diff --git a/src/mpoly.v b/src/mpoly.v index ea817b4..3fdbf76 100644 --- a/src/mpoly.v +++ b/src/mpoly.v @@ -946,22 +946,25 @@ Proof. by rewrite mcoeff_MPoly coeffU eq_sym. Qed. Lemma mpolyCK : cancel mpolyC (mcoeff 0%MM). Proof. by move=> c; rewrite mcoeffC eqxx mulr1. Qed. -Definition msupp p : seq 'X_{1..n} := nosimpl (dom p). +Definition msupp p : seq 'X_{1..n} := nosimpl (sort >=%O (dom p)). -Lemma msuppE p : msupp p = dom p :> seq _. +Lemma msuppE p : msupp p = sort >=%O (dom p) :> seq _. Proof. by []. Qed. +Lemma msupp_sorted p : sorted >=%O (msupp p). +Proof. exact/sort_sorted/ge_total. Qed. + Lemma msupp_uniq p : uniq (msupp p). -Proof. by rewrite msuppE uniq_dom. Qed. +Proof. by rewrite sort_uniq uniq_dom. Qed. Lemma mcoeff_msupp p m : (m \in msupp p) = (p@_m != 0). -Proof. by rewrite msuppE /mcoeff mem_dom inE. Qed. +Proof. by rewrite mem_sort /mcoeff mem_dom inE. Qed. Lemma memN_msupp_eq0 p m : m \notin msupp p -> p@_m = 0. -Proof. by rewrite !msuppE /mcoeff => /coeff_outdom. Qed. +Proof. by rewrite mem_sort /mcoeff => /coeff_outdom. Qed. Lemma mcoeff_eq0 p m : (p@_m == 0) = (m \notin msupp p). -Proof. by rewrite msuppE mem_dom inE /mcoeff negbK. Qed. +Proof. by rewrite mem_sort mem_dom inE /mcoeff negbK. Qed. Lemma msupp0 : msupp 0%:MP = [::]. Proof. by rewrite msuppE /= freegU0 dom0. Qed. @@ -980,7 +983,10 @@ Lemma mpolyP p q : (forall m, mcoeff m p = mcoeff m q) <-> (p = q). Proof. by split=> [|->] // h; apply/mpoly_eqP/eqP/freeg_eqP/h. Qed. Lemma freeg_mpoly p: p = [mpoly \sum_(m <- msupp p) << p@_m *g m >>]. -Proof. by case: p=> p; apply/mpoly_eqP=> /=; rewrite -{1}[p]freeg_sumE. Qed. +Proof. +case: p => p; apply/mpoly_eqP => /=; rewrite -{1}[p]freeg_sumE. +by apply: perm_big; rewrite perm_sym perm_sort. +Qed. End MPolyTheory. Notation "c %:MP" := (mpolyC _ c) : ring_scope. @@ -1105,7 +1111,7 @@ Lemma mpolyCMNn k : {morph mpolyC: x / x *- k} . Proof. exact: raddfMNn. Qed. Lemma msupp_eq0 p : (msupp p == [::]) = (p == 0). Proof. case: p=> p /=; rewrite msuppE /GRing.zero /= /mpolyC. -by rewrite dom_eq0 freegU0 /=. +by rewrite -size_eq0 size_sort size_eq0 dom_eq0 freegU0. Qed. Lemma msuppnil0 p : msupp p = [::] -> p = 0. @@ -1196,19 +1202,26 @@ Variable R : ringType. Implicit Types p q r : {mpoly R[n]}. Implicit Types D : {freeg 'X_{1..n} / R}. -Lemma msuppN p : perm_eq (msupp (-p)) (msupp p). -Proof. by apply/domN_perm_eq. Qed. +Lemma msuppN p : msupp (-p) = msupp p. +Proof. +apply/perm_sortP; [exact: ge_total | exact: ge_trans | exact: ge_anti |]. +by apply/domN_perm_eq. +Qed. Lemma msuppD_le p q : {subset msupp (p + q) <= msupp p ++ msupp q}. -Proof. by move=> x => /domD_subset. Qed. +Proof. by move=> x; rewrite mem_cat !mem_sort -mem_cat => /domD_subset. Qed. Lemma msuppB_le p q : {subset msupp (p - q) <= msupp p ++ msupp q}. -Proof. by move=> x /msuppD_le; rewrite !mem_cat (perm_mem (msuppN _)). Qed. +Proof. by move=> x /msuppD_le; rewrite msuppN. Qed. Lemma msuppD (p1 p2 : {mpoly R[n]}) : [predI (msupp p1) & (msupp p2)] =1 xpred0 -> perm_eq (msupp (p1 + p2)) (msupp p1 ++ msupp p2). -Proof. by apply/domD_perm_eq. Qed. +Proof. +move=> pI; rewrite perm_sort (perm_trans (domD_perm_eq _)) //. +- by move=> x; rewrite /= -(pI x) /= !mem_sort. +- by apply: perm_cat; rewrite perm_sym perm_sort. +Qed. Lemma msupp_sum_le (T : Type) (F : T -> {mpoly R[n]}) P (r : seq T) : {subset msupp (\sum_(i <- r | P i) (F i)) @@ -1232,14 +1245,14 @@ case/andP=> x_notin_r uq_r h; rewrite !big_cons /=. case: (P x)=> //; last apply/ih=> //; last first. by move=> y1 y2 y1_in_r y2_in_r; apply/h; rewrite 1?mem_behead. move/(_ uq_r): ih; rewrite -(perm_cat2l (msupp (F x))) => h'. -rewrite -(permPr (h' _)); first apply/msuppD. - move=> m /=; case: (boolP (m \in _))=> //= m_in_Fx. - apply/negP=> /msupp_sum_le /flattenP[/= ms] /mapP[y]. - rewrite mem_filter => /andP[_ y_in_r] ->. - have /= := h x y _ _ _ m; rewrite m_in_Fx=> /= -> //. - by rewrite mem_head. by rewrite mem_behead. - by move/memPnC: x_notin_r => /(_ _ y_in_r). -by move=> y1 y2 y1_in_r y2_in_r; apply/h; rewrite 1?mem_behead. +rewrite -(permPr (h' _)); last first. + by move=> y1 y2 y1_in_r y2_in_r; apply/h; rewrite 1?mem_behead. +apply/msuppD => m /=; case: (boolP (m \in _))=> //= m_in_Fx. +apply/negP=> /msupp_sum_le /flattenP[/= ms] /mapP[y]. +rewrite mem_filter => /andP[_ y_in_r] ->. +have /= := h x y _ _ _ m; rewrite m_in_Fx=> /= -> //. + by rewrite mem_head. by rewrite mem_behead. +by move/memPnC: x_notin_r => /(_ _ y_in_r). Qed. End MSuppZMod. @@ -1333,7 +1346,7 @@ by rewrite leq_maxl /= leq_max le orbC. Qed. Lemma mmeasureN p : mmeasure (-p) = mmeasure p. -Proof. by rewrite mmeasureE (perm_big _ (msuppN _)). Qed. +Proof. by rewrite mmeasureE msuppN. Qed. Lemma mmeasure_poly_eq0 p : (mmeasure p == 0%N) = (p == 0). Proof. @@ -1722,6 +1735,7 @@ Lemma mul_mpolyC c p : c%:MP * p = c *: p. Proof. have [->|nz_c] := eqVneq c 0; first by rewrite scale0r mul0r. apply/mpoly_eqP=> /=; rewrite big_allpairs msuppC (negbTE nz_c) big_seq1. +rewrite (perm_big (dom p)) ?perm_sort//. by apply: eq_bigr => i _; rewrite mpolyCK !simpm. Qed. @@ -2051,7 +2065,7 @@ Proof. move=> h0 hS [p] /=; elim/freeg_rect_dom0: p => /=. by rewrite raddf0. move=> c q m mdom nz_c /hS h. -by rewrite raddfD /= MPolyU; apply h. +by rewrite raddfD /= MPolyU; apply: h; rewrite // mem_sort. Qed. Lemma mpolyind (P : {mpoly R[n]} -> Prop) : @@ -2070,13 +2084,10 @@ Variable R : ringType. Implicit Types p q r : {mpoly R[n]}. -Definition mlead p : 'X_{1..n} := (\join_(m <- msupp p) m)%O. +Definition mlead p : 'X_{1..n} := head 0%MM (msupp p). Lemma mleadC (c : R) : mlead c%:MP = 0%MM. -Proof. -rewrite /mlead msuppC; case: eqP=> _. - by rewrite big_nil. by rewrite big_seq1. -Qed. +Proof. by rewrite /mlead msuppC; case: eqP. Qed. Lemma mlead0 : mlead 0 = 0%MM. Proof. by rewrite mleadC. Qed. @@ -2085,31 +2096,39 @@ Lemma mlead1 : mlead 1 = 0%MM. Proof. by rewrite mleadC. Qed. Lemma mleadXm m : mlead 'X_[m] = m. -Proof. by rewrite /mlead msuppX big_seq1. Qed. +Proof. by rewrite /mlead msuppX. Qed. Lemma mlead_supp p : p != 0 -> mlead p \in msupp p. Proof. -move=> nz_p; case: (eq_bigjoin id _ (r := msupp p)) => /=. - by apply/le_total. by rewrite msupp_eq0. -by rewrite /mlead=> m /andP [m_in_p /eqP ->]. +by move=> p0; rewrite /mlead -nth0 mem_nth // lt0n size_eq0 msupp_eq0. +Qed. + +Lemma mlead_join p : mlead p = (\join_(m <- msupp p) m)%O. +Proof. +have [-> | p0] := eqVneq p 0; first by rewrite mlead0 msupp0 big_nil. +apply/le_anti/andP; split; first exact: joins_sup_seq _ (mlead_supp p0) _. +apply/joinsP_seq => x xp _. +rewrite -(nth_index 0%MM xp) /mlead -nth0. +apply: (sorted_leq_nth _ _ _ (msupp_sorted _)) => //. +- exact: ge_trans. +- exact: ge_refl. +- by rewrite inE lt0n size_eq0 msupp_eq0. +- by rewrite inE index_mem. Qed. Lemma mlead_deg p : p != 0 -> (mdeg (mlead p)).+1 = msize p. Proof. -move=> /mlead_supp lc_in_p; rewrite /mlead msizeE mdeg_bigmax. +move=> /mlead_supp lc_in_p; rewrite mlead_join /mlead msizeE mdeg_bigmax. have: msupp p != [::] by case: (msupp p) lc_in_p. elim: (msupp p)=> [|m [|m' r] ih] // _; first by rewrite !big_seq1. by rewrite big_cons -maxnSS {}ih // !big_cons. Qed. Lemma msupp_le_mlead p m : m \in msupp p -> (m <= mlead p)%O. -Proof. by move=> mp; apply/join_sup_seq. Qed. +Proof. by move=> mp; rewrite mlead_join; apply/join_sup_seq. Qed. Lemma mleadN p : mlead (-p) = mlead p. -Proof. -have [->|nz_p] := eqVneq p 0; first by rewrite oppr0. -by rewrite /mlead (perm_big _ (msuppN p)). -Qed. +Proof. by rewrite /mlead msuppN. Qed. Lemma mleadD_le p q : (mlead (p + q) <= mlead p `|` mlead q)%O. Proof. @@ -2412,29 +2431,27 @@ Notation mleadc p := (p@_(mlead p)). Section MPolyLast. Context {R : ringType} {n : nat}. -Definition mlast (p : {mpoly R[n]}) : 'X_{1..n} := - head 0%MM (sort (<=%O)%O (msupp p)). +Definition mlast (p : {mpoly R[n]}) : 'X_{1..n} := last 0%MM (msupp p). Lemma mlast0 : mlast 0 = 0%MM. Proof. by rewrite /mlast msupp0. Qed. Lemma mlast_supp p : p != 0 -> mlast p \in msupp p. Proof. -rewrite -msupp_eq0 /mlast; move: (msupp p) => s nz_s. -rewrite -(perm_mem (permEl (perm_sort <=%O%O _))). -by rewrite -nth0 mem_nth // size_sort lt0n size_eq0. +move=> p0. +by rewrite /mlast -nth_last mem_nth // ltn_predL lt0n size_eq0 msupp_eq0. Qed. Lemma mlast_lemc m p : m \in msupp p -> (mlast p <= m)%O. Proof. -rewrite /mlast -nth0; set s := sort _ _. -have: perm_eq s (msupp p) by apply/permEl/perm_sort. -have: sorted <=%O%O s by apply/sort_sorted/le_total. -case: s => /= [_|m' s srt_s]; first rewrite perm_sym. - by move/perm_small_eq=> -> //. -move/perm_mem => <-; rewrite in_cons => /orP[/eqP->//|]. -elim: s m' srt_s => //= m'' s ih m' /andP[le_mm' /ih {}ih]. -by rewrite in_cons => /orP[/eqP->//|] /ih /(le_trans le_mm'). +move=> mp. +rewrite -(nth_index 0%MM mp) /mlast -nth_last. +apply: (sorted_leq_nth _ _ _ (msupp_sorted _)). +- exact: ge_trans. +- exact: ge_refl. +- by rewrite inE index_mem. +- by rewrite inE ltn_predL -has_predT; apply/hasP; exists m. +- by rewrite -ltnS prednK ?index_mem // -has_predT; apply/hasP; exists m. Qed. Lemma mlastE (p : {mpoly R[n]}) (m : 'X_{1..n}) : @@ -3317,7 +3334,7 @@ Lemma mpolyOver_mpoly (S : {pred R}) E : -> [mpoly E] \is a mpolyOver S. Proof. move=> S_E; apply/(all_nthP 0)=> i; rewrite size_map /= => lt. -by rewrite (nth_map 0%MM) // mcoeff_MPoly S_E ?mem_nth. +by rewrite (nth_map 0%MM) // mcoeff_MPoly S_E // -(mem_sort >=%O) mem_nth. Qed. Section MPolyOverAdd. @@ -4092,8 +4109,8 @@ Qed. Lemma mlead_mesym k (le_kn : k <= n) : mlead 's_k = [multinom (i < k : nat) | i < n]. Proof. -rewrite -mesymlmE /mesymlm /mlead; set m := mesym1 _. -rewrite (bigD1_seq (mesymlm k)) //=; last first. +rewrite -mesymlmE /mesymlm; set m := mesym1 _. +rewrite mlead_join (bigD1_seq (mesymlm k)) //=; last first. rewrite mem_msupp_mesym mecharP; apply/existsP. by exists (mesymlmnm k); rewrite card_mesymlmnm ?eqxx. apply/join_l/joinsP_seq=> {m} /= m.