-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_pretrained_models.py
430 lines (322 loc) · 13.4 KB
/
test_pretrained_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import argparse
import csv
import logging
import os
import random
import pickle
import sys
from global_config import *
import numpy as np
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score, f1_score
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from torch.nn import CrossEntropyLoss, L1Loss, BCEWithLogitsLoss
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef
from transformers import (
AlbertConfig,
AlbertTokenizer,
AlbertForSequenceClassification,
BertForNextSentencePrediction,
BertTokenizer,
get_linear_schedule_with_warmup,
)
from models import *
from transformers.optimization import AdamW
def return_unk():
return 0
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", type=str, choices=["language_only", "acoustic_only", "visual_only","hcf_only","HKT"], default="HKT",
)
parser.add_argument("--dataset", type=str, choices=["humor", "sarcasm"], default="sarcasm")#humor=UR-FUNNY, sarcasm=MUsTARD
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--max_seq_length", type=int, default=77)
parser.add_argument("--max_concept_length", type=int, default=5)
parser.add_argument("--n_layers", type=int, default=1)
parser.add_argument("--n_heads", type=int, default=1)
parser.add_argument("--cross_n_layers", type=int, default=1)
parser.add_argument("--cross_n_heads", type=int, default=2)
parser.add_argument("--fusion_dim", type=int, default=172)
parser.add_argument("--dropout", type=float, default=0.09379)
parser.add_argument("--seed", type=int, default=5149)
args = parser.parse_args()
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, visual, acoustic,hcf,label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.visual = visual
self.acoustic = acoustic
self.hcf = hcf
self.label_id = label_id
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
pop_count = 0
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) == 0:
tokens_b.pop()
else:
pop_count += 1
tokens_a.pop(0)
return pop_count
def get_inversion(tokens, SPIECE_MARKER="▁"):
inversion_index = -1
inversions = []
for token in tokens:
if SPIECE_MARKER in token:
inversion_index += 1
inversions.append(inversion_index)
return inversions
def convert_humor_to_features(examples, tokenizer, punchline_only=False):
features = []
for (ex_index, example) in enumerate(examples):
(
(p_words, p_visual, p_acoustic, p_hcf),
(c_words, c_visual, c_acoustic, c_hcf),
hid,
label
) = example
text_a = ". ".join(c_words)
text_b = p_words + "."
tokens_a = tokenizer.tokenize(text_a)
tokens_b = tokenizer.tokenize(text_b)
inversions_a = get_inversion(tokens_a)
inversions_b = get_inversion(tokens_b)
pop_count = _truncate_seq_pair(tokens_a, tokens_b, args.max_seq_length - 3)
inversions_a = inversions_a[pop_count:]
inversions_b = inversions_b[: len(tokens_b)]
visual_a = []
acoustic_a = []
hcf_a=[]
for inv_id in inversions_a:
visual_a.append(c_visual[inv_id, :])
acoustic_a.append(c_acoustic[inv_id, :])
hcf_a.append(c_hcf[inv_id, :])
visual_a = np.array(visual_a)
acoustic_a = np.array(acoustic_a)
hcf_a = np.array(hcf_a)
visual_b = []
acoustic_b = []
hcf_b = []
for inv_id in inversions_b:
visual_b.append(p_visual[inv_id, :])
acoustic_b.append(p_acoustic[inv_id, :])
hcf_b.append(p_hcf[inv_id, :])
visual_b = np.array(visual_b)
acoustic_b = np.array(acoustic_b)
hcf_b = np.array(hcf_b)
tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"]
acoustic_zero = np.zeros((1, ACOUSTIC_DIM_ALL))
if len(tokens_a) == 0:
acoustic = np.concatenate(
(acoustic_zero, acoustic_zero, acoustic_b, acoustic_zero)
)
else:
acoustic = np.concatenate(
(acoustic_zero, acoustic_a, acoustic_zero, acoustic_b, acoustic_zero)
)
visual_zero = np.zeros((1, VISUAL_DIM_ALL))
if len(tokens_a) == 0:
visual = np.concatenate((visual_zero, visual_zero, visual_b, visual_zero))
else:
visual = np.concatenate(
(visual_zero, visual_a, visual_zero, visual_b, visual_zero)
)
hcf_zero = np.zeros((1,4))
if len(tokens_a) == 0:
hcf = np.concatenate((hcf_zero, hcf_zero, hcf_b, hcf_zero))
else:
hcf = np.concatenate(
(hcf_zero, hcf_a, hcf_zero, hcf_b, hcf_zero)
)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * (len(tokens_a) + 2) + [1] * (len(tokens_b) + 1)
input_mask = [1] * len(input_ids)
acoustic_padding = np.zeros(
(args.max_seq_length - len(input_ids), acoustic.shape[1])
)
acoustic = np.concatenate((acoustic, acoustic_padding))
acoustic=np.take(acoustic, acoustic_features_list,axis=1)
visual_padding = np.zeros(
(args.max_seq_length - len(input_ids), visual.shape[1])
)
visual = np.concatenate((visual, visual_padding))
visual = np.take(visual, visual_features_list,axis=1)
hcf_padding= np.zeros(
(args.max_seq_length - len(input_ids), hcf.shape[1])
)
hcf = np.concatenate((hcf, hcf_padding))
padding = [0] * (args.max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == args.max_seq_length
assert len(input_mask) == args.max_seq_length
assert len(segment_ids) == args.max_seq_length
assert acoustic.shape[0] == args.max_seq_length
assert visual.shape[0] == args.max_seq_length
assert hcf.shape[0] == args.max_seq_length
label_id = float(label)
features.append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
visual=visual,
acoustic=acoustic,
hcf=hcf,
label_id=label_id,
)
)
return features
def get_appropriate_dataset(data, tokenizer, parition):
features = convert_humor_to_features(data, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_visual = torch.tensor([f.visual for f in features], dtype=torch.float)
all_acoustic = torch.tensor([f.acoustic for f in features], dtype=torch.float)
hcf = torch.tensor([f.hcf for f in features], dtype=torch.float)
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)
dataset = TensorDataset(
all_input_ids,
all_visual,
all_acoustic,
all_input_mask,
all_segment_ids,
hcf,
all_label_ids,
)
return dataset
def set_up_data_loader():
if args.dataset=="humor":
data_file = "ur_funny.pkl"
elif args.dataset=="sarcasm":
data_file = "mustard.pkl"
with open(
os.path.join(DATASET_LOCATION, args.dataset, data_file),
"rb",
) as handle:
all_data = pickle.load(handle)
train_data = all_data["train"]
dev_data = all_data["dev"]
test_data = all_data["test"]
tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
train_dataset = get_appropriate_dataset(train_data, tokenizer, "train")
dev_dataset = get_appropriate_dataset(dev_data, tokenizer, "dev")
test_dataset = get_appropriate_dataset(test_data, tokenizer, "test")
train_dataloader = DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=1
)
dev_dataloader = DataLoader(
dev_dataset, batch_size=args.batch_size, shuffle=True, num_workers=1
)
test_dataloader = DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=True, num_workers=1
)
return (train_dataloader, dev_dataloader, test_dataloader)
def get_model():
if args.model == "HKT" :
if args.dataset=="humor":
visual_model = Transformer(VISUAL_DIM, num_layers=7, nhead=3, dim_feedforward= 128)
acoustic_model = Transformer(ACOUSTIC_DIM, num_layers=8, nhead=3, dim_feedforward = 256)
hcf_model = Transformer(HCF_DIM, num_layers=3, nhead=2, dim_feedforward = 128)
text_model = AlbertModel.from_pretrained('albert-base-v2')
model = HKT(text_model, visual_model, acoustic_model,hcf_model, args)
model.load_state_dict(torch.load("./model_weights/best/humor/humorHKT.pt"))
elif args.dataset=="sarcasm":
visual_model = Transformer(VISUAL_DIM, num_layers=8, nhead=4, dim_feedforward=1024)
acoustic_model = Transformer(ACOUSTIC_DIM, num_layers=1, nhead=3, dim_feedforward=512)
hcf_model = Transformer(HCF_DIM, num_layers=8, nhead=4, dim_feedforward=128)
text_model = AlbertModel.from_pretrained("albert-base-v2")
model = HKT(text_model, visual_model, acoustic_model, hcf_model, args)
model.load_state_dict(torch.load("./model_weights/best/sarcasm/sarcasmHKT.pt"))
model.to(DEVICE)
return model
def test_epoch(model, data_loader, loss_fct):
""" Epoch operation in evaluation phase """
model.eval()
eval_loss = 0.0
nb_eval_steps = 0
preds = []
all_labels = []
with torch.no_grad():
for batch in tqdm(
data_loader, mininterval=2, desc=" - (Validation) ", leave=False
):
batch = tuple(t.to(DEVICE) for t in batch)
(
input_ids,
visual,
acoustic,
input_mask,
segment_ids,
hcf,
label_ids
) = batch
visual = torch.squeeze(visual, 1)
acoustic = torch.squeeze(acoustic, 1)
if args.model == "HKT":
outputs = model(input_ids, visual, acoustic,hcf, token_type_ids=segment_ids, attention_mask=input_mask,)
logits = outputs[0]
tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
logits = torch.sigmoid(logits)
if len(preds) == 0:
preds=logits.detach().cpu().numpy()
all_labels=label_ids.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
all_labels = np.append(
all_labels, label_ids.detach().cpu().numpy(), axis=0
)
eval_loss = eval_loss / nb_eval_steps
preds = np.squeeze(preds)
all_labels = np.squeeze(all_labels)
return preds, all_labels, eval_loss
def test_score_model(model, test_data_loader, loss_fct, exclude_zero=False):
predictions, y_test, test_loss = test_epoch(model, test_data_loader, loss_fct)
predictions = predictions.round()
f_score = f1_score(y_test, predictions, average="weighted")
accuracy = accuracy_score(y_test, predictions)
print("Accuracy, F score", accuracy, f_score)
return accuracy, f_score
def set_random_seed(seed):
"""
This function controls the randomness by setting seed in all the libraries we will use.
"""
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
set_random_seed(args.seed)
(
train_data_loader,
dev_data_loader,
test_data_loader,
) = set_up_data_loader()
model = get_model()
print("loaded")
loss_fct = BCEWithLogitsLoss()
test_score_model(model, test_data_loader, loss_fct)
if __name__ == "__main__":
main()