-
Notifications
You must be signed in to change notification settings - Fork 0
/
AoN.pyx
executable file
·513 lines (392 loc) · 16.2 KB
/
AoN.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
"""
Original Algorithm for Shortest path (Dijkstra with a Fibonacci heap) was written by Jake Vanderplas <[email protected]> under license: BSD, (C) 2012
Codes for route ennumeration, DAG construction and Link nesting were written by Pedro Camargo (2013) and have all their rights reserved to the author
"""
import warnings
import numpy as np
cimport numpy as np
cimport cython
include 'parameters.pxi'
#from scipy.sparse import csr_matrix, isspmatrix, isspmatrix_csr, isspmatrix_csc, lil_matrix, lil_matrix, coo_matrix
from libc.stdlib cimport abort, malloc, free
# GRAPH STRUCTURE: LINK ID, NODE A, NODE B, IMPEDANCE
def AllOrNothing(GRAPH,demand,origin):
cdef int nodes
if demand.dtype != "float64":
print 'EXCEPTION: Demand should be type float (float64). \nData transformed. Possible precision loss'
demand=demand.astype(float)
if GRAPH.dtype != "float64":
print 'EXCEPTION: GRAPH should be type float (float64). \nData transformed. Possible precision loss'
GRAPH=GRAPH.astype(float)
links=GRAPH.shape[0] #Number of links in the network
max_link=int(np.max(GRAPH[:,0])+1) #Max ID link in the network
nodes=np.max(GRAPH[:,1:3])+1
#We start the liloads matrix here to add the flows from start, so we don't
#have to add the flows from all the iterations/origins
LILOADS=np.zeros(max_link,dtype=DTYPE)
a_nodes=np.zeros(links, dtype=ITYPE) #Holds node of origin
b_nodes=np.zeros(links, dtype=ITYPE) #Holds node of destination
graph_fs=np.empty(nodes+1, dtype=ITYPE) #Holds the Forward star for the graph
graph_n_u=np.zeros(links, dtype=DTYPE) #Holds data for the graph (nested utility)
a_nodes[:]=GRAPH[:,1].astype(ITYPE)
b_nodes[:]=GRAPH[:,2].astype(ITYPE)
graph_n_u[:]=GRAPH[:,3]
graph_fs.fill(-1)
ind = np.lexsort((b_nodes,a_nodes)) # Sort by a, then by b
ind = ind.astype(ITYPE)
idsgraph=GRAPH[:,0].astype(ITYPE)
idsgraph[np.arange(links-1)]=idsgraph[ind]
_Ordering_and_Forward_Star(a_nodes,
b_nodes,
graph_n_u,
ind,
graph_fs)
assigone(demand,graph_n_u, b_nodes, graph_fs,idsgraph,LILOADS, origin)
return ((origin, LILOADS))
cdef assigone(np.ndarray[DTYPE_t, ndim=1, mode='c'] demand,
np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
np.ndarray[ITYPE_t, ndim=1, mode='c'] ids_graph,
np.ndarray[DTYPE_t, ndim=1, mode='c'] LILOADS,
int origin):
cdef int N, number_of_links, init_origin, end_origin, nodes, links, i, j
#Nodes in our graph
#The sparse graph has an overhead of one on the shape
N = csr_indptr.shape[0]-1
#------------------------------
# initializes dist_matrix for output
dist_matrix = np.empty(N, dtype=DTYPE)
dist_matrix.fill(np.inf)
dist_matrix[origin] = 0
umatrix=np.zeros(N, dtype=DTYPE)
#------------------------------
#------------------------------
# initializes predecessors for output
predecessors = np.empty(N, dtype=ITYPE)
predecessors.fill(-1)
#------------------------------
#------------------------------
#initializes the matrix that will return the links in the tree
conn = np.empty(N, dtype=ITYPE)
conn.fill(-1)
#------------------------------
#------------------------------
#Runs the shortest path algorithm to capture the SPath
_dijkstra_directed(origin,
csr_weights,
csr_indices,
csr_indptr,
dist_matrix,
predecessors,
ids_graph,
conn)
#------------------------------
#----------------------------------------------------------------------------------------------
#performs the assignment itself
#starts matrices to hold the loads
nodes=predecessors.size
links=csr_weights.size
_assignsAON(predecessors,
conn,
demand,
LILOADS,
nodes,
origin)
index=0
conn=0
return 1
@cython.boundscheck(False) # turn of bounds-checking for entire function
cdef _assignsAON(np.ndarray[ITYPE_t, ndim=1, mode='c'] pred,
np.ndarray[ITYPE_t, ndim=1, mode='c'] conn,
np.ndarray[DTYPE_t, ndim=1, mode='c'] demand,
np.ndarray[DTYPE_t, ndim=1, mode='c'] LILOADS,
int nodes,
int origin):
cdef unsigned int t_origin
cdef ITYPE_t c, o, j, i, p, k
cdef DTYPE_t d
cdef unsigned int dests = demand.shape[0]
for i from 0 <= i < dests:
if demand[i]>0:
j=i
p=pred[j]
while p>=0:
c=conn[j]
LILOADS[c]=LILOADS[c]+demand[i]
j=p
p=pred[j]
return 1
# ############################################################################################################################################################
##############################################################################################################################################################
# ######## CREATES THE FORWARD STAR FOR COMPUTING SHORTEST PATHS #######################################################################################
##############################################################################################################################################################
# ############################################################################################################################################################
#Procedure to simply get the graph, sort it using the keys in IND
#and prepare the forward star
def Ordering_and_Forward_Star():
return 'empty'
cdef _Ordering_and_Forward_Star(np.ndarray[ITYPE_t, ndim=1, mode='c'] a_nodes, #A_Node/B_Node
np.ndarray[ITYPE_t, ndim=1, mode='c'] b_nodes,
np.ndarray[DTYPE_t, ndim=1, mode='c'] graph_n_u,
np.ndarray[ITYPE_t, ndim=1, mode='c'] ind,
np.ndarray[ITYPE_t, ndim=1, mode='c'] graph_fs):
cdef int k,l,m
cdef unsigned int links = a_nodes.shape[0]
cdef unsigned int nodes = graph_fs.shape[0]
cdef np.ndarray aux_a=np.zeros(links, dtype=ITYPE)
cdef np.ndarray aux_b=np.zeros(links, dtype=ITYPE)
cdef np.ndarray aux_u=np.zeros(links, dtype=DTYPE)
cdef np.ndarray aux_n_u=np.zeros(links, dtype=DTYPE)
#Copy data into auxiliary variables
for k from 0 <= k < links:
aux_a[k]=a_nodes[k]
aux_b[k]=b_nodes[k]
aux_n_u[k]=graph_n_u[k]
#Ordering
for k from 0 <= k < links:
l=ind[k]
a_nodes[k]=aux_a[l]
b_nodes[k]=aux_b[l]
graph_n_u[k]=graph_n_u[l]
#Assembling FS
#First element of the forward star
l=a_nodes[0]
graph_fs[l]=0
for k from 1 <= k < links:
l=a_nodes[k] #current origin node
m=a_nodes[k-1] #PREVIUOS origin node
if l!=m: #If the current link starts after
graph_fs[l]=k
#Last elemnt of the FS
graph_fs[nodes-1]=links
#Filling whatever was not filled in the graph_fs (missing nodes)
l=0
for k from 0< k <= nodes:
m=nodes-k
if graph_fs[m]>=0:
l=graph_fs[m]
if graph_fs[m]==-1:
graph_fs[m]=l
"""-------------------------------------------------------------------------------------------------------------------------------------------------------------"""
"""-------------------------------------------------------------------------------------------------------------------------------------------------------------"""
#Jake Vanderpla's Dijkstra implementation with path tracking variables added to it
#This code was taken from SciPy V0.11
cdef _dijkstra_directed(int origin,
np.ndarray[DTYPE_t, ndim=1, mode='c'] csr_weights,
np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indices,
np.ndarray[ITYPE_t, ndim=1, mode='c'] csr_indptr,
np.ndarray[DTYPE_t, ndim=1, mode='c'] dist_matrix,
np.ndarray[ITYPE_t, ndim=1, mode='c'] pred,
np.ndarray[ITYPE_t, ndim=1, mode='c'] ids,
np.ndarray[ITYPE_t, ndim=1, mode='c'] connectors):
cdef unsigned int N = dist_matrix.shape[0]
cdef unsigned int i, k, j_source, j_current
cdef ITYPE_t j
cdef DTYPE_t weight
cdef FibonacciHeap heap
cdef FibonacciNode *v, *current_node
cdef FibonacciNode* nodes = <FibonacciNode*> malloc(N *
sizeof(FibonacciNode))
j_source=origin
for k from 0 <= k < N:
initialize_node(&nodes[k], k)
dist_matrix[j_source] = 0
heap.min_node = NULL
insert_node(&heap, &nodes[j_source])
while heap.min_node:
v = remove_min(&heap)
v.state = SCANNED
for j from csr_indptr[v.index] <= j < csr_indptr[v.index + 1]:
j_current = csr_indices[j]
current_node = &nodes[j_current]
if current_node.state != SCANNED:
weight = csr_weights[j]
if current_node.state == NOT_IN_HEAP:
current_node.state = IN_HEAP
current_node.val = v.val + weight
insert_node(&heap, current_node)
pred[j_current] = v.index
#The link that took us to such node
connectors[j_current] = ids[j]
elif current_node.val > v.val + weight:
decrease_val(&heap, current_node,
v.val + weight)
pred[j_current] = v.index
#The link that took us to such node
connectors[j_current] = ids[j]
#v has now been scanned: add the distance to the results
dist_matrix[v.index] = v.val
free(nodes)
######################################################################
# FibonacciNode structure
# This structure and the operations on it are the nodes of the
# Fibonacci heap.
#
cdef enum FibonacciState:
SCANNED
NOT_IN_HEAP
IN_HEAP
cdef struct FibonacciNode:
unsigned int index
unsigned int rank
FibonacciState state
DTYPE_t val
FibonacciNode* parent
FibonacciNode* left_sibling
FibonacciNode* right_sibling
FibonacciNode* children
cdef void initialize_node(FibonacciNode* node,
unsigned int index,
DTYPE_t val=0):
# Assumptions: - node is a valid pointer
# - node is not currently part of a heap
node.index = index
node.val = val
node.rank = 0
node.state = NOT_IN_HEAP
node.parent = NULL
node.left_sibling = NULL
node.right_sibling = NULL
node.children = NULL
cdef FibonacciNode* rightmost_sibling(FibonacciNode* node):
# Assumptions: - node is a valid pointer
cdef FibonacciNode* temp = node
while(temp.right_sibling):
temp = temp.right_sibling
return temp
cdef FibonacciNode* leftmost_sibling(FibonacciNode* node):
# Assumptions: - node is a valid pointer
cdef FibonacciNode* temp = node
while(temp.left_sibling):
temp = temp.left_sibling
return temp
cdef void add_child(FibonacciNode* node, FibonacciNode* new_child):
# Assumptions: - node is a valid pointer
# - new_child is a valid pointer
# - new_child is not the sibling or child of another node
new_child.parent = node
if node.children:
add_sibling(node.children, new_child)
else:
node.children = new_child
new_child.right_sibling = NULL
new_child.left_sibling = NULL
node.rank = 1
cdef void add_sibling(FibonacciNode* node, FibonacciNode* new_sibling):
# Assumptions: - node is a valid pointer
# - new_sibling is a valid pointer
# - new_sibling is not the child or sibling of another node
cdef FibonacciNode* temp = rightmost_sibling(node)
temp.right_sibling = new_sibling
new_sibling.left_sibling = temp
new_sibling.right_sibling = NULL
new_sibling.parent = node.parent
if new_sibling.parent:
new_sibling.parent.rank += 1
cdef void remove(FibonacciNode* node):
# Assumptions: - node is a valid pointer
if node.parent:
node.parent.rank -= 1
if node.left_sibling:
node.parent.children = node.left_sibling
elif node.right_sibling:
node.parent.children = node.right_sibling
else:
node.parent.children = NULL
if node.left_sibling:
node.left_sibling.right_sibling = node.right_sibling
if node.right_sibling:
node.right_sibling.left_sibling = node.left_sibling
node.left_sibling = NULL
node.right_sibling = NULL
node.parent = NULL
######################################################################
# FibonacciHeap structure
# This structure and operations on it use the FibonacciNode
# routines to implement a Fibonacci heap
ctypedef FibonacciNode* pFibonacciNode
cdef struct FibonacciHeap:
FibonacciNode* min_node
pFibonacciNode[100] roots_by_rank # maximum number of nodes is ~2^100.
cdef void insert_node(FibonacciHeap* heap,
FibonacciNode* node):
# Assumptions: - heap is a valid pointer
# - node is a valid pointer
# - node is not the child or sibling of another node
if heap.min_node:
add_sibling(heap.min_node, node)
if node.val < heap.min_node.val:
heap.min_node = node
else:
heap.min_node = node
cdef void decrease_val(FibonacciHeap* heap,
FibonacciNode* node,
DTYPE_t newval):
# Assumptions: - heap is a valid pointer
# - newval <= node.val
# - node is a valid pointer
# - node is not the child or sibling of another node
# - node is in the heap
node.val = newval
if node.parent and (node.parent.val >= newval):
remove(node)
insert_node(heap, node)
elif heap.min_node.val > node.val:
heap.min_node = node
cdef void link(FibonacciHeap* heap, FibonacciNode* node):
# Assumptions: - heap is a valid pointer
# - node is a valid pointer
# - node is already within heap
cdef FibonacciNode *linknode, *parent, *child
if heap.roots_by_rank[node.rank] == NULL:
heap.roots_by_rank[node.rank] = node
else:
linknode = heap.roots_by_rank[node.rank]
heap.roots_by_rank[node.rank] = NULL
if node.val < linknode.val or node == heap.min_node:
remove(linknode)
add_child(node, linknode)
link(heap, node)
else:
remove(node)
add_child(linknode, node)
link(heap, linknode)
cdef FibonacciNode* remove_min(FibonacciHeap* heap):
# Assumptions: - heap is a valid pointer
# - heap.min_node is a valid pointer
cdef FibonacciNode *temp, *temp_right, *out
cdef unsigned int i
# make all min_node children into root nodes
if heap.min_node.children:
temp = leftmost_sibling(heap.min_node.children)
temp_right = NULL
while temp:
temp_right = temp.right_sibling
remove(temp)
add_sibling(heap.min_node, temp)
temp = temp_right
heap.min_node.children = NULL
# choose a root node other than min_node
temp = leftmost_sibling(heap.min_node)
if temp == heap.min_node:
if heap.min_node.right_sibling:
temp = heap.min_node.right_sibling
else:
out = heap.min_node
heap.min_node = NULL
return out
# remove min_node, and point heap to the new min
out = heap.min_node
remove(heap.min_node)
heap.min_node = temp
# re-link the heap
for i from 0 <= i < 100:
heap.roots_by_rank[i] = NULL
while temp:
if temp.val < heap.min_node.val:
heap.min_node = temp
temp_right = temp.right_sibling
link(heap, temp)
temp = temp_right
return out