-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_data.py
executable file
·550 lines (489 loc) · 20.5 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
__author__ = "Jerome Thai, Nicolas Laurent-Brouty"
__email__ = "[email protected], [email protected]"
'''
This module processes the *.txt files from Bar-Gera
that can be found here: http://www.bgu.ac.il/~bargera/tntp/
'''
import argparse
import csv
import numpy as np
from utils import digits, spaces, areInside
from pyproj import Proj, transform
import igraph
def process_net(input, output):
'''
process *_net.txt files of Bar-Gera to get *_net.csv file in the format of
our Frank-Wolfe algorithm
'''
flag = False
i = 0
out = ['LINK,A,B,a0,a1,a2,a3,a4\n']
with open(input, 'rb') as f:
reader = csv.reader(f)
for row in reader:
if len(row)>0:
if flag == False:
if row[0].split()[0] == '~': flag = True
else:
line = row[0].split()[:-1]
a4 = float(line[4]) * float(line[5]) / (float(line[2])/4000)**4
out.append('{},{},{},{},0,0,0,{}\n'.format(i,line[0],line[1],line[4],a4))
i = i+1
import pdb; pdb.set_trace()
with open(output, "w") as text_file:
text_file.write(''.join(out))
def process_net_attack(input, output,thres,beta):
'''
process *_net.txt files of Bar-Gera to get *_net.csv file in the format of
our Frank-Wolfe algorithm
'''
flag = False
i = 0
out = ['LINK,A,B,a0,a1,a2,a3,a4\n']
with open(input, 'rb') as f:
reader = csv.reader(f)
for row in reader:
if len(row)>0:
if flag == False:
if row[0].split()[0] == '~': flag = True
else:
l = row[0].split()[:-1]
if float(l[2]) < thres:
capacity=beta*float(l[2])
else:
capacity = float(l[2])
a4 = float(l[4]) * float(l[5]) / (capacity/4000)**4
out.append('{},{},{},{},0,0,0,{}\n'.format(i,l[0],l[1],l[4],a4))
i = i+1
with open(output, "w") as text_file:
text_file.write(''.join(out))
def process_trips(input, output):
'''
process *_trips files of Bar-Gera to get *_od.csv file in the format of
our Frank-Wolfe algorithm
'''
origin = -1
out = ['O,D,Ton\n']
with open(input, 'rb') as f:
reader = csv.reader(f)
for row in reader:
#before, keyword, after = row.partition('Origin')
if len(row)>0:
line = row[0].split()
if len(line) > 0 and line[0] == 'Origin':
origin = line[1]
elif origin != -1:
for i,e in enumerate(line):
if i%3 == 0:
out.append('{},{},'.format(origin,e))
if i%3 == 2:
out.append('{}\n'.format(e[:-1]))
import pdb; pdb.set_trace()
with open(output, "w") as text_file:
text_file.write(''.join(out))
def array_to_trips(demand, output):
'''
convert numpy array into _trips.txt input file for Matthew Steele's solver
'''
row = 0
zones = int(np.max(demand[:,0]))
out = ['<NUMBER OF ZONES> {}\n'.format(zones)]
out.append('<TOTAL OD FLOW> {}\n'.format(np.sum(demand[:,2])))
out.append('<END OF METADATA>\n\n\n')
for i in range(zones):
out.append('Origin')
out.append(spaces(10-digits(i+1)))
out.append('{}\n'.format(i+1))
count = 0
while (row < demand.shape[0]) and (demand[row,0] == i+1):
count = count + 1
d = int(demand[row,1])
out.append(spaces(5-digits(d)))
out.append('{} :'.format(d))
out.append(spaces(8-digits(demand[row,2])))
out.append('{:.2f}; '.format(demand[row,2]))
row = row + 1
if count % 5 == 0:
out.append('\n')
count = 0
out.append('\n')
with open(output, "w") as text_file:
text_file.write(''.join(out))
def process_results(input, output, network):
'''
process output in the terminal generated by Steele's algorithm
to a .csv file
'''
graph = np.loadtxt(network, delimiter=',', skiprows=1)
raw = np.loadtxt(input, delimiter=',')
out = np.zeros(graph.shape[0])
for i in range(graph.shape[0]):
for j in range(raw.shape[0]):
if (graph[i,1] == raw[j,0]) and (graph[i,2] == raw[j,1]):
out[i] = raw[j,2]
continue
np.savetxt(output, out, delimiter=",")
def process_node(input, output, min_X=None, max_X=None, min_Y=None, max_Y=None):
'''
process node file to 'interpolate' from state coordinate to lat long
this first step is to convert manually these four coordinates using
http://www.earthpoint.us/StatePlane.aspx
'''
out = ['node,lat,lon\n']
nodes = np.loadtxt(input, delimiter='\t', skiprows=1)
#nodes = np.genfromtxt(input, delimiter=',', skiprows=1)
num_nodes = nodes.shape[0]
#import pdb; pdb.set_trace()
# print 'min X', nodes[argmin_X,1:]
# print 'max X', nodes[argmax_X,1:]
# print 'min Y', nodes[argmin_Y,1:]
# print 'max Y', nodes[argmax_Y,1:]
min_X = nodes[argmin_X,1]
max_X = nodes[argmax_X,1]
min_Y = nodes[argmin_Y,2]
max_Y = nodes[argmax_Y,2]
# do simple interpolation
for i in range(num_nodes):
alpha = (nodes[i,1]-nodes[argmin_X,1]) / (nodes[argmax_X,1]-nodes[argmin_X,1])
beta = (nodes[i,2]-nodes[argmin_Y,2]) / (nodes[argmax_Y,2]-nodes[argmin_Y,2])
lon = min_X + alpha * (max_X - min_X)
lat = min_Y + beta * (max_Y - min_Y)
out.append('{},{},{}\n'.format(nodes[i,0],lat,lon))
with open(output, "w") as text_file:
text_file.write(''.join(out))
#Function to create GPS coordinate from projection coordinates
def process_node_to_GPS_Coord(input, output, min_X=None, max_X=None, min_Y=None, max_Y=None):
'''
We first change the projection to GPS coordinates
'''
out = ['node,lat,lon\n']
nodes = np.loadtxt(input, delimiter='\t', skiprows=1)
num_nodes = nodes.shape[0]
#The space encoding 'epsg:3435' should be updated depending on which region we are talking about
#This one is specifically for Chicago Illinois, and so should be updated if we are looking at other locations
inProj = Proj(init='epsg:3435')
outProj = Proj(init='epsg:4326')
# change each nodes projection to gps coordinates
for i in range(num_nodes):
#Here the projections are multiplied by 0.3048 to change from miles to meters
lon,lat = transform(inProj,outProj,nodes[i,1]*0.3048, nodes[i,2]*0.3048)
out.append('{},{},{}\n'.format(nodes[i,0],lat,lon))
with open(output, "w") as text_file:
text_file.write(''.join(out))
def process_links(net, node, features, in_order=False):
'''
Join data from net, node, and features arrays into links file
returns out, a numpy array with columns
[lat1, lon1, lat2, lon2, capacity, length, FreeFlowTime]
'''
links = net.shape[0]
nodes = node.shape[0]
num_fts = features.shape[1]
out = np.zeros((links, 4+num_fts))
for i in range(links):
a, b = net[i,1], net[i,2]
if in_order == False:
for j in range(nodes):
if node[j,0] == a:
lat1, lon1 = node[j,1], node[j,2]
if node[j,0] == b:
lat2, lon2 = node[j,1], node[j,2]
else:
lat1, lon1 = node[int(a)-1, 1], node[int(a)-1, 2]
lat2, lon2 = node[int(b)-1, 1], node[int(b)-1, 2]
out[i,:4] = [lat1, lon1, lat2, lon2]
out[i,4:] = features[i,:]
return out
def join_node_demand(node, demand):
'''
Join data from node and demand and return our, a numpy array with columns
[lat1, lon1, lat2, lon2, demand]
'''
ods = demand.shape[0]
out = np.zeros((ods, 5))
for i in range(ods):
a, b = demand[i,0], demand[i,1]
lat1, lon1 = node[int(a)-1, 1], node[int(a)-1, 2]
lat2, lon2 = node[int(b)-1, 1], node[int(b)-1, 2]
out[i,:4] = [lat1, lon1, lat2, lon2]
out[i,4] = demand[i,2]
return out
def extract_features(input):
'''features = table in the format [[capacity, length, FreeFlowTime]]'''
flag = False
out = []
with open(input, 'rb') as f:
reader = csv.reader(f)
for row in reader:
if len(row)>0:
if flag == False:
if row[0].split()[0] == '~': flag = True
else:
out.append([float(e) for e in row[0].split()[2:5]])
return np.array(out)
begin = 'var geojson_features = [{\n'
def begin_feature(type):
string = ' "type": "Feature",\n "geometry": {\n'
if type == 'Point':
begin_coord = ' "coordinates": ['
else:
begin_coord = ' "coordinates": [\n'
return string + ' "type": "{}",\n'.format(type) + begin_coord
def coord(lat,lon,type):
if type == "LineString": return ' [{}, {}],\n'.format(lon,lat)
if type == "Point": return '{}, {}'.format(lon,lat)
begin_prop = ' ]},\n "properties": {\n'
def prop(name, value):
return ' "{}": "{}",\n'.format(name, value)
def prop_numeric(name, value):
return ' "{}": {},\n'.format(name, value)
def geojson_link(links, features, color, weight=None):
"""
from array of link coordinates and features, generate geojson file
links is numpy array where each row has [lat1, lon1, lat2, lon2, features]
color is an array that encodes the color of the link for visualization
if color < 1: blue
if 1 <= color < 2: yellow
if 2 <= color < 3: orange
if 3 <= color < 4: orange-red
if 5 <= color : red
"""
if weight is None:
weight = 2. * np.ones((color.shape[0],)) # uniform weight
type = 'LineString'
out = [begin]
for i in range(links.shape[0]):
out.append(begin_feature(type))
out.append(coord(links[i,0], links[i,1], type))
out.append(coord(links[i,2], links[i,3], type))
out.append(begin_prop)
for j,f in enumerate(features):
out.append(prop(f, links[i,j+4]))
#import pdb; pdb.set_trace()
out.append(prop('color', color[i]))
out.append(prop('weight', weight[i]))
out.append(' }},{\n')
out[-1] = ' }}];\n\n'
out.append('var lat_center_map = {}\n'.format(np.mean(links[:,0])))
out.append('var lon_center_map = {}\n'.format(np.mean(links[:,1])))
with open('visualization/geojson_features.js', 'w') as f:
f.write(''.join(out))
def geojson_link_Scenario_Study(ratio, links, features, color, name, mode, weight=None):
"""
from array of link coordinates and features, generate geojson file
links is numpy array where each row has [lat1, lon1, lat2, lon2, features]
color is an array that encodes the color of the link for visualization
if color < 1: blue
if 1 <= color < 2: yellow
if 2 <= color < 3: orange
if 3 <= color < 4: orange-red
if 5 <= color : red
"""
if weight is None:
weight = 2. * np.ones((color.shape[0],)) # uniform weight
type = 'LineString'
out = [begin]
for i in range(links.shape[0]):
out.append(begin_feature(type))
out.append(coord(links[i,0], links[i,1], type))
out.append(coord(links[i,2], links[i,3], type))
out.append(begin_prop)
for j,f in enumerate(features):
out.append(prop(f, links[i,j+4]))
#import pdb; pdb.set_trace()
out.append(prop('color', color[i]))
out.append(prop('weight', weight[i]))
out.append(' }},{\n')
out[-1] = ' }}];\n\n'
out.append('var lat_center_map = {}\n'.format(np.mean(links[:,0])))
out.append('var lon_center_map = {}\n'.format(np.mean(links[:,1])))
fileName = 'visualization/geojson_features_'+ name + '_ratio_' + str(ratio) + '_' + mode + '.js'
print(fileName)
with open(fileName, 'w') as f:
f.write(''.join(out))
def geojson_link_Scenario_Social_Optimum(ratio, links, features, color, weight=None):
"""
from array of link coordinates and features, generate geojson file
links is numpy array where each row has [lat1, lon1, lat2, lon2, features]
color is an array that encodes the color of the link for visualization
if color < 1: blue
if 1 <= color < 2: yellow
if 2 <= color < 3: orange
if 3 <= color < 4: orange-red
if 5 <= color : red
"""
if weight is None:
weight = 2. * np.ones((color.shape[0],)) # uniform weight
type = 'LineString'
out = [begin]
for i in range(links.shape[0]):
out.append(begin_feature(type))
out.append(coord(links[i,0], links[i,1], type))
out.append(coord(links[i,2], links[i,3], type))
out.append(begin_prop)
for j,f in enumerate(features):
out.append(prop(f, links[i,j+4]))
#import pdb; pdb.set_trace()
out.append(prop('color', color[i]))
out.append(prop('weight', weight[i]))
out.append(' }},{\n')
out[-1] = ' }}];\n\n'
out.append('var lat_center_map = {}\n'.format(np.mean(links[:,0])))
out.append('var lon_center_map = {}\n'.format(np.mean(links[:,1])))
fileName = 'visualization/geojson_features_ratio_SO_' + str(ratio) + '.js'
print(fileName)
with open(fileName, 'w') as f:
f.write(''.join(out))
def output_file(net_name, node_name, fs, output_name):
network = np.genfromtxt(net_name,skip_header=7)
nodes = np.genfromtxt(node_name, delimiter=',', skip_header=1)
#create a numpy array containing informations of both I210_node and I210_net
featuredNetwork = np.zeros((len(network),11))
featuredNetwork[:,0] = network[:,0] # index of origin vertex
featuredNetwork[:,3] = network[:,1] # index of destination vertex
for i in range(len(featuredNetwork)):
featuredNetwork[i,1] = nodes[featuredNetwork[i,0]-1,2] #longitude of origin
featuredNetwork[i,2] = nodes[featuredNetwork[i,0]-1,1] #latitude of origin
featuredNetwork[i,4] = nodes[featuredNetwork[i,3]-1,2] #longitude of destination
featuredNetwork[i,5] = nodes[featuredNetwork[i,3]-1,1] #latitude of destination
featuredNetwork[:,6] = network[:,2] # capacity
featuredNetwork[:,7] = network[:,3] #length
featuredNetwork[:,8] = network[:,4] ##fftt
featuredNetwork[:,9:] = fs
# np.savetxt(output_name, featuredNetwork, delimiter=',', \
# header='o_index,o_long,o_lat,d_index,d_long,d_lat,capacity,length(mi),fftt(min),f_nr,f_r', \
# fmt='%d %3.5f %2.5f %d %3.5f %2.5f %d %1.3f %1.3f %2.4e %2.4e')
np.savetxt(output_name, featuredNetwork, delimiter=',', \
header='o_index,o_long,o_lat,d_index,d_long,d_lat,capacity,length(mi),fftt(min),f_nr,f_r')
def construct_igraph(graph):
# 'vertices' contains the range of the vertices' indices in the graph
vertices = range(int(np.min(graph[:,1:3])), int(np.max(graph[:,1:3]))+1)
# 'edges' is a list of the edges (to_id, from_id) in the graph
edges = graph[:,1:3].astype(int).tolist()
g = igraph.Graph(vertex_attrs={"label":vertices}, edges=edges, directed=True)
g.es["weight"] = graph[:,3].tolist() # feel with free-flow travel times
return g
def process_demand(od_file):
origin = -1
out = {}
with open(od_file, 'rb') as f:
reader = csv.reader(f)
for row in reader:
if len(row)>0:
l = row[0].split()
if l[0] == 'Origin':
origin = int(l[1])
out[origin] = ([],[])
elif origin != -1:
for i,e in enumerate(l):
if i%3 == 0:
out[origin][0].append(int(e))
if i%3 == 2:
out[origin][1].append(float(e[:-1]))
return out
def construct_od(demand):
# construct a dictionary of the form
# origin: ([destination],[demand])
out = {}
#import pdb; pdb.set_trace()
for i in range(demand.shape[0]):
origin = int(demand[i,0])
if origin not in out.keys():
out[origin] = ([],[])
out[origin][0].append(int(demand[i,1]))
out[origin][1].append(demand[i,2])
return out
def cities_to_js(file, by_county, color, weight):
# only keep cities in California that are in Los Angeles County
# create a suitable collection of geojson objects
out = ['var geojson_features = [']
with open(file, 'rb') as f:
reader = csv.reader(f)
for i,row in enumerate(reader):
if len(row) >= 8 and row[7][12:-1] == by_county:
row[1] = ' "properties": { "city": ' + row[1][25:]
row[7] = '"county": "Los Angeles"'
row.insert(2, '"weight": "{}"'.format(weight))
row.insert(2, '"color": "{}"'.format(color))
out.append(','.join(row))
out.append('];')
out.append('\nvar lat_center_map = 34.0374876369')
out.append('var lon_center_map = -118.130124211')
with open('visualization/geojson_features.js', 'w') as f:
f.write('\n'.join(out))
def map_nodes_to_one_city(city, city_file, node):
# return a .cvs file with the name of the city in which a node is
# first, compute the bounding box around the city
polygon = []
with open(city_file, 'rb') as f:
reader = csv.reader(f)
for i,row in enumerate(reader):
if len(row) >= 2 and row[1][26:-1] == city:
line = row[13:]
for j,e in enumerate(line):
if len(e) > 0:
if j == 0:
polygon.append([float(e.split(' ')[-1])])
else:
if j%2 == 1:
polygon[-1].append(float(e.split(' ')[1]))
else:
polygon.append([float(e.split(' ')[-1])])
break
ps = [[node[i,1:3][1], node[i,1:3][0]] for i in range(node.shape[0])]
return areInside(polygon, len(polygon), ps)
def map_nodes_to_cities(cities, city_file, node_file, output_file):
# save into a file mapping from node id to city the node belongs to
node = np.loadtxt(node_file, delimiter=',')
out = ['other'] * node.shape[0]
for city in cities:
print 'process {}'.format(city)
tmp = np.array(map_nodes_to_one_city(city, city_file, node)).nonzero()[0]
print 'found {} nodes'.format(len(tmp))
for i in tmp:
out[i] = city
out = np.reshape(np.array(out), (node.shape[0],1))
ids = np.reshape(node[:,0], (node.shape[0],1))
out2 = np.concatenate((ids,out), axis=1)
np.savetxt(output_file, out2, delimiter=',', header='id,city', \
comments='', fmt="%s")
def map_links_to_cities(nodeToCity_file, net_file, output_file):
# save into a file mapping from link id to city it belongs to
# a link is assumed to be in a city if both of its nodes are inside it
nodeToCity = np.genfromtxt(nodeToCity_file, delimiter=',', \
skiprows=1, dtype='str')
graph = np.loadtxt(net_file, delimiter=',', skiprows=1)
#print nodeToCity
#print graph
out = ['other'] * graph.shape[0]
for i in range(graph.shape[0]):
fr, to = int(graph[i,1]), int(graph[i,2])
if (nodeToCity[fr-1,1] != 'other') and (nodeToCity[fr-1,1] == nodeToCity[to-1,1]):
out[i] = nodeToCity[fr-1,1]
out = np.reshape(np.array(out), (graph.shape[0],1))
ids = np.reshape(graph[:,0], (graph.shape[0],1))
out2 = np.concatenate((ids,out), axis=1)
np.savetxt(output_file, out2, delimiter=',', header='id,city', \
comments='', fmt="%s")
def main():
#Input the name of the network we need to process
parser = argparse.ArgumentParser(description='Process network data')
parser.add_argument("name", type = str, help = "name of network")
args = parser.parse_args()
import pdb; pdb.set_trace()
#Location of files
netOriginFile = 'data/'+ args.name + '_net.txt'
netDestinationFile = 'data/'+ args.name + '_net.csv'
nodeOriginFile = 'data/'+ args.name + '_node.txt'
nodeDestinationFile = 'data/'+ args.name + '_node.csv'
odOriginFile = 'data/'+ args.name + '_trips.txt'
odDestinationFile = 'data/'+ args.name + '_od.csv'
#process network data to get csv files
process_net(netOriginFile, netDestinationFile)
#Process nodes
process_node_to_GPS_Coord(nodeOriginFile, nodeDestinationFile)
#Process the trips to get od (organ-destination) pairs
process_trips(odOriginFile, odDestinationFile)
pass
if __name__ == '__main__':
main()