From 8007bb2194dc051086f7da32de3512e6240803e0 Mon Sep 17 00:00:00 2001 From: "Marie E. Rognes" Date: Tue, 6 Feb 2024 10:19:52 +0100 Subject: [PATCH] Add FEniCS and Dolfin-adjoint based code for solving optimal transport problems. --- README | 16 ++++ cases.py | 212 +++++++++++++++++++++++++++++++++++++++++ optimalflow.py | 160 +++++++++++++++++++++++++++++++ optimalflow_adjoint.py | 133 ++++++++++++++++++++++++++ run_case.py | 90 +++++++++++++++++ 5 files changed, 611 insertions(+) create mode 100644 README create mode 100644 cases.py create mode 100644 optimalflow.py create mode 100644 optimalflow_adjoint.py create mode 100644 run_case.py diff --git a/README b/README new file mode 100644 index 0000000..5cd8882 --- /dev/null +++ b/README @@ -0,0 +1,16 @@ +# Dependencies: +# Python3 +# fenicsproject (stable or dev) +# numpy + +# fenicsproject run stable +# fenicsproject run dev +fenicsproject run quay.io/dolfinadjoint/pyadjoint:latest + +# Module files +cases.py +optimalflow.py + +# Run test script +run_case.py + diff --git a/cases.py b/cases.py new file mode 100644 index 0000000..72a6678 --- /dev/null +++ b/cases.py @@ -0,0 +1,212 @@ +import os +import os.path +import csv +import numpy + +from dolfin import * +from optimalflow import non_negativize + +def hdf5write(name, field): + mesh = field.function_space().mesh() + file = HDF5File(mesh.mpi_comm(), name, "w") + file.write(field, "/function", 0) + file.close() + +def csvwrite(name, values, header=None, debug=True, mode="w"): + if debug: + print(header) + print(" & ".join("$%.4f$" % v for v in values)) + + with open(name, mode) as f: + writer = csv.writer(f) + writer.writerow(header) + writer.writerow(values) + +def generate_data_bump(mesh, g, D=0.0, r=0.0, noise=0.0, output=None): + """Generate data for a relatively smooth test case with a bump moving + in the middle of the domain. + + Domain: [0, 1]**2 + c_0: Bump function + phi = (g, g) + + Let c_1 be defined by one timestep of the convection-diffusion-reaction equation + + c_t + div (phi c) - D div grad c + r c = 0 + + where c_0 and phi are as given, and D and r if given. Evolve by a + timestep tau = 1.0. + + If outputdir is given as a string, write generated data to given + directory. + """ + #tau = Constant(1.0) # Time step + tau = 1.0 # Time step + + Q = FunctionSpace(mesh, "CG", 1) + + # Define initial c0 + bump_x = "beta/(2*alpha*tgamma(1./beta))*std::exp(-pow((std::abs(x[0] - mu)/alpha), beta))" + bump_y = "beta/(2*alpha*tgamma(1./beta))*std::exp(-pow((std::abs(x[1] - mu)/alpha), beta))" + bump = Expression("1 + 1./7*%s*%s" % (bump_x, bump_y), degree=3, beta=8.0, alpha=0.2, mu=0.5) + c0 = interpolate(bump, Q) + + # Define initial phi + V = VectorFunctionSpace(mesh, "CG", 1) + phi = Expression((str(g), str(g)), degree=1) + phi = interpolate(phi, V) + + # Define variational problem for evolution of c + c = TrialFunction(Q) + d = TestFunction(Q) + a = (inner(c, d) + tau*inner(div(c*phi), d))*dx() + if D is not None and abs(D) > 0.0: + a += tau*inner(D*grad(c), grad(d))*dx() + if r is not None and abs(r) > 0.0: + a += tau*r*c*d*dx() + + L = inner(c0, d)*dx() + A = assemble(a) + b = assemble(L) + + if D is not None and D > 0: + bc = DirichletBC(Q, c0, "on_boundary") + bc.apply(A, b) + + # Solve it + c1 = Function(Q) + solve(A, c1.vector(), b, "mumps") + + # Add noise to the concentrations: + if noise: + N = c0.vector().size() + r0 = numpy.random.normal(0, noise, N) + r1 = numpy.random.normal(0, noise, N) + c0.vector()[:] += r0 + c1.vector()[:] += r1 + + # Zero any negative values + c0 = non_negativize(c0) + c1 = non_negativize(c1) + + # Optional: Store solutions to .h5 and .pvd format + if output is not None: + filename = lambda f: os.path.join(output, "data", f) + hdf5write(filename("c0_e.h5"), c0) + hdf5write(filename("c1_e.h5"), c1) + hdf5write(filename("phi_e.h5"), phi) + + file = File(filename("c_e.pvd")) + file << c0 + file << c1 + file = File(filename("phi_e.pvd")) + file << phi + + csvwrite(filename("info_e.csv"), (float(tau), D, g), header=("tau", "D", "g")) + + return (c0, c1, phi, tau) + +def generate_data_bdry(mesh, g, D=0.0, r=0.0, noise=0.0, tau=1.0, output=None): + """Generate data for a test case with a concentration appearing on the boundary. + + Domain: Given + c_0: 1.0 on the left and lower boundary if d = 2, on_boundary iff d=3 + phi = (g, 0) if d == 2, (g, 0, 0) iff d == 3 + + Let c_1 be defined by one timestep of the convection-diffusion-reaction equation + + c_t + div (phi c) - D div grad c + r c = 0 + + where c_0 and phi are as given, and D and r if given. Evolve by a + timestep tau = 1.0. + + If outputdir is given as a string, write generated data to given + directory. + """ + tau = Constant(tau) # Time step + + Q = FunctionSpace(mesh, "CG", 1) + dim = mesh.topology().dim() + if dim == 2: + bc = DirichletBC(Q, 1.0, "near(x[0], 0.0) || near(x[1], 0.0)", "pointwise") + else: + bc = DirichletBC(Q, 1.0, "on_boundary") + c_ = Function(Q) + bc.apply(c_.vector()) + + # Define initial phi + V = VectorFunctionSpace(mesh, "CG", 1) + if dim == 2: + phi = Expression((str(g), "0.0"), degree=1) + else: + phi = Expression((str(g), "0.0", "0.0"), degree=1) + phi = interpolate(phi, V) + + # Define variational problem for evolution of c + c = TrialFunction(Q) + d = TestFunction(Q) + a = (inner(c, d) + tau*inner(div(c*phi), d))*dx() + if D is not None and abs(D) > 0.0: + a += tau*inner(D*grad(c), grad(d))*dx() + if r is not None and abs(r) > 0.0: + a += tau*r*c*d*dx() + + L = inner(c_, d)*dx() + A = assemble(a) + b = assemble(L) + + if D is not None and D > 0: + bc = DirichletBC(Q, c_, "on_boundary") + bc.apply(A, b) + + # Solve it for c0 + c0 = Function(Q) + solve(A, c0.vector(), b, "mumps") + + # Evolve further to c1 + c_.assign(c0) + b = assemble(L) + if D is not None and D > 0: + bc = DirichletBC(Q, c0, "on_boundary") + bc.apply(A, b) + + c1 = Function(Q) + solve(A, c1.vector(), b, "mumps") + + # Add noise to the concentrations: + if noise: + N = c0.vector().size() + r0 = numpy.random.normal(0, noise, N) + r1 = numpy.random.normal(0, noise, N) + c0.vector()[:] += r0 + c1.vector()[:] += r1 + + # Zero any negative values + c0 = non_negativize(c0) + c1 = non_negativize(c1) + + # Optional: Store solutions to .h5 and .pvd format + if output is not None: + filename = lambda f: os.path.join(output, f) + hdf5write(filename("c0_e.h5"), c0) + hdf5write(filename("c1_e.h5"), c1) + delta_c = project(c1 - c0, c0.function_space()) + hdf5write(filename("delta_c_e.h5"), delta_c) + hdf5write(filename("phi_e.h5"), phi) + + file = File(filename("c_e.pvd")) + file << c0 + file << c1 + file << delta_c + file = File(filename("phi_e.pvd")) + file << phi + + csvwrite(filename("info_e.csv"), (float(tau), g, D, r), header=("tau", "g", "D", "r")) + + return (c0, c1, phi, tau) + +if __name__ == "__main__": + + mesh = UnitSquareMesh(32, 32) + (c0, c1, phi, tau) = generate_data_bump(mesh, 0.02, output="tmp-bump") + (c0, c1, phi, tau) = generate_data_bdry(mesh, 0.02, output="tmp-bdry") diff --git a/optimalflow.py b/optimalflow.py new file mode 100644 index 0000000..556999f --- /dev/null +++ b/optimalflow.py @@ -0,0 +1,160 @@ +import numpy +import pylab +from dolfin import * + +def non_negativize(I): + """Given a scalar Function c, return the field with negative values + replaced by zero. + + """ + c = I.copy(deepcopy=True) + vec = c.vector().get_local() + # Extract dof indices where the vector values are negative + negs = numpy.where(vec < 0)[0] + # Set these values to zero + c.vector()[negs] = 0.0 + return c + +def compute_omt(I0, I1, tau, alpha, space="CG", adjust=False, threshold=1.e-3): + """Given two image intensity fields I0 and I1, a time step tau > 0 and + a regularization parameter alpha > 0, return a vector field phi + such that + + I_t + div (phi I) \approx 0 in \Omega + + where I(t = 0) = I0 and I(t = tau) = I1. + + Mueller, M., Karasev, P., Kolesov, I. & Tannenbaum, A. Optical + flow estimation for flame detection in videos. IEEE Transactions on + image processing, 22, 2786–2797 + + If adjust is given as True, filter the input values by replacing + negative values by zero, + + Moreover, set ident_zeros for those rows for which no values + exceed the given threshold. + + """ + + # Map negative values to zero in I0 and I1: + if adjust: + info("Adjusting negative input values to zero.") + I0 = non_negativize(I0) + I1 = non_negativize(I1) + + # Check balance of mass assumption + m1 = assemble(I0*dx()) + m2 = assemble(I1*dx()) + info("OMT: Mass preserved (\int I0 == \in I1)? I0 = %.5g, I1 = %0.5g" % (m1, m2)) + + Q = I0.function_space() + mesh = Q.mesh() + d = mesh.topology().dim() + + if space == "RT": + V = FunctionSpace(mesh, "RT", 1) + else: + V = VectorFunctionSpace(mesh, "CG", 1) + + # Define dI and barI + dI = (I1 - I0)/tau + barI = 0.5*(I0 + I1) + I = barI + + # Define OMT variational forms + phi = TrialFunction(V) + psi = TestFunction(V) + a = (inner(div(I*phi), div(I*psi)) + alpha*inner(I*phi, psi))*dx() + L = - inner(dI, div(I*psi))*dx() + + # Assemble linear system + A = assemble(a) + b = assemble(L) + + # Set zero (tol) rows to identity as relevant + A.ident_zeros(tol=threshold) + + # Solve the linear system + phi = Function(V) + solve(A, phi.vector(), b, "mumps") + + return phi + +def element_cell(mesh): + "Return the finite element cell." + return triangle if mesh.topology().dim() == 2 else tetrahedron + +def compute_ocd(c1, c2, tau, D, alpha): + + mesh = c1.function_space().mesh() + + cell = element_cell(mesh) + C = FiniteElement("CG", cell, 1) # H1 + Y = FiniteElement("CG", cell, 1) # H10 + Q = VectorElement("CG", cell, 1) # H1 (H(div) formulation also natural) + Mx = MixedElement([C, Y, Q]) + M = FunctionSpace(mesh, Mx) + + m = Function(M) + (c, y, phi) = split(m) + (d, z, psi) = TestFunctions(M) + + F1 = (c*d + (1./tau*d + div(d*phi))*y + inner(D*grad(d), grad(y)) - c2*d)*dx() + F2 = (div(c*psi)*y + alpha*(inner(phi, psi) + inner(grad(phi), grad(psi))))*dx() + F3 = ((1./tau*c + div(c*phi))*z + inner(D*grad(c), grad(z)) - 1./tau*c1*z)*dx() + F = F1 + F2 + F3 + + assign(m.sub(0), c2) + + #set_log_level(LogLevel.DEBUG) + + bcs = [DirichletBC(M.sub(0), c2, "on_boundary"), + DirichletBC(M.sub(1), 0.0, "on_boundary")] + + #info(NonlinearVariationalSolver.default_parameters(), True) + ps = {"nonlinear_solver": "snes", "snes_solver": {"linear_solver": "mumps", "maximum_iterations": 50, "relative_tolerance": 1.e-10}} + solve(F == 0, m, bcs, solver_parameters=ps) + (c, y, phi) = m.split(deepcopy=True) + + return (c, y, phi) + +def compute_magnitude_field(phi): + + # Split phi into its components (really split it) + phis = phi.split(deepcopy=True) + + # Get the map from vertex index to dof + v2d = [vertex_to_dof_map(phii.function_space()) for phii in phis] + dim = len(v2d) + + # Create array of component values at vertex indices so p0[0] is + # value at vertex 0 e.g. + if dim == 2: + p0 = phis[0].vector().get_local(v2d[0]) + p1 = phis[1].vector().get_local(v2d[1]) + # Take element-wise magnitude + m = numpy.sqrt((numpy.square(p0) + numpy.square(p1))) + else: + p0 = phis[0].vector().get_local(v2d[0]) + p1 = phis[1].vector().get_local(v2d[1]) + p2 = phis[2].vector().get_local(v2d[2]) + # Take element-wise magnitude + m = numpy.sqrt((numpy.square(p0) + numpy.square(p1) + numpy.square(p2))) + + # Map array of values at vertices back to values at dofs and + # insert into magnitude field. + M = phis[0].function_space() + magnitude = Function(M) + d2v = dof_to_vertex_map(M) + magnitude.vector()[:] = m[d2v] + return magnitude + +if __name__ == "__main__": + mesh = UnitSquareMesh(4, 4) + V = VectorFunctionSpace(mesh, "CG", 1) + phi = Function(V) + phi.vector()[1] = 2.0 + phi.vector()[0] = 2.0 + a = compute_magnitude_field(phi) + print(a.vector().max()) + print(a.vector().size()) diff --git a/optimalflow_adjoint.py b/optimalflow_adjoint.py new file mode 100644 index 0000000..255c6fc --- /dev/null +++ b/optimalflow_adjoint.py @@ -0,0 +1,133 @@ +import resource +import csv +import os +import os.path +from cases import csvwrite + +from dolfin import * +from dolfin_adjoint import * + +def compute_reduced_ocd(c0, c1, tau, D, alpha, results_dir, space="CG", reg="H1"): + # c0: + # c1: + # tau: time step + # D: diffusion coefficient + # alpha: regularization parameter + # space: finite element space for the velocity field ("CG" | "RT" | "BDM") + # reg: if "H1", use H1-regularization, else use H(div) + + info("Computing OCD via reduced approach") + + # Define mesh and function space for the concentration + mesh = c0.function_space().mesh() + C = FunctionSpace(mesh, "CG", 1) + + # Space for the convective velocity field phi + if space == "CG": + Q = VectorFunctionSpace(mesh, "CG", 1) + else: + Q = FunctionSpace(mesh, space, 1) + phi = Function(Q, name="Control") + + # Regularization term + def R(phi, alpha, mesh): + if reg == "H1": + form = 0.5*alpha*(inner(phi, phi) + inner(grad(phi), grad(phi)))*dx(domain=mesh) + else: + form = 0.5*alpha*(inner(phi, phi) + inner(div(phi), div(phi)))*dx(domain=mesh) + return form + + # Define previous solution + c_ = Function(C) + c_.assign(c0) # Hack to make dolfin-adjoint happy, maybe just start tape here? + + c2 = Function(C) + c2.assign(c1) + + # Define variational problem + c = TrialFunction(C) + d = TestFunction(C) + F = (1.0/tau*(c - c_)*d + div(c*phi)*d + inner(D*grad(c), grad(d)))*dx() + a, L = system(F) + bc = DirichletBC(C, c2, "on_boundary") + + # ... and solve it once + c = Function(C, name="State") + solve(a == L, c, bc, solver_parameters={"linear_solver": "mumps"}) + + # Output max values of target and current solution for progress + # purposes + info("\max c_1 = %f" % c2.vector().max()) + info("\max c = %f" % c.vector().max()) + + # Define the objective functional + j = 0.5*(c - c2)**2*dx(domain=mesh) + R(phi, alpha, mesh) + J = assemble(j) + info("J (initial) = %f" % J) + + # Define control field + m = Control(phi) + + # Define call-back for output at each iteration of the optimization algorithm + name = lambda s: os.path.join(results_dir, "opts", s) + dirname = os.path.join(results_dir, "opts") + if not os.path.isdir(dirname): + os.mkdir(dirname) + header = ("j", "\max \phi") + + # Make an optimization counter file + with open(os.path.join(results_dir, "counter.csv"), "w") as f: + writer = csv.writer(f) + writer.writerow((0,)) + + def eval_cb(j, phi): + values = (j, phi.vector().max()) + mem = resource.getrusage(resource.RUSAGE_SELF)[2] + info("Current memory usage: %g (MB)" % (mem/1024)) + info("\tj = %f, \max phi = %f (mm/h)" % values) + csvwrite(name("optimization_values.csv"), values, header, mode="a") + + # Read the optimization counter file, update counter, and + # write it back, geez. + counter = 0 + with open(os.path.join(results_dir, "counter.csv"), "r") as f: + reader = csv.reader(f) + for row in reader: + counter = int(row[0]) + counter += 1 + + with open(os.path.join(results_dir, "counter.csv"), "w") as f: + info("Updating counter file, counter is now %d " % counter) + writer = csv.writer(f) + writer.writerow((counter,)) + + # Write current control variable to file in HDF5 and PVD formats + file = HDF5File(mesh.mpi_comm(), name("opt_phi_%d.h5" % counter), "w") + file.write(phi, "/function", 0) + file.close() + + # Define reduced functional in terms of J and m + Jhat = ReducedFunctional(J, m, eval_cb_post=eval_cb) + + # Minimize functional + tol = 1.0e-12 + phi_opt = minimize(Jhat, + tol=tol, + options={"gtol": tol, "maxiter": 500, "disp": True}) + pause_annotation() + + # Update phi, and do a final solve to compute c + phi.assign(phi_opt) + solve(a == L, c, bc, solver_parameters={"linear_solver": "mumps"}) + + J = assemble(j) + j0 = 0.5*(c - c2)**2*dx(domain=mesh) + jr = R(phi, alpha, mesh) + J0 = assemble(j0) + Jr = assemble(jr) + info("J = %f" % J) + info("J0 = %f" % J0) + info("Jr = %f" % Jr) + + return (c, phi) + diff --git a/run_case.py b/run_case.py new file mode 100644 index 0000000..1d482fd --- /dev/null +++ b/run_case.py @@ -0,0 +1,90 @@ +import os +import os.path +import pylab +import numpy + +from dolfin import * +from optimalflow import * +from cases import * + +from optimalflow_adjoint import * + +def run_synthetic(n=4, method=None, alpha=1.e-4, D_e=0.0, g=0.0, noise=0.0, output=None, + eps=1.e-4, D=0.0): + """ + n: meshsize + method: "OMT", "OCD" or "rOCD" + alpha: Regularization parameter (both for OMT, OCD and OCDr) + D_e: Diffusion coefficient for the data generated (and for OCDR) + noise: Noise level for the generated data + output: String with output directory + + eps: Used for filtering OMT approximation if OMT is given + D: Used as diffusion coefficient for (r)OCD if (r)OCD is given + """ + + # Generate synthetic data: c_1, c_2, tau = t_2 - t_1, and exact phi + mesh = UnitSquareMesh(n, n) + (c1, c2, phi_e, tau) = generate_data_bump(mesh, g, D=D_e, noise=noise, output=output) + + # Compute Linfty, L2 and H10 norms of the exact velocity field phi_e + phi_e_mag = compute_magnitude_field(phi_e) + phi_e_max = phi_e_mag.vector().max() + values = (norm(phi_e, "L2"), phi_e_max, norm(phi_e, "H10")) + + # Output it + filename = lambda f: os.path.join(output, f) + name = filename("norms.csv") + labels = ("|phi_e|_0", "phi_e_max", "|grad phi_e|_0") + csvwrite(name, values, header=labels) + + # Compute the OMT approximation + if (method == "OMT"): + phi = compute_omt(c1, c2, tau, alpha, space="CG", threshold=eps) + + # or the OCD approximation + elif (method == "OCD"): + (c, y, phi) = compute_ocd(c1, c2, tau, D, alpha) + + # or the OCD approximation + elif (method == "rOCD"): + set_working_tape(Tape()) + (c, phi) = compute_reduced_ocd(c1, c2, tau, D, alpha, output) + + # Store computed solution to .h5 and .pvd format + hdf5write(filename("phi.h5"), phi) + file = File(filename("phi.pvd")) + file << phi + + # Also store the concentration c if we estimate it + if not (method == "OMT"): + hdf5write(filename("c.h5"), c) + file = File(filename("c.pvd")) + file << c + + # Compute magnitude of the field, and extract peak magnitude + m = compute_magnitude_field(phi) + phi_max = m.vector().max() + + labels = ("|phi|_0", "phi_max", "|grad phi|_0") + values = (norm(phi, "L2"), phi_max, norm(phi, "H10")) + csvwrite(name, values, header=labels, mode="a") + +if __name__ == "__main__": + + # Turn on FEniCS optimizations + parameters["form_compiler"]["cpp_optimize"] = True + flags = ["-O3", "-ffast-math", "-march=native"] + parameters["form_compiler"]["cpp_optimize_flags"] = " ".join(flags) + + n = 32 + g = 2.e-2 # Velocity field phi = (g, g) + D = 1.e-2 # Diffusion coefficient (for data and OCD) + noise = 0 # Data generation noise level + method= "rOCD" # "OMT", "OCD" or "rOCD" + alpha = 1.e-3 # Regularization parameter + eps = 1.e-6 # OMT threshold + results = os.path.join("results-r0", "method_%s_n_%d_alpha_%2.1g" % (method, n, alpha)) + + run_synthetic(n=n, method=method, alpha=alpha, D_e=D, g=g, noise=noise, + output=results, eps=eps, D=D)