Skip to content

Latest commit

 

History

History
135 lines (114 loc) · 4.61 KB

README.md

File metadata and controls

135 lines (114 loc) · 4.61 KB

On-Cloud-N: Cloud Detection Challange

pipeline/concept

Info

Problem

Hardware requirements

  • Run on Google Colab Pro
  • GPU (model or N/A): 1x Tesla P100 with 16GB
  • Memory (GB): 1x 168GB OS: Linux
  • CPU RAM: 1x 16 GB
  • CUDA Version : 11.2
  • Driver Version: 460.32.03
  • Disk: 128 GB

Software requirements

Required software are listed on requirements.txt. Please install all the dependencies before executing the pipeline.

How to run

You can check the run.ipynb notebook for the main point of entry to my code.

Data preparation

First, the training and testing data should be downloaded from the competition website. Ideally, the data can be placed in the data folder in the repo directory. The repo tree would then look like below:

../on-cloud-n-19th-place-solution/
├── LICENSE.md
├── README.md
├── configs
│   ├── efficientnet-b1-unet-512.yaml
│   ├── resnext50_32x4d-unet-512.yaml
│   └── resnet34-unet-512.yaml
├── data
│   ├── train_features
│   │   ├── train_chip_id_1
│   │   │   ├── B02.tif
│   │   │   ├── B03.tif
│   │   │   ├── B04.tif
│   │   │   └── B08.tif
│   │   └── ...
│   ├── train_labels
│   │   ├── train_chip_id_1.tif
│   │   ├── ...
│   │   ...
│   ├── metadata_updated.csv
│   └── pseudo_labels.zip
...

Training

Run train.py to train final 3 models using appropriate arguments.

  • --cfg config file path
  • --fast-dev-run trains only with 1 batch of the entire files
  • --model-name name of the model
  • --img-size image size. e.g. --img-size 512 512
  • --batch-size batch size
  • --loss loss used for model
  • --scheduler lr scheduler
  • --selected-folds folds to train
  • --all-data use all data for training. No validation data
  • --ds-path dataset path
  • --output-dir path to save model weights and necessary files

Training Pipeline

!python train.py --fast-dev-run 1 --cfg './configs/resnet34-unet-512.yaml'
!python train.py --fast-dev-run 1 --cfg './configs/efficientnet-b1-unet-512.yaml'
!python train.py --fast-dev-run 1 --cfg './configs/resnext50_32x4d-unet-512.yaml'

Prediction

inference_pipeline

Run predict.py in order to predict on test images.

predict.py

  • --model-dir the directory where the models listed in are located. The * complete model location is model-dir/*.pt.
  • --batch-size batch size
  • --ensemble ensemble mode (0 = off, 1 = on)
  • --fast-dev-run predicts only with 1 batch of the entire files
  • --ds-path path to dataset
  • --bands bands used in model
  • --output-dir output folder to to save generated .tif files
  • --tta number of TTA's

Inference without Training:

First download the checkpoints mentioned in the info section above and place them on ./output directory then run the following codes.

!python predict.py --ensemble 1 --tta 1 --batch-size 8

Inference after Training:

After training is done, run the following codes.

!python predict.py --ensemble 1 --tta 1 --batch-size 8

Before predict, file tree would look like this:

../on-cloud-n-19th-place-solution/
...
├── data
│   ├── train_features
│   ├── train_labels
│   ├── test_features
│   └── train_metadata.csv
...
├── output
│    ├── resnet34-unet-512x512
│    │   ├── resnet34-unet-512.yaml
│    │   └── resnet34-unet.pt
│    ├── efficientnet-b1-unet-512x512
│    └── resnext50-unet-512x512
...