-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathKUS.py
302 lines (287 loc) · 12.4 KB
/
KUS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# /***********[KUS.py]
# Copyright (c) 2018 Rahul Gupta, Shubham Sharma, Subhajit Roy, Kuldeep Meel
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# ***********/
import argparse
import pickle
import random
import time
import os
import numpy as np
import pydot
class Node():
def __init__(self,label=None,children=[],decision=None):
self.label = label
self.children = children
self.models = 1
self.decisionat = decision
class Sampler():
'''Main class which defines parsing, graph drawing, counting and sampling functions'''
def __init__(self):
self.totalvariables = None
self.treenodes = []
self.useList = False
self.graph = None
self.samples = None
self.drawnnodes = {}
def drawtree(self,root):
'''Recursively draws tree for the d-DNNF'''
rootnode = pydot.Node(str(root.label)+" "+str(root.models))
self.graph.add_node(rootnode)
self.drawnnodes[root.label] = rootnode
for ch in root.children:
if ch.label not in self.drawnnodes:
node = self.drawtree(ch)
self.graph.add_edge(pydot.Edge(rootnode,node))
else:
self.graph.add_edge(pydot.Edge(rootnode,self.drawnnodes[ch.label]))
return rootnode
def parse(self,inputnnffile):
'''Parses the d-DNNF tree to a tree like object'''
with open(inputnnffile) as f:
treetext = f.readlines()
nodelen = 0
for node in treetext:
node = node.split()
if node[0] == 'c':
continue
elif node[0] == 'nnf':
self.totalvariables = int(node[3])
elif node[0] == 'L':
self.treenodes.append(Node(label=int(node[1])))
nodelen+=1
elif node[0] == 'A':
if node[1] == '0':
self.treenodes.append(Node(label='T ' + str(nodelen)))
else:
andnode = Node(label='A '+ str(nodelen))
andnode.children = list(map(lambda x: self.treenodes[int(x)],node[2:]))
self.treenodes.append(andnode)
nodelen+=1
elif node[0] == 'O':
if node[2] == '0':
self.treenodes.append(Node(label='F '+ str(nodelen)))
else:
ornode = Node(label='O '+ str(nodelen),decision = int(node[1]))
ornode.children = list(map(lambda x: self.treenodes[int(x)],node[3:]))
self.treenodes.append(ornode)
nodelen+=1
def counting(self,root):
'''Computes Model Counts'''
if(str(root.label)[0] == 'A'):
root.models = 1
finalbitvec = set()
for ch in root.children:
finalbitvec.update(self.counting(ch))
root.models = root.models * ch.models
return finalbitvec
elif(str(root.label)[0] == 'O'):
bitvecs = []
bitvecs.append(self.counting(root.children[0]))
bitvecs.append(self.counting(root.children[1]))
# set difference to find out uncommon variables
bitvec2_1 = bitvecs[1] - bitvecs[0]
bitvec1_2 = bitvecs[0] - bitvecs[1]
if (not root.children[0].models):
model1 = 0
else:
# accomodating cylinders from uncommon variables in model counts
model1 = root.children[0].models * (2 ** len(bitvec2_1))
if (not root.children[1].models):
model2 = 0
else:
model2 = root.children[1].models * (2 ** len(bitvec1_2))
root.models = model1 + model2
root.children[0].models = model1
root.children[1].models = model2
return bitvecs[0].union(bitvec2_1)
else:
bitvec = set()
try:
int(root.label)
bitvec.add(abs(root.label))
root.models = 1
except:
if (str(root.label)[0] == 'F'):
root.models = 0
elif (str(root.label)[0] == 'T'):
root.models = 1
return bitvec
def getsamples(self,root,indices):
'''Generates Uniform Independent Samples'''
if(not indices.shape[0]):
return
if(str(root.label)[0] == 'O'):
z0 = root.children[0].models
z1 = root.children[1].models
p = (1.0*z0)/(z0+z1)
tosses = np.random.binomial(1, p, indices.shape[0])
self.getsamples(root.children[0],np.array(indices[np.where(tosses==1)[0]]))
self.getsamples(root.children[1],np.array(indices[np.where(tosses==0)[0]]))
elif(str(root.label)[0] == 'A'):
for ch in root.children:
self.getsamples(ch,indices)
else:
try:
int(root.label)
for index in indices:
if (self.useList):
self.samples[index][abs(root.label)-1] = root.label
else:
self.samples[index] += str(root.label)+' '
except:
pass
def random_assignment(totalVars, solution, useList):
'''Takes total number of variables and a partial assignment
to return a complete assignment'''
literals = set()
if useList:
solutionstr = ''
for literal in solution:
if literal: #literal is not 0 ie unassigned
literals.add(abs(int(literal)))
for i in range(1,totalVars+1):
if i not in literals:
solutionstr += str(((random.randint(0,1)*2)-1)*i)+" "
else:
solutionstr += str(int(solution[i-1]))+" "
else:
solutionstr = solution
for x in solution.split():
literals.add(abs(int(x)))
for i in range(1,totalVars+1):
if i not in literals:
solutionstr += str(((random.randint(0,1)*2)-1)*i)+" "
return solutionstr
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--outputfile", type=str, default="samples.txt", help="output file for samples", dest='outputfile')
parser.add_argument("--drawtree", type=int, default = 0, help="draw nnf tree", dest='draw')
parser.add_argument("--samples", type=int, default = 10, help="number of samples", dest='samples')
parser.add_argument("--useList", type=int, default = 0, help="use list for storing samples internally instead of strings", dest="useList")
parser.add_argument("--randAssign", type=int, default = 1, help="randomly assign unassigned variables in a model with partial assignments", dest="randAssign")
parser.add_argument("--savePickle", type=str, default=None, help="specify name to save Pickle of count annotated dDNNF for incremental sampling", dest="savePickle")
parser.add_argument("--printStats", type=int, default=0, help="print d-DNNF compilation stats", dest="printStats")
parser.add_argument("--seed", type=int, default=0, help="seed for random number generator", dest="seed")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--dDNNF', type=str, help="specify dDNNF file", dest="dDNNF")
group.add_argument('--countPickle', type=str, help="specify Pickle of count annotated dDNNF", dest="countPickle")
group.add_argument('DIMACSCNF', nargs='?', type=str, default="", help='input cnf file')
args = parser.parse_args()
random.seed(args.seed)
draw = args.draw
totalsamples = args.samples
useListInt = args.useList
randAssignInt = args.randAssign
dDNNF = False
countPickle = False
DIMACSCNF = ""
printCompilerOutput = False
if args.DIMACSCNF:
DIMACSCNF = args.DIMACSCNF
elif args.dDNNF:
dDNNF = args.dDNNF
elif args.countPickle:
countPickle = args.countPickle
if args.printStats:
printCompilerOutput = args.printStats
savePickle = args.savePickle
useList = False
if (useListInt == 1):
useList = True
randAssign = False
if (randAssignInt == 1):
randAssign = True
sampler = Sampler()
sampler.useList = useList
if DIMACSCNF:
DIMACSCNF = args.DIMACSCNF
with open(DIMACSCNF, "r") as f:
text = f.read()
f.close()
dDNNF = DIMACSCNF + ".nnf"
cmd = "./d4 " + DIMACSCNF + " -out=" + dDNNF
if not printCompilerOutput:
cmd += " > /dev/null 2>&1"
else:
print("The stats of dDNNF compiler: ")
start = time.time()
os.system(cmd)
if not printCompilerOutput:
print("Time taken for dDNNF compilation: ", time.time() - start)
if dDNNF:
start = time.time()
sampler.parse(dDNNF)
print("Time taken to parse the nnf text:", time.time() - start)
if (not sampler.totalvariables):
print("Formula is UNSAT! The generated d-DNNF is empty.")
exit()
start = time.time()
bitvec = sampler.counting(sampler.treenodes[-1])
sampler.treenodes[-1].models = sampler.treenodes[-1].models * (2**(sampler.totalvariables - len(bitvec)))
print("Time taken for Model Counting:", time.time()-start)
timepickle = time.time()
if savePickle:
fp = open(savePickle, "wb")
pickle.dump((sampler.totalvariables,sampler.treenodes), fp)
fp.close()
print("Count annotated dDNNF pickle saved to:", savePickle)
print("Time taken to save the count annotated dDNNF pickle:", time.time() - timepickle)
else:
timepickle = time.time()
fp = open(countPickle, "rb")
(sampler.totalvariables,sampler.treenodes) = pickle.load(fp)
fp.close()
print("Time taken to read the pickle:", time.time() - timepickle)
if savePickle:
fp = open(savePickle, "wb")
pickle.dump((sampler.totalvariables,sampler.treenodes), fp)
fp.close()
print("Time taken to save the count annotated dDNNF pickle:", time.time() - timepickle)
print("Model Count:",sampler.treenodes[-1].models)
if draw:
sampler.graph = pydot.Dot(graph_type='digraph')
sampler.drawtree(sampler.treenodes[-1])
sampler.graph.write_png('d-DNNFgraph.png')
if (useList):
sampler.samples = np.zeros((totalsamples,sampler.totalvariables), dtype=np.int32)
else:
sampler.samples = []
for i in range(totalsamples):
sampler.samples.append('')
start = time.time()
sampler.getsamples(sampler.treenodes[-1],np.arange(0,totalsamples))
print("Time taken by sampling:", time.time()-start)
f = open(args.outputfile,"w+")
if randAssign:
sampler.samples = list(map(lambda x: random_assignment(sampler.totalvariables, x, sampler.useList), sampler.samples))
for i in range(totalsamples):
f.write(str(i+1) + ", " + sampler.samples[i] + "\n")
f.close()
else:
if useList:
for i in range(totalsamples):
f.write(str(i+1) + ", " + " ".join(map(str,sampler.samples[i])) + "\n")
f.close()
else:
for i in range(totalsamples):
f.write(str(i+1) + ", " + sampler.samples[i] + "\n")
f.close()
print("Samples saved to", args.outputfile)
if __name__== "__main__":
main()