333 #> [3,] 5.489152 5.111401 5.533771 5.042342 5.155175 4.718984 5.172102 5.245534 #> [4,] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [5,] 5.337427 5.042456 4.717369 4.947217 5.116386 4.704719 5.170463 5.203081 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 4.918734 5.594992 4.928218 4.952735 4.986566 #> [2,] 5.099370 5.729582 5.068538 5.080274 5.064974 #> [3,] 5.040638 5.735890 5.275291 4.982985 5.057839 #> [4,] 4.882702 5.659428 5.090431 4.866787 4.977090 #> [5,] 4.843301 5.711946 5.195307 4.861045 4.936658 #> #> $se.bma.fit #> [1] 2.688224 2.095245 1.769625 1.970919 2.197285 1.363804 2.356457 2.302631 #> [9] 1.822084 3.141443 2.237663 1.801849 1.991374 #> #> $se.bma.pred #> [1] 4.838655 4.536087 4.395180 4.480017 4.584113 4.248058 4.662502 4.635531 #> [9] 4.416563 5.104380 4.603604 4.408253 4.489054 #> #> $df #> [1] 12 12 12 12 12 #> #> $best #> [1] 6 10 2 9 5 #> #> $bestmodel #> $bestmodel[[1]] #> [1] 0 1 2 #> #> $bestmodel[[2]] #> [1] 0 1 4 #> #> $bestmodel[[3]] #> [1] 0 1 2 3 4 #> #> $bestmodel[[4]] #> [1] 0 1 2 4 #> #> $bestmodel[[5]] #> [1] 0 1 2 3 #> #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X3\" \"X4\" #> #> $estimator #> [1] \"BMA\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"BMA\", se.fit=TRUE, top=5), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 73.14972 86.05554 79.74246 #> [2,] 69.25283 79.58061 74.50010 #> [3,] 100.99680 109.61389 105.29268 #> [4,] 85.09427 94.80613 89.88693 #> [5,] 90.46133 100.25573 95.57177 #> [6,] 101.17433 107.83584 104.56409 #> [7,] 97.66983 109.21652 103.40145 #> [8,] 71.60336 82.50264 77.13668 #> [9,] 87.54693 96.32029 91.99731 #> [10,] 106.91309 122.38044 114.21325 #> [11,] 77.21741 88.02753 82.78446 #> [12,] 106.40541 115.07330 111.00723 #> [13,] 105.51892 115.05656 110.40160 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > predict(hald.gprior, estimator=\"MPM\", se.fit=TRUE) #> $fit #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ybma #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ypred #> NULL #> #> $postprobs #> NULL #> #> $se.fit #> [1] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [9] 1.990817 3.485929 2.456636 1.951456 2.212238 #> #> $se.pred #> [1] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [9] 4.882702 5.659428 5.090431 4.866787 4.977090 #> #> $se.bma.fit #> NULL #> #> $se.bma.pred #> NULL #> #> $df #> [1] 12 #> #> $best #> NULL #> #> $bestmodel #> [1] 0 1 2 4 #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\" #> #> $estimator #> [1] \"MPM\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"MPM\", se.fit=TRUE), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 72.85939 86.44363 79.65151 #> [2,] 69.50215 79.45478 74.47846 #> [3,] 101.93102 108.91264 105.42183 #> [4,] 85.14928 94.51420 89.83174 #> [5,] 89.98634 101.26964 95.62799 #> [6,] 101.30948 107.88283 104.59616 #> [7,] 97.81813 109.19556 103.50684 #> [8,] 71.46153 82.55525 77.00839 #> [9,] 87.73810 96.41333 92.07571 #> [10,] 106.51357 121.70394 114.10876 #> [11,] 77.32978 88.03488 82.68233 #> [12,] 106.79101 115.29472 111.04286 #> [13,] 105.64736 115.28746 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > fitted(hald.gprior, estimator=\"HPM\") #> [1] 81.17036 74.83464 105.07248 89.69881 97.15898 104.45753 103.38927 #> [8] 76.06454 91.57174 113.17222 81.59906 111.22195 111.08841 #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, #> + prior=\"g-prior\", alpha=13, modelprior=uniform(), #> + initprobs=\"eplogp\") #> #> > hald.EB = update(hald.gprior, newprior=\"EB-global\") #> #> > hald.bic = update(hald.gprior,newprior=\"BIC\") #> #> > hald.zs = update(hald.bic, newprior=\"ZS-null\") if (FALSE) { demo(BAS.USCrime) }"},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":null,"dir":"Reference","previous_headings":"","what":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"version glm.fit rewritten C; also returns marginal likelihoods Bayesian model comparison","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"","code":"bayesglm.fit( x, y, weights = rep(1, nobs), start = NULL, etastart = NULL, mustart = NULL, offset = rep(0, nobs), family = binomial(), coefprior = bic.prior(nobs), control = glm.control(), intercept = TRUE )"},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"x design matrix y response weights optional vector weights used fitting process. NULL numeric vector. start starting value coefficients linear predictor etastart starting values linear predictor mustart starting values vectors means offset priori known component included linear predictor family description error distribution link function exponential family; currently binomial(), poisson(), Gamma() canonical links implemented. coefprior function specifying prior distribution coefficients optional hyperparameters leading marginal likelihood calculations; options include bic.prior(), aic.prior(), ic.prior() control list parameters control convergence fitting process. See documentation glm.control() intercept intercept included null model?","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"coefficients MLEs se Standard errors coefficients based sqrt diagonal inverse information matrix mu fitted mean rank numeric rank fitted linear model deviance minus twice log likelihood evaluated MLEs g value g g-priors shrinkage shrinkage factor coefficients linear predictor RegSS quadratic form beta'(beta)beta used shrinkage logmarglik log marginal integrated log likelihood (constant)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"C version glm-fit. different prior choices returns, marginal likelihood model using Laplace approximation.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"glm","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"Merlise Clyde translated glm.fit R base C using .Call interface","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"","code":"data(Pima.tr, package=\"MASS\") Y <- as.numeric(Pima.tr$type) - 1 X <- cbind(1, as.matrix(Pima.tr[,1:7])) out <- bayesglm.fit(X, Y, family=binomial(),coefprior=bic.prior(n=length(Y))) out$coef #> [1] -9.773061533 0.103183427 0.032116823 -0.004767542 -0.001916632 #> [6] 0.083623912 1.820410367 0.041183529 out$se #> [1] 1.770386016 0.064694153 0.006787299 0.018540741 0.022499541 0.042826888 #> [7] 0.665513776 0.022090978 # using built in function glm(type ~ ., family=binomial(), data=Pima.tr) #> #> Call: glm(formula = type ~ ., family = binomial(), data = Pima.tr) #> #> Coefficients: #> (Intercept) npreg glu bp skin bmi #> -9.773062 0.103183 0.032117 -0.004768 -0.001917 0.083624 #> ped age #> 1.820410 0.041184 #> #> Degrees of Freedom: 199 Total (i.e. Null); 192 Residual #> Null Deviance:\t 256.4 #> Residual Deviance: 178.4 \tAIC: 194.4"},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Beta-Binomial Prior Distribution for Models — beta.binomial","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"Creates object representing prior distribution models BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"","code":"beta.binomial(alpha = 1, beta = 1)"},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"alpha parameter beta prior distribution beta parameter beta prior distribution","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"beta-binomial distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, giving w beta(alpha,beta) distribution. Marginalizing w leads distribution model size beta-binomial distribution. default hyperparameters lead uniform distribution model size.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"","code":"beta.binomial(1, 10) #' @family priors modelpriors #> $family #> [1] \"Beta-Binomial\" #> #> $hyper.parameters #> [1] 1 10 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":null,"dir":"Reference","previous_headings":"","what":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"Creates object representing Beta-Prime prior mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"","code":"beta.prime(n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"n sample size; NULL, value derived data call `bas.glm` used.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"","code":"beta.prime(n = 100) #> $family #> [1] \"betaprime\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$n #> [1] 100 #> #> $hyper.parameters$alpha #> [1] 0.5 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":null,"dir":"Reference","previous_headings":"","what":"Bodyfat Data — bodyfat","title":"Bodyfat Data — bodyfat","text":"Lists estimates percentage body fat determined underwater weighing various body circumference measurements 252 men. Accurate measurement body fat inconvenient/costly desirable easy methods estimating body fat inconvenient/costly.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Bodyfat Data — bodyfat","text":"data frame 252 observations following 15 variables. Density numeric vector density determined underwater weighing Bodyfat percent body fat Siri's (1956) equation Age age individual years Weight weight individual pounds Height height individual inches Neck neck circumference centimeters (cm) Chest chest circumference (cm) Abdomen abdomen circumference (cm) Hip hip circumference (cm) \"Thigh\" thigh circumference (cm) \"Knee\" knee circumference (cm) Ankle ankle circumference (cm) Biceps bicep (extended) circumference (cm) Forearm forearm circumference (cm) Wrist wrist circumference (cm)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Bodyfat Data — bodyfat","text":"data used produce predictive equations lean body weight given abstract \"Generalized body composition prediction equation men using simple measurement techniques\", K.W. Penrose, .G. Nelson, .G. Fisher, FACSM, Human Performance Research Center, Brigham Young University, Provo, Utah 84602 listed _Medicine Science Sports Exercise_, vol. 17, . 2, April 1985, p. 189. (predictive equations obtained first 143 252 cases listed ). data generously supplied Dr. . Garth Fisher gave permission freely distribute data use non-commercial purposes.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bodyfat Data — bodyfat","text":"variety popular health books suggest readers assess health, least part, estimating percentage body fat. Bailey (1994), instance, reader can estimate body fat tables using age various skin-fold measurements obtained using caliper. texts give predictive equations body fat using body circumference measurements (e.g. abdominal circumference) /skin-fold measurements. See, instance, Behnke Wilmore (1974), pp. 66-67; Wilmore (1976), p. 247; Katch McArdle (1977), pp. 120-132).# Percentage body fat individual can estimated body density determined. Folks (e.g. Siri (1956)) assume body consists two components - lean body tissue fat tissue. Letting D = Body Density (gm/cm^3) = proportion lean body tissue B = proportion fat tissue (+B=1) = density lean body tissue (gm/cm^3) b = density fat tissue (gm/cm^3) D = 1/[(/) + (B/b)] solving B find B = (1/D)*[ab/(-b)] - [b/(-b)]. Using estimates =1.10 gm/cm^3 b=0.90 gm/cm^3 (see Katch McArdle (1977), p. 111 Wilmore (1976), p. 123) come \"Siri's equation\": Percentage Body Fat (.e. 100*B) = 495/D - 450.# Volume, hence body density, can accurately measured variety ways. technique underwater weighing \"computes body volume difference body weight measured air weight measured water submersion. words, body volume equal loss weight water appropriate temperature correction water's density\" (Katch McArdle (1977), p. 113). Using technique, Body Density = WA/[(WA-WW)/c.f. - LV] WA = Weight air (kg) WW = Weight water (kg) c.f. = Water correction factor (=1 39.2 deg F one-gram water occupies exactly one cm^3 temperature, =.997 76-78 deg F) LV = Residual Lung Volume (liters) (Katch McArdle (1977), p. 115). methods determining body volume given Behnke Wilmore (1974), p. 22 ff. Measurement standards apparently listed Behnke Wilmore (1974), pp. 45-48 , instance, abdomen circumference measured \"laterally, level iliac crests, anteriorly, umbilicus\".)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bodyfat Data — bodyfat","text":"Bailey, Covert (1994). Smart Exercise: Burning Fat, Getting Fit, Houghton-Mifflin Co., Boston, pp. 179-186. Behnke, .R. Wilmore, J.H. (1974). Evaluation Regulation Body Build Composition, Prentice-Hall, Englewood Cliffs, N.J. Siri, W.E. (1956), \"Gross composition body\", Advances Biological Medical Physics, vol. IV, edited J.H. Lawrence C.. Tobias, Academic Press, Inc., New York. Katch, Frank McArdle, William (1977). Nutrition, Weight Control, Exercise, Houghton Mifflin Co., Boston. Wilmore, Jack (1976). Athletic Training Physical Fitness: Physiological Principles Conditioning Process, Allyn Bacon, Inc., Boston.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bodyfat Data — bodyfat","text":"","code":"data(bodyfat) bodyfat.bas = bas.lm(Bodyfat ~ Abdomen, data=bodyfat, prior=\"ZS-null\") summary(bodyfat.bas) #> P(B != 0 | Y) model 1 model 2 #> Intercept 1 1.0000 1.000000e+00 #> Abdomen 1 1.0000 0.000000e+00 #> BF NA 1.0000 1.039211e-57 #> PostProbs NA 1.0000 0.000000e+00 #> R2 NA 0.6617 0.000000e+00 #> dim NA 2.0000 1.000000e+00 #> logmarg NA 131.2089 0.000000e+00 plot(Bodyfat ~ Abdomen, data=bodyfat, xlab=\"abdomen circumference (cm)\") betas = coef(bodyfat.bas)$postmean # current version has that intercept is ybar betas[1] = betas[1] - betas[2]*bodyfat.bas$mean.x abline(betas) abline(coef(lm(Bodyfat ~ Abdomen, data=bodyfat)), col=2, lty=2)"},{"path":"http://merliseclyde.github.io/BAS/reference/climate.html","id":null,"dir":"Reference","previous_headings":"","what":"Climate Data — climate","title":"Climate Data — climate","text":"Climate Data","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/climate.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Climate Data — climate","text":"Scientists interested Earth's temperature change since last glacial maximum, 20,000 years ago. first study estimate temperature change published 1980, estimated change -1.5 degrees C, +/- 1.2 degrees C tropical sea surface temperatures. negative value means Earth colder now. Since 1980 many studies. climate dataset 63 measurements 5 variables: sdev standard deviation calculated deltaT; proxy number 1-8 reflecting type measurement system used derive deltaT. proxies can used land, others water. proxies coded 1 \"Mg/Ca\" 2 \"alkenone\" 3 \"Faunal\" 4 \"Sr/Ca\" 5 \"del 180\" 6 \"Ice Core\" 7 \"Pollen\" 8 \"Noble Gas\" T/M , indicator whether terrestrial marine study (T/M), coded 0 Terrestrial, 1 Marine; latitude latitude data collected.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/climate.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Climate Data — climate","text":"Data provided originally Michael Lavine","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":null,"dir":"Reference","previous_headings":"","what":"Coefficients of a Bayesian Model Average object — coef.bas","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Extract conditional posterior means standard deviations, marginal posterior means standard deviations, posterior probabilities, marginal inclusions probabilities Bayesian Model Averaging object class 'bas'","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"","code":"# S3 method for bas coef(object, n.models, estimator = \"BMA\", ...) # S3 method for coef.bas print(x, digits = max(3, getOption(\"digits\") - 3), ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"object object class 'bas' created BAS n.models Number top models report printed summary, coef default use models. extract summaries Highest Probability Model, use n.models=1 estimator=\"HPM\". estimator return summaries selected model, rather using BMA. Options 'HPM' (highest posterior probability model) ,'MPM' (median probability model), 'BMA' ... optional arguments x object class 'coef.bas' print digits number significant digits print","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"coefficients returns object class coef.bas following: conditionalmeans matrix conditional posterior means model conditionalsd standard deviations model postmean marginal posterior means regression coefficient using BMA postsd marginal posterior standard deviations using BMA postne0 vector posterior inclusion probabilities, marginal probability coefficient non-zero","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Calculates posterior means (approximate) standard deviations regression coefficients Bayesian Model averaging using g-priors mixtures g-priors. Print returns overall summaries. fully Bayesian methods place prior g, posterior standard deviations take account full uncertainty regarding g. updated future releases.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"highly correlated variables, marginal summaries may representative joint distribution. Use plot.coef.bas view distributions. value reported intercept centered parameterization. Gaussian error model centered sample mean Y.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2005) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, alpha=13, prior=\"ZS-null\", initprobs=\"Uniform\", update=10) coef.hald.gprior = coefficients(hald.gprior) coef.hald.gprior #> #> Marginal Posterior Summaries of Coefficients: #> #> Using BMA #> #> Based on the top 16 models #> post mean post SD post p(B != 0) #> Intercept 95.42308 0.67885 1.00000 #> X1 1.40116 0.35351 0.97454 #> X2 0.42326 0.38407 0.76017 #> X3 -0.03997 0.33398 0.30660 #> X4 -0.22077 0.36931 0.44354 plot(coef.hald.gprior) confint(coef.hald.gprior) #> 2.5% 97.5% beta #> Intercept 93.9652078 96.9242885 95.42307692 #> X1 0.6474743 2.1543916 1.40116123 #> X2 -0.1555206 0.9738998 0.42325794 #> X3 -0.7716724 0.7071778 -0.03997087 #> X4 -0.8413231 0.2565509 -0.22076600 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #Estimation under Median Probability Model coef.hald.gprior = coefficients(hald.gprior, estimator=\"MPM\") coef.hald.gprior #> #> Marginal Posterior Summaries of Coefficients: #> #> Using MPM #> #> Based on the top 1 models #> post mean post SD post p(B != 0) #> Intercept 95.42308 0.66740 1.00000 #> X1 1.45542 0.12077 1.00000 #> X2 0.65644 0.04565 1.00000 #> X3 0.00000 0.00000 0.00000 #> X4 0.00000 0.00000 0.00000 plot(coef.hald.gprior) plot(confint(coef.hald.gprior)) #> NULL coef.hald.gprior = coefficients(hald.gprior, estimator=\"HPM\") coef.hald.gprior #> #> Marginal Posterior Summaries of Coefficients: #> #> Using HPM #> #> Based on the top 1 models #> post mean post SD post p(B != 0) #> Intercept 95.42308 0.66740 1.00000 #> X1 1.45542 0.12077 0.97454 #> X2 0.65644 0.04565 0.76017 #> X3 0.00000 0.00000 0.30660 #> X4 0.00000 0.00000 0.44354 plot(coef.hald.gprior) confint(coef.hald.gprior) #> 2.5% 97.5% beta #> Intercept 93.9689432 96.877211 95.4230769 #> X1 1.1922938 1.718554 1.4554239 #> X2 0.5569707 0.755910 0.6564404 #> X3 0.0000000 0.000000 0.0000000 #> X4 0.0000000 0.000000 0.0000000 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" # To add estimation under Best Predictive Model"},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"Uses Monte Carlo simulations using posterior means standard deviations coefficients generate draws posterior distributions returns highest posterior density (HPD) credible intervals. number models equals one, use t distribution find intervals. currently condition estimate $g$. description ~~","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"","code":"# S3 method for coef.bas confint(object, parm, level = 0.95, nsim = 10000, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"object coef.bas object parm specification parameters given credible intervals, either vector numbers vector names. missing, parameters considered. level probability coverage required nsim number Monte Carlo draws posterior distribution. Used number models greater 1. ... arguments passed; none currently","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"matrix (vector) columns giving lower upper HPD credible limits parameter. labeled 1-level)/2 1 - (1-level)/2 percent (default 2.5 97.5).","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"mixture g-priors approximate. uses Monte Carlo sampling results may subject Monte Carlo variation larger values nsim may needed reduce variability.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"","code":"data(\"Hald\") hald_gprior <- bas.lm(Y~ ., data=Hald, alpha=13, prior=\"g-prior\") coef_hald <- coef(hald_gprior) confint(coef_hald) #> 2.5% 97.5% beta #> Intercept 93.874900 96.9050723 95.4230769 #> X1 0.000000 1.8866600 1.2150202 #> X2 -1.174845 0.8750293 0.2756235 #> X3 -1.508400 0.5982637 -0.1270575 #> X4 -1.740936 0.2533020 -0.3268710 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" confint(coef_hald, approx=FALSE, nsim=5000) #> 2.5% 97.5% beta #> Intercept 93.778041 96.9304313 95.4230769 #> X1 0.000000 1.8820942 1.2150202 #> X2 -1.210235 0.8444226 0.2756235 #> X3 -1.542606 0.5720867 -0.1270575 #> X4 -1.770739 0.2206185 -0.3268710 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" # extract just the coefficient of X4 confint(coef_hald, parm=\"X4\") #> 2.5% 97.5% beta #> X4 -1.713441 0.2804865 -0.326871 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"Compute credible intervals -sample sample prediction regression function","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"","code":"# S3 method for pred.bas confint(object, parm, level = 0.95, nsim = 10000, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"object object created predict.bas parm character variable, \"mean\" \"pred\". missing parm='pred'. level nominal level (point-wise) credible interval nsim number Monte Carlo simulations sampling methods BMA ... optional arguments pass next function call; none time.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"matrix lower upper level * 100 percent credible intervals either mean regression function predicted values.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"constructs approximate 95 percent Highest Posterior Density intervals 'pred.bas' objects. estimator based model selection, intervals use Student t distribution using estimate g. estimator based BMA, nsim draws mixture Student t distributions obtained HPD interval obtained Monte Carlo draws.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y~ ., data=Hald, alpha=13, prior=\"g-prior\") hald.pred = predict(hald.gprior, estimator=\"BPM\", predict=FALSE, se.fit=TRUE) confint(hald.pred, parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 72.85939 86.44363 79.65151 #> [2,] 69.50215 79.45478 74.47846 #> [3,] 101.93102 108.91264 105.42183 #> [4,] 85.14928 94.51420 89.83174 #> [5,] 89.98634 101.26964 95.62799 #> [6,] 101.30948 107.88283 104.59616 #> [7,] 97.81813 109.19556 103.50684 #> [8,] 71.46153 82.55525 77.00839 #> [9,] 87.73810 96.41333 92.07571 #> [10,] 106.51357 121.70394 114.10876 #> [11,] 77.32978 88.03488 82.68233 #> [12,] 106.79101 115.29472 111.04286 #> [13,] 105.64736 115.28746 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" confint(hald.pred) #default #> 2.5% 97.5% pred #> [1,] 67.79843 91.50459 79.65151 #> [2,] 63.56396 85.39296 74.47846 #> [3,] 95.09960 115.74406 105.42183 #> [4,] 79.04805 100.61543 89.83174 #> [5,] 84.39452 106.86146 95.62799 #> [6,] 94.34116 114.85115 104.59616 #> [7,] 92.24966 114.76402 103.50684 #> [8,] 65.82223 88.19456 77.00839 #> [9,] 81.43722 102.71421 92.07571 #> [10,] 101.77792 126.43959 114.10876 #> [11,] 71.59123 93.77342 82.68233 #> [12,] 100.43905 121.64668 111.04286 #> [13,] 99.62326 121.31156 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" hald.pred = predict(hald.gprior, estimator=\"BMA\", predict=FALSE, se.fit=TRUE) confint(hald.pred) #> 2.5% 97.5% pred #> [1,] 67.66018 91.87737 79.68307 #> [2,] 63.55127 85.77851 74.69127 #> [3,] 95.28254 117.06920 105.63258 #> [4,] 78.46905 100.65600 89.91648 #> [5,] 84.13461 106.65294 95.67480 #> [6,] 94.12140 115.04727 104.57616 #> [7,] 92.20376 115.25220 103.47945 #> [8,] 65.91170 89.09566 76.96808 #> [9,] 81.58145 103.24453 92.22184 #> [10,] 101.91625 127.26698 113.84918 #> [11,] 70.54872 93.19682 82.59035 #> [12,] 99.90601 121.61121 110.87673 #> [13,] 99.42816 121.85114 110.34001 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Summaries for Out of Sample Prediction — cv.summary.bas","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"Compute average prediction error sample predictions","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"","code":"cv.summary.bas(pred, ytrue, score = \"squared-error\")"},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"pred fitted predicted value output predict.bas ytrue vector left response values score function used summarize error rate. Either \"squared-error\", \"miss-class\"","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"squared error, average prediction error Bayesian estimator error = sqrt(sum(ytrue - yhat)^2/npred) binary data misclassification rate appropriate.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"","code":"if (FALSE) { library(foreign) cognitive <- read.dta(\"https://www.stat.columbia.edu/~gelman/arm/examples/child.iq/kidiq.dta\") cognitive$mom_work <- as.numeric(cognitive$mom_work > 1) cognitive$mom_hs <- as.numeric(cognitive$mom_hs > 0) colnames(cognitive) <- c(\"kid_score\", \"hs\", \"iq\", \"work\", \"age\") set.seed(42) n <- nrow(cognitive) test <- sample(1:n, size = round(.20 * n), replace = FALSE) testdata <- cognitive[test, ] traindata <- cognitive[-test, ] cog_train <- bas.lm(kid_score ~ ., prior = \"BIC\", modelprior = uniform(), data = traindata) yhat <- predict(cog_train, newdata = testdata, estimator = \"BMA\", se = F) cv.summary.bas(yhat$fit, testdata$kid_score) }"},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":null,"dir":"Reference","previous_headings":"","what":"BAS MCMC diagnostic plot — diagnostics","title":"BAS MCMC diagnostic plot — diagnostics","text":"Function help assess convergence MCMC sampling bas objects.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"BAS MCMC diagnostic plot — diagnostics","text":"","code":"diagnostics(obj, type = c(\"pip\", \"model\"), ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"BAS MCMC diagnostic plot — diagnostics","text":"obj object created bas.lm bas.glm type type diagnostic plot. \"pip\" marginal inclusion probabilities used, \"model\", plot posterior model probabilities ... additional graphics parameters passed plot","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"BAS MCMC diagnostic plot — diagnostics","text":"plot marginal inclusion probabilities (pip) estimated MCMC renormalized marginal likelihoods times prior probabilities model probabilities.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"BAS MCMC diagnostic plot — diagnostics","text":"BAS calculates posterior model probabilities two ways method=\"MCMC\". first using relative Monte Carlo frequencies sampled models. second renormalize marginal likelihood times prior probabilities sampled models. Markov chain converged, two quantities fall 1-1 line. , running longer may required. chain converged, Monte Carlo frequencies may less bias, although may exhibit variability repeated runs.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"BAS MCMC diagnostic plot — diagnostics","text":"Merlise Clyde (clyde@duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BAS MCMC diagnostic plot — diagnostics","text":"","code":"library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), method = \"MCMC\", MCMC.iter = 1000 ) # short run for the example diagnostics(crime.ZS)"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":null,"dir":"Reference","previous_headings":"","what":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"eplogprob calculates approximate marginal posterior inclusion probabilities p-values computed linear model using lower bound approximation Bayes factors. Used obtain initial inclusion probabilities sampling using Bayesian Adaptive Sampling bas.lm","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"","code":"eplogprob(lm.obj, thresh = 0.5, max = 0.99, int = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"lm.obj linear model object thresh value inclusion probability p-value > 1/exp(1), lower bound approximation valid. max maximum value inclusion probability; used bas.lm function keep initial inclusion probabilities away 1. int Intercept included linear model, set marginal inclusion probability corresponding intercept 1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"eplogprob returns vector marginal posterior inclusion probabilities variables linear model. int = TRUE, inclusion probability intercept set 1. model full rank, variables linearly dependent base QR factorization NA p-values. bas.lm, probabilities used sampling, inclusion probability set 0.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"Sellke, Bayarri Berger (2001) provide simple calibration p-values BF(p) = -e p log(p) provide lower bound Bayes factor comparing H0: beta = 0 versus H1: beta equal 0, p-value p less 1/e. Using equal prior odds hypotheses H0 H1, approximate marginal posterior inclusion probability p(beta != 0 | data ) = 1/(1 + BF(p)) p > 1/e, set marginal inclusion probability 0.5 value given thresh.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"Sellke, Thomas, Bayarri, M. J., Berger, James O. (2001), ``Calibration p-values testing precise null hypotheses'', American Statistician, 55, 62-71.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"","code":"library(MASS) data(UScrime) UScrime[,-2] = log(UScrime[,-2]) eplogprob(lm(y ~ ., data=UScrime)) #> (Intercept) M So Ed Po1 Po2 #> 1.0000000 0.9480823 0.5000000 0.9883193 0.5045770 0.5000000 #> LF M.F Pop NW U1 U2 #> 0.5000000 0.5304659 0.5807429 0.8046414 0.5000000 0.6858642 #> GDP Ineq Prob Time #> 0.6069289 0.9900000 0.9412475 0.5782754"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":null,"dir":"Reference","previous_headings":"","what":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"eplogprob.marg calculates approximate marginal posterior inclusion probabilities p-values computed series simple linear regression models using lower bound approximation Bayes factors. Used order variables appropriate obtain initial inclusion probabilities sampling using Bayesian Adaptive Sampling bas.lm","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"","code":"eplogprob.marg(Y, X, thresh = 0.5, max = 0.99, int = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Y response variable X design matrix column ones intercept thresh value inclusion probability p-value > 1/exp(1), lower bound approximation valid. max maximum value inclusion probability; used bas.lm function keep initial inclusion probabilities away 1. int Intercept included linear model, set marginal inclusion probability corresponding intercept 1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"eplogprob.prob returns vector marginal posterior inclusion probabilities variables linear model. int = TRUE, inclusion probability intercept set 1.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Sellke, Bayarri Berger (2001) provide simple calibration p-values BF(p) = -e p log(p) provide lower bound Bayes factor comparing H0: beta = 0 versus H1: beta equal 0, p-value p less 1/e. Using equal prior odds hypotheses H0 H1, approximate marginal posterior inclusion probability p(beta != 0 | data ) = 1/(1 + BF(p)) p > 1/e, set marginal inclusion probability 0.5 value given thresh. eplogprob.marg marginal p-values obtained using statistics p simple linear regressions P(F > (n-2) R2/(1 - R2)) F ~ F(1, n-2) R2 square correlation coefficient y X_j.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Sellke, Thomas, Bayarri, M. J., Berger, James O. (2001), ``Calibration p-values testing precise null hypotheses'', American Statistician, 55, 62-71.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"","code":"library(MASS) data(UScrime) UScrime[,-2] = log(UScrime[,-2]) eplogprob(lm(y ~ ., data=UScrime)) #> (Intercept) M So Ed Po1 Po2 #> 1.0000000 0.9480823 0.5000000 0.9883193 0.5045770 0.5000000 #> LF M.F Pop NW U1 U2 #> 0.5000000 0.5304659 0.5807429 0.8046414 0.5000000 0.6858642 #> GDP Ineq Prob Time #> 0.6069289 0.9900000 0.9412475 0.5782754"},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":null,"dir":"Reference","previous_headings":"","what":"Fitted values for a BAS BMA objects — fitted.bas","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Calculate fitted values BAS BMA object","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"","code":"# S3 method for bas fitted( object, type = \"link\", estimator = \"BMA\", top = NULL, na.action = na.pass, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"object object class 'bas' created bas type type equals \"response\" \"link\" case GLMs (default 'link') estimator estimator type fitted value return. Default use BMA models. Options include 'HPM' highest probability model 'BMA' Bayesian model averaging, using optionally 'top' models 'MPM' median probability model Barbieri Berger. 'BPM' model closest BMA predictions squared error loss top optional argument specifying 'top' models used constructing BMA prediction, NULL models used. top=1, equivalent 'HPM' na.action function determining done missing values newdata. default predict NA. ... optional arguments, used currently","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"vector length n fitted values.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Calculates fitted values observed design matrix using either highest probability model, 'HPM', posterior mean (BMA) 'BMA', median probability model 'MPM' best predictive model 'BPM\". median probability model defined including variable marginal inclusion probability greater equal 1/2. type=\"BMA\", weighted average may based using subset highest probability models optional argument given top. default BMA uses sampled models, may take compute number variables number models large. \"BPM\" found computing squared distance vector fitted values model fitted values BMA returns model smallest distance. presence multicollinearity may quite different MPM, extreme collinearity may drop relevant predictors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Barbieri, M. Berger, J.O. (2004) Optimal predictive model selection. Annals Statistics. 32, 870-897. https://projecteuclid.org/euclid.aos/1085408489&url=/UI/1.0/Summarize/euclid.aos/1085408489 Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"","code":"data(Hald) hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"ZS-null\", initprobs=\"Uniform\") plot(Hald$Y, fitted(hald.gprior, estimator=\"HPM\")) plot(Hald$Y, fitted(hald.gprior, estimator=\"BMA\", top=3)) plot(Hald$Y, fitted(hald.gprior, estimator=\"MPM\")) plot(Hald$Y, fitted(hald.gprior, estimator=\"BPM\"))"},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"function takes output bas object allows higher order interactions included parent lower order interactions terms model, assigning zero prior probability, hence posterior probability, models include respective parents.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"","code":"force.heredity.bas(object, prior.prob = 0.5)"},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"object bas linear model generalized linear model object prior.prob prior probability term included conditional parents included","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"bas object updated models, coefficients summaries obtained removing models zero prior posterior probabilities.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"Currently prior probabilities computed using conditional Bernoulli distributions, .e. P(gamma_j = 1 | Parents(gamma_j) = 1) = prior.prob. efficient models large number levels. Future updates force time sampling.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"","code":"data(\"chickwts\") bas.chk <- bas.lm(weight ~ feed, data = chickwts) # summary(bas.chk) # 2^5 = 32 models bas.chk.int <- force.heredity.bas(bas.chk) # summary(bas.chk.int) # two models now data(Hald) bas.hald <- bas.lm(Y ~ .^2, data = Hald) bas.hald.int <- force.heredity.bas(bas.hald) image(bas.hald.int) image(bas.hald.int) # two-way interactions data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c(\"Low\", \"Medium\", \"High\") TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform()) TG.bas.int <- force.heredity.bas(TG.bas) image(TG.bas.int)"},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"Creates object representing g-prior distribution coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"","code":"g.prior(g)"},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"g scalar used covariance Zellner's g-prior, Cov(beta) = sigma^2 g (X'X)^-1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"Creates structure used BAS.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"","code":"g.prior(100) #> $family #> [1] \"g.prior\" #> #> $g #> [1] 100 #> #> $class #> [1] \"g-prior\" #> #> $hyper #> [1] 100 #> #> $hyper.parameters #> $hyper.parameters$g #> [1] 100 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":null,"dir":"Reference","previous_headings":"","what":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"Creates object representing hyper-g mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"","code":"hyper.g(alpha = 3)"},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"alpha scalar > 0. hyper.g(alpha) equivalent CCH(alpha -2, 2, 0). Liang et al recommended values range 2 < alpha_h <= 3","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"","code":"hyper.g(alpha = 3) #> $family #> [1] \"CCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"Creates object representing hyper-g/n mixture g-priors coefficients BAS. special case tCCH prior","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"","code":"hyper.g.n(alpha = 3, n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"alpha scalar > 0, recommended 2 < alpha <= 3 n sample size; NULL, value derived data call `bas.glm` used.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"Creates structure used bas.glm. special case tCCH, hyper.g.n(alpha=3, n) equivalent tCCH(alpha=1, beta=2, s=0, r=1.5, v = 1, theta=1/n)","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"","code":"n <- 500 hyper.g.n(alpha = 3, n = n) #> $family #> [1] \"hyper-g/n\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> $hyper.parameters$r #> [1] 1.5 #> #> $hyper.parameters$v #> [1] 1 #> #> $hyper.parameters$theta #> [1] 0.002 #> #> #> $n #> [1] 500 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":null,"dir":"Reference","previous_headings":"","what":"Confluent hypergeometric1F1 function — hypergeometric1F1","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"Compute Confluent Hypergeometric function: 1F1(,b,c,t) = Gamma(b)/(Gamma(b-)Gamma()) Int_0^1 t^(-1) (1 - t)^(b--1) exp(c t) dt","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"","code":"hypergeometric1F1(a, b, c, laplace = FALSE, log = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"arbitrary b Must greater 0 c arbitrary laplace default use Cephes library; large s may return NA, Inf negative values,, case use Laplace approximation. log TRUE, return log(1F1)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"Cephes library hyp1f1.c","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"Merlise Clyde (clyde@stat.duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"","code":"hypergeometric1F1(11.14756, 0.5, 0.00175097) #> [1] 0.03856253"},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":null,"dir":"Reference","previous_headings":"","what":"Gaussian hypergeometric2F1 function — hypergeometric2F1","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"Compute Gaussian Hypergeometric2F1 function: 2F1(,b,c,z) = Gamma(b-c) Int_0^1 t^(b-1) (1 - t)^(c -b -1) (1 - t z)^(-) dt","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"","code":"hypergeometric2F1(a, b, c, z, method = \"Cephes\", log = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"arbitrary b Must greater 0 c Must greater b |z| < 1, c > b + z = 1 z |z| <= 1 method default use Cephes library routine. sometimes unstable large z near one returning Inf negative values. case, try method=\"Laplace\", use Laplace approximation tau = exp(t/(1-t)). log TRUE, return log(2F1)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"log=T returns log 2F1 function; otherwise 2F1 function.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"default use routine hyp2f1.c Cephes library. return negative value Inf, one try method=\"Laplace\" based Laplace approximation described Liang et al JASA 2008. used hyper-g prior calculate marginal likelihoods.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"Cephes library hyp2f1.c Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2005) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"Merlise Clyde (clyde@duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"","code":"hypergeometric2F1(12, 1, 2, .65) #> [1] 9.580921"},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Images of models used in Bayesian model averaging — image.bas","title":"Images of models used in Bayesian model averaging — image.bas","text":"Creates image models selected using bas.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Images of models used in Bayesian model averaging — image.bas","text":"","code":"# S3 method for bas image( x, top.models = 20, intensity = TRUE, prob = TRUE, log = TRUE, rotate = TRUE, color = \"rainbow\", subset = NULL, drop.always.included = FALSE, offset = 0.75, digits = 3, vlas = 2, plas = 0, rlas = 0, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Images of models used in Bayesian model averaging — image.bas","text":"x BMA object type 'bas' created BAS top.models Number top ranked models plot intensity Logical variable, TRUE image intensity proportional probability log(probability) model, FALSE, intensity binary indicating just presence (light) absence (dark) variable. prob Logical variable whether area image model proportional posterior probability (log probability) model (TRUE) equal area (FALSE). log Logical variable indicating whether intensities based log posterior odds (TRUE) posterior probabilities (FALSE). log posterior odds comparing model worst model top.models. rotate image models rotated models y-axis variables x-axis (TRUE) color color scheme image intensities. value \"rainbow\" uses rainbow palette. value \"blackandwhite\" produces black white image (greyscale image) subset indices variables include/exclude plot drop.always.included logical variable drop variables always forced model. FALSE default. offset numeric value add intensity digits number digits posterior probabilities keep vlas las parameter placing variable names; see par plas las parameter posterior probability axis rlas las parameter model ranks ... parameters passed image axis functions.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Images of models used in Bayesian model averaging — image.bas","text":"Creates image model space sampled using bas. subset top models plotted, probabilities renormalized subset.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Images of models used in Bayesian model averaging — image.bas","text":"Suggestion allow area models proportional posterior probability due Thomas Lumley","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Images of models used in Bayesian model averaging — image.bas","text":"Clyde, M. (1999) Bayesian Model Averaging Model Search Strategies (discussion). Bayesian Statistics 6. J.M. Bernardo, .P. Dawid, J.O. Berger, .F.M. Smith eds. Oxford University Press, pages 157-185.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Images of models used in Bayesian model averaging — image.bas","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Images of models used in Bayesian model averaging — image.bas","text":"","code":"require(graphics) data(\"Hald\") hald.ZSprior <- bas.lm(Y ~ ., data = Hald, prior = \"ZS-null\") image(hald.ZSprior, drop.always.included = TRUE) # drop the intercept"},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":null,"dir":"Reference","previous_headings":"","what":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Creates object representing intrinsic prior g, special case tCCH mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"","code":"intrinsic(n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"n sample size; NULL, value derived data call `bas.glm` used.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"returns object class \"prior\", family \"intrinsic\" class \"TCCH\" hyperparameters alpha = 1, beta = 1, s = 0, r = 1, n = n tCCH prior theta tCCH prior determined model size sample size.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Creates structure used bas.glm.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Womack, ., Novelo,L.L., Casella, G. (2014). \"Inference Intrinsic Bayes' Procedures Model Selection Uncertainty\". Journal American Statistical Association. 109:1040-1053. doi:10.1080/01621459.2014.880348","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"","code":"n <- 500 tCCH(alpha = 1, beta = 2, s = 0, r = 1.5, v = 1, theta = 1 / n) #> $family #> [1] \"tCCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> $hyper.parameters$r #> [1] 1.5 #> #> $hyper.parameters$v #> [1] 1 #> #> $hyper.parameters$theta #> [1] 0.002 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce a BAS list object into a matrix. — list2matrix.bas","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"Models, coefficients, standard errors objects class 'bas' represented list lists reduce storage omitting zero entries. functions coerce list object matrix fill zeros facilitate computations.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"","code":"list2matrix.bas(x, what, which.models = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"x 'bas' object name bas list coerce .models vector indices use extract subset","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"matrix representation x$, number rows equal length .models total number models number columns x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"list2matrix.bas(x, ) equivalent list2matrix.(x), however, latter uses sapply rather loop. list2matrix..matrix coerce x$matrix.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"","code":"data(Hald) hald.bic <- bas.lm(Y ~ ., data=Hald, prior=\"BIC\", initprobs= \"eplogp\") coef <- list2matrix.bas(hald.bic, \"mle\") # extract all coefficients se <- list2matrix.bas(hald.bic, \"mle.se\") models <- list2matrix.which(hald.bic) #matrix of model indicators models <- which.matrix(hald.bic$which, hald.bic$n.vars) #matrix of model indicators"},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce a BAS list object into a matrix. — list2matrix.which","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"Models, coefficients, standard errors objects class 'bas' represented list lists reduce storage omitting zero entries. functions coerce list object matrix fill zeros facilitate computations.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"","code":"list2matrix.which(x, which.models = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"x 'bas' object .models vector indices use extract subset","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"matrix representation x$, number rows equal length .models total number models number columns x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"list2matrix.bas(x, ) equivalent list2matrix.(x), however, latter uses sapply rather loop. list2matrix..matrix coerce x$matrix.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"","code":"data(Hald) Hald.bic <- bas.lm(Y ~ ., data=Hald, prior=\"BIC\", initprobs=\"eplogp\") coef <- list2matrix.bas(Hald.bic, \"mle\") # extract all ols coefficients se <- list2matrix.bas(Hald.bic, \"mle.se\") models <- list2matrix.which(Hald.bic) #matrix of model indicators models <- which.matrix(Hald.bic$which, Hald.bic$n.vars) #matrix of model indicators"},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":null,"dir":"Reference","previous_headings":"","what":"Compound Confluent hypergeometric function of two variables — phi1","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"Compute Confluent Hypergeometric function two variables, also know Horn hypergeometric function Humbert's hypergeometric used Gordy (1998) integral representation:","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"","code":"phi1(a, b, c, x, y, log = FALSE)"},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"> 0 b arbitrary c c > 0 x x > 0 y y > 0 log logical indicating whether return phi1 log scale","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"phi_1(,b,c,x,y) = [(Gamma(c)/Gamma() Gamma(-c))] Int_0^1 t^(-1) (1 - t)^(c--1) (1 - yt)^(-b) exp(x t) dt https://en.wikipedia.org/wiki/Humbert_series Note Gordy's arguments x y reversed reference . original `phi1` function `BAS` based `C` code provided Gordy. function returns NA's x greater `log(.Machine$double.xmax)/2`. stable method calculating `phi1` function using R's `integrate` suggested Daniel Heemann now option whenever $x$ large. calculating Bayes factors use `phi1` function recommend using `log=TRUE` option compute log Bayes factors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"Gordy 1998","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"Merlise Clyde (clyde@duke.edu) Daniel Heemann (df.heemann@gmail.com)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"","code":"# special cases # phi1(a, b, c, x=0, y) is the same as 2F1(b, a; c, y) phi1(1, 2, 1.5, 0, 1 / 100, log=FALSE) #> [1] 1.013495 hypergeometric2F1(2, 1, 1.5, 1 / 100, log = FALSE) #> [1] 1.013495 # phi1(a,0,c,x,y) is the same as 1F1(a,c,x) phi1(1, 0, 1.5, 3, 1 / 100) #> [1] 10.13001 hypergeometric1F1(1, 1.5, 3, log = FALSE) #> [1] 10.13001 # use direct integration phi1(1, 2, 1.5, 1000, 0, log=TRUE) #> [1] 996.4253"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":null,"dir":"Reference","previous_headings":"","what":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"Displays plots posterior distributions coefficients generated Bayesian model averaging linear regression.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"","code":"# S3 method for coef.bas plot(x, e = 1e-04, subset = 1:x$n.vars, ask = TRUE, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"x object class coef.bas e optional numeric value specifying range distributions graphed. subset optional numerical vector specifying variables graph (including intercept) ask Prompt next plot ... parameters passed plot lines","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"Produces plots posterior distributions coefficients model averaging. posterior probability coefficient zero represented solid line zero, height equal probability. nonzero part distribution scaled maximum height equal probability coefficient nonzero. parameter e specifies range distributions graphed specifying tail probabilities dictate range plot .","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"mixtures g-priors, uncertainty g incorporated time, thus results approximate","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"Hoeting, J.., Raftery, .E. Madigan, D. (1996). method simultaneous variable selection outlier identification linear regression. Computational Statistics Data Analysis, 22, 251-270.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"based function plot.bic Ian Painter package BMA; adapted 'bas' class Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"","code":"if (FALSE) library(MASS) data(UScrime) UScrime[,-2] <- log(UScrime[,-2]) crime_bic <- bas.lm(y ~ ., data=UScrime, n.models=2^15, prior=\"BIC\") plot(coefficients(crime_bic), ask=TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Bayesian Confidence Intervals — plot.confint.bas","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"Function takes output functions return credible intervals BAS objects, creates plot posterior mean segments representing credible interval. function . ~~","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"","code":"# S3 method for confint.bas plot(x, horizontal = FALSE, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"x output confint.coef.bas confint.pred.bas containing credible intervals estimates. horizontal orientation plot ... optional graphical arguments pass plot","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"plot credible intervals.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"function takes HPD intervals credible intervals created confint.coef.bas confint.pred.bas BAS objects, creates plot posterior mean segments representing credible interval. BAS tries return HPD intervals, model averaging may symmetric. description ~~","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"","code":"data(Hald) hald.ZS = bas.lm(Y ~ ., data=Hald, prior=\"ZS-null\", modelprior=uniform()) hald.coef = confint(coef(hald.ZS), parm=2:5) plot(hald.coef) #> NULL plot(hald.coef, horizontal=TRUE) #> NULL plot(confint(predict(hald.ZS, se.fit=TRUE), parm=\"mean\")) #> NULL"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Diagnostics for an BAS Object — plot.bas","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"Four plots (selectable '') currently available: plot residuals fitted values, Cumulative Model Probabilities, log marginal likelihoods versus model dimension, marginal inclusion probabilities.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"","code":"# S3 method for bas plot( x, which = c(1:4), caption = c(\"Residuals vs Fitted\", \"Model Probabilities\", \"Model Complexity\", \"Inclusion Probabilities\"), panel = if (add.smooth) panel.smooth else points, sub.caption = NULL, main = \"\", ask = prod(par(\"mfcol\")) < length(which) && dev.interactive(), col.in = 2, col.ex = 1, col.pch = 1, cex.lab = 1, ..., id.n = 3, labels.id = NULL, cex.id = 0.75, add.smooth = getOption(\"add.smooth\"), label.pos = c(4, 2), subset = NULL, drop.always.included = FALSE )"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"x bas BMA object result 'bas' subset plots required, specify subset numbers '1:4' caption captions appear plots panel panel function. useful alternative 'points', 'panel.smooth' can chosen 'add.smooth = TRUE' sub.caption common title-figures multiple; used 'sub' (s.'title') otherwise. 'NULL', default, possible shortened version deparse(x$call) used main title plot-addition 'caption' ask logical; 'TRUE', user asked plot, see 'par(ask=.)' col.color included variables col.ex color excluded variables col.pch color points panels 1-3 cex.lab graphics parameter control size variable names ... parameters passed plotting functions id.n number points labeled plot, starting extreme labels.id vector labels, labels extreme points chosen. 'NULL' uses observation numbers cex.id magnification point labels. add.smooth logical indicating smoother added plots; see also 'panel' label.pos positioning labels, left half right half graph respectively, plots 1-4 subset indices variables include/exclude plot marginal posterior inclusion probabilities (NULL). drop.always.included logical variable drop marginal posterior inclusion probabilities variables always forced model. FALSE default.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"provides panel 4 plots: first plot residuals versus fitted values BMA. second plot cumulative marginal likelihoods models; model space enumerated provides indication whether probabilities leveling . third plot log marginal likelihood versus model dimension fourth plot show posterior marginal inclusion probabilities.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"Merlise Clyde, based plot.lm John Maindonald Martin Maechler","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"","code":"data(Hald) hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"g-prior\", alpha=13, modelprior=beta.binomial(1,1), initprobs=\"eplogp\") plot(hald.gprior)"},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Method for an object of class BAS — predict.bas","title":"Prediction Method for an object of class BAS — predict.bas","text":"Predictions model averaging estimators BMA object class inheriting 'bas'.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Method for an object of class BAS — predict.bas","text":"","code":"# S3 method for bas predict( object, newdata, se.fit = FALSE, type = \"link\", top = NULL, estimator = \"BMA\", na.action = na.pass, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Method for an object of class BAS — predict.bas","text":"object object class BAS, created bas newdata dataframe predictions. missing, use dataframe used fitting obtaining fitted predicted values. se.fit indicator whether compute se fitted predicted values type Type predictions required. \"link\" scale linear predictor option currently linear models, normal model equivalent type='response'. top scalar integer M. supplied, subset top M models, based posterior probabilities model predictions BMA. estimator estimator used predictions. Currently supported options include: 'HPM' highest probability model 'BMA' Bayesian model averaging, using optionally 'top' models 'MPM' median probability model Barbieri Berger. 'BPM' model closest BMA predictions squared error loss. BMA may computed using 'top' models supplied na.action function determining done missing values newdata. default predict NA. ... optional extra arguments","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prediction Method for an object of class BAS — predict.bas","text":"list fit fitted values based selected estimator Ybma predictions using BMA, fit non-BMA methods compatibility; deprecated Ypred matrix predictions model BMA se.fit se fitted values; case BMA matrix se.pred se predicted values; case BMA matrix se.bma.fit vector posterior sd BMA posterior mean regression function. NULL estimator 'BMA' se.bma.pred vector posterior sd BMA posterior predictive values. NULL estimator 'BMA' best index top models included bestmodels subset bestmodels used fitting prediction best.vars names variables top model; NULL estimator='BMA' df scalar vector degrees freedom models estimator estimator upon 'fit' based.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Prediction Method for an object of class BAS — predict.bas","text":"Use BMA /model selection form predictions using top highest probability models.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Prediction Method for an object of class BAS — predict.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Method for an object of class BAS — predict.bas","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y ~ ., data=Hald, alpha=13, prior=\"g-prior\") predict(hald.gprior, newdata=Hald, estimator=\"BPM\", se.fit=TRUE) #> $fit #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 10 #> attr(,\"estimator\") #> [1] \"BPM\" #> #> $Ybma #> [,1] #> [1,] 79.68307 #> [2,] 74.69127 #> [3,] 105.63258 #> [4,] 89.91648 #> [5,] 95.67480 #> [6,] 104.57616 #> [7,] 103.47945 #> [8,] 76.96808 #> [9,] 92.22184 #> [10,] 113.84918 #> [11,] 82.59035 #> [12,] 110.87673 #> [13,] 110.34001 #> #> $Ypred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 81.17036 74.83464 105.07248 89.69881 97.15898 104.45753 103.38927 #> [2,] 77.70296 74.24113 105.85537 90.46267 93.09565 104.71517 103.13993 #> [3,] 79.70437 74.40553 105.21752 89.76253 95.63309 104.57088 103.52541 #> [4,] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [5,] 79.84321 74.31409 104.90632 89.65651 95.70301 104.52849 103.54760 #> [6,] 79.26248 74.75042 106.28314 90.16732 95.37830 104.70862 103.39893 #> [7,] 78.80123 75.69457 108.22151 90.62061 95.54467 104.84276 103.50032 #> [8,] 81.66556 77.02098 106.35099 88.18423 99.83232 103.89115 105.74346 #> [9,] 85.78065 79.39070 104.28069 87.30339 103.43704 102.66524 106.03984 #> [10,] 74.86000 80.34349 102.27744 83.77067 93.36677 100.90656 111.87354 #> [11,] 79.18965 81.38793 101.17241 82.85345 98.24138 100.43966 112.16380 #> [12,] 76.29823 80.55874 101.93127 83.25765 95.26054 100.79397 112.20198 #> [13,] 94.62219 84.21059 101.56325 101.56325 94.62219 101.56325 87.68112 #> [14,] 95.42308 95.42308 95.42308 95.42308 95.42308 95.42308 95.42308 #> [15,] 91.78308 83.03167 101.29055 101.29055 91.78308 101.74970 88.24455 #> [16,] 102.15048 91.65573 99.81831 99.81831 102.15048 98.65223 89.32357 #> [,8] [,9] [,10] [,11] [,12] [,13] #> [1,] 76.06454 91.57174 113.17222 81.59906 111.22195 111.08841 #> [2,] 78.80193 92.68123 115.80581 84.50293 110.41616 109.07906 #> [3,] 77.08557 91.98604 114.17593 82.78145 111.11959 110.53210 #> [4,] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> [5,] 77.15919 91.83513 114.23530 82.88128 111.23840 110.65147 #> [6,] 76.86019 92.49134 113.99208 82.44826 110.67744 110.08148 #> [7,] 76.13446 93.59932 112.64184 81.53107 109.86900 109.49863 #> [8,] 74.60469 93.86382 106.77052 80.21897 110.61958 111.73373 #> [9,] 74.19437 93.55892 101.91430 79.36984 110.13525 112.42979 #> [10,] 85.82697 100.90656 98.16482 92.68133 107.76092 107.76092 #> [11,] 82.85345 99.70690 94.57759 89.44827 108.50000 109.96552 #> [12,] 84.53056 100.50527 96.78718 91.37187 108.21267 108.79006 #> [13,] 84.21059 85.94586 118.91590 84.21059 101.56325 99.82798 #> [14,] 95.42308 95.42308 95.42308 95.42308 95.42308 95.42308 #> [15,] 86.24572 86.55641 120.92687 86.70486 101.74970 99.14326 #> [16,] 83.49316 88.15749 104.48264 82.32707 98.65223 99.81831 #> #> $postprobs #> [1] 2.432256e-01 1.684081e-01 1.312165e-01 1.224293e-01 1.220358e-01 #> [6] 1.145513e-01 6.888252e-02 2.709377e-02 1.481347e-03 2.891971e-04 #> [11] 2.559516e-04 5.597869e-05 4.790052e-05 1.177702e-05 1.000762e-05 #> [16] 5.009504e-06 #> #> $se.fit #> 1 2 3 4 5 6 7 8 #> 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> 9 10 11 12 13 #> 1.990817 3.485929 2.456636 1.951456 2.212238 #> #> $se.pred #> 1 2 3 4 5 6 7 8 #> 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> 9 10 11 12 13 #> 4.882702 5.659428 5.090431 4.866787 4.977090 #> #> $se.bma.fit #> NULL #> #> $se.bma.pred #> NULL #> #> $df #> [1] 12 #> #> $best #> [1] 10 #> #> $bestmodel #> [1] 0 1 2 4 #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\" #> #> $estimator #> [1] \"BPM\" #> #> attr(,\"class\") #> [1] \"pred.bas\" # same as fitted fitted(hald.gprior,estimator=\"BPM\") #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 # default is BMA and estimation of mean vector hald.bma = predict(hald.gprior, top=5, se.fit=TRUE) confint(hald.bma) #> 2.5% 97.5% pred #> [1,] 68.62119 91.82234 79.74246 #> [2,] 63.29775 85.54146 74.50010 #> [3,] 94.48040 115.82387 105.29268 #> [4,] 79.15137 100.85550 89.88693 #> [5,] 84.47367 106.49832 95.57177 #> [6,] 94.54526 115.49217 104.56409 #> [7,] 91.58605 114.59415 103.40145 #> [8,] 65.54286 88.10031 77.13668 #> [9,] 81.24821 102.79794 91.99731 #> [10,] 102.05833 126.80887 114.21325 #> [11,] 71.72480 94.41610 82.78446 #> [12,] 99.41758 121.75984 111.00723 #> [13,] 99.54825 121.24594 110.40160 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" hald.bpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"BPM\") confint(hald.bpm) #> 2.5% 97.5% pred #> [1,] 67.74454 91.66421 79.70437 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" # extract variables variable.names(hald.bpm) #> [1] \"Intercept\" \"X1\" \"X2\" \"X3\" \"X4\" hald.hpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"HPM\") confint(hald.hpm) #> 2.5% 97.5% pred #> [1,] 70.15171 92.18902 81.17036 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" variable.names(hald.hpm) #> [1] \"Intercept\" \"X1\" \"X2\" hald.mpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"MPM\") confint(hald.mpm) #> 2.5% 97.5% pred #> [1,] 67.79843 91.50459 79.65151 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" variable.names(hald.mpm) #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Method for an Object of Class basglm — predict.basglm","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"Predictions model averaging BMA (BAS) object GLMs different loss functions.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"","code":"# S3 method for basglm predict( object, newdata, se.fit = FALSE, type = c(\"response\", \"link\"), top = NULL, estimator = \"BMA\", na.action = na.pass, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"object object class \"basglm\", created bas.glm newdata dataframe, new matrix vector data predictions. May include column intercept just predictor variables. dataframe, variables extracted using model.matrix using call created 'object'. May missing case data used fitting used prediction. se.fit indicator whether compute se fitted predicted values type Type predictions required. default \"response\" scale response variable, alternative linear predictor scale, `type ='link'`. Thus default binomial model `type = 'response'` gives predicted probabilities, `'link'`, estimates log-odds (probabilities logit scale). top scalar integer M. supplied, calculate results using subset top M models based posterior probabilities. estimator estimator used predictions. Currently supported options include: 'HPM' highest probability model 'BMA' Bayesian model averaging, using optionally 'top' models 'MPM' median probability model Barbieri Berger. 'BPM' model closest BMA predictions squared error loss. BMA may computed using 'top' models supplied na.action function determining done missing values newdata. default predict NA. ... optional extra arguments","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"list fit predictions using BMA estimators Ypred matrix predictions model(s) postprobs renormalized probabilities top models best index top models included","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"function first calls predict method class bas (linear models) form predictions linear predictor scale `BMA`, `HPM`, `MPM` etc. estimator `BMA` `type='response'` inverse link applied fitted values type equal `'link'` model averaging takes place `response` scale. Thus applying inverse link BMA estimate `type = 'link'` equal fitted values `type = 'response'` BMA due nonlinear transformation inverse link.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"","code":"data(Pima.tr, package=\"MASS\") data(Pima.te, package=\"MASS\") Pima.bas = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"BAS\", betaprior=CCH(a=1, b=nrow(Pima.tr)/2, s=0), family=binomial(), modelprior=uniform()) pred = predict(Pima.bas, newdata=Pima.te, top=1) # Highest Probability model cv.summary.bas(pred$fit, Pima.te$type, score=\"miss-class\") #> [1] 0.2108434"},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"summary print methods Bayesian model averaging objects created bas Bayesian Adaptive Sampling","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"","code":"# S3 method for bas print(x, digits = max(3L, getOption(\"digits\") - 3L), ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"x object class 'bas' digits optional number specifying number digits display ... parameters passed print.default","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"print methods display view similar print.lm . summary methods display view specific Bayesian model averaging giving top 5 highest probability models represented inclusion indicators. Summaries models include Bayes Factor (BF) model model largest marginal likelihood, posterior probability models, R2, dim (includes intercept) log marginal likelihood.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"","code":"library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", initprobs = \"eplogp\") print(crime.bic) #> #> Call: #> bas.lm(formula = y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", #> initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept M So Ed Po1 Po2 LF #> 1.0000 0.9335 0.3277 0.9910 0.7247 0.4602 0.2935 #> M.F Pop NW U1 U2 GDP Ineq #> 0.3298 0.4963 0.8346 0.3481 0.7752 0.5254 0.9992 #> Prob Time #> 0.9541 0.5433 summary(crime.bic) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.000000e+00 1.0000000 1.0000000 #> M 0.9335117 1.00000 1.000000e+00 1.0000000 1.0000000 #> So 0.3276563 0.00000 1.000000e+00 0.0000000 0.0000000 #> Ed 0.9910219 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po1 0.7246635 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po2 0.4602481 0.00000 1.000000e+00 0.0000000 0.0000000 #> LF 0.2935326 0.00000 1.000000e+00 0.0000000 0.0000000 #> M.F 0.3298168 0.00000 1.000000e+00 0.0000000 0.0000000 #> Pop 0.4962869 0.00000 1.000000e+00 0.0000000 0.0000000 #> NW 0.8346412 1.00000 1.000000e+00 1.0000000 1.0000000 #> U1 0.3481266 0.00000 1.000000e+00 0.0000000 0.0000000 #> U2 0.7752102 1.00000 1.000000e+00 1.0000000 1.0000000 #> GDP 0.5253694 0.00000 1.000000e+00 0.0000000 1.0000000 #> Ineq 0.9992058 1.00000 1.000000e+00 1.0000000 1.0000000 #> Prob 0.9541470 1.00000 1.000000e+00 1.0000000 1.0000000 #> Time 0.5432686 1.00000 1.000000e+00 0.0000000 1.0000000 #> BF NA 1.00000 1.267935e-04 0.7609295 0.5431578 #> PostProbs NA 0.01910 1.560000e-02 0.0145000 0.0133000 #> R2 NA 0.84200 8.695000e-01 0.8265000 0.8506000 #> dim NA 9.00000 1.600000e+01 8.0000000 10.0000000 #> logmarg NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035 #> model 5 #> Intercept 1.0000000 #> M 1.0000000 #> So 0.0000000 #> Ed 1.0000000 #> Po1 1.0000000 #> Po2 0.0000000 #> LF 0.0000000 #> M.F 0.0000000 #> Pop 1.0000000 #> NW 1.0000000 #> U1 0.0000000 #> U2 1.0000000 #> GDP 0.0000000 #> Ineq 1.0000000 #> Prob 1.0000000 #> Time 0.0000000 #> BF 0.5203179 #> PostProbs 0.0099000 #> R2 0.8375000 #> dim 9.0000000 #> logmarg -22.8118635"},{"path":"http://merliseclyde.github.io/BAS/reference/protein.html","id":null,"dir":"Reference","previous_headings":"","what":"Protein Activity Data — protein","title":"Protein Activity Data — protein","text":"data sets includes several predictors protein activity experiment run Glaxo.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/protein.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Protein Activity Data — protein","text":"protein dataframe 96 observations 8 predictor variables protein activity:","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/protein.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Protein Activity Data — protein","text":"Clyde, M. . Parmigiani, G. (1998), Protein Construct Storage: Bayesian Variable Selection Prediction Mixtures, Journal Biopharmaceutical Statistics, 8, 431-443","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":null,"dir":"Reference","previous_headings":"","what":"Robust-Prior Distribution for Coefficients in BMA Model — robust","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"Creates object representing robust prior Bayarri et al (2012) mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"","code":"robust(n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"n sample size.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"Creates prior structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"","code":"robust(100) #> $family #> [1] \"robust\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$n #> [1] 100 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"summary print methods Bayesian model averaging objects created bas Bayesian Adaptive Sampling","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"","code":"# S3 method for bas summary(object, n.models = 5, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"object object class 'bas' n.models optional number specifying number best models display summary ... parameters passed summary.default","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"print methods display view similar print.lm . summary methods display view specific Bayesian model averaging giving top 5 highest probability models represented inclusion indicators. Summaries models include Bayes Factor (BF) model model largest marginal likelihood, posterior probability models, R2, dim (includes intercept) log marginal likelihood.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"","code":"data(UScrime, package = \"MASS\") UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", initprobs = \"eplogp\") print(crime.bic) #> #> Call: #> bas.lm(formula = y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", #> initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept M So Ed Po1 Po2 LF #> 1.0000 0.9335 0.3277 0.9910 0.7247 0.4602 0.2935 #> M.F Pop NW U1 U2 GDP Ineq #> 0.3298 0.4963 0.8346 0.3481 0.7752 0.5254 0.9992 #> Prob Time #> 0.9541 0.5433 summary(crime.bic) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.000000e+00 1.0000000 1.0000000 #> M 0.9335117 1.00000 1.000000e+00 1.0000000 1.0000000 #> So 0.3276563 0.00000 1.000000e+00 0.0000000 0.0000000 #> Ed 0.9910219 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po1 0.7246635 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po2 0.4602481 0.00000 1.000000e+00 0.0000000 0.0000000 #> LF 0.2935326 0.00000 1.000000e+00 0.0000000 0.0000000 #> M.F 0.3298168 0.00000 1.000000e+00 0.0000000 0.0000000 #> Pop 0.4962869 0.00000 1.000000e+00 0.0000000 0.0000000 #> NW 0.8346412 1.00000 1.000000e+00 1.0000000 1.0000000 #> U1 0.3481266 0.00000 1.000000e+00 0.0000000 0.0000000 #> U2 0.7752102 1.00000 1.000000e+00 1.0000000 1.0000000 #> GDP 0.5253694 0.00000 1.000000e+00 0.0000000 1.0000000 #> Ineq 0.9992058 1.00000 1.000000e+00 1.0000000 1.0000000 #> Prob 0.9541470 1.00000 1.000000e+00 1.0000000 1.0000000 #> Time 0.5432686 1.00000 1.000000e+00 0.0000000 1.0000000 #> BF NA 1.00000 1.267935e-04 0.7609295 0.5431578 #> PostProbs NA 0.01910 1.560000e-02 0.0145000 0.0133000 #> R2 NA 0.84200 8.695000e-01 0.8265000 0.8506000 #> dim NA 9.00000 1.600000e+01 8.0000000 10.0000000 #> logmarg NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035 #> model 5 #> Intercept 1.0000000 #> M 1.0000000 #> So 0.0000000 #> Ed 1.0000000 #> Po1 1.0000000 #> Po2 0.0000000 #> LF 0.0000000 #> M.F 0.0000000 #> Pop 1.0000000 #> NW 1.0000000 #> U1 0.0000000 #> U2 1.0000000 #> GDP 0.0000000 #> Ineq 1.0000000 #> Prob 1.0000000 #> Time 0.0000000 #> BF 0.5203179 #> PostProbs 0.0099000 #> R2 0.8375000 #> dim 9.0000000 #> logmarg -22.8118635"},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"Creates object representing tCCH mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"","code":"tCCH(alpha = 1, beta = 2, s = 0, r = 3/2, v = 1, theta = 1)"},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"alpha scalar > 0, recommended alpha=.5 (betaprime) 1. beta scalar > 0. value updated data; beta function n consistency null model. s scalar, recommended s=0 priori r r arbitrary; hyper-g-n prior sets r = (alpha + 2) v 0 < v theta theta > 1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"","code":"n <- 500 tCCH(alpha = 1, beta = 2, s = 0, r = 1.5, v = 1, theta = 1 / n) #> $family #> [1] \"tCCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> $hyper.parameters$r #> [1] 1.5 #> #> $hyper.parameters$v #> [1] 1 #> #> $hyper.parameters$theta #> [1] 0.002 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Test based Bayes Factors for BMA Models — testBF.prior","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"Creates object representing prior distribution coefficients BAS corresponds test-based Bayes Factors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"","code":"testBF.prior(g)"},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"g scalar used covariance Zellner's g-prior, Cov(beta) = sigma^2 g (X'X)^-","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"Creates prior object structure used BAS `bas.glm`.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"","code":"testBF.prior(100) #> $family #> [1] \"testBF.prior\" #> #> $g #> [1] 100 #> #> $class #> [1] \"g-prior\" #> #> $hyper #> [1] 100 #> #> $hyper.parameters #> $hyper.parameters$g #> [1] 100 #> #> $hyper.parameters$loglik_null #> NULL #> #> #> attr(,\"class\") #> [1] \"prior\" library(MASS) data(Pima.tr) # use g = n bas.glm(type ~ ., data = Pima.tr, family = binomial(), betaprior = testBF.prior(nrow(Pima.tr)), modelprior = uniform(), method = \"BAS\" ) #> #> Call: #> bas.glm(formula = type ~ ., family = binomial(), data = Pima.tr, #> betaprior = testBF.prior(nrow(Pima.tr)), modelprior = uniform(), #> method = \"BAS\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept npreg glu bp skin bmi ped #> 1.0000 0.4252 1.0000 0.0706 0.1264 0.6139 0.8075 #> age #> 0.6705"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"Creates object representing prior distribution models BAS using truncated Beta-Binomial Distribution Model Size","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"","code":"tr.beta.binomial(alpha = 1, beta = 1, trunc)"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"alpha parameter beta prior distribution beta parameter beta prior distribution trunc parameter determines truncation distribution .e. P(M; alpha, beta, trunc) = 0 M > trunc.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"beta-binomial distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, giving w beta(alpha,beta) distribution. Marginalizing w leads number included predictors beta-binomial distribution. default hyperparameters lead uniform distribution model size. Truncated version assigns zero probability models size > trunc.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"","code":"tr.beta.binomial(1, 10, 5) #> $family #> [1] \"Trunc-Beta-Binomial\" #> #> $hyper.parameters #> [1] 1 10 5 #> #> attr(,\"class\") #> [1] \"prior\" library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", modelprior = tr.beta.binomial(1, 1, 8), initprobs = \"eplogp\" )"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Poisson Prior Distribution for Models — tr.poisson","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"Creates object representing prior distribution models BAS using truncated Poisson Distribution Model Size","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"","code":"tr.poisson(lambda, trunc)"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"lambda parameter Poisson distribution representing expected model size infinite predictors trunc parameter determines truncation distribution .e. P(M; lambda, trunc) = 0 M > trunc","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"Poisson prior distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, taking limit p goes infinity w goes zero, p*w converges lambda. Truncated version assigns zero probability models size M > trunc.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"","code":"tr.poisson(10, 50) #> $family #> [1] \"Trunc-Poisson\" #> #> $hyper.parameters #> [1] 10 50 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Power Prior Distribution for Models — tr.power.prior","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"Creates object representing prior distribution models BAS using truncated Distribution Model Size probability gamma = p^-kappa |gamma| gamma vector model indicators","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"","code":"tr.power.prior(kappa = 2, trunc)"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"kappa parameter prior distribution controls sparsity trunc parameter determines truncation distribution .e. P(gamma; alpha, beta, trunc) = 0 |gamma| > trunc.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"beta-binomial distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, giving w beta(alpha,beta) distribution. Marginalizing w leads number included predictors beta-binomial distribution. default hyperparameters lead uniform distribution model size. Truncated version assigns zero probability models size > trunc.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"","code":"tr.power.prior(2, 8) #> $family #> [1] \"Trunc-Power-Prior\" #> #> $hyper.parameters #> [1] 2 8 #> #> attr(,\"class\") #> [1] \"prior\" library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", modelprior = tr.power.prior(2, 8), initprobs = \"eplogp\" )"},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Compound Confluent Hypergeometric function — trCCH","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"Compute Truncated Confluent Hypergeometric function Li Clyde (2018) normalizing constant tcch density Gordy (1998) integral representation:","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"","code":"trCCH(a, b, r, s, v, k, log = FALSE)"},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"> 0 b b > 0 r r >= 0 s arbitrary v 0 < v k arbitrary log logical indicating whether return values log scale; useful Bayes Factor calculations","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"tr.cch(,b,r,s,v,k) = Int_0^1/v u^(-1) (1 - vu)^(b -1) (k + (1 - k)vu)^(-r) exp(-s u) du uses stable method calculating normalizing constant using R's `integrate` function rather version Gordy 1998. calculating Bayes factors use `trCCH` function recommend using `log=TRUE` option compute log Bayes factors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"Gordy 1998 Li & Clyde 2018","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"Merlise Clyde (clyde@duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"","code":"# special cases # trCCH(a, b, r, s=0, v = 1, k) is the same as # 2F1(a, r, a + b, 1 - 1/k)*beta(a, b)/k^r k = 10; a = 1.5; b = 2; r = 2; trCCH(a, b, r, s=0, v = 1, k=k) *k^r/beta(a,b) #> [1] 4.74679 hypergeometric2F1(a, r, a + b, 1 - 1/k, log = FALSE) #> [1] 4.746772 # trCCH(a,b,0,s,1,1) is the same as # beta(a, b) 1F1(a, a + b, -s, log=FALSE) s = 3; r = 0; v = 1; k = 1 beta(a, b)*hypergeometric1F1(a, a+b, -s, log = FALSE) #> [1] 0.0923551 trCCH(a, b, r, s, v, k) #> [1] 0.09235518 # Equivalence with the Phi1 function a = 1.5; b = 3; k = 1.25; s = 400; r = 2; v = 1; phi1(a, r, a + b, -s, 1 - 1/k, log=FALSE)*(k^-r)*gamma(a)*gamma(b)/gamma(a+b) #> [1] 7.04733e-05 trCCH(a,b,r,s,v,k) #> [1] 7.052186e-05"},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":null,"dir":"Reference","previous_headings":"","what":"Uniform Prior Distribution for Models — uniform","title":"Uniform Prior Distribution for Models — uniform","text":"Creates object representing prior distribution models BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Uniform Prior Distribution for Models — uniform","text":"","code":"uniform()"},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Uniform Prior Distribution for Models — uniform","text":"returns object class \"prior\", family name Uniform.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Uniform Prior Distribution for Models — uniform","text":"Uniform prior distribution commonly used prior BMA, special case independent Bernoulli prior probs=.5. implied prior distribution model size binomial(p, .5).","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Uniform Prior Distribution for Models — uniform","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Uniform Prior Distribution for Models — uniform","text":"","code":"uniform() #> $family #> [1] \"Uniform\" #> #> $hyper.parameters #> [1] 0.5 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":null,"dir":"Reference","previous_headings":"","what":"Update BAS object using a new prior — update.bas","title":"Update BAS object using a new prior — update.bas","text":"Update BMA object using new prior distribution coefficients.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Update BAS object using a new prior — update.bas","text":"","code":"# S3 method for bas update(object, newprior, alpha = NULL, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Update BAS object using a new prior — update.bas","text":"object BMA object update newprior Update posterior model probabilities, probne0, shrinkage, logmarg, etc, using prior based newprior. See bas available methods alpha optional new value hyperparameter prior method ... optional arguments","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Update BAS object using a new prior — update.bas","text":"new object class BMA","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Update BAS object using a new prior — update.bas","text":"Recomputes marginal likelihoods new methods models already sampled current object.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Update BAS object using a new prior — update.bas","text":"Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Update BAS object using a new prior — update.bas","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Update BAS object using a new prior — update.bas","text":"","code":"# \\donttest{ library(MASS) data(UScrime) UScrime[,-2] <- log(UScrime[,-2]) crime.bic <- bas.lm(y ~ ., data=UScrime, n.models=2^10, prior=\"BIC\",initprobs= \"eplogp\") crime.ebg <- update(crime.bic, newprior=\"EB-global\") crime.zs <- update(crime.bic, newprior=\"ZS-null\") # }"},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"S3 method class 'pred.bas'. Simple utility function extract variable names. Used print names selected models using estimators 'HPM', 'MPM' 'BPM\". selected model created predict BAS objects.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"","code":"# S3 method for pred.bas variable.names(object, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"object BAS object created predict BAS `bas.lm` `bas.glm` object ... arguments pass ","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"character vector names variables included selected model; case 'BMA' variables","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"","code":"data(Hald) hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"ZS-null\", modelprior=uniform()) hald.bpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"BPM\") variable.names(hald.bpm) #> [1] \"Intercept\" \"X2\""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce a BAS list object of models into a matrix. — which.matrix","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"function coerces list object models matrix fill zeros facilitate computations.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"","code":"which.matrix(which, n.vars)"},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"'bas' model object x$n.vars total number predictors, x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"matrix representation x$, number rows equal length .models total number models number columns x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":".matrix coerces x$matrix.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"","code":"data(Hald) Hald.bic <- bas.lm(Y ~ ., data=Hald, prior=\"BIC\", initprobs=\"eplogp\") # matrix of model indicators models <- which.matrix(Hald.bic$which, Hald.bic$n.vars)"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-development-version","dir":"Changelog","previous_headings":"","what":"BAS (development version)","title":"BAS (development version)","text":"added unit tests link functions impemented family.c","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-171","dir":"Changelog","previous_headings":"","what":"BAS 1.7.1","title":"BAS 1.7.1","text":"CRAN release: 2023-12-06","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"minor-improvements-and-fixes-1-7-1","dir":"Changelog","previous_headings":"","what":"Minor Improvements and Fixes","title":"BAS 1.7.1","text":"Initialized vector se via memset disp = 1.0 fit_glm.c (issue #72) Initialized variables hyp1f1.c testthat (issue #75) Removed models zero prior probability bas.lm bas.glm (issue #74) Fixed error bayesglm.fit check arguments x y correct type calling C added unit test (issue #67)","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-166","dir":"Changelog","previous_headings":"","what":"BAS 1.6.6","title":"BAS 1.6.6","text":"CRAN release: 2023-11-28","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-6-6","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.6.6","text":"Added support Gamma regression bas.glm, unit tests example (Code contributed @betsyberrson) added error supplied initial model bas.lm sampling methods “MCMC” “MCMC+BAS” prior probability zero. fixed printing problems identified via checks fixed indexing error bas.lm method = \"MCMC+BAS\" bas.lm using method = \"MCMC+BAS\" crashed segmentation fault bestmodel NULL null model. GitHub issue #69 fixed error predict.bas se.fit=TRUE one predictor. GitHub issue #68 reported @AleCarminati added unit test test-predict.R Fixed error coef bas.glm objects using betaprior class IC, including AIC BIC Github issue #65 Fixed error using Jeffreys prior bas.glm include.always option added unit test test-bas-glm.R. Github issue #61 Fixed error extracting coefficients median probability model formula passed object rather literal, added unit test test-coefficients.R Github issues #39 #56","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-164","dir":"Changelog","previous_headings":"","what":"BAS 1.6.4","title":"BAS 1.6.4","text":"CRAN release: 2022-11-02","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-4","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.4","text":"skipped test CRAN fails show warning non full rank case pivot=FALSE bas.lm default uses pivoting documentation indicates pivot=FALSE used full rank case users encounter issue practice. Users continue see warning NA’s returned, aware platforms may produce warning (M1mac). Github issue #62","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-163","dir":"Changelog","previous_headings":"","what":"BAS 1.6.3","title":"BAS 1.6.3","text":"CRAN release: 2022-10-19","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-3","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.3","text":"Added checks unit-tests see modelprior class ‘prior’ resolving Github Issue #57 Removed polevl.c, psi.c gamma.c Cephes longer used switching R’s internal functions","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-162","dir":"Changelog","previous_headings":"","what":"BAS 1.6.2","title":"BAS 1.6.2","text":"CRAN release: 2022-04-26 replaced deprecated DOUBLE_EPS DBL_EPSILON R 4.2.0 release (two places) restore CRAN","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-1","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.1","text":"replaced deprecated DOUBLE_EPS DBL_EPSILON R 4.2.0 release fixed warnings CRAN checks R devel (use | class) added function trCCH uses integration compute normalizing constant Truncated Compound Confluent Hypergeometric distribution provides correct normalizing constant Gordy (1998) stable large values compared current phi1 function. now used TCCH prior bas.glm. Rewrote phi1 function use direct numerical integration (phi1_int) Wald statistic large marginal likelihoods NA suggested Daniel Heeman Alexander Ly (see ). improve stability estimates Bayes Factors model probabilities bas.glm used HyperTwo function, including coefficient priors hyper.g.n(), robust(), intrinsic(). Added additional unit tests. Added thin option bas.glm added unit tests examples show connections special functions trCCH, phi1, 1F1 2F1","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-6-1","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.6.1","text":"added internal function phi1_int original HyperTwo function returns NA Issue #55 See details . corrected shrinkage estimate CCH prior include terms involving beta function.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-160","dir":"Changelog","previous_headings":"","what":"BAS 1.6.0","title":"BAS 1.6.0","text":"CRAN release: 2021-11-12","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-0","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.0","text":"update FORTRAN code compliant USE_FC_LEN_T character strings","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-6-0","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.6.0","text":"fixed warning src code log_laplace_F21 uninitialized variable leading NaN returned R function hypergeometric2F1","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-155","dir":"Changelog","previous_headings":"","what":"BAS 1.5.5","title":"BAS 1.5.5","text":"CRAN release: 2020-01-24","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-5-5","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.5.5","text":"Fixed WARNING fedora-clang-devel. Added climate.dat file package building vignette package violate CRAN’s policy accessing internet resources permanent file location/url changes locally. Fixed testthat errors Solaris. Default settings force.heredity set back FALSE bas.lm bas.glm methods work platforms. Solaris, users wish impose force.heredity constraint may use post-processing function.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-154","dir":"Changelog","previous_headings":"","what":"BAS 1.5.4","title":"BAS 1.5.4","text":"CRAN release: 2020-01-19","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-4","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.4","text":"Modified prior probabilities adjust number variables always included using include.always. Pull request #41 Don van de Bergh. Issue #40","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-5-4","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.5.4","text":"Fixed valgrind error src/ZS_approx_null_np.c invalid write noted CRAN checks fixed function declaration type-mismatch argument errors identified LTO noted CRAN checks Added contrast=NULL argument bas.lm bas.glm non-NULL contrasts trigger warning model.matrix R 3.6.0. Bug #44 Added check sample size equal zero due subsetting missing data Bug #37","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"other-1-5-4","dir":"Changelog","previous_headings":"","what":"Other","title":"BAS 1.5.4","text":"Put ORCID quotes author list (per R-dev changes)","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-153","dir":"Changelog","previous_headings":"","what":"BAS 1.5.3","title":"BAS 1.5.3","text":"CRAN release: 2018-10-30","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-5-3","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.5.3","text":"Fixed errors identified cran checks https://cran.r-project.org/web/checks/check_results_BAS.html initialize R2_m = 0.0 lm_mcmcbas.c (lead NA’s clang debian fedora ) switch default pivot = TRUE bas.lm, adding tol argument control tolerance cholregpovot improved stability across platforms singular nearly singular designs. valgrind messages: Conditional jump move depends uninitialized value(s). Initialize vectors allocated via R_alloc lm_deterministic.c glm_deterministic.c.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-152","dir":"Changelog","previous_headings":"","what":"BAS 1.5.2","title":"BAS 1.5.2","text":"CRAN release: 2018-10-25","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-2","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.2","text":"Included option pivot=TRUE bas.lm fit models using pivoted Cholesky decomposition allow models rank-deficient. Enhancement #24 Bug #21. Currently coefficients -estimable set zero predict methods work . vector rank added output (see documentation bas.lm) degrees freedom methods assume uniform prior obtaining estimates (AIC BIC) adjusted use rank rather size. Added option force.heredity=TRUEto force lower order terms included higher order terms present (hierarchical constraint) method='MCMC' method='BAS' bas.lm bas.glm. Updated Vignette illustrate. enhancement #19. Checks see parents included using include.always pass issue #26. Added option drop.always.included image.bas variables always included may excluded image. default shown enhancement #23 Added option drop.always.included subset plot.bas variables always included may excluded plot showing marginal posterior inclusion probabilities (=4). default shown enhancement #23 update fitted.bas use predict code covers GLM LM cases type='link' type='response' Updates package CII Best Practices Badge certification Added Code Coverage support extensive tests using test_that.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-5-2","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.5.2","text":"fixed issue #36 Errors prior = “ZS-null” R2 finite range due model full rank. Change gexpectations function file bayesreg.c fixed issue #35 method=\"MCMC+BAS\" bas.glm glm_mcmcbas.c values provided MCMC.iterations n.models defaults used. Added unit test test-bas-glm.R fixed issue #34 bas.glm variables include.always marginal inclusion probabilities incorrect. Added unit test test-bas-glm.R fixed issue #33 Jeffreys prior marginal inclusion probabilities renormalized dropping intercept model fixed issue #32 allow vectorization phi1 function R/cch.R added unit test “tests/testthat/test-special-functions.R” fixed issue #31 coerce g REAL g.prior prior IC.prior bas.glm; added unit-test “tests/testthat/test-bas-glm.R” fixed issue #30 added n hyper-parameter NULL coerced REAL intrinsic prior bas.glm; added unit-test fixed issue #29 added n hyper-parameter NULL coerced REAL beta.prime prior bas.glm; added unit-test fixed issue #28 fixed length MCMC estimates marginal inclusion probabilities; added unit-test fixed issue #27 expected shrinkage JZS prior greater 1. Added unit test. fixed output include.always include intercept issue #26 always drop.always.included = TRUE drops intercept variables forced . include.always force.heredity=TRUE can now used together method=\"BAS\". added warning marginal likelihoods/posterior probabilities NA default model fitting method suggestion models rerun pivot = TRUE. uses modified Cholesky decomposition pivoting model rank deficient nearly singular dimensionality reduced. Bug #21. corrected count first model method='MCMC' lead potential model 0 probability errors image. coerced predicted values vector BMA (matrix) fixed size using method=deterministic bas.glm (updated) fixed problem confint horizontal=TRUE intervals point mass zero.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"other-1-5-2","dir":"Changelog","previous_headings":"","what":"Other","title":"BAS 1.5.2","text":"suppress warning sampling probabilities 1 0 number models decrementedIssue #25 changed force.heredity.bas re-normalize prior probabilities rather use new prior probability based heredity constraints. future, add new priors models based heredity. See comment issue #26. Changed License GPL 3.0","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-151-june-6-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.5.1 June 6, 2018","title":"BAS 1.5.1 June 6, 2018","text":"CRAN release: 2018-06-07","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-1","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.1 June 6, 2018","text":"added S3 method variable.names extract variable names highest probability model, median probability model, best probability model objects created predict.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-5-1","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.5.1 June 6, 2018","text":"Fixed incorrect documentation predict.basglm type = \"link\" default prediction issue #18","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-150-may-2-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.5.0 May 2, 2018","title":"BAS 1.5.0 May 2, 2018","text":"CRAN release: 2018-05-03","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-0","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.0 May 2, 2018","text":"add na.action handling NA’s predict methods issue #10 added include.always new argument bas.lm. allows formula specify terms always included models. default intercept always included. added section vignette illustrate weighted regression force.heredity.bas function group levels factor enter leave model together.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-5-0","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.5.0 May 2, 2018","text":"fixed problem one model image function; github issue #11 fixed error bas.lm non-equal weights R2 incorrect. issue #17 ## Deprecated deprecate predict argument predict.bas, predict.basglm internal functions utilized","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-149-march-24-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.4.9 March 24, 2018","title":"BAS 1.4.9 March 24, 2018","text":"CRAN release: 2018-03-25","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-9","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.9 March 24, 2018","text":"fixed bug confint.coef.bas parm character string added parentheses betafamily.c line 382 indicated CRAN check R devel","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-4-9","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.4.9 March 24, 2018","text":"added option determine k Bayes.outlier prior probability outliers provided","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-148-march-10-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.4.8 March 10, 2018","title":"BAS 1.4.8 March 10, 2018","text":"CRAN release: 2018-03-12","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-8","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.8 March 10, 2018","text":"fixed issue scoping eval data predict.bas dataname defined local env. fixed issue 10 github (predict estimator=‘BPM’ failed NA’s X data. Delete NA’s finding closest model. fixed bug ‘JZS’ prior - merged pull request #12 vandenman/master fixed bug bas.glm default betaprior (CCH) used inputs INTEGER instead REAL removed warning use ‘ZS-null’ backwards compatibility","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-added-1-4-8","dir":"Changelog","previous_headings":"","what":"Features added","title":"BAS 1.4.8 March 10, 2018","text":"updated print.bas reflect changes print.lm Added Bayes.outlier function calculate posterior probabilities outliers using method Chaloner & Brant linear models.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-147-october-22-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.7 October 22, 2017","title":"BAS 1.4.7 October 22, 2017","text":"CRAN release: 2017-10-22","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-7","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.7 October 22, 2017","text":"Added new method bas.lm obtain marginal likelihoods Zellner-Siow Priors “prior= ‘JZS’ using QUADPATH routines numerical integration. optional hyper parameter alpha may now used adjust scaling ZS prior g ~ G(1/2, alpha*n/2) BayesFactor package Morey, default alpha=1 corresponding ZS prior used Liang et al (2008). also uses stable evaluations log(1 + x) prevent underflow/overflow. Priors ZS-full bas.lm planned deprecated. replaced math functions use portable C code Rmath consolidated header files","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-146-may-24-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.6 May 24, 2017","title":"BAS 1.4.6 May 24, 2017","text":"CRAN release: 2017-05-26","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-6","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.6 May 24, 2017","text":"Added force.heredity.interaction function allow higher order interactions included “parents” lower order interactions main effects included. Currently tested two way interactions. implemented post-sampling; future updates add sampling stage reduce memory usage sampling times reducing number models consideration.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-6","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.6 May 24, 2017","text":"Fixed unprotected ANS C code glm_sampleworep.c sampleworep.c call PutRNGstate possible stack imbalance glm_mcmc. Fixed problem predict estimator=BPM newdata one row","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-145-march-28-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.5 March 28, 2017","title":"BAS 1.4.5 March 28, 2017","text":"CRAN release: 2017-03-31","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-5","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.5 March 28, 2017","text":"Fixed non-conformable error predict new data dataframe one row. Fixed problem missing weights prediction using median probability model new data.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-144-march-14-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.4 March 14, 2017","title":"BAS 1.4.4 March 14, 2017","text":"CRAN release: 2017-03-14","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-4","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.4 March 14, 2017","text":"Extract coefficient summaries, credible intervals plots HPM MPM addition default BMA adding new estimator argument coef function. new n.models argument coef provides summaries based top n.models highest probability models reduce computation time. ‘n.models = 1’ equivalent highest probability model. use newdata vector now deprecated predict.bas; newdata must dataframe missing, case fitted values based dataframe used fitting used factor levels handled lm glm prediction may level factor newdata","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-4","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.4 March 14, 2017","text":"fixed issue prediction newdata just one row fixed missing id plot.bas =3","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-143-february-18-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.3 February 18, 2017","title":"BAS 1.4.3 February 18, 2017","text":"CRAN release: 2017-02-21","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-3","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.3 February 18, 2017","text":"Register symbols foreign function calls bin2int now deprecated fixed default MCMC.iteration bas.lm agree documentation updated vignette include examples, outlier detection, finding best predictive probability model set flag MCMC sampling renormalize selects whether Monte Carlo frequencies used estimate posterior model marginal inclusion probabilities (default renormalize = FALSE) marginal likelihoods time prior probabilities renormalized sum 1 used. (latter option methods); new slots probne0.MCMC, probne0.RN, postprobs.RN postprobs.MCMC.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-4-3","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"BAS 1.4.3 February 18, 2017","text":"fixed problem prior.bic, robust, hyper.g.n default missing n set hyperparameters fixed error predict plot GLMs family provided function","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-142-october-12-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.4.2 October 12, 2016","title":"BAS 1.4.2 October 12, 2016","text":"CRAN release: 2016-10-13","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-2","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.2 October 12, 2016","text":"added df object returned bas.glm simplify coefficients function.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-4-2","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.4.2 October 12, 2016","text":"corrected expected value shrinkage intrinsic, hyper-g/n TCCH priors glms","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-141-september-17-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.4.1 September 17, 2016","title":"BAS 1.4.1 September 17, 2016","text":"CRAN release: 2016-09-20","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-4-1","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.4.1 September 17, 2016","text":"modification 1.4.0 automatically handle NA’s led errors response transformed part formula; fixed","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-4-1","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.4.1 September 17, 2016","text":"added subset argument bas.lm bas.glm","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-140-august-25-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.4.0 August 25, 2016","title":"BAS 1.4.0 August 25, 2016","text":"CRAN release: 2016-08-27","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-4-0","dir":"Changelog","previous_headings":"","what":"New features","title":"BAS 1.4.0 August 25, 2016","text":"added na.action bas.lm bas.glm omit missing data. new function plot credible intervals created confint.pred.bas confint.coef.bas. See help files example vignette. added se.fit option predict.basglm. Added testBF betaprior option bas.glm implement Bayes Factors based likelihood ratio statistic’s distribution GLMs. DOI version http://dx.doi.org/10.5281/zenodo.60948","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-130-july-15-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.3.0 July 15, 2016","title":"BAS 1.3.0 July 15, 2016","text":"CRAN release: 2016-07-16","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-3-0","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.3.0 July 15, 2016","text":"vignette added long last! illustrates several new features BAS new functions computing credible intervals fitted predicted values confint.pred.bas() new function adding credible intervals coefficients confint.coef.bas() added posterior standard deviations fitted values predicted values predict.bas()","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"deprecation-1-3-0","dir":"Changelog","previous_headings":"","what":"Deprecation","title":"BAS 1.3.0 July 15, 2016","text":"deprecated use type specify estimator fitted.bas replaced estimator predict() fitted() compatible S3 methods. updated functions class bas avoid NAMESPACE conflicts libraries","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-122-june-29-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.2.2 June 29, 2016","title":"BAS 1.2.2 June 29, 2016","text":"CRAN release: 2016-07-01","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-2-2","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.2.2 June 29, 2016","text":"added option find “Best Predictive Model” “BPM” fitted.bas predict.bas added local Empirical Bayes prior fixed g-prior bas.glm added diagnostic() function checking convergence bas objects created method = \"MCMC\"” added truncated power prior Yang, Wainwright & Jordan (2016)","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"minor-changes-1-2-2","dir":"Changelog","previous_headings":"","what":"Minor Changes","title":"BAS 1.2.2 June 29, 2016","text":"bug fix plot.bas appears Sweave bug fix coef.bma just one predictor","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-121-april-16-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.2.1 April 16, 2016","title":"BAS 1.2.1 April 16, 2016","text":"CRAN release: 2016-04-16 bug fix method=“MCMC” truncated prior distributions MH ratio incorrect allowing models 0 probability sampled. fixed error Zellner-Siow prior (ZS-null) n=p+1 saturated model log marginal likelihood 0","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-120-april-11-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.2.0 April 11, 2016","title":"BAS 1.2.0 April 11, 2016","text":"CRAN release: 2016-04-12 removed unsafe code Rbestmarg (input) overwritten .Call end corruption constant pool byte-code (Thanks Tomas Kalibera catching !) fixed issue dimensions use Simple Linear Regression","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-110-march-31-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.1.0 March 31, 2016","title":"BAS 1.1.0 March 31, 2016","text":"CRAN release: 2016-03-31","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-1-0","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.1.0 March 31, 2016","text":"added truncated Beta-Binomial prior truncated Poisson (works MCMC currently) improved code finding fitted values Median deprecated method = “AMCMC” issue warning message","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"minor-changes-1-1-0","dir":"Changelog","previous_headings":"","what":"Minor Changes","title":"BAS 1.1.0 March 31, 2016","text":"Changed S3 method plot image use class bas rather bma avoid name conflicts packages","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-109","dir":"Changelog","previous_headings":"","what":"BAS 1.09","title":"BAS 1.09","text":"","code":"- added weights for linear models - switched LINPACK calls in bayesreg to LAPACK finally should be faster - fixed bug in intercept calculation for glms - fixed inclusion probabilities to be a vector in the global EB methods for linear models"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-108","dir":"Changelog","previous_headings":"","what":"BAS 1.08","title":"BAS 1.08","text":"","code":"- added intrinsic prior for GLMs - fixed problems for linear models for p > n and R2 not correct"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-107","dir":"Changelog","previous_headings":"","what":"BAS 1.07","title":"BAS 1.07","text":"","code":"- added phi1 function from Gordy (1998) confluent hypergeometric function of two variables also known as one of the Horn hypergeometric functions or Humbert's phi1 - added Jeffrey's prior on g - added the general tCCH prior and special cases of the hyper-g/n. - TODO check shrinkage functions for all"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-106","dir":"Changelog","previous_headings":"","what":"BAS 1.06","title":"BAS 1.06","text":"","code":"- new improved Laplace approximation for hypergeometric1F1 - added class basglm for predict - predict function now handles glm output - added dataframe option for newdata in predict.bas and predict.basglm - renamed coefficients in output to be 'mle' in bas.lm to be consistent across lm and glm versions so that predict methods can handle both cases. (This may lead to errors in other external code that expects object$ols or object$coefficients) - fixed bug with initprobs that did not include an intercept for bas.lm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-105","dir":"Changelog","previous_headings":"","what":"BAS 1.05","title":"BAS 1.05","text":"","code":"- added thinning option for MCMC method for bas.lm - returned posterior expected shrinkage for bas.glm - added option for initprobs = \"marg-eplogp\" for using marginal SLR models to create starting probabilities or order variables especially for p > n case - added standalone function for hypergeometric1F1 using Cephes library and a Laplace approximation -Added class \"BAS\" so that predict and fitted functions (S3 methods) are not masked by functions in the BVS package: to do modify the rest of the S3 methods."},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-104","dir":"Changelog","previous_headings":"","what":"BAS 1.04","title":"BAS 1.04","text":"","code":"- added bas.glm for model averaging/section using mixture of g-priors for GLMs. Currently limited to Logistic Regression - added Poisson family for glm.fit"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-10","dir":"Changelog","previous_headings":"","what":"BAS 1.0","title":"BAS 1.0","text":"CRAN release: 2012-06-01","code":"- cleaned up MCMC method code"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-093","dir":"Changelog","previous_headings":"","what":"BAS 0.93","title":"BAS 0.93","text":"","code":"- removed internal print statements in bayesglm.c - Bug fixes in AMCMC algorithm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-092","dir":"Changelog","previous_headings":"","what":"BAS 0.92","title":"BAS 0.92","text":"CRAN release: 2010-10-01","code":"- fixed glm-fit.R so that hyper parameter for BIC is numeric"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-091","dir":"Changelog","previous_headings":"","what":"BAS 0.91","title":"BAS 0.91","text":"CRAN release: 2010-09-09","code":"- added new AMCMC algorithm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-091-1","dir":"Changelog","previous_headings":"","what":"BAS 0.91","title":"BAS 0.91","text":"CRAN release: 2010-09-09","code":"- bug fix in bayes.glm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-090","dir":"Changelog","previous_headings":"","what":"BAS 0.90","title":"BAS 0.90","text":"CRAN release: 2010-07-24","code":"- added C routines for fitting glms"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-085","dir":"Changelog","previous_headings":"","what":"BAS 0.85","title":"BAS 0.85","text":"CRAN release: 2010-04-29 restricting n.models correct fitted values (broken version 0.80)","code":"- fixed problem with duplicate models if n.models was > 2^(p-1) by - save original X as part of object so that fitted.bma gives the"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-080","dir":"Changelog","previous_headings":"","what":"BAS 0.80","title":"BAS 0.80","text":"CRAN release: 2010-04-06 shrinkage - changed predict.bma center newdata using mean(X) - Added new Adaptive MCMC option (method = “AMCMC”) (stable point)","code":"- Added `hypergeometric2F1` function that is callable by R - centered X's in bas.lm so that the intercept has the correct"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-07","dir":"Changelog","previous_headings":"","what":"BAS 0.7","title":"BAS 0.7","text":"","code":"-Allowed pruning of model tree to eliminate rejected models"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-06","dir":"Changelog","previous_headings":"","what":"BAS 0.6","title":"BAS 0.6","text":"","code":"- Added MCMC option to create starting values for BAS (`method = \"MCMC+BAS\"`)"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-05","dir":"Changelog","previous_headings":"","what":"BAS 0.5","title":"BAS 0.5","text":"allocated within code","code":"-Cleaned up all .Call routines so that all objects are duplicated or"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-045","dir":"Changelog","previous_headings":"","what":"BAS 0.45","title":"BAS 0.45","text":"CRAN release: 2009-12-30","code":"- fixed ch2inv that prevented building on Windows in bayes glm_fit"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-04","dir":"Changelog","previous_headings":"","what":"BAS 0.4","title":"BAS 0.4","text":"CRAN release: 2009-12-28","code":"- fixed FORTRAN calls to use F77_NAME macro - changed allocation of objects for .Call to prevent some objects from being overwritten."},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-03","dir":"Changelog","previous_headings":"","what":"BAS 0.3","title":"BAS 0.3","text":"CRAN release: 2009-05-29","code":"- fixed EB.global function to include prior probabilities on models - fixed update function"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-02","dir":"Changelog","previous_headings":"","what":"BAS 0.2","title":"BAS 0.2","text":"column ones intercept optionally included. - fixed help file predict - added modelprior argument bas.lm users may now use beta-binomial prior distribution model size addition default uniform distribution - added functions uniform(), beta-binomial() Bernoulli() create model prior objects - added vector user specified initial probabilities option argument initprobs bas.lm removed separate argument user.prob","code":"- fixed predict.bma to allow newdata to be a matrix or vector with the"}] +[{"path":[]},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"interest fostering open welcoming environment, contributors maintainers pledge making participation project community harassment-free experience everyone, regardless age, body size, disability, ethnicity, gender identity expression, level experience, nationality, personal appearance, race, religion, sexual identity orientation.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes creating positive environment include: Using welcoming inclusive language respectful differing viewpoints experiences Gracefully accepting constructive criticism Focusing best community Showing empathy towards community members Examples unacceptable behavior participants include: use sexualized language imagery unwelcome sexual attention advances Trolling, insulting/derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical electronic address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"our-responsibilities","dir":"","previous_headings":"","what":"Our Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Project maintainers responsible clarifying standards acceptable behavior expected take appropriate fair corrective action response instances unacceptable behavior. Project maintainers right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, ban temporarily permanently contributor behaviors deem inappropriate, threatening, offensive, harmful.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within project spaces public spaces individual representing project community. Examples representing project community include using official project e-mail address, posting via official social media account, acting appointed representative online offline event. Representation project may defined clarified project maintainers.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported contacting project team clyde@duke.edu. project team review investigate complaints, respond way deems appropriate circumstances. project team obligated maintain confidentiality regard reporter incident. details specific enforcement policies may posted separately. Project maintainers follow enforce Code Conduct good faith may face temporary permanent repercussions determined members project’s leadership.","code":""},{"path":"http://merliseclyde.github.io/BAS/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 1.4, available http://contributor-covenant.org/version/1/4","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to BAS development","title":"Contributing to BAS development","text":"goal guide help contribute BAS. guide divided three main pieces: Filing bug report feature request issue Github. Suggesting change via pull request. Coding Style Guide Contributions BAS","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"feature-requests","dir":"","previous_headings":"Issues","what":"Feature Requests","title":"Contributing to BAS development","text":"wish easily extract additional information BAS objects ? like see new functionality available BAS? , feel free fill feature request! Please describe much detail like added. can anything just idea code advanced user!","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"bug-reports","dir":"","previous_headings":"Issues","what":"Bug Reports","title":"Contributing to BAS development","text":"filing bug report issue, important thing include minimal reproducible example can quickly verify problem, figure fix . three things need include make example reproducible: required packages, data, code. Packages loaded top script, ’s easy see ones example needs. easiest way include data use dput() generate R code recreate . example, recreate mtcars dataset R, ’d perform following steps: Run dput(mtcars) R Copy output reproducible script, type mtcars <- paste. even better can create data.frame() just handful rows columns still illustrates problem. Spend little bit time ensuring code easy others read: make sure ’ve used spaces variable names concise, informative (OK using “.”, camel case “_” variable names improve readibility. details see Style Guide use comments indicate problem lies best remove everything related problem. shorter code , easier understand. can check actually made reproducible example starting fresh R session pasting script . (Unless ’ve specifically asked , please don’t include output sessionInfo().)","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"other-issues","dir":"","previous_headings":"Issues","what":"Other issues","title":"Contributing to BAS development","text":"sure something bug undocumented feature, see possible errors help files documentation use clarification (issue) please file regular issue","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"pull-requests","dir":"","previous_headings":"","what":"Pull requests","title":"Contributing to BAS development","text":"contribute change BAS, follow steps: Create branch git make changes, ideally using commit -s sign-commits Developer Certificate Origin. Make sure branch passes R CMD check. Push branch github issue pull request (PR). Discuss pull request. Iterate either accept PR decide ’s good fit BAS. steps described detail . might feel overwhelming first time get set , gets easier practice. get stuck point, please reach help. ’re familiar git github, please start reading http://r-pkgs..co.nz/git.html Pull requests evaluated following checklist: Motivation. pull request clearly concisely motivates need change. Please describe problem show pull request solves concisely possible. Also include motivation NEWS new release BAS comes ’s easy users see ’s changed. Add item top file use markdown formatting. news item end (@yourGithubUsername, #the_issue_number). related changes. submit pull request, please check make sure haven’t accidentally included unrelated changes. make harder see exactly ’s changed, evaluate unexpected side effects. PR corresponds git branch, expect submit multiple changes make sure create multiple branches. multiple changes depend , start first one don’t submit others first one processed. Document ’re adding new parameters new function, ’ll also need document roxygen. Please add short example appropriate function optionally package vignettes. Make sure re-run devtools::document() code submitting. (sure include name authors function!) Testing fixing bug adding new feature, add testthat unit test. seems like lot work don’t worry pull request isn’t perfect. ’s learning process hand help . pull request process, unless ’ve submitted past ’s unlikely pull request accepted . Please don’t submit pull requests change existing behaviour. Instead, think can add new feature minimally invasive way.","code":""},{"path":"http://merliseclyde.github.io/BAS/CONTRIBUTING.html","id":"style-guide-for-contributing-to-bas","dir":"","previous_headings":"","what":"Style Guide for Contributing to BAS","title":"Contributing to BAS development","text":"consistent style improves readibility code. wed particular style generally draw Google Style Guide well Hadley Wickham’s Style Guide noted . Using package styler enforce styling based TidyVerse helpful, required. Function Variable names: Use informative names using “.”, camel case, “_” improve readibility, .e. variable.name, VariableName variable_name, rather foo xxx. tend avoid _ historical reasons going back S. Assignment: Use either <- = assignment consistent within contribution. many style guides prefer <- suggest using styler enforce use <-, OK = shorter type! Just consistent within contributed code. Spaces: Include spaces around operators =, +, -, <-, == etc improve readibility. Put space comman, . : :: never spaces around . Additional spaces newlines fine improve readibilty code (e.g. aligmnent arguments). Comments: Comment code whenever can. Explain clear code. Use # start comment followed space capitalize first letter; short inline comments (comments line code) need two spaces # Curly Braces: opening curly brace never go line, closing curly brace go line. exception short conditional statement shuch else code may fit one line. Indentation: Use 2 spaces rather tabs per level indentation. Indent code inside curly braces. Semi-colons: use semi-colons put one statement line. Line Length: Use 80 characters per line code. RStudio setting display vertical line 80 characters visually assist . Turn going Tools -> Global Options… -> Code -> Display -> Show margin File names R code informative end .R. Use - improve readibility. include spaces file names! Contributing adopted ggplot2’s CONTRIBUTING.md","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"supported-versions","dir":"","previous_headings":"","what":"Supported Versions","title":"Security Policy","text":"Supported security updates.","code":""},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"reporting-a-vulnerability","dir":"","previous_headings":"","what":"Reporting a Vulnerability","title":"Security Policy","text":"Please submit vulnerability reports Github Issues maintainers address soon possibl","code":""},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"expectations","dir":"","previous_headings":"","what":"Expectations","title":"Security Policy","text":"package utilizes C code efficiency allocates/frees memory. package checked memory leaks prior releases CRAN using ASAN/UBSBAN. package distributed via CRAN https://CRAN.R-project.org/package=bark reports additional checks. development version may installed GitHub https://github.com/merliseclyde/bark checked via github actions (users may check current version passing badge installing) Bugs reported via Issue tracker handled soon possible. (See link )","code":""},{"path":"http://merliseclyde.github.io/BAS/SECURITY.html","id":"assurance","dir":"","previous_headings":"","what":"Assurance","title":"Security Policy","text":"highly unlikely malicious code added package. submissions CRAN require verification via maintainer’s email, protected via two factor authentication. pull requests contributions github verified lead maintainer. Based Code Conduct Contributing Guidelines modifications include unit tests cover additional code blocks.","code":""},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"installing-bas","dir":"Articles","previous_headings":"","what":"Installing BAS","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"stable version can installed easily R console like package: hand, welcome everyone use recent version package quick-fixes, new features probably new bugs. get latest development version GitHub, use devtools package CRAN enter R: package depend BLAS LAPACK, installing GitHub require FORTRAN C compilers system.","code":"install.packages(\"BAS\") devtools::install_github(\"merliseclyde/BAS\")"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"demo","dir":"Articles","previous_headings":"","what":"Demo","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"use UScrime data illustrate commands functionality. Following analyses, go ahead log transform variables except column 2, indicator variable state southern state. get started, use BAS Zellner-Siow Cauchy prior coefficients. BAS uses model formula similar lm specify full model potential predictors. using shorthand . indicate remaining variables data frame provided data argument. Different prior distributions regression coefficients may specified using prior argument, include “BIC” “AIC “g-prior” “hyper-g” “hyper-g-laplace” “hyper-g-n” “JZS” “ZS-null” “ZS-full” “EB-local” “EB-global” default Zellner-Siow prior, ZS-null, Bayes factors compared null model. newest prior option, “JZS”, also corresponds Zellner-Siow prior coefficients, uses numerical integration rather Laplace approximation obtain marginal likelihood models. default, BAS try enumerate models \\(p < 19\\) using default method=\"BAS\". prior distribution models uniform() distribution assigns equal probabilities models. last optional argument initprobs = eplogp provides way initialize sampling algorithm order variables tree structure represents model space BAS. eplogp option uses Bayes factor calibration p-values \\(-e p \\log(p)\\) provide approximation marginal inclusion probability coefficient predictor zero, using p-values full model. options initprobs include “marg-eplogp”” “uniform” numeric vector length p option “marg-eplogp” uses p-values \\(p\\) simple linear regressions (useful large p highly correlated variables). Since enumerating possible models options important method=\"deterministic\" may faster factors interactions model.","code":"data(UScrime, package = \"MASS\") UScrime[, -2] <- log(UScrime[, -2]) library(BAS) crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), initprobs = \"eplogp\", force.heredity = FALSE, pivot = TRUE )"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"plots","dir":"Articles","previous_headings":"","what":"Plots","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"graphical summaries output may obtained plot function produces panel four plots. first plot residuals fitted values Bayesian Model Averaging. Ideally, model assumptions hold, see outliers non-constant variance. second plot shows cumulative probability models order sampled. plot indicates cumulative probability leveling additional model adds small increment cumulative probability, earlier, larger jumps corresponding discovering new high probability model. third plot shows dimension model (number regression coefficients including intercept) versus log marginal likelihood model. last plot shows marginal posterior inclusion probabilities (pip) covariates, marginal pips greater 0.5 shown red. variables pip > 0.5 correspond known median probability model. Variables high inclusion probabilities generally important explaining data prediction, marginal inclusion probabilities may small predictors highly correlated, similar p-values may large presence multicollinearity. Individual plots may obtained using option. BAS print summary methods defined objects class bas. Typing objects name returns summary marginal inclusion probabilities, summary function provides list top 5 models (terms posterior probability) zero-one indicators variable inclusion. columns summary Bayes factor model highest probability model (hence Bayes factor 1), posterior probabilities models, ordinary \\(R^2\\) models, dimension models (number coefficients including intercept) log marginal likelihood selected prior distribution.","code":"plot(crime.ZS, ask = F) plot(crime.ZS, which = 4, ask = FALSE, caption = \"\", sub.caption = \"\") crime.ZS ## ## Call: ## bas.lm(formula = y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), ## initprobs = \"eplogp\", force.heredity = FALSE, pivot = TRUE) ## ## ## Marginal Posterior Inclusion Probabilities: ## Intercept M So Ed Po1 Po2 LF ## 1.0000 0.8536 0.2737 0.9747 0.6652 0.4490 0.2022 ## M.F Pop NW U1 U2 GDP Ineq ## 0.2050 0.3696 0.6944 0.2526 0.6149 0.3601 0.9965 ## Prob Time ## 0.8992 0.3718 options(width = 80) summary(crime.ZS) ## P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5 ## Intercept 1.0000000 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## M 0.8535720 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## So 0.2737083 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## Ed 0.9746605 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## Po1 0.6651553 1.00000 1.0000000 0.0000000 1.000000 1.0000000 ## Po2 0.4490097 0.00000 0.0000000 1.0000000 0.000000 0.0000000 ## LF 0.2022374 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## M.F 0.2049659 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## Pop 0.3696150 0.00000 0.0000000 0.0000000 1.000000 0.0000000 ## NW 0.6944069 1.00000 1.0000000 1.0000000 1.000000 0.0000000 ## U1 0.2525834 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## U2 0.6149388 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## GDP 0.3601179 0.00000 0.0000000 0.0000000 0.000000 0.0000000 ## Ineq 0.9965359 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## Prob 0.8991841 1.00000 1.0000000 1.0000000 1.000000 1.0000000 ## Time 0.3717976 1.00000 0.0000000 0.0000000 0.000000 0.0000000 ## BF NA 1.00000 0.9416178 0.6369712 0.594453 0.5301269 ## PostProbs NA 0.01820 0.0172000 0.0116000 0.010800 0.0097000 ## R2 NA 0.84200 0.8265000 0.8229000 0.837500 0.8046000 ## dim NA 9.00000 8.0000000 8.0000000 9.000000 7.0000000 ## logmarg NA 23.65111 23.5909572 23.2000822 23.130999 23.0164741"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"visualization-of-the-model-space","dir":"Articles","previous_headings":"","what":"Visualization of the Model Space","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"see beyond first five models, can represent collection models via image plot. default shows top 20 models. image rows correspond variables intercept, labels variables y-axis. x-axis corresponds possible models. sorted posterior probability best left worst right rank top x-axis. column represents one 16 models. variables excluded model shown black column, variables included colored, color related log posterior probability. color column proportional log posterior probabilities (lower x-axis) model. log posterior probabilities actually scaled 0 corresponds lowest probability model top 20, values axis correspond log Bayes factors comparing model lowest probability model top 20 models. Models color similar log Bayes factors allows us view models clustered together Bayes Factors differences “worth bare mention”. plot indicates police expenditure two years enter model together, indication high correlation two variables.","code":"image(crime.ZS, rotate = F)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"posterior-distributions-of-coefficients","dir":"Articles","previous_headings":"","what":"Posterior Distributions of Coefficients","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"examine marginal distributions two coefficients police expenditures, can extract coefficients estimates standard deviations BMA. optional argument, n.models coef use top n.models BMA may computationally efficient large problems. Plots posterior distributions averaging models obtained using plot method bas coefficient object. vertical bar represents posterior probability coefficient 0 bell shaped curve represents density plausible values models coefficient non-zero. scaled height density non-zero values probability coefficient non-zero. Omitting subset argument provides marginal distributions. obtain credible intervals coefficients, BAS includes confint method create Highest Posterior Density intervals summaries coef. third column posterior mean. uses Monte Carlo sampling draw mixture model coefficient models sampled based posterior probabilities. can also plot via using parm argument select coefficients plot (intercept parm=1). estimation selection, BAS supports additional arguments via estimator. default estimator=\"BMA\" uses models n.models. options include estimation highest probability model median probability model variables excluded distributions point masses zero selection.","code":"coef.ZS <- coef(crime.ZS) plot(coef.ZS, subset = c(5:6), ask = F) confint(coef.ZS) ## 2.5% 97.5% beta ## Intercept 6.670469697 6.785152320 6.72493620 ## M 0.000000000 2.202308895 1.14359433 ## So -0.056058236 0.301798257 0.03547522 ## Ed 0.665575996 3.213773443 1.85848834 ## Po1 0.000000000 1.450391161 0.60067372 ## Po2 -0.221171926 1.458348086 0.31841766 ## LF -0.403621472 1.124187338 0.05933737 ## M.F -2.192806188 2.172851229 -0.02702786 ## Pop -0.124776006 0.008026921 -0.02248283 ## NW 0.000000000 0.167554995 0.06668437 ## U1 -0.493080018 0.390273539 -0.02456854 ## U2 -0.003165238 0.659330844 0.20702927 ## GDP -0.062907223 1.218823142 0.20625063 ## Ineq 0.695530392 2.143256295 1.39012647 ## Prob -0.414228765 0.000000000 -0.21536203 ## Time -0.522037075 0.058013400 -0.08433479 ## attr(,\"Probability\") ## [1] 0.95 ## attr(,\"class\") ## [1] \"confint.bas\" plot(confint(coef.ZS, parm = 2:16)) ## NULL plot(confint(coef(crime.ZS, estimator = \"HPM\"))) ## NULL plot(confint(coef(crime.ZS, estimator = \"MPM\")))"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"prediction","dir":"Articles","previous_headings":"","what":"Prediction","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS methods defined return fitted values, fitted, using observed design matrix predictions either observed data potentially new values, predict, lm. Plotting two sets fitted values, see perfect agreement. always case posterior mean regression mean function point \\(x\\) expected posterior predictive value \\(Y\\) \\(x\\). true estimators BMA, expected values model selection.","code":"muhat.BMA <- fitted(crime.ZS, estimator = \"BMA\") BMA <- predict(crime.ZS, estimator = \"BMA\") # predict has additional slots for fitted values under BMA, predictions under each model names(BMA) ## [1] \"fit\" \"Ybma\" \"Ypred\" \"postprobs\" \"se.fit\" ## [6] \"se.pred\" \"se.bma.fit\" \"se.bma.pred\" \"df\" \"best\" ## [11] \"bestmodel\" \"best.vars\" \"estimator\" par(mar = c(9, 9, 3, 3)) plot(muhat.BMA, BMA$fit, pch = 16, xlab = expression(hat(mu[i])), ylab = expression(hat(Y[i])) ) abline(0, 1)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"inference-with-model-selection","dir":"Articles","previous_headings":"Prediction","what":"Inference with model selection","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"addition using BMA, can use posterior means model selection. corresponds decision rule combines estimation selection. BAS currently implements following options highest probability model: little interpretable version names: median probability model: model predictors inclusion probability greater equal 0.5. coincides HPM predictors mutually orthogonal, case best predictive model squared error loss. Note can also extract best model attribute fitted values well. best predictive model: general, HPM MPM best predictive models, Bayesian decision theory perspective model closest BMA predictions squared error loss. Let’s see compare: Using se.fit = TRUE option predict can also calculate standard deviations prediction mean use input confint function prediction object. prediction new points, can supply new dataframe predict function lm.","code":"HPM <- predict(crime.ZS, estimator = \"HPM\") # show the indices of variables in the best model where 0 is the intercept HPM$bestmodel ## [1] 0 1 3 4 9 11 13 14 15 variable.names(HPM) ## [1] \"Intercept\" \"M\" \"Ed\" \"Po1\" \"NW\" \"U2\" ## [7] \"Ineq\" \"Prob\" \"Time\" MPM <- predict(crime.ZS, estimator = \"MPM\") variable.names(MPM) ## [1] \"Intercept\" \"M\" \"Ed\" \"Po1\" \"NW\" \"U2\" ## [7] \"Ineq\" \"Prob\" BPM <- predict(crime.ZS, estimator = \"BPM\") variable.names(BPM) ## [1] \"Intercept\" \"M\" \"So\" \"Ed\" \"Po1\" \"Po2\" ## [7] \"M.F\" \"NW\" \"U2\" \"Ineq\" \"Prob\" GGally::ggpairs(data.frame( HPM = as.vector(HPM$fit), # this used predict so we need to extract fitted values MPM = as.vector(MPM$fit), # this used fitted BPM = as.vector(BPM$fit), # this used fitted BMA = as.vector(BMA$fit) )) # this used predict BPM <- predict(crime.ZS, estimator = \"BPM\", se.fit = TRUE) crime.conf.fit <- confint(BPM, parm = \"mean\") crime.conf.pred <- confint(BPM, parm = \"pred\") plot(crime.conf.fit) ## NULL plot(crime.conf.pred) ## NULL new.pred <- predict(crime.ZS, newdata = UScrime, estimator = \"MPM\")"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"alternative-algorithms","dir":"Articles","previous_headings":"","what":"Alternative algorithms","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS several options sampling model space without enumeration. (current) default method=\"BAS\" samples models without replacement using estimates marginal inclusion probabilities using algorithm described Clyde et al (2011). initial sampling probabilities provided initprobs updated based sampled models, every update iterations. can efficient cases large fraction model space sampled, however, cases high correlation large number predictors, can lead biased estimates Clyde Ghosh (2012), case MCMC preferred. method=\"MCMC\" described better large \\(p\\). deterministic sampling scheme also available enumeration; faster enumeration default method=“BAS”.","code":"system.time( for (i in 1:10) { crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", method = \"BAS\", modelprior = uniform(), initprobs = \"eplogp\" ) } ) ## user system elapsed ## 1.375 0.003 1.378 system.time( for (i in 1:10) { crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", method = \"deterministic\", modelprior = uniform(), initprobs = \"eplogp\" ) } ) ## user system elapsed ## 1.278 0.008 1.285"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"beyond-enumeration","dir":"Articles","previous_headings":"","what":"Beyond Enumeration","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"Many problems large enumerate possible models. cases may use method=\"BAS\" sample without replacement method=\"MCMC\" option sample models using Markov Chain Monte Carlo sampling sample models based posterior probabilities. spaces number models greatly exceeds number models sample, MCMC option recommended provides estimates low bias compared sampling without replacement BAS (Clyde Ghosh 2011). run MCMC sampler number unique sampled models exceeds n.models \\(2^p\\) (\\(p < 19\\)) default MCMC.iterations exceeded, MCMC.iterations = n.models*2 default.","code":"crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), method = \"MCMC\" )"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"estimates-of-marginal-posterior-inclusion-probabilities-pip","dir":"Articles","previous_headings":"Beyond Enumeration","what":"Estimates of Marginal Posterior Inclusion Probabilities (pip)","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"MCMC sampling two estimates marginal inclusion probabilities: object$probne0 obtained using re-normalized posterior odds sampled models estimate probabilities estimates based Monte Carlo frequencies object$probs.MCMC. close agreement MCMC sampler run enough iterations. BAS includes diagnostic function compare two sets estimates posterior inclusion probabilities posterior model probabilities left hand plot pips, point represents one posterior inclusion probability 15 variables estimated two methods. two estimators pretty close agreement. plot model probabilities suggests use MCMC.iterations want accurate estimates posterior model probabilities.","code":"diagnostics(crime.ZS, type = \"pip\", pch = 16) diagnostics(crime.ZS, type = \"model\", pch = 16) crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), method = \"MCMC\", MCMC.iterations = 10^6 ) diagnostics(crime.ZS, type=\"model\", pch=16)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"outliers","dir":"Articles","previous_headings":"","what":"Outliers","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS can also used exploring mean shift variance inflation outliers adding indicator variables case outlier (mean given regression) . similar MC3.REG function BMA, although using g-prior mixture g-priors coefficients outlier means. Using Stackloss data, can add identify matrix original dataframe, column indicator ith variable outlier. call introduces using truncated prior distributions model space; case distribution number variables included Poisson distribution, mean 4 (truncation), truncation point 10, models 10 (one half cases rounded ) probability zero. avoids exploration models full rank. Looking summaries","code":"data(\"stackloss\") stackloss <- cbind(stackloss, diag(nrow(stackloss))) stack.bas <- bas.lm(stack.loss ~ ., data = stackloss, method = \"MCMC\", initprobs = \"marg-eplogp\", prior = \"ZS-null\", modelprior = tr.poisson(4, 10), MCMC.iterations = 200000 ) knitr::kable(as.data.frame(summary(stack.bas)))"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"factors-and-hierarchical-heredity","dir":"Articles","previous_headings":"","what":"Factors and Hierarchical Heredity","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS now includes constraints factors terms represent factor either included excluded together. illustrate, use data set ToothGrowth convert dose factor: fit model main effects two way interaction without constraints: image model space, see levels factor enter drop model independently interactions may included without main effects. may lead parsimonious models, however, hypotheses tested coefficients represent factor depend choice reference group. force levels factor enter leave together can use force.heredity = TRUE. force.heredity option also forces interactions included main effects also included, models several factors higher order interactions, heredity constraint implies lower order interactions must included adding higher order interactions. force.heredity set FALSE sampling methods MCMC+BAS deterministic. 20 predictors factors, recommend using MCMC enforce constraints. Alternatively, function, force.heredity.bas, post-process output drop models violate hierarchical heredity constraint: can used sampling methods.","code":"data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c(\"Low\", \"Medium\", \"High\") TG.bas <- bas.lm(len ~ supp*dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\" ) image(TG.bas) TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\", force.heredity = TRUE ) image(TG.bas) TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\", force.heredity = FALSE ) TG.herid.bas <- force.heredity.bas(TG.bas)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"weighted-regression","dir":"Articles","previous_headings":"","what":"Weighted Regression","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS can perform weighted regression supplying optional weight vector length response assumption variance response proportional 1/weights. g-prior incorporates weights prior covariance, \\[ \\sigma^2 g (X_\\gamma^T W X_\\gamma)^{-1} \\] \\(X_\\gamma\\) design matrix model \\(\\gamma\\) \\(W\\) \\(n \\times n\\) diagonal matrix weights diagonal. illustrate, use climate data, available url includes measurements changes temperature (deltaT) various latitudes well measure accuracy measured values sdev 8 different types proxy obtaining measurements. use explore weighted regression option group terms factors poly. illustration purposes, eliminate proxy == 6 one level interactions estimable, convert proxy factor. can fit weighted regression weights = 1/sdev^2 following code Examining image top models, see levels factor enter drop model together, well vectors design matrix represent term poly. Rerunning without constraint, allows one see factors levels different reference group.","code":"data(climate, package=\"BAS\") str(climate) ## 'data.frame': 63 obs. of 5 variables: ## $ deltaT : num -2.6 -2.6 -2.9 -2.4 -2.8 -1.2 -2.4 -2.6 -2.4 -2.5 ... ## $ sdev : num 0.7 0.8 0.9 0.7 0.7 0.3 1.3 1.3 1.3 0.5 ... ## $ proxy : int 1 1 1 1 1 1 1 1 1 1 ... ## $ T.M : int 1 1 1 1 1 1 1 1 1 1 ... ## $ latitude: num 2.5 2.2 0.5 0.3 0.2 -1.1 5.2 11.4 14.6 6.3 ... summary(climate) ## deltaT sdev proxy T.M ## Min. :-7.000 Min. :0.1500 Min. :1.000 Min. :0.0000 ## 1st Qu.:-3.900 1st Qu.:0.5000 1st Qu.:2.000 1st Qu.:1.0000 ## Median :-2.900 Median :0.7000 Median :3.000 Median :1.0000 ## Mean :-3.111 Mean :0.8579 Mean :3.333 Mean :0.8254 ## 3rd Qu.:-2.000 3rd Qu.:1.3000 3rd Qu.:5.000 3rd Qu.:1.0000 ## Max. : 0.200 Max. :2.5000 Max. :8.000 Max. :1.0000 ## latitude ## Min. :-22.500 ## 1st Qu.: -3.450 ## Median : 0.200 ## Mean : 2.187 ## 3rd Qu.: 9.700 ## Max. : 29.000 library(dplyr) climate <- filter(climate, proxy != 6) %>% mutate(proxy = factor(proxy)) climate.bas <- bas.lm(deltaT ~ proxy * poly(latitude, 2), data = climate, weights = 1 / sdev^2, prior = \"hyper-g-n\", alpha = 3.0, n.models = 2^20, force.heredity=TRUE, modelprior = uniform() ) image(climate.bas, rotate = F) # May take a while to enumerate all 2^20 models climate.bas <- bas.lm(deltaT ~ proxy * poly(latitude, 2), data = climate, weights = 1 / sdev^2, prior = \"hyper-g-n\", alpha = 3.0, n.models = 2^20, modelprior = uniform(), force.heredity = FALSE ) image(climate.bas)"},{"path":"http://merliseclyde.github.io/BAS/articles/BAS-vignette.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Using the Bayesian Adaptive Sampling (BAS) Package for Bayesian Model Averaging and Variable Selection","text":"BAS includes prior distributions coefficients models, well bas.glm fitting Generalized Linear Models. syntax bas.glm bas.lm yet , particularly priors coefficients represented, please see documentation features details updated another vignette added! issues feature requests please submit via package’s github page merliseclyde/BAS","code":""},{"path":"http://merliseclyde.github.io/BAS/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Merlise Clyde. Author, maintainer, copyright holder. ORCID=0000-0002-3595-1872 Michael Littman. Contributor. Joyee Ghosh. Contributor. Yingbo Li. Contributor. Betsy Bersson. Contributor. Don van de Bergh. Contributor. Quanli Wang. Contributor.","code":""},{"path":"http://merliseclyde.github.io/BAS/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Clyde, Merlise (2023) BAS: Bayesian Variable Selection Model Averaging using Bayesian Adaptive Sampling, R package version 1.7.1.9000","code":"@Manual{, title = {{BAS}: Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling}, author = {Merlise Clyde}, year = {2023}, note = {R package version 1.7.1.9000}, }"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"bas-bayesian-variable-selection-and-model-averaging-using-bayesian-adaptive-sampling","dir":"","previous_headings":"","what":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"BAS R package designed provide easy use package fast code implementing Bayesian Model Averaging Model Selection R using state art prior distributions linear generalized linear models. prior distributions BAS based Zellner’s g-prior mixtures g-priors linear generalized linear models. shown consistent asymptotically model selection inference number computational advantages. BAS implements three main algorithms sampling space potential models: deterministic algorithm efficient enumeration, adaptive sampling without replacement algorithm modest problems, MCMC algorithm utilizes swapping escape local modes standard Metropolis-Hastings proposals.","code":""},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"stable version can installed easily R console like package: hand, welcome everyone use recent version package quick-fixes, new features probably new bugs. ’s currently hosted GitHub. get latest development version GitHub, use devtools package CRAN enter R: can check current build status installing. Installing package source require compilation C FORTRAN code library makes use BLAS LAPACK efficient model fitting. See CRAN manuals installing packages source different operating systems.","code":"install.packages('BAS') devtools::install_github('merliseclyde/BAS')"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"begin load package: two main function BAS bas.lm bas.glm implementing Bayesian Model Averaging Variable Selection using Zellner’s g-prior mixtures g priors. functions syntax similar lm glm functions respectively. illustrate using BAS simple example famous Hald data set using Zellner-Siow Cauchy prior via BAS summary, plot coef, predict fitted functions like lm/glm functions. Images model space highlighting variable important may obtained via Run demo(\"BAS.hald\") demo(\"BAS.USCrime\") see package vignette examples options using MCMC model spaces enumerated.","code":"library(BAS) data(Hald) hald.ZS = bas.lm(Y ~ ., data=Hald, prior=\"ZS-null\", modelprior=uniform(), method=\"BAS\") image(hald.ZS)"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"generalized-linear-models","dir":"","previous_headings":"Usage","what":"Generalized Linear Models","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"BAS now includes support binomial binary regression, Poisson regression, Gamma regression using Laplace approximations obtain Bayes Factors used calculating posterior probabilities models sampling models. example using Pima diabetes data set hyper-g/n prior: Note, syntax specifying priors coefficients bas.glm uses function arguments specify hyper-parameters, rather text string specify prior name separate argument hyper-parameters. bas.lm moving format sometime future.","code":"library(MASS) data(Pima.tr) Pima.hgn = bas.glm(type ~ ., data=Pima.tr, method=\"BAS\", family=binomial(), betaprior=hyper.g.n(), modelprior=uniform())"},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"feature-requests-and-issues","dir":"","previous_headings":"","what":"Feature Requests and Issues","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"Feel free report issues request features added via github issues page. current documentation vignettes see BAS website","code":""},{"path":"http://merliseclyde.github.io/BAS/index.html","id":"support","dir":"","previous_headings":"Feature Requests and Issues","what":"Support","title":"Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling","text":"material based upon work supported National Science Foundation Grant DMS-1106891. opinions, findings, conclusions recommendations expressed material author(s) necessarily reflect views National Science Foundation.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":null,"dir":"Reference","previous_headings":"","what":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"Implementation Bayesian Model Averaging linear models using stochastic deterministic sampling without replacement posterior distributions. Prior distributions coefficients form Zellner's g-prior mixtures g-priors. Options include Zellner-Siow Cauchy Priors, Liang et al hyper-g priors, Local Global Empirical Bayes estimates g, default model selection criteria AIC BIC. Sampling probabilities may updated based sampled models.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049 Clyde, M. George, E. . (2004) Model uncertainty. Statist. Sci., 19, 81-94. doi:10.1214/088342304000000035 Clyde, M. (1999) Bayesian Model Averaging Model Search Strategies (discussion). Bayesian Statistics 6. J.M. Bernardo, .P. Dawid, J.O. Berger, .F.M. Smith eds. Oxford University Press, pages 157-185. Li, Y. Clyde, M. (2018) Mixtures g-priors Generalized Linear Models. Journal American Statistical Association, 113:524, 1828-1845 doi:10.1080/01621459.2018.1469992 Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2008) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"Merlise Clyde, Maintainer: Merlise Clyde ","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/BAS.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BAS: Bayesian Model Averaging using Bayesian Adaptive Sampling — BAS","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y ~ ., data=Hald, alpha=13, prior=\"g-prior\") # more complete demos demo(BAS.hald) #> #> #> \tdemo(BAS.hald) #> \t---- ~~~~~~~~ #> #> > data(Hald) #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"g-prior\", alpha=13, #> + modelprior=beta.binomial(1,1), #> + initprobs=\"eplogp\") #> #> > hald.gprior #> #> Call: #> bas.lm(formula = Y ~ ., data = Hald, prior = \"g-prior\", alpha = 13, #> modelprior = beta.binomial(1, 1), initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept X1 X2 X3 X4 #> 1.0000 0.9019 0.6896 0.4653 0.6329 #> #> > plot(hald.gprior) #> #> > summary(hald.gprior) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5 #> Intercept 1.0000000 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X1 0.9019245 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X2 0.6895830 1.00000 0.0000000 1.00000000 1.0000000 1.0000000 #> X3 0.4652762 0.00000 0.0000000 1.00000000 0.0000000 1.0000000 #> X4 0.6329266 0.00000 1.0000000 1.00000000 1.0000000 0.0000000 #> BF NA 1.00000 0.6923944 0.08991408 0.3355714 0.3344926 #> PostProbs NA 0.24320 0.1684000 0.13120000 0.1224000 0.1220000 #> R2 NA 0.97870 0.9725000 0.98240000 0.9823000 0.9823000 #> dim NA 3.00000 3.0000000 5.00000000 4.0000000 4.0000000 #> logmarg NA 11.72735 11.3597547 9.31845348 10.6354335 10.6322138 #> #> > image(hald.gprior, subset=-1, vlas=0) #> #> > hald.coef = coefficients(hald.gprior) #> #> > hald.coef #> #> Marginal Posterior Summaries of Coefficients: #> #> Using BMA #> #> Based on the top 16 models #> post mean post SD post p(B != 0) #> Intercept 95.4231 0.7107 1.0000 #> X1 1.2150 0.5190 0.9019 #> X2 0.2756 0.4832 0.6896 #> X3 -0.1271 0.4976 0.4653 #> X4 -0.3269 0.4717 0.6329 #> #> > plot(hald.coef) #> #> > predict(hald.gprior, top=5, se.fit=TRUE) #> $fit #> [1] 79.74246 74.50010 105.29268 89.88693 95.57177 104.56409 103.40145 #> [8] 77.13668 91.99731 114.21325 82.78446 111.00723 110.40160 #> #> $Ybma #> [,1] #> [1,] 79.74246 #> [2,] 74.50010 #> [3,] 105.29268 #> [4,] 89.88693 #> [5,] 95.57177 #> [6,] 104.56409 #> [7,] 103.40145 #> [8,] 77.13668 #> [9,] 91.99731 #> [10,] 114.21325 #> [11,] 82.78446 #> [12,] 111.00723 #> [13,] 110.40160 #> #> $Ypred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 81.17036 74.83464 105.0725 89.69881 97.15898 104.4575 103.3893 76.06454 #> [2,] 77.70296 74.24113 105.8554 90.46267 93.09565 104.7152 103.1399 78.80193 #> [3,] 79.70437 74.40553 105.2175 89.76253 95.63309 104.5709 103.5254 77.08557 #> [4,] 79.65151 74.47846 105.4218 89.83174 95.62799 104.5962 103.5068 77.00839 #> [5,] 79.84321 74.31409 104.9063 89.65651 95.70301 104.5285 103.5476 77.15919 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 91.57174 113.1722 81.59906 111.2219 111.0884 #> [2,] 92.68123 115.8058 84.50293 110.4162 109.0791 #> [3,] 91.98604 114.1759 82.78145 111.1196 110.5321 #> [4,] 92.07571 114.1088 82.68233 111.0429 110.4674 #> [5,] 91.83513 114.2353 82.88128 111.2384 110.6515 #> #> $postprobs #> [1] 0.3089304 0.2139017 0.1666632 0.1555023 0.1550024 #> #> $se.fit #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 2.220164 2.265862 1.546911 2.181188 1.310135 1.523300 2.655096 2.176560 #> [2,] 2.716798 2.389723 1.633637 2.179215 1.321062 1.581232 2.721957 2.078129 #> [3,] 3.203405 2.501485 3.279273 2.357164 2.589756 1.549136 2.623290 2.765255 #> [4,] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [5,] 2.932580 2.353352 1.538009 2.141694 2.507848 1.498758 2.616407 2.680289 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 1.883610 3.264656 1.908238 1.970691 2.054234 #> [2,] 2.013244 3.298134 1.933819 1.964374 1.924460 #> [3,] 2.353516 3.609909 2.821295 2.227363 2.390135 #> [4,] 1.990817 3.485929 2.456636 1.951456 2.212238 #> [5,] 1.889302 3.569065 2.665166 1.934336 2.117189 #> #> $se.pred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 5.057182 5.077410 4.799885 5.040193 4.728892 4.792328 5.262651 5.038191 #> [2,] 5.415848 5.259391 4.961773 5.167146 4.867815 4.944766 5.418438 5.125333 #> [3,] 5.489152 5.111401 5.533771 5.042342 5.155175 4.718984 5.172102 5.245534 #> [4,] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [5,] 5.337427 5.042456 4.717369 4.947217 5.116386 4.704719 5.170463 5.203081 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 4.918734 5.594992 4.928218 4.952735 4.986566 #> [2,] 5.099370 5.729582 5.068538 5.080274 5.064974 #> [3,] 5.040638 5.735890 5.275291 4.982985 5.057839 #> [4,] 4.882702 5.659428 5.090431 4.866787 4.977090 #> [5,] 4.843301 5.711946 5.195307 4.861045 4.936658 #> #> $se.bma.fit #> [1] 2.688224 2.095245 1.769625 1.970919 2.197285 1.363804 2.356457 2.302631 #> [9] 1.822084 3.141443 2.237663 1.801849 1.991374 #> #> $se.bma.pred #> [1] 4.838655 4.536087 4.395180 4.480017 4.584113 4.248058 4.662502 4.635531 #> [9] 4.416563 5.104380 4.603604 4.408253 4.489054 #> #> $df #> [1] 12 12 12 12 12 #> #> $best #> [1] 5 7 2 16 10 #> #> $bestmodel #> $bestmodel[[1]] #> [1] 0 1 2 #> #> $bestmodel[[2]] #> [1] 0 1 4 #> #> $bestmodel[[3]] #> [1] 0 1 2 3 4 #> #> $bestmodel[[4]] #> [1] 0 1 2 4 #> #> $bestmodel[[5]] #> [1] 0 1 2 3 #> #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X3\" \"X4\" #> #> $estimator #> [1] \"BMA\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"BMA\", se.fit=TRUE, top=5), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 73.18322 86.17009 79.74246 #> [2,] 69.36439 79.59588 74.50010 #> [3,] 101.11460 109.66757 105.29268 #> [4,] 84.84951 94.43877 89.88693 #> [5,] 90.44244 100.33602 95.57177 #> [6,] 101.32558 107.83860 104.56409 #> [7,] 97.95177 109.29246 103.40145 #> [8,] 71.68970 82.73094 77.13668 #> [9,] 87.53001 96.42320 91.99731 #> [10,] 106.69764 121.83622 114.21325 #> [11,] 77.65029 88.34817 82.78446 #> [12,] 106.50609 115.17527 111.00723 #> [13,] 105.44690 115.05009 110.40160 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > predict(hald.gprior, estimator=\"MPM\", se.fit=TRUE) #> $fit #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ybma #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ypred #> NULL #> #> $postprobs #> NULL #> #> $se.fit #> [1] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [9] 1.990817 3.485929 2.456636 1.951456 2.212238 #> #> $se.pred #> [1] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [9] 4.882702 5.659428 5.090431 4.866787 4.977090 #> #> $se.bma.fit #> NULL #> #> $se.bma.pred #> NULL #> #> $df #> [1] 12 #> #> $best #> NULL #> #> $bestmodel #> [1] 0 1 2 4 #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\" #> #> $estimator #> [1] \"MPM\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"MPM\", se.fit=TRUE), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 72.85939 86.44363 79.65151 #> [2,] 69.50215 79.45478 74.47846 #> [3,] 101.93102 108.91264 105.42183 #> [4,] 85.14928 94.51420 89.83174 #> [5,] 89.98634 101.26964 95.62799 #> [6,] 101.30948 107.88283 104.59616 #> [7,] 97.81813 109.19556 103.50684 #> [8,] 71.46153 82.55525 77.00839 #> [9,] 87.73810 96.41333 92.07571 #> [10,] 106.51357 121.70394 114.10876 #> [11,] 77.32978 88.03488 82.68233 #> [12,] 106.79101 115.29472 111.04286 #> [13,] 105.64736 115.28746 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > fitted(hald.gprior, estimator=\"HPM\") #> [1] 81.17036 74.83464 105.07248 89.69881 97.15898 104.45753 103.38927 #> [8] 76.06454 91.57174 113.17222 81.59906 111.22195 111.08841 #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, #> + prior=\"g-prior\", alpha=13, modelprior=uniform(), #> + initprobs=\"eplogp\") #> #> > hald.EB = update(hald.gprior, newprior=\"EB-global\") #> #> > hald.bic = update(hald.gprior,newprior=\"BIC\") #> #> > hald.zs = update(hald.bic, newprior=\"ZS-null\") if (FALSE) { demo(BAS.USCrime) }"},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian Outlier Detection — Bayes.outlier","title":"Bayesian Outlier Detection — Bayes.outlier","text":"Calculate posterior probability absolute value error exceeds k standard deviations P(|epsilon_j| > k sigma | data) model Y = X B + epsilon, epsilon ~ N(0, sigma^2 ) based paper Chaloner & Brant Biometrika (1988). Either k prior probability outliers must provided. uses reference prior p(B, sigma) = 1; priors model averaging come.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian Outlier Detection — Bayes.outlier","text":"","code":"Bayes.outlier(lmobj, k, prior.prob)"},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian Outlier Detection — Bayes.outlier","text":"lmobj object class `lm` k number standard deviations used calculating probability individual case outlier, P(|error| > k sigma | data) prior.prob prior probability outliers sample size n","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian Outlier Detection — Bayes.outlier","text":"Returns list three items: e residuals hat leverage values prob.outlier posterior probabilities point outlier prior.prob prior probability point outlier","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian Outlier Detection — Bayes.outlier","text":"Chaloner & Brant (1988) Bayesian Approach Outlier Detection Residual Analysis Biometrika (1988) 75, 651-659","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bayes.outlier.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian Outlier Detection — Bayes.outlier","text":"","code":"data(\"stackloss\") stack.lm <- lm(stack.loss ~ ., data = stackloss) stack.outliers <- Bayes.outlier(stack.lm, k = 3) plot(stack.outliers$prob.outlier, type = \"h\", ylab = \"Posterior Probability\") # adjust for sample size for calculating prior prob that a # a case is an outlier stack.outliers <- Bayes.outlier(stack.lm, prior.prob = 0.95) # cases where posterior probability exceeds prior probability which(stack.outliers$prob.outlier > stack.outliers$prior.prob) #> [1] 4 21"},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":null,"dir":"Reference","previous_headings":"","what":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"Independent Bernoulli prior models constraints model hierarchy induced interactions","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"","code":"Bernoulli.heredity(pi = 0.5, parents)"},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"pi Bernoulli probability term included parents matrix terms parents indicators terms parents term","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.heredity.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Independent Bernoulli prior on models that with constraints for\nmodel hierarchy induced by interactions — Bernoulli.heredity","text":"implemented yet use bas.lm bas.glm","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":null,"dir":"Reference","previous_headings":"","what":"Independent Bernoulli Prior Distribution for Models — Bernoulli","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"Creates object representing prior distribution models BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"","code":"Bernoulli(probs = 0.5)"},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"probs scalar vector prior inclusion probabilities. scalar, values replicated variables ans 1 added intercept. BAS checks see length equal dimension parameter vector full model adds 1 include intercept.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"independent Bernoulli prior distribution commonly used prior BMA, Uniform distribution special case probs=.5. indicator variables independent Bernoulli distributions common probability probs, distribution model size binomial(p, probs) distribution.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Bernoulli.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Independent Bernoulli Prior Distribution for Models — Bernoulli","text":"","code":"Bernoulli(.9) #> $family #> [1] \"Bernoulli\" #> #> $hyper.parameters #> [1] 0.9 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"Creates object representing CCH mixture g-priors coefficients BAS .","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"","code":"CCH(alpha, beta, s = 0)"},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"alpha scalar > 0, recommended alpha=.5 (betaprime) 1 CCH. hyper.g(alpha) equivalent CCH(alpha -2, 2, 0). Liang et al recommended values range 2 < alpha_h <= 4 beta scalar > 0. value updated data; beta function n consistency null model. hyper-g corresponds b = 2 s scalar, recommended s=0","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/CCH.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — CCH","text":"","code":"CCH(alpha = .5, beta = 100, s = 0) #> $family #> [1] \"CCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 0.5 #> #> $hyper.parameters$beta #> [1] 100 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the global Empirical Bayes estimates for BMA — EB.global","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Finds global Empirical Bayes estimates g Zellner's g-prior model probabilities","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"","code":"EB.global(object, tol = 0.1, g.0 = NULL, max.iterations = 100)"},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"object 'bas' object created bas tol tolerance estimating g g.0 initial value g max.iterations Maximum number iterations EM algorithm","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"object class 'bas' using Zellner's g prior estimate g based models","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Uses EM algorithm Liang et al estimate type II MLE g Zellner's g prior","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2008) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.global.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Find the global Empirical Bayes estimates for BMA — EB.global","text":"","code":"library(MASS) data(UScrime) UScrime[,-2] = log(UScrime[,-2]) # EB local uses a different g within each model crime.EBL = bas.lm(y ~ ., data=UScrime, n.models=2^15, prior=\"EB-local\", initprobs= \"eplogp\") # use a common (global) estimate of g crime.EBG = EB.global(crime.EBL)"},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":null,"dir":"Reference","previous_headings":"","what":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"Creates object representing EB prior BAS GLM.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"","code":"EB.local()"},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/EB.local.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Empirical Bayes Prior Distribution for Coefficients in BMA Model — EB.local","text":"","code":"EB.local() #> $family #> [1] \"EB-local\" #> #> $class #> [1] \"EB\" #> #> $hyper.parameters #> $hyper.parameters$local #> [1] TRUE #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/Hald.html","id":null,"dir":"Reference","previous_headings":"","what":"Hald Data — Hald","title":"Hald Data — Hald","text":"Hald data used many books papers illustrate variable selection. data relate engineering application concerned effect composition cement heat evolved hardening. response variable Y heat evolved cement mix. four explanatory variables ingredients mix, X1: tricalcium aluminate, X2: tricalcium silicate, X3: tetracalcium alumino ferrite, X4: dicalcium silicate. important feature data variables X1 X3 highly correlated, well variables X2 X4. Thus expect subset (X1,X2,X3,X4) includes one variable highly correlated pair subset also includes member.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Hald.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Hald Data — Hald","text":"hald dataframe 13 observations 5 variables (columns), Y: Heat evolved per gram cement (calories) X1: Amount tricalcium aluminate X2: Amount tricalcium silicate X3: Amount tetracalcium alumino ferrite X4: Amount dicalcium silicate","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Hald.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Hald Data — Hald","text":"Wood, H., Steinour, H.H., Starke, H.R. (1932). \"Effect Composition Portland cement Heat Evolved Hardening\", Industrial Engineering Chemistry, 24, 1207-1214.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"Creates object representing prior distribution coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"","code":"IC.prior(penalty)"},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"penalty scalar used penalized loglikelihood form penalty*dimension","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"log marginal likelihood approximated -2*(deviance + penalty*dimension). Allows alternatives AIC (penalty = 2) BIC (penalty = log(n)). BIC, argument may missing, case sample size determined call `bas.glm` used determine penalty.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/IC.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Information Criterion Families of Prior Distribution for Coefficients in BMA\nModels — IC.prior","text":"","code":"IC.prior(2) #> $family #> [1] \"IC\" #> #> $class #> [1] \"IC\" #> #> $hyper #> [1] 2 #> #> $hyper.parameters #> $hyper.parameters$penalty #> [1] 2 #> #> #> attr(,\"class\") #> [1] \"prior\" aic.prior() #> $family #> [1] \"AIC\" #> #> $class #> [1] \"IC\" #> #> $hyper.parameters #> $hyper.parameters$penalty #> [1] 2 #> #> #> $hyper #> [1] 2 #> #> attr(,\"class\") #> [1] \"prior\" bic.prior(100) #> $family #> [1] \"BIC\" #> #> $class #> [1] \"IC\" #> #> $hyper.parameters #> $hyper.parameters$penalty #> [1] 4.60517 #> #> $hyper.parameters$n #> [1] 100 #> #> #> $hyper #> [1] 4.60517 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":null,"dir":"Reference","previous_headings":"","what":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"Creates object representing Jeffrey's Prior g mixture g-priors coefficients BAS. equivalent limiting version CCH(, 2, 0) = 0 hyper-g(= 2) improper prior. $g$ appear Null Model, Bayes Factors model probabilities well-defined arbitrary normalizing constants, reason null model excluded constants used across models.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"","code":"Jeffreys()"},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/Jeffreys.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Jeffreys Prior Distribution for $g$ for Mixtures of g-Priors for\nCoefficients in BMA Models — Jeffreys","text":"","code":"Jeffreys() #> $family #> [1] \"Jeffreys\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 0 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"Creates object representing Truncated Gamma (tCCH) mixture g-priors coefficients BAS, u = 1/(1+g) Gamma distribution supported (0, 1].","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"","code":"TG(alpha = 2)"},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"alpha scalar > 0, recommended alpha=.5 (betaprime) 1. alpha=2 corresponds uniform prior shrinkage factor.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/TG.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized g-Prior Distribution for Coefficients in BMA Models — TG","text":"","code":"TG(alpha = 2) #> $family #> [1] \"TG\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 2 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\" CCH(alpha = 2, beta = 100, s = 0) #> $family #> [1] \"CCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 2 #> #> $hyper.parameters$beta #> [1] 100 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"Sample without replacement posterior distribution GLMs","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"","code":"bas.glm( formula, family = binomial(link = \"logit\"), data, weights, subset, contrasts = NULL, offset, na.action = \"na.omit\", n.models = NULL, betaprior = CCH(alpha = 0.5, beta = as.numeric(nrow(data)), s = 0), modelprior = beta.binomial(1, 1), initprobs = \"Uniform\", include.always = ~1, method = \"MCMC\", update = NULL, bestmodel = NULL, prob.rw = 0.5, MCMC.iterations = NULL, thin = 1, control = glm.control(), laplace = FALSE, renormalize = FALSE, force.heredity = FALSE, bigmem = FALSE )"},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"formula generalized linear model formula full model predictors, Y ~ X. code assumes intercept included model. family description error distribution link function exponential family; currently `binomial()` logistic link `poisson()` `Gamma()`log link available. data data frame weights optional vector weights used fitting process. May missing case weights 1. subset subset data used fitting contrasts optional list. See contrasts.arg `model.matrix.default()`. offset priori known component included linear predictor; default 0. na.action function indicates happen data contain NAs. default \"na.omit\". n.models number unique models keep. NULL, BAS attempt enumerate unless p > 35 method=\"MCMC\". methods using MCMC algorithms sample replacement, sampling stop number iterations exceeds min 'n.models' 'MCMC.iterations' exit 'n.models' updated reflect unique number models sampled. betaprior Prior coefficients model coefficients (except intercept). Options include g.prior, CCH, robust, intrinsic, beta.prime, EB.local, AIC, BIC. modelprior Family prior distribution models. Choices include uniform, Bernoulli, beta.binomial, truncated Beta-Binomial, tr.beta.binomial, truncated power family tr.power.prior. initprobs vector length p initial inclusion probabilities used sampling without replacement (intercept included probability one need added ) character string giving method used construct sampling probabilities \"Uniform\" predictor variable equally likely sampled (equivalent random sampling without replacement). \"eplogp\", use eplogprob function approximate Bayes factor using p-values find initial marginal inclusion probabilities sample without replacement using inclusion probabilities, may updated using estimates marginal inclusion probabilities. \"eplogp\" assumes MLEs full model exist; problems case 'p' large, initial sampling probabilities may obtained using eplogprob.marg fits model predictor separately. run Markov Chain provide initial estimates marginal inclusion probabilities, use method=\"MCMC+BAS\" . initprobs used sampling method=\"MCMC\", determines order variables lookup table affects memory allocation large problems enumeration feasible. variables always included set corresponding initprobs 1, override `modelprior` use `include.always` force variables always included model. include.always formula terms always included model probability one. default `~ 1` meaning intercept always included. also override values `initprobs` setting 1. method character variable indicating sampling method use: method=\"BAS\" uses Bayesian Adaptive Sampling (without replacement) using sampling probabilities given initprobs updates using marginal inclusion probabilities direct search/sample; method=\"MCMC\" combines random walk Metropolis Hastings (MC3 Raftery et al 1997) random swap variable included variable currently excluded (see Clyde, Ghosh, Littman (2010) details); method=\"MCMC+BAS\" runs initial MCMC calculate marginal inclusion probabilities samples without replacement BAS; method = \"deterministic\" runs deterministic sampling using initial probabilities (updating); recommended fast enumeration model independence good approximation joint posterior distribution model indicators. BAS, sampling probabilities can updated models sampled. (see 'update' ). recommend \"MCMC+BAS\" \"MCMC\" high dimensional problems. update number iterations potential updates sampling probabilities \"BAS\" method. NULL update, otherwise algorithm update using marginal inclusion probabilities change sampling takes place. large model spaces, updating recommended. model space enumerated, leave default. bestmodel optional binary vector representing model initialize sampling. NULL sampling starts null model prob.rw MCMC methods, probability using random-walk proposal; otherwise use random \"flip\" move propose new model. MCMC.iterations Number models sample using MCMC options; greater 'n.models'. default 10*n.models. thin oFr \"MCMC\", thin MCMC chain every \"thin\" iterations; default thinning. large p, thinning can used significantly reduce memory requirements models associated summaries saved every thin iterations. thin = p, model associated output recorded every p iterations,similar Gibbs sampler SSVS. control list parameters control convergence fitting process. See documentation glm.control() laplace logical variable whether use Laplace approximate integration respect g obtain marginal likelihood. FALSE Cephes library used may inaccurate large n large values Wald Chisquared statistic. renormalize logical variable whether posterior probabilities based renormalizing marginal likelihoods times prior probabilities use Monte Carlo frequencies. Applies MCMC sampling. force.heredity Logical variable force levels factor included together include higher order interactions lower order terms included. Currently supported `method='MCMC'` `method='BAS'` (experimental) non-Solaris platforms. Default FALSE. bigmem Logical variable indicate access large amounts memory (physical virtual) enumeration large model spaces, e.g. > 2^25.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"bas.glm returns object class basglm object class basglm list containing least following components: postprobs posterior probabilities models selected priorprobs prior probabilities models selected logmarg values log marginal likelihood models n.vars total number independent variables full model, including intercept size number independent variables models, includes intercept list lists one list per model variables included model probne0 posterior probability variable non-zero mle list lists one list per model giving GLM estimate (nonzero) coefficient model. mle.se list lists one list per model giving GLM standard error coefficient model deviance GLM deviance model modelprior prior distribution models created BMA object Q Q statistic model used marginal likelihood approximation Y response X matrix predictors family family object original call betaprior family object prior coefficients, including hyperparameters modelprior family object prior models include.always indices variables forced model","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"BAS provides several search algorithms find high probability models use Bayesian Model Averaging Bayesian model selection. p less 20-25, BAS can enumerate models depending memory availability, larger p, BAS samples without replacement using random deterministic sampling. Bayesian Adaptive Sampling algorithm Clyde, Ghosh, Littman (2010) samples models without replacement using initial sampling probabilities, optionally update sampling probabilities every \"update\" models using estimated marginal inclusion probabilities. BAS uses different methods obtain initprobs, may impact results high-dimensional problems. deterministic sampler provides list top models order approximation independence using provided initprobs. may effective running algorithms identify high probability models works well correlations variables small modest. priors coefficients mixtures g-priors provide approximations power prior.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"Li, Y. Clyde, M. (2018) Mixtures g-priors Generalized Linear Models. Journal American Statistical Association. 113:1828-1845 doi:10.1080/01621459.2018.1469992 Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049 Raftery, .E, Madigan, D. Hoeting, J.. (1997) Bayesian Model Averaging Linear Regression Models. Journal American Statistical Association.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"Merlise Clyde (clyde@duke.edu), Quanli Wang Yingbo Li","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.glm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian Adaptive Sampling Without Replacement for Variable Selection in\nGeneralized Linear Models — bas.glm","text":"","code":"library(MASS) data(Pima.tr) # enumeration with default method=\"BAS\" pima.cch = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"BAS\", betaprior=CCH(a=1, b=532/2, s=0), family=binomial(), modelprior=beta.binomial(1,1)) summary(pima.cch) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.0000 1.0000000 1.0000000 1.0000000 #> npreg 0.5684414 0.0000 1.0000000 1.0000000 0.0000000 #> glu 0.9999949 1.0000 1.0000000 1.0000000 1.0000000 #> bp 0.2198720 0.0000 0.0000000 0.0000000 0.0000000 #> skin 0.2653924 0.0000 0.0000000 0.0000000 0.0000000 #> bmi 0.7425039 1.0000 1.0000000 1.0000000 0.0000000 #> ped 0.8860972 1.0000 1.0000000 1.0000000 1.0000000 #> age 0.7459954 1.0000 1.0000000 0.0000000 1.0000000 #> BF NA 1.0000 0.4406494 0.6209086 0.4628319 #> PostProbs NA 0.1596 0.1172000 0.0991000 0.0739000 #> R2 NA 0.2938 0.3040000 0.2901000 0.2703000 #> dim NA 5.0000 6.0000000 5.0000000 4.0000000 #> logmarg NA -101.7878 -102.6072611 -102.2643268 -102.5581467 #> model 5 #> Intercept 1.000000e+00 #> npreg 1.000000e+00 #> glu 1.000000e+00 #> bp 1.000000e+00 #> skin 1.000000e+00 #> bmi 1.000000e+00 #> ped 1.000000e+00 #> age 1.000000e+00 #> BF 8.659168e-03 #> PostProbs 4.840000e-02 #> R2 3.043000e-01 #> dim 8.000000e+00 #> logmarg -1.065369e+02 image(pima.cch) # Note MCMC.iterations are set to 2500 for illustration purposes due to time # limitations for running examples on CRAN servers. # Please check convergence diagnostics and run longer in practice pima.robust = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"MCMC\", MCMC.iterations=2500, betaprior=robust(), family=binomial(), modelprior=beta.binomial(1,1)) pima.BIC = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"BAS+MCMC\", MCMC.iterations=2500, betaprior=bic.prior(), family=binomial(), modelprior=uniform()) #> Warning: no non-missing arguments to min; returning Inf # Poisson example if(requireNamespace(\"glmbb\", quietly=TRUE)) { data(crabs, package='glmbb') #short run for illustration crabs.bas = bas.glm(satell ~ color*spine*width + weight, data=crabs, family=poisson(), betaprior=EB.local(), modelprior=uniform(), method='MCMC', n.models=2^10, MCMC.iterations=2500, prob.rw=.95) # Gamma example if(requireNamespace(\"faraway\", quietly=TRUE)) { data(wafer, package='faraway') wafer_bas = bas.glm(resist~ ., data=wafer, include.always = ~ ., betaprior = bic.prior() , family = Gamma(link = \"log\")) } }"},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"Sample without replacement posterior distribution models","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"","code":"bas.lm( formula, data, subset, weights, contrasts = NULL, na.action = \"na.omit\", n.models = NULL, prior = \"ZS-null\", alpha = NULL, modelprior = beta.binomial(1, 1), initprobs = \"Uniform\", include.always = ~1, method = \"BAS\", update = NULL, bestmodel = NULL, prob.local = 0, prob.rw = 0.5, MCMC.iterations = NULL, lambda = NULL, delta = 0.025, thin = 1, renormalize = FALSE, force.heredity = FALSE, pivot = TRUE, tol = 1e-07, bigmem = FALSE )"},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"formula linear model formula full model predictors, Y ~ X. code assumes intercept included model X's centered. data data frame. Factors converted numerical vectors based using `model.matrix`. subset optional vector specifying subset observations used fitting process. weights optional vector weights used fitting process. NULL numeric vector. non-NULL, Bayes estimates obtained assuming \\(Y_i \\sim N(x^T_i\\beta, \\sigma^2/w_i)\\). contrasts optional list. See contrasts.arg `model.matrix.default()`. na.action function indicates happen data contain NAs. default \"na.omit\". n.models number models sample either without replacement (method=\"BAS\" \"MCMC+BAS\") replacement (method=\"MCMC\"). NULL, BAS method=\"BAS\" try enumerate 2^p models. enumeration possible (memory time) value supplied controls number sampled models using 'n.models'. method=\"MCMC\", sampling stop min(n.models, MCMC.iterations) occurs MCMC.iterations significantly larger n.models order explore model space. exit method= \"MCMC\" number unique models sampled counts stored output \"freq\". prior prior distribution regression coefficients. Choices include \"AIC\" \"BIC\" \"g-prior\", Zellner's g prior `g` specified using argument `alpha` \"JZS\" Jeffreys-Zellner-Siow prior uses Jeffreys prior sigma Zellner-Siow Cauchy prior coefficients. optional parameter `alpha` can used control squared scale prior, default alpha=1. Setting `alpha` equal rscale^2 BayesFactor package Morey. uses QUADMATH numerical integration g. \"ZS-null\", Laplace approximation 'JZS' prior integration g. alpha = 1 . recommend using 'JZS' accuracy compatibility BayesFactor package, although slower. \"ZS-full\" (deprecated) \"hyper-g\", mixture g-priors prior g/(1+g) Beta(1, alpha/2) Liang et al (2008). uses Cephes library evaluation marginal likelihoods may numerically unstable large n R2 close 1. Default choice alpha 3. \"hyper-g-laplace\", using Laplace approximation integrate prior g. \"hyper-g-n\", mixture g-priors u = g/n u ~ Beta(1, alpha/2) provide consistency null model true. \"EB-local\", use MLE g marginal likelihood within model \"EB-global\" uses EM algorithm find common global estimate g, averaged models. possible enumerate models, EM algorithm uses models sampled EB-local. alpha optional hyperparameter g-prior hyper g-prior. Zellner's g-prior, alpha = g, Liang et al hyper-g hyper-g-n method, recommended choice alpha (2 < alpha < 4), alpha = 3 default. Zellner-Siow prior alpha = 1 default, can used modify rate parameter gamma prior g, $$1/g \\sim G(1/2, n*\\alpha/2)$$ $$\\beta \\sim C(0, \\sigma^2 \\alpha (X'X/n)^{-1})$$. modelprior function family prior distribution models. Choices include uniform Bernoulli beta.binomial, tr.beta.binomial, (truncation) tr.poisson (truncated Poisson), tr.power.prior (truncated power family), default beta.binomial(1,1). Truncated versions useful p > n. initprobs Vector length p character string specifying method used create vector. used order variables sampling methods potentially efficient storage sampling provides initial inclusion probabilities used sampling without replacement method=\"BAS\". Options character string giving method : \"Uniform\" \"uniform\" predictor variable equally likely sampled (equivalent random sampling without replacement); \"eplogp\" uses eplogprob function approximate Bayes factor p-values full model find initial marginal inclusion probabilities; \"marg-eplogp\" useseplogprob.marg function approximate Bayes factor p-values full model simple linear regression. run Markov Chain provide initial estimates marginal inclusion probabilities \"BAS\", use method=\"MCMC+BAS\" . initprobs used sampling method=\"MCMC\", determines order variables lookup table affects memory allocation large problems enumeration feasible. variables always included set corresponding initprobs 1, override `modelprior` use `include.always` force variables always included model. include.always formula terms always included model probability one. default `~ 1` meaning intercept always included. also override values `initprobs` setting 1. method character variable indicating sampling method use: \"deterministic\" uses \"top k\" algorithm described Ghosh Clyde (2011) sample models order approximate probability conditional independence using \"initprobs\". efficient algorithm enumeration. \"BAS\" uses Bayesian Adaptive Sampling (without replacement) using sampling probabilities given initprobs model conditional independence. can updated based estimates marginal inclusion probabilities. \"MCMC\" samples replacement via MCMC algorithm combines birth/death random walk Hoeting et al (1997) MC3 random swap move interchange variable model one currently excluded described Clyde, Ghosh Littman (2010). \"MCMC+BAS\" runs initial MCMC calculate marginal inclusion probabilities samples without replacement BAS. BAS, sampling probabilities can updated models sampled. (see update ). update number iterations potential updates sampling probabilities method \"BAS\" \"MCMC+BAS\". NULL update, otherwise algorithm update using marginal inclusion probabilities change sampling takes place. large model spaces, updating recommended. model space enumerated, leave default. bestmodel optional binary vector representing model initialize sampling. NULL sampling starts null model prob.local future option allow sampling models \"near\" median probability model. used time. prob.rw MCMC methods, probability using random-walk Metropolis proposal; otherwise use random \"flip\" move propose swap variable excluded variable model. MCMC.iterations Number iterations MCMC sampler; default n.models*10 set user. lambda Parameter AMCMC algorithm (deprecated). delta truncation parameter prevent sampling probabilities degenerate 0 1 prior enumeration sampling without replacement. thin \"MCMC\" \"MCMC+BAS\", thin MCMC chain every \"thin\" iterations; default thinning. large p, thinning can used significantly reduce memory requirements models associated summaries saved every thin iterations. thin = p, model associated output recorded every p iterations, similar Gibbs sampler SSVS. renormalize MCMC sampling, posterior probabilities based renormalizing marginal likelihoods times prior probabilities (TRUE) frequencies MCMC. latter unbiased long runs, former may less variability. May compared via diagnostic plot function diagnostics. See details Clyde Ghosh (2012). force.heredity Logical variable force levels factor included together include higher order interactions lower order terms included. Currently supported `method='MCMC'` experimentally `method='BAS'` non-Solaris platforms. Default FALSE. pivot Logical variable allow pivoting columns obtaining OLS estimates model models full rank can fit. Defaults TRUE. Currently coefficients estimable set zero. Use caution interpreting BMA estimates parameters. tol 1e-7 bigmem Logical variable indicate access large amounts memory (physical virtual) enumeration large model spaces, e.g. > 2^25. default; used determining rank X^TX cholesky decomposition pivoting.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"bas returns object class bas object class BAS list containing least following components: postprob posterior probabilities models selected priorprobs prior probabilities models selected namesx names variables R2 R2 values models logmarg values log marginal likelihood models. equivalent log Bayes Factor comparing model base model intercept . n.vars total number independent variables full model, including intercept size number independent variables models, includes intercept rank rank design matrix; `pivot = FALSE`, size checking rank conducted. list lists one list per model variables included model probne0 posterior probability variable non-zero computed using renormalized marginal likelihoods sampled models. may biased number sampled models much smaller total number models. Unbiased estimates may obtained using method \"MCMC\". mle list lists one list per model giving MLE (OLS) estimate (nonzero) coefficient model. NOTE: intercept mean Y column X centered subtracting mean. mle.se list lists one list per model giving MLE (OLS) standard error coefficient model prior name prior created BMA object alpha value hyperparameter coefficient prior used create BMA object. modelprior prior distribution models created BMA object Y response X matrix predictors mean.x vector means column X (used predict.bas) include.always indices variables forced model function summary.bas, used print summary results. function plot.bas used plot posterior distributions coefficients image.bas provides image distribution models. Posterior summaries coefficients can extracted using coefficients.bas. Fitted values predictions can obtained using S3 functions fitted.bas predict.bas. BAS objects may updated use different prior (without rerunning sampler) using function update.bas. MCMC sampling diagnostics can used assess whether MCMC run long enough posterior probabilities stable. details see associated demos vignette.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"BAS provides several algorithms sample posterior distributions models use Bayesian Model Averaging Bayesian variable selection. p less 20-25, BAS can enumerate models depending memory availability. BAS saves models, MLEs, standard errors, log marginal likelihoods, prior posterior probabilities memory requirements grow linearly M*p M number models p number predictors. example, enumeration p=21 2,097,152 takes just 2 Gigabytes 64 bit machine store summaries needed model averaging. (future version likely include option store summaries users plan using model averaging model selection Best Predictive models.) larger p, BAS samples without replacement using random deterministic sampling. Bayesian Adaptive Sampling algorithm Clyde, Ghosh, Littman (2010) samples models without replacement using initial sampling probabilities, optionally update sampling probabilities every \"update\" models using estimated marginal inclusion probabilities. BAS uses different methods obtain initprobs, may impact results high-dimensional problems. deterministic sampler provides list top models order approximation independence using provided initprobs. may effective running algorithms identify high probability models works well correlations variables small modest. recommend \"MCMC\" problems enumeration feasible (memory time constrained) even modest p number models sampled close number possible models /significant correlations among predictors bias estimates inclusion probabilities \"BAS\" \"MCMC+BAS\" may large relative reduced variability using normalized model probabilities shown Clyde Ghosh, 2012. Diagnostic plots MCMC can used assess convergence. large problems recommend thinning MCMC reduce memory requirements. priors coefficients include Zellner's g-prior, Hyper-g prior (Liang et al 2008, Zellner-Siow Cauchy prior, Empirical Bayes (local global) g-priors. AIC BIC also included, range priors model space available.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049 Clyde, M. Ghosh. J. (2012) Finite population estimators stochastic search variable selection. Biometrika, 99 (4), 981-988. doi:10.1093/biomet/ass040 Clyde, M. George, E. . (2004) Model Uncertainty. Statist. Sci., 19, 81-94. doi:10.1214/088342304000000035 Clyde, M. (1999) Bayesian Model Averaging Model Search Strategies (discussion). Bayesian Statistics 6. J.M. Bernardo, .P. Dawid, J.O. Berger, .F.M. Smith eds. Oxford University Press, pages 157-185. Hoeting, J. ., Madigan, D., Raftery, . E. Volinsky, C. T. (1999) Bayesian model averaging: tutorial (discussion). Statist. Sci., 14, 382-401. doi:10.1214/ss/1009212519 Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2008) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337 Zellner, . (1986) assessing prior distributions Bayesian regression analysis g-prior distributions. Bayesian Inference Decision Techniques: Essays Honor Bruno de Finetti, pp. 233-243. North-Holland/Elsevier. Zellner, . Siow, . (1980) Posterior odds ratios selected regression hypotheses. Bayesian Statistics: Proceedings First International Meeting held Valencia (Spain), pp. 585-603. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., Iverson, G. (2009). Bayesian t-tests accepting rejecting null hypothesis. Psychonomic Bulletin & Review, 16, 225-237 Rouder, J. N., Morey, R. D., Speckman, P. L., Province, J. M., (2012) Default Bayes Factors ANOVA Designs. Journal Mathematical Psychology. 56. p. 356-374.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"Merlise Clyde (clyde@duke.edu) Michael Littman","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bas.lm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in\nLinear Models — bas.lm","text":"","code":"library(MASS) data(UScrime) # pivot=FALSE is faster, but should only be used in full rank case # default is pivot = TRUE crime.bic <- bas.lm(log(y) ~ log(M) + So + log(Ed) + log(Po1) + log(Po2) + log(LF) + log(M.F) + log(Pop) + log(NW) + log(U1) + log(U2) + log(GDP) + log(Ineq) + log(Prob) + log(Time), data = UScrime, n.models = 2^15, prior = \"BIC\", modelprior = beta.binomial(1, 1), initprobs = \"eplogp\", pivot = FALSE ) # use MCMC rather than enumeration crime.mcmc <- bas.lm(log(y) ~ log(M) + So + log(Ed) + log(Po1) + log(Po2) + log(LF) + log(M.F) + log(Pop) + log(NW) + log(U1) + log(U2) + log(GDP) + log(Ineq) + log(Prob) + log(Time), data = UScrime, method = \"MCMC\", MCMC.iterations = 20000, prior = \"BIC\", modelprior = beta.binomial(1, 1), initprobs = \"eplogp\", pivot = FALSE ) summary(crime.bic) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(M) 0.9335117 1.00000 1.000000e+00 1.0000000 1.0000000 #> So 0.3276563 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(Ed) 0.9910219 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Po1) 0.7246635 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Po2) 0.4602481 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(LF) 0.2935326 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(M.F) 0.3298168 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(Pop) 0.4962869 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(NW) 0.8346412 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(U1) 0.3481266 0.00000 1.000000e+00 0.0000000 0.0000000 #> log(U2) 0.7752102 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(GDP) 0.5253694 0.00000 1.000000e+00 0.0000000 1.0000000 #> log(Ineq) 0.9992058 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Prob) 0.9541470 1.00000 1.000000e+00 1.0000000 1.0000000 #> log(Time) 0.5432686 1.00000 1.000000e+00 0.0000000 1.0000000 #> BF NA 1.00000 1.267935e-04 0.7609295 0.5431578 #> PostProbs NA 0.01910 1.560000e-02 0.0145000 0.0133000 #> R2 NA 0.84200 8.695000e-01 0.8265000 0.8506000 #> dim NA 9.00000 1.600000e+01 8.0000000 10.0000000 #> logmarg NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035 #> model 5 #> Intercept 1.0000000 #> log(M) 1.0000000 #> So 0.0000000 #> log(Ed) 1.0000000 #> log(Po1) 1.0000000 #> log(Po2) 0.0000000 #> log(LF) 0.0000000 #> log(M.F) 0.0000000 #> log(Pop) 1.0000000 #> log(NW) 1.0000000 #> log(U1) 0.0000000 #> log(U2) 1.0000000 #> log(GDP) 0.0000000 #> log(Ineq) 1.0000000 #> log(Prob) 1.0000000 #> log(Time) 0.0000000 #> BF 0.5203179 #> PostProbs 0.0099000 #> R2 0.8375000 #> dim 9.0000000 #> logmarg -22.8118635 plot(crime.bic) image(crime.bic, subset = -1) # example with two-way interactions and hierarchical constraints data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c(\"Low\", \"Medium\", \"High\") TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform(), method = \"BAS\", force.heredity = TRUE ) summary(TG.bas) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.0000000 1.00000000 1.000000e+00 #> suppVC 0.9910702 1.00000 1.0000000 0.00000000 0.000000e+00 #> doseMedium 1.0000000 1.00000 1.0000000 1.00000000 0.000000e+00 #> doseHigh 1.0000000 1.00000 1.0000000 1.00000000 0.000000e+00 #> suppVC:doseMedium 0.4500943 0.00000 1.0000000 0.00000000 0.000000e+00 #> suppVC:doseHigh 0.4500943 0.00000 1.0000000 0.00000000 0.000000e+00 #> BF NA 1.00000 0.8320043 0.01650685 2.812754e-15 #> PostProbs NA 0.54100 0.4501000 0.00890000 0.000000e+00 #> R2 NA 0.76230 0.7937000 0.70290000 0.000000e+00 #> dim NA 4.00000 6.0000000 3.00000000 1.000000e+00 #> logmarg NA 33.50461 33.3206946 29.40063248 0.000000e+00 #> model 5 #> Intercept 1.000000e+00 #> suppVC 1.000000e+00 #> doseMedium 0.000000e+00 #> doseHigh 0.000000e+00 #> suppVC:doseMedium 0.000000e+00 #> suppVC:doseHigh 0.000000e+00 #> BF 7.895214e-16 #> PostProbs 0.000000e+00 #> R2 5.950000e-02 #> dim 2.000000e+00 #> logmarg -1.270492e+00 image(TG.bas) # don't run the following due to time limits on CRAN if (FALSE) { # exmple with non-full rank case loc <- system.file(\"testdata\", package = \"BAS\") d <- read.csv(paste(loc, \"JASP-testdata.csv\", sep = \"/\")) fullModelFormula <- as.formula(\"contNormal ~ contGamma * contExpon + contGamma * contcor1 + contExpon * contcor1\") # should trigger a warning (default is to use pivoting, so use pivot=FALSE # only for full rank case) out = bas.lm(fullModelFormula, data = d, alpha = 0.125316, prior = \"JZS\", weights = facFifty, force.heredity = FALSE, pivot = FALSE) # use pivot = TRUE to fit non-full rank case (default) # This is slower but safer out = bas.lm(fullModelFormula, data = d, alpha = 0.125316, prior = \"JZS\", weights = facFifty, force.heredity = FALSE, pivot = TRUE) } # more complete demo's demo(BAS.hald) #> #> #> \tdemo(BAS.hald) #> \t---- ~~~~~~~~ #> #> > data(Hald) #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"g-prior\", alpha=13, #> + modelprior=beta.binomial(1,1), #> + initprobs=\"eplogp\") #> #> > hald.gprior #> #> Call: #> bas.lm(formula = Y ~ ., data = Hald, prior = \"g-prior\", alpha = 13, #> modelprior = beta.binomial(1, 1), initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept X1 X2 X3 X4 #> 1.0000 0.9019 0.6896 0.4653 0.6329 #> #> > plot(hald.gprior) #> #> > summary(hald.gprior) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 model 5 #> Intercept 1.0000000 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X1 0.9019245 1.00000 1.0000000 1.00000000 1.0000000 1.0000000 #> X2 0.6895830 1.00000 0.0000000 1.00000000 1.0000000 1.0000000 #> X3 0.4652762 0.00000 0.0000000 1.00000000 0.0000000 1.0000000 #> X4 0.6329266 0.00000 1.0000000 1.00000000 1.0000000 0.0000000 #> BF NA 1.00000 0.6923944 0.08991408 0.3355714 0.3344926 #> PostProbs NA 0.24320 0.1684000 0.13120000 0.1224000 0.1220000 #> R2 NA 0.97870 0.9725000 0.98240000 0.9823000 0.9823000 #> dim NA 3.00000 3.0000000 5.00000000 4.0000000 4.0000000 #> logmarg NA 11.72735 11.3597547 9.31845348 10.6354335 10.6322138 #> #> > image(hald.gprior, subset=-1, vlas=0) #> #> > hald.coef = coefficients(hald.gprior) #> #> > hald.coef #> #> Marginal Posterior Summaries of Coefficients: #> #> Using BMA #> #> Based on the top 16 models #> post mean post SD post p(B != 0) #> Intercept 95.4231 0.7107 1.0000 #> X1 1.2150 0.5190 0.9019 #> X2 0.2756 0.4832 0.6896 #> X3 -0.1271 0.4976 0.4653 #> X4 -0.3269 0.4717 0.6329 #> #> > plot(hald.coef) #> #> > predict(hald.gprior, top=5, se.fit=TRUE) #> $fit #> [1] 79.74246 74.50010 105.29268 89.88693 95.57177 104.56409 103.40145 #> [8] 77.13668 91.99731 114.21325 82.78446 111.00723 110.40160 #> #> $Ybma #> [,1] #> [1,] 79.74246 #> [2,] 74.50010 #> [3,] 105.29268 #> [4,] 89.88693 #> [5,] 95.57177 #> [6,] 104.56409 #> [7,] 103.40145 #> [8,] 77.13668 #> [9,] 91.99731 #> [10,] 114.21325 #> [11,] 82.78446 #> [12,] 111.00723 #> [13,] 110.40160 #> #> $Ypred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 81.17036 74.83464 105.0725 89.69881 97.15898 104.4575 103.3893 76.06454 #> [2,] 77.70296 74.24113 105.8554 90.46267 93.09565 104.7152 103.1399 78.80193 #> [3,] 79.70437 74.40553 105.2175 89.76253 95.63309 104.5709 103.5254 77.08557 #> [4,] 79.65151 74.47846 105.4218 89.83174 95.62799 104.5962 103.5068 77.00839 #> [5,] 79.84321 74.31409 104.9063 89.65651 95.70301 104.5285 103.5476 77.15919 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 91.57174 113.1722 81.59906 111.2219 111.0884 #> [2,] 92.68123 115.8058 84.50293 110.4162 109.0791 #> [3,] 91.98604 114.1759 82.78145 111.1196 110.5321 #> [4,] 92.07571 114.1088 82.68233 111.0429 110.4674 #> [5,] 91.83513 114.2353 82.88128 111.2384 110.6515 #> #> $postprobs #> [1] 0.3089304 0.2139017 0.1666632 0.1555023 0.1550024 #> #> $se.fit #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 2.220164 2.265862 1.546911 2.181188 1.310135 1.523300 2.655096 2.176560 #> [2,] 2.716798 2.389723 1.633637 2.179215 1.321062 1.581232 2.721957 2.078129 #> [3,] 3.203405 2.501485 3.279273 2.357164 2.589756 1.549136 2.623290 2.765255 #> [4,] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [5,] 2.932580 2.353352 1.538009 2.141694 2.507848 1.498758 2.616407 2.680289 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 1.883610 3.264656 1.908238 1.970691 2.054234 #> [2,] 2.013244 3.298134 1.933819 1.964374 1.924460 #> [3,] 2.353516 3.609909 2.821295 2.227363 2.390135 #> [4,] 1.990817 3.485929 2.456636 1.951456 2.212238 #> [5,] 1.889302 3.569065 2.665166 1.934336 2.117189 #> #> $se.pred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] #> [1,] 5.057182 5.077410 4.799885 5.040193 4.728892 4.792328 5.262651 5.038191 #> [2,] 5.415848 5.259391 4.961773 5.167146 4.867815 4.944766 5.418438 5.125333 #> [3,] 5.489152 5.111401 5.533771 5.042342 5.155175 4.718984 5.172102 5.245534 #> [4,] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [5,] 5.337427 5.042456 4.717369 4.947217 5.116386 4.704719 5.170463 5.203081 #> [,9] [,10] [,11] [,12] [,13] #> [1,] 4.918734 5.594992 4.928218 4.952735 4.986566 #> [2,] 5.099370 5.729582 5.068538 5.080274 5.064974 #> [3,] 5.040638 5.735890 5.275291 4.982985 5.057839 #> [4,] 4.882702 5.659428 5.090431 4.866787 4.977090 #> [5,] 4.843301 5.711946 5.195307 4.861045 4.936658 #> #> $se.bma.fit #> [1] 2.688224 2.095245 1.769625 1.970919 2.197285 1.363804 2.356457 2.302631 #> [9] 1.822084 3.141443 2.237663 1.801849 1.991374 #> #> $se.bma.pred #> [1] 4.838655 4.536087 4.395180 4.480017 4.584113 4.248058 4.662502 4.635531 #> [9] 4.416563 5.104380 4.603604 4.408253 4.489054 #> #> $df #> [1] 12 12 12 12 12 #> #> $best #> [1] 16 6 13 3 15 #> #> $bestmodel #> $bestmodel[[1]] #> [1] 0 1 2 #> #> $bestmodel[[2]] #> [1] 0 1 4 #> #> $bestmodel[[3]] #> [1] 0 1 2 3 4 #> #> $bestmodel[[4]] #> [1] 0 1 2 4 #> #> $bestmodel[[5]] #> [1] 0 1 2 3 #> #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X3\" \"X4\" #> #> $estimator #> [1] \"BMA\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"BMA\", se.fit=TRUE, top=5), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 73.00939 86.01817 79.74246 #> [2,] 69.14569 79.43434 74.50010 #> [3,] 100.89213 109.57630 105.29268 #> [4,] 84.94441 94.50001 89.88693 #> [5,] 90.30960 100.18471 95.57177 #> [6,] 101.28510 108.02065 104.56409 #> [7,] 97.16491 108.87403 103.40145 #> [8,] 71.59345 82.79361 77.13668 #> [9,] 87.51051 96.49305 91.99731 #> [10,] 106.52299 122.03522 114.21325 #> [11,] 77.66005 88.42324 82.78446 #> [12,] 106.64733 115.51574 111.00723 #> [13,] 105.63903 115.24049 110.40160 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > predict(hald.gprior, estimator=\"MPM\", se.fit=TRUE) #> $fit #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ybma #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 1 #> attr(,\"estimator\") #> [1] \"MPM\" #> #> $Ypred #> NULL #> #> $postprobs #> NULL #> #> $se.fit #> [1] 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> [9] 1.990817 3.485929 2.456636 1.951456 2.212238 #> #> $se.pred #> [1] 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> [9] 4.882702 5.659428 5.090431 4.866787 4.977090 #> #> $se.bma.fit #> NULL #> #> $se.bma.pred #> NULL #> #> $df #> [1] 12 #> #> $best #> NULL #> #> $bestmodel #> [1] 0 1 2 4 #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\" #> #> $estimator #> [1] \"MPM\" #> #> attr(,\"class\") #> [1] \"pred.bas\" #> #> > confint(predict(hald.gprior, Hald, estimator=\"MPM\", se.fit=TRUE), parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 72.85939 86.44363 79.65151 #> [2,] 69.50215 79.45478 74.47846 #> [3,] 101.93102 108.91264 105.42183 #> [4,] 85.14928 94.51420 89.83174 #> [5,] 89.98634 101.26964 95.62799 #> [6,] 101.30948 107.88283 104.59616 #> [7,] 97.81813 109.19556 103.50684 #> [8,] 71.46153 82.55525 77.00839 #> [9,] 87.73810 96.41333 92.07571 #> [10,] 106.51357 121.70394 114.10876 #> [11,] 77.32978 88.03488 82.68233 #> [12,] 106.79101 115.29472 111.04286 #> [13,] 105.64736 115.28746 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #> #> > fitted(hald.gprior, estimator=\"HPM\") #> [1] 81.17036 74.83464 105.07248 89.69881 97.15898 104.45753 103.38927 #> [8] 76.06454 91.57174 113.17222 81.59906 111.22195 111.08841 #> #> > hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, #> + prior=\"g-prior\", alpha=13, modelprior=uniform(), #> + initprobs=\"eplogp\") #> #> > hald.EB = update(hald.gprior, newprior=\"EB-global\") #> #> > hald.bic = update(hald.gprior,newprior=\"BIC\") #> #> > hald.zs = update(hald.bic, newprior=\"ZS-null\") if (FALSE) { demo(BAS.USCrime) }"},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":null,"dir":"Reference","previous_headings":"","what":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"version glm.fit rewritten C; also returns marginal likelihoods Bayesian model comparison","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"","code":"bayesglm.fit( x, y, weights = rep(1, nobs), start = NULL, etastart = NULL, mustart = NULL, offset = rep(0, nobs), family = binomial(), coefprior = bic.prior(nobs), control = glm.control(), intercept = TRUE )"},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"x design matrix y response weights optional vector weights used fitting process. NULL numeric vector. start starting value coefficients linear predictor etastart starting values linear predictor mustart starting values vectors means offset priori known component included linear predictor family description error distribution link function exponential family; currently binomial(), poisson(), Gamma() canonical links implemented. coefprior function specifying prior distribution coefficients optional hyperparameters leading marginal likelihood calculations; options include bic.prior(), aic.prior(), ic.prior() control list parameters control convergence fitting process. See documentation glm.control() intercept intercept included null model?","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"coefficients MLEs se Standard errors coefficients based sqrt diagonal inverse information matrix mu fitted mean rank numeric rank fitted linear model deviance minus twice log likelihood evaluated MLEs g value g g-priors shrinkage shrinkage factor coefficients linear predictor RegSS quadratic form beta'(beta)beta used shrinkage logmarglik log marginal integrated log likelihood (constant)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"C version glm-fit. different prior choices returns, marginal likelihood model using Laplace approximation.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"glm","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"Merlise Clyde translated glm.fit R base C using .Call interface","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bayesglm.fit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fitting Generalized Linear Models and Bayesian marginal likelihood\nevaluation — bayesglm.fit","text":"","code":"data(Pima.tr, package=\"MASS\") Y <- as.numeric(Pima.tr$type) - 1 X <- cbind(1, as.matrix(Pima.tr[,1:7])) out <- bayesglm.fit(X, Y, family=binomial(),coefprior=bic.prior(n=length(Y))) out$coef #> [1] -9.773061533 0.103183427 0.032116823 -0.004767542 -0.001916632 #> [6] 0.083623912 1.820410367 0.041183529 out$se #> [1] 1.770386016 0.064694153 0.006787299 0.018540741 0.022499541 0.042826888 #> [7] 0.665513776 0.022090978 # using built in function glm(type ~ ., family=binomial(), data=Pima.tr) #> #> Call: glm(formula = type ~ ., family = binomial(), data = Pima.tr) #> #> Coefficients: #> (Intercept) npreg glu bp skin bmi #> -9.773062 0.103183 0.032117 -0.004768 -0.001917 0.083624 #> ped age #> 1.820410 0.041184 #> #> Degrees of Freedom: 199 Total (i.e. Null); 192 Residual #> Null Deviance:\t 256.4 #> Residual Deviance: 178.4 \tAIC: 194.4"},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Beta-Binomial Prior Distribution for Models — beta.binomial","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"Creates object representing prior distribution models BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"","code":"beta.binomial(alpha = 1, beta = 1)"},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"alpha parameter beta prior distribution beta parameter beta prior distribution","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"beta-binomial distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, giving w beta(alpha,beta) distribution. Marginalizing w leads distribution model size beta-binomial distribution. default hyperparameters lead uniform distribution model size.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.binomial.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Beta-Binomial Prior Distribution for Models — beta.binomial","text":"","code":"beta.binomial(1, 10) #' @family priors modelpriors #> $family #> [1] \"Beta-Binomial\" #> #> $hyper.parameters #> [1] 1 10 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":null,"dir":"Reference","previous_headings":"","what":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"Creates object representing Beta-Prime prior mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"","code":"beta.prime(n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"n sample size; NULL, value derived data call `bas.glm` used.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/beta.prime.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Beta-Prime Prior Distribution for Coefficients in BMA Model — beta.prime","text":"","code":"beta.prime(n = 100) #> $family #> [1] \"betaprime\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$n #> [1] 100 #> #> $hyper.parameters$alpha #> [1] 0.5 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":null,"dir":"Reference","previous_headings":"","what":"Bodyfat Data — bodyfat","title":"Bodyfat Data — bodyfat","text":"Lists estimates percentage body fat determined underwater weighing various body circumference measurements 252 men. Accurate measurement body fat inconvenient/costly desirable easy methods estimating body fat inconvenient/costly.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Bodyfat Data — bodyfat","text":"data frame 252 observations following 15 variables. Density numeric vector density determined underwater weighing Bodyfat percent body fat Siri's (1956) equation Age age individual years Weight weight individual pounds Height height individual inches Neck neck circumference centimeters (cm) Chest chest circumference (cm) Abdomen abdomen circumference (cm) Hip hip circumference (cm) \"Thigh\" thigh circumference (cm) \"Knee\" knee circumference (cm) Ankle ankle circumference (cm) Biceps bicep (extended) circumference (cm) Forearm forearm circumference (cm) Wrist wrist circumference (cm)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Bodyfat Data — bodyfat","text":"data used produce predictive equations lean body weight given abstract \"Generalized body composition prediction equation men using simple measurement techniques\", K.W. Penrose, .G. Nelson, .G. Fisher, FACSM, Human Performance Research Center, Brigham Young University, Provo, Utah 84602 listed _Medicine Science Sports Exercise_, vol. 17, . 2, April 1985, p. 189. (predictive equations obtained first 143 252 cases listed ). data generously supplied Dr. . Garth Fisher gave permission freely distribute data use non-commercial purposes.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bodyfat Data — bodyfat","text":"variety popular health books suggest readers assess health, least part, estimating percentage body fat. Bailey (1994), instance, reader can estimate body fat tables using age various skin-fold measurements obtained using caliper. texts give predictive equations body fat using body circumference measurements (e.g. abdominal circumference) /skin-fold measurements. See, instance, Behnke Wilmore (1974), pp. 66-67; Wilmore (1976), p. 247; Katch McArdle (1977), pp. 120-132).# Percentage body fat individual can estimated body density determined. Folks (e.g. Siri (1956)) assume body consists two components - lean body tissue fat tissue. Letting D = Body Density (gm/cm^3) = proportion lean body tissue B = proportion fat tissue (+B=1) = density lean body tissue (gm/cm^3) b = density fat tissue (gm/cm^3) D = 1/[(/) + (B/b)] solving B find B = (1/D)*[ab/(-b)] - [b/(-b)]. Using estimates =1.10 gm/cm^3 b=0.90 gm/cm^3 (see Katch McArdle (1977), p. 111 Wilmore (1976), p. 123) come \"Siri's equation\": Percentage Body Fat (.e. 100*B) = 495/D - 450.# Volume, hence body density, can accurately measured variety ways. technique underwater weighing \"computes body volume difference body weight measured air weight measured water submersion. words, body volume equal loss weight water appropriate temperature correction water's density\" (Katch McArdle (1977), p. 113). Using technique, Body Density = WA/[(WA-WW)/c.f. - LV] WA = Weight air (kg) WW = Weight water (kg) c.f. = Water correction factor (=1 39.2 deg F one-gram water occupies exactly one cm^3 temperature, =.997 76-78 deg F) LV = Residual Lung Volume (liters) (Katch McArdle (1977), p. 115). methods determining body volume given Behnke Wilmore (1974), p. 22 ff. Measurement standards apparently listed Behnke Wilmore (1974), pp. 45-48 , instance, abdomen circumference measured \"laterally, level iliac crests, anteriorly, umbilicus\".)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bodyfat Data — bodyfat","text":"Bailey, Covert (1994). Smart Exercise: Burning Fat, Getting Fit, Houghton-Mifflin Co., Boston, pp. 179-186. Behnke, .R. Wilmore, J.H. (1974). Evaluation Regulation Body Build Composition, Prentice-Hall, Englewood Cliffs, N.J. Siri, W.E. (1956), \"Gross composition body\", Advances Biological Medical Physics, vol. IV, edited J.H. Lawrence C.. Tobias, Academic Press, Inc., New York. Katch, Frank McArdle, William (1977). Nutrition, Weight Control, Exercise, Houghton Mifflin Co., Boston. Wilmore, Jack (1976). Athletic Training Physical Fitness: Physiological Principles Conditioning Process, Allyn Bacon, Inc., Boston.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/bodyfat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bodyfat Data — bodyfat","text":"","code":"data(bodyfat) bodyfat.bas = bas.lm(Bodyfat ~ Abdomen, data=bodyfat, prior=\"ZS-null\") summary(bodyfat.bas) #> P(B != 0 | Y) model 1 model 2 #> Intercept 1 1.0000 1.000000e+00 #> Abdomen 1 1.0000 0.000000e+00 #> BF NA 1.0000 1.039211e-57 #> PostProbs NA 1.0000 0.000000e+00 #> R2 NA 0.6617 0.000000e+00 #> dim NA 2.0000 1.000000e+00 #> logmarg NA 131.2089 0.000000e+00 plot(Bodyfat ~ Abdomen, data=bodyfat, xlab=\"abdomen circumference (cm)\") betas = coef(bodyfat.bas)$postmean # current version has that intercept is ybar betas[1] = betas[1] - betas[2]*bodyfat.bas$mean.x abline(betas) abline(coef(lm(Bodyfat ~ Abdomen, data=bodyfat)), col=2, lty=2)"},{"path":"http://merliseclyde.github.io/BAS/reference/climate.html","id":null,"dir":"Reference","previous_headings":"","what":"Climate Data — climate","title":"Climate Data — climate","text":"Climate Data","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/climate.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Climate Data — climate","text":"Scientists interested Earth's temperature change since last glacial maximum, 20,000 years ago. first study estimate temperature change published 1980, estimated change -1.5 degrees C, +/- 1.2 degrees C tropical sea surface temperatures. negative value means Earth colder now. Since 1980 many studies. climate dataset 63 measurements 5 variables: sdev standard deviation calculated deltaT; proxy number 1-8 reflecting type measurement system used derive deltaT. proxies can used land, others water. proxies coded 1 \"Mg/Ca\" 2 \"alkenone\" 3 \"Faunal\" 4 \"Sr/Ca\" 5 \"del 180\" 6 \"Ice Core\" 7 \"Pollen\" 8 \"Noble Gas\" T/M , indicator whether terrestrial marine study (T/M), coded 0 Terrestrial, 1 Marine; latitude latitude data collected.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/climate.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Climate Data — climate","text":"Data provided originally Michael Lavine","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":null,"dir":"Reference","previous_headings":"","what":"Coefficients of a Bayesian Model Average object — coef.bas","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Extract conditional posterior means standard deviations, marginal posterior means standard deviations, posterior probabilities, marginal inclusions probabilities Bayesian Model Averaging object class 'bas'","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"","code":"# S3 method for bas coef(object, n.models, estimator = \"BMA\", ...) # S3 method for coef.bas print(x, digits = max(3, getOption(\"digits\") - 3), ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"object object class 'bas' created BAS n.models Number top models report printed summary, coef default use models. extract summaries Highest Probability Model, use n.models=1 estimator=\"HPM\". estimator return summaries selected model, rather using BMA. Options 'HPM' (highest posterior probability model) ,'MPM' (median probability model), 'BMA' ... optional arguments x object class 'coef.bas' print digits number significant digits print","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"coefficients returns object class coef.bas following: conditionalmeans matrix conditional posterior means model conditionalsd standard deviations model postmean marginal posterior means regression coefficient using BMA postsd marginal posterior standard deviations using BMA postne0 vector posterior inclusion probabilities, marginal probability coefficient non-zero","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Calculates posterior means (approximate) standard deviations regression coefficients Bayesian Model averaging using g-priors mixtures g-priors. Print returns overall summaries. fully Bayesian methods place prior g, posterior standard deviations take account full uncertainty regarding g. updated future releases.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"highly correlated variables, marginal summaries may representative joint distribution. Use plot.coef.bas view distributions. value reported intercept centered parameterization. Gaussian error model centered sample mean Y.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2005) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/coef.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coefficients of a Bayesian Model Average object — coef.bas","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y~ ., data=Hald, n.models=2^4, alpha=13, prior=\"ZS-null\", initprobs=\"Uniform\", update=10) coef.hald.gprior = coefficients(hald.gprior) coef.hald.gprior #> #> Marginal Posterior Summaries of Coefficients: #> #> Using BMA #> #> Based on the top 16 models #> post mean post SD post p(B != 0) #> Intercept 95.42308 0.67885 1.00000 #> X1 1.40116 0.35351 0.97454 #> X2 0.42326 0.38407 0.76017 #> X3 -0.03997 0.33398 0.30660 #> X4 -0.22077 0.36931 0.44354 plot(coef.hald.gprior) confint(coef.hald.gprior) #> 2.5% 97.5% beta #> Intercept 93.94388385 96.8507384 95.42307692 #> X1 0.61891336 2.0975078 1.40116123 #> X2 -0.02050468 0.9323464 0.42325794 #> X3 -0.80435395 0.6342809 -0.03997087 #> X4 -0.75952512 0.2233208 -0.22076600 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" #Estimation under Median Probability Model coef.hald.gprior = coefficients(hald.gprior, estimator=\"MPM\") coef.hald.gprior #> #> Marginal Posterior Summaries of Coefficients: #> #> Using MPM #> #> Based on the top 1 models #> post mean post SD post p(B != 0) #> Intercept 95.42308 0.66740 1.00000 #> X1 1.45542 0.12077 1.00000 #> X2 0.65644 0.04565 1.00000 #> X3 0.00000 0.00000 0.00000 #> X4 0.00000 0.00000 0.00000 plot(coef.hald.gprior) plot(confint(coef.hald.gprior)) #> NULL coef.hald.gprior = coefficients(hald.gprior, estimator=\"HPM\") coef.hald.gprior #> #> Marginal Posterior Summaries of Coefficients: #> #> Using HPM #> #> Based on the top 1 models #> post mean post SD post p(B != 0) #> Intercept 95.42308 0.66740 1.00000 #> X1 1.45542 0.12077 0.97454 #> X2 0.65644 0.04565 0.76017 #> X3 0.00000 0.00000 0.30660 #> X4 0.00000 0.00000 0.44354 plot(coef.hald.gprior) confint(coef.hald.gprior) #> 2.5% 97.5% beta #> Intercept 93.9689432 96.877211 95.4230769 #> X1 1.1922938 1.718554 1.4554239 #> X2 0.5569707 0.755910 0.6564404 #> X3 0.0000000 0.000000 0.0000000 #> X4 0.0000000 0.000000 0.0000000 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" # To add estimation under Best Predictive Model"},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"Uses Monte Carlo simulations using posterior means standard deviations coefficients generate draws posterior distributions returns highest posterior density (HPD) credible intervals. number models equals one, use t distribution find intervals. currently condition estimate $g$. description ~~","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"","code":"# S3 method for coef.bas confint(object, parm, level = 0.95, nsim = 10000, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"object coef.bas object parm specification parameters given credible intervals, either vector numbers vector names. missing, parameters considered. level probability coverage required nsim number Monte Carlo draws posterior distribution. Used number models greater 1. ... arguments passed; none currently","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"matrix (vector) columns giving lower upper HPD credible limits parameter. labeled 1-level)/2 1 - (1-level)/2 percent (default 2.5 97.5).","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"mixture g-priors approximate. uses Monte Carlo sampling results may subject Monte Carlo variation larger values nsim may needed reduce variability.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.coef.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute Credible Intervals for BAS regression coefficients from BAS objects — confint.coef.bas","text":"","code":"data(\"Hald\") hald_gprior <- bas.lm(Y~ ., data=Hald, alpha=13, prior=\"g-prior\") coef_hald <- coef(hald_gprior) confint(coef_hald) #> 2.5% 97.5% beta #> Intercept 93.921187 96.9252540 95.4230769 #> X1 0.000000 1.8699243 1.2150202 #> X2 -1.150678 0.8655846 0.2756235 #> X3 -1.538495 0.5490304 -0.1270575 #> X4 -1.715886 0.2450915 -0.3268710 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" confint(coef_hald, approx=FALSE, nsim=5000) #> 2.5% 97.5% beta #> Intercept 93.926036 96.9807556 95.4230769 #> X1 0.000000 1.8910915 1.2150202 #> X2 -1.065372 0.9489101 0.2756235 #> X3 -1.515266 0.5836245 -0.1270575 #> X4 -1.635468 0.3317377 -0.3268710 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" # extract just the coefficient of X4 confint(coef_hald, parm=\"X4\") #> 2.5% 97.5% beta #> X4 -1.664808 0.3060944 -0.326871 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"Compute credible intervals -sample sample prediction regression function","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"","code":"# S3 method for pred.bas confint(object, parm, level = 0.95, nsim = 10000, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"object object created predict.bas parm character variable, \"mean\" \"pred\". missing parm='pred'. level nominal level (point-wise) credible interval nsim number Monte Carlo simulations sampling methods BMA ... optional arguments pass next function call; none time.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"matrix lower upper level * 100 percent credible intervals either mean regression function predicted values.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"constructs approximate 95 percent Highest Posterior Density intervals 'pred.bas' objects. estimator based model selection, intervals use Student t distribution using estimate g. estimator based BMA, nsim draws mixture Student t distributions obtained HPD interval obtained Monte Carlo draws.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/confint.pred.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute Credible (Bayesian Confidence) Intervals for a BAS predict object — confint.pred.bas","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y~ ., data=Hald, alpha=13, prior=\"g-prior\") hald.pred = predict(hald.gprior, estimator=\"BPM\", predict=FALSE, se.fit=TRUE) confint(hald.pred, parm=\"mean\") #> 2.5% 97.5% mean #> [1,] 72.85939 86.44363 79.65151 #> [2,] 69.50215 79.45478 74.47846 #> [3,] 101.93102 108.91264 105.42183 #> [4,] 85.14928 94.51420 89.83174 #> [5,] 89.98634 101.26964 95.62799 #> [6,] 101.30948 107.88283 104.59616 #> [7,] 97.81813 109.19556 103.50684 #> [8,] 71.46153 82.55525 77.00839 #> [9,] 87.73810 96.41333 92.07571 #> [10,] 106.51357 121.70394 114.10876 #> [11,] 77.32978 88.03488 82.68233 #> [12,] 106.79101 115.29472 111.04286 #> [13,] 105.64736 115.28746 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" confint(hald.pred) #default #> 2.5% 97.5% pred #> [1,] 67.79843 91.50459 79.65151 #> [2,] 63.56396 85.39296 74.47846 #> [3,] 95.09960 115.74406 105.42183 #> [4,] 79.04805 100.61543 89.83174 #> [5,] 84.39452 106.86146 95.62799 #> [6,] 94.34116 114.85115 104.59616 #> [7,] 92.24966 114.76402 103.50684 #> [8,] 65.82223 88.19456 77.00839 #> [9,] 81.43722 102.71421 92.07571 #> [10,] 101.77792 126.43959 114.10876 #> [11,] 71.59123 93.77342 82.68233 #> [12,] 100.43905 121.64668 111.04286 #> [13,] 99.62326 121.31156 110.46741 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" hald.pred = predict(hald.gprior, estimator=\"BMA\", predict=FALSE, se.fit=TRUE) confint(hald.pred) #> 2.5% 97.5% pred #> [1,] 68.01280 91.56949 79.68307 #> [2,] 63.49079 86.53384 74.69127 #> [3,] 95.10224 116.73747 105.63258 #> [4,] 78.51888 100.76498 89.91648 #> [5,] 84.41477 106.89964 95.67480 #> [6,] 93.93347 114.47776 104.57616 #> [7,] 91.69907 114.73029 103.47945 #> [8,] 66.18518 88.90840 76.96808 #> [9,] 81.32753 103.28639 92.22184 #> [10,] 101.27312 126.86767 113.84918 #> [11,] 71.21060 94.17152 82.59035 #> [12,] 99.56256 121.58581 110.87673 #> [13,] 99.42045 121.73570 110.34001 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Summaries for Out of Sample Prediction — cv.summary.bas","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"Compute average prediction error sample predictions","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"","code":"cv.summary.bas(pred, ytrue, score = \"squared-error\")"},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"pred fitted predicted value output predict.bas ytrue vector left response values score function used summarize error rate. Either \"squared-error\", \"miss-class\"","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"squared error, average prediction error Bayesian estimator error = sqrt(sum(ytrue - yhat)^2/npred) binary data misclassification rate appropriate.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/cv.summary.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summaries for Out of Sample Prediction — cv.summary.bas","text":"","code":"if (FALSE) { library(foreign) cognitive <- read.dta(\"https://www.stat.columbia.edu/~gelman/arm/examples/child.iq/kidiq.dta\") cognitive$mom_work <- as.numeric(cognitive$mom_work > 1) cognitive$mom_hs <- as.numeric(cognitive$mom_hs > 0) colnames(cognitive) <- c(\"kid_score\", \"hs\", \"iq\", \"work\", \"age\") set.seed(42) n <- nrow(cognitive) test <- sample(1:n, size = round(.20 * n), replace = FALSE) testdata <- cognitive[test, ] traindata <- cognitive[-test, ] cog_train <- bas.lm(kid_score ~ ., prior = \"BIC\", modelprior = uniform(), data = traindata) yhat <- predict(cog_train, newdata = testdata, estimator = \"BMA\", se = F) cv.summary.bas(yhat$fit, testdata$kid_score) }"},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":null,"dir":"Reference","previous_headings":"","what":"BAS MCMC diagnostic plot — diagnostics","title":"BAS MCMC diagnostic plot — diagnostics","text":"Function help assess convergence MCMC sampling bas objects.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"BAS MCMC diagnostic plot — diagnostics","text":"","code":"diagnostics(obj, type = c(\"pip\", \"model\"), ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"BAS MCMC diagnostic plot — diagnostics","text":"obj object created bas.lm bas.glm type type diagnostic plot. \"pip\" marginal inclusion probabilities used, \"model\", plot posterior model probabilities ... additional graphics parameters passed plot","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"BAS MCMC diagnostic plot — diagnostics","text":"plot marginal inclusion probabilities (pip) estimated MCMC renormalized marginal likelihoods times prior probabilities model probabilities.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"BAS MCMC diagnostic plot — diagnostics","text":"BAS calculates posterior model probabilities two ways method=\"MCMC\". first using relative Monte Carlo frequencies sampled models. second renormalize marginal likelihood times prior probabilities sampled models. Markov chain converged, two quantities fall 1-1 line. , running longer may required. chain converged, Monte Carlo frequencies may less bias, although may exhibit variability repeated runs.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"BAS MCMC diagnostic plot — diagnostics","text":"Merlise Clyde (clyde@duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/diagnostics.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"BAS MCMC diagnostic plot — diagnostics","text":"","code":"library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.ZS <- bas.lm(y ~ ., data = UScrime, prior = \"ZS-null\", modelprior = uniform(), method = \"MCMC\", MCMC.iter = 1000 ) # short run for the example diagnostics(crime.ZS)"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":null,"dir":"Reference","previous_headings":"","what":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"eplogprob calculates approximate marginal posterior inclusion probabilities p-values computed linear model using lower bound approximation Bayes factors. Used obtain initial inclusion probabilities sampling using Bayesian Adaptive Sampling bas.lm","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"","code":"eplogprob(lm.obj, thresh = 0.5, max = 0.99, int = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"lm.obj linear model object thresh value inclusion probability p-value > 1/exp(1), lower bound approximation valid. max maximum value inclusion probability; used bas.lm function keep initial inclusion probabilities away 1. int Intercept included linear model, set marginal inclusion probability corresponding intercept 1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"eplogprob returns vector marginal posterior inclusion probabilities variables linear model. int = TRUE, inclusion probability intercept set 1. model full rank, variables linearly dependent base QR factorization NA p-values. bas.lm, probabilities used sampling, inclusion probability set 0.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"Sellke, Bayarri Berger (2001) provide simple calibration p-values BF(p) = -e p log(p) provide lower bound Bayes factor comparing H0: beta = 0 versus H1: beta equal 0, p-value p less 1/e. Using equal prior odds hypotheses H0 H1, approximate marginal posterior inclusion probability p(beta != 0 | data ) = 1/(1 + BF(p)) p > 1/e, set marginal inclusion probability 0.5 value given thresh.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"Sellke, Thomas, Bayarri, M. J., Berger, James O. (2001), ``Calibration p-values testing precise null hypotheses'', American Statistician, 55, 62-71.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"eplogprob - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob","text":"","code":"library(MASS) data(UScrime) UScrime[,-2] = log(UScrime[,-2]) eplogprob(lm(y ~ ., data=UScrime)) #> (Intercept) M So Ed Po1 Po2 #> 1.0000000 0.9480823 0.5000000 0.9883193 0.5045770 0.5000000 #> LF M.F Pop NW U1 U2 #> 0.5000000 0.5304659 0.5807429 0.8046414 0.5000000 0.6858642 #> GDP Ineq Prob Time #> 0.6069289 0.9900000 0.9412475 0.5782754"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":null,"dir":"Reference","previous_headings":"","what":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"eplogprob.marg calculates approximate marginal posterior inclusion probabilities p-values computed series simple linear regression models using lower bound approximation Bayes factors. Used order variables appropriate obtain initial inclusion probabilities sampling using Bayesian Adaptive Sampling bas.lm","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"","code":"eplogprob.marg(Y, X, thresh = 0.5, max = 0.99, int = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Y response variable X design matrix column ones intercept thresh value inclusion probability p-value > 1/exp(1), lower bound approximation valid. max maximum value inclusion probability; used bas.lm function keep initial inclusion probabilities away 1. int Intercept included linear model, set marginal inclusion probability corresponding intercept 1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"eplogprob.prob returns vector marginal posterior inclusion probabilities variables linear model. int = TRUE, inclusion probability intercept set 1.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Sellke, Bayarri Berger (2001) provide simple calibration p-values BF(p) = -e p log(p) provide lower bound Bayes factor comparing H0: beta = 0 versus H1: beta equal 0, p-value p less 1/e. Using equal prior odds hypotheses H0 H1, approximate marginal posterior inclusion probability p(beta != 0 | data ) = 1/(1 + BF(p)) p > 1/e, set marginal inclusion probability 0.5 value given thresh. eplogprob.marg marginal p-values obtained using statistics p simple linear regressions P(F > (n-2) R2/(1 - R2)) F ~ F(1, n-2) R2 square correlation coefficient y X_j.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Sellke, Thomas, Bayarri, M. J., Berger, James O. (2001), ``Calibration p-values testing precise null hypotheses'', American Statistician, 55, 62-71.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/eplogprob.marg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"eplogprob.marg - Compute approximate marginal inclusion probabilities from\npvalues — eplogprob.marg","text":"","code":"library(MASS) data(UScrime) UScrime[,-2] = log(UScrime[,-2]) eplogprob(lm(y ~ ., data=UScrime)) #> (Intercept) M So Ed Po1 Po2 #> 1.0000000 0.9480823 0.5000000 0.9883193 0.5045770 0.5000000 #> LF M.F Pop NW U1 U2 #> 0.5000000 0.5304659 0.5807429 0.8046414 0.5000000 0.6858642 #> GDP Ineq Prob Time #> 0.6069289 0.9900000 0.9412475 0.5782754"},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":null,"dir":"Reference","previous_headings":"","what":"Fitted values for a BAS BMA objects — fitted.bas","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Calculate fitted values BAS BMA object","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"","code":"# S3 method for bas fitted( object, type = \"link\", estimator = \"BMA\", top = NULL, na.action = na.pass, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"object object class 'bas' created bas type type equals \"response\" \"link\" case GLMs (default 'link') estimator estimator type fitted value return. Default use BMA models. Options include 'HPM' highest probability model 'BMA' Bayesian model averaging, using optionally 'top' models 'MPM' median probability model Barbieri Berger. 'BPM' model closest BMA predictions squared error loss top optional argument specifying 'top' models used constructing BMA prediction, NULL models used. top=1, equivalent 'HPM' na.action function determining done missing values newdata. default predict NA. ... optional arguments, used currently","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"vector length n fitted values.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Calculates fitted values observed design matrix using either highest probability model, 'HPM', posterior mean (BMA) 'BMA', median probability model 'MPM' best predictive model 'BPM\". median probability model defined including variable marginal inclusion probability greater equal 1/2. type=\"BMA\", weighted average may based using subset highest probability models optional argument given top. default BMA uses sampled models, may take compute number variables number models large. \"BPM\" found computing squared distance vector fitted values model fitted values BMA returns model smallest distance. presence multicollinearity may quite different MPM, extreme collinearity may drop relevant predictors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Barbieri, M. Berger, J.O. (2004) Optimal predictive model selection. Annals Statistics. 32, 870-897. https://projecteuclid.org/euclid.aos/1085408489&url=/UI/1.0/Summarize/euclid.aos/1085408489 Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/fitted.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fitted values for a BAS BMA objects — fitted.bas","text":"","code":"data(Hald) hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"ZS-null\", initprobs=\"Uniform\") plot(Hald$Y, fitted(hald.gprior, estimator=\"HPM\")) plot(Hald$Y, fitted(hald.gprior, estimator=\"BMA\", top=3)) plot(Hald$Y, fitted(hald.gprior, estimator=\"MPM\")) plot(Hald$Y, fitted(hald.gprior, estimator=\"BPM\"))"},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"function takes output bas object allows higher order interactions included parent lower order interactions terms model, assigning zero prior probability, hence posterior probability, models include respective parents.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"","code":"force.heredity.bas(object, prior.prob = 0.5)"},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"object bas linear model generalized linear model object prior.prob prior probability term included conditional parents included","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"bas object updated models, coefficients summaries obtained removing models zero prior posterior probabilities.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"Currently prior probabilities computed using conditional Bernoulli distributions, .e. P(gamma_j = 1 | Parents(gamma_j) = 1) = prior.prob. efficient models large number levels. Future updates force time sampling.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/force.heredity.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Post processing function to force constraints on interaction inclusion bas BMA objects — force.heredity.bas","text":"","code":"data(\"chickwts\") bas.chk <- bas.lm(weight ~ feed, data = chickwts) # summary(bas.chk) # 2^5 = 32 models bas.chk.int <- force.heredity.bas(bas.chk) # summary(bas.chk.int) # two models now data(Hald) bas.hald <- bas.lm(Y ~ .^2, data = Hald) bas.hald.int <- force.heredity.bas(bas.hald) image(bas.hald.int) image(bas.hald.int) # two-way interactions data(ToothGrowth) ToothGrowth$dose <- factor(ToothGrowth$dose) levels(ToothGrowth$dose) <- c(\"Low\", \"Medium\", \"High\") TG.bas <- bas.lm(len ~ supp * dose, data = ToothGrowth, modelprior = uniform()) TG.bas.int <- force.heredity.bas(TG.bas) image(TG.bas.int)"},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"Creates object representing g-prior distribution coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"","code":"g.prior(g)"},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"g scalar used covariance Zellner's g-prior, Cov(beta) = sigma^2 g (X'X)^-1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"Creates structure used BAS.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/g.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Families of G-Prior Distribution for Coefficients in BMA Models — g.prior","text":"","code":"g.prior(100) #> $family #> [1] \"g.prior\" #> #> $g #> [1] 100 #> #> $class #> [1] \"g-prior\" #> #> $hyper #> [1] 100 #> #> $hyper.parameters #> $hyper.parameters$g #> [1] 100 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":null,"dir":"Reference","previous_headings":"","what":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"Creates object representing hyper-g mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"","code":"hyper.g(alpha = 3)"},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"alpha scalar > 0. hyper.g(alpha) equivalent CCH(alpha -2, 2, 0). Liang et al recommended values range 2 < alpha_h <= 3","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Hyper-g-Prior Distribution for Coefficients in BMA Models — hyper.g","text":"","code":"hyper.g(alpha = 3) #> $family #> [1] \"CCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"Creates object representing hyper-g/n mixture g-priors coefficients BAS. special case tCCH prior","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"","code":"hyper.g.n(alpha = 3, n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"alpha scalar > 0, recommended 2 < alpha <= 3 n sample size; NULL, value derived data call `bas.glm` used.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"Creates structure used bas.glm. special case tCCH, hyper.g.n(alpha=3, n) equivalent tCCH(alpha=1, beta=2, s=0, r=1.5, v = 1, theta=1/n)","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hyper.g.n.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized hyper-g/n Prior Distribution for g for mixtures of g-priors on\nCoefficients in BMA Models — hyper.g.n","text":"","code":"n <- 500 hyper.g.n(alpha = 3, n = n) #> $family #> [1] \"hyper-g/n\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> $hyper.parameters$r #> [1] 1.5 #> #> $hyper.parameters$v #> [1] 1 #> #> $hyper.parameters$theta #> [1] 0.002 #> #> #> $n #> [1] 500 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":null,"dir":"Reference","previous_headings":"","what":"Confluent hypergeometric1F1 function — hypergeometric1F1","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"Compute Confluent Hypergeometric function: 1F1(,b,c,t) = Gamma(b)/(Gamma(b-)Gamma()) Int_0^1 t^(-1) (1 - t)^(b--1) exp(c t) dt","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"","code":"hypergeometric1F1(a, b, c, laplace = FALSE, log = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"arbitrary b Must greater 0 c arbitrary laplace default use Cephes library; large s may return NA, Inf negative values,, case use Laplace approximation. log TRUE, return log(1F1)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"Cephes library hyp1f1.c","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"Merlise Clyde (clyde@stat.duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric1F1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Confluent hypergeometric1F1 function — hypergeometric1F1","text":"","code":"hypergeometric1F1(11.14756, 0.5, 0.00175097) #> [1] 0.03856253"},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":null,"dir":"Reference","previous_headings":"","what":"Gaussian hypergeometric2F1 function — hypergeometric2F1","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"Compute Gaussian Hypergeometric2F1 function: 2F1(,b,c,z) = Gamma(b-c) Int_0^1 t^(b-1) (1 - t)^(c -b -1) (1 - t z)^(-) dt","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"","code":"hypergeometric2F1(a, b, c, z, method = \"Cephes\", log = TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"arbitrary b Must greater 0 c Must greater b |z| < 1, c > b + z = 1 z |z| <= 1 method default use Cephes library routine. sometimes unstable large z near one returning Inf negative values. case, try method=\"Laplace\", use Laplace approximation tau = exp(t/(1-t)). log TRUE, return log(2F1)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"log=T returns log 2F1 function; otherwise 2F1 function.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"default use routine hyp2f1.c Cephes library. return negative value Inf, one try method=\"Laplace\" based Laplace approximation described Liang et al JASA 2008. used hyper-g prior calculate marginal likelihoods.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"Cephes library hyp2f1.c Liang, F., Paulo, R., Molina, G., Clyde, M. Berger, J.O. (2005) Mixtures g-priors Bayesian Variable Selection. Journal American Statistical Association. 103:410-423. doi:10.1198/016214507000001337","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"Merlise Clyde (clyde@duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/hypergeometric2F1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Gaussian hypergeometric2F1 function — hypergeometric2F1","text":"","code":"hypergeometric2F1(12, 1, 2, .65) #> [1] 9.580921"},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Images of models used in Bayesian model averaging — image.bas","title":"Images of models used in Bayesian model averaging — image.bas","text":"Creates image models selected using bas.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Images of models used in Bayesian model averaging — image.bas","text":"","code":"# S3 method for bas image( x, top.models = 20, intensity = TRUE, prob = TRUE, log = TRUE, rotate = TRUE, color = \"rainbow\", subset = NULL, drop.always.included = FALSE, offset = 0.75, digits = 3, vlas = 2, plas = 0, rlas = 0, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Images of models used in Bayesian model averaging — image.bas","text":"x BMA object type 'bas' created BAS top.models Number top ranked models plot intensity Logical variable, TRUE image intensity proportional probability log(probability) model, FALSE, intensity binary indicating just presence (light) absence (dark) variable. prob Logical variable whether area image model proportional posterior probability (log probability) model (TRUE) equal area (FALSE). log Logical variable indicating whether intensities based log posterior odds (TRUE) posterior probabilities (FALSE). log posterior odds comparing model worst model top.models. rotate image models rotated models y-axis variables x-axis (TRUE) color color scheme image intensities. value \"rainbow\" uses rainbow palette. value \"blackandwhite\" produces black white image (greyscale image) subset indices variables include/exclude plot drop.always.included logical variable drop variables always forced model. FALSE default. offset numeric value add intensity digits number digits posterior probabilities keep vlas las parameter placing variable names; see par plas las parameter posterior probability axis rlas las parameter model ranks ... parameters passed image axis functions.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Images of models used in Bayesian model averaging — image.bas","text":"Creates image model space sampled using bas. subset top models plotted, probabilities renormalized subset.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Images of models used in Bayesian model averaging — image.bas","text":"Suggestion allow area models proportional posterior probability due Thomas Lumley","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Images of models used in Bayesian model averaging — image.bas","text":"Clyde, M. (1999) Bayesian Model Averaging Model Search Strategies (discussion). Bayesian Statistics 6. J.M. Bernardo, .P. Dawid, J.O. Berger, .F.M. Smith eds. Oxford University Press, pages 157-185.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Images of models used in Bayesian model averaging — image.bas","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/image.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Images of models used in Bayesian model averaging — image.bas","text":"","code":"require(graphics) data(\"Hald\") hald.ZSprior <- bas.lm(Y ~ ., data = Hald, prior = \"ZS-null\") image(hald.ZSprior, drop.always.included = TRUE) # drop the intercept"},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":null,"dir":"Reference","previous_headings":"","what":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Creates object representing intrinsic prior g, special case tCCH mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"","code":"intrinsic(n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"n sample size; NULL, value derived data call `bas.glm` used.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"returns object class \"prior\", family \"intrinsic\" class \"TCCH\" hyperparameters alpha = 1, beta = 1, s = 0, r = 1, n = n tCCH prior theta tCCH prior determined model size sample size.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Creates structure used bas.glm.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Womack, ., Novelo,L.L., Casella, G. (2014). \"Inference Intrinsic Bayes' Procedures Model Selection Uncertainty\". Journal American Statistical Association. 109:1040-1053. doi:10.1080/01621459.2014.880348","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/intrinsic.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Intrinsic Prior Distribution for Coefficients in BMA Models — intrinsic","text":"","code":"n <- 500 tCCH(alpha = 1, beta = 2, s = 0, r = 1.5, v = 1, theta = 1 / n) #> $family #> [1] \"tCCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> $hyper.parameters$r #> [1] 1.5 #> #> $hyper.parameters$v #> [1] 1 #> #> $hyper.parameters$theta #> [1] 0.002 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce a BAS list object into a matrix. — list2matrix.bas","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"Models, coefficients, standard errors objects class 'bas' represented list lists reduce storage omitting zero entries. functions coerce list object matrix fill zeros facilitate computations.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"","code":"list2matrix.bas(x, what, which.models = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"x 'bas' object name bas list coerce .models vector indices use extract subset","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"matrix representation x$, number rows equal length .models total number models number columns x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"list2matrix.bas(x, ) equivalent list2matrix.(x), however, latter uses sapply rather loop. list2matrix..matrix coerce x$matrix.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce a BAS list object into a matrix. — list2matrix.bas","text":"","code":"data(Hald) hald.bic <- bas.lm(Y ~ ., data=Hald, prior=\"BIC\", initprobs= \"eplogp\") coef <- list2matrix.bas(hald.bic, \"mle\") # extract all coefficients se <- list2matrix.bas(hald.bic, \"mle.se\") models <- list2matrix.which(hald.bic) #matrix of model indicators models <- which.matrix(hald.bic$which, hald.bic$n.vars) #matrix of model indicators"},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce a BAS list object into a matrix. — list2matrix.which","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"Models, coefficients, standard errors objects class 'bas' represented list lists reduce storage omitting zero entries. functions coerce list object matrix fill zeros facilitate computations.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"","code":"list2matrix.which(x, which.models = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"x 'bas' object .models vector indices use extract subset","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"matrix representation x$, number rows equal length .models total number models number columns x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"list2matrix.bas(x, ) equivalent list2matrix.(x), however, latter uses sapply rather loop. list2matrix..matrix coerce x$matrix.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/list2matrix.which.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce a BAS list object into a matrix. — list2matrix.which","text":"","code":"data(Hald) Hald.bic <- bas.lm(Y ~ ., data=Hald, prior=\"BIC\", initprobs=\"eplogp\") coef <- list2matrix.bas(Hald.bic, \"mle\") # extract all ols coefficients se <- list2matrix.bas(Hald.bic, \"mle.se\") models <- list2matrix.which(Hald.bic) #matrix of model indicators models <- which.matrix(Hald.bic$which, Hald.bic$n.vars) #matrix of model indicators"},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":null,"dir":"Reference","previous_headings":"","what":"Compound Confluent hypergeometric function of two variables — phi1","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"Compute Confluent Hypergeometric function two variables, also know Horn hypergeometric function Humbert's hypergeometric used Gordy (1998) integral representation:","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"","code":"phi1(a, b, c, x, y, log = FALSE)"},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"> 0 b arbitrary c c > 0 x x > 0 y y > 0 log logical indicating whether return phi1 log scale","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"phi_1(,b,c,x,y) = [(Gamma(c)/Gamma() Gamma(-c))] Int_0^1 t^(-1) (1 - t)^(c--1) (1 - yt)^(-b) exp(x t) dt https://en.wikipedia.org/wiki/Humbert_series Note Gordy's arguments x y reversed reference . original `phi1` function `BAS` based `C` code provided Gordy. function returns NA's x greater `log(.Machine$double.xmax)/2`. stable method calculating `phi1` function using R's `integrate` suggested Daniel Heemann now option whenever $x$ large. calculating Bayes factors use `phi1` function recommend using `log=TRUE` option compute log Bayes factors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"Gordy 1998","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"Merlise Clyde (clyde@duke.edu) Daniel Heemann (df.heemann@gmail.com)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/phi1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compound Confluent hypergeometric function of two variables — phi1","text":"","code":"# special cases # phi1(a, b, c, x=0, y) is the same as 2F1(b, a; c, y) phi1(1, 2, 1.5, 0, 1 / 100, log=FALSE) #> [1] 1.013495 hypergeometric2F1(2, 1, 1.5, 1 / 100, log = FALSE) #> [1] 1.013495 # phi1(a,0,c,x,y) is the same as 1F1(a,c,x) phi1(1, 0, 1.5, 3, 1 / 100) #> [1] 10.13001 hypergeometric1F1(1, 1.5, 3, log = FALSE) #> [1] 10.13001 # use direct integration phi1(1, 2, 1.5, 1000, 0, log=TRUE) #> [1] 996.4253"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":null,"dir":"Reference","previous_headings":"","what":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"Displays plots posterior distributions coefficients generated Bayesian model averaging linear regression.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"","code":"# S3 method for coef.bas plot(x, e = 1e-04, subset = 1:x$n.vars, ask = TRUE, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"x object class coef.bas e optional numeric value specifying range distributions graphed. subset optional numerical vector specifying variables graph (including intercept) ask Prompt next plot ... parameters passed plot lines","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"Produces plots posterior distributions coefficients model averaging. posterior probability coefficient zero represented solid line zero, height equal probability. nonzero part distribution scaled maximum height equal probability coefficient nonzero. parameter e specifies range distributions graphed specifying tail probabilities dictate range plot .","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"mixtures g-priors, uncertainty g incorporated time, thus results approximate","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"Hoeting, J.., Raftery, .E. Madigan, D. (1996). method simultaneous variable selection outlier identification linear regression. Computational Statistics Data Analysis, 22, 251-270.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"based function plot.bic Ian Painter package BMA; adapted 'bas' class Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.coef.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plots the posterior distributions of coefficients derived from Bayesian\nmodel averaging — plot.coef.bas","text":"","code":"if (FALSE) library(MASS) data(UScrime) UScrime[,-2] <- log(UScrime[,-2]) crime_bic <- bas.lm(y ~ ., data=UScrime, n.models=2^15, prior=\"BIC\") plot(coefficients(crime_bic), ask=TRUE)"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Bayesian Confidence Intervals — plot.confint.bas","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"Function takes output functions return credible intervals BAS objects, creates plot posterior mean segments representing credible interval. function . ~~","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"","code":"# S3 method for confint.bas plot(x, horizontal = FALSE, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"x output confint.coef.bas confint.pred.bas containing credible intervals estimates. horizontal orientation plot ... optional graphical arguments pass plot","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"plot credible intervals.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"function takes HPD intervals credible intervals created confint.coef.bas confint.pred.bas BAS objects, creates plot posterior mean segments representing credible interval. BAS tries return HPD intervals, model averaging may symmetric. description ~~","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.confint.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot Bayesian Confidence Intervals — plot.confint.bas","text":"","code":"data(Hald) hald.ZS = bas.lm(Y ~ ., data=Hald, prior=\"ZS-null\", modelprior=uniform()) hald.coef = confint(coef(hald.ZS), parm=2:5) plot(hald.coef) #> NULL plot(hald.coef, horizontal=TRUE) #> NULL plot(confint(predict(hald.ZS, se.fit=TRUE), parm=\"mean\")) #> NULL"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Diagnostics for an BAS Object — plot.bas","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"Four plots (selectable '') currently available: plot residuals fitted values, Cumulative Model Probabilities, log marginal likelihoods versus model dimension, marginal inclusion probabilities.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"","code":"# S3 method for bas plot( x, which = c(1:4), caption = c(\"Residuals vs Fitted\", \"Model Probabilities\", \"Model Complexity\", \"Inclusion Probabilities\"), panel = if (add.smooth) panel.smooth else points, sub.caption = NULL, main = \"\", ask = prod(par(\"mfcol\")) < length(which) && dev.interactive(), col.in = 2, col.ex = 1, col.pch = 1, cex.lab = 1, ..., id.n = 3, labels.id = NULL, cex.id = 0.75, add.smooth = getOption(\"add.smooth\"), label.pos = c(4, 2), subset = NULL, drop.always.included = FALSE )"},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"x bas BMA object result 'bas' subset plots required, specify subset numbers '1:4' caption captions appear plots panel panel function. useful alternative 'points', 'panel.smooth' can chosen 'add.smooth = TRUE' sub.caption common title-figures multiple; used 'sub' (s.'title') otherwise. 'NULL', default, possible shortened version deparse(x$call) used main title plot-addition 'caption' ask logical; 'TRUE', user asked plot, see 'par(ask=.)' col.color included variables col.ex color excluded variables col.pch color points panels 1-3 cex.lab graphics parameter control size variable names ... parameters passed plotting functions id.n number points labeled plot, starting extreme labels.id vector labels, labels extreme points chosen. 'NULL' uses observation numbers cex.id magnification point labels. add.smooth logical indicating smoother added plots; see also 'panel' label.pos positioning labels, left half right half graph respectively, plots 1-4 subset indices variables include/exclude plot marginal posterior inclusion probabilities (NULL). drop.always.included logical variable drop marginal posterior inclusion probabilities variables always forced model. FALSE default.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"provides panel 4 plots: first plot residuals versus fitted values BMA. second plot cumulative marginal likelihoods models; model space enumerated provides indication whether probabilities leveling . third plot log marginal likelihood versus model dimension fourth plot show posterior marginal inclusion probabilities.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"Merlise Clyde, based plot.lm John Maindonald Martin Maechler","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/plot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot Diagnostics for an BAS Object — plot.bas","text":"","code":"data(Hald) hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"g-prior\", alpha=13, modelprior=beta.binomial(1,1), initprobs=\"eplogp\") plot(hald.gprior)"},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Method for an object of class BAS — predict.bas","title":"Prediction Method for an object of class BAS — predict.bas","text":"Predictions model averaging estimators BMA object class inheriting 'bas'.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Method for an object of class BAS — predict.bas","text":"","code":"# S3 method for bas predict( object, newdata, se.fit = FALSE, type = \"link\", top = NULL, estimator = \"BMA\", na.action = na.pass, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Method for an object of class BAS — predict.bas","text":"object object class BAS, created bas newdata dataframe predictions. missing, use dataframe used fitting obtaining fitted predicted values. se.fit indicator whether compute se fitted predicted values type Type predictions required. \"link\" scale linear predictor option currently linear models, normal model equivalent type='response'. top scalar integer M. supplied, subset top M models, based posterior probabilities model predictions BMA. estimator estimator used predictions. Currently supported options include: 'HPM' highest probability model 'BMA' Bayesian model averaging, using optionally 'top' models 'MPM' median probability model Barbieri Berger. 'BPM' model closest BMA predictions squared error loss. BMA may computed using 'top' models supplied na.action function determining done missing values newdata. default predict NA. ... optional extra arguments","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prediction Method for an object of class BAS — predict.bas","text":"list fit fitted values based selected estimator Ybma predictions using BMA, fit non-BMA methods compatibility; deprecated Ypred matrix predictions model BMA se.fit se fitted values; case BMA matrix se.pred se predicted values; case BMA matrix se.bma.fit vector posterior sd BMA posterior mean regression function. NULL estimator 'BMA' se.bma.pred vector posterior sd BMA posterior predictive values. NULL estimator 'BMA' best index top models included bestmodels subset bestmodels used fitting prediction best.vars names variables top model; NULL estimator='BMA' df scalar vector degrees freedom models estimator estimator upon 'fit' based.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Prediction Method for an object of class BAS — predict.bas","text":"Use BMA /model selection form predictions using top highest probability models.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Prediction Method for an object of class BAS — predict.bas","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Method for an object of class BAS — predict.bas","text":"","code":"data(\"Hald\") hald.gprior = bas.lm(Y ~ ., data=Hald, alpha=13, prior=\"g-prior\") predict(hald.gprior, newdata=Hald, estimator=\"BPM\", se.fit=TRUE) #> $fit #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> attr(,\"model\") #> [1] 0 1 2 4 #> attr(,\"best\") #> [1] 12 #> attr(,\"estimator\") #> [1] \"BPM\" #> #> $Ybma #> [,1] #> [1,] 79.68307 #> [2,] 74.69127 #> [3,] 105.63258 #> [4,] 89.91648 #> [5,] 95.67480 #> [6,] 104.57616 #> [7,] 103.47945 #> [8,] 76.96808 #> [9,] 92.22184 #> [10,] 113.84918 #> [11,] 82.59035 #> [12,] 110.87673 #> [13,] 110.34001 #> #> $Ypred #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 81.17036 74.83464 105.07248 89.69881 97.15898 104.45753 103.38927 #> [2,] 77.70296 74.24113 105.85537 90.46267 93.09565 104.71517 103.13993 #> [3,] 79.70437 74.40553 105.21752 89.76253 95.63309 104.57088 103.52541 #> [4,] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [5,] 79.84321 74.31409 104.90632 89.65651 95.70301 104.52849 103.54760 #> [6,] 79.26248 74.75042 106.28314 90.16732 95.37830 104.70862 103.39893 #> [7,] 78.80123 75.69457 108.22151 90.62061 95.54467 104.84276 103.50032 #> [8,] 81.66556 77.02098 106.35099 88.18423 99.83232 103.89115 105.74346 #> [9,] 85.78065 79.39070 104.28069 87.30339 103.43704 102.66524 106.03984 #> [10,] 74.86000 80.34349 102.27744 83.77067 93.36677 100.90656 111.87354 #> [11,] 79.18965 81.38793 101.17241 82.85345 98.24138 100.43966 112.16380 #> [12,] 76.29823 80.55874 101.93127 83.25765 95.26054 100.79397 112.20198 #> [13,] 94.62219 84.21059 101.56325 101.56325 94.62219 101.56325 87.68112 #> [14,] 95.42308 95.42308 95.42308 95.42308 95.42308 95.42308 95.42308 #> [15,] 91.78308 83.03167 101.29055 101.29055 91.78308 101.74970 88.24455 #> [16,] 102.15048 91.65573 99.81831 99.81831 102.15048 98.65223 89.32357 #> [,8] [,9] [,10] [,11] [,12] [,13] #> [1,] 76.06454 91.57174 113.17222 81.59906 111.22195 111.08841 #> [2,] 78.80193 92.68123 115.80581 84.50293 110.41616 109.07906 #> [3,] 77.08557 91.98604 114.17593 82.78145 111.11959 110.53210 #> [4,] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 #> [5,] 77.15919 91.83513 114.23530 82.88128 111.23840 110.65147 #> [6,] 76.86019 92.49134 113.99208 82.44826 110.67744 110.08148 #> [7,] 76.13446 93.59932 112.64184 81.53107 109.86900 109.49863 #> [8,] 74.60469 93.86382 106.77052 80.21897 110.61958 111.73373 #> [9,] 74.19437 93.55892 101.91430 79.36984 110.13525 112.42979 #> [10,] 85.82697 100.90656 98.16482 92.68133 107.76092 107.76092 #> [11,] 82.85345 99.70690 94.57759 89.44827 108.50000 109.96552 #> [12,] 84.53056 100.50527 96.78718 91.37187 108.21267 108.79006 #> [13,] 84.21059 85.94586 118.91590 84.21059 101.56325 99.82798 #> [14,] 95.42308 95.42308 95.42308 95.42308 95.42308 95.42308 #> [15,] 86.24572 86.55641 120.92687 86.70486 101.74970 99.14326 #> [16,] 83.49316 88.15749 104.48264 82.32707 98.65223 99.81831 #> #> $postprobs #> [1] 2.432256e-01 1.684081e-01 1.312165e-01 1.224293e-01 1.220358e-01 #> [6] 1.145513e-01 6.888252e-02 2.709377e-02 1.481347e-03 2.891971e-04 #> [11] 2.559516e-04 5.597869e-05 4.790052e-05 1.177702e-05 1.000762e-05 #> [16] 5.009504e-06 #> #> $se.fit #> 1 2 3 4 5 6 7 8 #> 3.117350 2.283957 1.602160 2.149087 2.589321 1.508471 2.610923 2.545817 #> 9 10 11 12 13 #> 1.990817 3.485929 2.456636 1.951456 2.212238 #> #> $se.pred #> 1 2 3 4 5 6 7 8 #> 5.440156 5.009380 4.737547 4.949344 5.155775 4.706689 5.166658 5.134065 #> 9 10 11 12 13 #> 4.882702 5.659428 5.090431 4.866787 4.977090 #> #> $se.bma.fit #> NULL #> #> $se.bma.pred #> NULL #> #> $df #> [1] 12 #> #> $best #> [1] 12 #> #> $bestmodel #> [1] 0 1 2 4 #> #> $best.vars #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\" #> #> $estimator #> [1] \"BPM\" #> #> attr(,\"class\") #> [1] \"pred.bas\" # same as fitted fitted(hald.gprior,estimator=\"BPM\") #> [1] 79.65151 74.47846 105.42183 89.83174 95.62799 104.59616 103.50684 #> [8] 77.00839 92.07571 114.10876 82.68233 111.04286 110.46741 # default is BMA and estimation of mean vector hald.bma = predict(hald.gprior, top=5, se.fit=TRUE) confint(hald.bma) #> 2.5% 97.5% pred #> [1,] 68.12625 91.60963 79.74246 #> [2,] 63.76404 86.08573 74.50010 #> [3,] 94.19385 115.83767 105.29268 #> [4,] 79.25694 100.87410 89.88693 #> [5,] 84.07642 106.05662 95.57177 #> [6,] 94.06427 114.76926 104.56409 #> [7,] 92.27166 114.99879 103.40145 #> [8,] 65.73624 88.39721 77.13668 #> [9,] 81.63243 103.42745 91.99731 #> [10,] 101.74987 126.71517 114.21325 #> [11,] 71.39277 93.48001 82.78446 #> [12,] 100.16265 121.79709 111.00723 #> [13,] 98.87462 121.06708 110.40160 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" hald.bpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"BPM\") confint(hald.bpm) #> 2.5% 97.5% pred #> [1,] 67.74454 91.66421 79.70437 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" # extract variables variable.names(hald.bpm) #> [1] \"Intercept\" \"X1\" \"X2\" \"X3\" \"X4\" hald.hpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"HPM\") confint(hald.hpm) #> 2.5% 97.5% pred #> [1,] 70.15171 92.18902 81.17036 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" variable.names(hald.hpm) #> [1] \"Intercept\" \"X1\" \"X2\" hald.mpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"MPM\") confint(hald.mpm) #> 2.5% 97.5% pred #> [1,] 67.79843 91.50459 79.65151 #> attr(,\"Probability\") #> [1] 0.95 #> attr(,\"class\") #> [1] \"confint.bas\" variable.names(hald.mpm) #> [1] \"Intercept\" \"X1\" \"X2\" \"X4\""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Method for an Object of Class basglm — predict.basglm","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"Predictions model averaging BMA (BAS) object GLMs different loss functions.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"","code":"# S3 method for basglm predict( object, newdata, se.fit = FALSE, type = c(\"response\", \"link\"), top = NULL, estimator = \"BMA\", na.action = na.pass, ... )"},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"object object class \"basglm\", created bas.glm newdata dataframe, new matrix vector data predictions. May include column intercept just predictor variables. dataframe, variables extracted using model.matrix using call created 'object'. May missing case data used fitting used prediction. se.fit indicator whether compute se fitted predicted values type Type predictions required. default \"response\" scale response variable, alternative linear predictor scale, `type ='link'`. Thus default binomial model `type = 'response'` gives predicted probabilities, `'link'`, estimates log-odds (probabilities logit scale). top scalar integer M. supplied, calculate results using subset top M models based posterior probabilities. estimator estimator used predictions. Currently supported options include: 'HPM' highest probability model 'BMA' Bayesian model averaging, using optionally 'top' models 'MPM' median probability model Barbieri Berger. 'BPM' model closest BMA predictions squared error loss. BMA may computed using 'top' models supplied na.action function determining done missing values newdata. default predict NA. ... optional extra arguments","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"list fit predictions using BMA estimators Ypred matrix predictions model(s) postprobs renormalized probabilities top models best index top models included","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"function first calls predict method class bas (linear models) form predictions linear predictor scale `BMA`, `HPM`, `MPM` etc. estimator `BMA` `type='response'` inverse link applied fitted values type equal `'link'` model averaging takes place `response` scale. Thus applying inverse link BMA estimate `type = 'link'` equal fitted values `type = 'response'` BMA due nonlinear transformation inverse link.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/predict.basglm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Method for an Object of Class basglm — predict.basglm","text":"","code":"data(Pima.tr, package=\"MASS\") data(Pima.te, package=\"MASS\") Pima.bas = bas.glm(type ~ ., data=Pima.tr, n.models= 2^7, method=\"BAS\", betaprior=CCH(a=1, b=nrow(Pima.tr)/2, s=0), family=binomial(), modelprior=uniform()) pred = predict(Pima.bas, newdata=Pima.te, top=1) # Highest Probability model cv.summary.bas(pred$fit, Pima.te$type, score=\"miss-class\") #> [1] 0.2108434"},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"summary print methods Bayesian model averaging objects created bas Bayesian Adaptive Sampling","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"","code":"# S3 method for bas print(x, digits = max(3L, getOption(\"digits\") - 3L), ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"x object class 'bas' digits optional number specifying number digits display ... parameters passed print.default","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"print methods display view similar print.lm . summary methods display view specific Bayesian model averaging giving top 5 highest probability models represented inclusion indicators. Summaries models include Bayes Factor (BF) model model largest marginal likelihood, posterior probability models, R2, dim (includes intercept) log marginal likelihood.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/print.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Print a Summary of Bayesian Model Averaging objects from BAS — print.bas","text":"","code":"library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", initprobs = \"eplogp\") print(crime.bic) #> #> Call: #> bas.lm(formula = y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", #> initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept M So Ed Po1 Po2 LF #> 1.0000 0.9335 0.3277 0.9910 0.7247 0.4602 0.2935 #> M.F Pop NW U1 U2 GDP Ineq #> 0.3298 0.4963 0.8346 0.3481 0.7752 0.5254 0.9992 #> Prob Time #> 0.9541 0.5433 summary(crime.bic) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.000000e+00 1.0000000 1.0000000 #> M 0.9335117 1.00000 1.000000e+00 1.0000000 1.0000000 #> So 0.3276563 0.00000 1.000000e+00 0.0000000 0.0000000 #> Ed 0.9910219 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po1 0.7246635 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po2 0.4602481 0.00000 1.000000e+00 0.0000000 0.0000000 #> LF 0.2935326 0.00000 1.000000e+00 0.0000000 0.0000000 #> M.F 0.3298168 0.00000 1.000000e+00 0.0000000 0.0000000 #> Pop 0.4962869 0.00000 1.000000e+00 0.0000000 0.0000000 #> NW 0.8346412 1.00000 1.000000e+00 1.0000000 1.0000000 #> U1 0.3481266 0.00000 1.000000e+00 0.0000000 0.0000000 #> U2 0.7752102 1.00000 1.000000e+00 1.0000000 1.0000000 #> GDP 0.5253694 0.00000 1.000000e+00 0.0000000 1.0000000 #> Ineq 0.9992058 1.00000 1.000000e+00 1.0000000 1.0000000 #> Prob 0.9541470 1.00000 1.000000e+00 1.0000000 1.0000000 #> Time 0.5432686 1.00000 1.000000e+00 0.0000000 1.0000000 #> BF NA 1.00000 1.267935e-04 0.7609295 0.5431578 #> PostProbs NA 0.01910 1.560000e-02 0.0145000 0.0133000 #> R2 NA 0.84200 8.695000e-01 0.8265000 0.8506000 #> dim NA 9.00000 1.600000e+01 8.0000000 10.0000000 #> logmarg NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035 #> model 5 #> Intercept 1.0000000 #> M 1.0000000 #> So 0.0000000 #> Ed 1.0000000 #> Po1 1.0000000 #> Po2 0.0000000 #> LF 0.0000000 #> M.F 0.0000000 #> Pop 1.0000000 #> NW 1.0000000 #> U1 0.0000000 #> U2 1.0000000 #> GDP 0.0000000 #> Ineq 1.0000000 #> Prob 1.0000000 #> Time 0.0000000 #> BF 0.5203179 #> PostProbs 0.0099000 #> R2 0.8375000 #> dim 9.0000000 #> logmarg -22.8118635"},{"path":"http://merliseclyde.github.io/BAS/reference/protein.html","id":null,"dir":"Reference","previous_headings":"","what":"Protein Activity Data — protein","title":"Protein Activity Data — protein","text":"data sets includes several predictors protein activity experiment run Glaxo.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/protein.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Protein Activity Data — protein","text":"protein dataframe 96 observations 8 predictor variables protein activity:","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/protein.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Protein Activity Data — protein","text":"Clyde, M. . Parmigiani, G. (1998), Protein Construct Storage: Bayesian Variable Selection Prediction Mixtures, Journal Biopharmaceutical Statistics, 8, 431-443","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":null,"dir":"Reference","previous_headings":"","what":"Robust-Prior Distribution for Coefficients in BMA Model — robust","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"Creates object representing robust prior Bayarri et al (2012) mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"","code":"robust(n = NULL)"},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"n sample size.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"Creates prior structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/robust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Robust-Prior Distribution for Coefficients in BMA Model — robust","text":"","code":"robust(100) #> $family #> [1] \"robust\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$n #> [1] 100 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"summary print methods Bayesian model averaging objects created bas Bayesian Adaptive Sampling","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"","code":"# S3 method for bas summary(object, n.models = 5, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"object object class 'bas' n.models optional number specifying number best models display summary ... parameters passed summary.default","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"print methods display view similar print.lm . summary methods display view specific Bayesian model averaging giving top 5 highest probability models represented inclusion indicators. Summaries models include Bayes Factor (BF) model model largest marginal likelihood, posterior probability models, R2, dim (includes intercept) log marginal likelihood.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/summary.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Summaries of Bayesian Model Averaging objects from BAS — summary.bas","text":"","code":"data(UScrime, package = \"MASS\") UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", initprobs = \"eplogp\") print(crime.bic) #> #> Call: #> bas.lm(formula = y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", #> initprobs = \"eplogp\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept M So Ed Po1 Po2 LF #> 1.0000 0.9335 0.3277 0.9910 0.7247 0.4602 0.2935 #> M.F Pop NW U1 U2 GDP Ineq #> 0.3298 0.4963 0.8346 0.3481 0.7752 0.5254 0.9992 #> Prob Time #> 0.9541 0.5433 summary(crime.bic) #> P(B != 0 | Y) model 1 model 2 model 3 model 4 #> Intercept 1.0000000 1.00000 1.000000e+00 1.0000000 1.0000000 #> M 0.9335117 1.00000 1.000000e+00 1.0000000 1.0000000 #> So 0.3276563 0.00000 1.000000e+00 0.0000000 0.0000000 #> Ed 0.9910219 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po1 0.7246635 1.00000 1.000000e+00 1.0000000 1.0000000 #> Po2 0.4602481 0.00000 1.000000e+00 0.0000000 0.0000000 #> LF 0.2935326 0.00000 1.000000e+00 0.0000000 0.0000000 #> M.F 0.3298168 0.00000 1.000000e+00 0.0000000 0.0000000 #> Pop 0.4962869 0.00000 1.000000e+00 0.0000000 0.0000000 #> NW 0.8346412 1.00000 1.000000e+00 1.0000000 1.0000000 #> U1 0.3481266 0.00000 1.000000e+00 0.0000000 0.0000000 #> U2 0.7752102 1.00000 1.000000e+00 1.0000000 1.0000000 #> GDP 0.5253694 0.00000 1.000000e+00 0.0000000 1.0000000 #> Ineq 0.9992058 1.00000 1.000000e+00 1.0000000 1.0000000 #> Prob 0.9541470 1.00000 1.000000e+00 1.0000000 1.0000000 #> Time 0.5432686 1.00000 1.000000e+00 0.0000000 1.0000000 #> BF NA 1.00000 1.267935e-04 0.7609295 0.5431578 #> PostProbs NA 0.01910 1.560000e-02 0.0145000 0.0133000 #> R2 NA 0.84200 8.695000e-01 0.8265000 0.8506000 #> dim NA 9.00000 1.600000e+01 8.0000000 10.0000000 #> logmarg NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035 #> model 5 #> Intercept 1.0000000 #> M 1.0000000 #> So 0.0000000 #> Ed 1.0000000 #> Po1 1.0000000 #> Po2 0.0000000 #> LF 0.0000000 #> M.F 0.0000000 #> Pop 1.0000000 #> NW 1.0000000 #> U1 0.0000000 #> U2 1.0000000 #> GDP 0.0000000 #> Ineq 1.0000000 #> Prob 1.0000000 #> Time 0.0000000 #> BF 0.5203179 #> PostProbs 0.0099000 #> R2 0.8375000 #> dim 9.0000000 #> logmarg -22.8118635"},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":null,"dir":"Reference","previous_headings":"","what":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"Creates object representing tCCH mixture g-priors coefficients BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"","code":"tCCH(alpha = 1, beta = 2, s = 0, r = 3/2, v = 1, theta = 1)"},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"alpha scalar > 0, recommended alpha=.5 (betaprime) 1. beta scalar > 0. value updated data; beta function n consistency null model. s scalar, recommended s=0 priori r r arbitrary; hyper-g-n prior sets r = (alpha + 2) v 0 < v theta theta > 1","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"Creates structure used bas.glm.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tCCH.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generalized tCCH g-Prior Distribution for Coefficients in BMA Models — tCCH","text":"","code":"n <- 500 tCCH(alpha = 1, beta = 2, s = 0, r = 1.5, v = 1, theta = 1 / n) #> $family #> [1] \"tCCH\" #> #> $class #> [1] \"TCCH\" #> #> $hyper.parameters #> $hyper.parameters$alpha #> [1] 1 #> #> $hyper.parameters$beta #> [1] 2 #> #> $hyper.parameters$s #> [1] 0 #> #> $hyper.parameters$r #> [1] 1.5 #> #> $hyper.parameters$v #> [1] 1 #> #> $hyper.parameters$theta #> [1] 0.002 #> #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Test based Bayes Factors for BMA Models — testBF.prior","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"Creates object representing prior distribution coefficients BAS corresponds test-based Bayes Factors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"","code":"testBF.prior(g)"},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"g scalar used covariance Zellner's g-prior, Cov(beta) = sigma^2 g (X'X)^-","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"returns object class \"prior\", family hyerparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"Creates prior object structure used BAS `bas.glm`.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/testBF.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Test based Bayes Factors for BMA Models — testBF.prior","text":"","code":"testBF.prior(100) #> $family #> [1] \"testBF.prior\" #> #> $g #> [1] 100 #> #> $class #> [1] \"g-prior\" #> #> $hyper #> [1] 100 #> #> $hyper.parameters #> $hyper.parameters$g #> [1] 100 #> #> $hyper.parameters$loglik_null #> NULL #> #> #> attr(,\"class\") #> [1] \"prior\" library(MASS) data(Pima.tr) # use g = n bas.glm(type ~ ., data = Pima.tr, family = binomial(), betaprior = testBF.prior(nrow(Pima.tr)), modelprior = uniform(), method = \"BAS\" ) #> #> Call: #> bas.glm(formula = type ~ ., family = binomial(), data = Pima.tr, #> betaprior = testBF.prior(nrow(Pima.tr)), modelprior = uniform(), #> method = \"BAS\") #> #> #> Marginal Posterior Inclusion Probabilities: #> Intercept npreg glu bp skin bmi ped #> 1.0000 0.4252 1.0000 0.0706 0.1264 0.6139 0.8075 #> age #> 0.6705"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"Creates object representing prior distribution models BAS using truncated Beta-Binomial Distribution Model Size","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"","code":"tr.beta.binomial(alpha = 1, beta = 1, trunc)"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"alpha parameter beta prior distribution beta parameter beta prior distribution trunc parameter determines truncation distribution .e. P(M; alpha, beta, trunc) = 0 M > trunc.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"beta-binomial distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, giving w beta(alpha,beta) distribution. Marginalizing w leads number included predictors beta-binomial distribution. default hyperparameters lead uniform distribution model size. Truncated version assigns zero probability models size > trunc.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.beta.binomial.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Beta-Binomial Prior Distribution for Models — tr.beta.binomial","text":"","code":"tr.beta.binomial(1, 10, 5) #> $family #> [1] \"Trunc-Beta-Binomial\" #> #> $hyper.parameters #> [1] 1 10 5 #> #> attr(,\"class\") #> [1] \"prior\" library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", modelprior = tr.beta.binomial(1, 1, 8), initprobs = \"eplogp\" )"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Poisson Prior Distribution for Models — tr.poisson","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"Creates object representing prior distribution models BAS using truncated Poisson Distribution Model Size","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"","code":"tr.poisson(lambda, trunc)"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"lambda parameter Poisson distribution representing expected model size infinite predictors trunc parameter determines truncation distribution .e. P(M; lambda, trunc) = 0 M > trunc","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"Poisson prior distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, taking limit p goes infinity w goes zero, p*w converges lambda. Truncated version assigns zero probability models size M > trunc.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.poisson.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Poisson Prior Distribution for Models — tr.poisson","text":"","code":"tr.poisson(10, 50) #> $family #> [1] \"Trunc-Poisson\" #> #> $hyper.parameters #> [1] 10 50 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Power Prior Distribution for Models — tr.power.prior","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"Creates object representing prior distribution models BAS using truncated Distribution Model Size probability gamma = p^-kappa |gamma| gamma vector model indicators","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"","code":"tr.power.prior(kappa = 2, trunc)"},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"kappa parameter prior distribution controls sparsity trunc parameter determines truncation distribution .e. P(gamma; alpha, beta, trunc) = 0 |gamma| > trunc.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"returns object class \"prior\", family hyperparameters.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"beta-binomial distribution model size obtained assigning variable inclusion indicator independent Bernoulli distributions probability w, giving w beta(alpha,beta) distribution. Marginalizing w leads number included predictors beta-binomial distribution. default hyperparameters lead uniform distribution model size. Truncated version assigns zero probability models size > trunc.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/tr.power.prior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Power Prior Distribution for Models — tr.power.prior","text":"","code":"tr.power.prior(2, 8) #> $family #> [1] \"Trunc-Power-Prior\" #> #> $hyper.parameters #> [1] 2 8 #> #> attr(,\"class\") #> [1] \"prior\" library(MASS) data(UScrime) UScrime[, -2] <- log(UScrime[, -2]) crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = \"BIC\", modelprior = tr.power.prior(2, 8), initprobs = \"eplogp\" )"},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncated Compound Confluent Hypergeometric function — trCCH","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"Compute Truncated Confluent Hypergeometric function Li Clyde (2018) normalizing constant tcch density Gordy (1998) integral representation:","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"","code":"trCCH(a, b, r, s, v, k, log = FALSE)"},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"> 0 b b > 0 r r >= 0 s arbitrary v 0 < v k arbitrary log logical indicating whether return values log scale; useful Bayes Factor calculations","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"tr.cch(,b,r,s,v,k) = Int_0^1/v u^(-1) (1 - vu)^(b -1) (k + (1 - k)vu)^(-r) exp(-s u) du uses stable method calculating normalizing constant using R's `integrate` function rather version Gordy 1998. calculating Bayes factors use `trCCH` function recommend using `log=TRUE` option compute log Bayes factors.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"Gordy 1998 Li & Clyde 2018","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"Merlise Clyde (clyde@duke.edu)","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/trCCH.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Truncated Compound Confluent Hypergeometric function — trCCH","text":"","code":"# special cases # trCCH(a, b, r, s=0, v = 1, k) is the same as # 2F1(a, r, a + b, 1 - 1/k)*beta(a, b)/k^r k = 10; a = 1.5; b = 2; r = 2; trCCH(a, b, r, s=0, v = 1, k=k) *k^r/beta(a,b) #> [1] 4.74679 hypergeometric2F1(a, r, a + b, 1 - 1/k, log = FALSE) #> [1] 4.746772 # trCCH(a,b,0,s,1,1) is the same as # beta(a, b) 1F1(a, a + b, -s, log=FALSE) s = 3; r = 0; v = 1; k = 1 beta(a, b)*hypergeometric1F1(a, a+b, -s, log = FALSE) #> [1] 0.0923551 trCCH(a, b, r, s, v, k) #> [1] 0.09235518 # Equivalence with the Phi1 function a = 1.5; b = 3; k = 1.25; s = 400; r = 2; v = 1; phi1(a, r, a + b, -s, 1 - 1/k, log=FALSE)*(k^-r)*gamma(a)*gamma(b)/gamma(a+b) #> [1] 7.04733e-05 trCCH(a,b,r,s,v,k) #> [1] 7.052186e-05"},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":null,"dir":"Reference","previous_headings":"","what":"Uniform Prior Distribution for Models — uniform","title":"Uniform Prior Distribution for Models — uniform","text":"Creates object representing prior distribution models BAS.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Uniform Prior Distribution for Models — uniform","text":"","code":"uniform()"},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Uniform Prior Distribution for Models — uniform","text":"returns object class \"prior\", family name Uniform.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Uniform Prior Distribution for Models — uniform","text":"Uniform prior distribution commonly used prior BMA, special case independent Bernoulli prior probs=.5. implied prior distribution model size binomial(p, .5).","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Uniform Prior Distribution for Models — uniform","text":"Merlise Clyde","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/uniform.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Uniform Prior Distribution for Models — uniform","text":"","code":"uniform() #> $family #> [1] \"Uniform\" #> #> $hyper.parameters #> [1] 0.5 #> #> attr(,\"class\") #> [1] \"prior\""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":null,"dir":"Reference","previous_headings":"","what":"Update BAS object using a new prior — update.bas","title":"Update BAS object using a new prior — update.bas","text":"Update BMA object using new prior distribution coefficients.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Update BAS object using a new prior — update.bas","text":"","code":"# S3 method for bas update(object, newprior, alpha = NULL, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Update BAS object using a new prior — update.bas","text":"object BMA object update newprior Update posterior model probabilities, probne0, shrinkage, logmarg, etc, using prior based newprior. See bas available methods alpha optional new value hyperparameter prior method ... optional arguments","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Update BAS object using a new prior — update.bas","text":"new object class BMA","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Update BAS object using a new prior — update.bas","text":"Recomputes marginal likelihoods new methods models already sampled current object.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Update BAS object using a new prior — update.bas","text":"Clyde, M. Ghosh, J. Littman, M. (2010) Bayesian Adaptive Sampling Variable Selection Model Averaging. Journal Computational Graphics Statistics. 20:80-101 doi:10.1198/jcgs.2010.09049","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Update BAS object using a new prior — update.bas","text":"Merlise Clyde clyde@stat.duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/update.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Update BAS object using a new prior — update.bas","text":"","code":"# \\donttest{ library(MASS) data(UScrime) UScrime[,-2] <- log(UScrime[,-2]) crime.bic <- bas.lm(y ~ ., data=UScrime, n.models=2^10, prior=\"BIC\",initprobs= \"eplogp\") crime.ebg <- update(crime.bic, newprior=\"EB-global\") crime.zs <- update(crime.bic, newprior=\"ZS-null\") # }"},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"S3 method class 'pred.bas'. Simple utility function extract variable names. Used print names selected models using estimators 'HPM', 'MPM' 'BPM\". selected model created predict BAS objects.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"","code":"# S3 method for pred.bas variable.names(object, ...)"},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"object BAS object created predict BAS `bas.lm` `bas.glm` object ... arguments pass ","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"character vector names variables included selected model; case 'BMA' variables","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/variable.names.pred.bas.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract the variable names for a model from a BAS prediction object — variable.names.pred.bas","text":"","code":"data(Hald) hald.gprior = bas.lm(Y~ ., data=Hald, prior=\"ZS-null\", modelprior=uniform()) hald.bpm = predict(hald.gprior, newdata=Hald[1,], se.fit=TRUE, estimator=\"BPM\") variable.names(hald.bpm) #> [1] \"Intercept\" \"X2\""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce a BAS list object of models into a matrix. — which.matrix","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"function coerces list object models matrix fill zeros facilitate computations.","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"","code":"which.matrix(which, n.vars)"},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"'bas' model object x$n.vars total number predictors, x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"matrix representation x$, number rows equal length .models total number models number columns x$n.vars","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":".matrix coerces x$matrix.","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"Merlise Clyde clyde@duke.edu","code":""},{"path":"http://merliseclyde.github.io/BAS/reference/which.matrix.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce a BAS list object of models into a matrix. — which.matrix","text":"","code":"data(Hald) Hald.bic <- bas.lm(Y ~ ., data=Hald, prior=\"BIC\", initprobs=\"eplogp\") # matrix of model indicators models <- which.matrix(Hald.bic$which, Hald.bic$n.vars)"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-development-version","dir":"Changelog","previous_headings":"","what":"BAS (development version)","title":"BAS (development version)","text":"added unit tests link functions impemented family.c","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-171","dir":"Changelog","previous_headings":"","what":"BAS 1.7.1","title":"BAS 1.7.1","text":"CRAN release: 2023-12-06","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"minor-improvements-and-fixes-1-7-1","dir":"Changelog","previous_headings":"","what":"Minor Improvements and Fixes","title":"BAS 1.7.1","text":"Initialized vector se via memset disp = 1.0 fit_glm.c (issue #72) Initialized variables hyp1f1.c testthat (issue #75) Removed models zero prior probability bas.lm bas.glm (issue #74) Fixed error bayesglm.fit check arguments x y correct type calling C added unit test (issue #67)","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-166","dir":"Changelog","previous_headings":"","what":"BAS 1.6.6","title":"BAS 1.6.6","text":"CRAN release: 2023-11-28","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-6-6","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.6.6","text":"Added support Gamma regression bas.glm, unit tests example (Code contributed @betsyberrson) added error supplied initial model bas.lm sampling methods “MCMC” “MCMC+BAS” prior probability zero. fixed printing problems identified via checks fixed indexing error bas.lm method = \"MCMC+BAS\" bas.lm using method = \"MCMC+BAS\" crashed segmentation fault bestmodel NULL null model. GitHub issue #69 fixed error predict.bas se.fit=TRUE one predictor. GitHub issue #68 reported @AleCarminati added unit test test-predict.R Fixed error coef bas.glm objects using betaprior class IC, including AIC BIC Github issue #65 Fixed error using Jeffreys prior bas.glm include.always option added unit test test-bas-glm.R. Github issue #61 Fixed error extracting coefficients median probability model formula passed object rather literal, added unit test test-coefficients.R Github issues #39 #56","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-164","dir":"Changelog","previous_headings":"","what":"BAS 1.6.4","title":"BAS 1.6.4","text":"CRAN release: 2022-11-02","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-4","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.4","text":"skipped test CRAN fails show warning non full rank case pivot=FALSE bas.lm default uses pivoting documentation indicates pivot=FALSE used full rank case users encounter issue practice. Users continue see warning NA’s returned, aware platforms may produce warning (M1mac). Github issue #62","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-163","dir":"Changelog","previous_headings":"","what":"BAS 1.6.3","title":"BAS 1.6.3","text":"CRAN release: 2022-10-19","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-3","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.3","text":"Added checks unit-tests see modelprior class ‘prior’ resolving Github Issue #57 Removed polevl.c, psi.c gamma.c Cephes longer used switching R’s internal functions","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-162","dir":"Changelog","previous_headings":"","what":"BAS 1.6.2","title":"BAS 1.6.2","text":"CRAN release: 2022-04-26 replaced deprecated DOUBLE_EPS DBL_EPSILON R 4.2.0 release (two places) restore CRAN","code":""},{"path":[]},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-1","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.1","text":"replaced deprecated DOUBLE_EPS DBL_EPSILON R 4.2.0 release fixed warnings CRAN checks R devel (use | class) added function trCCH uses integration compute normalizing constant Truncated Compound Confluent Hypergeometric distribution provides correct normalizing constant Gordy (1998) stable large values compared current phi1 function. now used TCCH prior bas.glm. Rewrote phi1 function use direct numerical integration (phi1_int) Wald statistic large marginal likelihoods NA suggested Daniel Heeman Alexander Ly (see ). improve stability estimates Bayes Factors model probabilities bas.glm used HyperTwo function, including coefficient priors hyper.g.n(), robust(), intrinsic(). Added additional unit tests. Added thin option bas.glm added unit tests examples show connections special functions trCCH, phi1, 1F1 2F1","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-6-1","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.6.1","text":"added internal function phi1_int original HyperTwo function returns NA Issue #55 See details . corrected shrinkage estimate CCH prior include terms involving beta function.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-160","dir":"Changelog","previous_headings":"","what":"BAS 1.6.0","title":"BAS 1.6.0","text":"CRAN release: 2021-11-12","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-6-0","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.6.0","text":"update FORTRAN code compliant USE_FC_LEN_T character strings","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-6-0","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.6.0","text":"fixed warning src code log_laplace_F21 uninitialized variable leading NaN returned R function hypergeometric2F1","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-155","dir":"Changelog","previous_headings":"","what":"BAS 1.5.5","title":"BAS 1.5.5","text":"CRAN release: 2020-01-24","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"changes-1-5-5","dir":"Changelog","previous_headings":"","what":"Changes","title":"BAS 1.5.5","text":"Fixed WARNING fedora-clang-devel. Added climate.dat file package building vignette package violate CRAN’s policy accessing internet resources permanent file location/url changes locally. Fixed testthat errors Solaris. Default settings force.heredity set back FALSE bas.lm bas.glm methods work platforms. Solaris, users wish impose force.heredity constraint may use post-processing function.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-154","dir":"Changelog","previous_headings":"","what":"BAS 1.5.4","title":"BAS 1.5.4","text":"CRAN release: 2020-01-19","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-4","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.4","text":"Modified prior probabilities adjust number variables always included using include.always. Pull request #41 Don van de Bergh. Issue #40","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-5-4","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.5.4","text":"Fixed valgrind error src/ZS_approx_null_np.c invalid write noted CRAN checks fixed function declaration type-mismatch argument errors identified LTO noted CRAN checks Added contrast=NULL argument bas.lm bas.glm non-NULL contrasts trigger warning model.matrix R 3.6.0. Bug #44 Added check sample size equal zero due subsetting missing data Bug #37","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"other-1-5-4","dir":"Changelog","previous_headings":"","what":"Other","title":"BAS 1.5.4","text":"Put ORCID quotes author list (per R-dev changes)","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-153","dir":"Changelog","previous_headings":"","what":"BAS 1.5.3","title":"BAS 1.5.3","text":"CRAN release: 2018-10-30","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-5-3","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.5.3","text":"Fixed errors identified cran checks https://cran.r-project.org/web/checks/check_results_BAS.html initialize R2_m = 0.0 lm_mcmcbas.c (lead NA’s clang debian fedora ) switch default pivot = TRUE bas.lm, adding tol argument control tolerance cholregpovot improved stability across platforms singular nearly singular designs. valgrind messages: Conditional jump move depends uninitialized value(s). Initialize vectors allocated via R_alloc lm_deterministic.c glm_deterministic.c.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-152","dir":"Changelog","previous_headings":"","what":"BAS 1.5.2","title":"BAS 1.5.2","text":"CRAN release: 2018-10-25","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-2","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.2","text":"Included option pivot=TRUE bas.lm fit models using pivoted Cholesky decomposition allow models rank-deficient. Enhancement #24 Bug #21. Currently coefficients -estimable set zero predict methods work . vector rank added output (see documentation bas.lm) degrees freedom methods assume uniform prior obtaining estimates (AIC BIC) adjusted use rank rather size. Added option force.heredity=TRUEto force lower order terms included higher order terms present (hierarchical constraint) method='MCMC' method='BAS' bas.lm bas.glm. Updated Vignette illustrate. enhancement #19. Checks see parents included using include.always pass issue #26. Added option drop.always.included image.bas variables always included may excluded image. default shown enhancement #23 Added option drop.always.included subset plot.bas variables always included may excluded plot showing marginal posterior inclusion probabilities (=4). default shown enhancement #23 update fitted.bas use predict code covers GLM LM cases type='link' type='response' Updates package CII Best Practices Badge certification Added Code Coverage support extensive tests using test_that.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-5-2","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.5.2","text":"fixed issue #36 Errors prior = “ZS-null” R2 finite range due model full rank. Change gexpectations function file bayesreg.c fixed issue #35 method=\"MCMC+BAS\" bas.glm glm_mcmcbas.c values provided MCMC.iterations n.models defaults used. Added unit test test-bas-glm.R fixed issue #34 bas.glm variables include.always marginal inclusion probabilities incorrect. Added unit test test-bas-glm.R fixed issue #33 Jeffreys prior marginal inclusion probabilities renormalized dropping intercept model fixed issue #32 allow vectorization phi1 function R/cch.R added unit test “tests/testthat/test-special-functions.R” fixed issue #31 coerce g REAL g.prior prior IC.prior bas.glm; added unit-test “tests/testthat/test-bas-glm.R” fixed issue #30 added n hyper-parameter NULL coerced REAL intrinsic prior bas.glm; added unit-test fixed issue #29 added n hyper-parameter NULL coerced REAL beta.prime prior bas.glm; added unit-test fixed issue #28 fixed length MCMC estimates marginal inclusion probabilities; added unit-test fixed issue #27 expected shrinkage JZS prior greater 1. Added unit test. fixed output include.always include intercept issue #26 always drop.always.included = TRUE drops intercept variables forced . include.always force.heredity=TRUE can now used together method=\"BAS\". added warning marginal likelihoods/posterior probabilities NA default model fitting method suggestion models rerun pivot = TRUE. uses modified Cholesky decomposition pivoting model rank deficient nearly singular dimensionality reduced. Bug #21. corrected count first model method='MCMC' lead potential model 0 probability errors image. coerced predicted values vector BMA (matrix) fixed size using method=deterministic bas.glm (updated) fixed problem confint horizontal=TRUE intervals point mass zero.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"other-1-5-2","dir":"Changelog","previous_headings":"","what":"Other","title":"BAS 1.5.2","text":"suppress warning sampling probabilities 1 0 number models decrementedIssue #25 changed force.heredity.bas re-normalize prior probabilities rather use new prior probability based heredity constraints. future, add new priors models based heredity. See comment issue #26. Changed License GPL 3.0","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-151-june-6-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.5.1 June 6, 2018","title":"BAS 1.5.1 June 6, 2018","text":"CRAN release: 2018-06-07","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-1","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.1 June 6, 2018","text":"added S3 method variable.names extract variable names highest probability model, median probability model, best probability model objects created predict.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-5-1","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.5.1 June 6, 2018","text":"Fixed incorrect documentation predict.basglm type = \"link\" default prediction issue #18","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-150-may-2-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.5.0 May 2, 2018","title":"BAS 1.5.0 May 2, 2018","text":"CRAN release: 2018-05-03","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-5-0","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.5.0 May 2, 2018","text":"add na.action handling NA’s predict methods issue #10 added include.always new argument bas.lm. allows formula specify terms always included models. default intercept always included. added section vignette illustrate weighted regression force.heredity.bas function group levels factor enter leave model together.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-5-0","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.5.0 May 2, 2018","text":"fixed problem one model image function; github issue #11 fixed error bas.lm non-equal weights R2 incorrect. issue #17 ## Deprecated deprecate predict argument predict.bas, predict.basglm internal functions utilized","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-149-march-24-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.4.9 March 24, 2018","title":"BAS 1.4.9 March 24, 2018","text":"CRAN release: 2018-03-25","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-9","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.9 March 24, 2018","text":"fixed bug confint.coef.bas parm character string added parentheses betafamily.c line 382 indicated CRAN check R devel","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-4-9","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.4.9 March 24, 2018","text":"added option determine k Bayes.outlier prior probability outliers provided","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-148-march-10-2018","dir":"Changelog","previous_headings":"","what":"BAS 1.4.8 March 10, 2018","title":"BAS 1.4.8 March 10, 2018","text":"CRAN release: 2018-03-12","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-8","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.8 March 10, 2018","text":"fixed issue scoping eval data predict.bas dataname defined local env. fixed issue 10 github (predict estimator=‘BPM’ failed NA’s X data. Delete NA’s finding closest model. fixed bug ‘JZS’ prior - merged pull request #12 vandenman/master fixed bug bas.glm default betaprior (CCH) used inputs INTEGER instead REAL removed warning use ‘ZS-null’ backwards compatibility","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-added-1-4-8","dir":"Changelog","previous_headings":"","what":"Features added","title":"BAS 1.4.8 March 10, 2018","text":"updated print.bas reflect changes print.lm Added Bayes.outlier function calculate posterior probabilities outliers using method Chaloner & Brant linear models.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-147-october-22-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.7 October 22, 2017","title":"BAS 1.4.7 October 22, 2017","text":"CRAN release: 2017-10-22","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-7","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.7 October 22, 2017","text":"Added new method bas.lm obtain marginal likelihoods Zellner-Siow Priors “prior= ‘JZS’ using QUADPATH routines numerical integration. optional hyper parameter alpha may now used adjust scaling ZS prior g ~ G(1/2, alpha*n/2) BayesFactor package Morey, default alpha=1 corresponding ZS prior used Liang et al (2008). also uses stable evaluations log(1 + x) prevent underflow/overflow. Priors ZS-full bas.lm planned deprecated. replaced math functions use portable C code Rmath consolidated header files","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-146-may-24-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.6 May 24, 2017","title":"BAS 1.4.6 May 24, 2017","text":"CRAN release: 2017-05-26","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-6","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.6 May 24, 2017","text":"Added force.heredity.interaction function allow higher order interactions included “parents” lower order interactions main effects included. Currently tested two way interactions. implemented post-sampling; future updates add sampling stage reduce memory usage sampling times reducing number models consideration.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-6","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.6 May 24, 2017","text":"Fixed unprotected ANS C code glm_sampleworep.c sampleworep.c call PutRNGstate possible stack imbalance glm_mcmc. Fixed problem predict estimator=BPM newdata one row","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-145-march-28-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.5 March 28, 2017","title":"BAS 1.4.5 March 28, 2017","text":"CRAN release: 2017-03-31","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-5","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.5 March 28, 2017","text":"Fixed non-conformable error predict new data dataframe one row. Fixed problem missing weights prediction using median probability model new data.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-144-march-14-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.4 March 14, 2017","title":"BAS 1.4.4 March 14, 2017","text":"CRAN release: 2017-03-14","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-4","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.4 March 14, 2017","text":"Extract coefficient summaries, credible intervals plots HPM MPM addition default BMA adding new estimator argument coef function. new n.models argument coef provides summaries based top n.models highest probability models reduce computation time. ‘n.models = 1’ equivalent highest probability model. use newdata vector now deprecated predict.bas; newdata must dataframe missing, case fitted values based dataframe used fitting used factor levels handled lm glm prediction may level factor newdata","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bugs-1-4-4","dir":"Changelog","previous_headings":"","what":"Bugs","title":"BAS 1.4.4 March 14, 2017","text":"fixed issue prediction newdata just one row fixed missing id plot.bas =3","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-143-february-18-2017","dir":"Changelog","previous_headings":"","what":"BAS 1.4.3 February 18, 2017","title":"BAS 1.4.3 February 18, 2017","text":"CRAN release: 2017-02-21","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-3","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.3 February 18, 2017","text":"Register symbols foreign function calls bin2int now deprecated fixed default MCMC.iteration bas.lm agree documentation updated vignette include examples, outlier detection, finding best predictive probability model set flag MCMC sampling renormalize selects whether Monte Carlo frequencies used estimate posterior model marginal inclusion probabilities (default renormalize = FALSE) marginal likelihoods time prior probabilities renormalized sum 1 used. (latter option methods); new slots probne0.MCMC, probne0.RN, postprobs.RN postprobs.MCMC.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-4-3","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"BAS 1.4.3 February 18, 2017","text":"fixed problem prior.bic, robust, hyper.g.n default missing n set hyperparameters fixed error predict plot GLMs family provided function","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-142-october-12-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.4.2 October 12, 2016","title":"BAS 1.4.2 October 12, 2016","text":"CRAN release: 2016-10-13","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"updates-1-4-2","dir":"Changelog","previous_headings":"","what":"Updates","title":"BAS 1.4.2 October 12, 2016","text":"added df object returned bas.glm simplify coefficients function.","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-4-2","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.4.2 October 12, 2016","text":"corrected expected value shrinkage intrinsic, hyper-g/n TCCH priors glms","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-141-september-17-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.4.1 September 17, 2016","title":"BAS 1.4.1 September 17, 2016","text":"CRAN release: 2016-09-20","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bug-fixes-1-4-1","dir":"Changelog","previous_headings":"","what":"Bug Fixes","title":"BAS 1.4.1 September 17, 2016","text":"modification 1.4.0 automatically handle NA’s led errors response transformed part formula; fixed","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"features-1-4-1","dir":"Changelog","previous_headings":"","what":"Features","title":"BAS 1.4.1 September 17, 2016","text":"added subset argument bas.lm bas.glm","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-140-august-25-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.4.0 August 25, 2016","title":"BAS 1.4.0 August 25, 2016","text":"CRAN release: 2016-08-27","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-4-0","dir":"Changelog","previous_headings":"","what":"New features","title":"BAS 1.4.0 August 25, 2016","text":"added na.action bas.lm bas.glm omit missing data. new function plot credible intervals created confint.pred.bas confint.coef.bas. See help files example vignette. added se.fit option predict.basglm. Added testBF betaprior option bas.glm implement Bayes Factors based likelihood ratio statistic’s distribution GLMs. DOI version http://dx.doi.org/10.5281/zenodo.60948","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-130-july-15-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.3.0 July 15, 2016","title":"BAS 1.3.0 July 15, 2016","text":"CRAN release: 2016-07-16","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-3-0","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.3.0 July 15, 2016","text":"vignette added long last! illustrates several new features BAS new functions computing credible intervals fitted predicted values confint.pred.bas() new function adding credible intervals coefficients confint.coef.bas() added posterior standard deviations fitted values predicted values predict.bas()","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"deprecation-1-3-0","dir":"Changelog","previous_headings":"","what":"Deprecation","title":"BAS 1.3.0 July 15, 2016","text":"deprecated use type specify estimator fitted.bas replaced estimator predict() fitted() compatible S3 methods. updated functions class bas avoid NAMESPACE conflicts libraries","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-122-june-29-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.2.2 June 29, 2016","title":"BAS 1.2.2 June 29, 2016","text":"CRAN release: 2016-07-01","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-2-2","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.2.2 June 29, 2016","text":"added option find “Best Predictive Model” “BPM” fitted.bas predict.bas added local Empirical Bayes prior fixed g-prior bas.glm added diagnostic() function checking convergence bas objects created method = \"MCMC\"” added truncated power prior Yang, Wainwright & Jordan (2016)","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"minor-changes-1-2-2","dir":"Changelog","previous_headings":"","what":"Minor Changes","title":"BAS 1.2.2 June 29, 2016","text":"bug fix plot.bas appears Sweave bug fix coef.bma just one predictor","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-121-april-16-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.2.1 April 16, 2016","title":"BAS 1.2.1 April 16, 2016","text":"CRAN release: 2016-04-16 bug fix method=“MCMC” truncated prior distributions MH ratio incorrect allowing models 0 probability sampled. fixed error Zellner-Siow prior (ZS-null) n=p+1 saturated model log marginal likelihood 0","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-120-april-11-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.2.0 April 11, 2016","title":"BAS 1.2.0 April 11, 2016","text":"CRAN release: 2016-04-12 removed unsafe code Rbestmarg (input) overwritten .Call end corruption constant pool byte-code (Thanks Tomas Kalibera catching !) fixed issue dimensions use Simple Linear Regression","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-110-march-31-2016","dir":"Changelog","previous_headings":"","what":"BAS 1.1.0 March 31, 2016","title":"BAS 1.1.0 March 31, 2016","text":"CRAN release: 2016-03-31","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"new-features-1-1-0","dir":"Changelog","previous_headings":"","what":"New Features","title":"BAS 1.1.0 March 31, 2016","text":"added truncated Beta-Binomial prior truncated Poisson (works MCMC currently) improved code finding fitted values Median deprecated method = “AMCMC” issue warning message","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"minor-changes-1-1-0","dir":"Changelog","previous_headings":"","what":"Minor Changes","title":"BAS 1.1.0 March 31, 2016","text":"Changed S3 method plot image use class bas rather bma avoid name conflicts packages","code":""},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-109","dir":"Changelog","previous_headings":"","what":"BAS 1.09","title":"BAS 1.09","text":"","code":"- added weights for linear models - switched LINPACK calls in bayesreg to LAPACK finally should be faster - fixed bug in intercept calculation for glms - fixed inclusion probabilities to be a vector in the global EB methods for linear models"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-108","dir":"Changelog","previous_headings":"","what":"BAS 1.08","title":"BAS 1.08","text":"","code":"- added intrinsic prior for GLMs - fixed problems for linear models for p > n and R2 not correct"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-107","dir":"Changelog","previous_headings":"","what":"BAS 1.07","title":"BAS 1.07","text":"","code":"- added phi1 function from Gordy (1998) confluent hypergeometric function of two variables also known as one of the Horn hypergeometric functions or Humbert's phi1 - added Jeffrey's prior on g - added the general tCCH prior and special cases of the hyper-g/n. - TODO check shrinkage functions for all"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-106","dir":"Changelog","previous_headings":"","what":"BAS 1.06","title":"BAS 1.06","text":"","code":"- new improved Laplace approximation for hypergeometric1F1 - added class basglm for predict - predict function now handles glm output - added dataframe option for newdata in predict.bas and predict.basglm - renamed coefficients in output to be 'mle' in bas.lm to be consistent across lm and glm versions so that predict methods can handle both cases. (This may lead to errors in other external code that expects object$ols or object$coefficients) - fixed bug with initprobs that did not include an intercept for bas.lm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-105","dir":"Changelog","previous_headings":"","what":"BAS 1.05","title":"BAS 1.05","text":"","code":"- added thinning option for MCMC method for bas.lm - returned posterior expected shrinkage for bas.glm - added option for initprobs = \"marg-eplogp\" for using marginal SLR models to create starting probabilities or order variables especially for p > n case - added standalone function for hypergeometric1F1 using Cephes library and a Laplace approximation -Added class \"BAS\" so that predict and fitted functions (S3 methods) are not masked by functions in the BVS package: to do modify the rest of the S3 methods."},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-104","dir":"Changelog","previous_headings":"","what":"BAS 1.04","title":"BAS 1.04","text":"","code":"- added bas.glm for model averaging/section using mixture of g-priors for GLMs. Currently limited to Logistic Regression - added Poisson family for glm.fit"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-10","dir":"Changelog","previous_headings":"","what":"BAS 1.0","title":"BAS 1.0","text":"CRAN release: 2012-06-01","code":"- cleaned up MCMC method code"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-093","dir":"Changelog","previous_headings":"","what":"BAS 0.93","title":"BAS 0.93","text":"","code":"- removed internal print statements in bayesglm.c - Bug fixes in AMCMC algorithm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-092","dir":"Changelog","previous_headings":"","what":"BAS 0.92","title":"BAS 0.92","text":"CRAN release: 2010-10-01","code":"- fixed glm-fit.R so that hyper parameter for BIC is numeric"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-091","dir":"Changelog","previous_headings":"","what":"BAS 0.91","title":"BAS 0.91","text":"CRAN release: 2010-09-09","code":"- added new AMCMC algorithm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-091-1","dir":"Changelog","previous_headings":"","what":"BAS 0.91","title":"BAS 0.91","text":"CRAN release: 2010-09-09","code":"- bug fix in bayes.glm"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-090","dir":"Changelog","previous_headings":"","what":"BAS 0.90","title":"BAS 0.90","text":"CRAN release: 2010-07-24","code":"- added C routines for fitting glms"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-085","dir":"Changelog","previous_headings":"","what":"BAS 0.85","title":"BAS 0.85","text":"CRAN release: 2010-04-29 restricting n.models correct fitted values (broken version 0.80)","code":"- fixed problem with duplicate models if n.models was > 2^(p-1) by - save original X as part of object so that fitted.bma gives the"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-080","dir":"Changelog","previous_headings":"","what":"BAS 0.80","title":"BAS 0.80","text":"CRAN release: 2010-04-06 shrinkage - changed predict.bma center newdata using mean(X) - Added new Adaptive MCMC option (method = “AMCMC”) (stable point)","code":"- Added `hypergeometric2F1` function that is callable by R - centered X's in bas.lm so that the intercept has the correct"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-07","dir":"Changelog","previous_headings":"","what":"BAS 0.7","title":"BAS 0.7","text":"","code":"-Allowed pruning of model tree to eliminate rejected models"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-06","dir":"Changelog","previous_headings":"","what":"BAS 0.6","title":"BAS 0.6","text":"","code":"- Added MCMC option to create starting values for BAS (`method = \"MCMC+BAS\"`)"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-05","dir":"Changelog","previous_headings":"","what":"BAS 0.5","title":"BAS 0.5","text":"allocated within code","code":"-Cleaned up all .Call routines so that all objects are duplicated or"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-045","dir":"Changelog","previous_headings":"","what":"BAS 0.45","title":"BAS 0.45","text":"CRAN release: 2009-12-30","code":"- fixed ch2inv that prevented building on Windows in bayes glm_fit"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-04","dir":"Changelog","previous_headings":"","what":"BAS 0.4","title":"BAS 0.4","text":"CRAN release: 2009-12-28","code":"- fixed FORTRAN calls to use F77_NAME macro - changed allocation of objects for .Call to prevent some objects from being overwritten."},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-03","dir":"Changelog","previous_headings":"","what":"BAS 0.3","title":"BAS 0.3","text":"CRAN release: 2009-05-29","code":"- fixed EB.global function to include prior probabilities on models - fixed update function"},{"path":"http://merliseclyde.github.io/BAS/news/index.html","id":"bas-02","dir":"Changelog","previous_headings":"","what":"BAS 0.2","title":"BAS 0.2","text":"column ones intercept optionally included. - fixed help file predict - added modelprior argument bas.lm users may now use beta-binomial prior distribution model size addition default uniform distribution - added functions uniform(), beta-binomial() Bernoulli() create model prior objects - added vector user specified initial probabilities option argument initprobs bas.lm removed separate argument user.prob","code":"- fixed predict.bma to allow newdata to be a matrix or vector with the"}]

rV--Y>da4;3lS!a%4$b-_I9V@LL_cnVW%C_UBlHZN}g$0g*| znvWHcBKTM@i%K;}MUf~ZPU9b3rg@ke07%Z%HH4=n!wuh}EI*#Fy5inF-eUPiXRmmR zao~U-dvgRw8$*9-9RoR1nSE=+2L~^7b{u`HY@vDf;cql`^6bq!Jl;&ljJ+uD(PKt|NW*v443q{ty6{pCSvN%aN-uZ~s2uA?&^ z`NY}NjySb7_g7V!X5Ja7c)doEZ7j`yv7Ps{9LV=`4F1a83;sN#J)e>wbuz@AL@v2g zZd#VNtQyizKaT{Ju9eYLsW1%elH%=Q9u2Q0%$^AEw%*7R5p8#W9!>F)^@QZwH@~e+8x+I6lIGW#(xFG=1AK41;hB=jVat?#M31iJ+-)%jt$ojHfZbZ3{U7;jzWi4 zKYe@XgF+N0bfif=NS*#P4tg;ty}eAGm1Xp)VpR9 zeAOWzr@X~(+J|jFW7kfz>CTXxAfLDvz^+fT9F0}E9<7ZrGS85U2fW4I(Dq(Q6N+Rx z4tow8C~(}rTar=FC1nlY>IWkzN_67+OerT`-rf!4^J=d189MB;{dXgI&s@f7ZM*@d zj}S7KVK$8!HIrry;I3e=xVw8<6IvylI^*^wy6VRvzVz(9Wx84G>r;ChsAgvtfIIw{ zCK+%ixQRHGKG#N>WJaCpS%6$D6(CWu$kJ3n;m+f9p7Nz+uTL58Wdm{E4W&`_B!jRZ z+4kiu!1?G&KE=9#O^Sw9J1#6ke!L2Vj;=JkK0JaqZu-4aw@PDOJv%q_ zBhd4Ysv+Z?(nd1izV|<0d)KCj0%&Sv$&yW08XQ3ANPC7I|Dwn@BBWttme+;J4vA^V zmWcXoy=+c%7;IsYP$d<5CgN5h7Db^`XX?iS19Bz@g_M$WsspTh>0(Kfe_S#}Ah zD(H;Hhgd`OK#FgKI%-JXpI#|+ocKLSD^YXS4hjg)@>kwrpwOQ`wZ7goq9UL~(wyW> zi&I!_{{Fme`px$ivUMFm5$#b%O?-VfM;0A~9Jk0|zgOfswfd^@^>>1++0{v+elhp( zfbYsE!OZ6&CPb7HJ;wC8CovtI|Em{35Nb|47l~d85cQh>9gQsoaL$AtJ==%O?Wz)? zj4{QWMkxjO*iZwmI^sb?M5DE=LfiaGgXLK?ku@nIVFq{o*t0Hjy)ucvP7B?k$@jVC z-JS8BXH_BGu?4B|iedKNOLh$kQL=sFgsOSks1g%SzWxh&cHf?k3pVE4SlH9G#0Z ziWxsAJqpFB>*{?KJ!ZZ2&`S$iMWlW`-Nv^llj+~%J< zoDvVt)G#^dZjNTTJ9{9Yj=`d>r{}IB@!EGTcBUUx+b@&WS|!_%uDMS_xErhSd{G>q zG;&xV6r9CZ`lRc9Rnq>C={HwC5eO+yTCRu=8!aI%&uW!{i5v$bmC*luThne@!kQq# z=z*PXctp*0ls?AD_Ub%fPP-b7V)Vj3m@AXGYQ;bOs68Urj9!abX+ke{Q{m;}{qI!@ zVWz2(5=c7?VGrHWE@_)tqCLeHU$R%6W0gCXEy)4E09))=X&UHSS>hm!U9r>(P|VfA zd*)x--pGmts(H6fqUGTj^S|Wbv@5U6Ew>p5M`Qk`3{oCZw z&!cRp>0A{r>Q=TVktMw?nI!{c&I=A`QoyJ5+_l`JkS(awf2_GMO)*4FU?w^xKN+Gq z%9#iIX~p~Zgj}|*Q2%V=43GGS6?er&d@fbIV+z`Y*FDdru0Y6sP9?q7|C1lKwQ6@! z-N!I)IvP1^&=ZAf=d8On)>YyI86EgNX%(%DF$(&tKAb;e7CY|M#_PehhglJMy-T`+3zzc zVZKUtha|Ts1*8^3Jfe^i5#wMFA_TD_-{_VuUKr1o^*ZPq>9vkKa6z#vp{WpOd7TX) zG@@L0?Ud*PZq>kFucH~L>kQbRZ6dm7-@4n`#K`wVA+5xF))ItdS!7Eoy$;?ovzKME z?;>idl>Y63#EgeIuS3B-LMo{in3*{WS2D|tAXll;A$be%HgB0SGmox~vQ!P=pbJ0( zg@GKTS~CKb#8Bi4|6Vcb^tB6WPFIh&TSi#3lra9%b|YbyRk(b-sjR95V@foka)dg4 z+d|b;+)IIwTG{@-?5^j|G#2Q}kgdmMq+Bdm6YQam$)O2=8ecv6tKpstJw^8`*vqF9 zS!Y-(8!@l0+Hie_dMmi61oC} zZRZd0vkb?Qo_srZb|Cuhs|xRwNk2ep+OGthmb#msg1cZ3=6jr`y78<5DvT~KHV@Dp z5F^Ix33G*UsKFmA209yM@S0MHoXn>8yB0|qDU}DoQjX)f(sB#Cncs_hlU7%D<(m9} zy>V&o>Os#x{(gB`DQ&lXqEG+@WkN6w{KUZwxb9DO00PE7Wdd?!Pzq2-b{e|%D1MlrEmR)Z)wMSc zRH+YNTYrHoVQ%RfI<^Lo)sczA*X!28rLn~7cJZ!u9gsu*Qr1!&e}&C_-Yn`);;y?~ z{+*F>2)1K4AAT``Amb?v1@Z}j=7eKK%j?ZK@TRADA0x($rWYz-GR$M9ID_6sWIN4( zeL3-Sz48N_VL&w2SG&B8(A|F#_KyZugg;1e);NEYd}*uCY=y9*eiaCx z9Jh^X=VvO}Z=F+Dun%g5QIE!5>xtMy>e1ue^1-zFv;35p>4jjr@*G%Qh7!CoWUFnv$SC%~^ zg_@h0Hs7xTII9n*6&-%EAEnm1?k7<;ZvBl&v zGdA}n|KnWZ4G-WSwg*<&=Ngw*aPLj zqkk7`z3&abKf!KeP96fF8V=|Ql&`=BQcY2;t}>GYz3LN@Y_%)U8~m&FM#m0FSPm``8ao>YuZ zL{dfi14Ms|69oWUF#)NBWJd~pub4Y51X5=G`6wHC{i^H7cRiK$vuv(=s#GZKgxNSa zuAYukU^vrFAe=QfB^qXqv0P zT@O$0tabTWM&JZ}mO9ql0Zdepz6Jx!0_+Ij_rFWFpCg`fq9 zjWxaj#y)pRR0gW$3c@I9k4%LErAU%Yq6^a(pF(rI(flxhDENrpk5X$>*qRLVxfCKW ze&x;{QH%lqT6!8=)}cf&>Xd)=HS!$U(@2*DNqBu#AqleM^CSTzu3OtlDPPz@$`e^S zX78RY3#nWrGSm1I&Uy>!wi+V>7&ygkh^%QH!`o-f(w0xRWON*1FJc`-U@~N;&21-m2$HdooS%6)z7OI8-_^t6N-pJMk9IALCrW}9xO-K z*nnH&Oz97ffq;-<%Va$|jfI0d6^N+mfKR@RPXC%EG+f%-YDXl2qlhgSyXFW;6_5&l z*-Qh{dEk`nEx8efG+70xI|$D8W1n`NUFT^aki_n{PzA6}#NUB?k^p2UmF*%{biHPwLFSPY%wsMPo7|D0!^#&^YN3&Xk;MK77%|W~-VWN-YIH_J%(JP`bPd~! zcLl1H`cuCGv7C*Z4tkP}9f2eh(#b# zWykfyyIlkG)W9_fgXS=bx54OzWFe#rN?d##tm>-n- zjDwY@+cbppI5@qNPscOy`3Fd0K*BaoE8>w`nU8>ezQ2f#E+8W@rsgk40m*K3@V1fK zyzbFqAgL$9Bugl&YRn^1zLMND|Err~qB@sBSIMWn)7_Po8(Jy~boD6b?U~?+OrlGO zF2^Q_jk*`g&~izXp*bR$2)XKr904bgOb3WoS`0RJVT)uwXjW@UtdDNY-pe;V)#qr5 zQ(({05zJQ94UuGp7^D>ZxkLHl2|(~1*NNNs-cy=@FEy#Ef@$@W0_<$*=30;*{OcvO zXB=(Ae0*2^pa#2%^h&x%e64RyYAX8=jmVfAvbBIpTa@?2_ZB(VZ0jX2isO5S^9fZB zOBK=LNm2U#3Fi_G!;nQEBN+cCh_1fp>E6k0}Y5m4^h%Z7Nn>3su0iIZe8clRjIweYfi0JR||576L82Bivwyw33hs1f0C+aA$%0@WH zWPZgg#SkYkwn*1P568=reVG^{J>#FWaClyF1y!=aEQyu0H=^3;I>np}$|?;v4+Wu3w1(x)qWH zw!`qAfeeS`p_5htA2MXz?eh>$5JJms_PhqE2ku$_f+KgTIR6+R$~nD$pVW*aNfmJC zAK~CmMzUp2=v|p$`W@-4xrt@0K6VzXjO8q#ffzgRj?h4*W4@~(ZV|=gZzTm1i4}x1 zJ5*=r9B@p_=bLsH^}^+ynvDTVDR)oHuASLp9{C4!3TvGAQK6 zMB>!K13>=6KxF~n$Z-#p+wsfFZ>L15@+Ll;dPlTEcktYU*pEBtG-;NmqoA`G9l0-p z&YAuOJ9%9lVNFkVvd)mSIG{ClF1vJb(VtC|2WFQtSw4!9LF}2Gx4j;TE0Kpp-FZ^ORMXPhGXu87jN}Usa_LZg#fo%X61?2Xs(E*L zZG6S89XR<8`;H8=Ct23d1M4X)CvY%zz_z@7!>ivl{`O zwah2v^|rJn4V_#F_=w7DNlF4N)^2_Hq%|;Wr{L|Lc+tR~7oNp@JI308pwgiGOJD1x z3igm@qn#VR_S%u5#b}#M*TpB@0@XA48vTdbzBb%Dn8TB4M-xAZHS4gk^`|F0w&o9# z3jcWQwU_#=1^kAx#xpSf_Z=UMz2-VpB=C$sIDdKJX6vJ1%*VeS7r91on~T?#Rw+j=cpl{%$8W>*s^HjmYy?o;4026!923nBQVLZ=g&KIo{|@3Kc*^<}R_X$O5(t?9Vs-Y?V0BAx?yIuy8EcY~S=;mz z?CY*GjjH!K6#XO~+tl=AkrL=R^I|mTe$O3$5r7*S!|!iVuz}8y8h;+J{T|?7d*?>p zd@X>{Q+yObRmXJ8$>WSxKj$c$9sP0 zty&qlAL?w1Kqnb#vaq%BD_3WbH6xEV2#osbhqgRj3a}AI1)2cX9eUe+8|2N-!_ z+~t+p!LW~Ocsn71qvu0`BWpd`NiN9=4gB#VT7LZ>)Or>!d14}_PDkl=I8x)a`=~&} zcaD@XIjuece${&i$k8^Uq`e``S@Q}pn>e!`I8xNmcm^}#? z`PQ{io!@)5;p9r1zMUFO2|y(-ACOAT2357>2x7Yk<=XKGD)C^?8+PQf>9-a02cxzb zJNSB{gY4a?(%>UE_I=|d$%m3YZo(E22@kRTMsd1^0!KD1boNYZU57)@U*z^}$$cO4 z_;dT(Y3r4<|Ir|hKQSk0uKlTRMCyKOq%ET_VzP_Vh`EG(goa7?a`Q%Oai%>wBcW{w!Gumys5+rWEXbsQ1 z3E*I}c4LF?Q8e(vh+g9Jo$#J>33Geogl?XAjM9#~bLM&=HhSbT(?W;pOR$eagB|Vj zpJrLyWHeP{p&szQaPV=Am#ZE1j+_m+2t8N_;@lLLgs-KDV5Zk2Sb?NAiMX8Pkf+Qv zAnkX}jtf2*%ae5>NVNqo@ypfQ@8c!S4OY0vR};eGd2i6-NCiDNkkFZF0Mv!60Je3< zhjvBLc{fRpg73f}nGrt}urwH1*GsXpVbc^fc&wTF)Ryh_#?i4b6p{Se7q!sR0HcUW zEok{;mf{Iy_qewPdzo9F7Ma;8_)vNPz7EPYiK`9#-KYnJ>YfbDXcDTdA7tnb>G0`J z0dGS1MWJ9@*XM(S?(V4K?-q3ph#z4s`J>!Q09-nK!aP4CD^At&;mB(Zu)$2}uBWW_TT5$|sUvM?m+=75C^U?s zcU1kXfh`V}dzp=D|NZIkeE*)$uTyjwqTL87e&z4!g_38jRt$3GAL?Y%A0)GUY>ipi^ z!YlpPe(RT__L;N>fmwgd?P1o7rDa%GbzGs+_b|>Sj*q4W?RktXgKC&nmhXr-Z!&!M zh_o@0gwMN5jeLfIU;h|W^CkQnToC4$4pL;Fh$(pMOJ2b)X0te-)8`>@q#E*Q>0~T5 zkrBr#l=9`o>Z$}5Dj7Dnsr&Yd@45UAxr{%-e7j79;x z$tRP;6Wa1PnWQVhvOnj<(LKm{#C`Uv65TqYJT6oFyp7gN*vjd$-<>pn=ImoY%ll1V zu1Hs&Gt^d%J&d~hEr!qpk^%WMbiHq5h%8sq9WhGNwj4UUk)?4g1|x=Sl6QwD>KX*5 z5i5d1*aLLLrT&2N?C}IL??=TfmAsN|IhDOQT;SOc5g&%4(co-$pt^y{xfoh~qV;&o z?yIA8V9D$@q3@2zN!dfgJ!^1lW}`~NZ&1qz=di`=^GDxBF@#Q{%h_4F+>6J{oT&3f zTl_be*{klD(^53T#jcVx;O5d+17BgtVP4C2s^4^iYW2#bu0Uq#-t`<>s}VrlqXlRm zP?l*>)Rc@5^qf>I>$SQ{%;X^rR@BXzzp4Bccdp}^3;p(hlBm$@0iNz;H`vMo7aVMt zb@pM4Yz53pmrJ4iW5Rj2jHES9J7$qH1>)N`5Mct{I|AXjTZ5&^IQYtJ0x0xrpE_n; ztS!eA?sLdrRvIpA?f&_l>!bb`h^dSvl0$-w;PzFo`&Cj~{?%m>iLq-G@t#m?GtU4D zFN)-|d0m?iv6RT+hy#qh3kt{RgA|GIr#AtI#sBUKhTO~kVUvpxZ?`A`8oMI&=zV=@ zx%%(8X+b3O82Q+@z!wxVRF)|-i6;&PlY$> z5Zlj04uF{$DE>U1*Tni0mtS?vWt1d!qP?8BKH@i{6R^}>KtHFirZ+*h!bDt!_E^b_ z$AxCl$KM10sN?2!pNJKD-g$)evkEXYriYy{x^aa=svQttb&gEd!y9pGset^~omTfe z9?!1TcWx&4Z77C=CurBW3_*~M#fQob8v5VWk33QX@DEQL(i@5dZ zt|`s5X}ND4MQJZT`4v@7O5#t-8RP&soR$x;HO@xjPN-uMvCJRSuJ;!P3TqnaOxo%( zYxiIH6On;3ONQM=@zfp2!z8-4M_lqr8jLRit*pC~ZpUCAJ8x6eLdVG+R1y}a;jVkb zL%UBDLi$LS=2$0Pd7HK?(_{!^ zPLq;|wEz%(iAP_t3J$I^%VJ0I3b9fZ3->OmtcyPuc%TVTx@%u{M+8sXaghpU`}k#A zE?Kad=P~1z61X)>-0=dkY@r%`a~ z*l<5On;E8#7B7;)&dqjg10^}H_YQRFJnqD`{a+4z%z#PE&Fk>pWe*ikUYoofaLp^Z z9fIHPm@I5#qW_d5HhH~1?YJ$J{Fp8FM@x(>*EEgntpM8H@D`;V*Y3>4(tR5QHQNJA z+gdtP&IyrWKMH+s8~-fFwHrlX!Gc!tn8Y-7G->c4oJB}4L}NBqecp@w3#IA*>IDe8 zI(w{(fDXbh2E6V?k7vf}#SwZ6*+XQ56K0^ZlsZGO8jiuQ9uO%jQrBdsqgL(I{TJ6F z!%6pz<{Q#}uHVmL(*~9C%?&5fb@iy#g57ndF0u%p4`y%xVwdLau9ydzXQYU_i2n1& z?@+zCutZsP1z?`rnNk1;a=6L`&v4FV03}_9JZQo_>C1a^MUWJggS&eNGQK+up0t`h z2I#3=RR7U{+SR4ug0Rb+%)RcBDygpX{e>Qkg_b1MYfi@U@&D<}s=Lifmqht2PK7{E zk?Dq-3o9pUop`1Y%$OwYp}y;jlIF?maVULTARfr-MS4Pm*T~{9;;jRT5|=^MLY2tt z>zjTZjFfiRI6pq$2zYt?uIc4k4BidJXrW**EmYGRiCX&Ht3r}`&MClYuR8=3?0f#= zL2lBYA6-|u&3VzEi-x4zmYb;^31O?}((w(KB3UFeZv~E?cwmC?2F?Re5uW}B##@)@ z-#XPiH5(EgTo1`W)?FpxL7xY|3cTB-vQ-$Cd!-C6R4C(}8&HpVnjVMo4Vz0qop#C; zoM*PN9aHG%akqqA6FZ)9N?tkw8XG>#pHqqWyxf`vtlF(ORSVRpdlqizUNQP!j^;k# zMG85UV3y$P0J&efvf}pNbeq3u7`;;e@wbu0gAjyho*$=hc90aF2cOw>7X2-%#H)g= zob=!Rk+7X+l(WvqmIA16TZ(gaaQY_O$4Om|nxLtJ@($)|GVhOq14sW7FC;ZSWh^42 zOOW`wPG_x&1BcP3(T1?gzHxRdD2+R~Ww0gxIU%z0g@KJQSrP43SE;Sf zWiuvIZifV*?z}zO(&u= zy-Kj(>he}hzx-KA=CSAWbNxhSc(s*T0O+s=ScUeEbS6+M6K|hR%T$VX(^?@o_+B-c zG)P`FTRmW76otNbgHEl8zf<1D34-bsY8HY5mUe9J0Zqw@&P7EHEBVXerYpNX5=U** z&n&F<`q~0!=;7TDb8k%u+7f*;1iB&YVO2+uU{-UC5v(YBn{d)JZ7Sjqb85_P)APGe zQ;uxz?zI-?j~;m)?uv(puk7;HZK(LkKUwC$17yNrdC^sdn!d)@5jwmN-RxGZHK^_Q zHwIF5wQ@fGmC zMYpZOd`mN=AvEoBU@o*1ZeUE{yzE_W?zu}Ttko}9jO5DVf@6qDACIhm`^R>^==T7L z;M${d3jG`9Ah1d79j@E=_30oh6&2XKO|Jc3eqrHhYbH;QUW~rbQ#v;~FvK0LkCv~l zmK7;kDLk?AT^k83x%sdfr>uvGegwqgzh~a|w4&#s>_x^$FP=&67rt zl5_|eFN*MedDrJ$r;c)_QD^JWMaZt%qO}TRi~8mOb4TW0{>XN*BQdSbx!*WH;?m8w zv4mJ&fcD9bJe{}qXJIIRhD=j#?QW0YdhK)qdPRX+o`>G+my->LpM5C%j{L^IkE+4@ zh?4M;X@>Gy_ym7<5nX(HP(0F`80C( z?z=GD^$A9yX684gQRPI_^qiFLTm0Iw^Q$BUdzdFMr#jwpEyaP;Kbpq6?|yvLg~^x4 z1Q5bv$5@VW_d`BI_c^M&B2SEIyW@se2?7>B_~jL-6uXdWG>Y)tQq}+ldU|?(OQYH- z%Nt_AY@~fF-c=Rd>{Yt14QhQDN^dpv9B*jKIcGNL!W|RHW5Bu0S$R@vqnX)nKwzv?+c!Jp;wf!#P}9KRqBb*sW_jo z!|F^R&iDW2b=NfaAt7k_Z;54sA4ihui-qkucyLu#2U2pwZLX2)b7TtQrJ ze%A(k@QrRyf!U^g`H>21%;qiPa1sX_iY;DbDdYC|_dW8!SxE_wCYSvHo21`INl1kX zpTSh}rpK_H?7Mth*Q)KiB^`;k-*A|zK@xqFiiwmAX%Q6P!X|Kks7lyXIX#6u=?=QO zK2L1IXw`>%`M16)OxZQJmVOEkuUM(PC~5-7RYX?Q*+z036*93eZr9XSUGhYF$(@Yr z{osFj_tZvrm!n1{a6I}@X>_)BBvK|dXvbl=m4EiuqP2`@V9ZpeMB!!0ip`UP=moQV z+s@v6u!&5wOc~DLs~5vT<^lJ{_UB1lmnPnWx;%YbW%1wUk;c=sI7@1A?# zd;f8X%Qf?5&)(1Tsb`O6I0q_4QSMk}A@A-BvRMavZkOx2q%oo!ao?X@@C5JJZCB(c zrQQ`!5#`Az{cRyPdGOGG>VAY=Hht4X^@g@w*6GTlcL(p!6k^X$CPIQstp8?AIkf|l_CPt#*1Q@1j zx^-6Jdqkpdlt@Zk@^sH`K4GLb+R0mrn!Y6yxcJqYo2L%xk!(-az@3{SI| z-{St{Urbw(U!{E!oJnfVtan0SbOXkuv#DduLOso{vMnH^X3$jlXY4!|{M%JcI^$e{ zsS3(A>gx%F)ZLn%dSSg>tbIF4`H~dga$D!Zuh4x#-?Wu!j` pgr5Z+ZEjW0ae^T zK?zCx=SkW514>ZtMt>hvR^X!1WI^RgcuM-q$k3?ipyj%bIkiw&TaT2`@cJ`;@zj;y zPBc>9wA*RHq(Z{L_UzOM_4k#M# zUs+giF?s&ER*8--S>N09p40+rc1S$O^)lC;vW!v=ogF)Ll0=Iu!`W(Ef<+f3938Ya zOW71V^U8Bc0l*qjx7DOi;~JK$TSqe>7C;Jiyz5!-`Rf!F9C5qR($^#)6wofIa- zzdM2Lo|wQk-Y3n>F4UY=>de$&ZjQ4Ikpv&x#muK{Q#7c#n3M`D;?dE4cuq&1v6T|( zkY>1@*^oGvT2te6tM$fRlw&Kov*!V=2i@2^oAA=aRo>P0-jzx}BI`0X0s4K7a3o>` zZ~cjP3kq&5@cSj+)ix2{l>Q@3Te}wGqAiH~j4Oa(s(YO*=lLG@N~fuU`MujkVKWJP zBQvGF!B>#AR3;yh2}KR88YFk|d5n)i-)N|3VeyLt4>Bsk(C<9gUo%G8H$so9aThk)XJH|vSm0x~u*u|~ADKh3Cv8>?yW*J}Oo#ewKxb#j5rrER7{q&6n$z@*N z^dIv|f(uMkeUnX8ZKf38y1is;n1r&2m1CsIP)g#^s=|B~42wX;6Pvu9IEI%z#^I5S zBdf9e)!8rbQy;B#oYIr>2Yhv+lT;4M^E>$zoAxywJ&L}Gc7}@~`4;b#&Y(l1LQft_ zzqBPO>rM{+YO=Qfi3f9oY-5k!!k^;Ey;mc`_|sF%wJW^5zmi8GzEu0UBaw`Rl*LE> zBO}xuhD@pVExC19M$=QtI{$IWyd6$C+Zq;qVD?1bGA6W( zvARy*NK>tUhx?OpuwA}4qo?8ejqh>412ea$_ukzco6xJfMq@!C-qd-E}L#&xU zwR+b=jI{b&H83RGDQm9^An)M=T4_u|Iz5a{ypg|n5v*SHPkstij0)dnw=zrr^xV~) z_~A8Y_(eiqB4Hln5&tZ==BZpQX#lCxA`7v3BvlA!e&CW03G5>m zl`!rZLr#u8EF-8qna^fyhqcZS&JuoTQ}&0hm&QoQSHFaCkF_4!V_&vJq~9N`)Lv|0 z88n9;593Aip1tMgpQ78o?A*6&-Q6itY5)7Kwa5^~<=;WiO0H(}=NX{sv%=fyv&`%u zl`63_oB>X@lOHf z+*cv1pLtNKVMb(53S>nhq_iX*d(oy9jGcrmlfDV;A~F*DraGRW-J~$3mG9rLq_}O_ z4&pyVPZmIE>FAu=xim-yZcZt}x*q;H8Hz624-XgdJKwy5y(WriP}`qiwlhT4(F>y7 zJL#KvF4l^cJ13=23zu$mNPttm9B@7BU93-CWOmb7%-U466gy~9F|_VUfb*3=)qq`dL-NaiL_z7@OE;wYuxT4?;@>N;)INz(nlxT_xhedt__8a8MY| z81c}oihB&Smi0%Sr5w4Iu(Q3uUxO<&N5M0 z^7)totm_)dS6Z?@VUn*Nm7y7PJMIbAvk<4p<|qD{w38<`)$jj7|4>K4NLXgWooy-?g2S zW5&zxB94Vcan`p`qQ2^E~}L>lG^7Fx=CfQR+N%9e(<$HNdkJTUqI7D@I16~A+y`>ePg zSTDmRPl_QxO{y}WhRpX6g`YlN>n>O*?=XL!#<^`RDqb%?!2}M#)A$9Kp1^o^5-Ec+ zV+j~VbyD!=*f)I3r&QJZgG)yxZ0{!EHJ*o;_L^U42=gp(zKxAFn1Wal>bC`{@ryyk zAuWX8b~udh89{zNqgHPmI>$A0w#b`c>w6A1@-0x*dBaW6K7SbMOj3rYN8(=VJQ3R@ z$Qa=oUN|$vG@7qVUrqjWH^Lao*D7aomZxb)^2nbc(e4DJQrNA4HiOGq*D*eI<2j;l zGJFs1xw61S$o8~lN4;g#5DNXmzc7m|58*gu%&4Ea5yIoAGWMmE1f`3VI+`L0>3Q&6 zBO6{;XjeG*n6}O_GirvaUQKqkTN_O_cpVf5o&#$us4*jFZ0r?5yYS&qbOoX;`%abI z=D1^4I=ZDLLS(={Zv3k?7sXl3s$rh*uoi}FGkfs3_Y>lDr8u`GY(`+Ck?d%m%yH_= zknZ_j)ok#{c|GPJ>JDJw!EZwQZ|J`{-}(OenMO)Q84*{9c+|M1nU)N3F(>&nJoGma z+Ua_Qk19(5U)H*i^`{Cv{yHn`3-`yDIAcfHBiA|%Am53^3B(h^^4ObOnB6o#rmq(g z0_4fIb#v@-Z_C>!EL+Uu4|d&u(q=(={V!j*gVLUU0DYW$k<{EklS}%@GueJ(5c9gWt>EU^)nD~iy>+%|Nv_P=-16>6vnj#h3Q@<(R1C6TksIR) zcM`N-qzgs&D{;K6FC=u2b3wTJ91PDU9P^ak+&4PEl@S3pG|!Rj{y~UX+1^(+?GVGG zPyp#E!!%nUM@Q$k_Jud%^m`)r&(cm;1Q+L$E zCMZvymmp;+nFrKfWrv93>30&dtU$PMnBofJC9*&0e*BJ0jG?kSp5OXi^Z5+=CZZMm z1hi(1|JGAKW{*p3hgW=X^d_2~+l9|e{0?3M{w!4!gFFXIdcZ~5pmO*Q!y_9ucM)9y z61H%6zaf@w?Q07c-zgiOc3J>|gh%jA8fbrfy0Wfj%ecQ0y34Kw4~^1i26FMxWcjk} zvtA?zxRU#cd&(GH@|QDu5p*qMlW?WD6@SW~YLC$cKjHIO|E+2{%^6aJMVSG3vTW{6fh!zbQweoR?WJ0cE49mb5M72Ue0yTpYzP5O;c6}|@} zJGy)y+BlVfe(1tCeo`>k-%WhanFH-eBuhF)g!UbDCb1#0do$}LE40;=cnB}uLW{25 z5ZjFp?Zv-Nd}V=r@dd7WjWKb;V`Cpi$KM=Nchi&MIc|_YR-lxp)Aiw0&uN-rb&hGc zbjVPvZ=_N2qJ3MOCn#`tM{^QI>jm+6WE)231TJU9+cO@1gvX8V_xdb#ln0h_7zuNK zwcy3w6||=Vd)OxOMxNuutc5B-+7CV&!|&qWP2Z?i*pk1biy^JpDVV#(wdAO}wHOvP z_EFjhFP^kjhqCmGhynlCRIodKOFeYR?9^bi=!r~t|4cl)w(NfsuGn?YeXHsL*w`Xp zm7Y!H_v9`J%U5DXd5bitmUj>vue47ZS3j7TbbSJm%OCz75(C|t`Jv3aObBGG0XL$J z);N*ja=ex({tyypNXF%J{ap;FJPqn;pqz^!^Y(WgXyf>or9~gC@!(Dg09#?`uSkaG zSLi)he(5cEcI<(3jYHJci7S5NOpC0L=j%5_9nua^t|RDFpE3@GHz>)0@5{@z~!dwL7sz3=i8@ZlD;Ovh4)tb8Bf2MK{H0E;3?!tiQEW%gO;7 zG~xz1R>Rg|F59&u$7CPlRdjv~8n=$Tq6{GQjyGFaKFMmNp&&;@Ssg!S?GOb~!_&Wg zXQRN%?A0&5^+bPq4TUn+0Qz2`-8EfMw(XuqIz*i}r#E@13Hb^S4@>s7ueS@Ovm?R4 zx-Da$LA7MRBbIY;$61LXBR2MZgt5BRCDgBCzr7G@59_X7cQmz!^YGmGG9JY~&ywMpEkQy43KqD07FUf@k6j=W`zmzP@u6$rTQ$`tVn|Xm`xHl>ZgEQ4{)OZxn8{;%J}Qrr__|H z_Xc0qZYm4A#bz14A3F{!ZzFyVV>(kU>fJ5lXfibEQF$mxsT{X({nHX26k2r6{Nbj! z4*-9YWEkP@)9yy{q7Ky;dwi;w>Z5lv-dsUk;D7HT*PS)MFbin>sh%nTZSz}o$4&#x zU?K({Unxsv06G^4QTd4`E3iBJOJ7>~IfeOh`I3bDAuz$>l;|HT^8YqnCYSw0&J4`rt9r9$${;<-N}(zOG1q6bw=$;}_5QySr`Itc+}k z1WsgM$u6J>oX=n6dRvfl;ODTbu&GcskvJdm-xtDx7E1kV_ziduKYAh+V%9|uRUYdfR6?jNdY>#60lj?EL|g_qqnMP)IQB0yg{t5o7;h9p|Av6pv# zSAhx_&k$}{L}nIq_LXbK#ireJy`0X4Erab`gli;FH6sA9osklMUPXHsue`9s zWG{N961uU_u_94y%2-nOpsZhHD8(=UGIOy{pOK?MdRB{a)GW8zfxsJrG#>o zp>?n9smdj2k#n_KTgknb8qjZw*aNf@(te>F9f{^gU)Y@a#oz}MJccIn3|2E#wvDNe zty=HNz}!o1IwDKUh~5pf7I?gV;z%~`a!k`G=(g-8N=LWVsX=Y?9H$5s?s7Ydt=Rfk zap)TcZ9cnAO!Y~C_gVlmUa=k7loA3AJST9y7-L90S7ffo0PGi7)a$H*!FrbkblHdw zS>#FJq%JzoM+KnxDC4a}qRA9q(rsHHc!zlZ+4mbxSPoH>6LRch7)|Ld?Nnz*;_kKc^DeQ*zlaPv3p>RyC$1}OQ#eXoqQycsL_p;nneC{pNj{tzf* zoS6Z$k$d#)Lz|}e#VXBom0f2W28tHcTd1l;ffVw$mE)t;TMm@~B~(Gnua>`ig;D5C zfSFZ2>UzUhar>7LPJx@#K&v4tY)4VWGOvCMV^c9$7ek~&`v!z6XB2i1^F)M%Eb;iv z-*U;H7D#S^*LAIHMS$X!`oMCdEuok_@k91tWooRCXqyr_yHF^zwV7!}*AXmc9!M(H zHuf~;*PlO`Vah$YA-yn|!arq+>xSa`wHi>UsT3ga>Z;Ls>(;DaIYe(k8*^3&Hwdx1 z=!wW2E1=0N%c`IS;SyT?%=mJ62G%5n!Jr;hkR;&E;-9{Yy`kdFK~-<@LZ!P%@f=}s zIph1iL}#!AG|C{KT(9>WrP!I@f#mtpzlik_1IacgbUS4j2|w@93st-j{-E<;OMySv z`m<>dmd^My2+s>E@F-IJP$ngs3UTUv+N|+;1yeX*h>& zkKeVCyM6XQS%C1m=_kc>akq`x-V53)eQijVZ#a?kV96L+(z{bfhLqlX+Tonvmi4q) zhLV|1sDu;YuGv3F9g_9CSPGM#JtQX1^16uvOFjXK8N~7U3_3WPuIY zPbP`TfLyHW0o})gl<=7-<;i_w;FswAtM>$s_uXJ#Y&4Mo_F)jP4}aRuF*@R7NKq+W$!ss#~NRsGk&T}n)|R_0@?aY`WZD8OVXkA@+aG@uI?s5 z4tMixyl_B?I?fj%o$pwn20B5=^?sFH(vQ%w*9^I$igb4l$hIqhb5O-CPV6Hj;%Wvg zkAHsD*?clJbiC}&HhEyrs?l=R5Ae;)&sVM8u{Gd+mJZwYFth zXZl-R2G1omfRcOlG3XQnh(V3iTp#A~A7{_j79{)#!MR)hg zfn9{Z(fpBAf-TsIZ~WqSO22(LHlq?n@5it!y?Ae)W}VvRB?T)vKmW8$@H{s5klyQN zqzJcw{`5XH(GWJ|C55C_3Wph-z4onwb01Sw-Bm${8|_ZVHx$ z<`KJOeDU;!=QnYF*m^RoJa2}t1red&;IB~ST)hgYI`x z_$?mOsj&>3$ST9mLCoTMr|JD^gPpx?0$COdSL9;fR3_dt<9vUx0V&M8c10_t}5@0Oh>A-83 zF!5vSaCV~A=?M>=!kGI0%`~qYH0g?H34+NQ-nUlGTB>`Y+ZBYlcyV zA5w^b)&5JiI_y(DK;N~1r@Rqv{6|9t02AO$r@2%&mZR~$(6bD-yo)Z?71Po(hsj1* zQb5>!p5$Xg)QP9zt~XIeINPA41&s%9#?o5*$D9-RK|uV&?Yl(oajUvbsYj0O!7Aum zaRl0Qf z-^5Au^j|bm9I^oZAFNIPKP3S6)95BBzOrqSw? z9R%zo+KgetDjKyf?@&vfyJSBYXWht(v$h1^nDd#ax4bWR6~WQG|18d~)bN>aYjq>Y zX*71cub4b`yx5%~e5|fczMre(WEZ7)>1F*}Lid-iV)yhv7_RTzDt+q8pr)4vYXEIW zNI*)o)ecQ#UnETFSe4N(K_#>G35Wamfw-+e_RDsPyum&Hue6O58|GGUuG=DS8)^iw zr8^z_oGz(02cfr_W7Kk=C?$2e}Xml5d%u)>Y-@_a`bt=V8-D^&gd2{>rUwJk& zeQQ?O1>5(lhi=b?eRl2Xe)@pEU!uLGupb@NQ%>~T#<1io!U_^&yYll- zM+i?{M9JR33|A?1XBF!;WKoWrv%>Q4UqivQ@C-jbUTthP13pYCKNxEQjWsLL=a z{85t}8-|oc>llCX$s*lT{smd$vgshfquu{eJaTUJkj*B?Ek3p*>&=H$ygQFrWx?v9 zUC}awCo(+7@^iFjrF-~l+=n6_lv|DL1RSL1)aIu+dKGhi;!YUU61 z_KOUTZG^I8^_pl^FHrSV2R)@y&eFnksbc=_`@NL#v(f{Q=Mdjl;lYJC2)8S;nQ=j& zlHOJ;>a)*lvS{_y9ZUQW{QCUky-iBl&1vJpxnRTT;go#QC-%9uN zoZbW9NWJwrvK0v}YMdqKh%jVqqSn3hwt-!qsl+8zZmi^BU7rN@`Ufy^Ekt&O)2@*= zt6KuCp}q5IVv>Zo7;8Yv9m9HQ+EwwMNJPF3*-S<89Xa*@36HYkdT7Ls*u2PXf7$~z zI;SFXOR`=I%-oLBROX`dpt9P=ZRjtl$dFOeH#7uqb@F`-fOZfS!V9DYH>Ll6$^Rl( z?E2u8_kdHr+KxU+N9-FIUL%xeJ>(w~aOd%x_2l$mlFh90;WpgN=&=LvX@)#O83PaW<}bE3R}ru!MZG?1Ke%@)L5a55zb z5OCr&U9Q)M-9W}P{4k&H@z3f_U9Qtt4*xuOO#}L+)Cm7Ta_t56seHzzyofzMiqW3v zIcA9NgLiA4W4bAB!xiO85+P}wpZ^nUaEwVZO2DAv(poqxJ4d6O< zt>NXRwGy(L`5h7pi(s~Xj`GlX{55(`(5CRJob)A3!w(sd4skXIKHH6-L@YS#PaB1v zOYlpqLuqdx9@1f5hDh{R@YhLZHACk^G#;xnB)iQ&Nvd&%(`fZ~zxhH-M`q=EqsFx| zvdqZ6ESuEjxdmnRIHLZG?L6K_#Z7GiC-DX0+)t#QYNilKQih{+(VbjqcSFslw{Sq6{yZkB2 z_m*7)LiKiGdO4y?JgXguYPb7f;ov1o^?<4nUz-M?j*DZrvSUXNo^LZZjKT+2Ta@8S z3uk6Dr{IjnSwpwFMDnxS4wOV;F}Y1@#H%JQ^7rq5#HJ^?MDH=KKw575rTEKd(5^%B zIzFLyPbpq`3zqKt^%;rha*trpcbI zKO|3~=O}z#l8J8Fww%7{C#RSe^oy$jHWDq>5y@Ffc%DGTwy*nnU2XiE5}aEw%nE-x z{zb%8WQ{Y1T^BDA@0^f>aC%ur=i(7w%%di?yF@lU&0~C1Y$RXbA8QmN9M6CvEg{}A z{t_fwUg`BpZT$XTfHS!xiA`4YufR9%tD(DsR;@)QuopK!jw*Rm{2_5@NczqEy$kO` z>kLg+n01Fa-5*Zfh(i*dYut zi!P7V9xBnCWM3p{MGFF_VL#7_C@&a zUxev3afixnYG>t7mvzwRF>AFZwh`M=Oo(`WS9^rj=DW+z2tK24xYq(nC8NnqDtizs zy;`DzqHV2fBB;Z zks#N{SOTn{i)3suLd`C2uCFq(;;6%T=9ZuISxL*}hY{F3fPW8{Q`g=9$z%Patatxc zZvWGdyKwj!N0JkY!??|YTb`Y-yxFRm-0dTFWLOsXh-F+>*V*)YnTt$K-$NtB?x@kP zh)rn$QJ_LVwSJPOK58|!Jso`k`L5l>w0+}cO>1OVHwBD)ex>qWIQQEl?ZWslSBH0? z?i+(Q`djyV8)4&X)vgZ1wdwl6HUkhEwDa6}!i^AI1!CFD_Z9cc8-%O^K6zP^s$}yF z4=FBnMoi2#rCziOVA|g&s<6ATQhQ>T2Pq6>qV*%#Az1a^w`FXqVL)-)MGm;e@b}E! zHlLUt-wct%y{wv|_V)tt82LaHSl;8T)&fz>sbFvq)&EfUl9L$#&vD>Z?+VZjeuE|P z<2%p!ikLCWT-@zYE>U96ij@N<*nr#iukz@?eZ9a?TWG9EiLwg9;=TPT79;2 zKDfb?MSHf2PmKC#~GfhCabTf0w7)_3Z;9 zcUi-KJ|~M$>b}Utq>XQZ>|2ZGQ8m)+j-k`To54WHbbHG0Q8m_gRy}5V_X~(7P*+Rq z6vjU6-&|U3lwB;*BFk%84TyUuW)yQZp{jA>JTROrClV&;Mlp=P5FCUqOe!=DUr2~m zGmRs(hoVAk-iwY@fT{^@HvqCHx19L1uy<5xwRwodlJ0tn;xt+O^3F-A>4+EnoA*ky z4#Kb%=p)Rb;9PqGe>inh6C9>NUPx|9*SkHww8&0hLDf#5UJThFPJjpq&dw39#8hW_ zoNTC{UDmjT2u9>ezYAyFIwmYh;M!0v9b$P;?)^GGh=;pJSC*e!$)M0R9#{AhmVx>q zIbZ>A@A*FEg6^s$oj5`>q1E8y40Ci7jxr!(7Fz1R)p>Q1pOxTZ)?*9-&ofP;FsI~dV-he-9 zEAg<3(+h%gxZ(TRr!PFWxiPtsy;4bIL5Y}(511BTm5I*l+IF%18s?O_8gzibj*jRaA<*~zHNn^3ckm7+eZ7^%#mmgXw@-7t3 zhTZ9io6WifFOIvg44;>3DWHTf+2;HEW1TT=#*?y51OeQBHpMi$KG7~zeIl)S9Vv|l z*36Y$1uf)n$kRn%>*R};J?ByxxUxV|ApUWwb`N|Y|3()7%h$RNvuC+s1jQ>~ z!X|&q+x5G@%k?=ukOb`94PvmLV||Rx_t8YVzsJy*my=5Od*8J!^$o!NBJ0C7y z1URn}7;+=w0imMZDUH(aE9`UG&q5H$ea}97Luun?AagCJ{?Y({;C%X@8t;?-Wgh>v z!gp^%4KmD}&R;Rxijn2vam9y~7lh@GThzpvN=T^?%EyD#z<(^#0J`utJx*ZM? zb^EZ$^ihA*@<@1j|KR!3=qK~tTO zUqn^H6LYCDPM=*HSC%X)@qOj3FpyMG2Xb1vGM;NlY3JDJlTQXLw{U$E*B&oBPyGM; z<%}k-vD19o*PHL3h@W9SWLaLBe>5MFHEH(@Kzs$Zljk%8vlc(q;(njp5saW;Ov8#L zGgRJ;Y|%MO_$`6%t}GEO#^-MLyWQ*5g5N|Y|MItS1@*z9g5r;=j{INqIbV-8ZB3XL z%#H4)Vb{c^D=#W$CUZ9S9b3jh4>9ket0?S>9C!&o8p)R&(@$_KJUMZqDH_X{4;;$& zlk$M{F?{A32BO)csfVbKIyd}G)SV|7`58Hjo8T66o6**xm1|MK6=41X14?a#G#O`&N~yU7nAO;Rla zU!&h})z9JhxVE6_d)d-z{qnhJpnF_S7HmvK;icgv{s5G&7|*zy5@M42_|76-`q$#h zeiJ1jbNyqot!L3r2I7}3^Vc;5drg26wyq5{h9m<&AoMWFfH#@U z-3-3|>bU<{w^V*z(ZxJsa>W~-Pe5`{&Etd(gc}ZQR;yZ|q3iEoZJ{j&cVGI;i+gI3 z&C;_zHT<||L)K(uN=u1<&ec~%$dVf1PPnI3_P~O8#pK$LVV8k7exn&RV{MaBgmvgw}#=kY*LY)g9lFSmXU@3CBlN?O?M9awYy z)hpkDSr;78!F6)Lh5nr>NdXU!^Gm!XC-Ou2C&Z-2e+u;9ebf$D167M_lQ?UR3S45} z=Ge#@6?#+YI)FadCt8~V^MnJzNJtUF1#gyFCI7}*_=2g+>zXXLavxm*+o`qYsjEj9 zHHwR$pr%_syWSVFznAf;9W&LSW()_PEuYSW)pD`Bh<)(8e2tPls=U@fJ_R{-U6dP$ z8a(-YDBA5fED{%MZt4bTh_}ou8Qipm%hF~fKZ!y{wY-L?Qy<5tLU11 zmghePPx~@NhJ@76$BMb+9K)Y?8Q|_9{H=!(jK~(qJFuBrx)J>#9FN$0@Nc?6RHL?!p2qZ4}RK%G%(kJWA*qu#CXTIWA=%k~|a zTORB4SBk$))*OFGJ``eYOR@7DVtMDAzft?iF#X2aH%kA+EkL??B{~3R*j2CV!``>cz z|0x>;z@xbZGKs~qVcI_nnFBcL=?)pjJ`1~^MNNNJ|9JBseIuzc=ddZK#VACR&u5#Zc$F@S=H@uw404u{{Hc$NQ<{9+Lfatvu@A0>H?aQg&Dd- zWm)y*kW$+{q0)i_($bW0KPjG|aZE%3iBcts)46k7R1#7$)XHua^TN=3t-5+yR&gM$ z&C~*bg4g7Mz<6}X1)+tI#oh%FsKF0mKIF!lq4|sECQ2(spdBXh(K2WrGz3QA&#o?;l-1^I8c`Y#JhNW!+JOD8<~a^>q0LQo;+hDn`vyf6ADo;T8`vWMsFJJl<8(l%sp9z}@a8Y;2w0|6;|4)$j3!z)1e%JKJ0}v1U&OvG5i0l43+|rCCk5-VT10 zthFm~LRYz>O4g@R#<-Z++Y`^-wi{5Zx=G@A;e(QJe9 zZx?n^an-uW>$-0t9<--j`(nA3h5=+P2$}8l>m7IQ8nN@|ZDal!rD? zu9imlv(&1&aM-(uozdvuQiYXq!Ud?>sJlRlZ84jYBQXVa-~A`9jULkvw44b&f_q9Jp{v+QRr^z2DtvPMLql4Iu}rj8AbIBXpm` zm~7VakGm2R9oftPLXdSJnRmFszb%U*4eesOM<;O#An;snX$ACK;;&M*nT@$kG{L!?t3d)@1v#mApX zF5=>M<6>j0Z6)UvUX-<{i$8O8F_b05C^<}$jR^X;jXhXW$gH#NoiRkyq1CeP3{#wv zm;7mF{Av|KbcoES)p)ij+!hS+jPNJ$V@G5zdOny@M)f+kOxm2%2B3aA$jU}DFU#(5 zh}tFKX7{SNnt01HRl&r-(41xMi}(5!s$hMMP#ScGO3})Ixpmo%HuJC%hX@6o^JEG7 zr{rlzUa13&n_3n%y#gc)A*Ixb=q@?t==)&B=|D z8Y;;%`(Izm!};#SUlevV5+`R0`VzQriBnI$>vcBi9&FxKlQ3B6V~>c0mmwa*^Q-0i zRnQv>a+7wI+D>xkjX?@2GcWwO;AyYnP>=~R~|+yjAM|20EL@HWOx zDeWhozzyqp27YVNB7IKC6$C5Z$OHj z@kc@NlRkEY8C(c`1!m`LOt#==#NOa3zv*jjwo3j`B+)nSm&?RLD4o#vN~+dz`jphl zlBHV(-H!7MZgxZ03<#=M&m|U58*jrbzLMlYy~y`IrvOPNG2T-|y+!iq#{3aKY>NZK zsrR6ACst^1=Lf9d;68S_BVD?HaI8Zqa$4rdT6F|twQJY?{D z`U@YcV2YaD2AXgX&IXle0-4T}z7@KnC8vh1T$Ed)-{P_Yn59uxw`vRqS_GVb+Qk6ESC<28CdLOUR z>E60yp6cfo57ads%OPqZdTCLrV~vgY8l}8+&^gH>T^ylXQK6RMYV=yQ^Oa~z=uUsDtd!o> z^)}UhL*SOC45MP}`l-;#XfohH&DZYF(wB0twV`7eDh_PcT-0mwj{6lewR&*#-sAnZ zaFn#}5OV{}2yZ(s{M9bT!9WSac5dMR*tVpAQa!-gwk?>)=H1vaJ;tuGL(YAZilQ3c z&Ygngd|sS zUlzSo|0B-Fmi;(`kqbOPwI2}=OF~WYpLWxR z(ft~elOL+qM!P$vfUea+jIIxpoW|}x`^AOjnD_O`dAZa<1X3ELQ+NmT8_4ho{^%QI zmdV$qQht+I^yB4&(lbjL0?8b=Z>;I)#nLWA1+&Kt8sqP#@W;pV>CWDy{d#B0sJ3ZE zlgx50xY|{wIMe|A^m_-4RIk{sdY=;oq#cK@n;sh<%-+bshCaaGV*26eLWxi@U0 zoA(z*5^XY-hHAKShL&bZIwXO(iZvzv?5z;%2EqW&y*l|ATvDxS^aS=nV zi>caji_ZT_&gcS`_g{wNUkh6k2=deOAUPu|SU!73pTT~pw0H6r%=p4|>)8v(*Wa1` z6z0TJ*4&@_qKvIBAV|9jT=NKNs;T6d)29_+fM?+f<@t@hC4%`qZ9&C}>ad|RFir%n z=)g_K@cqBuQ2jKm@TM5)ohqa8i|tmH z0P#r6@lUDinF46}{WUrwZ^gN@XWk6W&#k%My0+jDH=ejhTbLGUdi}QJKE#N2PIW)X zn!_)6^fv~7c?$7r@VW%FB1XSX_z_qle>t44T$hZh*9&3?x=GRBV9}GoBt0>4Jjz+vDL^4W#(&m;&Lv2WhY9yfPSO&_*pSChiHRG>voT{g@jU3jf+rZVO+ zuBd)URpq&fT04E)MTc9}G1VxGsJgvm9&QMG3Fp$_Zd9oz@=C7*mV8DD=Pxjp@7|wT zF7?LKiI>{pkDVO@4V_ShH&SON7%tu0QeT6|PUSD|LF(bvUC6Mk@BIunhQ#o=Fm-5OmIM!tm@N zrW{AkabciX2?^Y5-Da%U*%Ua@ld-hOei<+uuqPfEk8S%Wp=rauIzL8$?FZRYjolrY zB|qupN42;yR2I{}Ay5bvbXtdd-f;ah9UWO}3HYAWjvXK)sAL4p%3t&Q#GR;_!JO=N zUsqk_X7HKlB3^vuy;b&uIG({WpKCBhuBE1Xe-DGy05(!3PK)iI5IP?Ch5qm8A{5%F zC5BMQY#VyAbCpbZXl@>Nm}>q#O!L8^Zz3IHV+s2VBjgm2ld@DB7Wn~Tbe<01J+M=8 z2j#w(0L`N5*HH6+bCFA7Qi~@*AVPX#?JF7QP6z*hTarfH5M&4|4)Hy4D5aoF)>(l@ z9Bf7(tdnphVYBKO#wMO{+2zu7+-qI= zcU(c^yUlCW7H|&&fSxC`9uIagEkBx7v5xa*(p}J2_q5F4D(IaATe7w-*ys1TMai*; z{!Y6)>ZU8~0Ib;Wp2l#-y;lZxm7&jNUh3z>c^&8PDhk7Cwu|}@!G%s2w-3n%EdOX}aDBUC9|-pU%Hjs- zl<=ONnI%mm%!j+qlPUN4UvoEwj90OP#UANCvKq0Y;u=lI{xmvA+h?Jor)o(Ppr< z9QH9rdw_gZeGE2FVH%D%CsD*BiZAxYnMalHNPB91ex~ zdhmp|M9_zm4V`l0I}pt6FqMIDUR#KTS5yvp+=xnf2V%-qzqmW@nbX{klZkjD?V zRhssdhgNW}7!C+3fE^|~7WZO8JkrBe^!{tOfMk8NhzloO69d8tvkl-Tb-6Dp*TZS7 z*Qix^z(NTyOcz}sGyYy8vlWKZwlW};T>`lp8}b+pYE+$yFK$ z4sZtX5Bem#Hh#GU`AbpIwz?SdwG#%5YG!yYRMUEtA|<(j%zo;N|*bZToGxoe)kzEFiU>3~2kY z;@)$GcO)N9fyV02E3e01kYt zG;rLU7oXCQ+e5n)Uv6rzXlVzP@5cRDYRKIk^ree_QTzz^S$U20fPz=@mWh5aESicV z%eVbG2{u1w`~n4#-8LyJ%U)ule-XZRM$ z+iR{z=V^d9{3unnI_SZ9%BA>KrUF;evwPbXD+~j*gW@DI2ndPxD-JvX7%ygV1wZRZ z?w9Q=?qOmuB0{g7?%EvDh3*7`FFuafmF+zEzIXWr%4(CeOs(%qt-cQchS5AzlpMxM zOZ+3hfCFJrn!l%WatoXf*pyizLl+}C;j-U^k;KT}(J;Mzyja_@Dz3nLCsIUE`}-WM zee-?DOeC8N`vzq$S#Bg>enleYl&L z%4JkBo8u2ifW*)#kNeyApKxNY17&4AtDD<_Ceb8%474QK=oSXnF;8w^;??by{U=EN zqPYT+*`$+|c#V1hU(ggW9N2ed%{LSH2syKVd_*(JX^;ik1}N$C z(_&~4t7ec=tlmi&%^8(H6V?-50ifJ7912J`AuZjeAE2KjR-Mx>t5lndi?11pSV8-@ z?Eg&6R1cS7p`&pbR$o)7;hv@4W9NchV;5wtycL(Pn?ENi_JG4m&E~f${h-34oK4tl zQpor3wtpHRVi^92K^v*8Owr3zW`F{sMTAD23l%(habtMee?wvU$q6RhfdC^UEP6YY zu9@y#fmPVZZp3)0_DH0;lO?;(sb#2=z-a9#=8%c-v*uf0Ep&3sYIcb>D>+}`aKGB4 zkAlG4{4oBxvl{1(|zSY<-iLA(|^KyD;}K1K4ep8+AoV1G_SDnB;g$G#LE z#Nr~@dsccIiO!eLPcV3vz%%&`^5x(C=GN54P_YqmWxWa&8N$gH&;ADJ(6v;wbC+xR z9lw~x!NO}@oCZ*&XCn<9#^}>!g4O3@YnBcB?j`MD~I8nEt;z6 zz|X~{7=C+1fhL&pO_sl_q;nfDH-{^EaN3$#SLR<3J#ev*2eUN6GJP{csIkc}=LNoH zb{3o?AgnQ!QErQFXa3Y9xHA__< z^8H~wvl}{RQkUW8f^W!kiO=W+QtO#n7gmxW-2QaFZbRx5k>XlDA73IUUJ>ZxxqZ0Q z4GfL&eB=qdRI2MM_E+aDO(z#d=noTCbWTQpl=mgi^~{_VmI0CE%f~i8@c=BRS1HLY zvP^q?=_dm?hn0kRFZUk;gh_}+skPq%*SoE&Dcw)j3B9O1MC@_aNGQWK{{r$x>P7*vvZwa*wP9sV&O{-7Z?8d$;CMwRj@)n&dxUvUQ=fm){Zl#I zHeCIqr5^t&#nTd7(CL1=3i0_TcsBze8+kBIQ>Z~(B=gq z<|`qcucI^%Z~XV24gc$y8yNul7^e`3(~9F$SQe}t4?s0S6hok&QxR2Zdvhtlc+k0{ zdxkA1my=Bx|3~E_mkR|lQg{z2t*=}4+(;*)Ra8-ZNUPFCWb>`r#%!d#QYzM*=VlfI zp~GV~W$s5kuqAz?;r@A2$Zn?ioM<@jcG_0){d+Oz#t%<2A`k&&O#n5?;XMdR8h z@BA-xP&TYL`uaQ5v(}lQ(NI^d78QdUiS|gyWK0_Y1@rOY(~dw*0D&NjplfEhN9-@; z@t|M9gd&0le=3tP?^zlU5IX-8I~qn4N}Q|X3r(7W&1EdQYxKO1a^5TeXWgZm&bR3O zU=#F+-D}HO{zGF|)Z*{B7o-6DZDV@sesqsXD^S8MRuwt_JWw8Hdpj+m9uP_%eaDNn zVcJL{%~b?*#_?Bl(@Su>t}z0mclvRj7ph{=Nq#=U)!hjioX zx}{IV=g)q9yi0__i6i6~gOq?(6Bhba0JW+iK6;IeDYKiC<@Xj7?Rx8qHtb1%7aCf@^ul6c955(@3m^ELI|~ zC%ouTed+qEUAjbKsYMY6{5Zp?B=sOUx(S)%#Iffsw6uuF3ZaJ!}z^ffGA)Z3F?1cm$CRXlT; zaW-|&XHOQS{)nO<4DE4O619_9`3V*ti@yu|@RyO;L8KH2JKn(L8=v3^4N>Q94BjSC^lFQ2lwb%k~91TCGxR)&Ypi z>E7OTeWDE+CKT;4*;Z;*yrF*+P<0YWh8clqI&?izhhHs<98Y13dI z`KsgMu30z5jEkYqktxqx@j}Htq~cp2FOA%5s76lc zKHo6r`%{IxY$VkQWu!0;OBvgxMu(?!v5a`$^y?5a|JU5yav<9SEfJ-fXtY1zmWsN3 zT^t(9*?=ogR-&yLPTzId{3DTMq|I;MPW)lWFNqOmSrR2k`2W9lC}eIn!5 zPEnWg6F<4zZAW6(qnYC9D%Sm#;N-QP1Mru-!iLRwKHPd5KIngf=qxaWa~|#XQLCts z*OE+)FLX1(GfwcWNIY)92=^JEb`z|#W|0{SE!*}0=VYdSu}QxZjlOq`7<2)Ko#8jN zGBMJ2ic$lQNhWAfcXz@0?Wzv4k0E!W7_ZTZ~ z*NL4^8Jx+hwWaoIK8p@6B-E_23!robND;bb8SyGHwg5y@`s4E^cRqT(8F>yIqO7+w z=b*|V0HM<(=S>1*{877dtfn@{K>;Vh+g@L2Ru|%y2h^8`AAE|E@hl>eLaD{?4J08= z&|$^nO$7An#)B$W+0V@#ZT7Fb6Id{WwDO*8OtOFH=hn}H1J%wptM1O@iLPIFHXJ4r zS3lcfFzUy_f|FCWtsM}hYhLO00h9Q95mff1H}n-V*eY#fB7L5XJq7=itBB!)wts*A zhN_wKh_%1;_Ex*e-fYsocs%_a4HIWsoJJT6Y3{2TW2n!#E3pSF*0HkoZ$a_6v0pcn z`nnGF0FU((3JbEKYNU`T=U^7#z=k2S__|i6D0gb@j$uI4>BrQtV=YeGiL+MZ=X?<{ zMi<-(eoWmHfsTtAgxTvGSB@vn{Jy%|_cpmIVH)-Xu$s7t0d?W%8I`w~xp(_tNtg2m{lTXAI zOA>S3xwJTPM!qv#--Le$&TKQL7R63dZN0a-EonH?NYeZv%3l?yr6=G3{4|;sX>P{} z!+hVGZ@E5E^vbFfz^61dZrXHzVew$_HA~b}%Sbs5AGGbAVL_!!yl6@fJ)4W7vim{~ zeG6~x3jP3ARME`TD{vOO(SI8(f(sD^)PPMvu`!VD4yKMws(or=y)38O7H3YX1hRI$ z`0dWfJV@f!*G<^9it*fF_e`+GrvyB0yDS^Q4w6s3X%_wm3$WejsnAT!TB4)!4G2SZ zCAFuwet}hoe<>QzL!D>B{?Wq1J2*U(Kw)sg2 z84Kg`{(!sb%GHG@%)qFU{#nXPKj^>K7L_0M1Du~Ow(+{1&?1q$MBCE&SNBra09p9QLER9& zM$^+4qQsG8Cg%TTX-2$|zYrLFDt&WR;OiGVkm0W=k9x_2C_#CqjRW{FI8;}~b2F@n z75n7WLV2g`-2=|*IR7#bt=TjX?WU+oP<{X`v$So+}WU%(#5>AZpe6dFX3vGSpV zV0=y~$r;zS^d4h#K=gEin<{wO@bfM~tOS^U4Jyj-4CQVrRnyP?Sdz+a`}OGBm?-U= zg!3x1C_X4Bk#48SUk+k6(hY_XUoKSOVah1$GnXX^JKD6_5#8*0UpBSFD*O2@?L;^c zQd<3feB8C$Th5XstdPwg;@L8H?#mHYsIwL=63;z?&;^HzhFpOO8O9!2pf6!8E{^QF@N{> z7A80PvXJ!gOG?%4LDDnhewDOas=9(0cl(~I;sO54gC|t88|t&XhM5hLOjO3;E%Cxc z!~zR(!vc3y4(@@}ccmRT*_+6jU-^mW@}>QLRflosjZCNc0ufbHZ^H1Pcvsyy$IuL9 zInG$=$6dmKq<9KQX9EsPFF}CS{28AQh1`vK(5t(n+tK)L^JI5H4nPYGrC9C#g z{OiGaMj`q<^=nyoE<&5q5jg@;1sXj9;5Km2yqmXT=bDpEb1|*+4`YKpfJwl3s>0g* z1i3$w#|JqGmA0Vj#VV=qLiB?JXcgn*qB;!@-;UcbEe+yd@N8cgAiIzYL+g`BE!fLd zxVx?Dsvk&w^Eq1-xJ(Xi{l=UKa?kf=KqP8H;3#JIc9Pf=eqZi3IbWp{NyC^w&#fe^ zsC@B{n7-*Mb@5}AAtFv!*V7Ra_YzN{f0>{etvJnmHzxY5yyjck!DiBC&O)X0p}>j-}nsa1R~06 zV|aj{IR4JMGLccbefTLyy(hA=_Kwi|kUp39$J2kGpy@V#9~DgWpKHN(+gZd9w41d* z+KPnpwJj{DpM|t32I>dl`7@ww5G1mUa&5o0O1SkIGoOD}R&$1TA`1A&GVg=Dx zD#bB{6St61`rVM)S5|UCgvY`JVN0OsfXkO17w5#evY&gTp=YLXl)AYeS$9=s=LmqCj4`H4&Mr&P~c!Sd*)H;re9& zthHVP8zX!5HP~hlj{?V&0-Rxz(6d_iq|pge=+|_{r0$(qAQC!81H%NU?FCX|&CrPu zn`JX}6C@z!NMcQONJQ_KVE@3b$98Az|9FU zBnB@1mJ_d4`Mf%qN-`&nP$z0bb3-PK1)7%T!>thIqbws6c;11FD4>f?SDO3&D-nQj zN1Tgh7^qvwfTR3>wl@tKjFX)B2*w50n_2&!>ns5NiRzt6(xgW$h;@E*%7nUfl00VZ ze}>j|nF_8!)~l4Tyhc~0+GXeUOGDiBZ5pU<7jzd?^|HQy76b0UveYPP@{!QJ2ln}J zDYI`kiHJ1$k>whb+U2W!Wz1VF-;Oy^Olt`4 zF315*(k|7P5{vCnP|xW5C*b)mQL{glIe<%YwymsYu{TIZ4CZ5`FP!G^73Q z9r3Tjaulce+r)p&?NYSEZrxLOCsEzNxI?yHuqx}68r(Ab-wr;)?cn8ky+(~T4w(8I zQ3HY>E`EP=O71!&*g@X)F6TLCUzz?nKid9M1ytJX??XQjuDEgU&$_e1EW$}`s8mV9 z+2L@({J6iy1hOr!HB>t#Ky16{IvSRnW#u=c_Jw)hPCW_C%5vb7KaKvPQ3`mR2U!TK zOUuKd(8*{$l|D10$Jz#-*Y<5kgRO#G&~XpKgJA8V`QI-7w#AH1huq|83LgMqSB1pq zA=^QEd-bdpGr6eE2aCJ}pdPj4vg4kUswLB)fi2tbyb}G-jn(Ptc3=|oH^SBBn8>iH z=Bm4x$NZlMpPSgexk;c<7GNrxrO`mfI$^AG0&JW?1Y9(KCW3C8$d6(yiF|5*Z~nE! z*LHh@IqF~Q!+Gx@gD~PjME586#HESwfzMqe*7Ru?g+!kToyaEKT=0^S2^}ebu_oNL z_5GZ%BJU~T0kY8}#T9aKESlmU;%syBIeGqC+5j7yoaJmgkaS;%(+LiCuDL`%H?}$H zfCxnTOpu*$!Wx@xBM4!fdBZHquY_;IP!w59t2c`K?7#)$aO7p?rMG zZgS93*P=ItJfT^-q>J&U=$5enl`+rjJSmQT4+5!XiK+Tro_M^ncXny7$dc#z#9$7^ z+`K$+YIb6y8$kYu*H@bKh$SQ}dUKGABq#*RQ-i&`Wa=CUK-ZZsy-3aitF17%|} zIsLE6aGJdn!JN%20SWL>bh(PMKGl)wp1&N5z|UK-7fxQGQ%X;iHtQi_sI(M-#1tPM zbUE8$lKG^T@yD%%m{7LenH}_fvE|z;XEMk%$ne3HwcaWFiG#P4%~xbDs8j|MLx@b$ z_b060CB;N!j$Rs;(fSI_7e$@PNRPKmpHx*qKm1;m794hGOuuLvi|;lg(tjfDX4ga| zS^B4i9hUXS&su`x1DL;OS}GV8QaBVJrvYRGu{XzHQEoki)NxT81cL3Sp_OMp!fYdX z#ZQQQt@oq^JrR6{&;!N0PqJ(SY)+UUNi+2H7*}NABNwt}*+BOz>+K#QS>faj70}<& zR#a0rx%_Aj`Kn^IZ%GT0W!zj0=_7XKOmj$t<%|cE)Xr0?_DC?AYj7Bay*$@#Bb?w1 zL~@v&Q`=qV^99`=!sGgnI(Y~N zixpfUaJWi`8b#|>%xEs*AcNzBueB+6An7Nh=ItsCFwfAtuLSvDaC_KqTPMV6d`vhg zQC|)p$md5PMJfwIQ$?N=*^ z=2pDJ-5x}VeXy}*mqm;;b>euTp;B(k?cqGX-;VTwJbGDAjH!lHMAlQb--F3{2ztN~ z8s~{n?Dr~tzjl%&7j2iV7@xMOhjOc;;jSN2q1Zd^hLx$N%1s(rO>tadQhcmky3Q9y zy{h9GP)If!Pj3d>0Ug|XCZiEbsgF=f%K5>~! zs)53HXm}N)xByTtpsF>sEQoukex44| z&1ZVuYM(N_0HnAUu|PQv=%-U2^j%0|)ST_iU|q`Jx39+DS6H8heDt+i^mJk1(c5CZ z8@FsVb1;91qV*Nf#z8N7hkvX0wuO-VQ{f2_a3wl?yf`B+eXxgtFLQ!mdKu?w&Z`}p zXik$^KW4WxBdf#aXo49esRV4V=O~6WUG$okaC3u>mV5M1tHqSV!`|vPFz?c&LuBe2 z+rNRPJ^sOE?bFykb4H;Jvi$PrG)p+%183=^ucrWWb??dzr zz3PYW>lH_clpB zPRblhLeKP zNyQQ8VD@#k?Xp6WM7zW__V;mdQT+z%aAo=t8Xwqnas2ACWP+;7bOXIVm-sy9^OTu` ztcSnN@#9kSPAZ!!)9?30BIx{}I(5O!NRz#4fjh|b+QtaULTirNuN%4`J3hqKC=e+W z(0@$1Uc)LTw}hfWHkKl#v{{0Bz3SwS74f}1RGXf60vQ0EoJ3bptlM!HXKeBH(nsIM z;r0CH@j2x+PRTM5cq6dIEgs^|XAGv|%^aP&iz9U-cv;iz&i-wl>|A6G(VwoZgNuDN zt@Z2gc4gY02q2MyHw_HeThgx+`r66N))Z$Wny@yDmwc*AxNc!PkiB!1v)MS&AopE6p9dL zU(uN^<;Ay$UEq;EvVW}D4N5sACJ%J9!{|Yykacxx69f8)i|5obQX>wn~GLH6IkNkv=$Sg!Oy4Jh+x-BCaP|C+cCpCYxk~f?RVP_ ztzc|+Dw9f3<>jTo)jR61_vrG9CJ`3;+LnX*a;D~-T@Y|ZeG{GsZ;`^tZBVDSjWC{& z+AT!pe44u&7W+XGh_8yUzdV;5gSq`^s)heNK)&nrie&&j%-*Vr%fsX1{#%(|EQS{E zW5%*8#AMSk=IuSGTvzKR6Hy2IP zI)G8xZsV3R*pv>bL! zWu#J~KhT~W?Jg*jYVo(67}Gxr{hLG#h7c$1@eV#iKdai7qFUI z2@q-25+3v7@Guh1L+uEJy31kBtuj;IYi4D3a=Z_~gMX#S@pX&YFaO{r%y|<1{%hS+ zTunZe^d%iIy>?O~Nl5HoS^cx|E@Ti~@r7kHpZB=!vMRKA(DG_aD4$2z*W5ru&_WYl zP%9`E5!Vti_%ZSz7L?Bkn+xY0SrhYp&I&0%BCL{&RhVy9n>o+hzPioKSbVfQ zXI%61QO^=Hp0t&ZB#0B}yaRL?A$#9*hb5am7%jLh#MT@I=@Qh!vs$Ub9wIf!e8tv>-= z3Ea=;;>=X#C1}GqfNp~Ne?L!z!PzZHV0Srkm_V_siT=^$)-J3)f$2lAxb}oxql(IJ zTqe~rJ=SK_EO-B$2fh1Zw&wYDsN(TvXAtHmbGC-eykZTOhX z-oKl_tnIb8d9T|}HzHT7Gw;Yj8leps&F^QMVQW*yU_D~{qh~s^^fI1&RL-gl%;(rv3t)0g~ZVo(>ZqJFsl8W zIq0VpV|*}Q>_fplRTbW6jd*uvL*rM8rN%Qiet)&>YfzaE5Dc7c>sXpU=IqO@K=ix& z%aO>W=|O8{Uhzq=(zkk3#8v$Go_5hxjA~8)YKp6j*LpBI`642HrZ<2i@bMa0a+HcM zYP3jub0LAIth7^K2>5fugBazp>>YnN=C2Muc=aoBw~o2sNPHx@nV+$^J|}~Z;IVTy zA3e{yccprXd00Duvk`i@=Jc^qZcqt!Co>mnR`5x*b~W3sw6Qviy;e!zsuYk3mw)dn zIP8-ApAQ=I{}L9r!C|o;@hEQoC|?i)?6N9jWOu z1=>R6wzw%+%i{A6*o07)(fQ!DISev){kH_XI?=njLXgF-3b7HHhjcG$i9mfP9Jjjc zzBI5hGx#NmwU$W9`{$XDc&}78_Y-xIgS%)u_k<6sdjFq`rie15%>P|Z0=+Vi`dG!` z$y^qCHihp`cbcD~ItYbDtg`e`_Y<|opX-jnatOrGYVK(XanDjnjJ@B_nY_;Y^R07F zZ#5Jfy*;$!w9at*ha55mo^{HUF82e&i*`iPLZs3^JN#rNVA}Uac)^m(_1Dc;4SRYg z%b$-;JuE43U9e&|#l-`BrVHX6A0%vi?8nOlnF4Jj7%h!3QMITLVU&`eYDX|dM2a;Z zvp9i_sNh|&C7HTm8aE$vN`8z}j|8tm3B@A70HN{9sk}#WE#tx{VI9CZUbt@PH-rvsWtfiZ)3?)ITm?tKQT4rdmQT zoXna>tvOZkoxsng%D26mR^o$27B$+sk^vgr!hGTxU~hAhgxoCt8ODqq>RfNOtpz@* zVC2@1F4L5xSAq6>ClApU=qG3+h+i%-q-9uV;D#b7ZJ>tCoGCzUF|Fx za!kv;Nm$WGtyE(3R}#{_K#dxrAnD}@_q#s9-c%PKZE>;qsdH~fJp0kjXjW1TkVQyK zkmitK{$ctQE7nTrr!D3mG-Zt>h9thS)2WpSKO7DrOSjkyR@*Ary&iID{tIi-L-rVy zF3O|}tMcO4q8vQo?qaAY%J_e4)j{k4+^#0?8xv7fe7T-S{4M zX1+|&lq_<|1+k6yf6K|lk{72@`-ub$lG|Sx)=-52tAB$<~iiM>*omM^~_ZYRSv*cW=_t_Np>H z2^AugkK_wD{6GwBZo|T@YQ;nCeu*PJpO1^GiiKiCY%|izhHxQ*ueN0 zRl4+SA@7D4hx^^HF|~;E)e5-V>Qsl{bd`m|C6OIEvbM8HIBl-+g1e<+TMc9gG{S*g z(bE}D7C(X>z`T)*>v?pap`-NKg*5LQW7Y4wHIP%1s72?a4A6(Pg1$L;~H3#p6tx z%^j>-TI4la)FI8yU^g}NKCaz>5>DK(UjIk~@_T`7xcv64b7i!1n?J=t3x@DJqTwfh zk$ttmt+Mh7a;j$;s)X$JBL_~K+@e=OrzNs7nm2mB^nb7b!C&-G4RN@;8P$u;U7S>2 z#^HqQ3TSoQw5jrdLfjD{5e2qYJ{eQi93CX7->0WTLE~3L3CvV@6G@EeR}~F(u%T%u z@#7eH4Uwln4IH@}PC>sLTp4w}?`px%wl9(PWi~#6P~?FskpZn~YW{O$JhSN9&iZRI zPL}y1b0!$t(^A}=sshx25)Lm+*PMfs<@*MC)wNe3jhW;j6$<82LI$lKdnaBxmg5F=saAc1GIdbJgpECn} zGrzt9b5O^v-3!+Jj4@mCN=^w((zXsowaW=Jl7dVY&Gquoh#Y$O&3RigDAD=c#?kpEkFMRPM580#HYc7u) zp&v1N?gCtDv}xsFXvRx#SuD{i|D(i+j2{&JZ_D}oyKM>0$HHmAaXA(rV{YVj1_|WA zFw&oZHz(>h%~OBIuAUK+#x%av|Bio=aR4BSaHq)lZ@5^Iqjlck9&u15c$gY?YK99I zL$wd225$?h9Ij8z<=1T*abDmW zU;Ee9NLB>77?0!EoLE-Q4hr zTQDMpwIwtX)f(Nk8x0Oj_v`dB*dQSz+qnmBa;g5iS)93g>h`}lkZ zd(4%NnBt}^z20#d99q5>%ud=I`JIXDjvz!{488RGM^U~tQ|HtWdYA!r5pYw(=HJ1S zQohb=I(2{Qx=^lu2B>Px^~gNzW$X zg{{1=d`7n!Q^d1p6^j=N;W-ie69EG*m3zq1m}8c~h?CwMs3X9?D!HeL&B8oiGyleD z9jPyN({0?kxJI66<5k{0IT|gJQ*6r0pKpp_%0_YV{t^R!m5ghe$ThjxR+>EGTxvF2 zIb>t*`RkM3vueov1tEkit+@EObzV&W(onS7f&w7GL?y|gc`{diwv(7Me>3^Z@BUh} znuk~H;!Pa`wcw491sSfIiX$)1qpB!r5 zj~n)Gjk3h(bvLVp9?6A9%U|CODF}1cz9`})O#{j2^rqpeRC->6Cz&~w+y?XWWze3s z^)GZI9gs(fAtHY*<7-W3_yVieb-~>u_(c8qm|90WB@5Pa=Y9z6^zq4XCYagvT!Bk0 zE70b`eSoJtiyfZM1(&cc)(&Hl>~$cJ zNuj;n{~QbtdK4`GJ8$!Td_a)T=$I+|sA9O$n;eFhxJu}?`?SuBbGqokQ&m=jX8 zWM!*MMT9Dfa1PIcr6pf|LLzPUdk;q8imcN5rnf?WWb!`^K$ewTxW`OEg;3Gn^M23o ze?}Mn`|5{)KzJDkB3m|Fn|lxt@`VF>Z(CtVR!_t$r!qNT;+V!*MI|r_M7R&l?SCMW zL5rubk{O<{W-aJcmKEk!*=16k&n%aZS3U6NQqtv@RJb19MeiD5ZW$x(Ax6y$Mcr-_ zb6c`5qbmw(BZQFE#7X3X@Ts$y4INuAU%@QVW5ENz`xIIy!kr{}r+EEUorrI^&X_b4 z;ZRh5NuSn~ddb^F7I+fjPz-OtfDA|d{dWM~Yqu9CL|lz$p?dz#{_8p$*t}lQ8s9Nb zNfM>Vy20}EjbC_RBEWOCo2okE4-)Hk{jdwB(3&66`}u|5knlKU;u6$y-Opo;6Xc4P zbBdRpAm@Kt!e`(VZ~I~R1b*M>nrok5Ob+c7-t-?YZAOS;1LlCWQH}k{+|u@jQJ-(d zYkXh?#r__#PWNK@o8Y@X8Cl2Ab%ei#KxY7CH|Vmrr-ri87k8?FI1|eLaCc_CA%0b; z$F1SDASw1^#rr50tnWt284of{C55!;u&y+JrPA7-;)E}r2_bA5Tl?^wyuYd&K}_A5 zKF5TIL7J%XXVVOI0N_WXOujhv=uK{zJMOU^`*zLAH%t}v#Gse;018`w7X-)mzl(nn zzi$_akM*wPdN{p%b(;4VD6EwL8H4ka@mmEL#g?Y0?}TI^*)JTf9NogoRPKG#`iOW& zER)u9{Yb<^of$vNP97z4=!k?)y}4wVzym(LFZPbqbuC2q@OG5tU*(dgngrMM%u7|@ zHPqi`_X=6JJC6SZ`F8lwMf)Y9^ylR*l)rt&O6>sXAgYi91Z{2ZL*JKvn9e;h;_l(k zZr>VnbiSK#{6wzB$!SmU@F2W|uz_kf{QzS?WDvPFCe*Rkvz1~#v2kT1yw>^r!=RNM z)WGp`#xT*yCxkC`lBTEz!dDQalvj5i8gtM5{svIgy4bB@?8yz6jRYa)$tLJ^R;0g- zTE0N^bOnwl2!s?FF><3#HT#b3h60ReuGn=3C%(5o**WF1tRiplL6z>> z+eyg66j3Bs{JtKXK5{QTkwldT-0^MyLfv%r-Q>NwJA&36Hg2w}5q=yar&?;c7+n3`lO2!)IW$Y0LN$R>ik0kv%NF zIRVK-A6)52w(+<(A?huxZ>nrhp4!~6|E_w2VPEOp<>lut zll@kv_5E5B)?&00nn;bh(w7q3HQxbvpyI(v>zVD+_ zYk-K%efGHt`6BClA($Fotjg!{r+PbECeL305ycR|`gVSoK=LrnnfY6KnjXOy7I_&W zN!p{^SXVT4Wv1GS+mEBln4~*$4}ELyEVh@Rtc99YrE3cTcjjTwqg!ci4U&f(zQA*7 zUX;0mw{ac5oBN%$(bL9{Zr=|30vuGyJ?C~V?#=5IW=h^(5>9N``@oi!<=?gmEVXQ4K$F#-?t4Mph z!;5qs@)wldGTD@^m^Z27j_qtr+SdQ)t7<5pDCqK%{_t1ZdoKF3Cm;Xvmhji%&FpPs zll58ACOWs5h#A)#!z&jxge!#3kNAf-3ZKZkJ7Rx*os}-sIC$kxhBZLHFd1i;CxUk6 z)Zwy4$uc@B?sUEYt_NiPxqF5Ukr4f|?Qf2%ik=3FHGIw{0SSgE#2e})l7!c8a{cYn zqxyn4%yqv>CWVPo2>MykDxc6_s({p5sd#{3TR@H>6R#iVw6S7+&@7c|n6;I2Uz0Q3 zv8F-OM-J!h@2%^cl619e3!f$Vpl6MyS+}tKmaI<#f)BTzk?V{s~1`wGk zb)xC%VAR|@jr&S&(G4LT>xvtPA?q=R{AwvIz8tS*jef^?$Ys50rJ5j?Bsik*?Fi)X z)qOKf5=LObtn>M{yb6fjE`VmcSPP|juIB!$4wI@^_y@@xj|7~m^O$$6c>HX5RJwmp zIlWBCZHg@grvSNBXrr?)NisLG7gfJ=|JjE1B& zg6d8X9gGI$#k3KO9Yi)DC*$qa1R}V=NlD#mH`U3`WDnN>h#NEueet+h<+F|(C~_Y< zo{Xl*iEX~gA7Y|R1eQM=lDk1;#_>~^8(e9&?!iAaq>8UE1QvJPDAbRe^A@%UKny=x zJLD}p`z;JFjC3}9j3b|{@|&i4GwYFL{{Eig4|6IJ&}haN(Q^HS+G3~0U1-ESNA zNMvt$!jezfDvQfGh^tAd0qX?`#GHRJ$QDaJuW)Os z)N~3xNhY8sxFFS<7PCMn5xWs5cj+G4&fS$p(rxB%Px@DO?b?~pIEaRil~Wk>R3S5+Lnye?Mo^6fele=hcFDXHa-7+`DMbI^GHwA;p0km(C}j zRzMj{>d%BqI2?nFHxB|hWYU;z5V=3}>(2#9V)A2qKL4pP$QMc8H7@R%;fJ!5W}^?s z02S*?7jprXgsh42qG-`t1Iv-DFJ-{(Nx3v%;sXK>B3%J_QSc+Q+pC5fcG!QA4U|^J z+}%q=!bD|X-yHH*@~O*WBIF4Kha5kKjk|Gv!Rc}Yg2rGf4mIaqkl54as>E@{`OVoB z|03(Xf4lNIIAVq(=t>B?T^P<#T2b?)AX03^0^PewED{x131-bS0ZVIGYoI+;Viw|i zqeXC$KA5)mGYK1k?8~vIAznSF}(7Iag2|$*+*e4sTLl!+*Y z>tBntTB>(Y8F>&fh9m?H$1_I)3|?pg-!J7YbDX6N8$By3^wasaR$W!ppf!Khg8`;) z+@6WPv*WiUI|>HvRVmMueEG;40F_7$0{~hTk0(W301f^h?tzB;Ko^_>4((TP9{_z0 zgLQKHw7;bz#n7EE=ji}I{{tNr_48CJTBq?q5Wq4bGnoI^WvTES8 z0&tPidLQ)-51@to!i`(soC{NsA_eJY!$ls-;q0)@7Zy2vm81i4WtPS&kHNxiaF4yT z0pV5>$N2^aF3`)go;9@K;=ji?6@zQ2dp9X9XsF; z=!d6bz9q(8b1IDV5yUypcj?{%W7thgy-fCpoL8jC_=c-$acCw?W>wKLfMYNfth;1N z0ZWftEMf#*j+ubENFQy!>A;u(`erbZi|7b+iXKy7T^62bIjs&%;0h~MblDw9b7T@^ z;f*8VX?iHzmgw=M)_jip)QfsE**3RX;J2;;?hH^*VOzFhA0!d>hUMSUr%40gC1frd z;O+U5=8xk^9+eL@50USKpuyiTgoln&P2PKoXBzY0l=H^iV8bJVy3@MMsNSaM>CaZ4t*JD zK5O?)Cf_2GPd1~B;i{1VCB9{RSs30=4*LsybP#d?5}!zsK%oQv8eqiGt`6+PjBmaY zoQ1d_TBySTO?U8X-}Afex+~ddf-?|=N_GvdZpq1=ZH1}1U`Zwo3IU^ z1YSeki~m%)EntU!<9Z9bha46_n_R(+9e<`es<{}=4sbBnH2-0)ez`Ky)M3x!UM}Q$ zEpe|PmHx$DaKND(7PIjnsKwz8qeBc_^WTI5O$x_k=R^W5+p;-1zE-s z9P}e}ZWtX@RW<%T7&hG8DM|DzH~jRMADwaZRhZNW5Ge5riz8Pi zDI2N|3D1QCQp&Faq*9T~20EgePaFu;vHwF-csUh&!4+#_N=>?;d}w&k)wVKDZ|0Z8 zeMJ6)o-iN^Op~0-9go}yuRJo>s&fFNb6{-S4rC=?|1`{^Ejy7yM9*a#2q?-M@)y}2 ztG9u{prE%Zn4AUhQ@k%!^k%bg4_dKQO80?AvcS1yZ|gO4{6=j#hJ^^o_tmosEv_RLcFtIiXND6UN*!?TDKMlri{SY5&;dv0EG!ul z+aF}P?O(L~NznTJ5G=d(5g4qA0QO`NfP7gj*lW^ta(Vq~hxLTr4{tC+dS2E~4|Q-1 zxOu~_39Hbw5^Ql>SXbCq=}>RS^4EFNkj?Y?VDIf`|CVRXiweUeNPMN&^>LCFTEdgm zN05E{?L*jimzN)QCf`l;h=Km(P*7|d9pUvtxNte>swecTq*22`zf!89E*DdY-?nKM zrq1uCoAj?`QcO$`U%B|?;*)1^f; z{im4xd3p-|Cxwq4`mCUU%G@kL>xGSbhAh2*ngi+Ry~D}w2V-40K{poXSE&YpIbQ>r8{#0zf609%fR-fS=?$+_mgQKGAU+24h82MGSR?l5Zi3nqnc*`2OX?A4vDf1w+5 z%@gP8r=P06Jx{>V)W&@Sp_2Iiqo7E;#z(c>HjS($Z$KfL|G6Ff*w3EvrsnM}ji}*j zS4->;bAiI39fqw3b$+A()N80@SA+He{ShFKfmNEyBQvNJ_LfF|{`kIm?7HhzBc%SOr_d@^CI88+FvQ&W zpB6#n2=1#a2BD`wU7$TiOvY1-$SlJ4Ma<^&0 z53*0AZ*}ScN+vbO$qc`54)od1KhjPKd0WzQ!_&Zrs1Z02`wm{P0}&vw=G!~?Z-Ol! z%oDs`6mahKvX+ptDL9c{k1cV1cY$vPbLnx|{JjAmsB6oKxe}*hKk}T=j|u@dDSd?f z-O?wBXScVJ9w3uvORW7P(NXif?{y(qn|p?}RHp!x#EEwRe;h*pvDAgaI7O)8R0#hN zrQST+YXcnwD>UwpG)4JI@1Wic*o!@?r`^|;Qlyn>EB;oeg2NIJZRaN zVCwl?h==FiLK}1V)T=kQhwfD=a9 z#|z4kiC2?cej%w{P83M_6fklY)C&@;ZGcS^{fQabFT%3(z_!he}6PLNi8em-*~a+GZ8&i4%3N}S?5IoXkpU9 z*U{U;r3Er(v%Z<~CcXkf;(Iw+iO49Qg7h9(jQL)#RcMx+;hNzR%CGC=eO<+52=>Rx zeNm_q?E|e3__M;F38n=Gt@43nL}y{KRC@}5;ph9yyv4>NFlLrnrXdg}Zg2hbC8y#= z@rL2r6!`<3tcs zt+2S^#-zeQ@!H9~yRM)86?gE5jFwKV$m!4wzByFp0#0zwaK$inx4N8q|MHXSeULTk z156#||7+^dU+YyjrjwTZwf>QRoA*tHG_lV`QB!`<6%&0t35>oB`K>Bszgq zqSvn<+-Kx0G%0u?l;2`ne@9EWfaJ@pscJiH3V9Cmwpugg_R=sE8Z+U2cjV-Kpx8_h z70w4FQ;wBJjNE!!{S?+kC~@BKw2Zeq@gQ$VcJmJ29pL87yusvn72>mrWQAw z44Ucr|9lE$J7~S~ZHZZq4I&szZj?A83q%qH0{QVp<@X875gD74*^@iKep_dC3N0}! z@yFb-EMA~DdBcYiAf+P_7zmM}0GlVK$$`!>JTsc4cDE2GJEmY=qMf|dHlwlr3Y5*8 z+~L}0IAbsJQ6~5JctqB7n>Du7?K3ni} zapd>ME;{+wJf_?Ni?kq_r-Nwugml*)Q3^bIAq398$!X&1#c*#&gw&iGd0~8B|7oEY zcRZ@|zqtScmV{rmBV1N(Su>!eN|bJ>@n62ff3J6P=*MsT68K`>D$uC$F6y2GqDB{JeU3B`x$&{Hwu_Q=#FSX!5p~x0Q_tC{V|t(W!B9K0)&2> z>_}IwDY7{p1aPhUC_hmrtG!xW0{HVcK|I9KQf6O|JV&|k%$Iq?Ml8cetFRxX#>nzg zY+)^WcI1}RSUdnd2uV&xgU*Z=pe2q@9tqCHDdhA#V&V8)39r9cuoFa-93(bVP~VTA z1VxZ~pr1(^C@l1o11UZ|#26WE-8espz`PA`n>`*sSL>yK4zfOtrM3+;|ItJ9%G{lF zbbMJ9$Cq;t^v7X{^C-a%$spL(#2y1THt5wtvwy~od)-TTl;DaE2sI1+fPRh>x1=e7 zx-ktIFSVh6G(y+Jfsx7|NA&5s*o-){9Q<3u%)eGQh-?M&a3aCH&$=^%CNIcYD-L^e(WvZ?pyjee zxNulqLiKJSCPmd($rJY0a( zl|F&oQEs0;Q2e!2!z|01-w<%wP0)>}L}pz|*q-V6D2Y9ms2@Kk4Rn9A$7VA7EN%Mb zM7Rw8G>Dj9b$V>pw>2jA|hFNE$WYYx;yh153#Q z{zE7_9sL>Y^4jK3Q9>iMgvtA;CO2Z%rG=bkl4FG2aOSU*D*+T?0vWHXs;~}94qmXS zo>rbUnFW>+u`bCO6ewAhqRP+r@L7cWe8|7$kG_u^KyMfxPj2)P%EOEd7sGP;=1XBp z&~4$9dZYICR4$XJIabe9@x5e4t?)V(ya?$R)n%gI4LC3edjN7`bug?xY%SXPaSi{H zXiS0VDDZZG5(DmPTw0RH!P`@BR!vAFqb41cj?}S4WzGp_b*;;3ozeK()Xa%~-&Q(0 zIn-dlH09~}eJJQ0+1D&_>=^;tajFQa5IY;zTs0eU*fx^TbZ5BdHK?W>EKITn)wi+{q~$vvDX*ycr7pu_7?$MVtGw>D@@fG1 zpWMW%R(G4oX%)$QZ?3~u@Gjy{k|V*z(9<8B0>xhRuVSCTa3k&kcJa#0?Pevdlhx_W z?z?(D+{gIOiJ+?y&52g^y|F9SsTU7GV&9e>hCH?8_Q)$%jPd}$t(Gj`ws;Gu{Fm-( z$)RwW+S9bzYxlt+el?>|e=7$-v2G*4<~(9s6j>Qi3$n!z+)I@wMKLZ>351cj5wgKm zG-KcVmUnZqH7GCAhF<|%9auLl~3%H$uKa2r@A zU!#$QXYO(|=O*?on-~#GJd%dUkOMEg+t00M3ygonzrK@|hxq(%kpy=O6bdk*#nIBQ z58!S2Z(T)6kW%8uf;ip&y<~B;e2Fu&Jhu&)w?R)YMwCxF=TyTl4Jls63aiqw`oe9~^mYqvo4Rx}^OGya+N2oZF>8A|E~D$1Ip4#8FC;s; zs94tARp8D34v1tmdEE#=xXmc}ta*|G@;ST0Yce{n*T~l`iOvKPAenQBouD`XzjIhN zvomw`0TZ2s21{-fvfZ4}2f^3pe%r|N^&Q*JI3Rion$hJY5@flgk&m?3;z*?LZM||3 z^)8qs(+ID2l=go7gr)=?WC%_OvhqBHyr1};*hxl5omt^sF|1MYPluYuc&)NG8{4~( zrbB+V)WL=`_aZOe{2pYt+tlco-ljQC=6lMLS%58~`d)+>d~cy$%?i%(zkVkjS|2Lzd#}iqWoFgXojWcNH9`u;53lrDpw#VMjH`2YoCW@a(TP zWUlAF9G|g(XS?rs;jZE`!k}SPVcLv^bS#WXTB+v+q{XGs8Bwf9^uVCcz$d%NLE5=VnAw!Od-h6Ii;zYknI zU~;=Go;Rk@Cxd_Gb)kxX8N!)EIPv0K=S~s&!3Wbhb!rmQr9tAk9H%mkbGjL*K8k6tW9yG*XQ-|U%77r`zXWH^=E@@?5rTpzOQ~fURWIWYTccQX6*@ zP1Wvt&S~BNZ4g@i8o|65kMxA|4(7+yzd<10w$+UJx6kGtuNCUe98-&(X{5cZzRj5` zM<+`nn=seZx>oop#;fiepav>m89&E8lPHfKCY9wm#juDd{RUS72C!zobuQN(Ms>Yi?{Z(KdQIw_;*85lwbw(tE1DLVe^bhf4+*?#Z|W6@*3CG*MY&Mgf3faGFs8@ zU!FX5n!Gn5?Q0P4nJYP3=vshF;`J)Oao~#48+DY2a*_s96z~eB7LjR@@BZu$6gOJa zWI|LsShP@LT$Hp6rX8lHe6yZ!>f)|X(SA#2jEE_0$Dop;^8KcYzS>vO`CT?u_cZA1 z`3yU>h^exJ^V;7xYRZ4@uFw-w;Bp2-t`NS^Rj?C3WV(A;)Xc>#Qz3l%M_pZ!RexO_ zUgvkV2jxd#GJM9e$^2>yU4LI6^!rS&6mkmDHs#f_FoBxF2vltYrcD9jrE$u9#-D@3 z){-VIt{Cr2AFdq-0gCu-KC>Lm?T7u5wxW#*Kbh)d)&z{>s*vvu`hJAkR;v7Zi5r6#%B4B^hPK2;r;EW27fM4g zs!CU}L8H^mgBKoyjhrWL1atQ!a;cen>(C88Oo;5x7yWzo(U@JP_sXQS6zR99Azo+G z>V;%Wh=nX0FUB zQCw%(Bm`S}7B|P7+dyvUnCy~E#4|>Fb9`!tiIum*Xn;kRBN6HhehL%sd#aZs_N+J6 zyT{wB`zkUrr0O|!wZ(i5^`{_oE>8D}NPRW)3V z(o~3N^}m@h7d^hbXd31x=aRNY)b3DJD6&@7C>B%1*;v$JaX(N`B7t;)Z{OUhgQs&x2?k1J*>JC6>txOA*&!M_4|Z zBzsSiA4M|2b%<#Qi9+@(7wl0d#Ph_a$KioE{61T5x}(vqv&5bBVoi#CLs>`_NlT|RQ6Z%1xTAkBdr}GK*wq3#$h`7v$fQr71 zhF6~%2&9^>krn!IDqLcX4rI3Ns_rs?XWN&(y4bx~HRC4`J5-lnZsWrFq_(w*Poy_Q zdvB{&51j#@_d%FvZj>qaIqYdo-MLLq6;@w%V9)W14!5O({n1NCEBH3}T;Hjv3aSNj zn;$U14;Am`l-5N_yw@b-*~8wz74%7#5r(aTqu~Z{-QQYhrWsVo-gzb;9}*vdV(k5i zaAm5htW!kKqNmp&S<#3<)DH6HNmUp7=rqeWvFEdx`xu_RP|?L9ipG?j296P@?R$y5 zFv)giWXeTC*)Hen{7|dcjLU5#^5;XwIA~X36}S92-E2~AGW2ZzXgnh;=Kadq6`B== z?HR)UP=<0^R|%%?=6dkW;zNs}^Kb*hDy;#`_XDg^KpNh0%Q#o`a-&&Lf{={r1k;e= zyclUOM4Iw*@xdzaDQaeYpgB^_-+^zGUaM-j<1DV+Ls&6?X8L3l;*I0uDPf; zpR_5`X%yg7)i~`$gI|r-MJ>ni+<=LRj zY+0f!pEoctpK=KL5IDIfTGRcrLqeJ3Q7wPdNMb0F8cC@~De-|8WfOG>yhCxFd@ z4qMj2j+xq+hOoP#xeybEh0PxL*b zy85y}(;7iY|a3WzMfHA}Q+vJGyEE0@hDJJ{Lr4{p-jpS6N0%LY}A{a$Guv)aT zA(zP$U@$ecSqr*&r@j`aNxwr~Q58CZkb!D*3HE?Bc)wm?Bavsg!s4pyVbp0&We$Ur z@99qYY(L#ppY(hBwqTE>_)OdxEpnGGOnu}+qz|)kUT}Ee!&=2qx&c48@j-NMlsi2u zbSUi+k%hvarHJ_6@R|!{frMDDDs!XA(oHP-)UE!W(V%T{*I~DqV@i-&L_&c5I3V3H@psq_yd*v{cCPu{W(T?tz1G|^-P2*R zrIf$)UEk?i4-IrQ%SbP_a^PPNW#OU>jcGr+XZ9Ew8bihy$&Y=VnCidau2G z=9pr#cp_BdvUwsg)oYUSY=AzgI&ENavaANX7*5$G2J5f58FM7Fb6V;xG)Si6Lx$?< zH`NYK@EYq$sD5s)sf+WLECmI0H+>E2C$ZP=VVjngLF`eYf+W{j~o zhfK;l8~kKh0-F;{u3;qw< z>UG!;eTI4Jp{Z3Q;V~NwrCzM3G0x$bbqb7NO7Rd0ktyB^$RN4;a zA?K&;#`*c!lG6iCkvMPr&hY+!R%2`jtEE!Vs-@%ac^0oTTTZW35~6MoxRCCWG@ezs zY6N;LV>{}7_Zh2zO8WOp*`1fwb$6?@lA!{SVh9FOppG#)S6~N2QTnR2*oY0NM(z0i z1vT;0I)x{kkF>Wp>!>6;m