diff --git a/README.md b/README.md index 245d204..d1a855c 100755 --- a/README.md +++ b/README.md @@ -49,7 +49,7 @@ Get *discrete cosine transform* (DCT) coefficients and quantization matrices as ```python -im = jpeglib.read_dct("input.jpeg") +im = jpeglib.read_dct('input.jpeg') im.Y; im.Cb; im.Cr; im.qt ``` @@ -58,7 +58,7 @@ You get luminance DCT, chrominance DCT and quantization tables. Write the DCT coefficients back to a file with ```python -im.write_dct("output.jpeg") +im.write_dct('output.jpeg') ``` ### Pixel data @@ -66,7 +66,7 @@ im.write_dct("output.jpeg") Decompress the `input.jpeg` into spatial representation in numpy array with ```python -im = jpeglib.read_spatial("input.jpeg") +im = jpeglib.read_spatial('input.jpeg') im.spatial ``` @@ -75,7 +75,7 @@ You can specify parameters such as output color space, DCT method, dithering, et Write spatial representation in numpy arrray back to file with ```python -im.write_spatial("output.jpeg") +im.write_spatial('output.jpeg') ``` You can specify input color space, DCT method, sampling factor, output quality, smoothing factor etc. @@ -112,5 +112,5 @@ im = jpeglib.read_spatial('image.jpeg') # using 6b again ## Credits -Developed by [Martin Benes](https://github.com/martinbenes1996), Universität Innsbruck, 2023. +Developed by [Martin Benes](https://github.com/martinbenes1996), University of Innsbruck, 2023. diff --git a/docs/source/conf.py b/docs/source/conf.py index cf73128..238abf8 100755 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -5,7 +5,7 @@ import sphinx_rtd_theme project = 'jpeglib' -copyright = '2021, Martin Benes' +copyright = '2023, Martin Benes' author = 'Martin Benes' release = '0.14'