-
Notifications
You must be signed in to change notification settings - Fork 3
/
half.cpp
719 lines (670 loc) · 37.6 KB
/
half.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
// Branch-free implementation of half-precision (16 bit) floating point
// Copyright 2006 Mike Acton <[email protected]>
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE
//
// Half-precision floating point format
// ------------------------------------
//
// | Field | Last | First | Note
// |----------|------|-------|----------
// | Sign | 15 | 15 |
// | Exponent | 14 | 10 | Bias = 15
// | Mantissa | 9 | 0 |
//
// Compiling
// ---------
//
// Preferred compile flags for GCC:
// -O3 -fstrict-aliasing -std=c99 -pedantic -Wall -Wstrict-aliasing
//
// This file is a C99 source file, intended to be compiled with a C99
// compliant compiler. However, for the moment it remains combatible
// with C++98. Therefore if you are using a compiler that poorly implements
// C standards (e.g. MSVC), it may be compiled as C++. This is not
// guaranteed for future versions.
//
#include "half.h"
// Load immediate
static inline uint32_t _uint32_li( uint32_t a )
{
return (a);
}
// Decrement
static inline uint32_t _uint32_dec( uint32_t a )
{
return (a - 1);
}
// Increment
static inline uint32_t _uint32_inc( uint32_t a )
{
return (a + 1);
}
// Complement
static inline uint32_t _uint32_not( uint32_t a )
{
return (~a);
}
// Negate
static inline uint32_t _uint32_neg( uint32_t a )
{
return (-a);
}
// Extend sign
static inline uint32_t _uint32_ext( uint32_t a )
{
return (((int32_t)a)>>31);
}
// And
static inline uint32_t _uint32_and( uint32_t a, uint32_t b )
{
return (a & b);
}
// Exclusive Or
static inline uint32_t _uint32_xor( uint32_t a, uint32_t b )
{
return (a ^ b);
}
// And with Complement
static inline uint32_t _uint32_andc( uint32_t a, uint32_t b )
{
return (a & ~b);
}
// Or
static inline uint32_t _uint32_or( uint32_t a, uint32_t b )
{
return (a | b);
}
// Shift Right Logical
static inline uint32_t _uint32_srl( uint32_t a, int sa )
{
return (a >> sa);
}
// Shift Left Logical
static inline uint32_t _uint32_sll( uint32_t a, int sa )
{
return (a << sa);
}
// Add
static inline uint32_t _uint32_add( uint32_t a, uint32_t b )
{
return (a + b);
}
// Subtract
static inline uint32_t _uint32_sub( uint32_t a, uint32_t b )
{
return (a - b);
}
// Multiply
static inline uint32_t _uint32_mul( uint32_t a, uint32_t b )
{
return (a * b);
}
// Select on Sign bit
static inline uint32_t _uint32_sels( uint32_t test, uint32_t a, uint32_t b )
{
const uint32_t mask = _uint32_ext( test );
const uint32_t sel_a = _uint32_and( a, mask );
const uint32_t sel_b = _uint32_andc( b, mask );
const uint32_t result = _uint32_or( sel_a, sel_b );
return (result);
}
// Select Bits on mask
static inline uint32_t _uint32_selb( uint32_t mask, uint32_t a, uint32_t b )
{
const uint32_t sel_a = _uint32_and( a, mask );
const uint32_t sel_b = _uint32_andc( b, mask );
const uint32_t result = _uint32_or( sel_a, sel_b );
return (result);
}
// Load Immediate
static inline uint16_t _uint16_li( uint16_t a )
{
return (a);
}
// Extend sign
static inline uint16_t _uint16_ext( uint16_t a )
{
return (((int16_t)a)>>15);
}
// Negate
static inline uint16_t _uint16_neg( uint16_t a )
{
return (-a);
}
// Complement
static inline uint16_t _uint16_not( uint16_t a )
{
return (~a);
}
// Decrement
static inline uint16_t _uint16_dec( uint16_t a )
{
return (a - 1);
}
// Shift Left Logical
static inline uint16_t _uint16_sll( uint16_t a, int sa )
{
return (a << sa);
}
// Shift Right Logical
static inline uint16_t _uint16_srl( uint16_t a, int sa )
{
return (a >> sa);
}
// Add
static inline uint16_t _uint16_add( uint16_t a, uint16_t b )
{
return (a + b);
}
// Subtract
static inline uint16_t _uint16_sub( uint16_t a, uint16_t b )
{
return (a - b);
}
// And
static inline uint16_t _uint16_and( uint16_t a, uint16_t b )
{
return (a & b);
}
// Or
static inline uint16_t _uint16_or( uint16_t a, uint16_t b )
{
return (a | b);
}
// Exclusive Or
static inline uint16_t _uint16_xor( uint16_t a, uint16_t b )
{
return (a ^ b);
}
// And with Complement
static inline uint16_t _uint16_andc( uint16_t a, uint16_t b )
{
return (a & ~b);
}
// And then Shift Right Logical
static inline uint16_t _uint16_andsrl( uint16_t a, uint16_t b, int sa )
{
return ((a & b) >> sa);
}
// Shift Right Logical then Mask
static inline uint16_t _uint16_srlm( uint16_t a, int sa, uint16_t mask )
{
return ((a >> sa) & mask);
}
// Add then Mask
static inline uint16_t _uint16_addm( uint16_t a, uint16_t b, uint16_t mask )
{
return ((a + b) & mask);
}
// Select on Sign bit
static inline uint16_t _uint16_sels( uint16_t test, uint16_t a, uint16_t b )
{
const uint16_t mask = _uint16_ext( test );
const uint16_t sel_a = _uint16_and( a, mask );
const uint16_t sel_b = _uint16_andc( b, mask );
const uint16_t result = _uint16_or( sel_a, sel_b );
return (result);
}
// Count Leading Zeros
static inline uint32_t _uint32_cntlz( uint32_t x )
{
#ifdef __GNUC__
/* NOTE: __builtin_clz is undefined for x == 0 */
/* On PowerPC, this will map to insn: cntlzw */
/* On Pentium, this will map to insn: clz */
uint32_t is_x_nez_msb = _uint32_neg( x );
uint32_t nlz = __builtin_clz( x );
uint32_t result = _uint32_sels( is_x_nez_msb, nlz, 0x00000020 );
return (result);
#else
const uint32_t x0 = _uint32_srl( x, 1 );
const uint32_t x1 = _uint32_or( x, x0 );
const uint32_t x2 = _uint32_srl( x1, 2 );
const uint32_t x3 = _uint32_or( x1, x2 );
const uint32_t x4 = _uint32_srl( x3, 4 );
const uint32_t x5 = _uint32_or( x3, x4 );
const uint32_t x6 = _uint32_srl( x5, 8 );
const uint32_t x7 = _uint32_or( x5, x6 );
const uint32_t x8 = _uint32_srl( x7, 16 );
const uint32_t x9 = _uint32_or( x7, x8 );
const uint32_t xA = _uint32_not( x9 );
const uint32_t xB = _uint32_srl( xA, 1 );
const uint32_t xC = _uint32_and( xB, 0x55555555 );
const uint32_t xD = _uint32_sub( xA, xC );
const uint32_t xE = _uint32_and( xD, 0x33333333 );
const uint32_t xF = _uint32_srl( xD, 2 );
const uint32_t x10 = _uint32_and( xF, 0x33333333 );
const uint32_t x11 = _uint32_add( xE, x10 );
const uint32_t x12 = _uint32_srl( x11, 4 );
const uint32_t x13 = _uint32_add( x11, x12 );
const uint32_t x14 = _uint32_and( x13, 0x0f0f0f0f );
const uint32_t x15 = _uint32_srl( x14, 8 );
const uint32_t x16 = _uint32_add( x14, x15 );
const uint32_t x17 = _uint32_srl( x16, 16 );
const uint32_t x18 = _uint32_add( x16, x17 );
const uint32_t x19 = _uint32_and( x18, 0x0000003f );
return ( x19 );
#endif
}
// Count Leading Zeros
static inline uint16_t _uint16_cntlz( uint16_t x )
{
#ifdef __GNUC__
uint16_t nlz32 = (uint16_t)_uint32_cntlz( (uint32_t)x );
uint32_t nlz = _uint32_sub( nlz32, 16 );
return (nlz);
#else
const uint16_t x0 = _uint16_srl( x, 1 );
const uint16_t x1 = _uint16_or( x, x0 );
const uint16_t x2 = _uint16_srl( x1, 2 );
const uint16_t x3 = _uint16_or( x1, x2 );
const uint16_t x4 = _uint16_srl( x3, 4 );
const uint16_t x5 = _uint16_or( x3, x4 );
const uint16_t x6 = _uint16_srl( x5, 8 );
const uint16_t x7 = _uint16_or( x5, x6 );
const uint16_t x8 = _uint16_not( x7 );
const uint16_t x9 = _uint16_srlm( x8, 1, 0x5555 );
const uint16_t xA = _uint16_sub( x8, x9 );
const uint16_t xB = _uint16_and( xA, 0x3333 );
const uint16_t xC = _uint16_srlm( xA, 2, 0x3333 );
const uint16_t xD = _uint16_add( xB, xC );
const uint16_t xE = _uint16_srl( xD, 4 );
const uint16_t xF = _uint16_addm( xD, xE, 0x0f0f );
const uint16_t x10 = _uint16_srl( xF, 8 );
const uint16_t x11 = _uint16_addm( xF, x10, 0x001f );
return ( x11 );
#endif
}
uint16_t
half_from_float( uint32_t f )
{
const uint32_t one = _uint32_li( 0x00000001 );
const uint32_t f_s_mask = _uint32_li( 0x80000000 );
const uint32_t f_e_mask = _uint32_li( 0x7f800000 );
const uint32_t f_m_mask = _uint32_li( 0x007fffff );
const uint32_t f_m_hidden_bit = _uint32_li( 0x00800000 );
const uint32_t f_m_round_bit = _uint32_li( 0x00001000 );
const uint32_t f_snan_mask = _uint32_li( 0x7fc00000 );
const uint32_t f_e_pos = _uint32_li( 0x00000017 );
const uint32_t h_e_pos = _uint32_li( 0x0000000a );
const uint32_t h_e_mask = _uint32_li( 0x00007c00 );
const uint32_t h_snan_mask = _uint32_li( 0x00007e00 );
const uint32_t h_e_mask_value = _uint32_li( 0x0000001f );
const uint32_t f_h_s_pos_offset = _uint32_li( 0x00000010 );
const uint32_t f_h_bias_offset = _uint32_li( 0x00000070 );
const uint32_t f_h_m_pos_offset = _uint32_li( 0x0000000d );
const uint32_t h_nan_min = _uint32_li( 0x00007c01 );
const uint32_t f_h_e_biased_flag = _uint32_li( 0x0000008f );
const uint32_t f_s = _uint32_and( f, f_s_mask );
const uint32_t f_e = _uint32_and( f, f_e_mask );
const uint16_t h_s = _uint32_srl( f_s, f_h_s_pos_offset );
const uint32_t f_m = _uint32_and( f, f_m_mask );
const uint16_t f_e_amount = _uint32_srl( f_e, f_e_pos );
const uint32_t f_e_half_bias = _uint32_sub( f_e_amount, f_h_bias_offset );
const uint32_t f_snan = _uint32_and( f, f_snan_mask );
const uint32_t f_m_round_mask = _uint32_and( f_m, f_m_round_bit );
const uint32_t f_m_round_offset = _uint32_sll( f_m_round_mask, one );
const uint32_t f_m_rounded = _uint32_add( f_m, f_m_round_offset );
const uint32_t f_m_denorm_sa = _uint32_sub( one, f_e_half_bias );
const uint32_t f_m_with_hidden = _uint32_or( f_m_rounded, f_m_hidden_bit );
const uint32_t f_m_denorm = _uint32_srl( f_m_with_hidden, f_m_denorm_sa );
const uint32_t h_m_denorm = _uint32_srl( f_m_denorm, f_h_m_pos_offset );
const uint32_t f_m_rounded_overflow = _uint32_and( f_m_rounded, f_m_hidden_bit );
const uint32_t m_nan = _uint32_srl( f_m, f_h_m_pos_offset );
const uint32_t h_em_nan = _uint32_or( h_e_mask, m_nan );
const uint32_t h_e_norm_overflow_offset = _uint32_inc( f_e_half_bias );
const uint32_t h_e_norm_overflow = _uint32_sll( h_e_norm_overflow_offset, h_e_pos );
const uint32_t h_e_norm = _uint32_sll( f_e_half_bias, h_e_pos );
const uint32_t h_m_norm = _uint32_srl( f_m_rounded, f_h_m_pos_offset );
const uint32_t h_em_norm = _uint32_or( h_e_norm, h_m_norm );
const uint32_t is_h_ndenorm_msb = _uint32_sub( f_h_bias_offset, f_e_amount );
const uint32_t is_f_e_flagged_msb = _uint32_sub( f_h_e_biased_flag, f_e_half_bias );
const uint32_t is_h_denorm_msb = _uint32_not( is_h_ndenorm_msb );
const uint32_t is_f_m_eqz_msb = _uint32_dec( f_m );
const uint32_t is_h_nan_eqz_msb = _uint32_dec( m_nan );
const uint32_t is_f_inf_msb = _uint32_and( is_f_e_flagged_msb, is_f_m_eqz_msb );
const uint32_t is_f_nan_underflow_msb = _uint32_and( is_f_e_flagged_msb, is_h_nan_eqz_msb );
const uint32_t is_e_overflow_msb = _uint32_sub( h_e_mask_value, f_e_half_bias );
const uint32_t is_h_inf_msb = _uint32_or( is_e_overflow_msb, is_f_inf_msb );
const uint32_t is_f_nsnan_msb = _uint32_sub( f_snan, f_snan_mask );
const uint32_t is_m_norm_overflow_msb = _uint32_neg( f_m_rounded_overflow );
const uint32_t is_f_snan_msb = _uint32_not( is_f_nsnan_msb );
const uint32_t h_em_overflow_result = _uint32_sels( is_m_norm_overflow_msb, h_e_norm_overflow, h_em_norm );
const uint32_t h_em_nan_result = _uint32_sels( is_f_e_flagged_msb, h_em_nan, h_em_overflow_result );
const uint32_t h_em_nan_underflow_result = _uint32_sels( is_f_nan_underflow_msb, h_nan_min, h_em_nan_result );
const uint32_t h_em_inf_result = _uint32_sels( is_h_inf_msb, h_e_mask, h_em_nan_underflow_result );
const uint32_t h_em_denorm_result = _uint32_sels( is_h_denorm_msb, h_m_denorm, h_em_inf_result );
const uint32_t h_em_snan_result = _uint32_sels( is_f_snan_msb, h_snan_mask, h_em_denorm_result );
const uint32_t h_result = _uint32_or( h_s, h_em_snan_result );
return (uint16_t)(h_result);
}
uint32_t
half_to_float( uint16_t h )
{
const uint32_t h_e_mask = _uint32_li( 0x00007c00 );
const uint32_t h_m_mask = _uint32_li( 0x000003ff );
const uint32_t h_s_mask = _uint32_li( 0x00008000 );
const uint32_t h_f_s_pos_offset = _uint32_li( 0x00000010 );
const uint32_t h_f_e_pos_offset = _uint32_li( 0x0000000d );
const uint32_t h_f_bias_offset = _uint32_li( 0x0001c000 );
const uint32_t f_e_mask = _uint32_li( 0x7f800000 );
const uint32_t f_m_mask = _uint32_li( 0x007fffff );
const uint32_t h_f_e_denorm_bias = _uint32_li( 0x0000007e );
const uint32_t h_f_m_denorm_sa_bias = _uint32_li( 0x00000008 );
const uint32_t f_e_pos = _uint32_li( 0x00000017 );
const uint32_t h_e_mask_minus_one = _uint32_li( 0x00007bff );
const uint32_t h_e = _uint32_and( h, h_e_mask );
const uint32_t h_m = _uint32_and( h, h_m_mask );
const uint32_t h_s = _uint32_and( h, h_s_mask );
const uint32_t h_e_f_bias = _uint32_add( h_e, h_f_bias_offset );
const uint32_t h_m_nlz = _uint32_cntlz( h_m );
const uint32_t f_s = _uint32_sll( h_s, h_f_s_pos_offset );
const uint32_t f_e = _uint32_sll( h_e_f_bias, h_f_e_pos_offset );
const uint32_t f_m = _uint32_sll( h_m, h_f_e_pos_offset );
const uint32_t f_em = _uint32_or( f_e, f_m );
const uint32_t h_f_m_sa = _uint32_sub( h_m_nlz, h_f_m_denorm_sa_bias );
const uint32_t f_e_denorm_unpacked = _uint32_sub( h_f_e_denorm_bias, h_f_m_sa );
const uint32_t h_f_m = _uint32_sll( h_m, h_f_m_sa );
const uint32_t f_m_denorm = _uint32_and( h_f_m, f_m_mask );
const uint32_t f_e_denorm = _uint32_sll( f_e_denorm_unpacked, f_e_pos );
const uint32_t f_em_denorm = _uint32_or( f_e_denorm, f_m_denorm );
const uint32_t f_em_nan = _uint32_or( f_e_mask, f_m );
const uint32_t is_e_eqz_msb = _uint32_dec( h_e );
const uint32_t is_m_nez_msb = _uint32_neg( h_m );
const uint32_t is_e_flagged_msb = _uint32_sub( h_e_mask_minus_one, h_e );
const uint32_t is_zero_msb = _uint32_andc( is_e_eqz_msb, is_m_nez_msb );
const uint32_t is_inf_msb = _uint32_andc( is_e_flagged_msb, is_m_nez_msb );
const uint32_t is_denorm_msb = _uint32_and( is_m_nez_msb, is_e_eqz_msb );
const uint32_t is_nan_msb = _uint32_and( is_e_flagged_msb, is_m_nez_msb );
const uint32_t is_zero = _uint32_ext( is_zero_msb );
const uint32_t f_zero_result = _uint32_andc( f_em, is_zero );
const uint32_t f_denorm_result = _uint32_sels( is_denorm_msb, f_em_denorm, f_zero_result );
const uint32_t f_inf_result = _uint32_sels( is_inf_msb, f_e_mask, f_denorm_result );
const uint32_t f_nan_result = _uint32_sels( is_nan_msb, f_em_nan, f_inf_result );
const uint32_t f_result = _uint32_or( f_s, f_nan_result );
return (f_result);
}
// half_add
// --------
//
// (SUM) uint16_t z = half_add( x, y );
// (DIFFERENCE) uint16_t z = half_add( x, -y );
//
// * Difference of ZEROs is always +ZERO
// * Sum round with guard + round + sticky bit (grs)
// * QNaN + <x> = QNaN
// * <x> + +INF = +INF
// * <x> - -INF = -INF
// * INF - INF = SNaN
//
// Will have exactly (0 ulps difference) the same result as:
// (Round up)
//
// union FLOAT_32
// {
// float f32;
// uint32_t u32;
// };
//
// union FLOAT_32 fx = { .u32 = half_to_float( x ) };
// union FLOAT_32 fy = { .u32 = half_to_float( y ) };
// union FLOAT_32 fz = { .f32 = fx.f32 + fy.f32 };
// uint16_t z = float_to_half( fz );
//
uint16_t
half_add( uint16_t x, uint16_t y )
{
const uint16_t one = _uint16_li( 0x0001 );
const uint16_t msb_to_lsb_sa = _uint16_li( 0x000f );
const uint16_t h_s_mask = _uint16_li( 0x8000 );
const uint16_t h_e_mask = _uint16_li( 0x7c00 );
const uint16_t h_m_mask = _uint16_li( 0x03ff );
const uint16_t h_m_msb_mask = _uint16_li( 0x2000 );
const uint16_t h_m_msb_sa = _uint16_li( 0x000d );
const uint16_t h_m_hidden = _uint16_li( 0x0400 );
const uint16_t h_e_pos = _uint16_li( 0x000a );
const uint16_t h_e_bias_minus_one = _uint16_li( 0x000e );
const uint16_t h_m_grs_carry = _uint16_li( 0x4000 );
const uint16_t h_m_grs_carry_pos = _uint16_li( 0x000e );
const uint16_t h_grs_size = _uint16_li( 0x0003 );
const uint16_t h_snan = _uint16_li( 0xfe00 );
const uint16_t h_e_mask_minus_one = _uint16_li( 0x7bff );
const uint16_t h_grs_round_carry = _uint16_sll( one, h_grs_size );
const uint16_t h_grs_round_mask = _uint16_sub( h_grs_round_carry, one );
const uint16_t x_e = _uint16_and( x, h_e_mask );
const uint16_t y_e = _uint16_and( y, h_e_mask );
const uint16_t is_y_e_larger_msb = _uint16_sub( x_e, y_e );
const uint16_t a = _uint16_sels( is_y_e_larger_msb, y, x);
const uint16_t a_s = _uint16_and( a, h_s_mask );
const uint16_t a_e = _uint16_and( a, h_e_mask );
const uint16_t a_m_no_hidden_bit = _uint16_and( a, h_m_mask );
const uint16_t a_em_no_hidden_bit = _uint16_or( a_e, a_m_no_hidden_bit );
const uint16_t b = _uint16_sels( is_y_e_larger_msb, x, y);
const uint16_t b_s = _uint16_and( b, h_s_mask );
const uint16_t b_e = _uint16_and( b, h_e_mask );
const uint16_t b_m_no_hidden_bit = _uint16_and( b, h_m_mask );
const uint16_t b_em_no_hidden_bit = _uint16_or( b_e, b_m_no_hidden_bit );
const uint16_t is_diff_sign_msb = _uint16_xor( a_s, b_s );
const uint16_t is_a_inf_msb = _uint16_sub( h_e_mask_minus_one, a_em_no_hidden_bit );
const uint16_t is_b_inf_msb = _uint16_sub( h_e_mask_minus_one, b_em_no_hidden_bit );
const uint16_t is_undenorm_msb = _uint16_dec( a_e );
const uint16_t is_undenorm = _uint16_ext( is_undenorm_msb );
const uint16_t is_both_inf_msb = _uint16_and( is_a_inf_msb, is_b_inf_msb );
const uint16_t is_invalid_inf_op_msb = _uint16_and( is_both_inf_msb, b_s );
const uint16_t is_a_e_nez_msb = _uint16_neg( a_e );
const uint16_t is_b_e_nez_msb = _uint16_neg( b_e );
const uint16_t is_a_e_nez = _uint16_ext( is_a_e_nez_msb );
const uint16_t is_b_e_nez = _uint16_ext( is_b_e_nez_msb );
const uint16_t a_m_hidden_bit = _uint16_and( is_a_e_nez, h_m_hidden );
const uint16_t b_m_hidden_bit = _uint16_and( is_b_e_nez, h_m_hidden );
const uint16_t a_m_no_grs = _uint16_or( a_m_no_hidden_bit, a_m_hidden_bit );
const uint16_t b_m_no_grs = _uint16_or( b_m_no_hidden_bit, b_m_hidden_bit );
const uint16_t diff_e = _uint16_sub( a_e, b_e );
const uint16_t a_e_unbias = _uint16_sub( a_e, h_e_bias_minus_one );
const uint16_t a_m = _uint16_sll( a_m_no_grs, h_grs_size );
const uint16_t a_e_biased = _uint16_srl( a_e, h_e_pos );
const uint16_t m_sa_unbias = _uint16_srl( a_e_unbias, h_e_pos );
const uint16_t m_sa_default = _uint16_srl( diff_e, h_e_pos );
const uint16_t m_sa_unbias_mask = _uint16_andc( is_a_e_nez_msb, is_b_e_nez_msb );
const uint16_t m_sa = _uint16_sels( m_sa_unbias_mask, m_sa_unbias, m_sa_default );
const uint16_t b_m_no_sticky = _uint16_sll( b_m_no_grs, h_grs_size );
const uint16_t sh_m = _uint16_srl( b_m_no_sticky, m_sa );
const uint16_t sticky_overflow = _uint16_sll( one, m_sa );
const uint16_t sticky_mask = _uint16_dec( sticky_overflow );
const uint16_t sticky_collect = _uint16_and( b_m_no_sticky, sticky_mask );
const uint16_t is_sticky_set_msb = _uint16_neg( sticky_collect );
const uint16_t sticky = _uint16_srl( is_sticky_set_msb, msb_to_lsb_sa);
const uint16_t b_m = _uint16_or( sh_m, sticky );
const uint16_t is_c_m_ab_pos_msb = _uint16_sub( b_m, a_m );
const uint16_t c_inf = _uint16_or( a_s, h_e_mask );
const uint16_t c_m_sum = _uint16_add( a_m, b_m );
const uint16_t c_m_diff_ab = _uint16_sub( a_m, b_m );
const uint16_t c_m_diff_ba = _uint16_sub( b_m, a_m );
const uint16_t c_m_smag_diff = _uint16_sels( is_c_m_ab_pos_msb, c_m_diff_ab, c_m_diff_ba );
const uint16_t c_s_diff = _uint16_sels( is_c_m_ab_pos_msb, a_s, b_s );
const uint16_t c_s = _uint16_sels( is_diff_sign_msb, c_s_diff, a_s );
const uint16_t c_m_smag_diff_nlz = _uint16_cntlz( c_m_smag_diff );
const uint16_t diff_norm_sa = _uint16_sub( c_m_smag_diff_nlz, one );
const uint16_t is_diff_denorm_msb = _uint16_sub( a_e_biased, diff_norm_sa );
const uint16_t is_diff_denorm = _uint16_ext( is_diff_denorm_msb );
const uint16_t is_a_or_b_norm_msb = _uint16_neg( a_e_biased );
const uint16_t diff_denorm_sa = _uint16_dec( a_e_biased );
const uint16_t c_m_diff_denorm = _uint16_sll( c_m_smag_diff, diff_denorm_sa );
const uint16_t c_m_diff_norm = _uint16_sll( c_m_smag_diff, diff_norm_sa );
const uint16_t c_e_diff_norm = _uint16_sub( a_e_biased, diff_norm_sa );
const uint16_t c_m_diff_ab_norm = _uint16_sels( is_diff_denorm_msb, c_m_diff_denorm, c_m_diff_norm );
const uint16_t c_e_diff_ab_norm = _uint16_andc( c_e_diff_norm, is_diff_denorm );
const uint16_t c_m_diff = _uint16_sels( is_a_or_b_norm_msb, c_m_diff_ab_norm, c_m_smag_diff );
const uint16_t c_e_diff = _uint16_sels( is_a_or_b_norm_msb, c_e_diff_ab_norm, a_e_biased );
const uint16_t is_diff_eqz_msb = _uint16_dec( c_m_diff );
const uint16_t is_diff_exactly_zero_msb = _uint16_and( is_diff_sign_msb, is_diff_eqz_msb );
const uint16_t is_diff_exactly_zero = _uint16_ext( is_diff_exactly_zero_msb );
const uint16_t c_m_added = _uint16_sels( is_diff_sign_msb, c_m_diff, c_m_sum );
const uint16_t c_e_added = _uint16_sels( is_diff_sign_msb, c_e_diff, a_e_biased );
const uint16_t c_m_carry = _uint16_and( c_m_added, h_m_grs_carry );
const uint16_t is_c_m_carry_msb = _uint16_neg( c_m_carry );
const uint16_t c_e_hidden_offset = _uint16_andsrl( c_m_added, h_m_grs_carry, h_m_grs_carry_pos );
const uint16_t c_m_sub_hidden = _uint16_srl( c_m_added, one );
const uint16_t c_m_no_hidden = _uint16_sels( is_c_m_carry_msb, c_m_sub_hidden, c_m_added );
const uint16_t c_e_no_hidden = _uint16_add( c_e_added, c_e_hidden_offset );
const uint16_t c_m_no_hidden_msb = _uint16_and( c_m_no_hidden, h_m_msb_mask );
const uint16_t undenorm_m_msb_odd = _uint16_srl( c_m_no_hidden_msb, h_m_msb_sa );
const uint16_t undenorm_fix_e = _uint16_and( is_undenorm, undenorm_m_msb_odd );
const uint16_t c_e_fixed = _uint16_add( c_e_no_hidden, undenorm_fix_e );
const uint16_t c_m_round_amount = _uint16_and( c_m_no_hidden, h_grs_round_mask );
const uint16_t c_m_rounded = _uint16_add( c_m_no_hidden, c_m_round_amount );
const uint16_t c_m_round_overflow = _uint16_andsrl( c_m_rounded, h_m_grs_carry, h_m_grs_carry_pos );
const uint16_t c_e_rounded = _uint16_add( c_e_fixed, c_m_round_overflow );
const uint16_t c_m_no_grs = _uint16_srlm( c_m_rounded, h_grs_size, h_m_mask );
const uint16_t c_e = _uint16_sll( c_e_rounded, h_e_pos );
const uint16_t c_em = _uint16_or( c_e, c_m_no_grs );
const uint16_t c_normal = _uint16_or( c_s, c_em );
const uint16_t c_inf_result = _uint16_sels( is_a_inf_msb, c_inf, c_normal );
const uint16_t c_zero_result = _uint16_andc( c_inf_result, is_diff_exactly_zero );
const uint16_t c_result = _uint16_sels( is_invalid_inf_op_msb, h_snan, c_zero_result );
return (c_result);
}
// half_mul
// --------
//
// May have 0 or 1 ulp difference from the following result:
// (Round to nearest)
// NOTE: Rounding mode differs between conversion and multiply
//
// union FLOAT_32
// {
// float f32;
// uint32_t u32;
// };
//
// union FLOAT_32 fx = { .u32 = half_to_float( x ) };
// union FLOAT_32 fy = { .u32 = half_to_float( y ) };
// union FLOAT_32 fz = { .f32 = fx.f32 * fy.f32 };
// uint16_t z = float_to_half( fz );
//
uint16_t
half_mul( uint16_t x, uint16_t y )
{
const uint32_t one = _uint32_li( 0x00000001 );
const uint32_t h_s_mask = _uint32_li( 0x00008000 );
const uint32_t h_e_mask = _uint32_li( 0x00007c00 );
const uint32_t h_m_mask = _uint32_li( 0x000003ff );
const uint32_t h_m_hidden = _uint32_li( 0x00000400 );
const uint32_t h_e_pos = _uint32_li( 0x0000000a );
const uint32_t h_e_bias = _uint32_li( 0x0000000f );
const uint32_t h_m_bit_count = _uint32_li( 0x0000000a );
const uint32_t h_m_bit_half_count = _uint32_li( 0x00000005 );
const uint32_t h_nan_min = _uint32_li( 0x00007c01 );
const uint32_t h_e_mask_minus_one = _uint32_li( 0x00007bff );
const uint32_t h_snan = _uint32_li( 0x0000fe00 );
const uint32_t m_round_overflow_bit = _uint32_li( 0x00000020 );
const uint32_t m_hidden_bit = _uint32_li( 0x00100000 );
const uint32_t a_s = _uint32_and( x, h_s_mask );
const uint32_t b_s = _uint32_and( y, h_s_mask );
const uint32_t c_s = _uint32_xor( a_s, b_s );
const uint32_t x_e = _uint32_and( x, h_e_mask );
const uint32_t x_e_eqz_msb = _uint32_dec( x_e );
const uint32_t a = _uint32_sels( x_e_eqz_msb, y, x );
const uint32_t b = _uint32_sels( x_e_eqz_msb, x, y );
const uint32_t a_e = _uint32_and( a, h_e_mask );
const uint32_t b_e = _uint32_and( b, h_e_mask );
const uint32_t a_m = _uint32_and( a, h_m_mask );
const uint32_t b_m = _uint32_and( b, h_m_mask );
const uint32_t a_e_amount = _uint32_srl( a_e, h_e_pos );
const uint32_t b_e_amount = _uint32_srl( b_e, h_e_pos );
const uint32_t a_m_with_hidden = _uint32_or( a_m, h_m_hidden );
const uint32_t b_m_with_hidden = _uint32_or( b_m, h_m_hidden );
const uint32_t c_m_normal = _uint32_mul( a_m_with_hidden, b_m_with_hidden );
const uint32_t c_m_denorm_biased = _uint32_mul( a_m_with_hidden, b_m );
const uint32_t c_e_denorm_unbias_e = _uint32_sub( h_e_bias, a_e_amount );
const uint32_t c_m_denorm_round_amount = _uint32_and( c_m_denorm_biased, h_m_mask );
const uint32_t c_m_denorm_rounded = _uint32_add( c_m_denorm_biased, c_m_denorm_round_amount );
const uint32_t c_m_denorm_inplace = _uint32_srl( c_m_denorm_rounded, h_m_bit_count );
const uint32_t c_m_denorm_unbiased = _uint32_srl( c_m_denorm_inplace, c_e_denorm_unbias_e );
const uint32_t c_m_denorm = _uint32_and( c_m_denorm_unbiased, h_m_mask );
const uint32_t c_e_amount_biased = _uint32_add( a_e_amount, b_e_amount );
const uint32_t c_e_amount_unbiased = _uint32_sub( c_e_amount_biased, h_e_bias );
const uint32_t is_c_e_unbiased_underflow = _uint32_ext( c_e_amount_unbiased );
const uint32_t c_e_underflow_half_sa = _uint32_neg( c_e_amount_unbiased );
const uint32_t c_e_underflow_sa = _uint32_sll( c_e_underflow_half_sa, one );
const uint32_t c_m_underflow = _uint32_srl( c_m_normal, c_e_underflow_sa );
const uint32_t c_e_underflow_added = _uint32_andc( c_e_amount_unbiased, is_c_e_unbiased_underflow );
const uint32_t c_m_underflow_added = _uint32_selb( is_c_e_unbiased_underflow, c_m_underflow, c_m_normal );
const uint32_t is_mul_overflow_test = _uint32_and( c_e_underflow_added, m_round_overflow_bit );
const uint32_t is_mul_overflow_msb = _uint32_neg( is_mul_overflow_test );
const uint32_t c_e_norm_radix_corrected = _uint32_inc( c_e_underflow_added );
const uint32_t c_m_norm_radix_corrected = _uint32_srl( c_m_underflow_added, one );
const uint32_t c_m_norm_hidden_bit = _uint32_and( c_m_norm_radix_corrected, m_hidden_bit );
const uint32_t is_c_m_norm_no_hidden_msb = _uint32_dec( c_m_norm_hidden_bit );
const uint32_t c_m_norm_lo = _uint32_srl( c_m_norm_radix_corrected, h_m_bit_half_count );
const uint32_t c_m_norm_lo_nlz = _uint16_cntlz( c_m_norm_lo );
const uint32_t is_c_m_hidden_nunderflow_msb = _uint32_sub( c_m_norm_lo_nlz, c_e_norm_radix_corrected );
const uint32_t is_c_m_hidden_underflow_msb = _uint32_not( is_c_m_hidden_nunderflow_msb );
const uint32_t is_c_m_hidden_underflow = _uint32_ext( is_c_m_hidden_underflow_msb );
const uint32_t c_m_hidden_underflow_normalized_sa = _uint32_srl( c_m_norm_lo_nlz, one );
const uint32_t c_m_hidden_underflow_normalized = _uint32_sll( c_m_norm_radix_corrected, c_m_hidden_underflow_normalized_sa );
const uint32_t c_m_hidden_normalized = _uint32_sll( c_m_norm_radix_corrected, c_m_norm_lo_nlz );
const uint32_t c_e_hidden_normalized = _uint32_sub( c_e_norm_radix_corrected, c_m_norm_lo_nlz );
const uint32_t c_e_hidden = _uint32_andc( c_e_hidden_normalized, is_c_m_hidden_underflow );
const uint32_t c_m_hidden = _uint32_sels( is_c_m_hidden_underflow_msb, c_m_hidden_underflow_normalized, c_m_hidden_normalized );
const uint32_t c_m_normalized = _uint32_sels( is_c_m_norm_no_hidden_msb, c_m_hidden, c_m_norm_radix_corrected );
const uint32_t c_e_normalized = _uint32_sels( is_c_m_norm_no_hidden_msb, c_e_hidden, c_e_norm_radix_corrected );
const uint32_t c_m_norm_round_amount = _uint32_and( c_m_normalized, h_m_mask );
const uint32_t c_m_norm_rounded = _uint32_add( c_m_normalized, c_m_norm_round_amount );
const uint32_t is_round_overflow_test = _uint32_and( c_e_normalized, m_round_overflow_bit );
const uint32_t is_round_overflow_msb = _uint32_neg( is_round_overflow_test );
const uint32_t c_m_norm_inplace = _uint32_srl( c_m_norm_rounded, h_m_bit_count );
const uint32_t c_m = _uint32_and( c_m_norm_inplace, h_m_mask );
const uint32_t c_e_norm_inplace = _uint32_sll( c_e_normalized, h_e_pos );
const uint32_t c_e = _uint32_and( c_e_norm_inplace, h_e_mask );
const uint32_t c_em_nan = _uint32_or( h_e_mask, a_m );
const uint32_t c_nan = _uint32_or( a_s, c_em_nan );
const uint32_t c_denorm = _uint32_or( c_s, c_m_denorm );
const uint32_t c_inf = _uint32_or( c_s, h_e_mask );
const uint32_t c_em_norm = _uint32_or( c_e, c_m );
const uint32_t is_a_e_flagged_msb = _uint32_sub( h_e_mask_minus_one, a_e );
const uint32_t is_b_e_flagged_msb = _uint32_sub( h_e_mask_minus_one, b_e );
const uint32_t is_a_e_eqz_msb = _uint32_dec( a_e );
const uint32_t is_a_m_eqz_msb = _uint32_dec( a_m );
const uint32_t is_b_e_eqz_msb = _uint32_dec( b_e );
const uint32_t is_b_m_eqz_msb = _uint32_dec( b_m );
const uint32_t is_b_eqz_msb = _uint32_and( is_b_e_eqz_msb, is_b_m_eqz_msb );
const uint32_t is_a_eqz_msb = _uint32_and( is_a_e_eqz_msb, is_a_m_eqz_msb );
const uint32_t is_c_nan_via_a_msb = _uint32_andc( is_a_e_flagged_msb, is_b_e_flagged_msb );
const uint32_t is_c_nan_via_b_msb = _uint32_andc( is_b_e_flagged_msb, is_b_m_eqz_msb );
const uint32_t is_c_nan_msb = _uint32_or( is_c_nan_via_a_msb, is_c_nan_via_b_msb );
const uint32_t is_c_denorm_msb = _uint32_andc( is_b_e_eqz_msb, is_a_e_flagged_msb );
const uint32_t is_a_inf_msb = _uint32_and( is_a_e_flagged_msb, is_a_m_eqz_msb );
const uint32_t is_c_snan_msb = _uint32_and( is_a_inf_msb, is_b_eqz_msb );
const uint32_t is_c_nan_min_via_a_msb = _uint32_and( is_a_e_flagged_msb, is_b_eqz_msb );
const uint32_t is_c_nan_min_via_b_msb = _uint32_and( is_b_e_flagged_msb, is_a_eqz_msb );
const uint32_t is_c_nan_min_msb = _uint32_or( is_c_nan_min_via_a_msb, is_c_nan_min_via_b_msb );
const uint32_t is_c_inf_msb = _uint32_or( is_a_e_flagged_msb, is_b_e_flagged_msb );
const uint32_t is_overflow_msb = _uint32_or( is_round_overflow_msb, is_mul_overflow_msb );
const uint32_t c_em_overflow_result = _uint32_sels( is_overflow_msb, h_e_mask, c_em_norm );
const uint32_t c_common_result = _uint32_or( c_s, c_em_overflow_result );
const uint32_t c_zero_result = _uint32_sels( is_b_eqz_msb, c_s, c_common_result );
const uint32_t c_nan_result = _uint32_sels( is_c_nan_msb, c_nan, c_zero_result );
const uint32_t c_nan_min_result = _uint32_sels( is_c_nan_min_msb, h_nan_min, c_nan_result );
const uint32_t c_inf_result = _uint32_sels( is_c_inf_msb, c_inf, c_nan_min_result );
const uint32_t c_denorm_result = _uint32_sels( is_c_denorm_msb, c_denorm, c_inf_result);
const uint32_t c_result = _uint32_sels( is_c_snan_msb, h_snan, c_denorm_result );
return (uint16_t)(c_result);
}