forked from harlyq/aframe-mesh-particles-component
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaframe-mesh-particles-component.js
901 lines (734 loc) · 35.3 KB
/
aframe-mesh-particles-component.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// Copyright 2018 harlyq
// License MIT
(function() {
const TIME_PARAM = 0 // [0].x
const ID_PARAM = 1 // [0].y
const RADIAL_PARAM = 2 // [0].z
const DURATION_PARAM = 3 // [0].w
const SPAWN_TYPE_PARAM = 4 // [1].x
const SPAWN_DELTA_PARAM = 5 // [1].y
const SEED_PARAM = 6 // [1].z
const PARTICLE_COUNT_PARAM = 7 // [1].w
const MIN_AGE_PARAM = 8 // [2].x
const MAX_AGE_PARAM = 9 // [2].y
const DIRECTION_PARAM = 10 // [2].z
const RANDOM_REPEAT_COUNT = 131072; // random numbers will start repeating after this number of particles
const degToRad = THREE.Math.degToRad
// Bring all sub-array elements into a single array e.g. [[1,2],[[3],4],5] => [1,2,3,4,5]
const flattenDeep = arr1 => arr1.reduce((acc, val) => Array.isArray(val) ? acc.concat(flattenDeep(val)) : acc.concat(val), [])
// Convert a vector range string into an array of elements. def defines the default elements for each vector
const parseVecRange = (str, def) => {
let parts = str.split("..").map(a => a.trim().split(" ").map(b => {
const num = Number(b)
return isNaN(num) ? undefined : num
}))
if (parts.length === 1) parts[1] = parts[0] // if there is no second part then copy the first part
parts.length = 2
return flattenDeep( parts.map(a => def.map((x,i) => typeof a[i] === "undefined" ? x : a[i])) )
}
// parse a ("," separated) list of vector range elements
const parseVecRangeArray = (str, def) => {
return flattenDeep( str.split(",").map(a => parseVecRange(a, def)) )
}
// parse a ("," separated) list of color range elements
const parseColorRangeArray = (str) => {
return flattenDeep( str.split(",").map(a => {
let parts = a.split("..")
if (parts.length === 1) parts[1] = parts[0] // if there is no second part then copy the first part
parts.length = 2
return parts.map(b => new THREE.Color(b.trim()))
}) )
}
// find the first THREE.Mesh that is this either this object or one of it's descendants
const getNthMesh = (object3D, n, i = 1) => {
if (!object3D) {
return
} else if (object3D instanceof THREE.Mesh && i++ == n) {
return object3D
}
for (let child of object3D.children) {
let mesh = getNthMesh(child, n, i)
if (mesh) return mesh
}
}
const toLowerCase = x => x.toLowerCase()
// console.assert(AFRAME.utils.deepEqual(parseVecRange("", [1,2,3]), [1,2,3,1,2,3]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("5", [1,2,3]), [5,2,3,5,2,3]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("5 6", [1,2,3]), [5,6,3,5,6,3]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("5 6 7 8", [1,2,3]), [5,6,7,5,6,7]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("8 9..10", [1,2,3]), [8,9,3,10,2,3]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("..5 6 7", [1,2,3]), [1,2,3,5,6,7]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("2 3 4..5 6 7", [1,2,3]), [2,3,4,5,6,7]))
// console.assert(AFRAME.utils.deepEqual(parseVecRange("5 6 7..", [1,2,3]), [5,6,7,1,2,3]))
// console.assert(AFRAME.utils.deepEqual(parseVecRangeArray("5 6 7..,9..10 11 12", [1,2,3]), [5,6,7,1,2,3,9,2,3,10,11,12]))
// console.assert(AFRAME.utils.deepEqual(parseVecRangeArray("1,2,,,3", [10]), [1,1,2,2,10,10,10,10,3,3]))
// console.assert(AFRAME.utils.deepEqual(parseColorRangeArray("black..red,blue,,#ff0..#00ffaa").map(a => a.getHexString()), ["000000","ff0000","0000ff","0000ff","ffffff","ffffff","ffff00","00ffaa"]))
AFRAME.registerComponent("mesh-particles", {
schema: {
enableInEditor: { default: false },
entity: { type: "selector" },
duration: { default: -1 },
spawnType: { default: "continuous", oneOf: ["continuous", "burst"], parse: toLowerCase },
spawnRate: { default: 10 },
relative: { default: "local", oneOf: ["local", "world"], parse: toLowerCase },
lifeTime: { default: "1" },
position: { default: "0 0 0" },
velocity: { default: "0 0 0" },
acceleration: { default: "0 0 0" },
radialType: { default: "circle", oneOf: ["circle", "sphere"], parse: toLowerCase },
radialPosition: { default: "0" },
radialVelocity: { default: "0" },
radialAcceleration: { default: "0" },
angularVelocity: { default: "0 0 0" },
angularAcceleration: { default: "0 0 0" },
scale: { default: "1" },
color: { default: "white", parse: toLowerCase },
rotation: { default: "0 0 0" },
opacity: { default: "1" },
enable: { default: true },
direction: { default: "forward", oneOf: ["forward", "backward"], parse: toLowerCase },
seed: { type: "float", default: -1 },
overTimeSlots: { type: "int", default: 5 },
frustumCulled: { default: true },
geoName: { default: "mesh" },
geoNumber: { type: "int", min: 1, default: 1 },
},
multiple: true,
help: "https://github.com/harlyq/aframe-mesh-particles-component",
init() {
this.pauseTick = this.pauseTick.bind(this)
this.onBeforeCompile = this.onBeforeCompile.bind(this)
this.count = 0
this.overTimeArrayLength = this.data.overTimeSlots*2 + 1 // each slot represents 2 glsl array elements pluse one element for the length info
this.emitterTime = 0
this.lifeTime = [1,1]
this.useTransparent = false
this.offset = [0,0,0,0,0,0]
this.radialOffset = [0,0]
this.velocity = [0,0,0,0,0,0]
this.radialVelocity = [0,0]
this.acceleration = [0,0,0,0,0,0]
this.radialAcceleration = [0,0]
this.angularVelocity = [0,0,0,0,0,0]
this.angularAcceleration = [0,0,0,0,0,0]
this.colorOverTime = new Float32Array(4*this.overTimeArrayLength).fill(0) // color is xyz and opacity is w
this.rotationScaleOverTime = new Float32Array(4*this.overTimeArrayLength).fill(0) // xyz is rotation, w is scale
this.params = new Float32Array(4*3).fill(0) // see _PARAM constants
this.nextID = 0
this.nextTime = 0
this.relative = this.data.relative // cannot be changed at run-time
this.paused = false
},
remove() {
if (this.instancedMesh) {
this.parentEl.removeObject3D(this.instancedMesh.name)
}
},
update(oldData) {
const data = this.data
let boundsDirty = false
if (data.relative !== this.relative) {
console.error("mesh-particles 'relative' cannot be changed at run-time")
}
if (data.overTimeSlots !== (this.overTimeArrayLength - 1)/2) {
console.error("mesh-particles 'overTimeSlots' cannot be changed at run-time")
}
this.params[SPAWN_TYPE_PARAM] = data.spawnType === "burst" ? 0 : 1
this.params[RADIAL_PARAM] = data.radialType === "circle" ? 0 : 1
this.params[DIRECTION_PARAM] = data.direction === "forward" ? 0 : 1
if (data.seed !== oldData.seed) {
this.seed = data.seed
this.params[SEED_PARAM] = data.seed >= 0 ? data.seed : Math.random()
}
if (this.instancedMesh && data.frustumCulled !== oldData.frustumCulled) {
this.instancedMesh.frustumCulled = data.frustumCulled
}
if (data.position !== oldData.position || data.radialPosition !== oldData.radialPosition) {
this.offset = parseVecRange(data.position, [0,0,0])
this.radialOffset = parseVecRange(data.radialPosition, [0])
boundsDirty = true
}
if (data.velocity !== oldData.velocity || data.radialVelocity !== oldData.radialVelocity) {
this.velocity = parseVecRange(data.velocity, [0,0,0])
this.radialVelocity = parseVecRange(data.radialVelocity, [0])
boundsDirty = true
}
if (data.acceleration !== oldData.acceleration || data.radialAcceleration !== oldData.radialAcceleration) {
this.acceleration = parseVecRange(data.acceleration, [0,0,0])
this.radialAcceleration = parseVecRange(data.radialAcceleration, [0])
boundsDirty = true
}
if (data.rotation !== oldData.rotation || data.scale !== oldData.scale) {
this.updateRotationScaleOverTime()
}
if (data.color !== oldData.color || data.opacity !== oldData.opacity) {
this.updateColorOverTime()
}
if (data.angularVelocity !== oldData.angularVelocity) {
this.angularVelocity = parseVecRange(data.angularVelocity, [0,0,0]).map(degToRad)
}
if (data.angularAcceleration !== oldData.angularAcceleration) {
this.angularAcceleration = parseVecRange(data.angularAcceleration, [0,0,0]).map(degToRad)
}
if (data.duration !== oldData.duration) {
this.params[DURATION_PARAM] = data.duration
this.emitterTime = 0 // if the duration is changed then restart the particles
}
if (data.spawnRate !== oldData.spawnRate || data.lifeTime !== oldData.lifeTime) {
this.lifeTime = parseVecRange(data.lifeTime, [1])
this.params[SPAWN_DELTA_PARAM] = 1/data.spawnRate
this.count = Math.max(1, Math.ceil(this.lifeTime[1]*data.spawnRate))
this.params[MIN_AGE_PARAM] = this.lifeTime[0]
this.params[MAX_AGE_PARAM] = this.lifeTime[1]
this.params[PARTICLE_COUNT_PARAM] = this.count
this.updateAttributes()
}
if (data.enableInEditor !== oldData.enableInEditor) {
this.enablePauseTick(data.enableInEditor)
}
if (boundsDirty && this.geometry) {
this.updateBounds()
}
},
tick(time, deltaTime) {
if (deltaTime > 100) deltaTime = 100 // ignore long pauses
const dt = deltaTime/1000 // dt is in seconds
// for models it may take some time before the original mesh is available, so keep trying
if (!this.instancedMesh) {
this.waitingForMeshDebug = (this.waitingForMesh || 0) + deltaTime
if (this.waitingFroMeshDebug > 2000) {
this.waitingFroMeshDebug -= 600000
console.error("mesh-particles missing mesh geometry")
}
this.createMesh()
}
if (this.shader) {
this.emitterTime += dt
this.params[TIME_PARAM] = this.emitterTime
this.updateWorldTransform(this.emitterTime) // before we update emitterTime
}
},
pause() {
this.paused = true
this.enablePauseTick(this.data.enableInEditor)
},
play() {
this.paused = false
this.enablePauseTick(false)
},
enablePauseTick(enable) {
if (enable) {
this.pauseRAF = requestAnimationFrame(this.pauseTick)
} else {
cancelAnimationFrame(this.pauseRAF)
}
},
pauseTick() {
this.tick(0, 16) // time is not used
this.enablePauseTick(true)
},
createMesh() {
const data = this.data
// if there is no entity property then use the geo from our component
let mesh = getNthMesh(data.entity ? data.entity.getObject3D(data.geoName) : this.el.getObject3D(data.geoName), data.geoNumber)
if (!mesh || !mesh.geometry || !mesh.material) {
return // mesh doesn't exist or not yet loaded
}
this.geometry = (new THREE.InstancedBufferGeometry()).copy(mesh.geometry)
// If sourcing the particle from another entity, then bake that entities'
// scale directly on the geo (i.e. any scale="..." applied to the entity will also be applied
// to the particle)
let entityScale = data.entity ? data.entity.object3D.scale : {x:1, y:1, z:1}
this.geometry.scale(entityScale.x, entityScale.y, entityScale.z)
this.updateAttributes()
this.material = mesh.material.clone()
this.wasOriginalMaterialTransparent = this.materialTransparent
this.material.transparent = this.material.transparent || this.useTransparent
this.material.defines = this.material.defines || {}
this.material.defines.OVER_TIME_ARRAY_LENGTH = this.overTimeArrayLength
this.material.defines.RANDOM_REPEAT_COUNT = RANDOM_REPEAT_COUNT
// world relative particles use a set of new attributes, so only include the glsl code
// if we are world relative
if (this.relative === "world") {
this.material.defines.WORLD_RELATIVE = true
} else if (this.material.defines) {
delete this.material.defines.WORLD_RELATIVE
}
this.material.onBeforeCompile = this.onBeforeCompile
this.instancedMesh = new THREE.Mesh(this.geometry, this.material)
this.instancedMesh.frustumCulled = data.frustumCulled
if (!data.entity) {
//mesh.visible = false // cannot just set the mesh because there may be multiple object3Ds under this geoname
this.el.removeObject3D(data.geoName)
}
this.parentEl = this.relative === "world" ? this.el.sceneEl : this.el
if (this.relative === "local") {
this.instancedMesh.name = this.attrName
} else if (this.el.id) { // world relative with id
this.instancedMesh.name = this.el.id + "_" + this.attrName
} else { // world relative, no id
this.parentEl.meshParticleshUniqueID = (this.parentEl.meshParticleshUniqueID || 0) + 1
this.instancedMesh.name = this.attrName + (this.parentEl.meshParticleshUniqueID > 1 ? this.parentEl.meshParticleshUniqueID.toString() : "")
}
// console.log(this.instancedMesh.name)
this.parentEl.setObject3D(this.instancedMesh.name, this.instancedMesh)
this.updateBounds()
},
updateColorOverTime() {
let color = parseColorRangeArray(this.data.color)
let opacity = parseVecRangeArray(this.data.opacity, [1])
const maxSlots = this.data.overTimeSlots
if (color.length > maxSlots*2) color.length = maxSlots*2
if (opacity.length > maxSlots*2) opacity.length = maxSlots*2
this.colorOverTime.fill(0)
// first colorOverTime block contains length information
// divide by 2 because each array contains min and max values
this.colorOverTime[0] = color.length/2 // glsl colorOverTime[0].x
this.colorOverTime[1] = opacity.length/2 // glsl colorOverTime[0].y
// set k to 4 because the first vec4 of colorOverTime is use for the length params
let n = color.length
for (let i = 0, k = 4; i < n; i++, k += 4) {
let col = color[i]
this.colorOverTime[k] = col.r // glsl colorOverTime[1..].x
this.colorOverTime[k+1] = col.g // glsl colorOverTime[1..].y
this.colorOverTime[k+2] = col.b // glsl colorOverTime[1..].z
}
n = opacity.length
for (let i = 0, k = 4; i < n; i++, k += 4) {
let alpha = opacity[i]
this.colorOverTime[k+3] = alpha // glsl colorOverTime[1..].w
this.useTransparent = this.useTransparent || alpha < 1
}
if (this.material) {
this.material.transparent = this.wasOriginalMaterialTransparent || this.useTransparent // material.needsUpdate = true???
}
},
updateRotationScaleOverTime() {
const maxSlots = this.data.overTimeSlots
let rotation = parseVecRangeArray(this.data.rotation, [0,0,0])
let scale = parseVecRangeArray(this.data.scale, [1])
if (rotation.length/3 > maxSlots*2) rotation.length = maxSlots*2*3 // 3 numbers per rotation, 2 rotations per range
if (scale.length > maxSlots*2) scale.length = maxSlots*2 // 2 scales per range
// first vec4 contains the lengths of the rotation and scale vectors
this.rotationScaleOverTime.fill(0)
this.rotationScaleOverTime[0] = rotation.length/6
this.rotationScaleOverTime[1] = scale.length/2
// set k to 4 because the first vec4 of rotationScaleOverTime is use for the length params
// update i by 3 becase rotation is 3 numbers per vector, and k by 4 because rotationScaleOverTime is 4 numbers per vector
let n = rotation.length
for (let i = 0, k = 4; i < n; i += 3, k += 4) {
this.rotationScaleOverTime[k] = degToRad(rotation[i]) // glsl rotationScaleOverTime[1..].x
this.rotationScaleOverTime[k+1] = degToRad(rotation[i+1]) // glsl rotationScaleOverTime[1..].y
this.rotationScaleOverTime[k+2] = degToRad(rotation[i+2]) // glsl rotationScaleOverTime[1..].z
}
n = scale.length
for (let i = 0, k = 4; i < n; i++, k += 4) {
this.rotationScaleOverTime[k+3] = scale[i] // glsl rotationScaleOverTime[1..].w
}
},
random() {
if (this.seed >= 0) {
this.seed = (1664525*this.seed + 1013904223) % 0xffffffff
return this.seed/0xffffffff
} else {
return Math.random()
}
},
randomNumber(min, max) {
if (min === max) return min
return this.random()*(max - min) + min
},
randomDir(out) {
const theta = this.randomNumber(0, 2*Math.PI)
const omega = this.data.radialType === "sphere" ? this.randomNumber(0, 2*Math.PI) : 0
const rc = Math.cos(theta)
out.x = Math.cos(omega) * rc
out.y = Math.sin(theta)
out.z = Math.sin(omega) * rc
},
randomVec3PlusRadial(vec3Range, wRange, dir, out) {
const r = this.randomNumber(wRange[0], wRange[1])
out.x = this.randomNumber(vec3Range[0], vec3Range[3]) + dir.x*r
out.y = this.randomNumber(vec3Range[1], vec3Range[4]) + dir.y*r
out.z = this.randomNumber(vec3Range[2], vec3Range[5]) + dir.z*r
},
randomVec3(vec3Range, out) {
out.x = this.randomNumber(vec3Range[0], vec3Range[3])
out.y = this.randomNumber(vec3Range[1], vec3Range[4])
out.z = this.randomNumber(vec3Range[2], vec3Range[5])
},
updateAttributes() {
if (this.geometry) {
const n = this.count
this.geometry.maxInstancedCount = n
let instanceIDs = new Float32Array(n)
for (let i = 0; i < n; i++) {
instanceIDs[i] = i
}
this.geometry.addAttribute("instanceID", new THREE.InstancedBufferAttribute(instanceIDs, 1)) // gl_InstanceID is not supported, so make our own id
this.geometry.addAttribute("instanceOffset", new THREE.InstancedBufferAttribute(new Float32Array(3*n).fill(0), 3))
this.geometry.addAttribute("instanceVelocity", new THREE.InstancedBufferAttribute(new Float32Array(3*n).fill(0), 3))
this.geometry.addAttribute("instanceAcceleration", new THREE.InstancedBufferAttribute(new Float32Array(3*n).fill(0), 3))
this.geometry.addAttribute("instanceAngularVelocity", new THREE.InstancedBufferAttribute(new Float32Array(3*n).fill(0), 3))
this.geometry.addAttribute("instanceAngularAcceleration", new THREE.InstancedBufferAttribute(new Float32Array(3*n).fill(0), 3))
if (this.relative === "world") {
this.geometry.addAttribute("instancePosition", new THREE.InstancedBufferAttribute(new Float32Array(3*n).fill(0), 3))
this.geometry.addAttribute("instanceQuaternion", new THREE.InstancedBufferAttribute(new Float32Array(4*n).fill(0), 4))
}
}
},
updateBounds() {
const data = this.data
const maxAge = Math.max(this.lifeTime[0], this.lifeTime[1])
const STRIDE = 3
let extent = [new Array(STRIDE).fill(0), new Array(STRIDE).fill(0)] // extent[0] = min values, extent[1] = max values
let radialExtent = [0,0]
const calcExtent = (offset, velocity, acceleration, t, compareFn) => {
let extent = offset + (velocity + 0.5 * acceleration * t) * t
extent = compareFn(extent, offset)
const turningPoint = -velocity/acceleration
if (turningPoint > 0 && turningPoint < t) {
extent = compare(extent, offset - 0.5*velocity*velocity/acceleration)
}
return extent
}
// Use offset, velocity and acceleration to determine the extents for the particles
for (let j = 0; j < 2; j++) { // index for extent
const compareFn = j === 0 ? Math.min: Math.max
for (let i = 0; i < STRIDE; i++) { // 0 = x, 1 = y, 2 = z, 3 = radial
const offset = compareFn(this.offset[i], this.offset[i + STRIDE])
const velocity = compareFn(this.velocity[i], this.velocity[i + STRIDE])
const acceleration = compareFn(this.acceleration[i], this.acceleration[i + STRIDE])
extent[j][i] = calcExtent(offset, velocity, acceleration, maxAge, compareFn)
}
const radialOffset = compareFn(this.radialOffset[0], this.radialOffset[1])
const radialVelocity = compareFn(this.radialVelocity[0], this.radialVelocity[1])
const radialAcceleration = compareFn(this.radialAcceleration[0], this.radialAcceleration[1])
radialExtent[j] = calcExtent(radialOffset, radialVelocity, radialAcceleration, maxAge, compareFn)
}
// apply the radial extents to the XYZ extents
const maxRadial = Math.max(Math.abs(radialExtent[0]), Math.abs(radialExtent[1]))
extent[0][0] -= maxRadial
extent[0][1] -= maxRadial
extent[0][2] -= data.radialType === "sphere" ? maxRadial : 0
extent[1][0] += maxRadial
extent[1][1] += maxRadial
extent[1][2] += data.radialType === "sphere" ? maxRadial : 0
// TODO consider particle size
const maxR = Math.max(...extent[0].map(Math.abs), ...extent[1].map(Math.abs))
if (!this.geometry.boundingSphere) {
this.geometry.boundingSphere = new THREE.Sphere()
}
this.geometry.boundingSphere.radius = maxR
if (!this.geometry.boundingBox) {
this.geometry.boundingBox = new THREE.Box3()
}
this.geometry.boundingBox.min.set(...extent[0])
this.geometry.boundingBox.max.set(...extent[1])
},
updateWorldTransform: (function() {
let position = new THREE.Vector3()
let quaternion = new THREE.Quaternion()
let scale = new THREE.Vector3()
let dir = new THREE.Vector3()
let offset = new THREE.Vector3()
let velocity = new THREE.Vector3()
let acceleration = new THREE.Vector3()
let angularVelocity = new THREE.Vector3()
let angularAcceleration = new THREE.Vector3()
return function(emitterTime) {
const data = this.data
// the CPU provides the position, velocity, and acceleration parameters for each particle
// (it is cheaper to do this on the CPU than the GPU because the values are set when
// the particles spawn)
if (this.geometry) {
const isWorldRelative = this.relative === "world"
const spawnRate = this.data.spawnRate
const isBurst = data.spawnType === "burst"
const spawnDelta = isBurst ? 0 : 1/spawnRate // for burst particles spawn everything at once
let instancePosition
let instanceQuaternion
let instanceID = this.geometry.getAttribute("instanceID")
let instanceOffset = this.geometry.getAttribute("instanceOffset")
let instanceVelocity = this.geometry.getAttribute("instanceVelocity")
let instanceAcceleration = this.geometry.getAttribute("instanceAcceleration")
let instanceAngularVelocity = this.geometry.getAttribute("instanceAngularVelocity")
let instanceAngularAcceleration = this.geometry.getAttribute("instanceAngularAcceleration")
if (isWorldRelative) {
instancePosition = this.geometry.getAttribute("instancePosition")
instanceQuaternion = this.geometry.getAttribute("instanceQuaternion")
this.el.object3D.matrixWorld.decompose(position, quaternion, scale)
this.geometry.boundingSphere.center.copy(position)
}
let startID = this.nextID
let numSpawned = 0
let id = startID
// the nextTime represents the startTime for each particle, so while the nextTime
// is less than this frame's time, keep emitting particles. Note, if the spawnRate is
// low, we may have to wait several frames before a particle is emitted, but if the
// spawnRate is high we will emit several particles per frame
while (this.nextTime <= emitterTime && numSpawned < this.count) {
this.randomDir(dir)
this.randomVec3PlusRadial(this.offset, this.radialOffset, dir, offset)
this.randomVec3PlusRadial(this.velocity, this.radialVelocity, dir, velocity)
this.randomVec3PlusRadial(this.acceleration, this.radialAcceleration, dir, acceleration)
this.randomVec3(this.angularVelocity, angularVelocity)
this.randomVec3(this.angularAcceleration, angularAcceleration)
if (isWorldRelative) {
instancePosition.setXYZ(id, position.x, position.y, position.z)
instanceQuaternion.setXYZW(id, quaternion.x, quaternion.y, quaternion.z, quaternion.w)
}
id = this.nextID
instanceID.setX(id, data.enable ? id : -1)
instanceOffset.setXYZ(id, offset.x, offset.y, offset.z)
instanceVelocity.setXYZ(id, velocity.x, velocity.y, velocity.z)
instanceAcceleration.setXYZ(id, acceleration.x, acceleration.y, acceleration.z)
instanceAngularVelocity.setXYZ(id, angularVelocity.x, angularVelocity.y, angularVelocity.z)
instanceAngularAcceleration.setXYZ(id, angularAcceleration.x, angularAcceleration.y, angularAcceleration.z)
numSpawned++
this.nextTime += spawnDelta
this.nextID = (this.nextID + 1) % this.count // wrap around to 0 if we'd emitted the last particle in our stack
}
if (numSpawned > 0) {
this.params[ID_PARAM] = id
if (isBurst) { // if we did burst emit, then wait for maxAge before emitting again
this.nextTime += this.lifeTime[1]
}
// if the buffer was wrapped, we cannot send just the end and beginning of a buffer, so submit everything
if (this.nextID < startID) {
startID = 0
numSpawned = this.count
}
if (isWorldRelative) {
instancePosition.updateRange.offset = startID
instancePosition.updateRange.count = numSpawned
instancePosition.needsUpdate = numSpawned > 0
instanceQuaternion.updateRange.offset = startID
instanceQuaternion.updateRange.count = numSpawned
instanceQuaternion.needsUpdate = numSpawned > 0
}
instanceID.updateRange.offset = startID
instanceID.updateRange.count = numSpawned
instanceID.needsUpdate = numSpawned > 0
instanceOffset.updateRange.offset = startID
instanceOffset.updateRange.count = numSpawned
instanceOffset.needsUpdate = numSpawned > 0
instanceVelocity.updateRange.offset = startID
instanceVelocity.updateRange.count = numSpawned
instanceVelocity.needsUpdate = numSpawned > 0
instanceAcceleration.updateRange.offset = startID
instanceAcceleration.updateRange.count = numSpawned
instanceAcceleration.needsUpdate = numSpawned > 0
instanceAngularVelocity.updateRange.offset = startID
instanceAngularVelocity.updateRange.count = numSpawned
instanceAngularVelocity.needsUpdate = numSpawned > 0
instanceAngularAcceleration.updateRange.offset = startID
instanceAngularAcceleration.updateRange.count = numSpawned
instanceAngularAcceleration.needsUpdate = numSpawned > 0
}
}
}
})(),
onBeforeCompile(shader) {
shader.uniforms.params = { value: this.params }
shader.uniforms.colorOverTime = { value: this.colorOverTime }
shader.uniforms.rotationScaleOverTime = { value: this.rotationScaleOverTime }
// WARNING these shader replacements assume that the standard three.js shders are being used
shader.vertexShader = shader.vertexShader.replace( "void main() {", MESH_PARTICLES_VERTEX_SHADER )
shader.vertexShader = shader.vertexShader.replace( "#include <begin_vertex>", "" ) // transformed is calculated in MESH_PARTICLES_VERTEX_SHADER
shader.fragmentShader = shader.fragmentShader.replace( "void main() {", `
varying vec4 vInstanceColor;
void main() {
`)
shader.fragmentShader = shader.fragmentShader.replace( "#include <color_fragment>", `
#ifdef USE_COLOR
diffuseColor.rgb *= vColor;
#endif
diffuseColor *= vInstanceColor;
`)
this.shader = shader
},
})
const MESH_PARTICLES_VERTEX_SHADER = `
attribute float instanceID;
attribute vec3 instanceOffset;
attribute vec3 instanceVelocity;
attribute vec3 instanceAcceleration;
attribute vec3 instanceAngularVelocity;
attribute vec3 instanceAngularAcceleration;
#if defined(WORLD_RELATIVE)
attribute vec3 instancePosition;
attribute vec4 instanceQuaternion;
#endif
uniform vec4 params[3];
uniform vec4 colorOverTime[OVER_TIME_ARRAY_LENGTH];
uniform vec4 rotationScaleOverTime[OVER_TIME_ARRAY_LENGTH];
varying vec4 vInstanceColor;
// each call to random will produce a different result by varying randI
float randI = 0.0;
float random( const float seed )
{
randI += 0.001;
return rand( vec2( seed, randI ));
}
vec3 randVec3Range( const vec3 range0, const vec3 range1, const float seed )
{
vec3 lerps = vec3( random( seed ), random( seed ), random( seed ) );
return mix( range0, range1, lerps );
}
float randFloatRange( const float range0, const float range1, const float seed )
{
float lerps = random( seed );
return mix( range0, range1, lerps );
}
// array lengths are stored in the first slot, followed by actual values from slot 1 onwards
// colors are packed min,max,min,max,min,max,...
// color is packed in xyz and opacity in w, and they may have different length arrays
vec4 calcColorOverTime( const float r, const float seed )
{
vec3 color = vec3(1.0);
float opacity = 1.0;
int colorN = int( colorOverTime[0].x );
int opacityN = int( colorOverTime[0].y );
if ( colorN == 1 )
{
color = randVec3Range( colorOverTime[1].xyz, colorOverTime[2].xyz, seed );
}
else if ( colorN > 1 )
{
float ck = r * ( float( colorN ) - 1.0 );
float ci = floor( ck );
int i = int( ci )*2 + 1;
vec3 sColor = randVec3Range( colorOverTime[i].xyz, colorOverTime[i + 1].xyz, seed );
vec3 eColor = randVec3Range( colorOverTime[i + 2].xyz, colorOverTime[i + 3].xyz, seed );
color = mix( sColor, eColor, ck - ci );
}
if ( opacityN == 1 )
{
opacity = randFloatRange( colorOverTime[1].w, colorOverTime[2].w, seed );
}
else if ( opacityN > 1 )
{
float ok = r * ( float( opacityN ) - 1.0 );
float oi = floor( ok );
int j = int( oi )*2 + 1;
float sOpacity = randFloatRange( colorOverTime[j].w, colorOverTime[j + 1].w, seed );
float eOpacity = randFloatRange( colorOverTime[j + 2].w, colorOverTime[j + 3].w, seed );
opacity = mix( sOpacity, eOpacity, ok - oi );
}
return vec4( color, opacity );
}
// as per calcColorOverTime but euler rotation is packed in xyz and scale in w
vec4 calcRotationScaleOverTime( const float r, const float seed )
{
vec3 rotation = vec3(0.);
float scale = 1.0;
int rotationN = int( rotationScaleOverTime[0].x );
int scaleN = int( rotationScaleOverTime[0].y );
if ( rotationN == 1 )
{
rotation = randVec3Range( rotationScaleOverTime[1].xyz, rotationScaleOverTime[2].xyz, seed );
}
else if ( rotationN > 1 )
{
float rk = r * ( float( rotationN ) - 1.0 );
float ri = floor( rk );
int i = int( ri )*2 + 1; // *2 because each range is 2 vectors, and +1 because the first vector is for the length info
vec3 sRotation = randVec3Range( rotationScaleOverTime[i].xyz, rotationScaleOverTime[i + 1].xyz, seed );
vec3 eRotation = randVec3Range( rotationScaleOverTime[i + 2].xyz, rotationScaleOverTime[i + 3].xyz, seed );
rotation = mix( sRotation, eRotation, rk - ri );
}
if ( scaleN == 1 )
{
scale = randFloatRange( rotationScaleOverTime[1].w, rotationScaleOverTime[2].w, seed );
}
else if ( scaleN > 1 )
{
float sk = r * ( float( scaleN ) - 1.0 );
float si = floor( sk );
int j = int( si )*2 + 1; // *2 because each range is 2 vectors, and +1 because the first vector is for the length info
float sScale = randFloatRange( rotationScaleOverTime[j].w, rotationScaleOverTime[j + 1].w, seed );
float eScale = randFloatRange( rotationScaleOverTime[j + 2].w, rotationScaleOverTime[j + 3].w, seed );
scale = mix( sScale, eScale, sk - si );
}
return vec4( rotation, scale );
}
// assumes euler order is YXZ (standard convention for AFrame)
vec4 eulerToQuaternion( const vec3 euler )
{
// from https://github.com/mrdoob/three.js/blob/master/src/math/Quaternion.js
vec3 c = cos( euler * 0.5 );
vec3 s = sin( euler * 0.5 );
return vec4(
s.x * c.y * c.z + c.x * s.y * s.z,
c.x * s.y * c.z - s.x * c.y * s.z,
c.x * c.y * s.z - s.x * s.y * c.z,
c.x * c.y * c.z + s.x * s.y * s.z
);
}
vec3 applyQuaternion( const vec3 v, const vec4 q )
{
return v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );
}
void main() {
float time = params[0].x;
float ID0 = params[0].y;
float radialType = params[0].z;
float duration = params[0].w;
float spawnType = params[1].x;
float spawnDelta = params[1].y;
float baseSeed = params[1].z;
float instanceCount = params[1].w;
float minAge = params[2].x;
float maxAge = params[2].y;
float loopTime = instanceCount * spawnDelta;
float direction = params[2].z; // 0 is forward, 1 is backward
float age = -1.0;
float ageRatio = -1.0;
float seed = 0.0;
if (instanceID >= 0.0) {
// particles are either emitted in a burst (spawnType == 0) or spread evenly
// throughout 0..loopTime (spawnType == 1). We calculate the ID of the last spawned particle ID0
// for this frame, any instance IDs after ID0 are assumed to belong to the previous loop
float loop = floor( time / loopTime ) - spawnType * (instanceID > ID0 ? 1.0 : 0.0);
float startTime = loop * loopTime + instanceID * spawnDelta * spawnType;
age = startTime >= 0.0 ? time - startTime : -1.0; // if age is -1 we won't show the particle
// we use the id as a seed for the randomizer, but because the IDs are fixed in
// the range 0..instanceCount we calculate a virtual ID by taking into account
// the number of loops that have occurred (note, instanceIDs above ID0 are assumed
// to be in the previous loop). We use the modoulo of the RANDOM_REPEAT_COUNT to
// ensure that the virtualID doesn't exceed the floating point precision
float virtualID = mod( instanceID + loop * instanceCount, float( RANDOM_REPEAT_COUNT ) );
seed = mod(1664525.*virtualID*(baseSeed*11.) + 1013904223., 4294967296.)/4294967296.; // we don't have enough precision in 32-bit float, but results look ok
float lifeTime = randFloatRange( minAge, maxAge, seed );
// don't show particles that would be emitted after the duration
if ( duration > 0.0 && time - age >= duration )
{
age = -1.0;
}
else
{
age = age + direction * ( loopTime - 2.0 * age );
}
// the ageRatio will be used for the lerps on over-time attributes
ageRatio = age/lifeTime;
}
vec3 transformed = vec3(0.0);
vInstanceColor = vec4(1.0);
if ( ageRatio >= 0.0 && ageRatio <= 1.0 )
{
vec4 rotScale = calcRotationScaleOverTime( ageRatio, seed );
vec4 rotationQuaternion = eulerToQuaternion( rotScale.xyz );
transformed = rotScale.w * position.xyz;
transformed = applyQuaternion( transformed, rotationQuaternion );
vec3 velocity = ( instanceVelocity + 0.5 * instanceAcceleration * age );
vec3 rotationalVelocity = ( instanceAngularVelocity + 0.5 * instanceAngularAcceleration * age );
vec4 angularQuaternion = eulerToQuaternion( rotationalVelocity * age );
transformed += applyQuaternion( instanceOffset + velocity * age, angularQuaternion );
#if defined(WORLD_RELATIVE)
transformed += 2.0 * cross( instanceQuaternion.xyz, cross( instanceQuaternion.xyz, transformed ) + instanceQuaternion.w * transformed );
transformed += instancePosition;
#endif
vInstanceColor = calcColorOverTime( ageRatio, seed ); // rgba format
}`
})()