diff --git a/.gitignore b/.gitignore
index 8abcebc5..5d7d37ad 100644
--- a/.gitignore
+++ b/.gitignore
@@ -30,6 +30,7 @@ hs_err_pid*
/pop.xml.gz
/test/output/
/output/
+melun_prebooking_output
# IntelliJ Files
diff --git a/pom.xml b/pom.xml
index 9b71c8f2..8f3408d5 100644
--- a/pom.xml
+++ b/pom.xml
@@ -107,6 +107,21 @@
freight
${project.parent.version}
+
+ org.matsim.contrib
+ dvrp
+ ${project.parent.version}
+
+
+ org.matsim.contrib
+ drt
+ ${project.parent.version}
+
+
+ org.matsim.contrib
+ drt-extensions
+ ${project.parent.version}
+
org.matsim.contrib
bicycle
diff --git a/src/main/java/org/matsim/codeexamples/extensions/drt/RunMelunPrebooking.java b/src/main/java/org/matsim/codeexamples/extensions/drt/RunMelunPrebooking.java
new file mode 100644
index 00000000..2cdeb01c
--- /dev/null
+++ b/src/main/java/org/matsim/codeexamples/extensions/drt/RunMelunPrebooking.java
@@ -0,0 +1,301 @@
+package org.matsim.codeexamples.extensions.drt;
+
+import java.io.File;
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.List;
+import java.util.Random;
+
+import org.apache.logging.log4j.LogManager;
+import org.apache.logging.log4j.Logger;
+import org.matsim.api.core.v01.Id;
+import org.matsim.api.core.v01.IdSet;
+import org.matsim.api.core.v01.Scenario;
+import org.matsim.api.core.v01.network.Link;
+import org.matsim.api.core.v01.population.Person;
+import org.matsim.contrib.drt.extension.insertion.DrtInsertionModule;
+import org.matsim.contrib.drt.optimizer.insertion.DrtInsertionSearchParams;
+import org.matsim.contrib.drt.optimizer.insertion.extensive.ExtensiveInsertionSearchParams;
+import org.matsim.contrib.drt.prebooking.PrebookingParams;
+import org.matsim.contrib.drt.prebooking.logic.ProbabilityBasedPrebookingLogic;
+import org.matsim.contrib.drt.routing.DrtRoute;
+import org.matsim.contrib.drt.routing.DrtRouteFactory;
+import org.matsim.contrib.drt.run.DrtConfigGroup;
+import org.matsim.contrib.drt.run.DrtConfigGroup.OperationalScheme;
+import org.matsim.contrib.drt.run.DrtConfigs;
+import org.matsim.contrib.drt.run.MultiModeDrtConfigGroup;
+import org.matsim.contrib.drt.run.MultiModeDrtModule;
+import org.matsim.contrib.dvrp.fleet.DvrpVehicle;
+import org.matsim.contrib.dvrp.fleet.FleetSpecification;
+import org.matsim.contrib.dvrp.fleet.FleetSpecificationImpl;
+import org.matsim.contrib.dvrp.fleet.ImmutableDvrpVehicleSpecification;
+import org.matsim.contrib.dvrp.run.AbstractDvrpModeModule;
+import org.matsim.contrib.dvrp.run.DvrpConfigGroup;
+import org.matsim.contrib.dvrp.run.DvrpModule;
+import org.matsim.contrib.dvrp.run.DvrpQSimComponents;
+import org.matsim.contrib.dvrp.trafficmonitoring.QSimFreeSpeedTravelTime;
+import org.matsim.core.config.CommandLine;
+import org.matsim.core.config.CommandLine.ConfigurationException;
+import org.matsim.core.config.Config;
+import org.matsim.core.config.ConfigUtils;
+import org.matsim.core.config.groups.QSimConfigGroup.StarttimeInterpretation;
+import org.matsim.core.config.groups.ScoringConfigGroup.ActivityParams;
+import org.matsim.core.config.groups.ScoringConfigGroup.ModeParams;
+import org.matsim.core.controler.Controler;
+import org.matsim.core.controler.OutputDirectoryHierarchy.OverwriteFileSetting;
+import org.matsim.core.network.io.MatsimNetworkReader;
+import org.matsim.core.population.io.PopulationReader;
+import org.matsim.core.router.util.TravelTime;
+import org.matsim.core.scenario.ScenarioUtils;
+
+public class RunMelunPrebooking {
+ private final static Logger logger = LogManager.getLogger(RunMelunPrebooking.class);
+
+ public static class RunSettings {
+ String outputName = "unknown";
+
+ // scenario
+ int seed = 0;
+ double samplingRate = 0.1;
+
+ // fleet
+ int vehicles = 20;
+ int capacity = 8;
+
+ // prebooking
+ double prebookingShare = 0.0;
+ double submissionSlack = 0.0;
+ boolean scheduleWaitBeforeDrive = false;
+
+ // service level
+ double maxWaitTime = 300.0;
+ double maxTravelTimeAlpha = 1.3;
+
+ // constraints
+ double maximumVehicleRange = Double.POSITIVE_INFINITY;
+ double euclideanDistanceFactor = 1.5;
+
+ boolean enableExclusivity = false;
+ }
+
+ public static void runSingle(File populationPath, File networkPath, File outputPath, RunSettings settings) {
+ // configuration
+ Config config = ConfigUtils.createConfig(new MultiModeDrtConfigGroup(), new DvrpConfigGroup());
+
+ config.qsim().setSimStarttimeInterpretation(StarttimeInterpretation.onlyUseStarttime);
+ config.qsim().setStartTime(0.0);
+ config.qsim().setFlowCapFactor(1e9);
+ config.qsim().setStorageCapFactor(1e9);
+ config.qsim().setInsertingWaitingVehiclesBeforeDrivingVehicles(true);
+
+ config.controller().setFirstIteration(0);
+ config.controller().setLastIteration(0);
+ config.controller().setOverwriteFileSetting(OverwriteFileSetting.deleteDirectoryIfExists);
+
+ config.global().setRandomSeed(settings.seed);
+
+ File specificOutputPath = new File(outputPath, settings.outputName);
+ config.controller().setOutputDirectory(specificOutputPath.toString());
+
+ if (new File(specificOutputPath, "output_events.xml.gz").exists()) {
+ logger.warn("Skipping " + settings.outputName);
+ return;
+ }
+
+ ActivityParams activityParams = new ActivityParams("generic");
+ activityParams.setScoringThisActivityAtAll(false);
+ config.scoring().addActivityParams(activityParams);
+
+ ModeParams modeParams = new ModeParams("drt");
+ config.scoring().addModeParams(modeParams);
+
+ MultiModeDrtConfigGroup multiModeDrtConfig = MultiModeDrtConfigGroup.get(config);
+ DrtConfigGroup drtConfig = new DrtConfigGroup();
+ multiModeDrtConfig.addParameterSet(drtConfig);
+
+ drtConfig.mode = "drt";
+ drtConfig.operationalScheme = OperationalScheme.door2door;
+ drtConfig.stopDuration = 60.0;
+ drtConfig.maxWaitTime = settings.maxWaitTime;
+ drtConfig.maxTravelTimeAlpha = settings.maxTravelTimeAlpha;
+ drtConfig.maxTravelTimeBeta = settings.maxWaitTime;
+
+ DrtInsertionSearchParams insertionSearchParams = new ExtensiveInsertionSearchParams();
+ drtConfig.addDrtInsertionSearchParams(insertionSearchParams);
+
+ PrebookingParams prebookingParams = new PrebookingParams();
+ drtConfig.addParameterSet(prebookingParams);
+ prebookingParams.scheduleWaitBeforeDrive = settings.scheduleWaitBeforeDrive;
+
+ DrtConfigs.adjustMultiModeDrtConfig(multiModeDrtConfig, config.scoring(), config.routing());
+
+ // scenario
+ Scenario scenario = ScenarioUtils.createScenario(config);
+ scenario.getPopulation().getFactory().getRouteFactories().setRouteFactory(DrtRoute.class,
+ new DrtRouteFactory());
+
+ new PopulationReader(scenario).readFile(populationPath.toString());
+ new MatsimNetworkReader(scenario.getNetwork()).readFile(networkPath.toString());
+
+ // sampling
+ Random random = new Random(1000 * settings.seed);
+ if (settings.samplingRate < 1.0) {
+ IdSet removeIds = new IdSet<>(Person.class);
+
+ for (Person person : scenario.getPopulation().getPersons().values()) {
+ if (random.nextDouble() > settings.samplingRate) {
+ removeIds.add(person.getId());
+ }
+ }
+
+ removeIds.forEach(scenario.getPopulation()::removePerson);
+ }
+
+ // controller
+ Controler controller = new Controler(scenario);
+ controller.addOverridingModule(new DvrpModule());
+ controller.addOverridingModule(new MultiModeDrtModule());
+ controller.configureQSimComponents(DvrpQSimComponents.activateAllModes(multiModeDrtConfig));
+
+ // fleet
+ List> linkIds = new ArrayList<>(scenario.getNetwork().getLinks().keySet());
+ Collections.sort(linkIds);
+
+ FleetSpecification fleetSpecification = new FleetSpecificationImpl();
+ for (int i = 0; i < settings.vehicles; i++) {
+ fleetSpecification.addVehicleSpecification(ImmutableDvrpVehicleSpecification.newBuilder() //
+ .id(Id.create("veh" + i, DvrpVehicle.class)) //
+ .capacity(settings.capacity) //
+ .serviceBeginTime(0.0) //
+ .serviceEndTime(30 * 3600.0) //
+ .startLinkId(linkIds.get(random.nextInt(linkIds.size()))) //
+ .build());
+ }
+
+ controller.addOverridingModule(new AbstractDvrpModeModule("drt") {
+ @Override
+ public void install() {
+ bindModal(FleetSpecification.class).toInstance(fleetSpecification);
+ bindModal(TravelTime.class).toInstance(new QSimFreeSpeedTravelTime(config.qsim()));
+ }
+ });
+
+ // prebooking logic
+ ProbabilityBasedPrebookingLogic.install(controller, drtConfig, settings.prebookingShare,
+ settings.submissionSlack);
+
+ // constraints
+ DrtInsertionModule insertionModule = new DrtInsertionModule(drtConfig) //
+ .withSingleRequestPerPerson();
+
+ if (Double.isFinite(settings.maximumVehicleRange)) {
+ insertionModule //
+ .withVehicleRange(settings.maximumVehicleRange) //
+ .withEuclideanDistanceApproximator(settings.euclideanDistanceFactor);
+ }
+
+ if (settings.enableExclusivity) {
+ insertionModule //
+ .withExclusivity(request -> request.getId().toString().contains("prebooked"));
+ }
+
+ controller.addOverridingQSimModule(insertionModule);
+
+ // run
+ controller.run();
+ }
+
+ static public void runPrebookingExperiments(File populationPath, File networkPath, File outputPath) {
+ RunSettings settings = new RunSettings();
+ int seeds = 10;
+
+ for (int seed = 0; seed < seeds; seed++) {
+ for (boolean scheduleWaitBeforeDrive : Arrays.asList(false, true)) {
+ for (double share : Arrays.asList(0.0, 0.25, 0.5, 0.75, 1.0)) {
+ for (double submissionSlack : Arrays.asList(0.0, 600.0, 3600.0, 4.0 * 3600.0, 48.0 * 3600.0)) {
+ if (submissionSlack == 0.0 && share > 0.0) {
+ continue;
+ }
+
+ settings.outputName = "main_share" + share + "_slack" + submissionSlack + "_seed" + seed
+ + "_wait" + scheduleWaitBeforeDrive;
+ settings.seed = seed;
+ settings.scheduleWaitBeforeDrive = scheduleWaitBeforeDrive;
+ settings.prebookingShare = share;
+ settings.submissionSlack = submissionSlack;
+
+ runSingle(populationPath, networkPath, outputPath, settings);
+ }
+ }
+ }
+ }
+ }
+
+ static public void runRangeExperiments(File populationPath, File networkPath, File outputPath) {
+ RunSettings settings = new RunSettings();
+ int seeds = 10;
+
+ for (int seed = 0; seed < seeds; seed++) {
+ for (double share : Arrays.asList(0.0, 0.25, 0.5, 0.75, 1.0)) {
+ for (double maximumRange : Arrays.asList(50.0, 100.0, 150.0, 200.0, 500.0)) {
+ settings.outputName = "range_share" + share + "_constraint" + maximumRange + "_seed" + seed;
+ settings.seed = seed;
+ settings.scheduleWaitBeforeDrive = true;
+ settings.prebookingShare = share;
+ settings.submissionSlack = 30.0 * 3600.0;
+ settings.maximumVehicleRange = maximumRange * 1e3;
+
+ runSingle(populationPath, networkPath, outputPath, settings);
+ }
+ }
+ }
+ }
+
+ static public void runExclusivityExperiments(File populationPath, File networkPath, File outputPath) {
+ RunSettings settings = new RunSettings();
+ int seeds = 10;
+
+ for (int seed = 0; seed < seeds; seed++) {
+ for (double share : Arrays.asList(0.0, 0.25, 0.5, 0.75, 1.0)) {
+ for (boolean enableExclusivity : Arrays.asList(false, true)) {
+ settings.outputName = "exclusivity_share" + share + "_exclusive" + enableExclusivity + "_seed"
+ + seed;
+ settings.seed = seed;
+ settings.scheduleWaitBeforeDrive = true;
+ settings.prebookingShare = share;
+ settings.submissionSlack = 30.0 * 3600.0;
+ settings.enableExclusivity = enableExclusivity;
+
+ runSingle(populationPath, networkPath, outputPath, settings);
+ }
+ }
+ }
+ }
+
+ static public void runAll(File populationPath, File networkPath, File outputPath) {
+ runPrebookingExperiments(populationPath, networkPath, outputPath);
+ runRangeExperiments(populationPath, networkPath, outputPath);
+ runExclusivityExperiments(populationPath, networkPath, outputPath);
+ }
+
+ static public final String DEFAULT_POPULATION_PATH = RunMelunPrebooking.class
+ .getResource("melun/melun_drt_population.xml.gz").toString();
+
+ static public final String DEFAULT_NETWORK_PATH = RunMelunPrebooking.class
+ .getResource("melun/melun_drt_network.xml.gz").toString();
+
+ static public final String DEFAULT_OUTPUT_PATH = "melun_prebooking_output";
+
+ static public void main(String[] args) throws ConfigurationException {
+ CommandLine cmd = new CommandLine.Builder(args) //
+ .allowOptions("population-path", "network-path", "output-path") //
+ .build();
+
+ File populationPath = new File(cmd.getOption("population-path").orElse(DEFAULT_POPULATION_PATH));
+ File networkPath = new File(cmd.getOption("network-path").orElse(DEFAULT_NETWORK_PATH));
+ File outputPath = new File(cmd.getOption("output-path").orElse(DEFAULT_OUTPUT_PATH));
+
+ runAll(populationPath, networkPath, outputPath);
+ }
+}
\ No newline at end of file
diff --git a/src/main/resources/org/matsim/codeexamples/extensions/drt/melun/Melun prebooking analysis.ipynb b/src/main/resources/org/matsim/codeexamples/extensions/drt/melun/Melun prebooking analysis.ipynb
new file mode 100644
index 00000000..d921025b
--- /dev/null
+++ b/src/main/resources/org/matsim/codeexamples/extensions/drt/melun/Melun prebooking analysis.ipynb
@@ -0,0 +1,975 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "31d71897",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import geopandas as gpd\n",
+ "import shapely.geometry as geo\n",
+ "from tqdm.notebook import tqdm\n",
+ "import glob\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d0d8151b",
+ "metadata": {},
+ "source": [
+ "## Settings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "0056ab33",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "experiments_path = \"/home/shoerl/temp/melun_drt/output\"\n",
+ "figures_path = \"/home/shoerl/temp/melun_drt/figures\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "19c0f145",
+ "metadata": {},
+ "source": [
+ "## Demand"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "e39f9776",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_demand = pd.read_csv(\n",
+ " \"{}/exclusivity_share0.0_exclusivefalse_seed0/ITERS/it.0/0.drt_legs_drt.csv\".format(experiments_path), \n",
+ " sep = \";\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3bdbfb78",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABjkAAANuCAYAAABEzmsUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAC4jAAAuIwF4pT92AACZ40lEQVR4nOzdeZhU1Zk/8LdYG7sFmiCoIKCIihIiEZGgo+KCUQhRFBO3gEnMGHWSiTExGpcQt+gkGqPROMY9bsQRN4LBBRJAkSFMjAoKKIsLDcjeLXvX7w8f6kexdtPVXX2rP5/n4Xnq3L7nnPdQh+q2v957U+l0Oh0AAAAAAAAJ0yjfBQAAAAAAAOwKIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBITfJdAGzP8uXL429/+1umvc8++0Tz5s3zWBEAAAAAAFtau3ZtfPjhh5n2McccE61bt66TuYUc1Ft/+9vf4tRTT813GQAAAAAAVMMzzzwTX//61+tkLrerAgAAAAAAEknIAQAAAAAAJJLbVVFv7bPPPlntZ555Jvbff/88VUMhKi8vjylTpmTaffr0iZKSkjxWRENi/5FP9h/5ZP+RT/Yf+WYPkk/2H/lk/xW+2bNnZz16YMvf7dYmIQf11pYPGd9///3jkEMOyVM1FKKVK1dGWVlZpt29e/do2bJlHiuiIbH/yCf7j3yy/8gn+498swfJJ/uPfLL/Gp4tf7dbm9yuCgAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgERqku8CAAAAACIiuvxsdL5LyJm5vxqY7xIAoEFwJQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgERqku8CGqrVq1fHu+++G/PmzYtPPvkkVq1aFevXr4+WLVvGF77whejRo0cccsgh0aSJtwgAAAAAALbFb9Dr0AMPPBCvvvpqvPHGG/H+++9HZWXlDs8vKSmJM888M/7jP/4jDj300CrPk0qlalTnnDlzokuXLjUaAwAAAAAAapvbVdWhq6++Ov70pz/FrFmzdhpwRESUl5fH/fffH717944f/ehHsWHDhjqoEgAAAAAAksGVHHm02267RdeuXaNTp07RsmXLqKysjKVLl8Zbb70VZWVlmfM2btwYv/3tb2Pu3Lnx1FNPRePGjfNYNQAAAAAA1A9CjjpUXFwcgwcPjpNPPjn69esXPXr0iEaNtn0xzeTJk+Oqq66KV155JXPsmWeeiVtvvTV+8pOfVHnOI444Ip544olq1dmxY8dqnQ8AAAAAAPkg5KhDb7/9djRt2rRK5/bt2zfGjh0bw4YNiz/96U+Z4zfccEP84Ac/iObNm1dpnKKiIs/XAAAAAACgIHkmRx2qasCxSaNGjeL3v/99FBcXZ46tWLEixo0bl+vSAAAAAAAgcYQc9VzLli3jqKOOyjo2e/bsPFUDAAAAAAD1h5AjAdq0aZPVXrVqVZ4qAQAAAACA+kPIkQDz5s3Lau+99955qgQAAAAAAOoPIUc9N3PmzHjjjTcy7VQqFcccc0weKwIAAAAAgPqhSb4LYPsWLFgQQ4cOjY0bN2aOnXHGGdGlS5cqjzF//vw4//zzY8qUKfHJJ59ERUVFlJaWRtu2baNXr15x9NFHxxlnnLHVLbEAAAAAAKC+E3LUIxs2bIhly5bFjBkz4oUXXoh77rknVq5cmfn6fvvtF3feeWe1xpwzZ07MmTMn69iiRYti0aJFMX369Hj00Ufj0ksvjQsuuCCuu+66KCkpyclaAAAAAACgtgk58ug///M/4/bbb6/Suf37949HHnkk2rVrl/M6Kioq4re//W385S9/iaeffjoOOeSQnM+xaNGiWLx4cbX6zJ49O6tdXl6eFfpATVVUVOywDbXJ/iOf7D/yyf4jn+w/6tK2/vvVHiSf7D/yyf4rfOXl5XmbW8hRzw0ePDguvvjiGDBgQLX6NWnSJI466qg44YQTomfPntGxY8fYfffdo7y8PObPnx8TJkyIhx9+OBYtWpTpM3PmzDjhhBNi8uTJ0blz55yu46677ooRI0bUaIwpU6ZEWVlZjiqCrU2ZMiXfJdCA2X/kk/1HPtl/5JP9Vx8Vzq8pxo0bt9Nz7EHyyf4jn+y/wjN//vy8zV04Pz0UqDFjxsTGjRujqKgojj766Cr1uf766+OCCy7Y7lUfhx56aAwePDiuu+66GDFiRNx8882RTqcjIqKsrCyGDBkSU6dOjVQqlbN1AAAAAABArjXKdwEN2TXXXJN5ZsacOXNi+vTpMWHChLjjjjviuOOOi4iI9evXx+jRo+OYY46JSy65JOsh5Nvz85//vEq3tSoqKoqbbrop7rjjjqzj06ZNi8cff3zXFgUAAAAAAHUkld70v/BT70ycODHOPffcmDdvXubYt7/97bjvvvtyPtfXv/71eO655zLtI488MiZOnJiz8Xf1mRynnnpqpj158uTo3r17zmqCioqKrMsj+/TpE8XFxXmsiIbE/iOf7D/yyf4jn+y/+q/njRPyXULO/OvKf9vqmD1IPtl/5JP9V/hmzJgRffv2zbTffvvtWnn287a4XVU9dtRRR8W4cePi8MMPjyVLlkRExP333x+DBw+Or3/96zmd64orrsgKOSZPnhzLly+P1q1b52T8du3a1fih6SUlJdGyZcuc1APbUlxcbI+RN/Yf+WT/kU/2H/lk/1GbqrK37EHyyf4jn+y/wlNSUpK3ud2uqp7bd99945prrsk6dsstt+R8nj59+kRpaWmmvXHjxpg+fXrO5wEAAAAAgFwRciTAN7/5zaz2pqsscqlRo0bRqVOnrGPVvb0UAAAAAADUJSFHArRr1y7rKovKysqYM2dOzudp0aJFVnv16tU5nwMAAAAAAHJFyJEQTZs2zWqvXbs253N8+umnWe22bdvmfA4AAAAAAMgVIUcCrFmzZqsAon379jmd49NPP40PPvgg69jee++d0zkAAAAAACCXhBwJ8Morr0RlZWWmvdtuu0WHDh1yOscTTzyRNUf79u2je/fuOZ0DAAAAAABySchRz1VWVsZ1112XdeyrX/1qNGvWLGdzLFy4MK6//vqsY1/72tcilUrlbA4AAAAAAMg1IUcdueOOO2LBggXV6rN+/fr4zne+E2+88UbW8Ysvvnib57/33nvx/PPPV2uOsrKyGDRoUCxcuDBzrFmzZnHFFVdUaxwAAAAAAKhrQo46ct9990XXrl3j3HPPjeeffz5WrVq13XNXr14djz/+ePTq1SsefPDBrK+dd955cdxxx22z34IFC2Lw4MHRs2fPuOWWW2LWrFnbnWPVqlVx5513xqGHHhpTp07N+tpVV10V++23X9UXBwAAAAAAedAk3wU0JKtXr45HH300Hn300UilUrH//vtHly5donXr1tGsWbNYtWpVzJs3L6ZPnx7r16/fqv+gQYPi3nvv3ek8b731Vlx++eVx+eWXR6tWraJHjx7Rtm3b2H333aO8vDw+/PDDePPNN2PDhg1b9f3e974XV199dU7WCwAAAAAAtUnIkSfpdDpmzZq1w6stNmnRokVcddVV8ZOf/CSaNm1arXlWrFgRkyZN2ul5xcXFcdttt8UFF1xQrfEBAAAAACBfhBx15N57743nnnsuXnnllZg2bVqsXbt2p30OOuigOOecc2L48OHRsWPHnZ7fvXv3uPLKK+Nvf/tbTJs2LVavXr3TPgcccEAMHz48Lrjggmjbtm2V1gIAAAAAAPWBkKOOHH744XH44YfHddddF+vXr48ZM2bEBx98EB9//HGUl5fH+vXro6SkJFq2bBldunSJXr16RWlpabXmaN++fdxwww0REVFZWRmzZs2K999/Pz7++ONYvnx5rFmzJlq0aBGlpaWx1157xeGHHx577LFHbSwXAAAAAABqnZAjD5o2bRo9e/aMnj171tocjRo1igMPPDAOPPDAWpsDAAAAAADyqVG+CwAAAAAAANgVQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGa5LsAAADYUpefjc53CTkz91cD810CAABAwXIlBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRmuS7AABga11+NjrfJeTU3F8NzHcJAAAAQAFyJQcAAAAAAJBIQg4AAAAAACCR3K4qT1avXh3vvvtuzJs3Lz755JNYtWpVrF+/Plq2bBlf+MIXokePHnHIIYdEkya5eYvWr18fkyZNivnz58eCBQuipKQk9t577+jVq1d06dIlJ3MAAAAAAEBdEnLUoQceeCBeffXVeOONN+L999+PysrKHZ5fUlISZ555ZvzHf/xHHHroobs05+LFi+Paa6+NJ598MpYuXbrNc/r16xeXXnppnH766bs0BwAAAAAA5IPbVdWhq6++Ov70pz/FrFmzdhpwRESUl5fH/fffH717944f/ehHsWHDhmrNN2bMmOjRo0fcfffd2w04IiJee+21OOOMM+Lcc8+NioqKas0BAAAAAAD54kqOPNptt92ia9eu0alTp2jZsmVUVlbG0qVL46233oqysrLMeRs3bozf/va3MXfu3HjqqaeicePGOx17/Pjxceqpp8a6desyx1KpVHz5y1+O/fbbL5YvXx7/93//F59++mnm648++misXLkynnnmmWjUSP4FAAAAAED9JuSoQ8XFxTF48OA4+eSTo1+/ftGjR4/thgmTJ0+Oq666Kl555ZXMsWeeeSZuvfXW+MlPfrLDeT766KMYMmRIVsBx5JFHxr333hvdu3fPHFu7dm3cc889cdlll8X69esjIuL555+Pq666Km688caaLBUAAAAAAGqd/12/Dr399tvx7LPPxoUXXhg9e/bc4dUSffv2jbFjx8a5556bdfyGG26ItWvX7nCea6+9NpYtW5Zp9+vXL15++eWsgCMionnz5vGDH/wgRo4cmXX81ltvjXnz5lV1WQAAAAAAkBdCjjrUtGnTap3fqFGj+P3vfx/FxcWZYytWrIhx48Ztt8+sWbPioYceyrSbNWsWDz74YBQVFW23z6mnnhrDhg3LtNeuXRsjRoyoVq0AAAAAAFDXhBz1XMuWLeOoo47KOjZ79uztnv/YY4/Fxo0bM+0hQ4ZEt27ddjrP5ZdfntUeOXJkrFmzpprVAgAAAABA3RFyJECbNm2y2qtWrdruuaNGjcpqn3/++VWao3v37nHEEUdk2hUVFTF27NhqVAkAAAAAAHVLyJEAWz4fY++9997meWVlZfHmm29m2k2aNIkjjzyyyvMce+yxWe0xY8ZUvUgAAAAAAKhjQo56bubMmfHGG29k2qlUKo455phtnvv2229ntXv27Jn1PI+d6devX1b7nXfeqUalAAAAAABQt4Qc9diCBQti6NChWc/YOOOMM6JLly7bPH/69OlZ7f33379a83Xt2nWH4wEAAAAAQH3SJN8F8P9t2LAhli1bFjNmzIgXXngh7rnnnli5cmXm6/vtt1/ceeed2+2/5QPJO3XqVK35O3funNVesmRJLFu2LEpLS6s1DgAAAAAA1AUhRx7953/+Z9x+++1VOrd///7xyCOPRLt27bZ7zvLly7PaOzp3W0pKSqKoqCjWrFmTObZixYqchByLFi2KxYsXV6vPlqFNeXl5VugDNVVRUbHDNtSmhrb/fH7XLw1t/+Wb/Z/N/iOf7D/q0rY+/+1B8sn+I5/sv8JXXl6et7mFHPXc4MGD4+KLL44BAwbs9NwtN1KLFi2qPV+LFi2yQo5Vq1ZVe4xtueuuu2LEiBE1GmPKlClRVlaWk3pgW6ZMmZLvEmjAtt5/hfUtety4cfkugR2on59/hfNvwP7fsfq5/2go7L/6qGF9/tuD5JP9Rz7Zf4Vn/vz5eZu7cH56KFBjxoyJjRs3RlFRURx99NE7PHfLkKOoqKja87Vo0SKWLVu23TEBAKh9P3y9cH5Mv/0rG/JdAkBi+PwHgOrz4PE8uuaaa2LOnDmZP9OnT48JEybEHXfcEccdd1xERKxfvz5Gjx4dxxxzTFxyySVZDyHfmVQqVe2adqUPAAAAAADkQ+H8LwIJ1KZNm2jTps1Wx4866qi45JJLYuLEiXHuuefGvHnzIiLi97//faxevTruu+++bY5XUlKS1V69enW1a9qyz5Zj7qqLLroohg4dWq0+s2fPjlNPPTXT7tOnT3Tv3j0n9UDE5/d/3PzyyD59+kRxcXEeK6Ih2en+e31CHqqqPf379893CWwmEZ9/BfRvYJf2fwGvPxH7j4Jl/yVAAX/+RTSsnwH9/Ff/+Awkn+y/wjdjxoy8zS3kqMeOOuqoGDduXBx++OGxZMmSiIi4//77Y/DgwfH1r399q/Prc8jRrl27aj8IfUslJSXRsmXLnNQD21JcXGyPkTeFvv8KeW2FoND3X7419L/bna3f/iOf7D9qU1X2ViHvwUJdVyEp5P1H/Wf/FZ5c/R55V7hdVT237777xjXXXJN17JZbbtnmua1atcpqL168uFpzlZeXbxVytG7dulpjAAAAAABAXRFyJMA3v/nNrPbkyZNj+fLlW53XrVu3rPam21xV1Zbnt2nTJkpLS6s1BgAAAAAA1BUhRwK0a9cuK2yorKyMOXPmbHXels+rmD17drXm+eCDD7LaBx98cLX6AwAAAABAXRJyJETTpk2z2mvXrt3qnB49emS1//Wvf8Vnn31W5TkmTZq0w/EAAAAAAKA+EXIkwJo1a+LTTz/NOta+ffutzttrr72iZ8+emfaGDRti4sSJVZ5n/PjxWe2TTz65eoUCAAAAAEAdEnIkwCuvvBKVlZWZ9m677RYdOnTY5rmnnXZaVvuBBx6o0hzvvvtuvPHGG5l2cXFxDBgwYBeqBQAAAACAuiHkqOcqKyvjuuuuyzr21a9+NZo1a7bN888555xo3Lhxpv3000/HrFmzdjrPzTffnNU+88wzo6ioaBcqBgAAAACAuiHkqCN33HFHLFiwoFp91q9fH9/5zneyrrCIiLj44ou326dbt24xbNiwTHvdunUxfPjwWLNmzXb7PPvss/Hggw9m2s2aNYtrr722WrUCAAAAAEBdE3LUkfvuuy+6du0a5557bjz//POxatWq7Z67evXqePzxx6NXr15Z4UNExHnnnRfHHXfcDucaMWJElJaWZtqvvfZanHDCCfHuu+9mnbd27dq44447YujQoVnHf/zjH0fnzp2ruDIAAAAAAMiPJvkuoCFZvXp1PProo/Hoo49GKpWK/fffP7p06RKtW7eOZs2axapVq2LevHkxffr0WL9+/Vb9Bw0aFPfee+9O5+nYsWM8/fTTcdJJJ8W6desiImLSpElx8MEHx2GHHRb77bdfrFixIqZNmxaLFy/eao4tb48FAAAAAAD1kZAjT9LpdMyaNatKz8to0aJFXHXVVfGTn/wkmjZtWqXxjz322Bg1alQMHz48E2Sk0+mYOnVqTJ06dZt9zjrrrLj33nuznukBAAAAAAD1ldtV1ZF77703rrrqqvjKV74SzZs3r1Kfgw46KK677rqYOXNmXHnllVUOODY55ZRT4u23344LL7ww6/ZVW+rbt2889dRT8dhjj0VxcXG15gAAAAAAgHxxJUcdOfzww+Pwww+P6667LtavXx8zZsyIDz74ID7++OMoLy+P9evXR0lJSbRs2TK6dOkSvXr12mEwUVXt2rWLu+++O26//faYNGlSzJs3L8rKyqK4uDg6dOgQvXr1in333TcHKwQAAAAAgLol5MiDpk2bRs+ePaNnz551NmezZs2if//+dTYfAAAAAADUNrerAgAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBITfJdAAAAAP9fl5+NzncJOTP3VwPzXQIAAAXOlRwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGa5LsAAAAA4HNdfjY63yXkzNxfDcx3CQBAA+BKDgAAAAAAIJGEHAAAAAAAQCK5XVWebNy4MWbPnh3Tp0+PTz75JFasWBHNmzeP0tLS6Nq1a/Tu3TuKi4vzXSYAAAAAANRbQo46NH/+/Hj66afj5ZdfjgkTJsTKlSu3e27jxo3jxBNPjEsuuSQGDqz+fUxTqVRNSo05c+ZEly5dajQGAAAAAADUJiFHHTn77LPj8ccfr/L5GzdujBdffDFefPHFGDRoUPzxj3+M9u3b12KFAAAAAACQLEKOOjJz5sxtHu/QoUN069Yt2rdvHxs2bIgPPvgg3nzzzaisrMyc88ILL8TRRx8df/vb32LPPfesq5IBAAAAAKBeE3LkQa9eveLb3/52nHzyydG1a9etvv7xxx/HL3/5y/jv//7vzLGZM2fG0KFD4+9//3u1b0V1xBFHxBNPPFGtPh07dqzW+QAAAAAAUNeEHHUklUrFwIED4xe/+EX07t17h+d26NAh7rnnnvjSl74UF198ceb4xIkT48knn4xvfvOb1Zq7qKjI8zUAAAAAACg4jfJdQEPx5z//OV544YWdBhybu+iii+L000/POvbII4/kujQAAAAAAEgkIUcd2dUrKTa/kiMiYty4cTmoBgAAAAAAkk/IUc/16tUrq7169epYvnx5fooBAAAAAIB6RMhRzzVpsvVjU9atW5eHSgAAAAAAoH4RctRzs2fPzmo3adIk2rZtm6dqAAAAAACg/tj6MgHqlaeeeiqr3bt372jUqHrZ1Pz58+P888+PKVOmxCeffBIVFRVRWloabdu2jV69esXRRx8dZ5xxRrRp0yaXpQMAAAAAQK0SctRj5eXlcd9992UdO+2006o9zpw5c2LOnDlZxxYtWhSLFi2K6dOnx6OPPhqXXnppXHDBBXHddddFSUlJjeoGAAAAAIC6IOSox6644oooKyvLtFu3bh3f/e53a2WuioqK+O1vfxt/+ctf4umnn45DDjkkp+MvWrQoFi9eXK0+W96qq7y8PFauXJnLsmjgKioqdtiG2tTQ9p/P7/qloe2/fGvo+3/L9dt/DUt92//2X92qb+9/XdvW+hvSHmzo73991JD2H/WP/Vf4ysvL8za3kKOeGjVqVNx5551Zx2644YZq3VKqSZMmcdRRR8UJJ5wQPXv2jI4dO8buu+8e5eXlMX/+/JgwYUI8/PDDsWjRokyfmTNnxgknnBCTJ0+Ozp0752w9d911V4wYMaJGY0yZMiUr9IFcmzJlSr5LoAHbev8V1rfocePG5bsEdqB+fv4Vzr+BXdv/DWf99XP/5VvDef/zrX7uv4b+/jes9Rfyz4D1/d8/9fUzkIbC/is88+fPz9vchfPds4C8+eab8a1vfSvr2IABA+L73/9+lce4/vrr44ILLoh27dpt8+uHHnpoDB48OK677roYMWJE3HzzzZFOpyMioqysLIYMGRJTp06NVCq16wsBAACoph++Xjj/mXr7VzbkuwQAgIJXvSdYU+vmz58fAwcOzLq8p3PnzvGnP/2pWoHDz3/+8+0GHJsrKiqKm266Ke64446s49OmTYvHH3+86oUDAAAAAEAdK5z/RaYALFq0KE488cT4+OOPM8f23HPPeOmll2KPPfao1bkvvvjiGDt2bDz33HOZY3fddVecffbZORn/oosuiqFDh1arz+zZs+PUU0/NtPv06RPdu3fPST0Q8fn9Hze/PLJPnz5RXFycx4poSHa6/16fkIeqak///v3zXQKbScTnXwH9G9il/V/A60/E/su3An7/q8T6c19Inlj/1utvSD8D+vmv/vE9mHyy/wrfjBkz8ja3kKOeWLp0aZxwwgkxc+bMzLG2bdvGyy+/HN26dauTGq644oqskGPy5MmxfPnyaN26dY3HbteuXZWuLNmRkpKSaNmyZY1rge0pLi62x8ibQt9/hby2QlDo+y/fGvrf7c7Wb/8Vtob+3lq/9e9MIX8GFuq6Ckkh7z/qP/uv8JSUlORtbrerqgdWrFgRAwYMiLfeeitzrLS0NF566aU45JBD6qyOPn36RGlpaaa9cePGmD59ep3NDwAAAAAA1SHkyLNVq1bFV7/61fjHP/6ROdayZct48cUX49BDD63TWho1ahSdOnXKOrZ48eI6rQEAAAAAAKpKyJFHFRUVccopp8TkyZMzx0pKSmLMmDHRp0+fvNTUokWLrPbq1avzUgcAAAAAAOyMkCNPVq9eHYMGDYqJEydmju22224xevTo6NevX97q+vTTT7Pabdu2zVMlAAAAAACwY0KOPFizZk0MHjw4xo8fnzlWVFQUzz33XBx99NF5q+vTTz+NDz74IOvY3nvvnadqAAAAAABgx4QcdWzdunUxZMiQePnllzPHmjdvHs8880wcf/zxeaws4oknnojKyspMu3379tG9e/c8VgQAAAAAANsn5KhDGzZsiDPPPDPGjBmTOda0adN46qmn4qSTTspjZRELFy6M66+/PuvY1772tUilUnmqCAAAAAAAdkzIUUc2btwY55xzTjz77LOZY02aNIknn3wyBg0alLN53nvvvXj++eer1aesrCwGDRoUCxcuzBxr1qxZXHHFFTmrCwAAAAAAcq1JvgtoKL797W/HyJEjs47deOON0atXr5g7d261xtpzzz2jqKhom19bsGBBDB48OL74xS/GueeeG6eddlp069Ztm+euWrUqHnroobj++uuzAo6IiKuuuir222+/atUFAAAAAAB1qWBDjpUrV8avf/3rGDVqVMyZMyeaN28e3bt3j+HDh8d3v/vdOq/n4Ycf3urYT3/60/jpT39a7bHGjRsXxx577A7Peeutt+Lyyy+Pyy+/PFq1ahU9evSItm3bxu677x7l5eXx4YcfxptvvhkbNmzYqu/3vve9uPrqq6tdFwAAAAAA1KXEhBzPPfdc/PrXv46Izx/U/cILL0Tz5s23ee78+fPj+OOPjw8++CDS6XRERHz22Wfx2muvxeuvvx6PP/54vPDCC9GiRYs6qz+fVqxYEZMmTdrpecXFxXHbbbfFBRdcUAdVAQAAAABAzSTmmRwPPPBATJw4MSZNmhR77bXXdgOOiIhvfvOb8f7770c6nY5UKpX1J51Ox/jx4+O8886rw+rrTvfu3ePKK6+MI488ssohzgEHHBA33nhjzJ07V8ABAAAAAEBiJOZKjvHjx2deDx06dLvnPf300zF58uRIpVIREZFOp6NVq1bRqFGjWLZsWSboGDVqVIwdOzYGDBhQ26Vn6qgL7du3jxtuuCEiIiorK2PWrFnx/vvvx8cffxzLly+PNWvWRIsWLaK0tDT22muvOPzww2OPPfaok9oAAAAAACCXEhFyzJw5M1asWBEREY0aNYrjjz9+u+f+4Q9/iIjPQ4WioqJ4+OGH44wzzoiIiBdeeCHOOeecKC8vj4iI3/3ud3UWcuRDo0aN4sADD4wDDzww36UAAAAAAEDOJSLkmDVrVkREpFKp6Nq1a+y2227bPG/ZsmUxbty4zFUcl112WSbgiIgYNGhQ/Nd//VdceOGFERHx0ksvRXl5eZSUlNTyCgAAqqfLz0bX8gyb/Rj4+oRanWnurwbW6vgAAAA0XIl4JseHH36Yeb3//vtv97wJEybExo0bM8/i+P73v7/VOcOHD8+EJBs2bIg333wz9wUDAAAAAAC1LhEhx6pVqzKvW7Zsud3zJkz4/P9CTKVScdhhh8Vee+211TnNmjWLXr16ZdrvvfdeDisFAAAAAADqSiJCjrVr12ZeN27ceLvnTZ48OfO6f//+2z2vY8eOmdfLly+vWXEAAAAAAEBeJCLkKC4uzrze9ADyLa1duzamTp2aaR911FHbHa9p06aZ16tXr85BhQAAAAAAQF1LRMjRpk2bzOtNDyHf0t///vesKz769u273fE2D0patGiRgwoBAAAAAIC6loiQ4+CDD46IiHQ6HTNnzoy5c+dudc7IkSMzr7t16xZt27bd7ngLFy7MvN48QAEAAAAAAJIjESFHz549Y/fdd49UKhUREVdeeWXW199777149NFHI5VKRSqVigEDBmx3rMrKynj77bcz7S5dutRKzQAAAAAAQO1qku8CqqJ58+Zx2mmnxcMPPxypVCqefPLJWLhwYZx++umxaNGiuPvuu2PNmjUREZFKpeLcc8/d7lj/+te/4rPPPsu0u3fvXuv1AwAAAAAAuZeIkCMi4pprroknn3wy1q1bF+l0OsaPHx/jx4+PiM9vY7XpKo/+/ftHnz59tjvOs88+m3m9zz77RPv27Wu1bgAAAAAAoHYk4nZVERH77bdf/PGPf4yIyAQam6RSqUin09G2bdvMOdszcuTIzG2tjj766FqrFwAAAAAAqF2JCTkiIs4555wYP3589OnTJ9LpdOZPo0aNYtCgQfH666/v8Bkbr776asyYMSPS6XRERJxyyil1VDkAAAAAAJBribld1Sb/9m//Fq+//nosXrw45s2bFxER3bp1i1atWu20b+PGjeO2227LtAcOHFhrdQIAAAAAALUrcSHHJnvssUfsscce1epzzDHHxDHHHFNLFQEAAAAAAHUpUberAgAAAAAA2CQxV3L8/e9/z7zu27dvNGvWbJfGWbt2bbzxxhuZtoePAwAAAABAMiUm5Dj22GMjlUpFRMScOXOiU6dOuzROWVlZZqxUKhUbNmzIZZkAAAAAAEAdSdTtqtLpdE7HyuV4AAAAAABA3UpUyLHpSg4AAAAAAIBEhRyuvAAAAAAAADZJVMiRC5999lnmdYsWLfJYCQAAAAAAUBMNLuSYNWtW5nWrVq3yWAkAAAAAAFATDSrk2LhxY/zhD3+IiM+f73HAAQfkuSIAAAAAAGBXNcl3AZv75S9/WaXzfvvb30br1q2rPO7atWtjwYIFMW7cuJg/f37meL9+/apbIgAAAAAAUE/Uq5DjF7/4RaRSqR2ek06n4/bbb9+l8dPpdGb8xo0bx3nnnbdL4wAAAAAAAPnXoG5XlUqlIp1OR0TEiBEj4qCDDspzRQAAAAAAwK6qV1dyREQmhKjpOdvSrFmzOPLII+PSSy+NgQMH7tIYAAAAAABA/VCvQo5x48Zt83g6nY7jjjsuIj6/GuOxxx6LPffcs0pjplKpaN68ebRu3Tr222+/aNq0ac7qBQAAAAAA8qdehRzHHHPMDr++6XkaX/nKV6JTp051URIAAAAAAFBP1auQY2d29TZVAAAAAABA4UlMyFFZWZnvEgAAAAAAgHqkUb4LAAAAAAAA2BVCDgAAAAAAIJESc7uq6qqsrIwHH3wwRo0aFXPmzInmzZtH9+7dY9iwYXHiiSfmuzwAAAAAAKCGEhNy/P3vf48//vGPERHRuHHj+MMf/hDNmzff5rlLly6NgQMHxpQpUyLi/z+w/J///Gc8/vjjcd5558X9998fjRq5kAUAAAAAAJIqMSHHPffcE48//nikUqkYPHjwdgOOiIhhw4bFG2+8ERERqVQqUqlU5mvpdDoeeeSRKCkpiTvvvLPW6wYAAAAAAGpHYkKOl19+OfP6rLPO2u55r7zySowePToTbGy6imOTVCoV6XQ67r777vjWt74Vffr0qZ2CAaiRLj8bne8ScmrurwbmuwQAAKjXCum/Afz8D1B3EnG/pjlz5sTixYsj4vOQYsCAAds9d9PVGel0Oho1ahS33HJLLFmyJFasWBG/+93vokmTJpkA5De/+U3tFw8AAAAAANSKRFzJMXPmzIj4PODo1KlTtG7depvnlZeXx4svvpgJMb7//e/HZZddlvn6JZdcEuXl5XHllVdGRMTo0aNjzZo1UVRUVLsLAAAAAAAAci4RV3LMnz8/8/rAAw/c7nmTJk2KtWvXZm5R9cMf/nCrcy655JJo1qxZRESsXr063nrrrRxXCwAAAAAA1IVEhBwrV67MvG7VqtV2z5s4cWJEfH7FxyGHHBJdu3bd6pySkpI49NBDM+0ZM2bkrlAAAAAAAKDOJCLkWLNmTeZ18+bNt3ve66+/nnl93HHHbfe8Tp06ZV4vXbq0htUBAAAAAAD5kIiQo0WLFpnXm1/VsbmNGzfGG2+8kWn/27/923bH2/wZHJ999lkOKgQAAAAAAOpaIkKOzR80/sEHH2zznMmTJ0dFRUWm3bdv3+2Ot2rVqszrHV0ZAgAAAAAA1F+JCDkOOuigiIhIp9PxzjvvxKJFi7Y656mnnsq87tSpU3To0GG74y1evDjzevMABQAAAAAASI5EhBxf+tKXonnz5pFKpSKdTseNN96Y9fWFCxfGgw8+GKlUKlKpVBx//PE7HO/tt9/OvO7cuXOt1AwAAAAAANSuJvkuoCqKi4vjlFNOiVGjRkVExB133BGrVq2K008/PRYtWhQ33XRTrFixIiIiUqlUnHXWWdsd67333st6rseBBx5Yu8UDAAAAAAC1IhEhR0TE1VdfHc8++2yk0+lIp9Px4IMPxoMPPhgRn9/GKpVKRUREr169dnglx3PPPZd53b59+9hnn31qtW4AAAAAAKB2JOJ2VRERhx56aNx4441ZgcamwGPTbayKiorij3/84w7H+fOf/xwRn1/xceSRR9Z63QAAAAAAQO1ITMgREfHTn/40Hnnkkdhrr70inU5njqfT6fjiF78Yr776ahx66KHb7T916tSYOnVqpn3yySfXZrkAAAAAAEAtSsztqjY555xz4uyzz46pU6fGvHnzIiLioIMOih49euy07yeffBI//OEPM+2vfe1rtVYnAAAAAABQuxIXckR8fqupww8/PA4//PBq9Rs8eHAMHjy4lqoCAAAAAADqUqJuVwUAAAAAALCJkAMAAAAAAEgkIQcAAAAAAJBIiXwmxyaLFi2KF198MSZMmBDvv/9+LF26NFatWhUREe+//36eqwMAAAAAAGpTIkOOBQsWxNVXXx2PPvporFu3Lutr6XQ6UqnUNvs99NBD8e1vfzsiIkpLS2PBggXRtGnTWq93WzZu3BizZ8+O6dOnxyeffBIrVqyI5s2bR2lpaXTt2jV69+4dxcXFOZ1z/fr1MWnSpJg/f34sWLAgSkpKYu+9945evXpFly5dcjoXAAAAAADUtsSFHC+99FKce+658emnn0Y6nY6I2G6osaWzzjorfvrTn8bixYtj2bJl8fzzz8eQIUNqs9ws8+fPj6effjpefvnlmDBhQqxcuXK75zZu3DhOPPHEuOSSS2LgwIE1mnfx4sVx7bXXxpNPPhlLly7d5jn9+vWLSy+9NE4//fQazQUAAAAAAHUlUc/kmDBhQnzta1+LxYsXZx1v3LhxfOELX8iEHtvTrFmz+OY3v5lpP/PMM7VR5jadffbZ0blz5/jRj34Uo0eP3mHAEfH5lR4vvvhiDBo0KL72ta/FwoULd2neMWPGRI8ePeLuu+/ebsAREfHaa6/FGWecEeeee25UVFTs0lwAAAAAAFCXEhNyLF++PIYMGRLr1q2LVCoV6XQ6TjnllHjllVeioqIipkyZUqVxBg8enHk9bty42ip3KzNnztzm8Q4dOsSxxx4b3/jGN+L000+PXr16RaNG2W/LCy+8EEcffXSUlZVVa87x48fHqaeeGosWLcocS6VScdhhh8XQoUPjxBNPjLZt22b1efTRR+Oss86KysrKas0FAAAAAAB1LTEhx8033xxLlizJtH/zm9/ECy+8EP3794+mTZtW+ZZVRx55ZDRu3DjS6XR88skn8fHHH9dWydvVq1evuOOOO2L27Nnx0Ucfxbhx4+KJJ56Ip556KqZNmxbz58+P733ve1l9Zs6cGUOHDt3p1SqbfPTRR5lQaJMjjzwy3nnnnZg6dWqMHDkyxo4dGx999FHcfvvtWc8mef755+Oqq67KzWIBAAAAAKCWJCLkSKfTcd9990UqlYpUKhUXXHBB/OhHP9qlsYqKimL//ffPtGfMmJGrMncolUrFwIED43//939j2rRpcckll0TXrl23eW6HDh3innvuid///vdZxydOnBhPPvlklea79tprY9myZZl2v3794uWXX47u3btnnde8efP4wQ9+ECNHjsw6fuutt8a8efOqNBcAAAAAAORDIkKOadOmZR403qhRoxgxYkSNxuvSpUvm9dy5c2tWXBX9+c9/jhdeeCF69+5d5T4XXXTRVg8Cf+SRR3bab9asWfHQQw9l2s2aNYsHH3wwioqKttvn1FNPjWHDhmXaa9eurfHfMwAAAAAA1KZEhBybrrZIpVLx5S9/Odq3b1+j8Vq1apV5vbMHgOfK5sFKdVx88cVZ7ao8R+Sxxx6LjRs3ZtpDhgyJbt267bTf5ZdfntUeOXJkrFmzpoqVAgAAAABA3UpEyLH5g7N3NSzYXJMmTTKv6/sv8Xv16pXVXr16dSxfvnyHfUaNGpXVPv/886s0V/fu3eOII47ItCsqKmLs2LFVKxQAAAAAAOpYIkKOza9KaNy4cY3H2zwkaN26dY3Hq02bBzKbbP4w8S2VlZXFm2++mdX/yCOPrPJ8xx57bFZ7zJgxVe4LAAAAAAB1KREhxx577JF5vXDhwhqP9+6772Zet2nTpsbj1abZs2dntZs0aRJt27bd7vlvv/12Vrtnz55RXFxc5fn69euX1X7nnXeq3BcAAAAAAOpSIkKOvffeOyIi0ul0/OMf/4h0Or3LY3300UfxwQcfZNoHH3xwjeurTU899VRWu3fv3tGo0fbftunTp2e1999//2rN17Vr1x2OBwAAAAAA9UUiQo4jjzwymjZtGhERq1atimeffXaXx/rDH/6QeV1aWho9e/ascX21pby8PO67776sY6eddtoO+2x55UenTp2qNWfnzp2z2kuWLIlly5ZVawwAAAAAAKgLWz/woR4qLi6OI488MsaPHx/pdDquvPLKOPnkk6N58+bVGmfGjBlx2223RSqVioiIgQMH1ka5OXPFFVdEWVlZpt26dev47ne/u8M+Wz6UvF27dtWas6SkJIqKirIeyL5ixYooLS2t1jhbWrRoUSxevLhafbYMbMrLy2PlypU1qgM2V1FRscM25NKWn18Nbf/5/G7YGvr7b/0N+/OvobP/rb8h29b6G9JnoPe//q2/Ie0/6h/7r/CVl5fnbe5EhBwREZdffnmMHz8+UqlUvPfee3HGGWfEn//85ygqKqpS/xkzZsQpp5wSa9asiXQ6HalUKn7yk5/UctW7btSoUXHnnXdmHbvhhht2+gyRLTdTixYtqj13ixYtskKOVatWVXuMLd11110xYsSIGo0xZcqUrNAHcm3KlCn5LoEsifkWVSXjxo3b4de33n8Na/1sS+HsgV17/62/UFT/84+G9P5vm/UXCuvf+foL+WdA73/9//nX92Dyyf4rPPPnz8/b3Im4XVVExEknnRTHH3985nkcf/nLX+KQQw6JRx55JD777LPt9nv//ffjZz/7WfTu3Tvmz5+fCTjOOeec6NGjR12VXy1vvvlmfOtb38o6NmDAgPj+97+/075bhhxVDYE2t2Uwks8UDgAAAAAAtidREfkTTzwRffr0iblz50ZExJw5c2L48OHxne98J/bZZ5+sc08++eSYOXNm5txN4UZExEEHHZT1bI76ZP78+TFw4MCsYKFz587xpz/9KVN/ddRVHwAAAAAAqGuJCjm+8IUvxF//+tc47bTT4p133olUKhXpdDo2bNgQc+bMyZyXTqdj7Nixmas+IiJzbs+ePeOFF16I3XbbLR9L2KFFixbFiSeeGB9//HHm2J577hkvvfRS7LHHHlUao6SkJKu9evXqatexZZ8tx9wVF110UQwdOrRafWbPnh2nnnpqpt2nT5/o3r17jWuBTSoqKrIuj+zTp08UFxfnsSKyvD4h3xXkVP/+/bPaO91/Bb5+qqCA9sAuvf/Wn/tC8qTan38U9PtfJdaf+0LyxPq3Xn9D+hnQ+1//fv71PZh8sv8K34wZM/I2d6JCjoiI/fffP6ZMmRKXXXZZ3HfffbFu3bqI2PbVB5uOpdPpaNy4cZx//vlx66231st/QEuXLo0TTjghZs6cmTnWtm3bePnll6Nbt25VHqe+hhzt2rWr9kPQt1RSUhItW7ascS2wPcXFxfYYtWZne6vQ918hr42da+jvv/U37M+/hq6hv7fWb/07U8ifgYW6rqpKwvoLef9R/9l/hScXv0PeVYl5JsfmWrRoEb///e9jzpw5cfXVV0ffvn2jSZMmkU6nt/pz8MEHx6WXXhozZsyIe+65p14GHCtWrIgBAwbEW2+9lTlWWloaL730UhxyyCHVGqtVq1ZZ7cWLF1erf3l5+VYhR+vWras1BgAAAAAA1IXEXcmxub322itGjBgRI0aMiLVr10ZZWVksWbIk1q1bF23bto327dvH7rvvnu8yd2jVqlXx1a9+Nf7xj39kjrVs2TJefPHFOPTQQ6s93pZXfcybN69a/bc8v02bNlFaWlrtOgAAAAAAoLYlOuTYXPPmzaNz587RuXPnfJdSZRUVFXHKKafE5MmTM8dKSkpizJgx0adPn10ac8tnVsyePbta/T/44IOs9sEHH7xLdQAAAAAAQG1L5O2qCsHq1atj0KBBMXHixMyx3XbbLUaPHh39+vXb5XF79OiR1f7Xv/4Vn332WZX7T5o0aYfjAQAAAABAfSHkyIM1a9bE4MGDY/z48ZljRUVF8dxzz8XRRx9do7H32muv6NmzZ6a9YcOGrCBlZzavKSLi5JNPrlE9AAAAAABQW4QcdWzdunUxZMiQePnllzPHmjdvHs8880wcf/zxOZnjtNNOy2o/8MADVer37rvvxhtvvJFpFxcXx4ABA3JSEwAAAAAA5JqQow5t2LAhzjzzzBgzZkzmWNOmTeOpp56Kk046KWfznHPOOdG4ceNM++mnn45Zs2bttN/NN9+c1T7zzDOjqKgoZ3UBAAAAAEAuJebB48cdd1zOx0ylUvHKK6/kfNxt2bhxY5xzzjnx7LPPZo41adIknnzyyRg0aFBO5+rWrVsMGzYs7r///oj4/OqR4cOHxyuvvLLd0OLZZ5+NBx98MNNu1qxZXHvttTmtCwAAAAAAcikxIcf48eMjlUrlbLx0Op3T8Xbm29/+dowcOTLr2I033hi9evWKuXPnVmusPffcc6dXWIwYMSJGjRoVy5Yti4iI1157LU444YT44x//GAcddFDmvLVr18Z///d/x49//OOs/j/+8Y+jc+fO1aoLAAAAAADqUmJCjppKp9OZ13UZbmzy8MMPb3Xspz/9afz0pz+t9ljjxo2LY489dofndOzYMZ5++uk46aSTYt26dRERMWnSpDj44IPjsMMOi/322y9WrFgR06ZNi8WLF2f1HTRoUFx33XXVrgsAAAAAAOpSokKOzYOK6toUbKTT6RqNkyTHHntsjBo1KoYPH54JMtLpdEydOjWmTp26zT5nnXVW3HvvvVnP9AAAAAAAgPooMQ8er6ysrNafDRs2xOLFi2P8+PFx2WWXRcuWLSOdTkebNm1izJgxUVlZGRs3bsz3smrdKaecEm+//XZceOGFUVpaut3z+vbtG0899VQ89thjUVxcXIcVAgAAAADArknUlRzV0ahRo/jCF74QRx99dBx99NHx4x//OM4888yYMGFCDB48OEaOHBlf//rX66yefF490q5du7j77rvj9ttvj0mTJsW8efOirKwsiouLo0OHDtGrV6/Yd99981YfAAAAAADsioINObbUvn37+Mtf/hJf+cpX4u23345zzz033nzzzdhvv/3yXVqdadasWfTv3z/fZQAAAAAAQE4k5nZVuVBcXBy/+c1vIiLis88+i2uvvTbPFQEAAAAAALuqQYUcEREnnnhitG/fPtLpdDz99NOxatWqfJcEAAAAAADsggYXckREHHbYYRERsWbNmpgwYUKeqwEAAAAAAHZFgww5SktLM68//PDDPFYCAAAAAADsqgYZcixfvjzzetmyZfkrBAAAAAAA2GUNLuTYuHFjTJ48OdNu3bp1/ooBAAAAAAB2WYMLOX7/+9/HkiVLMu1u3brlsRoAAAAAAGBXNZiQI51Ox+9+97u47LLLIpVKRUREixYt4qijjspzZQAAAAAAwK5oku8Cqurhhx+udp8NGzbE8uXLY/r06TFmzJgoKyuLdDodERGpVCr+/d//PZo3b57rUgEAAAAAgDqQmJBj+PDhmSswdsXm4UY6nY6DDjoorrnmmlyVBwAAAAAA1LHE3a4qnU5X688mmwKSdDodffv2jb/+9a/RqlWrfC0DAAAAAACooUSFHJuHFtXpk06no1GjRnHUUUfFQw89FBMnToyOHTvWQoUAAAAAAEBdScztqh544IFq92nSpEm0bNky2rVrFz179owWLVrUQmUAAAAAAEA+JCbkGDZsWL5LAAAAAAAA6pFE3a4KAAAAAABgEyEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIiXmweMAAEDD0OVno/NdQs7M/dXAfJcAAAAFLTEhx8MPP5y3ub/1rW/lbW4AAAAAAGDbEhNyDB8+PFKpVF7mFnIAAAAAAED9k5iQY5N0Ol0n86RSqUin03kLVgAAAAAAgB1LVMixecCxZfiwvfCjquftaC4AAAAAAKD+SUzI8cADD0RExJIlS+KGG26I5cuXZ4KIQw45JI444og44IADolWrVhERsWLFipg5c2a88cYb8c4770TE54FHmzZt4sorr4wvfOEL+VkIAAAAAACQE4kJOYYNGxbvvfdenHTSSZmAY9CgQXH99ddHz549d9j3zTffjKuuuipGjx4dy5Yti9/97nfx4osvxkEHHVRH1QMAAAAAALnWKN8FVNWKFSvi5JNPjvnz50dExG233RbPPffcTgOOiIgvfelL8fzzz8ett94aERHz58+Pk08+OZYvX16bJQMAAAAAALUoMSHH9ddfH3Pnzo1UKhWXXHJJ/PCHP6z2GP/5n/8ZF198cUR8HnT88pe/zHWZAAAAAABAHUlEyLFhw4Z46KGHIiKiSZMm8Ytf/GKXxxoxYkQ0bdo00ul0PPLII7Fhw4YcVQkAAAAAANSlRIQcEydOjE8//TRSqVQcccQRUVpaustjlZaWRt++fSMiYunSpTFx4sRclQkAAAAAANShRIQcm57DERHRsWPHGo/XoUOHzOt58+bVeDwAAAAAAKDuJSLkWLBgQeZ1RUVFjcfbfIyFCxfWeDwAAAAAAKDuJSLkaNmyZUREpNPpeOutt2o83r/+9a/M6913373G4wEAAAAAAHUvESFHp06dMq/nzZsX48eP3+WxXn311axbVO2zzz41KQ0AAAAAAMiTRIQcxx57bBQVFUUqlYp0Oh3f//73Y9myZdUeZ9myZXHRRRdFKpWKiIiioqLo379/rssFAAAAAADqQCJCjuLi4jjjjDMinU5HKpWKmTNnxjHHHFOtW1e99dZbccwxx8TMmTMz4wwdOjSKi4trsXIAAAAAAKC2JCLkiIi45ZZbolWrVpn222+/HYcddlicddZZ8eyzz0ZZWdlWfcrKyuKZZ56Jb3zjG3HYYYfFO++8k7mKo2XLlnHzzTfXWf0AAAAAAEBuNcl3AVW15557xp///Of4+te/HmvWrIlUKhUbNmyIkSNHxsiRIyMiYrfddouWLVtGKpWKFStWxGeffZbpv+nqjXQ6HUVFRfHUU09F+/bt87UcAAAAAACghhJzJUdExAknnBCjR4+OvffeOxNaRHweYKTT6aioqIgFCxbEJ598EhUVFZnjEZEJOPbee+8YM2ZMHH/88flcCgAAAAAAUEOJCjkiPn8I+dtvvx2XXHJJFBcXZ4UY2/oT8XkIUlxcHJdcckm88847ccwxx+RzCQAAAAAAQA4k5nZVm2vVqlX87ne/ixtvvDH+53/+JyZOnBhTp06NhQsXxrJlyyIiorS0NNq3bx+9e/eOo446KoYMGRK77757nisHAAAAAAByJZEhxyYlJSUxbNiwGDZsWL5LAQAAAAAA6ljiblcFAAAAAAAQIeQAAAAAAAASSsgBAAAAAAAkUqKfyRERsX79+pgyZUq8//77sXTp0li1alWk0+m45ppr8l0aAAAAAABQixIbckycODF+/etfx9ixY2Pt2rVbfX1bIceLL74YI0eOjIiINm3axK9//etarxMAAAAAAKgdiQs5Kioq4nvf+1488cQTERGRTqe3OieVSm2z7yGHHBKPPPJIVFZWRkTEeeedF1/60pdqr1gAAAAAAKDWJOqZHCtXrox+/frFE088Ua1wY5N99tknTjnllEzfTUEJAAAAAACQPIkKOc4444x46623Mu1mzZrFeeedF/fff388+OCD2ww+tnTaaadlXr/00ku1UicAAAAAAFD7EnO7qqeeeipefvnlzNUaX/nKV+LJJ5+Mjh07RkTEvHnzqjTOV7/61Yj4/DZXb775ZpSXl0dJSUntFA0AAAAAANSaxFzJceONN2Ze9+jRI1566aVMwFEde+65Z7Rr1y4iIiorK2PGjBk5qxEAAAAAAKg7iQg5FixYEP/85z8z7TvuuCN22223XR7voIMOyryeNWtWTUoDAAAAAADyJBEhx+uvvx4Rnz9YfJ999omjjz66RuO1adMm83rJkiU1GgsAAAAAAMiPRIQcZWVlmddf+tKXajze5s/gKC8vr/F4AAAAAABA3UvEg8dXrFiRed2yZcsaj7d5sFFUVFTj8QCA3Orys9H5LiGn5v5qYL5LAAAAgIKUiCs5SktLM683Dzx21SeffJJ5vfmtqwAAAAAAgORIRMixxx57ZF6/8847NRpr7dq1WQ8x79ixY43GAwAAAAAA8iMRIceXv/zliIhIp9Mxd+7cePfdd3d5rP/5n/+JdevWRUREkyZNom/fvjmpEQAAAAAAqFuJCDn23Xff2H///TPtm266aZfGWbt2bdxwww0REZFKpeLwww+P4uLinNRYXR988EE8+eST8ZOf/CSOPfbYaNmyZaRSqcyfLl267PLYm4+zK3/mzp2bs3UCAAAAAEBtScSDxyMizj///Pj5z38e6XQ6/vSnP8Vxxx0Xw4YNq3L/ysrKuOCCC2LGjBmZYxdffHFtlLpd48ePj5tuuimmTp0aS5curdO5AQAAAACg0CTiSo6IiB/+8IfRrl27SKVSkU6n4zvf+U5ceeWV8dlnn+207/Tp02PAgAHx6KOPZq5W2H///eOb3/xmHVT+//3zn/+MsWPHCjgAAAAAACAHEnMlx2677RYPPfRQDBo0KCorK6OysjJuvvnm+P3vfx+nnHJKdOrUKev8J598MmbOnBljx46N119/PdLpdKTT6YiIKCoqiscffzxSqVQ+lrKV5s2bR8eOHeP999/P+dhHHHFEPPHEE9Xq42HsAAAAAAAkQWJCjoiIk046Ke6666646KKLorKyMiIiVq1aFSNHjsw6L51Ox9lnn53V3hRoNGnSJO67777Mw8zrWtOmTeOQQw6J3r17x+GHHx69e/eOL37xizFp0qTo379/zucrKiqq0fM9AAAAAACgvkpUyBERccEFF0TXrl3jnHPOiYULF2ZdjbH5682DjU23uGrbtm08+eSTtRImVMWwYcPiwgsvjKKiorzMDwAAAAAAhSQxz+TY3HHHHRezZ8+OW265JfbZZ5/Mrag2/xMRmddf+MIX4pprron3338/bwFHRERpaamAAwAAAAAAciRxV3JsUlxcHJdddllcdtllMXPmzJg4cWJ8+OGHsWTJkli3bl20bds22rdvH/369Ysvf/nL9eb5GwAAAAAAQG4kNuTY3AEHHBAHHHBAtfosXbo0brnllvjVr35VS1UBAAAAAAC1KZG3q6qJFStWxNVXXx377rtv/Nd//Ve+ywEAAAAAAHZRQVzJURWrVq2K2267LW677bZYuXJl1oPJC9n8+fPj/PPPjylTpsQnn3wSFRUVUVpaGm3bto1evXrF0UcfHWeccUa0adMm36UCAAAAAEC1FHzIUVFREb/73e/iN7/5TSxbtizzUPKGYs6cOTFnzpysY4sWLYpFixbF9OnT49FHH41LL700LrjggrjuuuuipKQkT5UCAAAAAED11NuQY/369fHqq6/Gq6++Gh9++GEsXbo0ioqKYr/99otjjz02TjnllGjSZPvlr127Nu688864+eabY8mSJZlwY9PVG+l0Ovbff/86WUt9V1FREb/97W/jL3/5Szz99NNxyCGH5HyORYsWxeLFi6vVZ/bs2Vnt8vLyWLlyZS7LooGrqKjYYRtyacvPr4a2/xr657f1W39D5vPP+9+QWb/1b6khfQZ6/+vf+hvS/qP+sf8KX3l5ed7mrpchx5NPPhmXX355fPjhh9v8+u233x6dO3eOu+++O0466aStvj5q1Kj40Y9+FB9++OE2w41u3brFz3/+8zj33HNrbxF51qRJkzjqqKPihBNOiJ49e0bHjh1j9913j/Ly8pg/f35MmDAhHn744Vi0aFGmz8yZM+OEE06IyZMnR+fOnXNaz1133RUjRoyo0RhTpkyJsrKyHFUEW5syZUq+SyBLvfwWtcvGjRu3w69vvf8a1vq31tDXH1FIfwfWb/07su3vvw1n/dtm/YXC+q1/Zwr5Z0Dv/66sv275b2Dyyf4rPPPnz8/b3PXuu8cvf/nLGDFixFa3ldo8pIiImDt3bgwaNCj+9Kc/xTe+8Y2I+PzqjQsvvDAefvjhbYYbBxxwQFx11VVx9tlnR6NGhfvM9euvvz4uuOCCaNeu3Ta/fuihh8bgwYPjuuuuixEjRsTNN9+c+fsqKyuLIUOGxNSpUxvEM0sAAAAA6oMfvl7vfk23y27/yoZ8lwA0IPXqN/1jxoyJX/ziF5mHgm/6E/F5SLHl8Y0bN8Z3vvOd+PDDD2Pt2rVx0kknZQKOTedsCjceeeSRmD59epx77rkFHXBERPz85z/fbsCxuaKiorjpppvijjvuyDo+bdq0ePzxx2urPAAAAAAAyIl6FRH/4Ac/iIjsqy/atm0bhx9+eJSWlsbKlStj2rRp8cknn2TOWb16ddx8883RqFGj+Pvf/54Vbuy///4xYsSI+OY3v+mqhB24+OKLY+zYsfHcc89ljt11111x9tln52yOiy66KIYOHVqtPrNnz45TTz010+7Tp0907949ZzVBRUVF1uWRffr0ieLi4jxWRJbXJ+S7gpzq379/Vnun+6/A179TDX39EQX1d2D91r+5Kn3/LeD1V4n1576QPLF+699SQ/oZ0Ptv/bA5v4MpfDNmzMjb3PUm5Bg/fny8//77mYCipKQk7rzzzjjvvPO2Ciiee+65+Pd///fM8yQee+yx+OyzzyLi82CkuLg4fvnLX8Z//Md/7PDh5Px/V1xxRVbIMXny5Fi+fHm0bt06J+O3a9euSleX7EhJSUm0bNkyJ/XAthQXF9tj1Jqd7a1C33+FvLaqsH7rb8h8/hXu2qrC+q2/IavK+gv5M7BQ11VV1t+w18/OFfLnX0NVUlKSt7nrzX2bRo8eHRGfhxSNGzeO559/Pr71rW9t8wqMwYMHx6uvvhotWrSIiIgVK1bEunXrIpVKxb777htTpkyJH/3oRwKOaujTp0+UlpZm2hs3bozp06fnsSIAAAAAANixehNy/POf/4yIz29VNXjw4DjmmGN2eH737t3je9/7XtYDylu0aBFjx451S6Nd0KhRo+jUqVPWscWLF+epGgAAAAAA2Ll6E3LMmjUr83rIkCFV6nP66adnXqdSqTj//POja9euOa+todh0Zcwmq1evzlMlAAAAAACwc/Um5FixYkXm9SGHHFKlPgcffHBW+6tf/WpOa2poPv3006x227Zt81QJAAAAAADsXL0JOVatWpV53apVqyr12fRQ7E23rNpvv/1yXldD8emnn8YHH3yQdWzvvffOUzUAAAAAALBz9SbkqKyszLxu3Lhxlfps+VDy4uLinNbUkDzxxBNZ70H79u092wQAAAAAgHqt3oQc5M/ChQvj+uuvzzr2ta99basQCQAAAAAA6hMhRwF577334vnnn69Wn7Kyshg0aFAsXLgwc6xZs2ZxxRVX5Lo8AAAAAADIqSb5LqCh+eijj2LDhg1bHS8rK8tqb9iwIebOnbvNMUpKSrb5UPAFCxbE4MGD44tf/GKce+65cdppp0W3bt22OcaqVavioYceiuuvvz4r4IiIuOqqqzzfBAAAAACAeq9ehRybbo80efLk7f6Cf0d2pd/RRx9d7Xlq4qijjop58+bt9LyPP/449t13321+bdiwYfHggw9ut+9bb70Vl19+eVx++eXRqlWr6NGjR7Rt2zZ23333KC8vjw8//DDefPPNbYYt3/ve9+Lqq6+u8noAAAAAACBf6lXIERGRTqfjrLPOqpN+qVRqm7/oLyQrVqyISZMm7fS84uLiuO222+KCCy6og6oAAAAAAKDm6l3IkUqlIp1OV+v8TarTrxB17949rrzyyvjb3/4W06ZNi9WrV++0zwEHHBDDhw+PCy64YJu3wAIAAAAAgPqq3oUcEdnBRW31y1cgsiu34aqq9u3bxw033BAREZWVlTFr1qx4//334+OPP47ly5fHmjVrokWLFlFaWhp77bVXHH744bHHHnvUWj0AAAAAAFCb6k3I0alTp10ON9hao0aN4sADD4wDDzww36UAAAAAAECtqDchR21e4QAAAAAAABSeRvkuAAAAAAAAYFcIOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBITfJdAHVj/fr1MWnSpJg/f34sWLAgSkpKYu+9945evXpFly5d8l0eAAAAAABUm5AjTz744IP43//935g6dWr87//+b0ybNi1WrVqV+Xrnzp1j7ty5NZ5n8eLFce2118aTTz4ZS5cu3eY5/fr1i0svvTROP/30Gs8HAAAAAAB1RchRh8aPHx833XRTTJ06dbuBQy6NGTMmhg8fHosWLdrhea+99lq89tprcc4558Q999wTxcXFtV4bAAAAAADUlJCjDv3zn/+MsWPH1slc48ePj1NPPTXWrVuXOZZKpeLLX/5y7LfffrF8+fL4v//7v/j0008zX3/00Udj5cqV8cwzz0SjRh7XAgAAAABA/eY32fVA8+bNo2vXrjkb76OPPoohQ4ZkBRxHHnlkvPPOOzF16tQYOXJkjB07Nj766KO4/fbbo2nTppnznn/++bjqqqtyVgsAAAAAANQWIUcda9q0aRx66KHx3e9+N+655574xz/+EatWrYo//vGPOZvj2muvjWXLlmXa/fr1i5dffjm6d++edV7z5s3jBz/4QYwcOTLr+K233hrz5s3LWT0AAAAAAFAb3K6qDg0bNiwuvPDCKCoqqrU5Zs2aFQ899FCm3axZs3jwwQd3OOepp54aw4YNy/Rbu3ZtjBgxIu6///5aqxMAAAAAAGrKlRx1qLS0tFYDjoiIxx57LDZu3JhpDxkyJLp167bTfpdffnlWe+TIkbFmzZqc1wcAAAAAALki5Cgwo0aNymqff/75VerXvXv3OOKIIzLtioqKOntIOgAAAAAA7AohRwEpKyuLN998M9Nu0qRJHHnkkVXuf+yxx2a1x4wZk6vSAAAAAAAg54QcBeTtt9/Oavfs2TOKi4ur3L9fv35Z7XfeeScndQEAAAAAQG0QchSQ6dOnZ7X333//avXv2rXrDscDAAAAAID6RMhRQGbPnp3V7tSpU7X6d+7cOau9ZMmSWLZsWY3rAgAAAACA2tAk3wWQO8uXL89qt2vXrlr9S0pKoqioKNasWZM5tmLFiigtLa1xbYsWLYrFixdXq8+WoU15eXmsXLmyxrXAJhUVFTtsQy5t+fnV0PZfQ//8tn7rb8h8/nn/GzLrt/4tNaTPQO+/9cPmGtLnX0NVXl6et7mFHAVky43UokWLao/RokWLrJBj1apVNa4rIuKuu+6KESNG1GiMKVOmRFlZWU7qgW2ZMmVKvksgS2F9ixo3btwOv771/mtY699aQ19/RCH9HVi/9e/Itr//Npz1b5v1Fwrrt/6dKeSfAb3/1g874ncwhWf+/Pl5m9vtqgrIliFHUVFRtcfYMhjJZwIHAAAAAAA7IuQoYKlUqk76AAAAAABAPhTOdXBESUlJVnv16tXVHmPLPluOuasuuuiiGDp0aLX6zJ49O0499dRMu0+fPtG9e/ec1AMRn9//cfPLI/v06RPFxcV5rIgsr0/IdwU51b9//6z2Tvdfga9/pxr6+iMK6u/A+q1/c1X6/lvA668S6899IXli/da/pYb0M6D33/phc34HU/hmzJiRt7mFHAWkPocc7dq1q/aD0LdUUlISLVu2zEk9sC3FxcX2GLVmZ3ur0PdfIa+tKqzf+hsyn3+Fu7aqsH7rb8iqsv5C/gws1HVVlfU37PWzc4X8+ddQ5er3yLvC7aoKSKtWrbLaixcvrlb/8vLyrUKO1q1b17QsAAAAAACoFUKOAtKtW7es9rx586rVf8vz27RpE6WlpTWuCwAAAAAAaoOQo4Bs+byK2bNnV6v/Bx98kNU++OCDa1wTAAAAAADUFiFHAenRo0dW+1//+ld89tlnVe4/adKkHY4HAAAAAAD1iZCjgOy1117Rs2fPTHvDhg0xceLEKvcfP358Vvvkk0/OVWkAAAAAAJBzQo4Cc9ppp2W1H3jggSr1e/fdd+ONN97ItIuLi2PAgAE5rQ0AAAAAAHJJyFFgzjnnnGjcuHGm/fTTT8esWbN22u/mm2/Oap955plRVFSU8/oAAAAAACBXhBwFplu3bjFs2LBMe926dTF8+PBYs2bNdvs8++yz8eCDD2bazZo1i2uvvbY2ywQAAAAAgBprku8CGpqPPvooNmzYsNXxsrKyrPaGDRti7ty52xyjpKQk2rZtu905RowYEaNGjYply5ZFRMRrr70WJ5xwQvzxj3+Mgw46KHPe2rVr47//+7/jxz/+cVb/H//4x9G5c+eqLgkAAAAAAPJCyFHHjjrqqJg3b95Oz/v4449j33333ebXhg0blnXlxZY6duwYTz/9dJx00kmxbt26iIiYNGlSHHzwwXHYYYfFfvvtFytWrIhp06bF4sWLs/oOGjQorrvuuqovCAAAAAAA8kTIUaCOPfbYGDVqVAwfPjwTZKTT6Zg6dWpMnTp1m33OOuusuPfee7Oe6QEAAAAAAPWVZ3IUsFNOOSXefvvtuPDCC6O0tHS75/Xt2zeeeuqpeOyxx6K4uLgOKwQAAAAAgF3nSo46tr3nbNSWdu3axd133x233357TJo0KebNmxdlZWVRXFwcHTp0iF69em33tlgAAAAAAFCfCTkaiGbNmkX//v3zXQYAAAAAAOSM21UBAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyAAAAAAAAiSTkAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSE3yXQAA29blZ6PzXUJOzf3VwHyXAAAAAECBcSUHAAAAAACQSEIOAAAAAAAgkYQcAAAAAABAIgk5AAAAAACARBJyFKBf/OIXkUqldvnP8OHD870EAAAAAADYKSEHAAAAAACQSEIOAAAAAAAgkZrkuwBq3+OPPx59+/at8vklJSW1WA0AAAAAAOSGkKMB2HPPPaNLly75LgMAAAAAAHLK7aoAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCFHA3DPPffECSecEB06dIiioqLYfffdo0uXLnHMMcfEz3/+85gwYUK+SwQAAAAAgGprku8CqH1PPPFEVnvt2rVRXl4e8+bNi7///e9x4403Ru/eveOmm26KE044oVZqWLRoUSxevLhafWbPnp3VLi8vj5UrV+ayLBq4ioqKHbbJrYb+73fL9Te0/ef9t/6GzPp9/jVk1m/9Ddm21t+QPgO9/9YPm2tIn38NVXl5ed7mFnIQERFTp06NAQMGxBVXXBHXX399pFKpnI5/1113xYgRI2o0xpQpU6KsrCxHFcHWpkyZku8StlBYH9Hjxo2rZo+Gtf6t91/DWv/WGvr6Iwrp78D6rX9Htv39t+Gsf9usv1BYv/XvTCH/DOj9t37Ykfr3Oxhqav78+Xmbu3A+PdlKhw4d4pRTTok+ffpE9+7do02bNtGoUaNYsmRJTJs2LV544YX461//mjk/nU7HjTfeGJWVlXHTTTflsXIAAAAAANg5IUcB6tOnT/z1r3+NE088cbtXZPTr1y8uueSSmDp1apx99tkxa9aszNd+9atfRd++fePrX/96XZUMAAAAAADVJuQoQKecckqVz+3du3dMnjw5vvKVr8TMmTMzx3/2s5/FoEGDonHjxjmp6aKLLoqhQ4dWq8/s2bPj1FNPzbQ3XZECuVJRUZF1eWSfPn2iuLg4jxVt4fUJ+a4gp/r371+9DgW+/p3uvwJf/0419PVHFNTfgfVb/+aq9P23gNdfJdaf+0LyxPqtf0sN6WdA77/1w+bq/e9gqLEZM2bkbW4hB9GmTZt4/PHHo3fv3pFOpyMi4t13341x48bl7EHk7dq1i3bt2tVojJKSkmjZsmVO6oFtKS4utsdqUUP/u93Z+gt9/xXy2qrC+q2/IfP5V7hrqwrrt/6GrCrrL+TPwEJdV1VZf8NePztXyJ9/DVVJSUne5m6Ut5mpV7785S/HgAEDso69+OKLeaoGAAAAAAB2TshBxle/+tWs9r/+9a88VQIAAAAAADsn5CCjS5cuWe3FixfnpxAAAAAAAKgCIQcZLVq0yGqvXr06T5UAAAAAAMDOCTnI+PTTT7Pabdu2zVMlAAAAAACwc0IOMt54442s9t57752nSgAAAAAAYOeEHERExJo1a+Lpp5/OOnbsscfmpxgAAAAAAKgCIQcREXHzzTfHxx9/nGk3btw4Bg4cmMeKAAAAAABgx4QcBeaRRx6JhQsXVqvPvffeGyNGjMg6Nnz48OjcuXMuSwMAAAAAgJwSchSY++67L/bdd98YNmxYjB49OioqKrZ77tSpU2PIkCHxve99L9LpdOZ4hw4d4vrrr6+LcgEAAAAAYJc1yXcB5N7q1avj4YcfjocffjgaNWoU3bp1iy5dukSrVq2icePGsWTJknjzzTe3ecVHmzZt4sUXX4w999wzD5UDAAAAAEDVCTkKXGVlZbz33nvx3nvv7fTc448/Ph588MHo2LFjHVQGAAAAAAA1I+QoMD/84Q+jQ4cOMWnSpJg3b95Ozy8uLo4BAwbExRdfHMcff3wdVAgAAAAAALkh5Cgwp512Wpx22mkREbF8+fJ455134sMPP4yFCxfGZ599FpWVldG6desoLS2N7t27R8+ePaNx48Z5rhoAAAAAAKpPyFHAWrduHUceeWS+ywAAAAAAdqDLz0bnu4ScmfurgdXu09DXT800yncBAAAAAAAAu0LIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASqUm+CwC2r8vPRue7hJyZ+6uB+S4BAAAAqKf8DgTYVa7kAAAAAAAAEknIAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJ1CTfBQBsT5efja6DWTb7GHx9Qq3ONPdXA2t1fAAAAABoaFzJAQAAAAAAJJKQAwAAAAAASCQhBwAAAAAAkEhCDgAAAAAAIJGEHAAAAAAAQCIJOQAAAAAAgEQScgAAAAAAAIkk5AAAAAAAABJJyAEAAAAAACSSkAMAAAAAAEgkIQcAAAAAAJBIQg4AAAAAACCRhBwAAAAAAEAiCTkAAAAAAIBEEnIAAAAAAACJJOQAAAAAAAASScgBAAAAAAAkkpADAAAAAABIJCEHAAAAAACQSEIOAAAAAAAgkZrkuwDq1pw5c+Kf//xnfPLJJ1FeXh577bVXdO7cOfr16xdNmzbNd3kAAAAAAFBlQo4G4qmnnopbb701Xn/99W1+vU2bNvGNb3wjfvnLX0bbtm3ruDoAAAAAAKg+t6sqcOXl5XHWWWfF0KFDtxtwREQsXbo07r777ujRo0f89a9/rcMKAQAAAABg17iSo4Bt3LgxvvGNb8Rf/vKX/9fefUZXVa37H/+FNAKhBEgo8UhJaAYEQlECGmpoSpWuUsSOB0XPwXYuIghyh4oN71AUAiKIAuEiCgiegCiCVGlKKKEFQug1nfV/cf7sy0rdO9md72eMvJiTNdd8tpnOzLWftdY01YeGhqpFixaqVKmSDh06pB07dsgwDEnS6dOn1adPH61du1bt27d3RdgAAAAAAAAAAFiFJzm82Msvv2xKcPj7++ujjz7SiRMntHr1an3zzTfatm2b9uzZo7Zt21qOy8zMVN++fXXq1ClXhA0AAAAAAAAAgFVIcnipw4cP64MPPjDVffvttxo7dqwCAgJM9XfddZd++uknU6Lj3LlzmjRpklNiBQAAAAAAAACgJEhyeKlJkyYpOzvbUh45cqT69OlT6PFBQUGKj483JUC++OILHT582KFxAgAAAAAAAABQUiQ5vFB6eroWL15sqpswYUKx7Ro0aKC+fftayjk5OVqwYIG9wwMAAAAAAAAAwC5Icnih1atX6/r165Zy27Zt1ahRI6vajho1ylReunSpXWMDAAAAAAAAAMBeSHJ4oVWrVpnKHTp0sLrtfffdJz8/P0t5x44dOn36tL1CAwAAAAAAAADAbkhyeKE9e/aYyrduKF6c8uXLq2nTpqa6vXv32iUuAAAAAAAAAADsiSSHF/rzzz9N5cjISJvaR0REmMr79u0rdUwAAAAAAAAAANgbSQ4vc/78eZ0/f95Ud+edd9p0jrzHHzhwoNRxAQAAAAAAAABgb37FHwJPcvHiRVO5XLlyKl++vE3nCAsLM5UvXbpU2rCUlpamM2fO2NQm7xMku3bt0tWrV0sdiyfJOnPU1SHYzebNm21u402fX7L9vwGf37s/f3p6uo4dO2Ypb9++XUFBQZayt3/+4tzun1/yrv8GfH4+/62Km/8k7/781uDz8/m9BZ8//+e/ndaA/P75/Lbi83v352f+836HDx82lTMzM53Wt49hGIbTeoPD7dq1S82aNbOUq1atqrNnz9p0jg8//FDjxo2zlPv3768lS5aUKq433nhDkyZNKtU5AAAAAAAAAADub9myZerTp49T+uJ1VV4m75MOZcuWtfkcee+ku92engAAAAAAAAAAeAaSHF7Ox8fHKW0AAAAAAAAAAHA29uTwMsHBwaZyenq6zefI2ybvOUvimWee0cCBA21qc/nyZW3dulUVK1ZU5cqV9be//U2BgYGljgW46eDBg+rbt6+lvGzZMkVGRrouINxWGH9wJcYfXInxB1di/MHVGINwJcYfXInx5/0yMzN1/PhxSzk2NtZpfZPk8DLumuQICwvLt6G5Ndq2bVvqvgFrRUZGKioqytVh4DbF+IMrMf7gSow/uBLjD67GGIQrMf7gSow/7xQdHe2SfnldlZepVKmSqXz9+nVdu3bNpnOkpaWZypUrVy5tWAAAAAAAAAAA2B1JDi9TtWpVhYSEmOqOHTtm0zmOHj1qKtevX7/UcQEAAAAAAAAAYG8kObxQ48aNTeWDBw/a1P7w4cNFng8AAAAAAAAAAHdAksMLNWnSxFT+7bffrG577do17dq1q8jzAQAAAAAAAADgDkhyeKHu3bubyuvWrbO67YYNG5STk2Mpt2jRQtWrV7dXaAAAAAAAAAAA2A1JDi/UrVs3BQUFWcq//fab/vrrL6vaxsfHm8r9+vWzZ2gAAAAAAAAAANgNSQ4vVK5cOT300EOmuunTpxfbLikpSQkJCZayn5+fhg0bZvf4AAAAAAAAAACwB5IcXuqNN96Qv7+/pRwfH6/ly5cXenxGRoZGjRqlrKwsS91jjz2miIgIh8YJAAAAAAAAAEBJkeTwUvXq1dO4ceNMdQ899JA+/vhjUyJDkv7880917txZGzdutNRVrVpVEydOdEqsAAAAAAAAAACUhJ+rA4DjvP3229q7d69WrlwpScrOztZzzz2nyZMnKzo6WhUqVNDhw4e1fft2GYZhaRcQEKCEhATVrFnTVaEDAAAAAAAAAFAskhxezNfXV998843GjBmjRYsWWerT0tK0atWqAtuEhYVp7ty5uu+++5wVJgAAAAAAAAAAJUKSw8sFBwfr66+/1kMPPaR3331XmzZtKvC4KlWqaPDgwZo0aZJCQ0OdHCXgGqGhoabXsjH24UyMP7gS4w+uxPiDKzH+4GqMQbgS4w+uxPiDI/kYt76nCF4vOTlZ27dv18mTJ3Xt2jXVqFFDtWvXVrt27RQQEODq8AAAAAAAAAAAsBpJDgAAAAAAAAAA4JHKuDoAAAAAAAAAAACAkiDJAQAAAAAAAAAAPBJJDgAAAAAAAAAA4JFIcgAAAAAAAAAAAI9EkgMAAAAAAAAAAHgkkhwAAAAAAAAAAMAjkeQAAAAAAAAAAAAeiSQHAAAAAAAAAADwSCQ5AAAAAAAAAACARyLJAQAAAAAAAAAAPBJJDgAAAAAAAAAA4JFIcgAAAAAAAAAAAI/k5+oAAMDTbd++XQcOHFBKSookKTw8XA0aNFCLFi1cHBmA21F2drZ+/fVXHTt2TKdOnVJwcLBq1aqlFi1aqE6dOq4OTxcvXtTGjRuVkpKis2fPqlq1agoPD1dMTIwqV67s6vBQQhcuXNDevXt14MABnT9/XhkZGapcubJCQ0PVsmVLRUREuDpEwC0wBwK3h9zcXB08eFD79u3TyZMndenSJQUGBiokJEQRERFq1aqVypcvb9c+WQPiJmeOP9aAcBsGALiRiRMnGpJK/DNixAinxJmVlWVMmzbNiIiIKDSWyMhI4+233zaysrKcEhMA93To0CHj66+/Nl566SUjNjbWqFChgmmuqF27tl36SUtLM55++mmjSpUqhc5LMTExxuLFi+3Sn622b99u9O3b1wgICCgwtsDAQKNv377Gjh07XBKft3LU+MvKyjJWrVplPPvss0ZUVFSxf59r1apl/Otf/zJOnTpl3w9YiMTExFKtJ+z1/yUcOweW5ncsyUhOTrbb5ywOcyDg/Y4ePWrMmDHD6NWrl1GxYsUi5x9fX1+je/fuxooVK0rdL2tAGIbzxh9rQLgrkhwA3IonJDmSkpKM6Ohoq2Nq2bKlceDAAYfHhdIZMWJEqb8sceTCKDY2tlQxzZkzx+4xoXCJiYlGXFxckReb9hwvP/zwgxEWFmb1eBg+fLhx9erV0n9QK02bNs3w9/e3KraAgABj+vTpTovNGzl6/G3atMkICQkp0VxUuXJl48svv7T/h86DC1zXctYcWNq/185KcjAHuo4jkmzJycmlHnuOXqMxBzrf0KFDS/zf+4EHHjBSU1NL1C9rQBiG88Yfa0C4M15XBQA2SE1NVdeuXXX06FFTfWRkpKKiomQYhvbu3atDhw5Z/m3btm2Ki4vTpk2bFBYW5uyQ4QJBQUGuDgEutnPnTv34449O6WvdunXq27evsrKyLHU+Pj6Kjo5WvXr1dPHiRe3YsUNnz561/PtXX32ly5cva9myZSpTxrFbtE2dOlWvvfaaqS4oKEitW7dWzZo1dfLkSW3ZskUZGRmSpKysLE2YMEE+Pj76xz/+4dDYvJWjx9+ZM2d04cKFfPUBAQFq2rSpatSooUqVKuncuXPaunWrzp07Zznm4sWLeuSRR5SWlqbx48c7LEa4ljPnQHfHHOh869at07Rp07R161adP3/e1eEUi3Wjd0hKSiqwPjw8XPXr11f16tWVk5Ojw4cP648//tCNGzcsx6xYsUL333+/1q9frxo1aljdJ2tA3OSs8ccaEO6MJAcAt7Zw4ULde++9Vh8fHBzssFhu3Lihvn37mhIcNWvWVHx8vOLi4kzHrlq1SqNGjVJqaqokKTk5Wf369dMvv/wiHx8fh8UI9zBgwABXhwA3FRgYqDvuuMOUCC2NEydOqH///qaL23bt2mnWrFlq3LixpS4zM1OffvqpXnrpJWVnZ0uSvvvuO73++uuaOnWqXWIpyIoVK/T666+b6p544gm99dZbqlatmqXuzJkzevXVV/X5559b6iZMmKCmTZuqe/fuDovvdmPv8Sf95+/uoEGDNGzYMMXExOT7ss4wDC1btkzPP/+8jh07Zql/8cUX1bRpU3Xt2tVusRRl3Lhxev75560+3s+PyyRHcMQYvOmee+7R119/bVObO+64w+5x3Io50DU8KclWrlw59ejRw9VhwM5atGih0aNHq0ePHgXuR5CSkqI333xTn332maUuKSlJAwcO1M8//2zV9SJrQBTGGeNPYg0IN+TiJ0kAwCTv66oSExNdHZLFvHnzTLFVqVKlyNccHD58ON+jnAsXLnRewLDJmTNnjOTkZJt/vv32W9Pv2MfHxzh06JDd48v7uipb47xy5YrdY0LhZsyYYfj7+xvNmzc3xowZY3z66afGtm3bjKysrHyPUJfmkejRo0ebzhUTE2Okp6cXenxCQoLp+MDAQOPIkSMl7r8oOTk5RsOGDU39vfDCC0W2ef75503H33XXXUZOTo5D4vNmjh5/3333nREWFma88847Vr/y4uzZs0bjxo1NfTdq1Mi4ceOGzf1bI+/nnDhxokP6QcGcNQfeep7Y2Fi7xW8PzIGuM2PGjAJfQRIYGJhvP72SjL/s7OwSrRmTk5ONdu3amfp31Kt28/5/Nm7cOJviPH78uEPi8matWrUyevXqZWzZssXqNjNnzsw3Tq29XmQNiFs5a/yxBoQ7I8kBwK24a5IjJyfHqFu3rim2+Pj4YtvNmTPH1CYiIsLIzc11QsRwlieffNL0O+7UqZND+smb5IB7O3/+fKEXmvb6gi8pKcnw9fW1nCcgIMBISkoqtl3e/WdGjRpVov6LM3v2bFM/DRs2NDIyMopsk5GRke+ieO7cuQ6Jz5s5evylpaWV6H3eO3fuNMqUKWPq//fff7f5PNbgAte1nDEHGoZ7JzmYA13HWUk2W504ccL0d1uS8fPPPzukL+ZA5yvpHj8DBgww/a569uxZbBvWgMjLWeOPNSDcmWNfwAcAXuKXX35RcnKypRweHq6HH3642HaPPPKIwsPDLeVDhw5p48aNDokRzpeenp7v1RiPPfaYi6KBOwkJCVHZsmUd2seCBQuUm5trKffv31/169cvtt2ECRNM5W+++cbyLmR7mjdvnqn8wgsvKDAwsMg2gYGBGjduXJHnQfEcPf5CQ0NVvnx5m9s1a9ZM7du3N9UlJibaKyy4EWfMge6OOdB1RowYocuXL2vHjh2aNWuWnnjiCUVHR8vf39+lccXHx5v+btevX1/33XefCyOCPdWpU6dE7Z599llT2Zq/i6wBkZezxh9rQLgzkhwAYIWEhART+dFHH5Wvr2+x7Xx9ffMlQ5YuXWrX2OA6ixcv1qVLlyzlypUrq3///i6MCLeTvPPSqFGjrGrXuHFj3XPPPZbytWvX7P7u8nPnzmnDhg2WckBAgIYNG2ZV2+HDh5u+iFq/fr1HbBwL67Ro0cJUPnnypIsiARyHOdC13DHJZhiG5syZY6rjxhhI+f8upqen6+LFi0W2YQ0IeynJ+LNXX6wBYW8kOQDACqtWrTKVO3ToYHXbvMeuXLnSDhHBHXzxxRem8vDhw93uohreKTU1VX/88Yel7Ofnp3bt2lnd3tHz0po1a0x3GLZs2VIVKlSwqm3FihUVHR1tKefk5GjNmjV2jQ+uk3czx1s3TAW8BXMg8lq/fr0OHTpkKfv5+WnEiBEujAjuoqBNjov628gaEPZk6/izZ1+sAWFvJDkAoBiZmZk6ePCgqe7ee++1un1MTIypfODAAf6ge4FDhw7p559/NtWNGTPGRdHgdrNnzx5T+e6777bp0fG889LevXvtEtdNeeNr27atTe0dHR9cJ+/f05o1a7ooEsBxmAORV94bY3r16qUaNWq4KBq4k7x/F/38/FStWrVCj2cNCHuydfzZsy/WgLA3khwA3Nqnn36qLl26KDw8XGXLllWFChVUp04dxcbG6rXXXjM9Cuso+/fvN92NEhYWpooVK1rdvmLFiqaFQm5urpKSkuwaI5xv9uzZMgzDUo6Ojlbz5s1dFxBuK/v27TOVIyMjbWofERFR5PlKy93jg2tcvnw53x2Zbdq0cUrfiYmJ6t+/v+rVq6fg4GAFBQUpPDxcLVu21NixY7VkyRJlZ2c7JRY4xrFjxzRq1ChFRUUpJCREAQEBql69uqKiovTwww/rs88+c9prT5gDcatLly5pyZIlpjpeVYWbFi9ebCq3atVKZcoU/lWdu88v7h4fzGwdfyXFGhDOkP+5JABwI3k3dc7MzNTVq1d19OhR/fzzz5o6dapatWqladOmqUuXLg6JIe8dB3feeafN57jzzjt19uxZS/nAgQNq0qRJqWODa+Tm5mru3LmmOmdfrI4bN06//fabjhw5oosXLyo4OFhVq1ZVo0aNdN9996lv375q0KCBU2OC85R2Xqpdu7apfO7cOV24cEEhISGljk0qfXx5jz9w4ECpY4Lrffrpp7p+/bqlXKlSJXXs2NEpfed98k76z7ugT548qe3bt2vmzJm644479PLLL+uZZ56Rj4+PU+KC/SQnJys5OdlUl5aWprS0NO3bt09fffWVxo8fr8cff1yTJ09WcHCww2JhDsStFi5cqPT0dEu5Zs2a6tGjh1NjSExM1K5du7Rz506lpaUpNzdXVapUUY0aNdS2bVt17NhRvXv3dvnm7Lebq1ev5nvKp1+/fkW2YQ0IeynJ+Csp1oBwBp7kAODxtm7dqri4OL322mumO+vtJe/GW2FhYTafI2+bWzerhudZtWqVUlJSLOWgoCCrN9Szlw8//FBbtmzRmTNnlJ2drQsXLujgwYNasWKFJkyYoMaNG6t///6m9z/De5R2XgoODs63f4w956XSxsec6X2OHDmiyZMnm+rGjRungIAAF0WU34kTJzR27Fg9+OCDDtt0E6517do1vf/++2rZsqVDX4HCHIhb5f0SccSIEQW+B9+Rfv75ZyUkJCg5OVnXrl1TRkaG6Qu+hx56SPXq1dPMmTMdcj2Fgr3yyitKTU21lCtXrlzs629ZA8JeSjL+SoI1IJyFJzkAuKXw8HD17NlTbdq0UePGjVWlShWVKVNG586d0/bt27VixQqtXr3acrxhGJo6dapu3LihadOm2TWWq1evmspBQUE2nyNvmytXrpQqJrjW7NmzTeUBAwaocuXKrgmmEDdu3FBCQoJ++uknzZ49WwMGDHB1SLAje81LGRkZlrI956XSxsec6V2ysrI0ePBg0++xTp06+uc//+nwvitWrKguXbooNjZWUVFRCgsLU1BQkC5cuKCkpCStWbNGixYtMv2/8P3336tv37768ccf3eoCHAXz8/NT+/bt1aVLF91999264447VKFCBV29elXHjh3Thg0bNG/ePKWlpVnaJCUlqUuXLtq0aVO+u5rtgTkQN+3evVtbt2411bnrq6pufsm3cuVKzZ8/3+3Wtt4mISFBH3/8sanurbfeUpUqVYpsxxoQ9lDS8Wcr1oBwJpIcANxKmzZttHr1anXt2rXQxwRjYmI0duxYbd26VcOGDTM9wvr222/r3nvvVZ8+fewWU96FWt47X6yRd7GW95zwHGfOnNF3331nqnPmxWrTpk3Vo0cPNW/eXJGRkapcubIyMzOVlpam3377TYsWLdLu3bstx1++fFmDBw/W8uXL1bNnT6fFCcey17x04cKFQs9ZGqWNjznTu4wZM0a///67pezr66u5c+fatFGqrWrUqKE5c+ZoyJAhhY6/1q1ba/jw4Xr77bc1evRorVy50vJv69ev18svv6z33nvPYTGi9KZMmaLHH3+80DuFmzdvrt69e2vy5MmaNGmSpk+fbrlLPTU1Vf3799fWrVvt/moK5kDclPcpjtjYWJv3KCgNvuRzT3/88YceffRRU11cXJyefvrpYtuyBkRplWb82Yo1IJyJ11UBcCs9e/ZUXFycVRebrVq10qZNm/LtO/Dyyy+bNgq3t5JcCPNeR+8xb94808ZkERERio2NdXi/w4YN0549e7Rr1y5Nnz5dQ4cOVevWrVW/fn01adJEnTp10muvvaZdu3Zp/vz5qlChgqVtbm6uBg8ebHrFFryLu89LtvbFnOk9/vWvf+nLL7801U2bNk3333+/Q/tt1KiRRo4cadWXKzVq1ND333+vgQMHmupnzpyZb48HuJfXXnvNqlehlC1bVtOmTdNHH31kqt++fbsWLlzoqPAsmANvT1lZWZo/f76pzlk3xtz8ku/06dNasmSJ/v73v6tz585q2rSpIiMjLV/wxcfHKzk5Od8eITe/5IP9HTt2TL169TJ9eV+7dm3Nnz/faes51oC3L3uPv6KwBoSzkeQA4NGqVKmihQsXmv4g//XXX0pMTLRbH3k3prx140Br5W3jyM0u4Vhz5swxlUePHu2UxfgTTzyhqKgoq44dPny4fvrpJ5UrV85Sd/XqVU2aNMlR4cHJ3H1eKm18zJne4f3339eUKVNMdePHj9c//vEPF0VUOB8fH8XHx6tmzZqWuqysrHx3YcOzPfvss+rdu7ep7pNPPrF7P8yBkKT//d//1blz5yzlSpUq6aGHHnJK33zJ557S0tLUtWtX041HNWrU0Jo1axQaGmrVOVgDoqTsMf6sxRoQrkCSA4DHi46OVlxcnKlu1apVdju/uy8k4TybNm0ybVTq6+urkSNHui6gIrRu3TrfwnLu3Lm6du2aiyKCPbn7vMQFLmbNmqXx48eb6p5++mm9++67LoqoeOXKldPf//53U5091xNwD6+88oqpvGnTJrtvMsocCCn/q6qGDh1aov0TnIEv+Rzv/Pnz6tKli5KSkix11apV09q1a1W/fn2rz8MaECVhr/FnDdaAcBWSHAC8Qvfu3U3lXbt22e3clSpVMpXPnDlj8zlu3exSEhv5eai8F3o9evRQrVq1XBRN8Z555hlVrFjRUs7KyrLrU05wndLOS1evXs13EWnPeam08TFnerYvv/xSTz31lGXvA0kaNWqUZs6c6cKorJN3PXHrHkfwDm3atFFISIilnJubq3379tm1D+ZAHD9+XGvWrDHVjRkzxkXRWIcv+Rzn0qVLiouLM/1NCQkJ0Zo1a6x+Uvsm1oCwlT3HX3FYA8KVSHIA8Ap16tQxlUuSiChM3jsbjh49avM58rax990ScLxr165p0aJFpjpnbjheEoGBgerYsaOpzp4JQLhOaeelvMdXqVLF9KVfadk7PuZMz/H1119r1KhRunHjhqVu+PDh+vzzzz3iPdt51xNZWVm6dOmSa4KBQ5QpU0Z33nmnqc6e60aJORBSfHy8aR5s1qyZWrZs6cKIrMOXfPZ35coVde/eXdu2bbPUVaxYUatWrVLz5s1tPh9rQNjC3uOvKKwB4WokOQB4hbyPfpfksd3CNGzYUL6+vpZyWlqarly5YnX7y5cv6+zZs5ayr68vizUP9O2335p+79WrV9cDDzzgwois48gEIFyncePGpvLBgwdtan/48GFT+a677ip1TLeyd3x5zwf3tGTJEj3yyCPKzc211A0cOFBz585VmTKecdlR0Ktk7LmmgHtw5LpRYg683RmGkW8PN3e/MeYmvuSzr2vXrqlnz57atGmTpS44OFgrV65UmzZtSnRO1oCwliPGX2FYA8IdeMZIA4Bi3JpEkP7zfkl7CQwMVEREhKnut99+s7r9xo0bTeX69esrMDDQLrHBefK+qurRRx+Vn5+fi6KxnqO/yIFrNGnSxFTetWuXrl+/bnX7X3/9tcjzlVbe89kyZ0qOjw/2t3z5cg0dOlQ5OTmWur59+2rBggWmGwXcXd71hCRVrVrVBZHAkRy5bpSYA293//73v00bdgcGBmr48OEujMh6fMlnP+np6XrggQf0yy+/WOrKlSun77//XjExMSU+L2tAWMNR468grAHhLkhyAPAKmzdvNpXtvU9C3ke3161bZ3XbvMf26NHDDhHBmZKSkkwLRMlz7shz9Bc5cI2aNWvq7rvvtpRzcnLyjdGiOHpe6tq1q+miZtu2bVY/AXflyhVt377dUvbz81PXrl3tGh/s64cfftDAgQOVnZ1tqevVq5cWLVrkEcngW+VdT4SGhsrf399F0cARzp49m+9OYXuvG5kDb2+zZ882lfv3768qVaq4KBrb8CWffWRkZKh3796m9VbZsmW1fPly3X///aU6N2tAFMeR4y8v1oBwJyQ5AHi8jIwMLV261FTXoUMHu/bRr18/U/nLL780PYpZmNzcXM2fP7/Ic8H95b1Ybd++vRo2bOiiaGzj6AQgXCfvXJL31RiF+euvv0zjonz58oqLi7NrbNWqVVP79u0t5aysLC1YsMCqtl999ZXpQun+++/3mC+Hbkdr1qzRgAEDlJWVZamLi4vTkiVLFBAQ4MLISibvOLX3egKu9/XXX5veF169enW7vw6FOfD2dfHixXzXJZ5yY4zEl3z2kJWVpf79+2vt2rWWusDAQC1btkydO3e2Sx+sAVEYZ4y/m1gDwt2Q5ADg8aZPn66UlBRL2dfXV7169bJrH/fdd5/q1q1rKZ84cSJf8qIg8+fPN8UWERGhdu3a2TU2OFZubq7mzZtnqvOUi9Xdu3fn2zCSxZr3GD58uOlOuaVLl+rAgQPFtps+fbqpPGjQIJUtW9bu8T366KOm8owZM5SZmVlkm8zMTL3//vumuhEjRtg7NNjJ+vXr1adPH2VkZFjqOnXqpGXLlnnkaxnXrVuX78vJPn36uCgaOMLp06c1ZcoUU92DDz7okA1RmQNvT1999ZVpTqxTp446derkwohsw5d8pZOTk6NBgwZp5cqVljp/f38tXrxY3bp1s1s/rAFREGeNP4k1INyUAQBuYt68eUZqaqpNbT777DPDx8fHkGT5eeyxx4ptd+vxkozExESr4ru1TZUqVYzk5ORCj09OTjZCQkJMbRYuXGjDp4M7WL58uel3WKFCBePq1auuDqtYOTk5RufOnU2xR0ZGujosGIaRmJho+r3Url27xOcaPXq06VwxMTFGenp6occvW7bMdHxAQIBx5MiRYvuZOHGiqV1sbGyxbXJycoyGDRua2o0fP77INi+88ILp+LvuusvIyckpti9Yz17jb+PGjUZwcLDpXPfff79x7do1+wZs2D7+Vq9ebezcudOmPjZt2mRUqVLF1E/Dhg2N7OzsUkSOgthjDP7111/G8uXLbWpz6tQpo1WrVvnmwEOHDhXbljnQe9jzb3BBoqOjTed/88037Xp+R0pMTMx3XTV//nxXh+UxcnJyjEGDBpn++/n5+RlLly51SH+sAXErZ44/1oBwV571gjQAXu2LL77Qk08+qYEDB2rQoEHq0KGDypcvX+CxW7du1dSpU5WQkGCqDw8Pz3eHnr0MHz5cM2fOtDzie/78ecXExCg+Pj7fY76rV6/WyJEjdeHCBUtdTEyMBg8e7JDY4Dh5NxwfMmRIoePSWnnvGE1MTCzyTrmPPvpIjz/+uNV3WmVlZempp57STz/9ZKqfOHGizbGi5E6cOGHagO+m1NRUUzknJ0dHjhwp8BzBwcFF7qMyadIkJSQkWOaajRs3qkuXLvr888/VqFEjy3GZmZn67LPP9OKLL5rav/jii6pdu7a1H8kmvr6+euedd9S7d28ZhiFJeu+993T16lVNnTrV9I7vs2fP6tVXX9WsWbMsdT4+Pnr33Xc9asNCd+LI8bdjxw716NFDV69etdQ1bNhQM2fOVFpamk1xli1bVjVq1LCpTXE2btyoN998U3FxcRoyZIh69uypsLCwAo89fvy4PvzwQ33wwQemV2T4+/vrk08+8bj3SbsTR47BU6dOqXfv3mratKkefvhh9evXT/Xr1y/wHFeuXNHcuXM1ZcoUnT592vRvr7/+uurVq2flJ7INc+DtZ+fOnab9BMqUKaORI0eW+rxvvPGGJk2aZCnHxsYWuT/gjz/+qOrVq6tZs2ZW97F582YNGDDAMlal/8zrXLtYb/To0frmm29MdVOnTlWLFi0KneMKU6NGjWLX/awBcStnjT/WgHBrrs2xAMD/iY2NNWXPy5QpYzRs2NDo1q2bMWjQIGPo0KFGXFycUb169XxPYuj/P1mxe/duq/rK29aaJzkMwzBOnjxp3Hnnnfna169f3+jbt6/Rp08fIzIyMt+/16lTx+anVOB6qamphp+fn+l3uXnz5lKf19bxJ8moUaOG8dJLLxmbNm0q9K6S7OxsY9myZUbz5s3z9dGlSxfjxo0bpY4d1qtdu3aBc5UtPyNGjCi2n8TERCMgIMDUzsfHx2jVqpUxaNAgo1u3bkZoaGi+cz/wwANW3yFXkrv4bnrrrbfy9R0UFGR06NDBGDJkiBEbG2sEBQXlO2b69OlW94H8HDn+8o6H0vxYM5ZsHX8FxRceHm506tTJ6N+/vzF8+HDjgQceMBo0aFBgTL6+vsaXX35p+390mDhyDOa9G1+SUalSJaNdu3ZGnz59jIcfftjo27ev0bJly3x/x2/+PPHEE1Z/FuZAz3P8+HEjOTk538/ChQvzzQ0FHZecnGycOXPGpj7Hjh1rOnePHj3s8llKMgf6+PgY3bp1M+bMmWOcPn260GOPHTtmvPTSS4a/v7+pD39/f+Onn36yS/y3C3v9XZSsvzZlDYibnDX+WAPCnZGWAuC2bty4of3792v//v3FHtu5c2fFx8frjjvucGhMNWvW1Jo1azRkyBDt2LHDUn/gwIFC34MaHR2tRYsWqXr16g6NDfY3b948012oTZo0UZs2bVwSS2pqqt555x298847CgwMVFRUlGrWrKlKlSopOztbaWlp2rZtm+mumptatWqlpUuXOuSd43C9Dh06KCEhQSNHjtSZM2ckSYZhaOvWrdq6dWuBbYYOHapZs2Y55Q65V199VT4+Ppo4caLlLqn09PRC70L19/fX5MmT9c9//tPhseH2kZKSYtojqzD16tXTvHnz2D/LA126dEm//vprsceVL19eM2bM0OOPP+6EqJgDXaV9+/Y6evRoscelpKSY9t271YgRIxQfH29Vf5mZmfn2s3DlHm6GYWj16tVavXq1pP887d6wYUNVrlxZQUFBunTpkpKSkpSUlJSvra+vr2bPnu1Re4ncrlgDAsVjDXj7YONxAG5j3LhxGjZsmNWPzZYvX179+vXT2rVrtXbtWocnOG5q0KCBNm/erGnTphX5ioOIiAhNmzZNmzZtUmRkpFNig33Nnj3bVHaXDcczMzO1fft2ff/991qwYIG+/fZbrV+/Pl+Cw8fHR3//+9+1YcMGVahQwUXRwhl69uypPXv26KmnnlJISEihx917771avHixFixYUOrXrtnilVde0ebNm9WnTx8FBAQUeExAQID69Omj33//XRMmTHBabPA+vXv31jPPPKOmTZta9SWOn5+fYmJiNHfuXO3bt4+LWw/QuHFjvfrqq2rXrp2CgoKsatOgQQNNnTpVR44ccVqC4ybmQO+XkJCg8+fPW8qhoaHq3bu3CyMyS0lJ0b///W8tXbpUX331lVasWFFggqNevXpav369Hn74YRdEiZJgDQj8H9aAtzcfw7jlpYsA4CYuXryovXv36vjx4zp9+rSuX7+uGzduqHLlygoJCVHjxo119913u8V7Ordt26akpCSdPHlSklSrVi01aNBALVu2dHFkKI1ff/1V7du3t5QDAgKUkpJS5P4I1rJ1T4533nlHiYmJ2rx5s86dO1fs+UNDQzVo0CCNHTvW9E5e3B6ysrL066+/6ujRo0pNTVX58uUVHh6uFi1aFHq3qjNduHBBGzduVEpKis6dO6eqVasqPDxcMTExRV6cAyWRkZGhffv26ejRozp16pSuXLmi7OxsBQcHKyQkRHXr1lWrVq1Urlw5V4eKErpx44YOHDigQ4cOKSUlRRcvXlRGRoaCgoIUEhKimjVrqnXr1goNDXV1qJKYA52lTp06Vj3JURRbnuTo2rWr1q5daymPHz9e7777bqn6v8nWPTm2b9+uL774Qhs2bNC+ffuUm5tb5Pn9/PzUpk0bPfnkkxo8eLACAwPtEjecjzUg8H9YA95+SHIAAOBBTpw4of379+vEiRM6d+6c0tPT5evrq5CQEFWrVk3NmzdXRESEq8MEAACAi/ElHwDgdkGSAwAAAAAAAAAAeCT25AAAAAAAAAAAAB6JJAcAAAAAAAAAAPBIJDkAAAAAAAAAAIBHIskBAAAAAAAAAAA8EkkOAAAAAAAAAADgkUhyAAAAAAAAAAAAj0SSAwAAAAAAAAAAeCSSHAAAAAAAAAAAwCOR5AAAAAAAAAAAAB6JJAcAAAAAAAAAAPBIJDkAAAAAAAAAAIBHIskBAAAAAAAAAAA8EkkOAAAAAAAAAADgkUhyAAAAAAAAAAAAj0SSAwAAAAAAAAAAeCSSHAAAAAAAAAAAwCOR5AAAAAAAAAAAAB6JJAcAAAAAAAAAAPBIJDkAAAAAAAAAAIBHIskBAAAAAAAAAAA8EkkOAAAAAAAAAADgkUhyAAAAAAAAAAAAj0SSAwAAAAAAAAAAeCSSHAAAAAAAAAAAwCOR5AAAAADgserUqSMfHx/Lz7p169ziXAAAAACcgyQHAAAAAAAAAADwSCQ5AAAAAAAAAACARyLJAQAAAAAAAAAAPBJJDgAAAAAAAAAA4JFIcgAAAAAAAAAAAI9EkgMAAAAAAAAAAHgkP1cHAAAAAADeICcnR5s3b9ahQ4d05swZ5ebmKjQ0VHXq1FFMTIwCAwNdHWKJ7d+/X3v27NGpU6d06dIlVatWTUOGDFGlSpVcHRoAAABucyQ5AAAAAKAUjh49qjfffFNLlizRpUuXCjymXLly6tWrlyZNmqTGjRtbdd4OHTpo/fr1lrJhGFbHFB8fr1GjRlnKc+bM0ciRIws89siRI6pbt66lPGLECMXHx0uSvvjiC3344YfatWtXvnb33HOPmjdvbnVMAAAAgCPwuioAAAAAKKFPPvlEDRs21OzZswtNcEjS9evX9e2336pp06Z64403nBdgCV25ckUPPvigxowZU2CCAwAAAHAXPMkBAAAAACUwadKkAhMWUVFRql+/vvz8/HT48GHt2LHD8hRGbm6uJk2apJSUFM2aNcvJEVvHMAyNGDFCK1askCT5+Pjo7rvvVt26dRUQEKATJ05oy5YtLo4SAAAA+A+SHAAAAABgox9++CFfgqNjx4766KOPFBUVZao/evSoxo8fr6VLl1rqPv/8c7Vu3VpPPPGEM8K1SUJCgq5cuSLpP6+umjx5sv72t7+Zjjl79qxH7zECAAAA70GSAwAAAIDXSE1N1ZEjR0rUNicnx6rjMjMzNWbMGFPdwIEDtXDhQvn6+uY7vnbt2lqyZImee+45ffzxx5b6F154Qf369VNoaGiJ4nWUmwmOqVOn6pVXXinwmGrVqjkzJAAAAKBQJDkAAAAAeI2hQ4c6vI8FCxbo1KlTlnLt2rU1Z86cAhMct3r//ff1yy+/aOfOnZL+s0/H//zP/+i//uu/HBluiXTu3LnQBAcAAADgTth4HAAAAABsMHfuXFP51VdfVfny5Ytt5+vrqylTppjq4uPj7Rma3bz88suuDgEAAACwCkkOAAAAALBSdna2fv/9d0vZz89PQ4YMsbp99+7dTa+nSk5O1smTJ+0aY2lVqFBBnTp1cnUYAAAAgFVIcgAAAADwGomJiTIMo0Q/tWvXLvb8e/fuVXp6uqUcFRWlihUrWh2fr6+v7rnnHlPdli1brP+ATtCsWTOVKcOlIgAAADwDK1cAAAAAsFJaWpqp3KBBA5vP0ahRoyLP6WphYWGuDgEAAACwGkkOAAAAALDShQsXTOVKlSrZfI68bc6fP1+qmOytQoUKrg4BAAAAsBpJDgAAAACwkmEYprKPj0+pz2mPcwAAAAC3K5IcAAAAAGClKlWqmMqXLl2y+Rx524SEhJQqpoLk5uba/ZwAAACAOyLJAQAAAABWyrtfRVJSks3n2L9/f5HnvMnPz89UzsnJsbqPvK/VAgAAALwVSQ4AAAAAsFJUVJSCgoIs5T179ujy5ctWt8/NzdXmzZtNda1bty7w2IoVK5rKFy9etLqfvXv3Wn0sAAAA4MlIcgAAAACAlfz9/dWmTRtLOScnR998843V7X/88UelpaVZynXr1lWtWrUKPDbvEx779u2zqo/s7GytWbPG6pgAAAAAT0aSAwAAAABs8Oijj5rKU6dO1fXr14ttl5ubq9dff91UN2LEiEKPj46ONpW/++47q+KbPXu2UlJSrDoWAAAA8HQkOQAAAADABsOHD1eNGjUs5eTkZI0ZM0Y3btwost2LL76o7du3W8pBQUF6+umnCz2+U6dOpvKnn36q48ePF9nHpk2bNH78+CKPAQAAALwJSQ4AAAAAsEFgYKA+++wzU93ChQvVrVs3/fnnn/mOP3bsmAYOHKgPPvjAVP/ee+8Vuum4JEVGRqpjx46W8pUrV9S5c2dt2bIl37FXr17Vf//3f6tjx466fv26QkJCbP1YAAAAgEfyc3UAAAAAAOBpHnzwQb3++uuaMmWKpW7t2rW666671LRpU9WvX1++vr5KTk7Wtm3bZBiGqf2oUaP01FNPFdvPjBkz1Lp1a2VnZ0uSDhw4oDZt2qhJkyZq1KiRfH19lZKSoi1btigzM1OS1LhxYz355JN6/vnn7feBAQAAADdFkgMAAAAASmDy5MkKCwvTSy+9pKysLEv97t27tXv37gLblClTRq+88oomT55sVR/NmjVTfHy8Ro4caUl0SNKePXu0Z8+efMdHR0fru+++048//mjjpwEAAAA8E6+rAgAAAIASeu655/TXX39p5MiRqlixYqHHBQUFacCAAdq1a5emTJkiHx8fq/sYNmyYfvnlF8XGxhZ6zJ133qm33npLGzduVK1atWz6DAAAAIAn8zHyPjcNAAAAALBZdna2Nm/erIMHD+rs2bPKzc1VaGioateurXbt2qls2bKl7iMlJUUbNmzQqVOnlJWVpZo1ayoyMlJt27a1KXECAAAAeAuSHAAAAAAAAAAAwCPxuioAAAAAAAAAAOCRSHIAAAAAAAAAAACPRJIDAAAAAAAAAAB4JJIcAAAAAAAAAADAI5HkAAAAAAAAAAAAHokkBwAAAAAAAAAA8EgkOQAAAAAAAAAAgEciyQEAAAAAAAAAADwSSQ4AAAAAAAAAAOCRSHIAAAAAAAAAAACPRJIDAAAAAAAAAAB4JJIcAAAAAAAAAADAI5HkAAAAAAAAAAAAHokkBwAAAAAAAAAA8EgkOQAAAAAAAAAAgEciyQEAAAAAAAAAADwSSQ4AAAAAAAAAAOCRSHIAAAAAAAAAAACPRJIDAAAAAAAAAAB4JJIcAAAAAAAAAADAI5HkAAAAAAAAAAAAHokkBwAAAAAAAAAA8EgkOQAAAAAAAAAAgEciyQEAAAAAAAAAADwSSQ4AAAAAAAAAAOCRSHIAAAAAAAAAAACPRJIDAAAAAAAAAAB4JJIcAAAAAAAAAADAI5HkAAAAAAAAAAAAHokkBwAAAAAAAAAA8EgkOQAAAAAAAAAAgEciyQEAAAAAAAAAADwSSQ4AAAAAAAAAAOCRSHIAAAAAAAAAAACPRJIDAAAAAAAAAAB4JJIcAAAAAAAAAADAI/0/DiY74iIT0XIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "