-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheater_predict.py
137 lines (108 loc) · 3.89 KB
/
heater_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# %%
import pandas as pd
import plotly.express as px
import statsmodels.formula.api as smf
from temperature.exterior import get_ext_df
from kaya import set_dataframe_to_sheet
"""
Goal of this script is to predict the activity of the boiler
based on the interior and exterior temperature.
Our hope is that getting to an hourly resolution will help build
a more accurate energy model.
"""
PATH_TEMP = {'interior': 'netatmo/export/netatmo_temperature_2020-01-01_2022-01-23.csv',
'exterior': 'temperature/export/daily_export'}
PATH_BOILER = "netatmo/export/netatmo_agg_boiler_data_boileron_2020-01-01_2022-01-15.csv"
TRAIN_MODEL_DATE_LIMIT = '2021-02-01'
DATE_NEW_ROOF = '2021-07-18'
def read_temperature(path_temp):
"""
Read temperature data.
"""
int = pd.read_csv(path_temp['interior'])[['date', 'temperature']]
int['date'] = pd.to_datetime(int['date'])
ext = get_ext_df(path_temp['exterior'])
ext['datetime'] = pd.to_datetime(ext['datetime'])
ext = ext[ext['temp'] != 'NA']
ext['temp'] = ext['temp'].astype(float)
int.set_index('date', inplace=True)
ext.set_index('datetime', inplace=True)
# Agregate to hourly resolution
int_d = int.resample('H').mean().reset_index()
ext_d = ext.resample('H').mean().reset_index()
ext_d.rename(columns={'datetime': 'date',
'temp': 'temperature_ext'},
inplace=True)
df = pd.merge(int_d, ext_d, on='date', how='left')
df.dropna(inplace=True)
return df
def read_boiler_data(path_boiler):
"""
Read boiler data.
"""
df = pd.read_csv(path_boiler)
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# Agregate to hourly resolution
df = df.resample('H').agg({'boileron': 'sum'}).reset_index()
return df
def _season(x):
"""
Seasonal function.
"""
if x.month in [1, 2, 3, 10, 11, 12]:
return 'winter'
else:
return 'summer'
def merge_temp_boiler(path_temp, path_boiler, season="winter"):
"""
Merge boiler and gaz datasets.
"""
temp = read_temperature(path_temp)
boiler = read_boiler_data(path_boiler)
df = pd.merge(temp, boiler, on='date', how='left')
df.dropna(inplace=True)
df['season'] = df['date'].apply(_season)
if season == 'winter':
df = df.query("season == 'winter'")
return df
def export_to_gsheet(df, gsheet='boiler', worksheet='data'):
"""
Export data to Google Sheets.
We reformate date to be compatible with Google Sheets.
"""
print(f'exporting {df.shape[0]} rows to {gsheet}/{worksheet}')
df['date'] = df['date'].dt.strftime('%Y-%m-%d %H:%M:%S')
set_dataframe_to_sheet(df, gsheet, worksheet)
def build_energy_model(path_temp, path_boiler, season):
"""
Build energy model.
"""
df = merge_temp_boiler(path_temp, path_boiler, season)
df = df.query("date < '{}'".format(TRAIN_MODEL_DATE_LIMIT))
model = smf.ols(
formula='boileron ~ temperature + temperature_ext', data=df)
results = model.fit()
print(results.summary())
return results
def predict_on_set(PATH_TEMP, PATH_BOILER, season, type='test'):
model = build_energy_model(PATH_TEMP, PATH_BOILER, season)
df = merge_temp_boiler(PATH_TEMP, PATH_BOILER, season)
if type == 'test':
df = df.query("date > '{}'".format(DATE_NEW_ROOF))
df['boileron_predicted'] = model.predict(
df[['temperature', 'temperature_ext']])
return df
def plot_prediction(PATH_TEMP, PATH_BOILER, season, type='test'):
"""
Plot predicted energy.
"""
df = predict_on_set(PATH_TEMP, PATH_BOILER, season, type)
df.set_index('date', inplace=True)
df_stack = df[['boileron', 'boileron_predicted']].stack().reset_index()
df_stack.columns = ['date', 'type', 'value']
fig = px.line(df_stack, x='date', y='value', color='type')
fig.show()
# %%
df = merge_gaz_boiler(PATH_TEMP, PATH_BOILER)
# %%