-
Notifications
You must be signed in to change notification settings - Fork 4
/
net_24_eval.py
executable file
·73 lines (56 loc) · 1.96 KB
/
net_24_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import tensorflow as tf
import numpy as np
from image_inputs import inputs_for_test
from models import fcn_24_detect
import h5py
import random
def test():
model_path = 'model/model_net_24-210000'
f = h5py.File('net_24_neg_for_eval.hdf5','r')
imgs_neg = f['imgs'][:]
neg_len = len(imgs_neg)
lists = ['net_pos_for_eval.txt']
images, labels = inputs_for_test(lists, [24, 24, 3], 20)
net_output = fcn_24_detect(0.025)
is_train = tf.placeholder(tf.bool)
saver = tf.train.Saver(tf.trainable_variables())
sess = tf.Session()
sess.run(tf.initialize_all_variables())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
saver.restore(sess, model_path)
sum_acc=0
sum_recall=0
for i in range(10):
imgs_pos = sess.run(images)
imgs = np.vstack([imgs_pos,imgs_neg[i*80:i*80+80]])
imgs_12 = []
for img in imgs:
im = img.copy()
im.resize((12, 12, 3))
imgs_12.append(im)
imgs_12 = np.array(imgs_12)
# print(imgs_12.shape)
labels = np.vstack([np.ones((20,1)), np.zeros((80,1))])
sn_shf = np.array(random.sample(range(100), 100))
imgs = imgs[sn_shf]
imgs_12 = imgs_12[sn_shf]
labels = labels[sn_shf]
feed_dict = {
net_output['imgs']: imgs,
net_output['labels']: labels,
net_output['imgs_12']: imgs_12,
net_output['labels_12']: labels,
net_output['keep_prob']: 1.0,
net_output['keep_prob_12']: 1.0
}
acc, recall = sess.run([net_output['accuracy'], net_output['recall']], feed_dict=feed_dict)
print('iter %d, acc: %f, recall: %f'%(i, acc, recall))
sum_acc += acc
sum_recall += recall
print('mean_acc: %f, mean_recall: %f'%(sum_acc/10, sum_recall/10))
coord.request_stop()
coord.join(threads)
sess.close()
if __name__ == '__main__':
test()