curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
docker --version
docker pull ubuntu
docker run -dit -p 8080:8080 ubuntu /bin/bash
docker ps -a
docker exec -it <container_id> /bin/bash
docker exec -it 46faaa72e730 /bin/bash
apt-get update -y
apt-get upgrade -y
apt-get install curl unzip -y
curl "https://awscli.amazonaws.com/awscli-exe-linux-aarch64.zip" -o "awscliv2.zip"
unzip -u awscliv2.zip
./aws/install --bin-dir /usr/local/bin --install-dir /usr/local/aws-cli --update
which aws
ls -l /usr/local/bin/aws
aws --version
aws configure
AWS_ACCESS_KEY_ID= AWS_SECRET_ACCESS_KEY=/9fmfoI3U AWS_DEFAULT_REGION=us-east-1
Since model upload after training and application will download model from s3, hence we need to configure
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-access-key>
AWS_DEFAULT_REGION=us-east-1
export MONGODB_URL="mongodb+srv://mayankchughlearning:[email protected]/?retryWrites=true&w=majority&appName=Cluster0"
export AWS_ACCESS_KEY_ID=""
export AWS_SECRET_ACCESS_KEY=""
export AWS_DEFAULT_REGION="us-east-1"
## install python
```bash
apt-get install python3-full -y
apt-get install pip -y
apt-get install mesa-utils -y
apt-get install git -y
apt-get install nano -y
apt-get install vim -y
git clone https://github.com/mayankchugh-learning/US-Visa-Approval-Prediction.git
cd US-Visa-Approval-Prediction
python3 -m venv path/to/venv
source path/to/venv/bin/activate
pip install -r requirements.txt
aws --version
docker ps -a
docker exec -it <container_id> /bin/bash
docker exec -it 46faaa72e730 /bin/bash
python3 app.py
docker ps -a
docker exec -it <container_id> /bin/bash
- If you want to exit the container's interactive shell session, but do not want to interrupt the processes running in it, press Ctrl+P followed by Ctrl+Q. This operation detaches the container and allows you to return to your system's shell
docker commit <container_id>
docker commit 46faaa72e730 mayankchughjob/end-to-end-usvisa-prediction-mlmodel
docker image tag <image_id> <dockerhubid>/<name on dockerhub>:latest
docker image tag 8a5162116265 mayankchughjob/end-to-end-object-detection:latest
docker push <image id>
docker push mayankchughjob/end-to-end-usvisa-prediction-mlmodel
docker pull mayankchughjob/end-to-end-usvisa-prediction-mlmodel:latest
docker run -dit -p 8080:8080 mayankchughjob/end-to-end-usvisa-prediction-mlmodel /bin/bash
docker ps -a
docker exec -it <container_id> /bin/bash
docker exec -it 582ca9056a26 /bin/bash
cd End-to-end-Object-Detection-Project/
source path/to/venv/bin/activate
python3 app.py
https://docs.docker.com/engine/reference/commandline/image/#examples
docker image ls
https://docs.docker.com/engine/reference/commandline/
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
AWS_DEFAULT_REGION=
docker stop $(docker ps -a -q)
docker rm $(docker ps -a -q)
docker rmi $(docker images -a -q)
docker ps -a
docker image ls
https://docs.docker.com/compose/
https://docs.docker.com/engine/reference/builder/#run
docker ps -a
docker restart <container_id> #8f1a99a79b3d
docker exec -it <container_id> /bin/bash
# docker exec -it 8f1a99a79b3d /bin/bash
source path/to/venv/bin/activate
python3 app.py