forked from arkingc/note
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stl_tree.h
1132 lines (1012 loc) · 37.5 KB
/
stl_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_TREE_H
#define __SGI_STL_INTERNAL_TREE_H
/*
Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that
(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the tree, to enable constant time
begin(), and to the rightmost node of the tree, to enable linear time
performance when used with the generic set algorithms (set_union,
etc.);
(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.
*/
#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_function.h>
__STL_BEGIN_NAMESPACE
typedef bool __rb_tree_color_type;
const __rb_tree_color_type __rb_tree_red = false;
const __rb_tree_color_type __rb_tree_black = true;
struct __rb_tree_node_base
{
typedef __rb_tree_color_type color_type;
typedef __rb_tree_node_base* base_ptr;
color_type color;
base_ptr parent;
base_ptr left;
base_ptr right;
static base_ptr minimum(base_ptr x)
{
while (x->left != 0) x = x->left;
return x;
}
static base_ptr maximum(base_ptr x)
{
while (x->right != 0) x = x->right;
return x;
}
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
typedef __rb_tree_node<Value>* link_type;
Value value_field;
};
struct __rb_tree_base_iterator
{
typedef __rb_tree_node_base::base_ptr base_ptr;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
base_ptr node;
void increment()
{
if (node->right != 0) {
node = node->right;
while (node->left != 0)
node = node->left;
}
else {
base_ptr y = node->parent;
while (node == y->right) {
node = y;
y = y->parent;
}
if (node->right != y)
node = y;
}
}
void decrement()
{
if (node->color == __rb_tree_red &&
node->parent->parent == node)
node = node->right;
else if (node->left != 0) {
base_ptr y = node->left;
while (y->right != 0)
y = y->right;
node = y;
}
else {
base_ptr y = node->parent;
while (node == y->left) {
node = y;
y = y->parent;
}
node = y;
}
}
};
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
typedef Value value_type;
typedef Ref reference;
typedef Ptr pointer;
typedef __rb_tree_iterator<Value, Value&, Value*> iterator;
typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator;
typedef __rb_tree_iterator<Value, Ref, Ptr> self;
typedef __rb_tree_node<Value>* link_type;
__rb_tree_iterator() {}
__rb_tree_iterator(link_type x) { node = x; }
__rb_tree_iterator(const iterator& it) { node = it.node; }
reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
self& operator++() { increment(); return *this; }
self operator++(int) {
self tmp = *this;
increment();
return tmp;
}
self& operator--() { decrement(); return *this; }
self operator--(int) {
self tmp = *this;
decrement();
return tmp;
}
};
inline bool operator==(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node == y.node;
}
inline bool operator!=(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node != y.node;
}
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline bidirectional_iterator_tag
iterator_category(const __rb_tree_base_iterator&) {
return bidirectional_iterator_tag();
}
inline __rb_tree_base_iterator::difference_type*
distance_type(const __rb_tree_base_iterator&) {
return (__rb_tree_base_iterator::difference_type*) 0;
}
template <class Value, class Ref, class Ptr>
inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) {
return (Value*) 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
inline void
__rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
__rb_tree_node_base* y = x->right;
x->right = y->left;
if (y->left !=0)
y->left->parent = x;
y->parent = x->parent;
if (x == root)
root = y;
else if (x == x->parent->left)
x->parent->left = y;
else
x->parent->right = y;
y->left = x;
x->parent = y;
}
inline void
__rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
__rb_tree_node_base* y = x->left;
x->left = y->right;
if (y->right != 0)
y->right->parent = x;
y->parent = x->parent;
if (x == root)
root = y;
else if (x == x->parent->right)
x->parent->right = y;
else
x->parent->left = y;
y->right = x;
x->parent = y;
}
//参数1为新增节点,参数2位root节点
inline void
__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
x->color = __rb_tree_red; //新增节点比为红
//如果x不是root节点,并且其父节点也为红,那么循环处理
while (x != root && x->parent->color == __rb_tree_red) {
//如果x的父节点为祖父节点的左子节点
if (x->parent == x->parent->parent->left) {
__rb_tree_node_base* y = x->parent->parent->right;
//如果x的祖父节点存在右子节点,并且右子节点为红
if (y && y->color == __rb_tree_red) {
x->parent->color = __rb_tree_black;
y->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
x = x->parent->parent;
}
//如果x的祖父节点不存在右子节点,或存在但不为红
else {
if (x == x->parent->right) {
x = x->parent;
__rb_tree_rotate_left(x, root);
}
x->parent->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
__rb_tree_rotate_right(x->parent->parent, root);
}
}
//如果x的父节点为祖父节点的右子节点(和上面的if对称)
else {
__rb_tree_node_base* y = x->parent->parent->left;
//如果x的祖父节点存在左子节点,并且左子节点为红
if (y && y->color == __rb_tree_red) {
x->parent->color = __rb_tree_black;
y->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
x = x->parent->parent;
}
//如果x的祖父节点不存在左子节点,或存在但不为红
else {
if (x == x->parent->left) {
x = x->parent;
__rb_tree_rotate_right(x, root);
}
x->parent->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
__rb_tree_rotate_left(x->parent->parent, root);
}
}
}
root->color = __rb_tree_black;
}
inline __rb_tree_node_base*
__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,
__rb_tree_node_base*& root,
__rb_tree_node_base*& leftmost,
__rb_tree_node_base*& rightmost)
{
__rb_tree_node_base* y = z;
__rb_tree_node_base* x = 0;
__rb_tree_node_base* x_parent = 0;
if (y->left == 0) // z has at most one non-null child. y == z.
x = y->right; // x might be null.
else
if (y->right == 0) // z has exactly one non-null child. y == z.
x = y->left; // x is not null.
else { // z has two non-null children. Set y to
y = y->right; // z's successor. x might be null.
while (y->left != 0)
y = y->left;
x = y->right;
}
if (y != z) { // relink y in place of z. y is z's successor
z->left->parent = y;
y->left = z->left;
if (y != z->right) {
x_parent = y->parent;
if (x) x->parent = y->parent;
y->parent->left = x; // y must be a left child
y->right = z->right;
z->right->parent = y;
}
else
x_parent = y;
if (root == z)
root = y;
else if (z->parent->left == z)
z->parent->left = y;
else
z->parent->right = y;
y->parent = z->parent;
__STD::swap(y->color, z->color);
y = z;
// y now points to node to be actually deleted
}
else { // y == z
x_parent = y->parent;
if (x) x->parent = y->parent;
if (root == z)
root = x;
else
if (z->parent->left == z)
z->parent->left = x;
else
z->parent->right = x;
if (leftmost == z)
if (z->right == 0) // z->left must be null also
leftmost = z->parent;
// makes leftmost == header if z == root
else
leftmost = __rb_tree_node_base::minimum(x);
if (rightmost == z)
if (z->left == 0) // z->right must be null also
rightmost = z->parent;
// makes rightmost == header if z == root
else // x == z->left
rightmost = __rb_tree_node_base::maximum(x);
}
if (y->color != __rb_tree_red) {
while (x != root && (x == 0 || x->color == __rb_tree_black))
if (x == x_parent->left) {
__rb_tree_node_base* w = x_parent->right;
if (w->color == __rb_tree_red) {
w->color = __rb_tree_black;
x_parent->color = __rb_tree_red;
__rb_tree_rotate_left(x_parent, root);
w = x_parent->right;
}
if ((w->left == 0 || w->left->color == __rb_tree_black) &&
(w->right == 0 || w->right->color == __rb_tree_black)) {
w->color = __rb_tree_red;
x = x_parent;
x_parent = x_parent->parent;
} else {
if (w->right == 0 || w->right->color == __rb_tree_black) {
if (w->left) w->left->color = __rb_tree_black;
w->color = __rb_tree_red;
__rb_tree_rotate_right(w, root);
w = x_parent->right;
}
w->color = x_parent->color;
x_parent->color = __rb_tree_black;
if (w->right) w->right->color = __rb_tree_black;
__rb_tree_rotate_left(x_parent, root);
break;
}
} else { // same as above, with right <-> left.
__rb_tree_node_base* w = x_parent->left;
if (w->color == __rb_tree_red) {
w->color = __rb_tree_black;
x_parent->color = __rb_tree_red;
__rb_tree_rotate_right(x_parent, root);
w = x_parent->left;
}
if ((w->right == 0 || w->right->color == __rb_tree_black) &&
(w->left == 0 || w->left->color == __rb_tree_black)) {
w->color = __rb_tree_red;
x = x_parent;
x_parent = x_parent->parent;
} else {
if (w->left == 0 || w->left->color == __rb_tree_black) {
if (w->right) w->right->color = __rb_tree_black;
w->color = __rb_tree_red;
__rb_tree_rotate_left(w, root);
w = x_parent->left;
}
w->color = x_parent->color;
x_parent->color = __rb_tree_black;
if (w->left) w->left->color = __rb_tree_black;
__rb_tree_rotate_right(x_parent, root);
break;
}
}
if (x) x->color = __rb_tree_black;
}
return y;
}
template <class Key, class Value, class KeyOfValue, class Compare,
class Alloc = alloc>
class rb_tree {
protected:
typedef void* void_pointer;
typedef __rb_tree_node_base* base_ptr;
typedef __rb_tree_node<Value> rb_tree_node;
typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;
typedef __rb_tree_color_type color_type;
public:
typedef Key key_type;
typedef Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef rb_tree_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
protected:
//分配一个节点
link_type get_node() { return rb_tree_node_allocator::allocate(); }
//释放一个节点
void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }
//生成(分配并构造)一个节点
link_type create_node(const value_type& x) {
link_type tmp = get_node();
__STL_TRY {
construct(&tmp->value_field, x);
}
__STL_UNWIND(put_node(tmp));
return tmp;
}
//分配一个节点并根据另一个节点设置初值(只复制value和颜色,指针不复制)
link_type clone_node(link_type x) {
link_type tmp = create_node(x->value_field);
tmp->color = x->color;
tmp->left = 0;
tmp->right = 0;
return tmp;
}
//销毁(析构并释放)一个节点
void destroy_node(link_type p) {
destroy(&p->value_field);
put_node(p);
}
protected:
/*RB-tree的3个成员*/
size_type node_count; // 记录数的大小(节点总数)
// 指针,指向一个节点,这个节点与root节点互为对方的父节点
// 指向的节点的left指针指向RB-tree的min节点,right指针指向RB-tree的max节点
link_type header;
Compare key_compare; // 节点间键值大小的比较方法
//获取RB-tree的root、min、max节点
link_type& root() const { return (link_type&) header->parent; }
link_type& leftmost() const { return (link_type&) header->left; }
link_type& rightmost() const { return (link_type&) header->right; }
//获取和某个节点有关的信息:父、子节点、值、颜色、键
static link_type& left(link_type x) { return (link_type&)(x->left); }
static link_type& right(link_type x) { return (link_type&)(x->right); }
static link_type& parent(link_type x) { return (link_type&)(x->parent); }
static reference value(link_type x) { return x->value_field; }
static const Key& key(link_type x) { return KeyOfValue()(value(x)); }
static color_type& color(link_type x) { return (color_type&)(x->color); }
//获取和某个节点有关的信息:父、子节点、值、颜色、键
static link_type& left(base_ptr x) { return (link_type&)(x->left); }
static link_type& right(base_ptr x) { return (link_type&)(x->right); }
static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }
static reference value(base_ptr x) { return ((link_type)x)->value_field; }
static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));}
static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }
static link_type minimum(link_type x) {
return (link_type) __rb_tree_node_base::minimum(x);
}
static link_type maximum(link_type x) {
return (link_type) __rb_tree_node_base::maximum(x);
}
public:
typedef __rb_tree_iterator<value_type, reference, pointer> iterator;
typedef __rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator<iterator, value_type, reference,
difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator, value_type,
const_reference, difference_type>
const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
private:
iterator __insert(base_ptr x, base_ptr y, const value_type& v);
link_type __copy(link_type x, link_type p);
void __erase(link_type x);
void init() {
header = get_node(); //分配一个节点,令header指向它
color(header) = __rb_tree_red; // 用来区分header和root
// (在iterator.operator++中)
root() = 0; //将root节点设为0,即header的parent成员
leftmost() = header; //令树的最左子节点(由header的left所指向)为header
rightmost() = header; //令树的最右字节点(由header的right所指向)为header
}
public:
// allocation/deallocation
rb_tree(const Compare& comp = Compare())
: node_count(0), key_compare(comp) { init(); }
rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x)
: node_count(0), key_compare(x.key_compare)
{
header = get_node();
color(header) = __rb_tree_red;
if (x.root() == 0) {
root() = 0;
leftmost() = header;
rightmost() = header;
}
else {
__STL_TRY {
root() = __copy(x.root(), header);
}
__STL_UNWIND(put_node(header));
leftmost() = minimum(root());
rightmost() = maximum(root());
}
node_count = x.node_count;
}
~rb_tree() {
clear();
put_node(header);
}
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);
public:
// accessors:
Compare key_comp() const { return key_compare; }
iterator begin() { return leftmost(); }
const_iterator begin() const { return leftmost(); }
iterator end() { return header; }
const_iterator end() const { return header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return node_count == 0; }
size_type size() const { return node_count; }
size_type max_size() const { return size_type(-1); }
void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) {
__STD::swap(header, t.header);
__STD::swap(node_count, t.node_count);
__STD::swap(key_compare, t.key_compare);
}
public:
// insert/erase
pair<iterator,bool> insert_unique(const value_type& x);
iterator insert_equal(const value_type& x);
iterator insert_unique(iterator position, const value_type& x);
iterator insert_equal(iterator position, const value_type& x);
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert_unique(InputIterator first, InputIterator last);
template <class InputIterator>
void insert_equal(InputIterator first, InputIterator last);
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const_iterator first, const_iterator last);
void insert_unique(const value_type* first, const value_type* last);
void insert_equal(const_iterator first, const_iterator last);
void insert_equal(const value_type* first, const value_type* last);
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void erase(const key_type* first, const key_type* last);
void clear() {
if (node_count != 0) {
__erase(root());
leftmost() = header;
root() = 0;
rightmost() = header;
node_count = 0;
}
}
public:
// set operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
public:
// Debugging.
bool __rb_verify() const;
};
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
x.swap(y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {
if (this != &x) {
// Note that Key may be a constant type.
clear();
node_count = 0;
key_compare = x.key_compare;
if (x.root() == 0) {
root() = 0;
leftmost() = header;
rightmost() = header;
}
else {
root() = __copy(x.root(), header);
leftmost() = minimum(root());
rightmost() = maximum(root());
node_count = x.node_count;
}
}
return *this;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
__insert(base_ptr x_, base_ptr y_, const Value& v) {
//x_为新值插入点,y_为插入点的父节点,v为新值
link_type x = (link_type) x_;
link_type y = (link_type) y_;
link_type z;
//x != 0是什么意思?最后一个条件是新值v的键小于节点y的键
if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) {
z = create_node(v);
left(y) = z; // 当 y == header 时,leftmost() = z
if (y == header) {
root() = z;
rightmost() = z;
}
else if (y == leftmost()) //如果y为最左节点
leftmost() = z; // 维护 leftmost() 指向最左节点
}
else {
z = create_node(v);
right(y) = z; //令新节点成为插入点的父节点y的右子节点
if (y == rightmost()) //如果y为最左节点
rightmost() = z; // 维护 rightmost() 指向最右节点
}
//设置新节点的指针,没有设置颜色信息
parent(z) = y;
left(z) = 0;
right(z) = 0;
//进行必要的旋转和颜色变换
__rb_tree_rebalance(z, header->parent);
//更新树的大小
++node_count;
return iterator(z);
}
//插入新值:节点键值允许重复
//注意,返回值是一个RB-tree迭代器,指向新增节点
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v)
{
link_type y = header; //y用于保存插入点的父节点
link_type x = root(); //从根节点开始
while (x != 0) {
y = x;
x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);
}
//x为新值插入点,y为插入点的父节点,v为新值
return __insert(x, y, v);
}
//插入新值,节点键值不允许重复,若重复则插入无效
//返回值是个pair,第一个元素是个RB-tree迭代器,指向新增节点
//第二个元素表示插入是否成功
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v)
{
link_type y = header; //y用于保存插入点的父节点
link_type x = root(); //从根节点开始
bool comp = true;
while (x != 0) {
y = x;
//v的键值小于目前节点的键值?
comp = key_compare(KeyOfValue()(v), key(x));
//小于则往左,“大于等于”则往右
x = comp ? left(x) : right(x);
}
iterator j = iterator(y); //构造一个指向节点y的迭代器
if (comp) //将插入左侧
if (j == begin()) //如果插入点的父节点为最左子节点,直接插入,因为键值肯定没重复
return pair<iterator,bool>(__insert(x, y, v), true);
else //如果插入点的父节点不是最左子节点,说明是BST中间范围的一直值,可能重复
--j; //调整插入点的父节点,找到插入点的前一节点,看是否重复
//新键值不与既有节点的键值重复,于是执行安插操作
if (key_compare(key(j.node), KeyOfValue()(v)))
return pair<iterator,bool>(__insert(x, y, v), true);
//到这里表示新值一定与树中键值重复
return pair<iterator,bool>(j, false);
}
template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position,
const Val& v) {
if (position.node == header->left) // begin()
if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_unique(v).first;
else if (position.node == header) // end()
if (key_compare(key(rightmost()), KeyOfValue()(v)))
return __insert(0, rightmost(), v);
else
return insert_unique(v).first;
else {
iterator before = position;
--before;
if (key_compare(key(before.node), KeyOfValue()(v))
&& key_compare(KeyOfValue()(v), key(position.node)))
if (right(before.node) == 0)
return __insert(0, before.node, v);
else
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_unique(v).first;
}
}
template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position,
const Val& v) {
if (position.node == header->left) // begin()
if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_equal(v);
else if (position.node == header) // end()
if (!key_compare(KeyOfValue()(v), key(rightmost())))
return __insert(0, rightmost(), v);
else
return insert_equal(v);
else {
iterator before = position;
--before;
if (!key_compare(KeyOfValue()(v), key(before.node))
&& !key_compare(key(position.node), KeyOfValue()(v)))
if (right(before.node) == 0)
return __insert(0, before.node, v);
else
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_equal(v);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
#else /* __STL_MEMBER_TEMPLATES */
template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first,
const_iterator last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first,
const_iterator last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) {
link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node,
header->parent,
header->left,
header->right);
destroy_node(y);
--node_count;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) {
pair<iterator,iterator> p = equal_range(x);
size_type n = 0;
distance(p.first, p.second, n);
erase(p.first, p.second);
return n;
}
template <class K, class V, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type
rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) {
// structural copy. x and p must be non-null.
link_type top = clone_node(x);
top->parent = p;
__STL_TRY {
if (x->right)
top->right = __copy(right(x), top);
p = top;
x = left(x);
while (x != 0) {
link_type y = clone_node(x);
p->left = y;
y->parent = p;
if (x->right)
y->right = __copy(right(x), y);
p = y;
x = left(x);
}
}
__STL_UNWIND(__erase(top));
return top;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) {
// erase without rebalancing
while (x != 0) {
__erase(right(x));
link_type y = left(x);
destroy_node(x);
x = y;
}
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first,
iterator last) {
if (first == begin() && last == end())
clear();
else
while (first != last) erase(first++);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first,
const Key* last) {
while (first != last) erase(*first++);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {
link_type y = header; // Last node which is not less than k.
link_type x = root(); // Current node.
while (x != 0)
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
iterator j = iterator(y);
return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0) {
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
}
const_iterator j = const_iterator(y);
return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const {
pair<const_iterator, const_iterator> p = equal_range(k);
size_type n = 0;
distance(p.first, p.second, n);
return n;