-
Notifications
You must be signed in to change notification settings - Fork 2
/
hcp_acf_window_bp.py
53 lines (41 loc) · 2.03 KB
/
hcp_acf_window_bp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import glob
import numpy as np
from joblib import Parallel, delayed
from neuro_helper.abstract.map import TemplateMap
from neuro_helper.hcp.meg.generic import task_order
from neuro_helper.hcp.meg.storage import MEGLocalStorage, load_raw_file
from neuro_helper.measurement import calc_acw
from neuro_helper.statistics import fir_filter
from neuro_helper.generic import out_of, generate_long_data
from neuro_helper.generic import find_shared_subjects as fs_subjects
from neuro_helper.storage import ANYTHING
def do_a_file(file):
print("Calculating ACW BP on %s" % file)
data, fs = load_raw_file(file)
data, freq_l, freq_h = fir_filter(data, fs, max_freq_low=8, min_freq_high=12, pass_type="bp")
return calc_acw(data, n_job=5) / fs
def run_script(tpt: TemplateMap):
from config import RAW_DATA_ROOT_DIR
for task in task_order():
storage = MEGLocalStorage(RAW_DATA_ROOT_DIR, tpt.name, task, ANYTHING)
files_dict = storage.get_all_by_scan()
for scan_id, file_infos in files_dict.items():
output_file = out_of(f"megs-hcp-alpha-{task}.acw.rois-{tpt.name}.scan-{scan_id}.npy", False)
subj_ids, files = list(zip(*file_infos))
output = np.asarray(Parallel(n_jobs=30)(delayed(do_a_file)(file) for file in files))
np.save(output_file, (task, scan_id, subj_ids, output))
def find_files(**kwargs):
task = kwargs["task"]
tpt = kwargs["template"]
files = glob.glob(out_of(f"megs-hcp-alpha-{task}.acw.rois-{tpt.name}.scan-{ANYTHING}.npy", False))
files.sort()
return files
def prepare_file_content(ret_metric):
if ret_metric:
return lambda content: (content[1], content[2], content[3][:, 1:])
else:
return lambda content: (content[1], content[2])
def find_shared_subjects(tpt: TemplateMap, tasks, return_indices=False):
return fs_subjects(find_files, prepare_file_content(False), tpt, tasks, return_indices)
def gen_long_data(tpt: TemplateMap):
return generate_long_data(find_files, prepare_file_content(True), tpt, task_order(True))