diff --git a/topology.v b/topology.v new file mode 100644 index 0000000..ee04c56 --- /dev/null +++ b/topology.v @@ -0,0 +1,955 @@ +From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice seq ssrnat bigop fintype finfun order ssralg ssrnum poly polydiv complex polyorder. +From mathcomp Require Import matrix topology normedtype classical_sets interval. +Require Import auxresults semialgebraic. + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Import numFieldTopology.Exports Order.TotalTheory Order.POrderTheory GRing Order Num.Theory. + +Local Open Scope type_scope. +Local Open Scope ring_scope. +Local Open Scope sa_scope. +Local Open Scope classical_set_scope. +Local Open Scope order_scope. + +Ltac mp := + match goal with + | |- (?x -> _) -> _ => have /[swap]/[apply]: x + end. + +Section SAconnected. +Variable (R : rcfType) (n : nat). + +Lemma set_of_SAsetC (A : {SAset R^n}) : + [set` ~: A] = ~` [set` A]. +Proof. +rewrite classical_sets.eqEsubset; split; apply/subsetP => /= x; rewrite in_setC/= !inE/= inSAsetC => /negP xAN; apply/negP => xA; apply/xAN. + by rewrite inE in xA. +by rewrite inE. +Qed. + +Definition SAconnected (s : {SAset R ^ n}) := + forall (u v : {SAset R^n}), + @open (subspace [set` s]) [set` u] -> + @open (subspace [set` s]) [set` v] -> + s :&: u != SAset0 R n -> + s :&: v != SAset0 R n -> + s :<=: (u :|: v) -> + s :&: u :&: v != SAset0 R n. + +Lemma SAconnected_clopen s : + SAconnected s <-> + forall (u v : {SAset R^n}), + @open (subspace [set` s]) [set` u] -> + @closed (subspace [set` s]) [set` v] -> + s :&: u = s :&: v -> + (s :<=: u) || (s :&: u == SAset0 R n). +Proof. +split=> scon u v uo. + move=> vc uvs; apply/negP => /negP; rewrite negb_or => /andP[su]su0. + move/(_ u (~: v) uo): scon. + rewrite set_of_SAsetC openC => /(_ vc su0). + move: su; rewrite SAsubsetED -SAsetDIr uvs SAsetDIr => /[swap]/[apply]. + rewrite SAsubsetEI SAsetIUr uvs -SAsetIUr SAsetUCr SAsetIT => /(_ (eqxx _)). + by rewrite -SAsetIA SAsetICr SAsetI0 eqxx. +move=> vo us vs suv; apply/eqP => uv0. +move/(_ u (~: v) uo): scon. +rewrite set_of_SAsetC closedC => /(_ vo). +mp. + apply/eqP; rewrite eqEsubset; apply/andP; split; apply/SAset_subP => x; rewrite !inSAsetI => /andP[] /[dup] xs -> /=; rewrite inSAsetC => xu. + apply/negP => xv. + suff: x \in s :&: u :&: v by rewrite uv0 inSAset0. + by rewrite !inSAsetI xs xu. + by move/SAset_subP: suv => /(_ _ xs); rewrite inSAsetU (negPf xu) orbF. +rewrite (negPf us) orbF => /SAset_subP su. +move: vs; have [->|[x]] := (set0Vmem (s :&: v)); first by rewrite eqxx. +rewrite inSAsetI => /andP[] xs xv. +have: x \in s :&: u :&: v by rewrite !inSAsetI xs (su _ xs). +by rewrite uv0 inSAset0. +Qed. + +Lemma SAconnected_closed s : + SAconnected s <-> + forall (u v : {SAset R^n}), + @closed (subspace [set` s]) [set` u] -> + @closed (subspace [set` s]) [set` v] -> + s :&: u != SAset0 R n -> + s :&: v != SAset0 R n -> + s :<=: (u :|: v) -> + s :&: u :&: v != SAset0 R n. +Proof. +by split=> scon u v ut vt su0 sv0 suv; apply/eqP => suv0; +move: (scon (~: u) (~: v)); +rewrite !set_of_SAsetC ?openC ?closedC => /(_ ut vt); +(mp; [rewrite -SAsubsetED; apply/negP => /SAset_subP su; + move/negP: sv0; apply; rewrite -subset0; apply/SAset_subP => x; + rewrite -suv0 !inSAsetI => /andP[xs xv]; + rewrite xs (su _ xs)//|]); +(mp; [rewrite -SAsubsetED; apply/negP => /SAset_subP sv; + move/negP: su0; apply; rewrite -subset0; apply/SAset_subP => x; + rewrite -suv0 !inSAsetI => /andP[xs xu]; + rewrite xs xu (sv _ xs)//|]); +rewrite SAsubsetED /SAsetD SAsetCU !SAsetCK SAsetIA suv0 eqxx => /(_ isT); +rewrite -SAsetIA -SAsetCU -SAsubsetED suv. +Qed. + +Definition locally_constant_on (T : topologicalType) (U : Type) (f : T -> U) + (S : set T) (v : U) := + {in S, forall x, f x = v -> exists O, + @open (subspace S) O /\ + x \in O /\ + {in (S `&` O)%classic, forall y, f y = v}}. + +Definition locally_constant (T : topologicalType) (U : Type) (f : T -> U) (S : set T) := + {in S, forall x, exists O, + @open (subspace S) O /\ + x \in O /\ + {in (S `&` O)%classic, forall y, f x = f y}}. + +Lemma open_subspace_ballP (F : numDomainType) (T : pseudoMetricType F) (S : set T) (A : set T) : + @open (subspace S) A <-> + forall x, (x \in A `&` S)%classic -> + exists eps, 0 < eps /\ (ball x eps `&` S `<=` A)%classic. +Proof. +rewrite openE/=; split=> [/subsetP Aopen x|Aopen]. + rewrite in_setI => /andP[] /[dup] xA /Aopen + xS. + rewrite /interior inE => /nbhs_ballP [] e /= e0. + rewrite -[ball _ _]/(subspace_ball _ _) /subspace_ball xS setIC. + by exists e. +apply/subsetP => x xA. +rewrite /interior inE; apply/nbhs_ballP. +have [xS|xnS] := boolP (x \in S); last first. + exists 1 => //=. + apply/subsetP => y. + rewrite -[ball _ _]/(subspace_ball _ _) /subspace_ball. + by rewrite (negPf xnS) inE => /= ->. +move: (Aopen x); rewrite in_setI xA => /(_ xS) []e []e0 xSA. +exists e => //=. +by rewrite -[ball _ _]/(subspace_ball _ _) /subspace_ball xS setIC. +Qed. + +Lemma SAconnected_locally_constant_on_constant (f : {SAfun R^n -> R^1}) + (S : {SAset R^n}) (x : 'rV_n) : + x \in S -> + SAconnected S -> + locally_constant_on f [set` S] (f x) -> + {within [set` S], continuous f} -> + {in S, forall y, f y = f x}. +Proof. +move=> xS S_con f_const /continuousP/= fcon y yS. +apply/eqP/negP => /negP yx. +move: (S_con (SApreimset f (SAset_seq [:: f x])) (SApreimset f (~: (SAset_seq [:: f x])))). +have /[swap]/[apply]: @open (subspace [set` S]) [set` SApreimset f [set f x]]. + apply/open_subspace_ballP => /= z. + rewrite in_setI mem_setE inSApreimset inSAset_seq mem_seq1 => /andP[] /eqP zy zS. + case: (f_const z) => //= O [] + []. + rewrite openE/= => /subsetP /[apply]. + rewrite /interior inE => /nbhs_ballP [] e /= e0 /subsetP zeO fz. + exists e; split=> //. + apply/subsetP => u; rewrite in_setI => /andP[] uz uS. + rewrite mem_setE inSApreimset inSAset_seq mem_seq1; apply/eqP/fz. + rewrite in_setI uS; apply/zeO. + rewrite -[ball _ _]/(subspace_ball _ _) /subspace_ball zS. + by rewrite in_setI uS. +have /[swap]/[apply]: @open (subspace [set` S]) [set` SApreimset f (~: [set f x])]. + have ->: [set` SApreimset f (~: [set f x])] = f @^-1` ~` (set1 (f x)). + by apply/seteqP; split; apply/subsetP => z; rewrite !inE/= inSApreimset inSAsetC inSAset1 => /eqP. + apply/fcon; rewrite -open_subspace_setT. + apply/open_subspace_ballP => /= z. + rewrite setIT in_setC => zx. + exists `|z - f x|; split. + rewrite normr_gt0 subr_eq0; apply/eqP => xz. + move: zx; rewrite unfold_in/==> /negP; apply. + by rewrite inE/=. + rewrite setIT; apply/subsetP => t. + rewrite -ball_normE inE/= in_setC => tx. + apply/negP; rewrite inE => /= tE. + by rewrite tE ltxx in tx. +have /[swap]/[apply]: S :&: SApreimset f [set f x] != SAset0 R n. + rewrite -subset0; apply/negP => /SAset_subP/(_ x). + by rewrite inSAset0 inSAsetI xS inSApreimset inSAset_seq => /(_ (mem_head _ _)). +have /[swap]/[apply]: S :&: SApreimset f (~: [ set f x]) != SAset0 R n. + rewrite -subset0; apply/negP => /SAset_subP/(_ y). + rewrite inSAset0 inSAsetI yS inSApreimset inSAsetC inSAset_seq mem_seq1. + by move=> /(_ yx). +rewrite -SApreimsetU SAsetUCr SApreimsetT => /(_ (subsetT _)). +by rewrite -SAsetIA -SApreimsetI SAsetICr SApreimset0 SAsetI0 eqxx. +Qed. + +Lemma SAconnected_locally_constant_constant (f : {SAfun R^n -> R^1}) (S : {SAset R^n}): + SAconnected S -> + locally_constant f [set` S] -> + {in S &, forall x y, f x = f y}. +Proof. +move=> S_con f_const x y xS yS. +apply/eqP/negP => /negP xy. +move: (S_con (SApreimset f (SAset_seq [:: f x])) (SApreimset f (~: (SAset_seq [:: f x])))). +have /[swap]/[apply]: @open (subspace [set` S]) [set` SApreimset f [ set f x]]. + apply/open_subspace_ballP => /= z. + rewrite in_setI mem_setE inSApreimset inSAset_seq mem_seq1 => /andP[] /eqP zx zS. + case: (f_const z) => //= O [] + []. + rewrite openE/= => /subsetP /[apply]. + rewrite /interior inE => /nbhs_ballP [] e /= e0 /subsetP zeO fz. + exists e; split=> //. + apply/subsetP => u; rewrite in_setI => /andP[] uz uS. + rewrite mem_setE inSApreimset inSAset_seq mem_seq1 -zx; apply/eqP/esym/fz. + rewrite in_setI uS; apply/zeO. + rewrite -[ball _ _]/(subspace_ball _ _) /subspace_ball zS. + by rewrite in_setI uS. +have /[swap]/[apply]: @open (subspace [set` S]) [set` SApreimset f (~: [ set f x])]. + apply/open_subspace_ballP => /= z. + rewrite in_setI mem_setE inSApreimset inSAsetC inSAset_seq mem_seq1 => /andP[] zx zS. + case: (f_const z) => //= O [] + []. + rewrite openE/= => /subsetP /[apply]. + rewrite /interior inE => /nbhs_ballP [] e /= e0 /subsetP zeO => fz. + exists e; split=> //. + apply/subsetP => u; rewrite in_setI => /andP[] uz uS. + rewrite mem_setE inSApreimset inSAsetC inSAset_seq mem_seq1 -(fz u)//. + rewrite in_setI uS; apply/zeO. + rewrite -[ball _ _]/(subspace_ball _ _) /subspace_ball zS. + by rewrite in_setI uS. +have /[swap]/[apply]: S :&: SApreimset f [ set f x] != SAset0 R n. + rewrite -subset0; apply/negP => /SAset_subP/(_ x). + by rewrite inSAset0 inSAsetI xS inSApreimset inSAset_seq => /(_ (mem_head _ _)). +have /[swap]/[apply]: S :&: SApreimset f (~: [ set f x]) != SAset0 R n. + rewrite -subset0; apply/negP => /SAset_subP/(_ y). + rewrite inSAset0 inSAsetI yS inSApreimset inSAsetC inSAset_seq mem_seq1. + by rewrite eq_sym => /(_ xy). +rewrite -SApreimsetU SAsetUCr SApreimsetT => /(_ (subsetT _)). +by rewrite -SAsetIA -SApreimsetI SAsetICr SApreimset0 SAsetI0 eqxx. +Qed. + +Lemma subseq_sorted_continuous_SAfun (f g : seq (SAfunltType R n)) (s : {SAset R^n}) : + {in s, forall x, uniq [seq (f : {SAfun R^n -> R^1}) x | f <- f]} + -> {in s, forall x, uniq [seq (f : {SAfun R^n -> R^1}) x | f <- g]} + -> (forall i : 'I_(size f), {within [set` s], continuous f`_i}) + -> (forall i : 'I_(size g), {within [set` s], continuous g`_i}) + -> SAconnected s + -> {in s, forall x, subseq [seq (f : {SAfun R^n -> R^1}) x | f <- f] [seq (f : {SAfun R^n -> R^1}) x | f <- g]} + -> (exists t : seq nat, + subseq t (iota 0 (size g)) /\ + {in s, forall x, [seq (f : {SAfun R^n -> R^1}) x | f <- f] = [seq g`_i x | i <- t]}) +. +Proof. +move=> funiq guniq fcont gcont scon fg. +case: (set0Vmem s) => [->|[] x xs]. + exists nil; split; first exact/sub0seq. + by move=> y; rewrite inSAset0. +move: (fg x xs) => /(subseq_nth_iota 0)[] /= r. +rewrite size_map => -[] rg fE. +move: (fE) => /(congr1 size); rewrite !size_map => fr. +exists r; split=> // y ys. +apply/(@eq_from_nth _ 0); rewrite !size_map// => i ilt. +rewrite (nth_map 0)// (nth_map 0); last by rewrite -fr. +have rig: (r`_i < size g)%N. + move/mem_subseq: rg => /(_ r`_i); mp. + by apply/mem_nth; rewrite -fr. + by rewrite mem_iota. +have fgx: SAfun_sub f`_i g`_(r`_i) x = 0. + move: fE => /(congr1 (fun f => f`_i)). + rewrite (nth_map 0)// (nth_map 0); last by rewrite -fr. + rewrite SAfun_subE (nth_map 0)// => ->. + exact/subrr. +suff: (SAfun_sub f`_i g`_(r`_i) y = SAfun_sub f`_i g`_(r`_i) x). + by move=> /eqP; rewrite fgx SAfun_subE subr_eq0 => /eqP. +apply/(SAconnected_locally_constant_on_constant xs scon) => // {ys}y; last first. + apply/(@eq_continuous (subspace [set` s]) _ (fun y => f`_i y - g`_(r`_i) y)). + by move=> z; rewrite SAfun_subE. + move=> z. + apply/continuousB. + exact/(fcont (Ordinal ilt)). + exact/(gcont (Ordinal rig)). +rewrite inE/= fgx SAfun_subE => ys /eqP. +rewrite subr_eq0 => /eqP fgy. +set e := (min (\big[min/1%R]_(i < size f) \big[min/1%R]_(j < size f | i != j) `|f`_j y - f`_i y|) + (\big[min/1%R]_(i < size g) \big[min/1%R]_(j < size g | i != j) `|g`_j y - g`_i y|)) / 2. +have e0: 0 < e. + apply/divr_gt0 => //. + rewrite lt_min; apply/andP; split; apply/lt_bigmin => //= j _; apply/lt_bigmin => // k jk; rewrite normr_gt0 subr_eq0; apply/eqP => jE; + move: (ltn_ord j) (ltn_ord k); rewrite -{2 4}(size_map (fun f : {SAfun R^n -> R^1} => f y)) => jlt klt. + move: (funiq y ys) => /(nth_uniq 0 jlt klt). + rewrite size_map in jlt klt. + by rewrite [RHS](inj_eq (@ord_inj _)) (negPf jk) (nth_map 0)// (nth_map 0)// jE eqxx. + move: (guniq y ys) => /(nth_uniq 0 jlt klt). + rewrite size_map in jlt klt. + by rewrite [RHS](inj_eq (@ord_inj _)) (negPf jk) (nth_map 0)// (nth_map 0)// jE eqxx. +exists ((\big[setI/setT]_(i < size f) f`_i @^-1` (ball (f`_i y) e)) `&` + \big[setI/setT]_(i < size g) g`_i @^-1` (ball (g`_i y) e)). +split. + apply/openI; apply/open_bigcap => /= j _. + by move: (fcont j) => /continuousP; apply; apply/ball_open. + by move: (gcont j) => /continuousP; apply; apply/ball_open. +split. + by rewrite in_setI -!bigcap_seq !unfold_in/=; apply/andP; split; rewrite inE/= => z _ /=; apply/ballxx. +move=> z; rewrite !in_setI -!bigcap_seq mem_setE/= => /andP[zs]. +rewrite !unfold_in => /andP[]; rewrite !inE/= => zf zg. +apply/eqP; rewrite SAfun_subE subr_eq0; apply/eqP. +move: (fg z zs) => /mem_subseq/(_ (f`_i z)); mp. + by apply/map_f/mem_nth. +move=> /mapP[/=] _ /(nthP 0)[] j jg <- fzE. +rewrite fzE; congr (nth _ g _ z). +apply/eqP/negP => /negP ji. +move: (zf (Ordinal ilt) (mem_index_enum _)) => /=. +move: (zg (Ordinal jg) (mem_index_enum _)) => /=. +rewrite -ball_normE/= fzE fgy => gyz ryz. +have: (`|g`_(r`_i) y - g`_j y| < e * 2)%R. + rewrite -(subrBB (g`_j z)) mulr_natr mulr2n. + exact/(le_lt_trans (ler_normB _ _))/ltrD. +rewrite /e mulrAC -mulrA divff ?pnatr_eq0// mulr1 lt_min => /andP[_]. +move=> /bigmin_gtP[_] /(_ (Ordinal jg) isT) /bigmin_gtP[_] /(_ (Ordinal rig)). +by rewrite -(inj_eq val_inj)/= ltxx => /(_ ji). +Qed. + +End SAconnected. + +Lemma SAset_itv_connected (R : rcfType) (I : interval R) : + SAconnected (SAset_itv I). +Proof. +move=> u v uopen vopen. +case: (set0Vmem (SAset_itv I :&: u)) => [->|[] x]; first by rewrite eqxx => + _. +rewrite inSAsetI => /andP[] xI xu _. +case: (set0Vmem (SAset_itv I :&: v)) => [->|[] y]; first by rewrite eqxx. +rewrite inSAsetI => /andP[] yI yv _. +wlog: x y u v xI xu yI yv uopen vopen / x ord0 ord0 <= y ord0 ord0 => xy. + move: (le_total (x ord0 ord0) (y ord0 ord0)) => /orP[|yx]; first exact/xy. + rewrite SAsetUC -SAsetIA [u :&: v]SAsetIC SAsetIA. + by move: yx; apply/xy. +have uy: y \in SAsetUB (SAset_itv `[(x ord0 ord0), (y ord0 ord0)]%R :&: u). + apply/inSAsetUB => z; rewrite inSAsetI inSAset_itv in_itv/=. + by move=> /andP[]/andP[_]. +move: (@SAset_supP _ (SAset_itv `[x ord0 ord0, y ord0 ord0] :&: u)). +mp. + apply/negP => /SAsetP/(_ x). + by rewrite inSAsetI inSAset_itv in_itv/= lexx xy xu inSAset0. +mp=> [|[] z ubu]. + by apply/negP => /SAsetP/(_ y); rewrite uy inSAset0. +move: uy; rewrite ubu inSAset_itv in_itv/= andbT => zy. +have: \row__ z \in SAset_itv `[z, +oo[%R. + by rewrite inSAset_itv in_itv/= mxE lexx. +rewrite -ubu => /inSAsetUB; rewrite mxE => zub. +move: (zub x); rewrite inSAsetI inSAset_itv in_itv/= lexx xy xu => /(_ isT) xz. +move=> /SAset_subP Iuv. +have /SAset_subP xyI: SAset_itv `[x ord0 ord0, y ord0 ord0] :<=: SAset_itv I. + apply/SAset_subP => a. + case: I xI yI {Iuv uopen vopen} => l r. + rewrite !inSAset_itv !itv_boundlr => /andP[] lx _ /andP[] _ yr /andP[] xa ay. + apply/andP; split; first exact/(le_trans lx). + exact/(le_trans ay). +have zI: \row__ z \in SAset_itv I. + by apply/xyI; rewrite inSAset_itv in_itv/= mxE xz. +move: (Iuv _ zI); rewrite inSAsetU => /orP[zu|zv]. + move: zy; rewrite le_eqVlt => /orP[/eqP|] zy. + apply/negP => /SAsetP/(_ y). + rewrite 2!inSAsetI inSAset0 yv andbT => /negP; apply. + apply/andP; split. + by apply/xyI; rewrite inSAset_itv in_itv/= xy lexx. + move: zu; congr (_ \in u); apply/eqP; rewrite rowPE forall_ord1 mxE. + exact/eqP. + move: uopen => /open_subspace_ballP/(_ (\row__ z)); mp. + rewrite in_setI mem_setE/= zu mem_setE inSAset_itv mxE/=. + by move: zI; rewrite inSAset_itv mxE. + move=> [] /= e [] e0 /subsetP eu. + move: (zub (\row__ (Order.min (z + e / 2) (y ord0 ord0))))%R; mp; last first. + rewrite mxE leNgt lt_min zy andbT -[X in (X < _)%R]addr0 => /negP; elim. + apply/ler_ltD; first exact/lexx. + exact/divr_gt0. + rewrite inSAsetI inSAset_itv in_itv/= mxE. + rewrite le_min xy -[x _ _]addr0 ge_min lexx orbT !andbT; apply/andP; split. + by apply/lerD => //; apply/divr_ge0 => //; apply/ltW. + suff: \row__ Num.min (z + e / 2)%R (y ord0 ord0) \in [set` u]. + by rewrite mem_setE. + apply/eu; rewrite in_setI -ball_normE/=. + (* N.B. This is a very weird way to do it. *) + rewrite mem_setE/= unfold_in/= [X in isPOrder.lt _ X]mx_normrE/=. + apply/andP; split; last first. + rewrite mem_setE; apply/xyI; rewrite inSAset_itv in_itv/= mxE. + rewrite ge_min lexx orbT le_min xy 2!andbT -[x _ _]addr0. + by apply/lerD => //; apply/divr_ge0 => //; apply/ltW. + apply/bigmax_lt => //; case; case; case=> //= ltr01; case; case=> // ltr01' _. + rewrite !mxE; apply/ltr_normlP; split; rewrite -subr_gt0. + rewrite opprK addrA subr_gt0 gt_min addrC; apply/orP; left. + apply/ltr_leD; last exact/lexx. + rewrite ltr_pdivrMr// mulr_natr mulr2n -[X in (X < _)%R]addr0. + by apply/ler_ltD => //; apply/lexx. + rewrite opprB addrCA -opprB subr_gt0 lt_min; apply/andP; split; last first. + by rewrite -[X in (_ < X)%R]addr0; apply/ltrD => //; rewrite oppr_lt0. + apply/ler_ltD; first exact/lexx. + rewrite ltr_pdivlMr// -subr_gt0 mulNr opprK -[X in (X + _)%R]mulr1. + by rewrite -mulrDr; apply/mulr_gt0 => //; apply/addr_gt0. +move: xz; rewrite le_eqVlt => /orP[/eqP|] xz. + apply/negP => /SAsetP/(_ x). + rewrite 2!inSAsetI inSAset0 xu andbT => /negP; apply. + apply/andP; split. + by apply/xyI; rewrite inSAset_itv in_itv/= xy lexx. + move: zv; congr (_ \in v); apply/eqP; rewrite rowPE forall_ord1 mxE. + exact/eqP. +move: vopen => /open_subspace_ballP/(_ (\row__ z)); mp. + rewrite in_setI mem_setE/= zv mem_setE inSAset_itv mxE/=. + by move: zI; rewrite inSAset_itv mxE. +move=> [] /= e [] e0 /subsetP ev. +have: (\row__ (Order.max (z - e / 2) (x ord0 ord0))) \in ~: SAset_itv `[z, +oo[%R. + rewrite inSAsetC inSAset_itv in_itv/= mxE andbT -ltNge gt_max xz andbT. + rewrite -[X in (_ < X)%R]addr0; apply/ler_ltD; first exact/lexx. + by rewrite oppr_lt0; apply/divr_gt0. +rewrite -ubu => /inSAsetUBC[] t. +rewrite inSAsetI inSAset_itv in_itv/= mxE gt_max => -[] /andP[]/andP[_] ty tu. +move=> /andP[] zt xt. +apply/negP => /SAsetP/(_ t); rewrite 2!inSAsetI inSAset0 tu andbT => /negP. +apply; apply/andP; split. + by apply/xyI; rewrite inSAset_itv in_itv/= (ltW xt). +suff: t \in [set` v] by rewrite mem_setE. +apply/ev; rewrite in_setI -ball_normE/=. +(* N.B. This is a very weird way to do it. *) +rewrite mem_setE/= unfold_in/= [X in isPOrder.lt _ X]mx_normrE/=. +apply/andP; split; last first. + by rewrite mem_setE; apply/xyI; rewrite inSAset_itv in_itv/= (ltW xt). +apply/bigmax_lt => //; case; case; case=> //= ltr01; case; case=> // ltr01' _. +rewrite !mxE; apply/ltr_normlP; split; rewrite -subr_gt0. + rewrite opprK addrA subr_gt0 -[X in (X < _)%R]add0r; apply/ltr_leD => //. + move: (zub t); mp; last by congr (t _ _ <= z)%R; apply/val_inj. + by rewrite inSAsetI inSAset_itv in_itv/= (ltW xt) ty. +rewrite opprB addrCA -opprB subr_gt0. +have ze: z - e < z - e / 2. + apply/ler_ltD; first exact/lexx. + rewrite -subr_gt0 -opprD opprB subr_gt0. + rewrite ltr_pdivrMr// -subr_gt0 -[X in (_ - X)%R]mulr1 -mulrBr. + by rewrite mulr2n -addrA subrr addr0 mulr1. +by apply/(lt_trans ze); move: zt; congr (_ < t _ _)%R; apply/val_inj. +Qed. + +Lemma SAimset_connected (R : rcfType) n m (s : {SAset R^n}) (f : {SAfun R^n -> R^m}) : + SAconnected s -> {within [set` s], continuous f} -> SAconnected (SAimset f s). +Proof. +move=> scon /continuousP fcon u v. +move=> /open_subspaceP[] U [] /fcon /open_subspaceP[] Us [] Uso UsE UE. +move=> /open_subspaceP[] V [] /fcon /open_subspaceP[] Vs [] Vso VsE VE. +move=> fsu fsv fsuv. +move: (scon (SApreimset f u) (SApreimset f v)). +mp. + apply/open_subspaceP; exists Us; split=> //. + rewrite UsE; apply/seteqP; split; apply/subsetP => x; + rewrite !in_setI !mem_setE inSApreimset => /andP[] fxu xs; + apply/andP; split=> //. + suff: f x \in (U `&` [set` SAimset f s])%classic. + by rewrite UE in_setI mem_setE => /andP[]. + rewrite in_setI mem_setE; apply/andP; split=> //. + exact/inSAimset. + suff: f x \in (U `&` [set` SAimset f s])%classic. + by rewrite in_setI => /andP[]. + rewrite UE in_setI !mem_setE; apply/andP; split=> //. + exact/inSAimset. +mp. + apply/open_subspaceP; exists Vs; split=> //. + rewrite VsE; apply/seteqP; split; apply/subsetP => x; + rewrite !in_setI !mem_setE inSApreimset => /andP[] fxv xs; + apply/andP; split=> //. + suff: f x \in (V `&` [set` SAimset f s])%classic. + by rewrite VE in_setI mem_setE => /andP[]. + rewrite in_setI mem_setE; apply/andP; split=> //. + exact/inSAimset. + suff: f x \in (V `&` [set` SAimset f s])%classic. + by rewrite in_setI => /andP[]. + rewrite VE in_setI !mem_setE; apply/andP; split=> //. + exact/inSAimset. +mp. + move: fsu; apply/contraNN => /eqP fsu. + apply/SAsetP => x; rewrite inSAsetI inSAset0. + apply/negP => /andP[] /SAimsetP[] y ys -> fyu. + suff: y \in SAset0 R n by rewrite inSAset0. + by rewrite -fsu inSAsetI ys inSApreimset. +mp. + move: fsv; apply/contraNN => /eqP fsv. + apply/SAsetP => x; rewrite inSAsetI inSAset0. + apply/negP => /andP[] /SAimsetP[] y ys -> fyv. + suff: y \in SAset0 R n by rewrite inSAset0. + by rewrite -fsv inSAsetI ys inSApreimset. +mp. + apply/SAset_subP => x xs; rewrite inSAsetU 2!inSApreimset. + move: fsuv => /SAset_subP/(_ (f x) (inSAimset _ xs)). + by rewrite inSAsetU. +apply/contraNN => /eqP fsuv0. +apply/SAsetP => x; rewrite 2!inSAsetI 2!inSApreimset inSAset0. +apply/negP => /andP[]/andP[] xs fxu fxv. +suff: f x \in SAset0 R m by rewrite inSAset0. +rewrite -fsuv0 2!inSAsetI fxu fxv !andbT. +exact/inSAimset. +Qed. + +Lemma SAselect_continuous R n m s : continuous (SAselect R n m s). +Proof. +case: m => [|m]. + apply/continuousP => /= a _. + have [->|/set0P[] x ax] := eqVneq a set0. + rewrite preimage_set0; exact/open0. + suff ->: a = setT by rewrite preimage_setT; exact/openT. + rewrite -classical_sets.subTset; apply/subsetP => y _. + suff ->: y = x by rewrite inE. + by apply/rowP; case. +case: n => [|n]. + apply/(eq_continuous (f:=fun=> 0)); last exact/cst_continuous. + move=> x; rewrite SAselectE; apply/rowP => i. + by rewrite !mxE nth_default// size_ngraph. +apply/continuousP => /= a; rewrite -open_subspace_setT => /open_subspace_ballP/= aopen. +rewrite -open_subspace_setT; apply/open_subspace_ballP => /= x. +rewrite setIT => xa. +move: aopen => /(_ (SAselect _ _ _ s x)) => /=. +rewrite setIT => /(_ xa)[] e [] e0 /subsetP ea. +exists e; split=> //; apply/subsetP => y. +rewrite -ball_normE inE/= [X in (X < _)%R]mx_normrE => -[] + _. +move=> /bigmax_ltP[_]/= xye. +apply/ea; rewrite -ball_normE inE/=; split=> //. +rewrite [X in (X < _)%R]mx_normrE; apply/bigmax_ltP; split=> //=. +case=> i j _; rewrite !SAselectE/= !mxE. +case: (ltnP (s`_j) n.+1) => jn; last first. + by rewrite nth_default ?size_ngraph// nth_default ?size_ngraph// subrr normr0. +have ->: s`_j = Ordinal jn by []. +rewrite !nth_ngraph. +move: (xye (i, Ordinal jn) isT); rewrite /= !mxE. +by congr (`|x _ _ - y _ _| < e)%R; apply/val_inj; case: i; case. +Qed. + +Lemma SAcast_connected (R : rcfType) n m (s : {SAset R^n}) : + SAconnected s -> SAconnected (SAset_cast m s). +Proof. +move=> scon. +rewrite SAset_castE_select. +apply/SAimset_connected => //=. +apply/(continuous_subspaceW (B:=setT)). + exact/classical_sets.subsetT. +move=> x y. +move: (@SAselect_continuous R n m (iota 0 m) x y) => /[apply]. +by rewrite nbhs_subspaceT. +Qed. + +Lemma SAconnected0 (R : rcfType) n : + SAconnected (SAset0 R n). +Proof. by move=> s t _ _ _; rewrite SAset0I eqxx. Qed. + +Lemma SAconnectedX (R : rcfType) n m (s : {SAset R^n}) (t : {SAset R^m}) : + SAconnected s -> SAconnected t -> SAconnected (s :*: t). +Proof. +case: n s => [|n] s. + case: (set0Vmem s) => [->|[] y ys]. + by rewrite SAset0X => _ _; apply/SAconnected0. + suff ->: s :*: t = t by []. + apply/eqP/SAsetP => x; rewrite inSAsetX. + have ->: lsubmx x \in s. + by move: ys; congr (_ \in s); apply/rowP; case. + congr (_ \in t); apply/rowP => i. + by rewrite mxE; congr (x _ _); apply/val_inj. +case: m t => [|m] t. + case: (set0Vmem t) => [->|[]y yt]. + by rewrite SAsetX0 => _ _; apply/SAconnected0. + suff ->: s :*: t = SAset_cast (n.+1 + 0) s. + by move=> scon _; apply/SAcast_connected. + apply/eqP/SAsetP => x; rewrite inSAsetX inSAset_castnD. + have ->: rsubmx x \in t. + by move: yt; congr (_ \in t); apply/rowP; case. + have ->: rsubmx x == 0 by apply/eqP/rowP; case. + by rewrite !andbT. +move=> scon tcon u v /open_subspace_ballP/= uopen /open_subspace_ballP/= vopen. +case: (set0Vmem (s :*: t :&: u)) => [-> +|[] x xstu] _; first by rewrite eqxx. +case: (set0Vmem (s :*: t :&: v)) => [-> +|[] y ystv] _; first by rewrite eqxx. +move=> /SAset_subP stuv. +move: (scon (SAimset (SAselect _ _ _ (iota 0 n.+1)) (s :*: t :&: u)) (SAimset (SAselect _ _ _ (iota 0 n.+1)) (s :*: t :&: v))). +mp. + apply/open_subspace_ballP => a. + rewrite in_setI !mem_setE => /andP[] /SAimsetP[] b. + rewrite inSAsetI => /andP[] bst bu ->. + rewrite SAselectE => bs. + move: (uopen b); rewrite in_setI !mem_setE bu => /(_ bst)[] e [] e0 /subsetP eu. + exists e; split=> //. + apply/subsetP => c; rewrite in_setI !mem_setE => /andP[] + cs. + rewrite -ball_normE inE/= [`|_|]mx_normrE => /bigmax_ltP[_]/= ce. + suff: c \in (SAimset (SAselect R (n.+1 + m.+1) n.+1 (iota 0 n.+1)) (s :*: t :&: u)) by []. + apply/SAimsetP; exists (row_mx c (rsubmx b)); last first. + by rewrite SAselect_iotal row_mxKl. + move: bst; rewrite inSAsetX => /andP[_] bt. + rewrite inSAsetI inSAsetX row_mxKl row_mxKr cs bt/=. + move: (eu (row_mx c (rsubmx b))); rewrite mem_setE; apply. + rewrite -ball_normE inE/=; split; last first. + by rewrite inSAsetX row_mxKl row_mxKr cs. + rewrite [`|_|]mx_normrE; apply/bigmax_lt => //=; case=> i j _ /=. + rewrite -(@splitK n.+1 m.+1 j) !mxE unsplitK. + case: (@split n.+1 m.+1 j) => /= k; last first. + by rewrite mxE subrr normr0. + move: (ce (i, k) isT); rewrite !mxE/= (nth_iota _ _ (n:=n.+1))//. + have ->: (0 + k = lshift m.+1 k)%N by []. + rewrite nth_ngraph; congr (`|b _ _ - _| < e)%R. + by apply/val_inj; case: i; case. +mp. + apply/open_subspace_ballP => a. + rewrite in_setI !mem_setE => /andP[] /SAimsetP[] b. + rewrite inSAsetI => /andP[] bst bv ->. + rewrite SAselectE => bs. + move: (vopen b); rewrite in_setI !mem_setE bv => /(_ bst)[] e [] e0 /subsetP ev. + exists e; split=> //. + apply/subsetP => c; rewrite in_setI !mem_setE => /andP[] + cs. + rewrite -ball_normE inE/= [`|_|]mx_normrE => /bigmax_ltP[_]/= ce. + suff: c \in (SAimset (SAselect R (n.+1 + m.+1) n.+1 (iota 0 n.+1)) (s :*: t :&: v)) by []. + apply/SAimsetP; exists (row_mx c (rsubmx b)); last first. + by rewrite SAselect_iotal row_mxKl. + move: bst; rewrite inSAsetX => /andP[_] bt. + rewrite inSAsetI inSAsetX row_mxKl row_mxKr cs bt/=. + move: (ev (row_mx c (rsubmx b))); rewrite mem_setE; apply. + rewrite -ball_normE inE/=; split; last first. + by rewrite inSAsetX row_mxKl row_mxKr cs. + rewrite [`|_|]mx_normrE; apply/bigmax_lt => //=; case=> i j _ /=. + rewrite -(@splitK n.+1 m.+1 j) !mxE unsplitK. + case: (@split n.+1 m.+1 j) => /= k; last first. + by rewrite mxE subrr normr0. + move: (ce (i, k) isT); rewrite !mxE/= (nth_iota _ _ (n:=n.+1))//. + have ->: (0 + k = lshift m.+1 k)%N by []. + rewrite nth_ngraph; congr (`|b _ _ - _| < e)%R. + by apply/val_inj; case: i; case. +mp. + apply/negP => /SAsetP/(_ (lsubmx x)). + move: (xstu); rewrite !inSAsetI inSAsetX inSAset0 => /andP[]/andP[] xs xt xu /negP; apply. + by rewrite xs; apply/SAimsetP; exists x => //; rewrite SAselect_iotal. +mp. + apply/negP => /SAsetP/(_ (lsubmx y)). + move: (ystv); rewrite !inSAsetI inSAsetX inSAset0 => /andP[]/andP[] ys yt yv /negP; apply. + by rewrite ys; apply/SAimsetP; exists y => //; rewrite SAselect_iotal. +mp. + apply/SAset_subP => z zs. + move: (xstu); rewrite !inSAsetI inSAsetX => /andP[]/andP[] xs xt xu. + have /stuv: (row_mx z (rsubmx x)) \in s :*: t. + by rewrite inSAsetX row_mxKl row_mxKr zs. + rewrite !inSAsetU => /orP[zu|zv]; apply/orP; [left|right]; apply/SAimsetP; exists (row_mx z (rsubmx x)). + - by rewrite inSAsetI inSAsetX row_mxKl row_mxKr zs xt. + - by rewrite SAselect_iotal row_mxKl. + - by rewrite inSAsetI inSAsetX row_mxKl row_mxKr zs xt. + - by rewrite SAselect_iotal row_mxKl. +move=> {x xstu y ystv}; set sfib := (_ :&: _ :&: _). +case: (set0Vmem sfib) => [->|[] x]; first by rewrite eqxx. +rewrite /sfib !inSAsetI => {sfib} /andP[]/andP[] xs. +move=> /SAimsetP[] yz. +rewrite -(hsubmxK yz) inSAsetI inSAsetX SAselect_iotal row_mxKl row_mxKr. +move: (rsubmx yz) => y /andP[]/andP[_] yt /[swap] <- yu {yz}. +move=> /SAimsetP[] yz. +rewrite -(hsubmxK yz) inSAsetI inSAsetX SAselect_iotal row_mxKl row_mxKr. +move: (rsubmx yz) => z /andP[]/andP[_] zt /[swap] <- zv {yz} _. +move: (tcon (SApreimset (SAjoin (SAfun_const _ x) (SAid _ _)) (s :*: t :&: u)) (SApreimset (SAjoin (SAfun_const _ x) (SAid _ _)) (s :*: t :&: v))). +mp. + apply/open_subspace_ballP => /= a. + rewrite in_setI !mem_setE inSApreimset SAjoinE SAfun_constE SAidE inSAsetI. + move=> /andP[]/andP[_] au aint. + move: (uopen (row_mx x a)); rewrite in_setI !mem_setE au. + rewrite inSAsetX row_mxKl row_mxKr xs => /(_ aint)[] e [] e0 /subsetP eu. + exists e; split=> //. + apply/subsetP => b; rewrite in_setI !mem_setE => /andP[] + bt. + rewrite -ball_normE inE/= [`|_|]mx_normrE => /bigmax_ltP[_]/= be. + rewrite inSApreimset SAjoinE SAfun_constE SAidE inSAsetI inSAsetX. + rewrite row_mxKl row_mxKr xs bt. + move: (eu (row_mx x b)); rewrite mem_setE; apply. + rewrite -ball_normE inE/=; split; last first. + by rewrite inSAsetX row_mxKl row_mxKr xs. + rewrite [`|_|]mx_normrE; apply/bigmax_lt => //=; case=> i j _ /=. + rewrite -(@splitK n.+1 m.+1 j) !mxE unsplitK. + case: (@split n.+1 m.+1 j) => /= k. + by rewrite subrr normr0. + by move: (be (i, k) isT); rewrite !mxE. +mp. + apply/open_subspace_ballP => /= a. + rewrite in_setI !mem_setE inSApreimset SAjoinE SAfun_constE SAidE inSAsetI. + move=> /andP[]/andP[_] av aint. + move: (vopen (row_mx x a)); rewrite in_setI !mem_setE av. + rewrite inSAsetX row_mxKl row_mxKr xs => /(_ aint)[] e [] e0 /subsetP ev. + exists e; split=> //. + apply/subsetP => b; rewrite in_setI !mem_setE => /andP[] + bt. + rewrite -ball_normE inE/= [`|_|]mx_normrE => /bigmax_ltP[_]/= be. + rewrite inSApreimset SAjoinE SAfun_constE SAidE inSAsetI inSAsetX. + rewrite row_mxKl row_mxKr xs bt. + move: (ev (row_mx x b)); rewrite mem_setE; apply. + rewrite -ball_normE inE/=; split; last first. + by rewrite inSAsetX row_mxKl row_mxKr xs. + rewrite [`|_|]mx_normrE; apply/bigmax_lt => //=; case=> i j _ /=. + rewrite -(@splitK n.+1 m.+1 j) !mxE unsplitK. + case: (@split n.+1 m.+1 j) => /= k. + by rewrite subrr normr0. + by move: (be (i, k) isT); rewrite !mxE. +mp. + apply/negP => /SAsetP/(_ y); rewrite inSAsetI yt inSApreimset. + rewrite SAjoinE SAfun_constE SAidE inSAsetI inSAsetX row_mxKl row_mxKr. + by rewrite xs yt yu inSAset0. +mp. + apply/negP => /SAsetP/(_ z); rewrite inSAsetI zt inSApreimset. + rewrite SAjoinE SAfun_constE SAidE inSAsetI inSAsetX row_mxKl row_mxKr. + by rewrite xs zt zv inSAset0. +mp. + apply/SAset_subP => a aint. + have /stuv: row_mx x a \in s :*: t by rewrite inSAsetX row_mxKl row_mxKr xs. + by rewrite !inSAsetU => /orP[au|av]; apply/orP; [left|right]; + rewrite inSApreimset SAjoinE SAfun_constE SAidE inSAsetI inSAsetX + row_mxKl row_mxKr xs aint. +move=> {y yt yu z zt zv}. +set tfib := (_ :&: _); case: (set0Vmem tfib) => [->|]; first by rewrite eqxx. +rewrite /tfib => {tfib} -[] y; rewrite !inSAsetI => /andP[]/andP[] yt. +rewrite !inSApreimset SAjoinE SAfun_constE SAidE !inSAsetI. +move=> /andP[_] xyu /andP[xyst] xyv _. +apply/negP => /SAsetP/(_ (row_mx x y)). +by rewrite !inSAsetI xyst xyu xyv inSAset0. +Qed. + +(* N.B. This breaks the previous proofs. *) +From mathcomp Require Import functions finmap. + +Lemma SAconnected_partition_of_graphs_above (R : rcfType) n (s : {SAset R^n}) (xi : seq (SAfunltType R n)) : + SAconnected s -> + path.sorted <%O xi -> + (forall i, i < size xi -> {within [set` s], continuous (xi`_i)}) -> + forall t, t \in partition_of_graphs_above s xi -> SAconnected t. +Proof. +move=> /= scon. +rewrite lt_sorted_pairwise => /(pairwiseP 0)/= xisort. +move=> xicont t /imfsetP[/=] u + ->. +move=> /(nthP (SAset0 _ _))[] i; rewrite size_map size_iota => ilt <-. +have mx0_continuous (T U : topologicalType) (S : set 'rV[U]_0) (x : U) (f : T -> subspace S) : + continuous f. + apply/(@eq_continuous _ (subspace S) (fun=> \row__ x)); last exact/cst_continuous. + by move=> y; apply/rowP; case. +(* WHAT?????? *) +have lsubmx_continuous (I : interval R) (x : subspace [set` s :*: SAset_itv I]) : {for x, continuous [eta lsubmx : subspace [set` s :*: SAset_itv I] -> subspace [set` s]]}. + case: n {xi scon xisort xicont t u i ilt} s x => [|n] s x. + by apply/mx0_continuous; exact: 0. + move: x; apply/continuousP => a /open_subspace_ballP/= aopen. + apply/open_subspace_ballP => /= x. + rewrite in_setI mem_preimage mem_setE inSAsetX => /andP[] xa /andP[] xs _. + move: aopen => /(_ (lsubmx x)); rewrite in_setI xa mem_setE => /(_ xs)[] e. + rewrite -ball_normE => -[] e0 /subsetP ea. + exists e; split=> //; rewrite -ball_normE; apply/subsetP => y. + rewrite in_setI mem_setE/= [X in X && _]inE mem_setE inSAsetX. + rewrite [(`|_|)%R]mx_normrE => /andP[] /bigmax_ltP[_]/= xye /andP[] ys _. + apply/ea; rewrite in_setI mem_setE/= [X in X && _]inE mem_setE ys andbT. + rewrite [(`|_|)%R]mx_normrE; apply/bigmax_lt => //= -[] u v _ /=. + move: xye => /(_ (u, lshift 1 v) isT) /=. + by rewrite !mxE/=. +pose g (f : {SAfun R^n -> R^1}) : {SAfun R^(n + 1) -> R^(n + 1)} := + SAjoin (SAselect R (n + 1) n (iota 0 n)) (SAfun_add (SAselect R (n + 1) 1 [:: n]) (SAcomp f (SAselect _ _ _ (iota 0 n)))). +have gE f x : g f x = row_mx (lsubmx x) (rsubmx x + f (lsubmx x)). + by rewrite /g SAjoinE SAfun_addE SAcompE/= SAselect_iotal SAselect_iotar. +have gcont (f : {SAfun R^n -> R^1}) (I : interval R) : {within [set` s], continuous f} -> {within [set` s :*: SAset_itv I], continuous (g f)}. + case: n s {xi scon xisort xicont t u i ilt} f g gE lsubmx_continuous => [|n] s f g gE lsubmx_continuous. + move=> _; apply/(subspace_eq_continuous (f:=fun x : 'cV[R]_1 => x + f 0)). + move=> x _; rewrite gE row_thin_mx; congr (_ + f _); last first. + by apply/rowP; case. + apply/eqP; rewrite rowPE forall_ord1 !mxE/=; apply/eqP. + by congr (x _ _); apply/val_inj. + apply/subspace_continuousP => /= x _. + apply/(@cvg_within_filter 'rV[R]_1 'rV[R]_1 _ (nbhs x) _ (nbhs (x + f 0)) [set` s :*: SAset_itv I]). + apply/(@continuousD _ _ _ id (fun=> f 0) x); first exact/id_continuous. + exact/cst_continuous. + move=> fcont; apply/mx_continuous => i j. + case: (ltnP j n.+1) => jn. + apply/(subspace_eq_continuous (f:=fun x : 'rV[R]_(n.+1 + 1) => x i j)); last first. + apply/subspace_continuousP => /= x _. + apply/(@cvg_within_filter _ _ _ (nbhs x) _ (nbhs (x i j)) [set` s :*: SAset_itv I]). + exact/coord_continuous. + move=> x _; rewrite gE mxE/=. + have ->: j = lshift 1 (Ordinal jn) by apply/val_inj. + by rewrite (unsplitK (inl _)) mxE. + apply/(subspace_eq_continuous (f:=fun x : 'rV[R]_(n.+1 + 1) => x i j + f (lsubmx x) i ord0)). + move=> x _; rewrite gE !mxE/=. + suff ->: j = rshift n.+1 (@ord0 0). + by rewrite (unsplitK (inr _)) !mxE. + apply/val_inj; rewrite /= addn0; apply/le_anti/andP; split=> //. + by rewrite -[leRHS]addn1; move: (ltn_ord j); rewrite ltnS. + move=> x. + apply/(@continuousD _ R^o (subspace [set` s :*: SAset_itv I]) (fun x : 'rV[R]_(n.+1 + 1) => x i j) (fun x : 'rV[R]_(n.+1 + 1) => f (lsubmx x) i ord0)). + move: x; apply/subspace_continuousP => /= x _. + apply/(@cvg_within_filter _ _ _ (nbhs x) _ (nbhs (x i j)) [set` s :*: SAset_itv I]). + exact/coord_continuous. + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) _ _ (fun x : 'rV[R]_(n.+1 + 1) => f (lsubmx x)) (fun x : 'rV[R]_1 => x i ord0)); last first. + exact/coord_continuous. + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) (subspace [set` s]) _ (fun x : 'rV[R]_(n.+1 + 1) => lsubmx x) f); last first. + exact/fcont. + exact/lsubmx_continuous. +rewrite (nth_map 0); last by rewrite size_iota. +rewrite nth_iota; last by []. +case: (posnP (size xi)) => xi0. + move: ilt; rewrite xi0 ltnS leqn0 => ->. + move/eqP: xi0; rewrite size_eq0 => /eqP ->; rewrite big_nil SAsetTI. + apply/SAconnectedX; first by []. + suff ->: SAsetT R 1 = SAset_itv `]-oo, +oo[ by apply/SAset_itv_connected. + by apply/eqP/SAsetP => x; rewrite inSAsetT inSAset_itv in_itv. +have xisort': {in gtn (size xi) &, + {homo nth 0 xi : i j / (i <= j)%N >-> ((i : SAfunleType _ _) <= j)%R}}. + move=> x y xlt ylt. + rewrite leq_eqVlt => /orP[/eqP ->|]; first exact/lexx. + move=> /xisort-/(_ xlt ylt)/SAfun_ltP xy. + by apply/SAfun_leP => z; apply/ltW. +case: (posnP i) => [_|i0]. + set S := _ :&: _. + suff ->: S = SAimset (g (xi`_0)) (s :*: SAset_itv `]-oo, 0[). + apply/SAimset_connected; last exact/gcont/xicont. + apply/SAconnectedX; first by []. + exact/SAset_itv_connected. + apply/eqP/SAsetP => x. + rewrite /S inSAsetI inSAset_bigcap inSAsetX inSAsetT andbT. + apply/andP/SAimsetP. + move=> [] /allP xxi xs. + exists (row_mx (lsubmx x) (rsubmx x - xi`_0 (lsubmx x))); last first. + by rewrite gE row_mxKl row_mxKr addrAC -addrA subrr addr0 hsubmxK. + rewrite inSAsetX row_mxKl row_mxKr xs inSAset_itv in_itv/= !mxE/=. + rewrite subr_lt0. + by move: xxi => /(_ _ (mem_nth 0 xi0)); rewrite inSAhypograph mxE. + move=> [] y; rewrite inSAsetX inSAset_itv in_itv/= => /andP[] ys y0 ->. + rewrite gE row_mxKl; split=> //. + apply/allP => _ /(nthP 0)[] j jxi <-. + rewrite inSAhypograph row_mxKl row_mxKr -[ltRHS]add0r mxE; apply/ltr_leD => //. + by move: xisort' => /(_ 0 j); rewrite !inE => /(_ xi0 jxi (leq0n _)) /SAfun_leP. +move: ilt; rewrite ltnS leq_eqVlt => /orP[->|ilt]. + set S := _ :&: _. + suff ->: S = SAimset (g (xi`_(size xi).-1)) (s :*: SAset_itv `]0, +oo[). + apply/SAimset_connected; last first. + by apply/gcont/xicont; rewrite [_ < _]ltn_predL. + apply/SAconnectedX; first by []. + exact/SAset_itv_connected. + apply/eqP/SAsetP => x. + rewrite /S inSAsetI inSAset_bigcap inSAsetX inSAsetT andbT. + apply/andP/SAimsetP. + move=> [] /allP xxi xs. + exists (row_mx (lsubmx x) (rsubmx x - xi`_(size xi).-1 (lsubmx x))); last first. + by rewrite gE row_mxKl row_mxKr addrAC -addrA subrr addr0 hsubmxK. + rewrite inSAsetX row_mxKl row_mxKr xs inSAset_itv in_itv/= !mxE/= andbT. + rewrite subr_gt0; move: xxi => /(_ (xi`_(size xi).-1)); mp. + by apply/mem_nth; rewrite ltn_predL. + by rewrite inSAepigraph mxE. + move=> [] y; rewrite inSAsetX inSAset_itv in_itv/= andbT => /andP[] ys y0 ->. + rewrite gE row_mxKl; split=> //. + apply/allP => _ /(nthP 0)[] j jxi <-. + rewrite inSAepigraph row_mxKl row_mxKr -[ltLHS]add0r mxE; apply/ltr_leD => //. + move: xisort' => /(_ j (size xi).-1); rewrite !inE ltn_predL => /(_ jxi xi0). + by rewrite -ltnS prednK// => /(_ jxi) => /SAfun_leP. +have ->: i == (size xi).*2 = false. + apply/negP => /eqP iE. + by move: ilt; rewrite iE ltnn. +case/boolP: (odd i) => iodd. + set S := _ :&: _. + suff ->: S = SAimset (g (xi`_i./2)) (s :*: SAset_itv `[0, 0]). + apply/SAimset_connected; last first. + by apply/gcont/xicont; rewrite [_ < _]ltn_half_double. + apply/SAconnectedX; first by []. + exact/SAset_itv_connected. + apply/eqP/SAsetP => x. + rewrite /S inSAsetI -{1}[x]hsubmxK -inSAfun inSAsetX inSAsetT andbT. + apply/andP/SAimsetP. + move=> [] /eqP xE xs. + exists (row_mx (lsubmx x) (rsubmx x - xi`_i./2 (lsubmx x))); last first. + by rewrite gE row_mxKl row_mxKr addrAC -addrA subrr addr0 hsubmxK. + rewrite inSAsetX row_mxKl row_mxKr xs inSAset_itv in_itv/= !mxE/=. + by rewrite xE mxE subrr lexx. + move=> [] y; rewrite inSAsetX inSAset_itv in_itv/= => /andP[] ys. + move=> /andP[] y0 y0' ->. + have {y0'}y0: rsubmx y ord0 ord0 = 0 by apply/le_anti/andP. + rewrite gE row_mxKl row_mxKr; split=> //; apply/eqP. + rewrite -[LHS]add0r; congr (_ + _); apply/eqP. + by rewrite rowPE forall_ord1 y0 mxE eqxx. +(* Why does `move=> {...}` unfold the goal ??? *) +clear g gE gcont. +pose h (f g : {SAfun R^n -> R^1}) : {SAfun R^(n + 1) -> R^(n + 1)} := + SAjoin (SAselect R (n + 1) n (iota 0 n)) + (SAfun_add (SAcomp f (SAselect _ _ _ (iota 0 n))) + (SAfun_mul (SAselect R (n + 1) 1 [:: n]) (SAcomp (SAfun_sub g f) (SAselect _ _ _ (iota 0 n))))). +have hE f g x : h f g x = row_mx (lsubmx x) (f (lsubmx x) + x ord0 (rshift n ord0) *: (g (lsubmx x) - (f (lsubmx x)))). + rewrite /h SAjoinE SAfun_addE SAfun_mulE !SAcompE/= SAfun_subE. + rewrite SAselect_iotal SAselect_iotar. + congr (row_mx _ (_ + _)). + apply/rowP => j; rewrite !mxE/=; congr (x _ _ * _); apply/val_inj. + by case: j; case. +have hcont (f g : {SAfun R^n -> R^1}) (I : interval R) : {within [set` s], continuous f} + -> {within [set` s], continuous g} + -> {within [set` s :*: SAset_itv I], continuous (h f g)}. + case: n s {xi scon xi0 xisort xisort' xicont t u i ilt i0 iodd} f g h hE lsubmx_continuous => [|n] s f g h hE lsubmx_continuous. + move=> _ _; apply/(subspace_eq_continuous (f:=fun x : 'cV[R]_1 => f 0 + x * (g 0 - f 0))). + move=> x _; rewrite hE row_thin_mx. + have ->: lsubmx (x : 'rV_(0 + 1)) = 0 by apply/rowP; case. + congr (_ + _); apply/rowP; case; case=> [|//] j. + rewrite !mxE/= big_ord_recl big_ord0 addr0 !mxE; congr (x _ _ * _). + exact/val_inj. + apply/subspace_continuousP => /= x _. + apply/(@cvg_within_filter 'rV[R]_1 'rV[R]_1 _ (nbhs x) _ (nbhs (f 0 + x * (g 0 - f 0))) [set` s :*: SAset_itv I]). + apply/(@continuousD _ _ _ (fun=> f 0) (fun x : 'cV[R]_1 => x * (g 0 - f 0)) x). + exact/cst_continuous. + apply/mx_continuous => i j; rewrite !ord1. + apply/(eq_continuous (f:=fun x : 'cV[R]_1 => x ord0 ord0 * (g 0 - f 0) ord0 ord0)). + by move=> y; rewrite [in RHS]mxE big_ord_recl big_ord0 addr0. + move=> {}x. + apply/(@continuousM R 'cV[R]_1 (fun x : 'cV[R]_1 => x ord0 ord0) (fun=> (g 0 - f 0) ord0 ord0)). + exact/coord_continuous. + exact/cst_continuous. + move=> fcont gcont; apply/mx_continuous => i j. + case: (ltnP j n.+1) => jn. + apply/(subspace_eq_continuous (f:=fun x : 'rV[R]_(n.+1 + 1) => x i j)); last first. + apply/subspace_continuousP => /= x _. + apply/(@cvg_within_filter _ _ _ (nbhs x) _ (nbhs (x i j)) [set` s :*: SAset_itv I]). + exact/coord_continuous. + move=> x _; rewrite hE mxE/=. + have ->: j = lshift 1 (Ordinal jn) by apply/val_inj. + by rewrite (unsplitK (inl _)) mxE. + apply/(subspace_eq_continuous (f:=fun x : 'rV[R]_(n.+1 + 1) => f (lsubmx x) i ord0 + x i j * (g (lsubmx x) - f (lsubmx x)) i ord0)). + move=> x _; rewrite hE !mxE/=. + suff ->: j = rshift n.+1 (@ord0 0). + by rewrite (unsplitK (inr _)) !mxE ord1. + apply/val_inj; rewrite /= addn0; apply/le_anti/andP; split=> //. + by rewrite -[leRHS]addn1; move: (ltn_ord j); rewrite ltnS. + move=> x. + apply/(@continuousD _ (GRing_regular__canonical__normedtype_PseudoMetricNormedZmod R) (subspace [set` s :*: SAset_itv I])). + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) _ _ _ (fun x : 'rV[R]_1 => x i ord0)); last first. + exact/coord_continuous. + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) (subspace [set` s])). + exact/lsubmx_continuous. + exact/fcont. + apply/(@continuousM R (subspace [set` s :*: SAset_itv I])). + move: x; apply/subspace_continuousP => /= x _. + apply/(@cvg_within_filter _ _ _ (nbhs x) _ (nbhs (x i j)) [set` s :*: SAset_itv I]). + exact/coord_continuous. + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) _ _ _ (fun x : 'rV[R]_1 => x i ord0)); last first. + exact/coord_continuous. + apply/(@continuousB _ 'rV[R]_1 (subspace [set` s :*: SAset_itv I])). + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) (subspace [set` s])). + exact/lsubmx_continuous. + exact/gcont. + apply/(@continuous_comp (subspace [set` s :*: SAset_itv I]) (subspace [set` s])). + exact/lsubmx_continuous. + exact/fcont. +have i20: (0 < i./2)%N. + by rewrite half_gt0; case: i i0 iodd {ilt} => [//|]; case. +have ilt': (i./2.-1 < size xi)%N. + by rewrite prednK// leq_half_double; apply/ltnW/(ltn_trans ilt)/leqnn. +move: (xisort i./2.-1 i./2); rewrite !inE => /(_ ilt'). +rewrite ltn_half_double => /(_ ilt). +rewrite prednK// => /(_ (leqnn _)) /SAfun_ltP {}xisort. +set S := _ :&: _. +suff ->: S = SAimset (h xi`_i./2.-1 xi`_i./2) (s :*: SAset_itv `]0, 1[). + apply/SAimset_connected; last first. + apply/hcont; apply/xicont => //. + by rewrite [_ < _]ltn_half_double. + apply/SAconnectedX; first by []. + exact/SAset_itv_connected. +apply/eqP/SAsetP => x. +rewrite /S !inSAsetI inSAepigraph inSAhypograph inSAsetX inSAsetT andbT mxE. +apply/andP/SAimsetP. + move=> [] /andP[] xix xxi xs. + exists (row_mx (lsubmx x) (\row__ ((rsubmx x ord0 ord0 - xi`_i./2.-1 (lsubmx x) ord0 ord0) / (xi`_i./2 (lsubmx x) ord0 ord0 - xi`_i./2.-1 (lsubmx x) ord0 ord0)))); last first. + rewrite -[LHS]hsubmxK hE row_mxKl; congr (row_mx _ _). + apply/rowP => j; rewrite !ord1 !mxE (unsplitK (inr _)) !mxE. + rewrite mulrAC -mulrA divff. + by rewrite mulr1 addrCA subrr addr0. + rewrite subr_eq0; apply/eqP => xiE. + by move: (xisort (lsubmx x)); rewrite xiE ltxx. + rewrite inSAsetX row_mxKl row_mxKr xs inSAset_itv in_itv/= !mxE/=. + apply/andP; split; first by apply/divr_gt0; rewrite subr_gt0. + by rewrite ltr_pdivrMr ?subr_gt0// mul1r -subr_gt0 subrBB subr_gt0. +move=> [] y; rewrite inSAsetX inSAset_itv in_itv/= => /andP[] ys. +rewrite mxE => /andP[] y0 y1 ->. +rewrite hE row_mxKl; split=> //. +rewrite mxE (unsplitK (inr _)) !mxE; apply/andP; split. + rewrite -subr_gt0 addrAC subrr add0r; apply/mulr_gt0 => //. + by rewrite subr_gt0. +rewrite -subr_gt0 opprD addrA -[X in (X - _)%R]mul1r -mulrBl. +by apply/mulr_gt0; rewrite subr_gt0. +Qed. +