-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
366 lines (352 loc) · 15.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
<!DOCTYPE html>
<html>
<head>
<title>Mehul Goel</title>
<!-- Current Fonts: https://fonts.google.com/share?selection.family=Righteous%7CSource%20Sans%20Pro-->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link
href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:ital,wght@0,200..900;1,200..900&family=Righteous&family=Source+Sans+Pro:wght@400;600&display=swap"
rel="stylesheet">
<link rel="stylesheet" type="text/css" href="css/utlities.css">
<link rel="stylesheet" type="text/css" href="css/nav_home.css">
<link rel="stylesheet" type="text/css" href="css/experience.css">
<link rel="icon" type="image/x-icon" href="logos\png\logo-no-background.png">
<link rel="stylesheet" type="text/css" href="css/project.css">
</head>
<body>
<div id="particles-js"></div>
<!-- Navigation bar -->
<nav>
<div class="logo-container">
<a href="#welcome"><img src="logos\png\logo-no-background.png" alt="Mehul Goel's logo"></a>
</div>
<div class="nav-links">
<a href="#welcome">Home</a>
<a href="#experience">Experience</a>
<a href="#projects">Projects</a>
<a href="files/Mehul Goel - Resume.pdf" target="_blank">Resumè</a>
</div>
</nav>
<!-- Home page -->
<section class="welcome-section" id="welcome">
<div class="container">
<div class="image-wrapper">
<img src="Images\profile.jpg" alt="Mehul Goel">
</div>
<div class="text-wrapper">
<h3>Hello I'm</h3>
<h1 id="orange">Mehul Goel</h1>
<div class="typing-container">
<div class="text_hide"></div>
<!----------------------------->
<!--Change the number of words in the text and the animation will still work-->
<p class="text">@root: Tinkerer. Developer. Innovator</p>
<!-------------------------------------->
<div class="text_cursor"></div>
</div>
<div class="nav-links">
<a href="mailto:[email protected]"><img src="Images/socialMedia/png/004-mail.png"></a>
<a target="_blank" href="https://github.com/mehulgoel873"><img
src="Images/socialMedia/png/005-github.png"></a>
<a target="_blank" href="https://www.linkedin.com/in/mehulgoel873/"><img
src="Images/socialMedia/png/002-linkedin.png"></a>
<a target="_blank" href="https://www.youtube.com/@mehulgoel873"><img
src="Images/socialMedia/png/001-youtube.png"></a>
<a target="_blank"
href="https://open.spotify.com/user/vypqzeoi6m2jjrkrrwg0wgucg?si=a3f991f43bde4f6b"><img
src="Images/socialMedia/png/003-spotify.png"></a>
</div>
</div>
</div>
</section>
<!-- Professional Experience -->
<section class="experience" id="experience">
<div class="section_header">
<h1>PROFESSIONAL EXPERIENCE</h1>
</div>
<ol class="timeline">
<li class="timeline-item">
<span class="timeline-item-icon">
<img src="Images\experience\cmu-scotty-head-scarf.svg" class="icon">
</span>
<div class="card">
<h1>Carnegie Mellon University, Pittsburgh, PA</h1>
<h2>TEACHING ASSISTANT FOR 15-122 (IMPERATIVE COMPUTATION)</h2>
<p class="detailed">☑ Leading interactive labs for ~60 students, totaling 120 minutes,
teaching fundamentals of coding, C, and data structures. <br>
☑ Orchestrate office hours for personalized student support, focusing on largely
theoretical discussions about C, alongside debugging sessions. <br>
☑ Working with professors to develop new material and problem sets to effectively
challenge students in a collaborative and engaging format that enhances learning.
</p>
<p class="simple">Teach over 60 students the fundamentals of coding, C, and data structures,
alongside working with professors to develop new problem sets to challenge students in a format
that works alongside Generative AI.</p>
<a href="https://www.cs.cmu.edu/~15122/" target="_blank">
<button class="button">
<img src="Images\experience\site.svg" class="hover-orange">
15-122 WEBSITE
</button>
</a>
</div>
</li>
<li class="timeline-item">
<span class="timeline-item-icon">
<img src="Images\experience\flask.svg" class="icon">
</span>
<div class="card">
<h1>Biorobotics Lab CMU, Pittsburgh, PA</h1>
<h2>COMPUTER VISION RESEARCH INTERN FOR CMU & APPLE</h2>
<p class="detailed">☑ Developed Computer Vision implementation based off ResNet to segment
internals of 36 different iPhone models <br>
☑ Implemented SORT algorithm for segmenting parts on a conveyor belt moving at 5 m/s at
real-time (> 60 FPS) with 96% IOU accuracy <br>
☑ Used YOLO V8 Image Classification to train a top-down model to detect screws from 3
different angles on 720p cameras on 36 models of iPhones, 12 models of iPads, and 4 models of
Apple Watches. Led the creation of a demonstration video that was presented to Apple and leads
of 100+ member lab.</p>
<p class="simple">Developed CV implementation to segment internals of 36 different iPhone models
into 10 classes, and created a screw detection software for iPhones, iPads, and Apple Watches.
</p>
</div>
</li>
<li class="timeline-item">
<span class="timeline-item-icon">
<img src="Images\experience\cmu-scotty-head-scarf.svg" class="icon">
</span>
<div class="card">
<h1>Robo Club - CMU, Pittsburgh, PA</h1>
<h2>ROBOBUGGY SOFTWARE LEAD & CLUB SYS ADMIN</h2>
<p class="detailed">
☑ Led a team of 10 in building out autonomous vehicle driving and passing, including
position communication, implementing a Model Predictive Controller, and racing at 30 mph. <br>
☑ Innovating a LiDAR + Stereo Camera setup for perception of surrounding vehicles for
autonomous zero aid passing. <br>
☑ Assisted in development of a new website to improve traffic, potential member interest,
and promotion for sponsors. <br>
☑ Control security of 3 remote workstations, a variety of 3D printers that can be accessed
by the 100+ members of the club.
</p>
<p class="simple">Led a team of 10 in building out autonomous vehicle driving and passing, including
onboard LiDAR based object detection.</p>
<a href="https://roboticsclub.org/" target="_blank">
<button class="button">
<img src="Images\experience\site.svg" class="hover-orange">
ROBOCLUB WEBSITE
</button>
</a>
<a href="https://github.com/CMU-Robotics-Club/RoboBuggy2" target="_blank">
<button class="button">
<img src="Images\experience\github.svg" class="hover-orange">
ROBOBUGGY REPO
</button>
</a>
</div>
</li>
<li class="timeline-item">
<span class="timeline-item-icon">
<img src="Images\experience\briefcase.svg" class="icon">
</span>
<div class="card">
<h1>D-Matrix, Santa Clara, CA</h1>
<h2>ML Performance Modeling Chip Architect Intern </h2>
<p class="detailed">☑ Developed performance modeling software to assist in chip development
with 97% accurate benchmarks on a variety of ML workloads (BERT, ResNet50, etc.).<br>
☑ Improved prior software hardware resource utilization by over 46% with a novel weighted
round-robin load management solution. <br>
☑ Created a memory modeling software that modeled memory packets throughout the chip, and
the variety of paths to identify bottlenecks in current designs.
</p>
<p class="simple">Developed performance modeling software to assist in chip development and created
a memory modeling software for 5+ ML Workloads</p>
<a href=https://www.d-matrix.ai/ target="_blank">
<button class="button">
<img src="Images\experience\site.svg" class="hover-orange">
D-MATRIX WEBSITE
</button>
</a>
</div>
</li>
<li class="timeline-item">
<span class="timeline-item-icon">
<img src="Images\experience\flask.svg" class="icon">
</span>
<div class="card">
<h1>MBR Sim, Washington DC</h1>
<h2>CO-AUTHOR OF PAPER PRESENTED AT AAAI (2023, DC)</h2>
<p class="detailed">☑ Published and presented this paper to over 30 audience members, passing
a rigorous approval period with 2 separate peer-revision trials. <br>
☑ Built universal modeling software for variety of different silicons to test against 10+
ML Workloads, compatible with CPUs, GPUs, and even TPUs. <br>
☑ Modeled memory and performance accuracy of Google TPU and other hardware within 5% of
lab-tested measurements.
</p>
<p class="simple">Published peer-reviewed paper at AAAI discussing a universal ML modeling software
for a variety of different silicon
</p>
<a href=files\MBR_SIM_FINAL.pdf target="_blank">
<button class="button">
<img src="Images\experience\file.svg" class="hover-orange">
PAPER
</button>
</a>
<a href="https://github.com/MBR-sim/MBR-sim" target="_blank">
<button class="button">
<img src="Images\experience\github.svg" class="hover-orange">
MBR SIM REPO
</button>
</a>
</div>
</li>
</ol>
</section>
<!-- PROJECTS -->
<section class="projects" id="projects">
<div class="section_header">
<h1>PERSONAL PROJECTS</h1>
</div>
<div class="card-container">
<div class="card">
<div class="card-img-holder">
<img src="Images\projects\iwantthat.jpg" alt="I Want That Thumbnail Image">
</div>
<h3 class="blog-title">I Want That</h3>
<ul>
<li>Flutter (iOS)</li>
<li>Firebase</li>
<li>Gemini AI</li>
<li>AWS</li>
<li>Semantic Search</li>
</ul>
<!-- <span class="blog-time">Monday Jan 20, 2020</span> -->
<p class="description">
I Want That is a mobile application created to help users find the best artists to create the custom
comissions that they envision. It does this through providing a reference image for the comissioned
piece, which is described by Google's Gemini AI, which afterwards we use to semantically search our
existing database of artists in order to find the top 3 artist.
</p>
<div class="options">
<a class="btn" href="https://app.iwantthat.dev" target="_blank">APP</a>
<a class="btn" href="https://www.youtube.com/watch?v=s9ZFZCxeogI" target="_blank">YOUTUBE</a>
<a class="btn" href="https://iwantthat.dev" target="_blank">WEBSITE</a>
<a class="btn" href="https://github.com/mehulgoel873/I-Want-That" target="_blank">GITHUB</a>
</div>
</div>
<div class="card">
<div class="card-img-holder">
<img src="Images\projects\audit-ai.png" alt="Audit-AI Thumbnail Image">
</div>
<h3 class="blog-title">Audit AI</h3>
<ul>
<li>Python</li>
<li>React.JS</li>
<li>OpenCV</li>
<li>NodeJS</li>
<li>Chrome Extension</li>
</ul>
<!-- <span class="blog-time">Monday Jan 20, 2020</span> -->
<p class="description">
Audit-AI is a chrome extension built around websites like Pinterest and Reddit, that determines if
an image is AI-Generated or not. This is done by training a dataset over a YoloV8 image
classification model, that had an overall accuracy of 98% on the provided dataset, and an estimated
accuracy of 75% based upon real-world testing. The backend was written in primarily Python and
deployed on a local web server, while the front end consisted of a ReactJS based chrome extension.
</p>
<div class="options">
<a class="btn" href="https://www.youtube.com/watch?v=BXBHUO--pkk" target="_blank">YOUTUBE</a>
<a class="btn" href="https://devpost.com/software/audit-ai" target="_blank">DEVPOST</a>
<a class="btn" href="https://github.com/ukataria/Bitcamp2024" target="_blank">GITHUB</a>
</div>
</div>
<div class="card">
<div class="card-img-holder">
<img src="Images/projects/braillescore.png" alt="BrailleScore Thumbnail Image">
</div>
<h3 class="blog-title">Braille Score</h3>
<ul>
<li>Python</li>
<li>OpenCV</li>
<li>ReactNative</li>
</ul>
<!-- <span class="blog-time">Monday Jan 20, 2020</span> -->
<p class="description">
Braille Score is an application that translates the sheet music for visually impaired musicians. It
does this using a custom Computer Vision model called OEMER, which creates a braille format for the
music. Afterwards, musicians have a variety of ways of understanding the music, from braille sheets
to audio for whichever format they best learn through.
</p>
<div class="options">
<a class="btn"
href="https://docs.google.com/presentation/d/1rygZEI5tzSmB1Gt921P_hTT8T2PY4bZnCuLgEwQyMAQ/edit#slide=id.g11a27d40596_0_10"
target="_blank">SLIDES</a>
<a class="btn" href="https://github.com/mehulgoel873/BrailleScore/tree/testing"
target="_blank">GITHUB</a>
</div>
</div>
<div class="card">
<div class="card-img-holder">
<img src="Images/projects/globalex.png" alt="GlobaLex Thumbnail Image">
</div>
<h3 class="blog-title">Globa Lex</h3>
<ul>
<li>Microsoft Azure</li>
<li>ReactJS</li>
<li>OpenAI API</li>
<li>Mongo DB</li>
</ul>
<!-- <span class="blog-time">Monday Jan 20, 2020</span> -->
<p class="description">
GlobaLex is an application that does real time translation of a call into a different language. To
create this application, we built a full web-calling application using Azure cloud services and
ReactJS. The authentication is based upon Mongo DB. After receiving an audio stream on the opposite
end, using OpenAI's Whisper model, we translate it in 30 second audio chunks.
</p>
<div class="options">
<a class="btn" href="https://www.youtube.com/watch?v=mZdy05VcZHE&t=24s" target="_blank">YOUTUBE</a>
<a class="btn" href="files/GlobaLex.pdf" target="_blank">BUSINESS PROPOSAL</a>
<a class="btn" href="https://github.com/GlobaLexTranslate/GlobaLex" target="_blank">GITHUB</a>
</div>
</div>
<div class="card">
<div class="card-img-holder">
<img src="Images/projects/ecobin.png" alt="Eco Bin Thumbnail Image">
</div>
<h3 class="blog-title">Eco Bin</h3>
<ul>
<li>Open CV</li>
<li>Python</li>
<li>ExpressJS</li>
</ul>
<!-- <span class="blog-time">Monday Jan 20, 2020</span> -->
<p class="description">
Eco Bin was a project that focused on improving the environment through auto-sorting waste into
recycling, compost, and trash. It comprised of 2 different sensors, a camera for computer vision,
alongside of a depth camera to detect the shape of the object. Using this information along with a
custom-built deep learning model, the robotic trash can was able to accurately classify 80% of the
tested
objects, with a 95% accuracy on the training dataset. This software was coupled with a hardware
solution that would automatically ingest and sort the respective waste.
</p>
<div class="options">
<a class="btn"
href="https://docs.google.com/presentation/d/1gu0jFEiEFsXHvUyNU8PCWI0bz2LseINRDpQlYjcmCSw/edit?usp=sharing"
target="_blank">SLIDES</a>
<a class="btn" href="https://github.com/mehulgoel873/Eco-Bin" target="_blank">GITHUB</a>
</div>
</div>
</div>
</section>
<footer>
<p>
Copyright © 2024 Mehul Goel. All Rights Reserved.
</p>
</footer>
<script src="particles.js"></script>
<script src="app.js"></script>
<script>
window.va = window.va || function () { (window.vaq = window.vaq || []).push(arguments); };
</script>
<script defer src="/_vercel/insights/script.js"></script>
</body>
</html>