-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththf_gen.ml
74 lines (64 loc) · 2.59 KB
/
thf_gen.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
open List
open Printf
open Logic
open Statement
open Util
let quote s =
let s = str_replace "." "_" s in
if is_lower (s.[0]) && String.for_all is_id_char s
then s else sprintf "'%s'" s
let thf_type typ =
let rec f left = function
| Bool -> "$o"
| Base id -> quote id
| Fun (t, u) ->
let s = sprintf "%s > %s" (f true t) (f false u) in
if left then sprintf "(%s)" s else s
| Product _ -> failwith "thf_type"
in f false typ
let binary = [("∧", "&"); ("∨", "|"); ("→", "=>"); ("↔", "<=>")]
let to_var id = capitalize (str_replace "'" "_" id)
let rec thf outer right f =
let parens b s = if b && outer <> "" then sprintf "(%s)" s else s in
match bool_kind f with
| True -> "$true"
| False -> "$false"
| Not f -> (match f with
| Eq(t, u) ->
parens true (sprintf "%s != %s" (thf "=" false t) (thf "=" true u))
| _ -> sprintf "~ %s" (thf "¬" false f))
| Binary (op, _, t, u) ->
let s = sprintf "%s %s %s"
(thf op false t) (assoc op binary) (thf op true u) in
parens (op <> "∧" && op <> "∨" || op <> outer) s
| Quant (q, id, typ, u) ->
let (ids_typs, f) = gather_quant q u in
quant (if q = "∀" then "!" else "?") ((id, typ) :: ids_typs) f
| _ -> match f with
| Const (id, _) -> quote id
| Var (id, _) -> to_var id
| App (t, u) ->
let s = sprintf "%s @ %s" (thf "@" false t) (thf "@" true u) in
parens (outer <> "@" || right) s
| Lambda (id, typ, f) -> quant "^" [(id, typ)] f
| Eq (t, u) ->
parens true (sprintf "%s = %s" (thf "=" false t) (thf "=" true u))
and quant q ids_typs f =
let pair (id, typ) = sprintf "%s: %s" (to_var id) (thf_type typ) in
let pairs = comma_join (map pair ids_typs) in
sprintf "%s[%s]: %s" q pairs (thf q false f)
and thf_formula f = thf "" false f
let thf_statement is_conjecture f =
let const id typ =
sprintf "%s, type, %s: %s" (quote (id ^ "_decl")) (quote id) (thf_type typ) in
let axiom name f = sprintf "%s, axiom, %s" (quote name) (thf_formula f) in
let type_decl t = sprintf "%s, type, %s: $tType" (quote (t ^ "_type")) (quote t) in
let conv = function
| TypeDecl id -> [type_decl id]
| ConstDecl (id, typ) -> [const id typ]
| Axiom (name, f, _) -> [axiom ("ax_" ^ name) f]
| Definition (id, typ, f) -> [const id typ; axiom (id ^ "_def") f]
| Theorem (name, f, _, _) ->
let t = if is_conjecture then "conjecture" else "theorem" in
[sprintf "%s, %s, %s" (quote ("thm_" ^ name)) t (thf_formula f)] in
unlines (map (sprintf "thf(%s).") (conv f))