-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demand_Study_HS.py
executable file
·145 lines (113 loc) · 5.54 KB
/
Demand_Study_HS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
__author__ = "Jerome Thai, Nicolas Laurent-Brouty, Juliette Ugirumurera"
'''
Scripts for LA network
'''
import numpy as np
import argparse
from process_data import process_net, process_trips, extract_features, process_links, process_node, \
geojson_link, construct_igraph, construct_od, join_node_demand, geojson_link_Scenario_Study, process_node_to_GPS_Coord
from frank_wolfe_2 import solver_3
from Social_Optimum import solver_social_optimum
#For timing
import timeit
#Funtion to calculate the total travel time
def total_cost(graph, f):
x = np.power(f.reshape((f.shape[0],1)), np.array([1,2,3,4,5])) # x is a matrix containing f,f^2, f^3, f^4, f^5
tCost = np.sum(np.einsum('ij,ij->i', x, graph[:,3:])) # Multply matrix x with coefficients a0, a1, a2, a3 and a4
return tCost
#load the network data:
def load_network_data(name):
#import pdb; pdb.set_trace()
#The folder locations of all the input files
graphLocation = 'data/' + name + '_net.csv'
demandLocation = 'data/' + name + '_od.csv'
nodeLocation = 'data/' + name + '_node.csv'
featureLocation = 'data/' + name + '_net.txt'
graph = np.loadtxt(graphLocation, delimiter=',', skiprows=1)
demand = np.loadtxt(demandLocation, delimiter=',', skiprows=1)
features = extract_features(featureLocation)
#import pdb; pdb.set_trace()
#LA network has a different way of processing the nodes file
if(name == "LA"):
node = np.loadtxt(nodeLocation, delimiter=',')
print features.shape
features[10787,0] = features[10787,0] * 1.5
graph[10787,-1] = graph[10787,-1] / (1.5**4)
features[3348,:] = features[3348,:] * 1.2
graph[3348,-1] = graph[3348,-1] / (1.2**4)
else:
node = np.loadtxt(nodeLocation, delimiter=',', skiprows=1)
return graph, demand, node, features
#This function runs frank-wolfe algorithm on a particular network with demand modified as ratio X demand
def frank_wolfe_ratio_study(network_name, ratio, mode):
graph, demand, node, features = load_network_data(network_name)
#print (demand)
demand[:,2] = demand[:,2] / 4000
d = np.copy(demand) #makes a copy of the demand array
d[:,2] = ratio * demand[:,2]
#Depending on whether its UE (User Equilibrium) or SO (Social Optimum) we call different functions
#And create different output file names
#import pdb; pdb.set_trace()
if(mode == "UE"):
#start timer for frank-wolfe
start_time1 = timeit.default_timer()
#Run Frank-Wolfe
f = solver_3(graph, d, max_iter=1000, q=50, display=1, stop=1e-2)
#end of timer
elapsed1 = timeit.default_timer() - start_time1
print ("Frank-Wolfe took %s seconds" % elapsed1)
elif(mode == "SO"):
#start timer for frank-wolfe
start_time1 = timeit.default_timer()
#Run Frank-Wolfe for social optimum
f = solver_social_optimum(graph, d, max_iter=1000, q=50, display=1, stop=1e-2)
#end of timer
elapsed1 = timeit.default_timer() - start_time1
print ("Frank-Wolfe took %s seconds" % elapsed1)
total_travel_time = total_cost(graph, f)
avg_travel_time = total_travel_time/np.sum(d[:,2])
print ("Average travel time %3f " % avg_travel_time)
fileName = 'data/output/'+ network_name + '_output_ratio_' + str(ratio) + '_'+ mode + '.csv'
print(fileName)
np.savetxt(fileName, f, delimiter=',')
#Call visualize with filename where output is
visualize_result_ratio_study(fileName, ratio, network_name, mode)
#Visualize the results from the scenario study
def visualize_result_ratio_study(fileName, ratio, name, mode):
net, demand, node, features = load_network_data(name)
#Loading the flow per link resulting from frank-wolfe
f = np.loadtxt(fileName, delimiter=',', skiprows=0)
#Location of the features
featureLocation = 'data/' + name + '_net.txt'
features = np.zeros((f.shape[0], 4))
features[:,:3] = extract_features(featureLocation)
#Multiply the flow obtained by 4000 since we initially divided by 4000 before frank-wolfs
f = np.divide(f*4000, features[:,0])
features[:,3] = f
links = process_links(net, node, features, in_order=True)
#creates color array used to visulized the links
#values useful in differenciating links based of flow on links
color = 2.0*f + 1.0
#Keeping track of the percentage of congestion
links_congested = len(color[np.where(color >= 3)])
percentage_of_congestion = float(links_congested) / float(len(color))
print("congestion is at %3f " % percentage_of_congestion)
geojson_link_Scenario_Study(ratio,links, ['capacity', 'length', 'fftt', 'flow_over_capacity'], color, name, mode)
def main():
pass
parser = argparse.ArgumentParser(description='Process network name and demand ratio')
parser.add_argument("name", type = str, help = "name of network")
#parser.add_argument("ratio", type = float, help = "demand ratio")
#frank-wolfe algorithm can operate in two modes: User Equilibrium (UE) or Social Optimum (SO)
parser.add_argument("mode", type = str, help = "frank wolfe mode")
args = parser.parse_args()
#Check if the mode entered is valid before calling Frank-Wolfe
if(args.mode == "UE" or args.mode == "SO"):
#Calling the frank-wolfe algorithm
for i in range (0,21):
frank_wolfe_ratio_study(args.name, 0.1*i, args.mode)
else:
print("Entered unknown mode. Allowed mode are UE (User Equilibrium) and SO (Social Optimum)")
if __name__ == '__main__':
main()