-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstate.py
441 lines (386 loc) · 18.3 KB
/
state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#!/usr/bin/env python
#coding=utf-8
'''
Definition of State class. It stores all info related to the state of the transition systems:
buffer, stack, and previous (state,action) pairs. It provides methods to get desired feature
vectors for those components, for training. It updates when an action is applied.
It also allows the use of specific "hooks" to manually deal with named entities.
The class also provides methods, used during parsing, to decide which actions are allowed
given the current state and which labels can be used to label a given relation (larc/rarc).
@author: Marco Damonte ([email protected])
@since: 03-10-16
'''
import tostring
from buf import Buffer
from stack import Stack
from node import Node
from rules import Rules
from dependencies import Dependencies
import embs
from subgraph import Subgraph
from resources import Resources
from buftoken import BufToken
from variables import Variables
from relations import Relations
import copy
import re
import numpy as np
STACKWIN = 2
BUFWIN = 4
class State:
def __init__(self, embs, relations, tokens, dependencies, alignments, oracle, hooks, variables, stage, rules, language):
self.hooks_module = __import__("hooks_" + language)
self.semicol_gen_and = False
self.hooks = hooks
self.variables = variables
self.buffer = Buffer(embs, tokens, alignments)
self.embs = embs
self.stage = stage
self.dependencies = Dependencies([(self.buffer.tokens[i1],label,self.buffer.tokens[i2]) for (i1,label,i2) in dependencies])
self.stack = Stack(embs)
self.oracle = oracle
self.rules = rules
if relations is not None:
self.gold = Relations(copy.deepcopy(relations))
else:
self.gold = None
self.sentence = " ".join([t.word for t in tokens])
self.counter = 0
def isTerminal(self):
return self.buffer.isEmpty() and self.stack.isEmpty()
def __repr__(self):
return '<%s %s %s>' % (self.__class__.__name__, self.stack, self.buffer)
def nextSubgraph(self):
token = self.buffer.peek()
word_pos = token.word + "_" + token.pos
lemma_pos = token.lemma + "_" + token.pos
#TRICK FOR SEMICOLONS
if token.word == ";":
if self.semicol_gen_and:
return Subgraph([],[])
else:
self.semicol_gen_and = True
return Subgraph([Node(token, self.variables.nextVar(), "and", False)],[])
#HOOKS
if "-" in token.ne:
token.ne = token.ne.split("-")[1]
if self.hooks and token.ne != "O" and (token.ne in ["ORGANIZATION","ORG"] and word_pos in Resources.phrasetable) == False:
ret = self.hooks_module.run(token, token.word, token.ne, self.variables)
if ret != False:
return Subgraph(ret[0],ret[1])
#ISI LISTS
# if token.word in Resources.verbalization_list:
# return Resources.verbalization_list[token.word].get(token, self.variables)
# if token.lemma in Resources.verbalization_list:
# return Resources.verbalization_list[token.lemma].get(token, self.variables)
#PHRASETABLE
if word_pos in Resources.phrasetable:
return Resources.phrasetable[word_pos].get(token, self.variables)
if lemma_pos in Resources.phrasetable:
return Resources.phrasetable[lemma_pos].get(token, self.variables)
#UNKNOWN TOKENS (variables or constants)
if token.ne == "O": #var
v = self.variables.nextVar()
label = ""
if token.pos.startswith("V"):
label = token.lemma.replace('"','')
if label == "":
label = "emptyconcept"
label += "-01"
if label == "":
label = token.lemma
if label == "":
label = token.word
if label.count('"') % 2 != 0:
label = "".join(label.rsplit('"', 1))
if label.count("'") % 2 != 0:
label = "".join(label.rsplit("'", 1))
label = label.replace('""','"')
if "_" in label or "\\" in label or ":" in label or "/" in label or "(" in label or ")" in label:
label = "genericconcept"
if label == "":
label = "emptyconcept"
if label.startswith("@"):
label = label[1:]
label = label.lower()
return Subgraph([Node(token, v, label, False)],[])
#UNKNKOWN CONSTANTS
nodes = []
token.word = re.sub("[-\/\\\/\(\)]","_",token.word)
for t in token.word.split("_"):
if t.replace(".","").isdigit() and t != '""':
nodes.append(Node(token, t, token.ne, True))
elif t != "":
nodes.append(Node(token, '"' + t + '"', token.ne, True))
return Subgraph(nodes,[])
def apply(self, action):
if action.name == "shift":
#pred = self.nextSubgraph()
token = self.buffer.consume()
sg = action.argv.get()
#pred2 = pred.get_str(None, Variables())
#sg2 = sg.get_str(None, Variables())
#if sg2 == pred2:
# print "MATCH"
#else:
# print "MISMATCH"
if self.stage == "COLLECT":
Resources.phrasetable[token.word+"_"+token.pos][action.argv.get(None, Variables())] += 1
if token.ne in ["ORGANIZATION","ORG"] and token.word not in Resources.seen_org:
Resources.seen_org.append(token.word)
Resources.forg.write(token.word)
for node in sg.nodes:
if node.isConst == False and node.concept.strip() != "":
Resources.forg.write(" " + node.concept)
Resources.forg.write("\n")
test = []
for n in sg.nodes:
if len([r for r in sg.relations if r[1] == n]) == 0: # push only root
self.stack.push(n)
test.append(n)
break
tmprels = Relations()
for n1, n2, label in sg.relations:
self.stack.relations.add(n1, n2, label)
tmprels.add(n1, n2, label)
self.counter += 1
if len(sg.nodes) == 0:
graph = "NULL"
elif tmprels == Relations():
graph = "(" + sg.nodes[0].concept + ")"
else:
graph, _, _ = tostring.to_string(tmprels.triples(), "TOP")
#print self.sentence, "|||", self.counter - 1, "|||", " ".join(graph.replace("\n","").split())
elif action.name == "reduce":
node = self.stack.pop()
if action.argv is not None:
s, label, _ = action.argv
self.stack.relations.add(node, s, label)
elif action.name == "larc":
label = action.argv
child = self.stack.get(1)
top = self.stack.top()
assert (top is not None and child is not None)
self.stack.relations.add(top, child, label)
self.stack.pop(1)
elif action.name == "rarc":
label = action.argv
child = self.stack.get(1)
top = self.stack.top()
assert (top is not None and child is not None)
self.stack.relations.add(child, top, label)
else:
raise ValueError("action not defined")
def legal_rel_labels(self, rel, k):
if rel == "reent":
return self.rules.check(k[0], k[1])
if rel == "larc":
node1 = self.stack.top()
node2 = self.stack.get(k)
else:
node2 = self.stack.top()
node1 = self.stack.get(k)
return np.array(self.rules.check(node1, node2), dtype=np.uint8)
def legal_actions(self):
top = self.stack.top()
a = []
#shift
if self.buffer.isEmpty() == False:
a.append(1)
else:
a.append(0)
#reduce
if self.stack.isEmpty() == False and self.stack.relations.isBasterd(top) == False:
a.append(1)
else:
a.append(0)
#larc
node = self.stack.get(1)
if node is None:
a.append(0)
elif node == self.stack.root():
a.append(0) #larc with root is not allowed
elif top.isConst == True:
a.append(0) #relations starting at a constant are not allowed
elif (top in self.stack.relations.children_nodes(node)) or (node in self.stack.relations.children_nodes(top)):
a.append(0) #relations are not allowed it there's a relation already there between the two nodes
else:
a.append(1)
#rarc
node = self.stack.get(1)
if node is None:
a.append(0)
elif node.isConst == True:
a.append(0) #relations starting at a constant are not allowed
elif (top in self.stack.relations.children_nodes(node)) or (node in self.stack.relations.children_nodes(top)):
a.append(0) #relations are not allowed it there's a relation already there between the two nodes
else:
a.append(1)
if 1 not in a and self.stack.isEmpty() == False:
a[1] = 1
return np.array(a, dtype=np.uint8)
def rel_features(self):
#digits
digits = []
for k in range(1, STACKWIN):
node1 = self.stack.top()
node2 = self.stack.get(k)
digits.append(self.stack.relations.est_depth(node2))
digits.append(self.stack.relations.est_depth(node1))
digits.append(self.stack.relations.est_depth_down(node2))
digits.append(self.stack.relations.est_depth_down(node1))
digits.append(len(self.stack.relations.children[node2]))
digits.append(len(self.stack.relations.parents[node2]))
digits.append(len(self.stack.relations.children[node1]))
digits.append(len(self.stack.relations.parents[node1]))
digits.extend(self.stack.nes(STACKWIN, 0))
digits.extend(self.buffer.nes(STACKWIN, 0))
#concepts/words
words = []
words.extend(self.stack.concepts(STACKWIN, 0))
for k in range(1, STACKWIN):
node1 = self.stack.top()
node2 = self.stack.get(k)
words.append(self.embs.words.get(self.stack.relations.leftmost_parent(node1)))
words.append(self.embs.words.get(self.stack.relations.leftmost_child(node1)))
words.append(self.embs.words.get(self.stack.relations.leftmost_grandchild(node1)))
words.append(self.embs.words.get(self.stack.relations.leftmost_parent(node2)))
words.append(self.embs.words.get(self.stack.relations.leftmost_child(node2)))
words.append(self.embs.words.get(self.stack.relations.leftmost_grandchild(node2)))
words.extend(self.stack.words(STACKWIN, 0))
words.extend(self.buffer.words(STACKWIN, 0))
#pos
pos = []
pos.extend(self.stack.pos(STACKWIN, 0))
pos.extend(self.buffer.pos(STACKWIN, 0))
#deps
deps = []
for k in range (1,BUFWIN):
token1 = self.buffer.peek(k)
node2 = self.stack.top()
if token1 is None or node2 is None or node2.token is None:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
else:
deps.append(self.embs.deps.get(self.dependencies.isArc(token1,node2.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(node2.token,token1,[])))
for k in range (1,BUFWIN):
token1 = self.buffer.peek()
token2 = self.buffer.peek(k)
if token1 is None or token2 is None:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
else:
deps.append(self.embs.deps.get(self.dependencies.isArc(token1,token2,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(token2,token1,[])))
for k in range (0,STACKWIN):
token1 = self.buffer.peek()
node2 = self.stack.get(k)
if token1 is None or node2 is None or node2.token is None:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
else:
deps.append(self.embs.deps.get(self.dependencies.isArc(token1,node2.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(node2.token,token1,[])))
for k in range(1, STACKWIN):
node1 = self.stack.top()
node2 = self.stack.get(k)
if node1 is None or node1.token is None or node2 is None or node2.token is None:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
else:
deps.append(self.embs.deps.get(self.dependencies.isArc(node1.token,node2.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(node2.token,node1.token,[])))
return np.array(digits, dtype=np.float64), np.array(words, dtype=np.float64), np.array(pos, dtype=np.float64), np.array(deps, dtype=np.float64)
def reentr_features(self):
feats = []
#extract a different feature vector for each sibling
for s in [item[0] for p in self.stack.relations.parents[self.stack.top()] for item in self.stack.relations.children[p[0]] if item[0] != self.stack.top()]:
parents = [i[0] for i in self.stack.relations.parents[self.stack.top()]]
parents = [i[0] for i in self.stack.relations.parents[s] if i[0] in parents]
parent = parents[0]
#words
words = []
words.extend(self.stack.concepts(1, 0))
if s.isRoot:
words.append(self.embs.words.get("<TOP>"))
elif s.isConst:
words.append(self.embs.words.get(s.constant))
else:
words.append(self.embs.words.get(s.concept))
if parent.isRoot:
words.append(self.embs.words.get("<TOP>"))
elif parent.isConst:
words.append(self.embs.words.get(parent.constant))
else:
words.append(self.embs.words.get(parent.concept))
#pos
pos = []
pos.extend(self.stack.pos(1, 0))
if s.token is not None:
pos.append(self.embs.pos.get(s.token.pos))
else:
pos.append(self.embs.pos.get("<NULLPOS>"))
if parent.token is not None:
pos.append(self.embs.pos.get(parent.token.pos))
else:
pos.append(self.embs.pos.get("<NULLPOS>"))
#deps
deps = []
p = self.stack.top()
if s is not None and s.token is not None and p is not None and p.token is not None:
deps.append(self.embs.deps.get(self.dependencies.isArc(s.token, p.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(p.token, s.token,[])))
else:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
if s is not None and s.token is not None and parent is not None and parent.token is not None:
deps.append(self.embs.deps.get(self.dependencies.isArc(s.token, parent.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(parent.token, s.token,[])))
else:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
if p is not None and p.token is not None and parent is not None and parent.token is not None:
deps.append(self.embs.deps.get(self.dependencies.isArc(p.token, parent.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(p.token, parent.token,[])))
else:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
feats.append((np.array(words, dtype=np.float64), np.array(pos, dtype=np.float64), np.array(deps, dtype=np.float64)))
return feats
def lab_features(self):
node1 = self.stack.top()
node2 = self.stack.get(1)
#digits
digits = []
digits.append(self.stack.relations.est_depth(node2))
digits.append(self.stack.relations.est_depth(node1))
digits.append(self.stack.relations.est_depth_down(node2))
digits.append(self.stack.relations.est_depth_down(node1))
digits.append(len(self.stack.relations.children[node2]))
digits.append(len(self.stack.relations.parents[node2]))
digits.append(len(self.stack.relations.children[node1]))
digits.append(len(self.stack.relations.parents[node1]))
digits.extend(self.stack.nes(2, 0))
#concepts/words
words = []
words.extend(self.stack.concepts(2, 0))
words.append(self.embs.words.get(self.stack.relations.leftmost_parent(node1)))
words.append(self.embs.words.get(self.stack.relations.leftmost_child(node1)))
words.append(self.embs.words.get(self.stack.relations.leftmost_grandchild(node1)))
words.append(self.embs.words.get(self.stack.relations.leftmost_parent(node2)))
words.append(self.embs.words.get(self.stack.relations.leftmost_child(node2)))
words.append(self.embs.words.get(self.stack.relations.leftmost_grandchild(node2)))
words.extend(self.stack.words(2, 0))
#pos
pos = []
pos.extend(self.stack.pos(2, 0))
#deps
deps = []
if node1 is None or node1.token is None or node2 is None or node2.token is None:
deps.append(self.embs.deps.get("<NULLDEP>"))
deps.append(self.embs.deps.get("<NULLDEP>"))
else:
deps.append(self.embs.deps.get(self.dependencies.isArc(node1.token, node2.token,[])))
deps.append(self.embs.deps.get(self.dependencies.isArc(node2.token, node1.token,[])))
return np.array(digits, dtype=np.float64), np.array(words, dtype=np.float64), np.array(pos, dtype=np.float64), np.array(deps, dtype=np.float64)