-
Notifications
You must be signed in to change notification settings - Fork 1
/
gathered_seeds.json
1604 lines (1604 loc) · 203 KB
/
gathered_seeds.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[
{
"Category":"pleasant",
"Seeds":"['caress', 'freedom', 'health', 'love', 'peace', 'cheer', 'friend', 'heaven', 'loyal', 'pleasure', 'diamond', 'gentle', 'honest', 'lucky', 'rainbow', 'diploma', 'gift', 'honor', 'miracle', 'sunrise', 'family', 'happy', 'laughter', 'paradise', 'vacation']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"pleasant-Caliskan_et_al_2017"
},
{
"Category":"unpleasant",
"Seeds":"['abuse', 'crash', 'filth', 'murder', 'sickness', 'accident', 'death', 'grief', 'poison', 'stink', 'assault', 'disaster', 'hatred', 'pollute', 'tragedy', 'divorce', 'jail', 'poverty', 'ugly', 'cancer', 'kill', 'rotten', 'vomit', 'agony', 'prison']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"unpleasant-Caliskan_et_al_2017"
},
{
"Category":"flowers",
"Seeds":"['aster', 'clover', 'hyacinth', 'marigold', 'poppy', 'azalea', 'crocus', 'iris', 'orchid', 'rose', 'bluebell', 'daffodil', 'lilac', 'pansy', 'tulip', 'buttercup', 'daisy', 'lily', 'peony', 'violet', 'carnation', 'gladiola', 'magnolia', 'petunia', 'zinnia']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"flowers-Caliskan_et_al_2017"
},
{
"Category":"insects",
"Seeds":"['ant', 'caterpillar', 'flea', 'locust', 'spider', 'bedbug', 'centipede', 'fly', 'maggot', 'tarantula', 'bee', 'cockroach', 'gnat', 'mosquito', 'termite', 'beetle', 'cricket', 'hornet', 'moth', 'wasp', 'blackfly', 'dragonfly', 'horsefly', 'roach', 'weevil']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"insects-Caliskan_et_al_2017"
},
{
"Category":"instruments",
"Seeds":"['bagpipe', 'cello', 'guitar', 'lute', 'trombone', 'banjo', 'clarinet', 'harmonica', 'mandolin', 'trumpet', 'bassoon', 'drum', 'harp', 'oboe', 'tuba', 'bell', 'fiddle', 'harpsichord', 'piano', 'viola', 'bongo', 'flute', 'horn', 'saxophone', 'violin']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"instruments-Caliskan_et_al_2017"
},
{
"Category":"weapons",
"Seeds":"['arrow', 'club', 'gun', 'missile', 'spear', 'axe', 'dagger', 'harpoon', 'pistol', 'sword', 'blade', 'dynamite', 'hatchet', 'rifle', 'tank', 'bomb', 'firearm', 'knife', 'shotgun', 'teargas', 'cannon', 'grenade', 'mace', 'slingshot', 'whip']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"weapons-Caliskan_et_al_2017"
},
{
"Category":"european american names",
"Seeds":"['Adam', 'Harry', 'Josh', 'Roger', 'Alan', 'Frank', 'Justin', 'Ryan', 'Andrew', 'Jack', 'Matthew', 'Stephen', 'Brad', 'Greg', 'Paul', 'Jonathan', 'Peter', 'Amanda', 'Courtney', 'Heather', 'Melanie', 'Katie', 'Betsy', 'Kristin', 'Nancy', 'Stephanie', 'Ellen', 'Lauren', 'Colleen', 'Emily', 'Megan', 'Rachel']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998) (low frequency names removed)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"european_american_names-Caliskan_et_al_2017"
},
{
"Category":"african american names",
"Seeds":"['Alonzo', 'Jamel', 'Theo', 'Alphonse', 'Jerome', 'Leroy', 'Torrance', 'Darnell', 'Lamar', 'Lionel', 'Tyree', 'Deion', 'Lamont', 'Malik', 'Terrence', 'Tyrone', 'Lavon', 'Marcellus', 'Wardell', 'Nichelle', 'Shereen', 'Ebony', 'Latisha', 'Shaniqua', 'Jasmine', 'Tanisha', 'Tia', 'Lakisha', 'Latoya', 'Yolanda', 'Malika', 'Yvette']",
"Source \/ Justification":"Implicit Association Test (Greenwald et al., 1998) (low frequency names removed)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"african_american_names-Caliskan_et_al_2017"
},
{
"Category":"european american names market discrimination",
"Seeds":"['Todd', 'Neil', 'Geoffrey', 'Brett', 'Brendan', 'Greg', 'Matthew', 'Brad', 'Allison', 'Anne', 'Carrie', 'Emily', 'Jill', 'Laurie', 'Meredith', 'Sarah']",
"Source \/ Justification":"Bertrand and Mullainathan (2004) (low frequency names removed)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"european_american_names_market_discrimination-Caliskan_et_al_2017"
},
{
"Category":"african american names market discrimination",
"Seeds":"['Kareem', 'Darnell', 'Tyrone', 'Hakim', 'Jamal', 'Leroy', 'Jermaine', 'Rasheed', 'Aisha', 'Ebony', 'Keisha', 'Kenya', 'Lakisha', 'Latoya', 'Tamika', 'Tanisha']",
"Source \/ Justification":"Bertrand and Mullainathan (2004) (low frequency names removed)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"african_american_names_market_discrimination-Caliskan_et_al_2017"
},
{
"Category":"pleasantness",
"Seeds":"['joy', 'love', 'peace', 'wonderful', 'pleasure', 'friend', 'laughter', 'happy']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"pleasantness-Caliskan_et_al_2017"
},
{
"Category":"unpleasantness",
"Seeds":"['agony', 'terrible', 'horrible', 'nasty', 'evil', 'war', 'awful', 'failure']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"unpleasantness-Caliskan_et_al_2017"
},
{
"Category":"male names 1",
"Seeds":"['John', 'Paul', 'Mike', 'Kevin', 'Steve', 'Greg', 'Jeff', 'Bill']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"male_names_1-Caliskan_et_al_2017"
},
{
"Category":"female names 1",
"Seeds":"['Amy', 'Joan', 'Lisa', 'Sarah', 'Diana', 'Kate', 'Ann', 'Donna']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"female_names_1-Caliskan_et_al_2017"
},
{
"Category":"career",
"Seeds":"['executive', 'management', 'professional', 'corporation', 'salary', 'office', 'business', 'career']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"career-Caliskan_et_al_2017"
},
{
"Category":"family",
"Seeds":"['home', 'parents', 'children', 'family', 'cousins', 'marriage', 'wedding', 'relatives']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"family-Caliskan_et_al_2017"
},
{
"Category":"math 1",
"Seeds":"['math', 'algebra', 'geometry', 'calculus', 'equations', 'computation', 'numbers', 'addition']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"math_1-Caliskan_et_al_2017"
},
{
"Category":"arts 1",
"Seeds":"['poetry', 'art', 'sculpture', 'dance', 'literature', 'novel', 'symphony', 'drama']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"arts_1-Caliskan_et_al_2017"
},
{
"Category":"male 1",
"Seeds":"['brother', 'male', 'man', 'boy', 'son', 'he', 'his', 'him']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"male_1-Caliskan_et_al_2017"
},
{
"Category":"female 1",
"Seeds":"['sister', 'female', 'woman', 'girl', 'daughter', 'she', 'hers', 'her']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"female_1-Caliskan_et_al_2017"
},
{
"Category":"science 1",
"Seeds":"['science', 'technology', 'physics', 'chemistry', 'Einstein', 'NASA', 'experiment', 'astronomy']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"science_1-Caliskan_et_al_2017"
},
{
"Category":"arts 2",
"Seeds":"['poetry', 'art', 'Shakespeare', 'dance', 'literature', 'novel', 'symphony', 'drama']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"arts_2-Caliskan_et_al_2017"
},
{
"Category":"male 2",
"Seeds":"['brother', 'father', 'uncle', 'grandfather', 'son', 'he', 'his', 'him']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"male_2-Caliskan_et_al_2017"
},
{
"Category":"female 2",
"Seeds":"['sister', 'mother', 'aunt', 'grandmother', 'daughter', 'she', 'hers', 'her']",
"Source \/ Justification":"Nosek at al. (2002)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"female_2-Caliskan_et_al_2017"
},
{
"Category":"careers",
"Seeds":"['technician', 'accountant', 'supervisor', 'engineer', 'worker', 'educator', 'clerk', 'counselor', 'inspector', 'mechanic', 'manager', 'therapist', 'administrator', 'salesperson', 'receptionist', 'librarian', 'advisor', 'pharmacist', 'janitor', 'psychologist', 'physician', 'carpenter', 'nurse', 'investigator', 'bartender', 'specialist', 'electrician', 'officer', 'pathologist', 'teacher', 'lawyer', 'planner', 'practitioner', 'plumber', 'instructor', 'surgeon', 'veterinarian', 'paramedic', 'examiner', 'chemist', 'machinist', 'appraiser', 'nutritionist', 'architect', 'hairdresser', 'baker', 'programmer', 'paralegal', 'hygienist', 'scientist']",
"Source \/ Justification":"derived from hierarchical 2015 U.S. Bureau of Labor Statistics; if possible, convert multi-word terms into single word that represents superset, otherwise, discard",
"Source Categories":"population-derived",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"careers-Caliskan_et_al_2017"
},
{
"Category":"androgynous names",
"Seeds":"['Kelly', 'Tracy', 'Jamie', 'Jackie', 'Jesse', 'Courtney', 'Lynn', 'Taylor', 'Leslie', 'Shannon', 'Stacey', 'Jessie', 'Shawn', 'Stacy', 'Casey', 'Bobby', 'Terry', 'Lee', 'Ashley', 'Eddie', 'Chris', 'Jody', 'Pat', 'Carey', 'Willie', 'Morgan', 'Robbie', 'Joan', 'Alexis', 'Kris', 'Frankie', 'Bobbie', 'Dale', 'Robin', 'Billie', 'Adrian', 'Kim', 'Jaime', 'Jean', 'Francis', 'Marion', 'Dana', 'Rene', 'Johnnie', 'Jordan', 'Carmen', 'Ollie', 'Dominique', 'Jimmie', 'Shelby']",
"Source \/ Justification":"most popular names in each 10% window of gender frequency based on 1990 U.S. Census data; algorithmically determine how \u201cname-like\u201d each vector is (by computing the distance of each vector to thecentroid of all the name vectors), and eliminate the 20% of vectors that are least name-like.",
"Source Categories":"population-derived",
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"androgynous_names-Caliskan_et_al_2017"
},
{
"Category":"depressed 1",
"Seeds":"['sad', 'hopeless', 'gloomy', 'tearful', 'miserable', 'depressed']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"depressed_1-Caliskan_et_al_2017"
},
{
"Category":"physically ill",
"Seeds":"['sick', 'illness', 'influenza', 'disease', 'virus', 'cancer']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"physically_ill-Caliskan_et_al_2017"
},
{
"Category":"temporary",
"Seeds":"['impermanent', 'unstable', 'variable', 'fleeting', 'short-term', 'brief', 'occasional']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"temporary-Caliskan_et_al_2017"
},
{
"Category":"permanent",
"Seeds":"['stable', 'always', 'constant', 'persistent', 'chronic', 'prolonged', 'forever']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"permanent-Caliskan_et_al_2017"
},
{
"Category":"young names",
"Seeds":"['Tiffany', 'Michelle', 'Cindy', 'Kristy', 'Brad', 'Eric', 'Joey', 'Billy']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"young_names-Caliskan_et_al_2017"
},
{
"Category":"old names",
"Seeds":"['Ethel', 'Bernice', 'Gertrude', 'Agnes', 'Cecil', 'Wilbert', 'Mortimer', 'Edgar']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"old_names-Caliskan_et_al_2017"
},
{
"Category":"pleasant 6",
"Seeds":"['joy', 'love', 'peace', 'wonderful', 'pleasure', 'friend', 'laughter', 'happy']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"pleasant_6-Caliskan_et_al_2017"
},
{
"Category":"unpleasant 6",
"Seeds":"['agony', 'terrible', 'horrible', 'nasty', 'evil', 'war', 'awful', 'failure']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Semantics derived automatically from language corpora contain human-like biases (Caliskan et al., 2017)",
"Link":"https:\/\/dataverse.harvard.edu\/dataset.xhtml?persistentId=doi:10.7910\/DVN\/DX4VWP",
"Seeds ID":"unpleasant_6-Caliskan_et_al_2017"
},
{
"Category":"definitional female",
"Seeds":"['woman', 'girl', 'she', 'mother', 'daughter', 'gal', 'female', 'her', 'herself', 'Mary']",
"Source \/ Justification":null,
"Source Categories":"curated",
"Used in Paper":"Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016)",
"Link":"https:\/\/github.com\/tolga-b\/debiaswe",
"Seeds ID":"definitional_female-Bolukbasi_et_al_2016"
},
{
"Category":"definitional male",
"Seeds":"['man', 'boy', 'he', 'father', 'son', 'guy', 'male', 'his', 'himself', 'John']",
"Source \/ Justification":null,
"Source Categories":"curated",
"Used in Paper":"Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016)",
"Link":"https:\/\/github.com\/tolga-b\/debiaswe",
"Seeds ID":"definitional_male-Bolukbasi_et_al_2016"
},
{
"Category":"equalize 1",
"Seeds":"['monastery', 'spokesman', 'Catholic_priest', 'Dad', 'Men', 'councilman', 'grandpa', 'grandsons', 'prostate_cancer', 'testosterone', 'uncle', 'wives', 'Father', 'Grandpa', 'He', 'boy', 'boys', 'brother', 'brothers', 'businessman', 'chairman', 'colt', 'congressman', 'dad', 'dads', 'dudes', 'ex_girlfriend', 'father', 'fatherhood', 'fathers', 'fella', 'fraternity', 'gelding', 'gentleman', 'gentlemen', 'grandfather', 'grandson', 'he', 'himself', 'his', 'king', 'kings', 'male', 'males', 'man', 'men', 'nephew', 'prince', 'schoolboy', 'son', 'sons', 'twin_brother']",
"Source \/ Justification":null,
"Source Categories":"corpus-derived",
"Used in Paper":"Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016)",
"Link":"https:\/\/github.com\/tolga-b\/debiaswe",
"Seeds ID":"equalize_1-Bolukbasi_et_al_2016"
},
{
"Category":"equalize 2",
"Seeds":"['convent', 'spokeswoman', 'nun', 'Mom', 'Women', 'councilwoman', 'grandma', 'granddaughters', 'ovarian_cancer', 'estrogen', 'aunt', 'husbands', 'Mother', 'Grandma', 'She', 'girl', 'girls', 'sister', 'sisters', 'businesswoman', 'chairwoman', 'filly', 'congresswoman', 'mom', 'moms', 'gals', 'ex_boyfriend', 'mother', 'motherhood', 'mothers', 'granny', 'sorority', 'mare', 'lady', 'ladies', 'grandmother', 'granddaughter', 'she', 'herself', 'her', 'queen', 'queens', 'female', 'females', 'woman', 'women', 'niece', 'princess', 'schoolgirl', 'daughter', 'daughters', 'twin_sister']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016)",
"Link":"https:\/\/github.com\/tolga-b\/debiaswe",
"Seeds ID":"equalize_2-Bolukbasi_et_al_2016"
},
{
"Category":"gender specific",
"Seeds":"['he', 'his', 'He', 'her', 'she', 'him', 'She', 'man', 'women', 'men', 'His', 'woman', 'spokesman', 'wife', 'himself', 'son', 'mother', 'father', 'chairman', 'daughter', 'husband', 'guy', 'girls', 'girl', 'Her', 'boy', 'King', 'boys', 'brother', 'Chairman', 'spokeswoman', 'female', 'sister', 'Women', 'Man', 'male', 'herself', 'Lions', 'Lady', 'brothers', 'dad', 'actress', 'mom', 'sons', 'girlfriend', 'Kings', 'Men', 'daughters', 'Prince', 'Queen', 'teenager', 'lady', 'Bulls', 'boyfriend', 'sisters', 'Colts', 'mothers', 'Sir', 'king', 'businessman', 'Boys', 'grandmother', 'grandfather', 'deer', 'cousin', 'Woman', 'ladies', 'Girls', 'Father', 'uncle', 'PA', 'Boy', 'Councilman', 'mum', 'Brothers', 'MA', 'males', 'Girl', 'Mom', 'Guy', 'Queens', 'congressman', 'Dad', 'Mother', 'grandson', 'twins', 'bull', 'queen', 'businessmen', 'wives', 'widow', 'nephew', 'bride', 'females', 'aunt', 'Congressman', 'prostate_cancer', 'lesbian', 'chairwoman', 'fathers', 'Son', 'moms', 'Ladies', 'maiden', 'granddaughter', 'younger_brother', 'Princess', 'Guys', 'lads', 'Ma', 'Sons', 'lion', 'Bachelor', 'gentleman', 'fraternity', 'bachelor', 'niece', 'Lion', 'Sister', 'bulls', 'husbands', 'prince', 'colt', 'salesman', 'Bull', 'Sisters', 'hers', 'dude', 'Spokesman', 'beard', 'filly', 'Actress', 'Him', 'princess', 'Brother', 'lesbians', 'councilman', 'actresses', 'Viagra', 'gentlemen', 'stepfather', 'Deer', 'monks', 'Beard', 'Uncle', 'ex_girlfriend', 'lad', 'sperm', 'Daddy', 'testosterone', 'MAN', 'Female', 'nephews', 'maid', 'daddy', 'mare', 'fiance', 'Wife', 'fiancee', 'kings', 'dads', 'waitress', 'Male', 'maternal', 'heroine', 'feminist', 'Mama', 'nieces', 'girlfriends', 'Councilwoman', 'sir', 'stud', 'Mothers', 'mistress', 'lions', 'estranged_wife', 'womb', 'Brotherhood', 'Statesman', 'grandma', 'maternity', 'estrogen', 'ex_boyfriend', 'widows', 'gelding', 'diva', 'teenage_girls', 'nuns', 'Daughter', 'czar', 'ovarian_cancer', 'HE', 'Monk', 'countrymen', 'Grandma', 'teenage_girl', 'penis', 'bloke', 'nun', 'Husband', 'brides', 'housewife', 'spokesmen', 'suitors', 'menopause', 'monastery', 'patriarch', 'Beau', 'motherhood', 'brethren', 'stepmother', 'Dude', 'prostate', 'Moms', 'hostess', 'twin_brother', 'Colt', 'schoolboy', 'eldest', 'brotherhood', 'Godfather', 'fillies', 'stepson', 'congresswoman', 'Chairwoman', 'Daughters', 'uncles', 'witch', 'Mommy', 'monk', 'viagra', 'paternity', 'suitor', 'chick', 'Pa', 'fianc\\\\u00e9', 'sorority', 'macho', 'Spokeswoman', 'businesswoman', 'eldest_son', 'gal', 'statesman', 'schoolgirl', 'fathered', 'goddess', 'hubby', 'mares', 'stepdaughter', 'blokes', 'dudes', 'socialite', 'strongman', 'Witch', 'fianc\\\\u00e9e', 'uterus', 'grandsons', 'Bride', 'studs', 'mama', 'Aunt', 'godfather', 'hens', 'hen', 'mommy', 'Babe', 'estranged_husband', 'Fathers', 'elder_brother', 'boyhood', 'baritone', 'Diva', 'Lesbian', 'grandmothers', 'grandpa', 'boyfriends', 'feminism', 'countryman', 'stallion', 'heiress', 'queens', 'Grandpa', 'witches', 'aunts', 'semen', 'fella', 'granddaughters', 'chap', 'knight', 'widower', 'Maiden', 'salesmen', 'convent', 'KING', 'vagina', 'beau', 'babe', 'HIS', 'beards', 'handyman', 'twin_sister', 'maids', 'gals', 'housewives', 'Gentlemen', 'horsemen', 'Businessman', 'obstetrics', 'fatherhood', 'beauty_queen', 'councilwoman', 'princes', 'matriarch', 'colts', 'manly', 'ma', 'fraternities', 'Spokesmen', 'pa', 'fellas', 'Gentleman', 'councilmen', 'dowry', 'barbershop', 'Monks', 'WOMAN', 'fraternal', 'ballerina', 'manhood', 'Dads', 'heroines', 'granny', 'gynecologist', 'princesses', 'Goddess', 'yo', 'Granny', 'knights', 'eldest_daughter', 'HER', 'underage_girls', 'masculinity', 'Girlfriend', 'bro', 'Grandmother', 'grandfathers', 'crown_prince', 'Restless', 'paternal', 'Queen_Mother', 'Boyfriend', 'womens', 'Males', 'SHE', 'Countess', 'stepchildren', 'Belles', 'bachelors', 'matron', 'momma', 'Legs', 'maidens', 'goddesses', 'landlady', 'sisterhood', 'Grandfather', 'Fraternity', 'Majesty', 'Babes', 'lass', 'maternal_grandmother', 'blondes', 'ma\\'am', 'Womens', 'divorcee', 'Momma', 'fathering', 'Effie', 'Lad', 'womanhood', 'missus', 'Sisterhood', 'granddad', 'Mens', 'papa', 'gf', 'sis', 'Husbands', 'Hen', 'womanizer', 'gynecological', 'stepsister', 'Handsome', 'Prince_Charming', 'BOY', 'stepdad', 'teen_ager', 'GIRL', 'dame', 'Sorority', 'beauty_pageants', 'raspy', 'harem', 'maternal_grandfather', 'Hes', 'deliveryman', 'septuagenarian', 'damsel', 'paternal_grandmother', 'paramour', 'paternal_grandparents', 'Nun', 'DAD', 'mothering', 'shes', 'HE_', 'S', 'Nuns', 'teenage_daughters', 'auntie', 'widowed_mother', 'Girlfriends', 'FATHER', 'virile', 'COUPLE', 'grandmas', 'Hubby', 'nan', 'vixen', 'Joan_Crawford', 'stepdaughters', 'endometrial_cancer', 'stepsons', 'loins', 'Grandson', 'Mitchells', 'erections', 'Matron', 'Fella', 'daddies', 'ter', 'Sweetie', 'Dudes', 'Princesses', 'Lads', 'lioness', 'Mamma', 'virility', 'bros', 'womenfolk', 'Heir', 'BROTHERS', 'manliness', 'patriarchs', 'earl', 'sisterly', 'Whore', 'Gynaecology', 'countess', 'convents', 'Oratory', 'witch_doctor', 'mamas', 'yah', 'aunty', 'aunties', 'Heiress', 'lasses', 'Breasts', 'fairer_sex', 'sorority_sisters', 'WIFE', 'Laurels', 'penile', 'nuh', 'mah', 'toms', 'mam', 'Granddad', 'premenopausal_women', 'Granddaddy', 'nana', 'coeds', 'dames', 'herdsman', 'Mammy', 'Fellas', 'Niece', 'menfolk', 'Grandad', 'bloods', 'Gramps', 'damsels', 'Granddaughter', 'mamma', 'concubine', 'Oros', 'Blarney', 'filial', 'broads', 'Ethel_Kennedy', 'ACTRESS', 'Tit', 'fianc', 'Hunk', 'Night_Shift', 'wifey', 'Lothario', 'Holy_Roman_Emperor', 'horse_breeder', 'grandnephew', 'Lewises', 'Muscular', 'feminist_movement', 'Sanan', 'women\\\\u00e2_\\\\u20ac_\\\\u2122', 'Fiancee', 'dowries', 'Carmelite', 'rah', 'n_roller', 'bay_filly', 'belles', 'Uncles', 'PRINCESS', 'womans', 'Homeboy', 'Blokes', 'Charmer', 'codger', 'Delta_Zeta', 'courtesans', 'grandaughter', 'SISTER', 'Highness', 'grandbabies', 'crone', 'Skip_Away', 'noblewoman', 'bf', 'jane', 'philandering_husband', 'Sisqo', 'mammy', 'daugher', 'director_Skip_Bertman', 'DAUGHTER', 'Royal_Highness', 'mannish', 'spinsters', 'Missus', 'madame', 'Godfathers', 'saleswomen', 'beaus', 'Risha', 'luh', 'sah', 'negligee', 'Women\\\\u00e2_\\\\u20ac_\\\\u2122', 'Hos', 'salesgirl', 'grandmom', 'Grandmas', 'Lawsons', 'countrywomen', 'Booby', 'darlin', 'Sheiks', 'boyz', 'wifes', 'Bayi', 'Il_Duce', '\\\\u00e2_\\\\u20ac_\\\\u0153My', 'fem', 'daugther', 'Potti', 'hussy', 'tch', 'Gelding', 'stemmed_roses', 'Damson', 'puh', 'Tylers', 'neice', 'Mutha', 'GRANDMOTHER', 'youse', 'spurned_lover', 'mae', 'Britt_Ekland', 'clotheshorse', 'Carlita_Kilpatrick', 'Cambest', 'Pretty_Polly', 'banshees', 'male_chauvinist', 'Arliss', 'mommas', 'maidservant', 'Gale_Harold', 'Little_Bo_Peep', 'Cleavers', 'hags', 'blowsy', 'Queen_Elizabeth_I.', 'lassies', 'papas', 'BABE', 'ugly_ducklings', 'Jims', 'hellion', 'Beautician', 'coalminer', 'relaxin', 'El_Mahroug', 'Victoria_Secret_Angel', 'shepherdess', 'Mosco', 'Slacks', 'nanna', 'wifely', 'tomboys', 'LAH', 'hast', 'apo', 'Kaplans', 'milkmaid', 'Robin_Munis', 'John_Barleycorn', 'royal_highness', 'Meanie', 'NAH', 'trollop', 'roh', 'Jewess', 'Sheik_Hamad', 'mumsy', 'Big_Pussy', 'chil_dren', 'Aunt_Bea', 'basso', 'sista', 'girlies', 'nun_Sister', 'chica', 'Bubbas', 'massa', 'Southern_belles', 'Nephews', 'castrations', 'Mister_Ed', 'Grandsons', 'Calaf', 'Malachy_McCourt', 'Shamash', 'hey_hey', 'Harmen', 'sonofabitch', 'Donovans', 'Grannie', 'Kalinka', 'hisself', 'Devean', 'goatherd', 'hinds', 'El_Corredor', 'Kens', 'notorious_womanizer', 'goh', 'Mommas', 'washerwoman', 'Samaira', 'Coo_Coo', 'Governess', 'grandsire', 'PRINCE_WILLIAM', 'gramma', 'him.He', 'Coptic_priest', 'Corbie', 'Kennys', 'thathe', 'Pa_Pa', 'Bristols', 'Hotep', 'snowy_haired', 'El_Prado_Ire', 'Girl_hitmaker', 'Hurleys', 'St._Meinrad', 'sexually_perverted', 'authoress', 'Prudie', 'raven_haired_beauty', 'Bonos', 'domestic_shorthair', 'brothas', 'nymphet', 'Neelma', 'Seita', 'stud_muffin', 'St._Judes', 'yenta', 'bare_shouldered', 'Pinkney_Sr.', 'PRINCE_CHARLES', 'Bisutti', 'sistas', 'Blanche_Devereaux', 'Momoa', 'Quiff', 'Scotswoman', 'balaclava_clad_men', 'Louis_Leakey', 'dearie', 'vacuum_cleaner_salesman', 'grandads', 'postulant', 'SARAH_JESSICA_PARKER', 'AUNT', 'Prince_Dauntless', 'Dalys', 'Darkie', 'Czar_Nicholas', 'Lion_Hearted', 'Boy_recliner', 'baby_mamas', 'giantess', 'Lawd', 'GRANNY', 'fianc_e', 'Bilqis', 'WCTU', 'famly', 'Ellas', 'feminazis', 'Pentheus', 'MAMAS', 'Town_Criers', 'Saggy', 'youngman', 'grandam', 'divorc\\\\u00e9', 'bosomed', 'roon', 'Simmentals', 'eponymous_heroine', 'LEYLAND', 'REE', 'cain', 't', 'Evelynn', 'WAH', 'sistah', 'Horners', 'Elsie_Poncher', 'Coochie', 'rat_terriers', 'Limousins', 'Buchinski', 'Schicchi', 'Carpitcher', 'Khwezi', 'HAH', 'Shazza', 'Mackeson', 'ROH', 'kuya', 'novice_nun', 'Shei', 'Elmasri', 'ladykiller', '6yo', 'Yenta', 'SHEL', 'pater', 'Souse', 'Tahirah', 'comedian_Rodney_Dangerfield', 'Shottle', 'carryin', 'Sath', 'fa', 'afafine', 'royal_consort', 'hus_band', 'maternal_uncles', 'dressing_provocatively', 'dreamgirl', 'millionaire_industrialist', 'Georgie_Girl', 'Must_Be_Obeyed', 'joh', 'Arabian_stallion', 'ahr', 'mso_para_margin_0in', 'SOO', 'Biddles', 'Chincoteague_Volunteer_Fire', 'Lisa_Miceli', 'gorgeous_brunette', 'fianc\\\\u017d', 'Moved_fluently', 'Afternoon_Deelites', 'biker_dude', 'Vito_Spatafore', 'MICK_JAGGER', 'Adesida', 'Reineman', 'witz', 'Djamila', 'Glenroe', 'daddys', 'Romanzi', 'gentlewomen', 'Dandie_Dinmont_terrier', 'Excess_Ire', 'By_SYVJ_Staff', 'zan', 'CONFESSIONS', 'Magees', 'wimmin', 'tash', 'Theatrical_Ire', 'Prince_Charmings', 'chocolate_eclair', 'bron', 'daughers', 'Felly', 'fiftyish', 'Spritely', 'GRANDPA', 'distaffer', 'Norbertines', 'DAH', 'leader_Muammar_Gadaffi', 'swains', 'Prince_Tomohito', 'Honneur', 'Soeur', 'jouster', 'Pharaoh_Amenhotep_III', 'QUEEN_ELIZABETH_II', 'Ne', 'er', 'Galileo_Ire', 'Fools_Crow', 'Lannisters', 'Devines', 'gonzales', 'columnist_Ann_Landers', 'Moseleys', 'hiz', 'busch', 'roastee', 'toyboys', 'Sheffields', 'grandaunt', 'Galvins', 'Giongo', 'geh', 'flame_haired_actress', 'Grammarian', 'Greg_Evigan', 'frontierswoman', 'Debele', 'rabs', 'nymphets', 'aai', 'BREE', 'Shaqs', 'ZAY', 'pappa', 'Housa', 'refrigerator_repairman', 'artificial_inseminations', 'chickie', 'Rippa', 'teenager_Tracy_Turnblad', 'homebred_colt', 'Abigaille', 'hen_pecked_husband', 'businesman', 'her.She', 'Kaikeyi', 'Stittsworth', 'self_proclaimed_redneck', 'Khella', 'NeW', 'Evers_Swindell', 'Asmerom_Gebreselassie', 'Boy_recliners', 'Cliff_Claven', 'Legge_Bourke', 'Costos', 'd', '_honneur', 'sistahs', 'Cabble', 'sahn', 'CROW_AGENCY_Mont', 'jezebel', 'Harrolds', 'ROSARIO_DAWSON', 'INXS_frontman_Michael_Hutchence', 'Gursikh', 'Dadas', 'VIAGA', 'keen_horsewoman', 'Theodoric', 'Eldery', 'lihn', 'Alice_Kramden', 'Santarina', 'radical_cleric_al_Sadr', 'Curleys', 'SY', 'Fidaa', 'Saptapadi', 'Actor_Sean_Astin', 'Kellita_Smith', 'Doly', 'Libertina', 'Money_McBags', 'Chief_Bearhart', 'choirgirl', 'chestnut_stallion', 'VIGRA', 'BY_JIM_McCONNELL', 'Sal_Vitale', 'Trivia_buffs', 'kumaris', 'fraternal_lodge', 'galpals', 'Borino_Quinn', 'lina', 'LATEST_Rapper', 'Bezar', 'Manro', 'bakla', 'Grisetti', 'blond_bimbo', 'spinster_aunt', 'gurls', 'hiswife', 'paleface', 'Charlye', 'hippie_chicks', 'Khalifas', 'Picture_JUSTIN_SANSON', 'Hepburns', 'yez', 'ALDER', 'Sanussi', 'Lil_Sis', 'McLoughlins', 'Barbra_Jean', 'Lulua', 'thatshe', 'actress_Shohreh_Aghdashloo', 'SIR_ANTHONY_HOPKINS', 'Gloddy', 'ZAH', 'ORANGE_', 'S', 'Danielle_Bimber', 'grandmum', 'Kulkis', 'Brazington', 'Marisa_Lenhard_CFA', 'SIR_JOHN', 'Clareman', 'Aqila', 'Heavily_tattooed', 'Libbys', 'thim', 'elocutionist', 'submissives', 'Inja', 'rahm', 'Agnes_Gooch', 'fake_tits', 'nancy_boys', 'Swaidan', 'SHAH', 'ain', 'ta_bed', 'Shumail_Raj', 'Duchesse', 'diethylstilbestrol_DES', 'colt_foal', 'unfaithful_lover', 'Maseri', 'nevah', 'SAHN', 'Barths', 'Toughkenamon', 'GUEST_STARS', 'him.But', 'Donna_Claspell', 'gingham_dresses', 'Massage_Parlour', 'wae', 'Wasacz', 'Magistra', 'vihl', 'Smriti_Iraani', 'boyish_haircut', 'workingwoman', 'borthers', 'Capuchin_friars', 'Nejma', 'yes_sirs', 'bivocational_pastor', 'Grafters', 'HOPWOOD', 'Nicknamed_Godzilla', 'yos', 'Berkenfield', 'Missis', 'sitcom_Designing_Women', 'Kafoa', 'trainer_Emma_Lavelle', 'sadomasochistic_dungeon', 'iht', 'desperates', 'predessor', 'wolf_cub', 'indigenous_Peruvians', 'Livia_Soprano', 'troh', 'colt_sired', 'BOND_HILL', 'ihl', 'Drydens', 'rahs', 'Piserchia', 'Sonny_Corinthos', 'bankrobber', 'Fwank', 'feisty_redhead', 'booze_guzzling', 'COOPERS', 'actress_Q', 'orianka_Kilcher', 'Cortezar', 'twe', 'Jacoub', 'Cindy_Iannarelli', 'Hell_Raiser', 'Fondly_referred', 'Bridal_Shoppe', 'Noleta', 'Christinas', 'IAGRA', 'LaTanya_Richardson', 'Sang_Bender', 'Assasins', 'sorrel_gelding', 'septugenarian', 'Hissy', 'Muqtada_al_Sadr_mook', 'Pfeni', 'MADRID_AFX_Banco_Santander', 'tuchis', 'LeVaughn', 'Gadzicki', 'transvestite_hooker', 'Fame_jockey_Laffit', 'nun_Sister_Mary', 'SAMSONOV', 'Mayflower_Madam', 'Shaque', 'well.He', 'Trainer_Julio_Canani', 'sorrel_mare', 'minivehicle_joint_venture', 'wife_Dwina', 'Aasiya_AH', '_see', 'Baratheon', 'Rick_O', 'Shay', 'Mammies', 'goatie', 'Nell_Gwynne', 'charmingly_awkward', 'Slamma', 'DEHL', 'Lorenzo_Borghese', 'ALMA_Wis.', 'Anne_Scurria', 'father_Peruvians_alternately', 'JULIE_ANDREWS', 'Slim_Pickins', 'Victoria_Secret_stunner', 'BY', 'Sanam_Devdas', 'pronounced_luh', 'Pasha_Selim', '\\\\u4e2d\\\\u534e', 'rson', 'maternal_grandmothers', 'IOWA_CITY_Ia', 'Madame_de_Tourvel', 'JAY', 'Sheika_Mozah_bint_Nasser', 'Hotsy_Totsy', 'D', '_Ginto', 'singer_Johnny_Paycheck', 'uterine_prolapse_surgery', 'SCOTTDALE_Pa.', 'AdelaideNow_reports', 'Marcus_Schenkenberg', 'Clyse', 'Obiter_Dicta', 'comic_Sam_Kinison', 'bitties', 'ROCKVILLE_Ind.', 'swimsuit_calendars', 'Decicio_Smith', 'Ma_ma', 'Rie_Miyazawa', 'celibate_chastity', 'gwah', 'ZAY', 'HER_Majesty', 'Defrere', 'Las_Madrinas', '\\\\u7c3f_\\\\u8042_\\\\u7ffb', 'Bea_Hamill', 'ARCADIA_Calif._Trainer', 'Bold_Badgett', 'stakes_victress', 'Hoppin_Frog', 'Narumiya', 'Flayfil', 'hardman_Vinnie_Jones', 'Marilyn_Monroe_lookalike', 'Kivanc_Tatlitug', 'Persis_Khambatta', 'SINKING_SPRING_Pa.', 'len_3rd', 'DEAR_TRYING', 'Farndon_Cheshire', 'Krishna_Madiga', 'daughter_Princess_Chulabhorn', 'Marshall_Rooster_Cogburn', 'Kitty_Kiernan', 'Yokich', 'Jarou', 'Serdaris', 'ee_ay', 'Montifiore', 'Chuderewicz', 'Samuel_Le_Bihan', 'filly_Proud_Spell', 'Umm_Hiba', 'pronounced_koo', 'Sandy_Fonzo', 'KOR', 'Fielder_Civil_kisses', 'Federalsburg_Maryland', 'Nikah_ceremony', 'Brinke_Stevens', 'Yakama_Tribal_Council', 'Capuchin_Father', 'wife_Callista_Bisek', 'Beau_Dare', 'Bedoni', 'Arjun_Punj', 'JOHNNY_KNOXVILLE', 'cap_tain', 'Alderwood_Boys', 'Chi_Eta_Phi', 'ringleader_Charles_Graner', 'Savoies', 'Lalla_Salma', 'Mrs._Potiphar', 'fahn', 'name_Taylor_Sumers', 'Vernita_Green', 'Bollywood_baddie', 'BENBROOK_Texas', 'Assemblyman_Lou_Papan', 'virgin_brides', 'Cho_Eun', 'CATHY_Freeman', 'Uncle_Saul', 'Lao_Brewery', 'Ibo_tribe', 'ruf', 'rival_Edurne_Pasaban', 'Hei_Shangri_La', 'Mommy_dearest', 'interest_Angola_Sonogal', 'Ger_Monsun', 'PUSSYCAT_DOLL', 'Crown_Jewels_Condoms', 'Lord_Marke', 'Patootie', 'Nora_Bey', 'huntin_shootin', 'Minister_Raymond_Tshibanda', 'La_Nina_la_NEEN', 'signature_Whoppers', 'estranged_hubby_Kevin_Federline', 'UR', 'pill_poppin', 'GEHR', 'purebred_Arabians', 'husbandly_duties', 'VIAGRA_TIMING', 'Hereford_heifer', 'hushed_monotone_voice', 'Pola_Uddin', 'Wee_Jimmy_Krankie', 'Kwakwanso', 'Our_Galvinator', 'shoh', 'Codependency_Anonymous_Group', 'LA', 'Taufa', 'ahau', 'Invincible_Spirit_colt', 'SAH', '_dur', 'MOUNT_CARMEL_Pa.', 'watches_attentively', 'SNL_spinoffs', 'Seth_Nitschke', 'Duns_Berwickshire', 'defendant_Colleen_LaRose', 'Silky_O', 'Sullivan', 'Highcliff_Farm', 'REN', 'Comestar', 'Satisfied_Frog', 'Jai_Maharashtra', 'ATTICA_Ind.', 'lover_Larry_Birkhead', 'Tami_Megal', 'chauvinist_pigs', 'Phi_sorority', 'Micronesian_immigrant', 'Lia_Boldt', 'Sugar_Tits', 'actress_Kathy_Najimy', 'zhoo', 'Colombo_underboss', 'Katsav_accusers', 'Bess_Houdini', 'rap_mogul_Diddy', 'companions_Khin_Khin', 'Van_Het', 'Mastoi_tribe', 'VITALY', 'ROLLING_STONES_rocker', 'womanizing_cad', 'LILY_COLE', 'paternal_grandfathers', 'Lt._Col._Kurt_Kosmatka', 'Kasseem_Jr.', 'Ji_Ji', 'Wilburforce', 'VIAGRA_DOSE', 'English_Sheepdogs', 'pronounced_Kah', 'Htet_Htet_Oo', 'Brisk_Breeze', 'Eau_du', 'BY_MELANIE_EVANS', 'Neovasc_Medical', 'British_funnyman_RICKY', '4YO_mare', 'Hemaida', 'MONKTON', 'Mrs_Mujuru', 'BaGhana_BaGhana', 'Shaaban_Abdel_Rahim', 'Edward_Jazlowiecki_lawyer', 'Ajman_Stud', 'manly_pharaoh_even', 'Serra_Madeira_Islands', 'FRAY', 'panto_dames', 'Khin_Myo', 'dancer_Karima_El_Mahroug', 'CROWN_Princess', 'Baseball_HOFer', 'Hasta_la_Pasta', 'GIRLS_NEXT_DOOR', 'Benedict_Groeschel', 'Bousamra', 'Ruby_Rubacuori_Ruby', 'Monde_Bleu', 'Un_homme_qui', 'Taylor_Sumers', 'Rapper_EMINEM', 'Joe_Menchetti', 'VAY', 'supermodel_NAOMI_CAMPBELL', 'Supermodel_GISELE_BUNDCHEN', 'Au_Lait', 'Radar_Installed', 'THOMAS_TOWNSHIP_Mich.', 'Rafinesque', 'Herman_Weinrich', 'Abraxas_Antelope', 'raspy_voiced_rocker', 'Manurewa_Cosmopolitan_Club', 'Paraone', 'THE_LEOPARD', 'Boy_Incorporated_LZB', 'Dansili_filly', 'Lumpy_Rutherford', 'unwedded_bliss', 'Bhavna_Sharma', 'Scarvagh', 'en_flagrante', 'Mottu_Maid', 'Dowager_Queen', 'NEEN', 'model_Monika_Zsibrita', 'ROSIE_PEREZ', 'Mattock_Ranger', 'Valorous', 'Surpreme', 'Marwari_businessmen', 'Grandparents_aunts', 'Kimberley_Vlaeminck', 'Lyn_Treece_Boys', 'PDX_Update', 'Virsa_Punjab', 'eyelash_fluttering', 'Pi_fraternity', 'HUNTLEIGH_Mo.', 'novelist_Jilly_Cooper', 'Naha_Shuri_temple', 'Yasmine_Al_Massri', 'Mu_Gamma_Xi', 'Mica_Ertegun', 'Ocleppo', 'VIAGRA_CONTRAINDICATIONS', 'daughter_PEACHES', 'trainer_Geoff_Wragg', 'OVERNIGHT_DELIVERY', 'Fitts_retiree', 'de_Tourvel', 'Lil_Lad', 'north_easterner', 'Aol_Weird_News', 'Somewhat_improbably', 'Sikh_panth', 'Worcester_2m_7f', 'Zainab_Jah', 'OLYMPIC_medalist', 'Enoch_Petrucelly', 'collie_Lassie', 'LOW', 'clumsiness_Holloway', 'ayr', 'OHR', 'ROLLING_STONES_guitarist', 'LAH', '_nee', 'Ian_Beefy_Botham', 'Awapuni_trainer', 'Glamorous_Granny', 'Chiang_Ching', 'MidAtlantic_Cardiovascular_Associates', 'Yeke', 'Seaforth_Huron_Expositor', 'Westley_Cary_Elwes', 'Cate_Blanchett_Veronica_Guerin', 'Bellas_Gate', 'witch_Glinda', 'wives_mistresses', 'Woodsville_Walmart', '2YO_colt', 'Manav_Sushant_Singh', 'Pupi_Avati_Il', 'Sigma_Beta_Rho', 'Bishop_Christopher_Senyonjo', 'Vodou_priest', 'Rubel_Chowdhury', 'Claddagh_Ring', 'TAH', '_duh_al', 'al_Sadr_mook_TAH', 'ROBIN_GIBB', 'GAHN', 'BY_THOMAS_RANSON', 'sister_Carine_Jena', 'Lyphard_mare', 'summa_cum', 'Semenya_grandmother_Maputhi', 'Clare_Nuns', 'Talac', 'sex_hormones_androgens', 'majeste', 'Saint_Ballado_mare', 'Carrie_Huchel', 'Mae_Dok', 'wife_Dieula', 'Earnest_Sirls', 'spoof_bar_mitzvah', 'von_Boetticher', 'Audwin_Mosby', 'Case_presentationWe', 'Vincent_Papandrea', 'KRAY', 'Sergi_Benavent', 'Le_Poisson', 'Von_Cramm', 'Patti_Mell', 'Raymi_Coya', 'Benjamin_BeBe_Winans', 'Nana_Akosua', 'Auld_Acquaintance', 'Desire_Burunga', 'Company_Wrangler_Nestea', 'ask_Krisy_Plourde', 'JUANITA_BYNUM', 'livia', 'GAMB', 'Gail_Rosario_Dawson', 'Ramgarhia_Sikh', 'Catholic_nun_Sister', 'FOUR_WEDDINGS_AND', 'Robyn_Scherer', 'brother_King_Athelstan', 'Santo_Loquasto_Fences', 'Wee_Frees', 'MARISOL', 'Soliloquy_Stakes', 'Whatever_Spoetzl', 'Marc', 'Aurelio', 'mon_petit', 'Sabbar_al_Mashhadani', 'KAY', '_lee', 'm_zah_MAH', 'BY_TAMI_ALTHOFF', 'hobbit_Samwise_Gamgee', 'Bahiya_Hariri_sister', 'daddy_Larry_Birkhead', 'Sow_Tracey_Ullman', 'coach_Viljo_Nousiainen', 'Carmen_Lebbos', 'conjoined_twins_Zainab', 'Rob_Komosa', 'ample_bosomed', 'Ageing_rocker', 'psychic_Oda']",
"Source \/ Justification":null,
"Source Categories":null,
"Used in Paper":"Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016)",
"Link":"https:\/\/github.com\/tolga-b\/debiaswe",
"Seeds ID":"gender_specific-Bolukbasi_et_al_2016"
},
{
"Category":"gender specific seed",
"Seeds":"['actress', 'actresses', 'aunt', 'aunts', 'bachelor', 'ballerina', 'barbershop', 'baritone', 'beard', 'beards', 'beau', 'bloke', 'blokes', 'boy', 'boyfriend', 'boyfriends', 'boyhood', 'boys', 'brethren', 'bride', 'brides', 'brother', 'brotherhood', 'brothers', 'bull', 'bulls', 'businessman', 'businessmen', 'businesswoman', 'chairman', 'chairwoman', 'chap', 'colt', 'colts', 'congressman', 'congresswoman', 'convent', 'councilman', 'councilmen', 'councilwoman', 'countryman', 'countrymen', 'czar', 'dad', 'daddy', 'dads', 'daughter', 'daughters', 'deer', 'diva', 'dowry', 'dude', 'dudes', 'elder_brother', 'eldest_son', 'estranged_husband', 'estranged_wife', 'estrogen', 'ex_boyfriend', 'ex_girlfriend', 'father', 'fathered', 'fatherhood', 'fathers', 'fella', 'fellas', 'female', 'females', 'feminism', 'fiance', 'fiancee', 'fillies', 'filly', 'fraternal', 'fraternities', 'fraternity', 'gal', 'gals', 'gelding', 'gentleman', 'gentlemen', 'girl', 'girlfriend', 'girlfriends', 'girls', 'goddess', 'godfather', 'granddaughter', 'granddaughters', 'grandfather', 'grandma', 'grandmother', 'grandmothers', 'grandpa', 'grandson', 'grandsons', 'guy', 'handyman', 'he', 'heiress', 'hen', 'hens', 'her', 'heroine', 'hers', 'herself', 'him', 'himself', 'his', 'horsemen', 'hostess', 'housewife', 'housewives', 'hubby', 'husband', 'husbands', 'king', 'kings', 'lad', 'ladies', 'lads', 'lady', 'lesbian', 'lesbians', 'lion', 'lions', 'ma', 'macho', 'maid', 'maiden', 'maids', 'male', 'males', 'mama', 'man', 'mare', 'maternal', 'maternity', 'matriarch', 'men', 'menopause', 'mistress', 'mom', 'mommy', 'moms', 'monastery', 'monk', 'monks', 'mother', 'motherhood', 'mothers', 'nephew', 'nephews', 'niece', 'nieces', 'nun', 'nuns', 'obstetrics', 'ovarian_cancer', 'pa', 'paternity', 'penis', 'prince', 'princes', 'princess', 'prostate', 'prostate_cancer', 'queen', 'queens', 'salesman', 'salesmen', 'schoolboy', 'schoolgirl', 'semen', 'she', 'sir', 'sister', 'sisters', 'son', 'sons', 'sorority', 'sperm', 'spokesman', 'spokesmen', 'spokeswoman', 'stallion', 'statesman', 'stepdaughter', 'stepfather', 'stepmother', 'stepson', 'strongman', 'stud', 'studs', 'suitor', 'suitors', 'teenage_girl', 'teenage_girls', 'testosterone', 'twin_brother', 'twin_sister', 'uncle', 'uncles', 'uterus', 'vagina', 'viagra', 'waitress', 'widow', 'widower', 'widows', 'wife', 'witch', 'witches', 'wives', 'woman', 'womb', 'women', 'younger_brother']",
"Source \/ Justification":"words with \"male\" or \"female\" in their definition; manually removed words that weren't gender specific",
"Source Categories":null,
"Used in Paper":"Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016)",
"Link":"https:\/\/github.com\/tolga-b\/debiaswe",
"Seeds ID":"gender_specific_seed-Bolukbasi_et_al_2016"
},
{
"Category":"male",
"Seeds":"['he', 'his', 'son', 'father', 'male', 'boy', 'uncle']",
"Source \/ Justification":"For gender, we used vocabularies created by (Bolukbasi et al., 2016) and (Caliskan et al., 2017).",
"Source Categories":"prior-work",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"male-Manzini_et_al_2019"
},
{
"Category":"female",
"Seeds":"['she', 'hers', 'daughter', 'mother', 'female', 'girl', 'aunt']",
"Source \/ Justification":"For gender, we used vocabularies created by (Bolukbasi et al., 2016) and (Caliskan et al., 2017).",
"Source Categories":"prior-work",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"female-Manzini_et_al_2019"
},
{
"Category":"male roles",
"Seeds":"['manager', 'executive', 'doctor', 'lawyer', 'programmer', 'scientist', 'soldier', 'supervisor', 'rancher', 'janitor', 'firefighter', 'officer']",
"Source \/ Justification":"For gender, we used vocabularies created by (Bolukbasi et al., 2016) and (Caliskan et al., 2017).",
"Source Categories":"prior-work",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"male_roles-Manzini_et_al_2019"
},
{
"Category":"female roles",
"Seeds":"['secretary', 'nurse', 'clerk', 'artist', 'homemaker', 'dancer', 'singer', 'librarian', 'maid', 'hairdresser', 'stylist', 'receptionist', 'counselor']",
"Source \/ Justification":"For gender, we used vocabularies created by (Bolukbasi et al., 2016) and (Caliskan et al., 2017).",
"Source Categories":"prior-work",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"female_roles-Manzini_et_al_2019"
},
{
"Category":"gender test terms",
"Seeds":"['chair', 'house', 'supervisor', 'secretary', 'loud', 'weak']",
"Source \/ Justification":"For gender, we used vocabularies created by (Bolukbasi et al., 2016) and (Caliskan et al., 2017).",
"Source Categories":"prior-work",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"gender_test_terms-Manzini_et_al_2019"
},
{
"Category":"black",
"Seeds":"['black', 'african', 'black', 'africa', 'africa', 'africa']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"black-Manzini_et_al_2019"
},
{
"Category":"caucasian",
"Seeds":"['caucasian', 'caucasian', 'white', 'america', 'america', 'europe']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"caucasian-Manzini_et_al_2019"
},
{
"Category":"asian",
"Seeds":"['asian', 'asian', 'asian', 'asia', 'china', 'asia']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"asian-Manzini_et_al_2019"
},
{
"Category":"black roles",
"Seeds":"['slave', 'musician', 'runner', 'criminal', 'homeless']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"black_roles-Manzini_et_al_2019"
},
{
"Category":"caucasian roles",
"Seeds":"['manager', 'executive', 'redneck', 'hillbilly', 'leader', 'farmer']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"caucasian_roles-Manzini_et_al_2019"
},
{
"Category":"asian roles",
"Seeds":"['doctor', 'engineer', 'laborer', 'teacher']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"asian_roles-Manzini_et_al_2019"
},
{
"Category":"race test terms",
"Seeds":"['chair', 'house', 'smart', 'criminal', 'executive', 'farmer']",
"Source \/ Justification":"For race we consulted a number of different sources for each race: Caucasians (Chung-Herrera and Lankau, 2005; Goad, 1998); African Americans (Punyanunt-Carter, 2008; Brown Givens and Monahan, 2005; Chung-Herrera and Lankau, 2005; Hakanen, 1995; Welch, 2007; Kawai, 2005); and Asian Americans (Leong and Hayes, 1990; Lin et al., 2005; Chung-Herrera and Lankau, 2005; Osajima, 2005; Garg et al., 2018).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"race_test_terms-Manzini_et_al_2019"
},
{
"Category":"jew",
"Seeds":"['judaism', 'jew', 'synagogue', 'torah', 'rabbi']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"jew-Manzini_et_al_2019"
},
{
"Category":"christian",
"Seeds":"['christianity', 'christian', 'church', 'bible', 'priest']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"christian-Manzini_et_al_2019"
},
{
"Category":"muslim",
"Seeds":"['islam', 'muslim', 'mosque', 'quran', 'imam']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"muslim-Manzini_et_al_2019"
},
{
"Category":"jewish attributes",
"Seeds":"['greedy', 'cheap', 'hairy', 'liberal']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"jewish_attributes-Manzini_et_al_2019"
},
{
"Category":"christian attributes",
"Seeds":"['judgemental', 'conservative', 'familial']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"christian_attributes-Manzini_et_al_2019"
},
{
"Category":"muslim attributes",
"Seeds":"['violent', 'terrorist', 'dirty', 'uneducated']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"muslim_attributes-Manzini_et_al_2019"
},
{
"Category":"religion test terms",
"Seeds":"['chair', 'house', 'greedy', 'terrorist', 'dirty', 'greedy']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"religion_test_terms-Manzini_et_al_2019"
},
{
"Category":"religion specific terms",
"Seeds":"['synagogue', 'synagogues', 'altar', 'altars', 'parish', 'parishes', 'biblical', 'bishop', 'bishops', 'jihadist', 'clergy', 'bible', 'bibles', 'mosque', 'mosques', 'mullah', 'church', 'churches', 'sermon', 'sermons', 'papacy', 'imam', 'pew', 'chancel', 'pope', 'priest', 'priests', 'baptism', 'jihad', 'confessional', 'holy_eucharist', 'evangelical', 'jesus', 'burqa', 'vicar', 'vicars', 'judaism', 'christianity', 'islam', 'jew', 'christian', 'muslim', 'torah', 'quran', 'rabbi']",
"Source \/ Justification":"For religion we used the following sources and labels: Christians (Rios et al., 2015; Zuckerman, 2009; Unnever et al., 2005); Jews (Dundes, 1971; Fetzer, 2000); and Muslims (Shry-ock, 2010; Alsultany, 2012; Shaheen, 1997).",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings (Manzini et al., 2019)",
"Link":"https:\/\/github.com\/TManzini\/DebiasMulticlassWordEmbedding",
"Seeds ID":"religion_specific_terms-Manzini_et_al_2019"
},
{
"Category":"adjectives appearance",
"Seeds":"['alluring', 'voluptuous', 'blushing', 'homely', 'plump', 'sensual', 'gorgeous', 'slim', 'bald', 'athletic', 'fashionable', 'stout', 'ugly', 'muscular', 'slender', 'feeble', 'handsome', 'healthy', 'attractive', 'fat', 'weak', 'thin', 'pretty', 'beautiful', 'strong']",
"Source \/ Justification":"\"mostly from\" http:\/\/usefulenglish.ru\/vocabulary\/appearance-and-character, http:\/\/www.\nsightwordsgame.com\/parts-of-speech\/adjectives\/appearance\/, http:\/\/www.stgeorges.co.uk\/blog\/\nphysical-appearance-adjectives-the-bald-and-the-beautiful",
"Source Categories":"other",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"adjectives_appearance-Garg_et_al_2018"
},
{
"Category":"adjectives intelligence",
"Seeds":"['precocious', 'resourceful', 'inquisitive', 'sagacious', 'inventive', 'astute', 'adaptable', 'reflective', 'discerning', 'intuitive', 'inquiring', 'judicious', 'analytical', 'luminous', 'venerable', 'imaginative', 'shrewd', 'thoughtful', 'sage', 'smart', 'ingenious', 'clever', 'brilliant', 'logical', 'intelligent', 'apt', 'genius', 'wise']",
"Source \/ Justification":"mostly from https:\/\/www.e-education.psu.edu\/writingrecommendationlettersonline\/node\/151, https:\/\/www.macmillandictionary.com\/us\/thesaurus-category\/american\/words-used-to-describe-intelligent-or-wise-people",
"Source Categories":"other",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"adjectives_intelligence-Garg_et_al_2018"
},
{
"Category":"adjectives otherization",
"Seeds":"['devious', 'bizarre', 'venomous', 'erratic', 'barbaric', 'frightening', 'deceitful', 'forceful', 'deceptive', 'envious', 'greedy', 'hateful', 'contemptible', 'brutal', 'monstrous', 'calculating', 'cruel', 'intolerant', 'aggressive', 'monstrous']",
"Source \/ Justification":"part of a list mostly from Gunkel (1987) (personality traits original)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"adjectives_otherization-Garg_et_al_2018"
},
{
"Category":"adjectives princeton",
"Seeds":"['brilliant', 'intelligent', 'honest', 'alert', 'imaginative', 'artistic', 'industrious', 'kind', 'faithful', 'sportsmanlike', 'efficient', 'courteous', 'generous', 'ambitious', 'witty', 'individualistic', 'sensitive', 'progressive', 'straightforward', 'jovial', 'musical', 'neat', 'persistent', 'practical', 'scientific', 'sophisticated', 'meditative', 'loyal', 'pleasureloving', 'suave', 'happy-go-lucky', 'passionate', 'sensual', 'stolid', 'gregarious', 'traditional', 'methodical', 'religious', 'quiet', 'aggressive', 'shrewd', 'reserved', 'nationalistic', 'conservative', 'talkative', 'impulsive', 'ponderous', 'conventional', 'materialistic', 'radical', 'argumentative', 'frivolous', 'suggestible', 'sly', 'stubborn', 'imitative', 'naive', 'pugnacious', 'suspicious', 'evasive', 'loud', 'superstitious', 'mercenary', 'ostentatious', 'quicktempered', 'humorless', 'grasping', 'boastful', 'quarrelsome', 'gluttonous', 'slovenly', 'revengeful', 'arrogant', 'ignorant', 'dirty', 'conceited', 'stupid', 'cowardly', 'unreliable', 'treacherous', 'rude', 'deceitful', 'cruel']",
"Source \/ Justification":"part of a list mostly from Gunkel (1987) (personality traits original)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"adjectives_princeton-Garg_et_al_2018"
},
{
"Category":"adjectives sensitive",
"Seeds":"['inhibited', 'complacent', 'sensitive', 'mellow', 'solemn', 'studious', 'intelligent', 'brilliant', 'rational', 'serious', 'contemplative', 'cowardly', 'timid', 'shy', 'passive', 'delicate', 'gentle', 'soft', 'quiet', 'working']",
"Source \/ Justification":"part of a list mostly from Gunkel (1987) (personality traits original)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"adjectives_sensitive-Garg_et_al_2018"
},
{
"Category":"adjectives williams best",
"Seeds":"['headstrong', 'thankless', 'tactful', 'distrustful', 'quarrelsome', 'effeminate', 'fickle', 'talkative', 'dependable', 'resentful', 'sarcastic', 'unassuming', 'changeable', 'resourceful', 'persevering', 'forgiving', 'assertive', 'individualistic', 'vindictive', 'sophisticated', 'deceitful', 'impulsive', 'sociable', 'methodical', 'idealistic', 'thrifty', 'outgoing', 'intolerant', 'autocratic', 'conceited', 'inventive', 'dreamy', 'appreciative', 'forgetful', 'forceful', 'submissive', 'pessimistic', 'versatile', 'adaptable', 'reflective', 'inhibited', 'outspoken', 'quitting', 'unselfish', 'immature', 'painstaking', 'leisurely', 'infantile', 'sly', 'praising', 'cynical', 'irresponsible', 'arrogant', 'obliging', 'unkind', 'wary', 'greedy', 'obnoxious', 'irritable', 'discreet', 'frivolous', 'cowardly', 'rebellious', 'adventurous', 'enterprising', 'unscrupulous', 'poised', 'moody', 'unfriendly', 'optimistic', 'disorderly', 'peaceable', 'considerate', 'humorous', 'worrying', 'preoccupied', 'trusting', 'mischievous', 'robust', 'superstitious', 'noisy', 'tolerant', 'realistic', 'masculine', 'witty', 'informal', 'prejudiced', 'reckless', 'jolly', 'courageous', 'meek', 'stubborn', 'aloof', 'sentimental', 'complaining', 'unaffected', 'cooperative', 'unstable', 'feminine', 'timid', 'retiring', 'relaxed', 'imaginative', 'shrewd', 'conscientious', 'industrious', 'hasty', 'commonplace', 'lazy', 'gloomy', 'thoughtful', 'dignified', 'wholesome', 'affectionate', 'aggressive', 'awkward', 'energetic', 'tough', 'shy', 'queer', 'careless', 'restless', 'cautious', 'polished', 'tense', 'suspicious', 'dissatisfied', 'ingenious', 'fearful', 'daring', 'persistent', 'demanding', 'impatient', 'contented', 'selfish', 'rude', 'spontaneous', 'conventional', 'cheerful', 'enthusiastic', 'modest', 'ambitious', 'alert', 'defensive', 'mature', 'coarse', 'charming', 'clever', 'shallow', 'deliberate', 'stern', 'emotional', 'rigid', 'mild', 'cruel', 'artistic', 'hurried', 'sympathetic', 'dull', 'civilized', 'loyal', 'withdrawn', 'confident', 'indifferent', 'conservative', 'foolish', 'moderate', 'handsome', 'helpful', 'gentle', 'dominant', 'hostile', 'generous', 'reliable', 'sincere', 'precise', 'calm', 'healthy', 'attractive', 'progressive', 'confused', 'rational', 'stable', 'bitter', 'sensitive', 'initiative', 'loud', 'thorough', 'logical', 'intelligent', 'steady', 'formal', 'complicated', 'cool', 'curious', 'reserved', 'silent', 'honest', 'quick', 'friendly', 'efficient', 'pleasant', 'severe', 'peculiar', 'quiet', 'weak', 'anxious', 'nervous', 'warm', 'slow', 'dependent', 'wise', 'organized', 'affected', 'reasonable', 'capable', 'active', 'independent', 'patient', 'practical', 'serious', 'understanding', 'cold', 'responsible', 'simple', 'original', 'strong', 'determined', 'natural', 'kind']",
"Source \/ Justification":"Williams and Best (1977), Williams and Best (1990)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"adjectives_williams_best-Garg_et_al_2018"
},
{
"Category":"female pairs",
"Seeds":"['she', 'daughter', 'hers', 'her', 'mother', 'woman', 'girl', 'herself', 'female', 'sister', 'daughters', 'mothers', 'women', 'girls', 'females', 'sisters', 'aunt', 'aunts', 'niece', 'nieces']",
"Source \/ Justification":"\"noun and pronoun pairs\"",
"Source Categories":"curated",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"female_pairs-Garg_et_al_2018"
},
{
"Category":"male pairs",
"Seeds":"['he', 'son', 'his', 'him', 'father', 'man', 'boy', 'himself', 'male', 'brother', 'sons', 'fathers', 'men', 'boys', 'males', 'brothers', 'uncle', 'uncles', 'nephew', 'nephews']",
"Source \/ Justification":"\"noun and pronoun pairs\"",
"Source Categories":"curated",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"male_pairs-Garg_et_al_2018"
},
{
"Category":"names asian",
"Seeds":"['cho', 'wong', 'tang', 'huang', 'chu', 'chung', 'ng', 'wu', 'liu', 'chen', 'lin', 'yang', 'kim', 'chang', 'shah', 'wang', 'li', 'khan', 'singh', 'hong']",
"Source \/ Justification":"Starting with a breakdown of ethnicity by last name compiled by Chalabi and Flowers (2014) we identify 20 last names for each Whites, Asians, and Hispanics as follows: 1) Start with list of top 50 last names by percent of that ethnicity, conditioned on being top 5000 surnames overall, as well as the top 50 last names by total number in that ethnicity (i.e., multiplied count of that last name by percent in that ethnicity). 2) Choose the 20 names that appeared most on average in the Google Books\/COHA vectors over time (with a minimum number for each time period). This second step ensures that an accurate ethnicity vector is identified each time period, with minimal distortions. Russian last names are collated from various sources online.",
"Source Categories":"corpus-derived, population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"names_asian-Garg_et_al_2018"
},
{
"Category":"names black",
"Seeds":"['harris', 'robinson', 'howard', 'thompson', 'moore', 'wright', 'anderson', 'clark', 'jackson', 'taylor', 'scott', 'davis', 'allen', 'adams', 'lewis', 'williams', 'jones', 'wilson', 'martin', 'johnson']",
"Source \/ Justification":"Starting with a breakdown of ethnicity by last name compiled by Chalabi and Flowers (2014) we identify 20 last names for each Whites, Asians, and Hispanics as follows: 1) Start with list of top 50 last names by percent of that ethnicity, conditioned on being top 5000 surnames overall, as well as the top 50 last names by total number in that ethnicity (i.e., multiplied count of that last name by percent in that ethnicity). 2) Choose the 20 names that appeared most on average in the Google Books\/COHA vectors over time (with a minimum number for each time period). This second step ensures that an accurate ethnicity vector is identified each time period, with minimal distortions. Russian last names are collated from various sources online.",
"Source Categories":"corpus-derived, population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"names_black-Garg_et_al_2018"
},
{
"Category":"names chinese",
"Seeds":"['chung', 'liu', 'wong', 'huang', 'ng', 'hu', 'chu', 'chen', 'lin', 'liang', 'wang', 'wu', 'yang', 'tang', 'chang', 'hong', 'li']",
"Source \/ Justification":"Starting with a breakdown of ethnicity by last name compiled by Chalabi and Flowers (2014) we identify 20 last names for each Whites, Asians, and Hispanics as follows: 1) Start with list of top 50 last names by percent of that ethnicity, conditioned on being top 5000 surnames overall, as well as the top 50 last names by total number in that ethnicity (i.e., multiplied count of that last name by percent in that ethnicity). 2) Choose the 20 names that appeared most on average in the Google Books\/COHA vectors over time (with a minimum number for each time period). This second step ensures that an accurate ethnicity vector is identified each time period, with minimal distortions. Russian last names are collated from various sources online.",
"Source Categories":"corpus-derived, population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"names_chinese-Garg_et_al_2018"
},
{
"Category":"names hispanic",
"Seeds":"['ruiz', 'alvarez', 'vargas', 'castillo', 'gomez', 'soto', 'gonzalez', 'sanchez', 'rivera', 'mendoza', 'martinez', 'torres', 'rodriguez', 'perez', 'lopez', 'medina', 'diaz', 'garcia', 'castro', 'cruz']",
"Source \/ Justification":"Starting with a breakdown of ethnicity by last name compiled by Chalabi and Flowers (2014) we identify 20 last names for each Whites, Asians, and Hispanics as follows: 1) Start with list of top 50 last names by percent of that ethnicity, conditioned on being top 5000 surnames overall, as well as the top 50 last names by total number in that ethnicity (i.e., multiplied count of that last name by percent in that ethnicity). 2) Choose the 20 names that appeared most on average in the Google Books\/COHA vectors over time (with a minimum number for each time period). This second step ensures that an accurate ethnicity vector is identified each time period, with minimal distortions. Russian last names are collated from various sources online.",
"Source Categories":"corpus-derived, population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"names_hispanic-Garg_et_al_2018"
},
{
"Category":"names russian",
"Seeds":"['gurin', 'minsky', 'sokolov', 'markov', 'maslow', 'novikoff', 'mishkin', 'smirnov', 'orloff', 'ivanov', 'sokoloff', 'davidoff', 'savin', 'romanoff', 'babinski', 'sorokin', 'levin', 'pavlov', 'rodin', 'agin']",
"Source \/ Justification":"Starting with a breakdown of ethnicity by last name compiled by Chalabi and Flowers (2014) we identify 20 last names for each Whites, Asians, and Hispanics as follows: 1) Start with list of top 50 last names by percent of that ethnicity, conditioned on being top 5000 surnames overall, as well as the top 50 last names by total number in that ethnicity (i.e., multiplied count of that last name by percent in that ethnicity). 2) Choose the 20 names that appeared most on average in the Google Books\/COHA vectors over time (with a minimum number for each time period). This second step ensures that an accurate ethnicity vector is identified each time period, with minimal distortions. Russian last names are collated from various sources online.",
"Source Categories":"corpus-derived, population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"names_russian-Garg_et_al_2018"
},
{
"Category":"names white",
"Seeds":"['harris', 'nelson', 'robinson', 'thompson', 'moore', 'wright', 'anderson', 'clark', 'jackson', 'taylor', 'scott', 'davis', 'allen', 'adams', 'lewis', 'williams', 'jones', 'wilson', 'martin', 'johnson']",
"Source \/ Justification":"Starting with a breakdown of ethnicity by last name compiled by Chalabi and Flowers (2014) we identify 20 last names for each Whites, Asians, and Hispanics as follows: 1) Start with list of top 50 last names by percent of that ethnicity, conditioned on being top 5000 surnames overall, as well as the top 50 last names by total number in that ethnicity (i.e., multiplied count of that last name by percent in that ethnicity). 2) Choose the 20 names that appeared most on average in the Google Books\/COHA vectors over time (with a minimum number for each time period). This second step ensures that an accurate ethnicity vector is identified each time period, with minimal distortions. Russian last names are collated from various sources online.",
"Source Categories":"corpus-derived, population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"names_white-Garg_et_al_2018"
},
{
"Category":"occupations",
"Seeds":"['janitor', 'statistician', 'midwife', 'bailiff', 'auctioneer', 'photographer', 'geologist', 'shoemaker', 'athlete', 'cashier', 'dancer', 'housekeeper', 'accountant', 'physicist', 'gardener', 'dentist', 'weaver', 'blacksmith', 'psychologist', 'supervisor', 'mathematician', 'surveyor', 'tailor', 'designer', 'economist', 'mechanic', 'laborer', 'postmaster', 'broker', 'chemist', 'librarian', 'attendant', 'clerical', 'musician', 'porter', 'scientist', 'carpenter', 'sailor', 'instructor', 'sheriff', 'pilot', 'inspector', 'mason', 'baker', 'administrator', 'architect', 'collector', 'operator', 'surgeon', 'driver', 'painter', 'conductor', 'nurse', 'cook', 'engineer', 'retired', 'sales', 'lawyer', 'clergy', 'physician', 'farmer', 'clerk', 'manager', 'guard', 'artist', 'smith', 'official', 'police', 'doctor', 'professor', 'student', 'judge', 'teacher', 'author', 'secretary', 'soldier']",
"Source \/ Justification":"\"We use occupation words for which we have gen-der and ethnic subgroup information over time. Group occupation percent-ages are obtained from the Integrated Public Use Microdata Series (IPUMS),part of the University of Minnesota Historical Census Project (29). Data cod-ing and preprocessing are done as described in ref. 44, which studies wagedynamics as women enter certain occupations over time. The IPUMS datasetincludes a column, OCC1950, coding occupation census data as it would havebeen coded in 1950, allowing accurate interyear analysis. We then hand mapthe occupations from this column to single-word occupations (e.g., chemi-cal engineer and electrical engineer both become engineer, and chemist iscounted as both chemist and scientist) and hand code a subset of the occu-pations as professional.\"",
"Source Categories":"population-derived",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"occuptations_1950_professional-Garg_et_al_2018"
},
{
"Category":"occupations professional",
"Seeds":"['statistician', 'auctioneer', 'photographer', 'geologist', 'accountant', 'physicist', 'dentist', 'psychologist', 'supervisor', 'mathematician', 'designer', 'economist', 'postmaster', 'broker', 'chemist', 'librarian', 'scientist', 'instructor', 'pilot', 'administrator', 'architect', 'surgeon', 'nurse', 'engineer', 'lawyer', 'physician', 'manager', 'official', 'doctor', 'professor', 'student', 'judge', 'teacher', 'author']",
"Source \/ Justification":"hand selected by authors from the overall list of occupations",
"Source Categories":"curated",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"occupations_1950-Garg_et_al_2018"
},
{
"Category":"occupations mechanical turk",
"Seeds":"['instructor', 'geologist', 'secretary', 'clerk', 'painter', 'housekeeper', 'chemist', 'artist', 'baker', 'psychologist', 'lawyer', 'teacher', 'collector', 'surveyor', 'accountant', 'sailor', 'laborer', 'physician', 'student', 'soldier', 'manager', 'administrator', 'musician', 'doctor', 'dentist', 'professor', 'photographer', 'surgeon', 'inspector', 'janitor', 'nurse', 'author', 'conductor', 'economist', 'physicist', 'scientist', 'architect', 'mechanic', 'judge', 'gardener', 'farmer', 'librarian', 'carpenter', 'mathematician', 'dancer', 'broker', 'athlete']",
"Source \/ Justification":"Bolukbasi et al. (2016)",
"Source Categories":"prior-work",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"occupations_mechanical_turk-Garg_et_al_2018"
},
{
"Category":"personality traits original",
"Seeds":"['disorganized', 'devious', 'impressionable', 'circumspect', 'impassive', 'aimless', 'effeminate', 'unfathomable', 'fickle', 'unprincipled', 'inoffensive', 'reactive', 'providential', 'resentful', 'bizarre', 'impractical', 'sarcastic', 'misguided', 'imitative', 'pedantic', 'venomous', 'erratic', 'insecure', 'resourceful', 'neurotic', 'forgiving', 'profligate', 'whimsical', 'assertive', 'incorruptible', 'individualistic', 'faithless', 'disconcerting', 'barbaric', 'hypnotic', 'vindictive', 'observant', 'dissolute', 'frightening', 'complacent', 'boisterous', 'pretentious', 'disobedient', 'tasteless', 'sedentary', 'sophisticated', 'regimental', 'mellow', 'deceitful', 'impulsive', 'playful', 'sociable', 'methodical', 'willful', 'idealistic', 'boyish', 'callous', 'pompous', 'unchanging', 'crafty', 'punctual', 'compassionate', 'intolerant', 'challenging', 'scornful', 'possessive', 'conceited', 'imprudent', 'dutiful', 'lovable', 'disloyal', 'dreamy', 'appreciative', 'forgetful', 'unrestrained', 'forceful', 'submissive', 'predatory', 'fanatical', 'illogical', 'tidy', 'aspiring', 'studious', 'adaptable', 'conciliatory', 'artful', 'thoughtless', 'deceptive', 'frugal', 'reflective', 'insulting', 'unreliable', 'stoic', 'hysterical', 'rustic', 'inhibited', 'outspoken', 'unhealthy', 'ascetic', 'skeptical', 'painstaking', 'contemplative', 'leisurely', 'sly', 'mannered', 'outrageous', 'lyrical', 'placid', 'cynical', 'irresponsible', 'vulnerable', 'arrogant', 'persuasive', 'perverse', 'steadfast', 'crisp', 'envious', 'naive', 'greedy', 'presumptuous', 'obnoxious', 'irritable', 'dishonest', 'discreet', 'sporting', 'hateful', 'ungrateful', 'frivolous', 'reactionary', 'skillful', 'cowardly', 'sordid', 'adventurous', 'dogmatic', 'intuitive', 'bland', 'indulgent', 'discontented', 'dominating', 'articulate', 'fanciful', 'discouraging', 'treacherous', 'repressed', 'moody', 'sensual', 'unfriendly', 'optimistic', 'clumsy', 'contemptible', 'focused', 'haughty', 'morbid', 'disorderly', 'considerate', 'humorous', 'preoccupied', 'airy', 'impersonal', 'cultured', 'trusting', 'respectful', 'scrupulous', 'scholarly', 'superstitious', 'tolerant', 'realistic', 'malicious', 'irrational', 'sane', 'colorless', 'masculine', 'witty', 'inert', 'prejudiced', 'fraudulent', 'blunt', 'childish', 'brittle', 'disciplined', 'responsive', 'courageous', 'bewildered', 'courteous', 'stubborn', 'aloof', 'sentimental', 'athletic', 'extravagant', 'brutal', 'manly', 'cooperative', 'unstable', 'youthful', 'timid', 'amiable', 'retiring', 'fiery', 'confidential', 'relaxed', 'imaginative', 'mystical', 'shrewd', 'conscientious', 'monstrous', 'grim', 'questioning', 'lazy', 'dynamic', 'gloomy', 'troublesome', 'abrupt', 'eloquent', 'dignified', 'hearty', 'gallant', 'benevolent', 'maternal', 'paternal', 'patriotic', 'aggressive', 'competitive', 'elegant', 'flexible', 'gracious', 'energetic', 'tough', 'contradictory', 'shy', 'careless', 'cautious', 'polished', 'sage', 'tense', 'caring', 'suspicious', 'sober', 'neat', 'transparent', 'disturbing', 'passionate', 'obedient', 'crazy', 'restrained', 'fearful', 'daring', 'prudent', 'demanding', 'impatient', 'cerebral', 'calculating', 'amusing', 'honorable', 'casual', 'sharing', 'selfish', 'ruined', 'spontaneous', 'admirable', 'conventional', 'cheerful', 'solitary', 'upright', 'stiff', 'enthusiastic', 'petty', 'dirty', 'subjective', 'heroic', 'stupid', 'modest', 'impressive', 'orderly', 'ambitious', 'protective', 'silly', 'alert', 'destructive', 'exciting', 'crude', 'ridiculous', 'subtle', 'mature', 'creative', 'coarse', 'passive', 'oppressed', 'accessible', 'charming', 'clever', 'decent', 'miserable', 'superficial', 'shallow', 'stern', 'winning', 'balanced', 'emotional', 'rigid', 'invisible', 'desperate', 'cruel', 'romantic', 'agreeable', 'hurried', 'sympathetic', 'solemn', 'systematic', 'vague', 'peaceful', 'humble', 'dull', 'expedient', 'loyal', 'decisive', 'arbitrary', 'earnest', 'confident', 'conservative', 'foolish', 'moderate', 'helpful', 'delicate', 'gentle', 'dedicated', 'hostile', 'generous', 'reliable', 'dramatic', 'precise', 'calm', 'healthy', 'attractive', 'artificial', 'progressive', 'odd', 'confused', 'rational', 'brilliant', 'intense', 'genuine', 'mistaken', 'driving', 'stable', 'objective', 'sensitive', 'neutral', 'strict', 'angry', 'profound', 'smooth', 'ignorant', 'thorough', 'logical', 'intelligent', 'extraordinary', 'experimental', 'steady', 'formal', 'faithful', 'curious', 'reserved', 'honest', 'busy', 'educated', 'liberal', 'friendly', 'efficient', 'sweet', 'surprising', 'mechanical', 'clean', 'critical', 'criminal', 'soft', 'proud', 'quiet', 'weak', 'anxious', 'solid', 'complex', 'grand', 'warm', 'slow', 'false', 'extreme', 'narrow', 'dependent', 'wise', 'organized', 'pure', 'directed', 'dry', 'obvious', 'popular', 'capable', 'secure', 'active', 'independent', 'ordinary', 'fixed', 'practical', 'serious', 'fair', 'understanding', 'constant', 'cold', 'responsible', 'deep', 'religious', 'private', 'simple', 'physical', 'original', 'working', 'strong', 'modern', 'determined', 'open', 'political', 'difficult', 'knowledge', 'kind']",
"Source \/ Justification":"mostly from Gunkel (1987)",
"Source Categories":"borrowed-from-social-sciences",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"personality_traits_original-Garg_et_al_2018"
},
{
"Category":"christianity",
"Seeds":"['baptism', 'messiah', 'catholicism', 'resurrection', 'christianity', 'salvation', 'protestant', 'gospel', 'trinity', 'jesus', 'christ', 'christian', 'cross', 'catholic', 'church']",
"Source \/ Justification":null,
"Source Categories":"unknown",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"christianity-Garg_et_al_2018"
},
{
"Category":"islam",
"Seeds":"['allah', 'ramadan', 'turban', 'emir', 'salaam', 'sunni', 'koran', 'imam', 'sultan', 'prophet', 'veil', 'ayatollah', 'shiite', 'mosque', 'islam', 'sheik', 'muslim', 'muhammad']",
"Source \/ Justification":null,
"Source Categories":"unknown",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"islam-Garg_et_al_2018"
},
{
"Category":"terrorism",
"Seeds":"['terror', 'terrorism', 'violence', 'attack', 'death', 'military', 'war', 'radical', 'injuries', 'bomb', 'target', 'conflict', 'dangerous', 'kill', 'murder', 'strike', 'dead', 'violence', 'fight', 'death', 'force', 'stronghold', 'wreckage', 'aggression', 'slaughter', 'execute', 'overthrow', 'casualties', 'massacre', 'retaliation', 'proliferation', 'militia', 'hostility', 'debris', 'acid', 'execution', 'militant', 'rocket', 'guerrilla', 'sacrifice', 'enemy', 'soldier', 'terrorist', 'missile', 'hostile', 'revolution', 'resistance', 'shoot']",
"Source \/ Justification":null,
"Source Categories":"unknown",
"Used in Paper":"Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes (Garg et al., 2018)",
"Link":"https:\/\/github.com\/nikhgarg\/EmbeddingDynamicStereotypes",
"Seeds ID":"terrorism-Garg_et_al_2018"
},
{
"Category":"occupations",
"Seeds":"['banker', 'carpenter', 'doctor', 'engineer', 'hairdresser', 'journalist', 'lawyer', 'nanny', 'nurse', 'plumber', 'scientist']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"occupations-Kozlowski_et_al_2019"
},
{
"Category":"clothing",
"Seeds":"['blouse', 'briefcase', 'dress', 'necklace', 'pants', 'shirt', 'shorts', 'socks', 'suit', 'tuxedo']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"clothing-Kozlowski_et_al_2019"
},
{
"Category":"sports",
"Seeds":"['baseball', 'basketball', 'boxing', 'golf', 'hockey', 'soccer', 'softball', 'tennis', 'volleyball']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"sports-Kozlowski_et_al_2019"
},
{
"Category":"music genres",
"Seeds":"['bluegrass', 'hiphop', 'jazz', 'opera', 'punk', 'rap', 'techno']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"music_genres-Kozlowski_et_al_2019"
},
{
"Category":"vehicles",
"Seeds":"['bicycle', 'limousine', 'minivan', 'motorcycle', 'skateboard', 'suv', 'truck']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"vehicles-Kozlowski_et_al_2019"
},
{
"Category":"food",
"Seeds":"['beer', 'cheesecake', 'hamburger', 'pastry', 'salad', 'steak']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"food-Kozlowski_et_al_2019"
},
{
"Category":"first names",
"Seeds":"['Aaliyah', 'Amy', 'Connor', 'Jake', 'Jamal', 'Molly', 'Shanice']",
"Source \/ Justification":"In the survey, respondents were asked to rate a number of items on scales representing association along gender, race, and class lines. All questions followed the format, \u201cOn a scale from 0 to 100, with 0 representing \u200bvery feminine\u200b and 100 representing \u200bvery masculine\u200b, how would you rate a \u200bsteak\u200b?\u201d For measuring race and class associations, the survey posed similarly worded questions, replacing \u201cfeminine\u201d and \u201cmasculine\u201d with \u201cWhite\u201d and \u201cAfrican American,\u201d or \u201cworking class\u201d and \u201cupper class\u201d respectively. Respondents were asked to place 59 different items on each of the three dimensions of race, class, and gender. A full list of items asked on the survey is available in the appendix (Table A1). Words were selected in seven topical domains: occupations, foods, clothing, vehicles, music genres, sports, and first names. A diverse array of topical domains were chosen to test the capacity of word embedding models to detect cultural associations across very different subjects. Specific terms were selected within each topical domain to ensure high variance across dimensions\u200b. We calculate the weighted mean of 7 responses for each item and use these means as our estimates of a general cultural association. The end product is thus a rating between 0 and 100 on a gender dimension, a class dimension,and a race dimension for each of the 59 words listed in Table A1.",
"Source Categories":"crowd-sourced, curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"first_names-Kozlowski_et_al_2019"
},
{
"Category":"male",
"Seeds":"['man', 'men', 'he', 'him', 'his', 'his', 'boy', 'boys', 'male', 'masculine']",
"Source \/ Justification":"We select word pairs such that the difference between each word in a pair is a \u201cstep\u201d along the dimension of interest. For example, the difference between \u200brichest\u200b and \u200bpoorest\u200b is a step along the class dimension, and should be a similar in direction to the difference between \u200baffluence \u200band \u200bpoverty\u200b. The lists presented in Table 1 are not exhaustive; other pairs of words could be added or substituted for the pairs we have included. Averaging between six and ten pairs of words for each dimension, as we have done here, produces a closer approximation to the cultural dimension of interest than any one word-pair, as they post higher correlations with the survey.",
"Source Categories":"curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"male-Kozlowski_et_al_2019"
},
{
"Category":"female",
"Seeds":"['woman', 'women', 'she', 'her', 'her', 'hers', 'girl', 'girls', 'female', 'feminine']",
"Source \/ Justification":"We select word pairs such that the difference between each word in a pair is a \u201cstep\u201d along the dimension of interest. For example, the difference between \u200brichest\u200b and \u200bpoorest\u200b is a step along the class dimension, and should be a similar in direction to the difference between \u200baffluence \u200band \u200bpoverty\u200b. The lists presented in Table 1 are not exhaustive; other pairs of words could be added or substituted for the pairs we have included. Averaging between six and ten pairs of words for each dimension, as we have done here, produces a closer approximation to the cultural dimension of interest than any one word-pair, as they post higher correlations with the survey.",
"Source Categories":"curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"female-Kozlowski_et_al_2019"
},
{
"Category":"upperclass",
"Seeds":"['rich', 'richer', 'richest', 'affluence', 'affluent', 'expensive', 'luxury', 'opulent']",
"Source \/ Justification":"We select word pairs such that the difference between each word in a pair is a \u201cstep\u201d along the dimension of interest. For example, the difference between \u200brichest\u200b and \u200bpoorest\u200b is a step along the class dimension, and should be a similar in direction to the difference between \u200baffluence \u200band \u200bpoverty\u200b. The lists presented in Table 1 are not exhaustive; other pairs of words could be added or substituted for the pairs we have included. Averaging between six and ten pairs of words for each dimension, as we have done here, produces a closer approximation to the cultural dimension of interest than any one word-pair, as they post higher correlations with the survey.",
"Source Categories":"curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"upperclass-Kozlowski_et_al_2019"
},
{
"Category":"lowerclass",
"Seeds":"['poor', 'poorer', 'poorest', 'poverty', 'impoverished', 'inexpensive', 'cheap', 'needy']",
"Source \/ Justification":"We select word pairs such that the difference between each word in a pair is a \u201cstep\u201d along the dimension of interest. For example, the difference between \u200brichest\u200b and \u200bpoorest\u200b is a step along the class dimension, and should be a similar in direction to the difference between \u200baffluence \u200band \u200bpoverty\u200b. The lists presented in Table 1 are not exhaustive; other pairs of words could be added or substituted for the pairs we have included. Averaging between six and ten pairs of words for each dimension, as we have done here, produces a closer approximation to the cultural dimension of interest than any one word-pair, as they post higher correlations with the survey.",
"Source Categories":"curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"lowerclass-Kozlowski_et_al_2019"
},
{
"Category":"black",
"Seeds":"['black', 'blacks', 'Blacks', 'Black', 'African', 'African']",
"Source \/ Justification":"We select word pairs such that the difference between each word in a pair is a \u201cstep\u201d along the dimension of interest. For example, the difference between \u200brichest\u200b and \u200bpoorest\u200b is a step along the class dimension, and should be a similar in direction to the difference between \u200baffluence \u200band \u200bpoverty\u200b. The lists presented in Table 1 are not exhaustive; other pairs of words could be added or substituted for the pairs we have included. Averaging between six and ten pairs of words for each dimension, as we have done here, produces a closer approximation to the cultural dimension of interest than any one word-pair, as they post higher correlations with the survey.",
"Source Categories":"curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"black-Kozlowski_et_al_2019"
},
{
"Category":"white",
"Seeds":"['white', 'whites', 'Whites', 'White', 'European', 'Caucasian']",
"Source \/ Justification":"We select word pairs such that the difference between each word in a pair is a \u201cstep\u201d along the dimension of interest. For example, the difference between \u200brichest\u200b and \u200bpoorest\u200b is a step along the class dimension, and should be a similar in direction to the difference between \u200baffluence \u200band \u200bpoverty\u200b. The lists presented in Table 1 are not exhaustive; other pairs of words could be added or substituted for the pairs we have included. Averaging between six and ten pairs of words for each dimension, as we have done here, produces a closer approximation to the cultural dimension of interest than any one word-pair, as they post higher correlations with the survey.",
"Source Categories":"curated",
"Used in Paper":"The Geometry of Culture: Analyzing Meaning through Word Embeddings (Kozlowski et al., 2019)",
"Link":null,
"Seeds ID":"white-Kozlowski_et_al_2019"
},
{
"Category":"female names",
"Seeds":"['Amy', 'Joan', 'Lisa', 'Sarah', 'Diana', 'Kate', 'Ann', 'Donna']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"female_names-Gonen_&_Goldberg_2019"
},
{
"Category":"male names",
"Seeds":"['John', 'Paul', 'Mike', 'Kevin', 'Steve', 'Greg', 'Jeff', 'Bill']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"male_names-Gonen_&_Goldberg_2019"
},
{
"Category":"family words",
"Seeds":"['home', 'parents', 'children', 'family', 'cousins', 'marriage', 'wedding', 'relatives']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"family_words-Gonen_&_Goldberg_2019"
},
{
"Category":"career words",
"Seeds":"['executive', 'management', 'professional', 'corpo-', 'ration', 'salary', 'office', 'business', 'career']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"career_words-Gonen_&_Goldberg_2019"
},
{
"Category":"arts words",
"Seeds":"['poetry', 'art', 'dance', 'literature', 'novel', 'symphony', 'drama', 'sculpture']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"arts_words-Gonen_&_Goldberg_2019"
},
{
"Category":"math words",
"Seeds":"['math', 'algebra', 'geometry', 'calculus', 'equations', 'computation', 'numbers', 'addition']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"math_words-Gonen_&_Goldberg_2019"
},
{
"Category":"arts words 2",
"Seeds":"['poetry', 'art', 'Shakespeare', 'dance', 'literature', 'novel', 'symphony', 'drama']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"arts_words_2-Gonen_&_Goldberg_2019"
},
{
"Category":"science words",
"Seeds":"['science', 'technology', 'physics', 'chemistry', 'Einstein', 'NASA', 'experiment', 'astronomy']",
"Source \/ Justification":"All word lists are taken from Caliskan et al. (2017)",
"Source Categories":"prior-work",
"Used in Paper":"Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them (Gonen & Goldberg, 2019)",
"Link":null,
"Seeds ID":"science_words-Gonen_&_Goldberg_2019"
},
{
"Category":"sentiment lexicon",
"Seeds":"[]",
"Source \/ Justification":"We use a labeled positive\/negative sentiment training set (Hu and Liu, 2004). This dataset has been shown to be a trustworthy lexicon for negative and positive sentiment words (Panget al., 2008; Liu, 2012; Wilson et al., 2005). We trust these labels to be unbiased so that we may isolate the unintended biases entering our system to the word embeddings. ",
"Source Categories":"lexical-resources",
"Used in Paper":"A Transparent Framework for Evaluating Unintended Demographic Bias in Word Embeddings (Sweeney & Najafian, 2019)",
"Link":null,
"Seeds ID":"sentiment_lexicon-Sweeney_&_Najafian_2019"
},
{
"Category":"neutral identity terms",
"Seeds":"[]",
"Source \/ Justification":"Demographic identity word vectors from a particular protected group (i.e. national origin, religion, etc.). We choose our set of neutral identity terms based on the most populous demographics for each protected group.\n\nWe evaluate our framework and metric on two cases studies: National Origin Discrimination and Religious Discrimination. For each case study, we create a set of the most frequent identity terms from the protected groups in the Wikipedia word corpus and analyze bias with respect to these terms via our framework.\n\nswedish, irish, mexican, chinese, filipino, german, english, french, norwegian, american, indian, dutch, russian, scottish, italian",
"Source Categories":"corpus-derived",
"Used in Paper":"A Transparent Framework for Evaluating Unintended Demographic Bias in Word Embeddings (Sweeney & Najafian, 2019)",
"Link":null,
"Seeds ID":"neutral_identity_terms-Sweeney_&_Najafian_2019"
},
{
"Category":"female definition words 1",
"Seeds":"['countrywoman', 'sororal', 'witches', 'maidservant', 'mothers', 'diva', 'actress', 'spinster', 'mama', 'duchesses', 'barwoman', 'countrywomen', 'dowry', 'hostesses', 'airwomen', 'menopause', 'clitoris', 'princess', 'governesses', 'abbess', 'women', 'widow', 'ladies', 'sorceresses', 'madam', 'brides', 'baroness', 'housewives', 'godesses', 'niece', 'widows', 'lady', 'sister', 'brides', 'nun', 'adultresses', 'obstetrics', 'bellgirls', 'her', 'marchioness', 'princesses', 'empresses', 'mare', 'chairwoman', 'convent', 'priestesses', 'girlhood', 'ladies', 'queen', 'gals', 'mommies', 'maid', 'female_ejaculation', 'spokeswoman', 'seamstress', 'cowgirls', 'chick', 'spinsters', 'hair_salon', 'empress', 'mommy', 'feminism', 'gals', 'enchantress', 'gal', 'motherhood', 'estrogen', 'camerawomen', 'godmother', 'strongwoman', 'goddess', 'matriarch', 'aunt', 'chairwomen', 'ma\\'am', 'sisterhood', 'hostess', 'estradiol', 'wife', 'mom', 'stewardess', 'females', 'viagra', 'spokeswomen', 'ma', 'belle', 'minx', 'maiden', 'witch', 'miss', 'nieces', 'mothered', 'cow', 'belles', 'councilwomen', 'landladies', 'granddaughter', 'fiancees', 'stepmothers', 'horsewomen', 'grandmothers', 'adultress', 'schoolgirl', 'hen', 'granddaughters', 'bachelorette', 'camerawoman', 'moms', 'her', 'mistress', 'lass', 'policewoman', 'nun', 'actresses', 'saleswomen', 'girlfriend', 'councilwoman', 'lady', 'stateswoman', 'maternal', 'lass', 'landlady', 'sistren', 'ladies', 'wenches', 'sorority', 'bellgirl', 'duchess', 'ballerina', 'chicks', 'fiancee', 'fillies', 'wives', 'suitress', 'maternity', 'she', 'businesswoman', 'masseuses', 'heroine', 'doe', 'busgirls', 'girlfriends', 'queens', 'sisters', 'mistresses', 'stepmother', 'brides', 'daughter', 'minxes', 'cowgirl', 'lady', 'daughters', 'mezzo', 'saleswoman', 'mistress', 'hostess', 'nuns', 'maids', 'mrs.', 'headmistresses', 'lasses', 'congresswoman', 'airwoman', 'housewife', 'priestess', 'barwomen', 'barnoesses', 'abbesses', 'handywoman', 'toque', 'sororities', 'stewardesses', 'filly', 'czarina', 'stepdaughters', 'herself', 'girls', 'lionesses', 'lady', 'vagina', 'hers', 'masseuse', 'cows', 'aunts', 'wench', 'toques', 'wife', 'lioness', 'sorceress', 'effeminate', 'mother', 'lesbians', 'female', 'waitresses', 'ovum', 'skene_gland', 'stepdaughter', 'womb', 'businesswomen', 'heiress', 'waitress', 'headmistress', 'woman', 'governess', 'godess', 'bride', 'grandma', 'bride', 'gal', 'lesbian', 'ladies', 'girl', 'grandmother', 'mare', 'maternity', 'hens', 'uterus', 'nuns', 'maidservants', 'seamstress', 'busgirl', 'heroines']",
"Source \/ Justification":"\"We categorize all the vocabulary words into three sub-sets: male-definition\u2126M, female-definition\u2126F, and gender-neutral\u2126N, based on their definition in WordNet (Miller and Fellbaum, 1998).",
"Source Categories":"corpus-derived",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"female_definition_words_1-Zhao_et_al_2018"
},
{
"Category":"male definition words 1",
"Seeds":"['countryman', 'fraternal', 'wizards', 'manservant', 'fathers', 'divo', 'actor', 'bachelor', 'papa', 'dukes', 'barman', 'countrymen', 'brideprice', 'hosts', 'airmen', 'andropause', 'penis', 'prince', 'governors', 'abbot', 'men', 'widower', 'gentlemen', 'sorcerers', 'sir', 'bridegrooms', 'baron', 'househusbands', 'gods', 'nephew', 'widowers', 'lord', 'brother', 'grooms', 'priest', 'adultors', 'andrology', 'bellboys', 'his', 'marquis', 'princes', 'emperors', 'stallion', 'chairman', 'monastery', 'priests', 'boyhood', 'fellas', 'king', 'dudes', 'daddies', 'manservant', 'semen', 'spokesman', 'tailor', 'cowboys', 'dude', 'bachelors', 'barbershop', 'emperor', 'daddy', 'masculism', 'guys', 'enchanter', 'guy', 'fatherhood', 'androgen', 'cameramen', 'godfather', 'strongman', 'god', 'patriarch', 'uncle', 'chairmen', 'sir', 'brotherhood', 'host', 'testosterone', 'husband', 'dad', 'steward', 'males', 'cialis', 'spokesmen', 'pa', 'beau', 'stud', 'bachelor', 'wizard', 'sir', 'nephews', 'fathered', 'bull', 'beaus', 'councilmen', 'landlords', 'grandson', 'fiances', 'stepfathers', 'horsemen', 'grandfathers', 'adultor', 'schoolboy', 'rooster', 'grandsons', 'bachelor', 'cameraman', 'dads', 'him', 'master', 'lad', 'policeman', 'monk', 'actors', 'salesmen', 'boyfriend', 'councilman', 'fella', 'statesman', 'paternal', 'chap', 'landlord', 'brethren', 'lords', 'blokes', 'fraternity', 'bellboy', 'duke', 'ballet_dancer', 'dudes', 'fiance', 'colts', 'husbands', 'suitor', 'paternity', 'he', 'businessman', 'masseurs', 'hero', 'deer', 'busboys', 'boyfriends', 'kings', 'brothers', 'masters', 'stepfather', 'grooms', 'son', 'studs', 'cowboy', 'mentleman', 'sons', 'baritone', 'salesman', 'paramour', 'male_host', 'monks', 'menservants', 'mr.', 'headmasters', 'lads', 'congressman', 'airman', 'househusband', 'priest', 'barmen', 'barons', 'abbots', 'handyman', 'beard', 'fraternities', 'stewards', 'colt', 'czar', 'stepsons', 'himself', 'boys', 'lions', 'gentleman', 'penis', 'his', 'masseur', 'bulls', 'uncles', 'bloke', 'beards', 'hubby', 'lion', 'sorcerer', 'macho', 'father', 'gays', 'male', 'waiters', 'sperm', 'prostate', 'stepson', 'prostatic_utricle', 'businessmen', 'heir', 'waiter', 'headmaster', 'man', 'governor', 'god', 'bridegroom', 'grandpa', 'groom', 'dude', 'gay', 'gents', 'boy', 'grandfather', 'gelding', 'paternity', 'roosters', 'prostatic_utricle', 'priests', 'manservants', 'stailor', 'busboy', 'heros']",
"Source \/ Justification":"\"We categorize all the vocabulary words into three sub-sets: male-definition\u2126M, female-definition\u2126F, and gender-neutral\u2126N, based on their definition in WordNet (Miller and Fellbaum, 1998).",
"Source Categories":"corpus-derived",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"male_definition_words_1-Zhao_et_al_2018"
},
{
"Category":"professions",
"Seeds":"[]",
"Source \/ Justification":"Bolukbasi et al. (2016)",
"Source Categories":"prior-work",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"professions-Zhao_et_al_2018"
},
{
"Category":"male definition words 2",
"Seeds":"['rake', 'wizard', 'policeman', 'host', 'councilman', 'actor', 'waiter', 'businessman', 'fiance', 'spokesman', 'salesman', 'widower', 'horseman', 'governor', 'statesman', 'hero', 'chairman', 'headmaster', 'priest', 'gentleman', 'countrymen', 'nobleman']",
"Source \/ Justification":"To study the quality of the gender information present in each model, we follow SemEval 2012 Task2 (Jurgens et al., 2012) to create an analogy dataset, SemBias, with the goal to identify the correct analogy of \u201che-she\u201d from four pairs of words. Each instance in the dataset consists of four word pairs: a gender-definition word pair (Definition; e.g., \u201cwaiter-waitress\u201d), a gender-stereotype word pair (Stereotype; e.g., \u201cdoctor-nurse\u201d) and two other pairs of words that have similar meanings (None; e.g.,\u201cdog-cat\u201d, \u201ccup-lid\u201d) (The pair is sampled from the list of word pairs with \u201cSIMILAR: Coordinates\u201d relation annotated in (Jurgens et al., 2012). The original list has 38 pairs. After removing gender-definition word pairs, 29 are left.). We consider 20 gender-stereotype word pairs and 22 gender-definition word pairs and use their Cartesian product to generate 440 instances. Among the 22 gender-definition word pairs, there are 2 word pairs that are not used as a seed word during the training. To test the generalization ability of the model, we generate a subset of data (SemBias (subset)) of 40 instances associated with these 2 pairs.",
"Source Categories":"lexical-resources",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"male_definition_words_2-Zhao_et_al_2018"
},
{
"Category":"female definition words 2",
"Seeds":"['lady', 'saleswoman', 'noblewoman', 'hostess', 'coquette', 'nun', 'heroine', 'actress', 'chairwoman', 'businesswoman', 'spokeswoman', 'waitress', 'councilwoman', 'stateswoman', 'policewoman', 'countrywomen', 'horsewoman', 'headmistress', 'governess', 'widow', 'witch', 'fiancee']",
"Source \/ Justification":"To study the quality of the gender information present in each model, we follow SemEval 2012 Task2 (Jurgens et al., 2012) to create an analogy dataset, SemBias, with the goal to identify the correct analogy of \u201che-she\u201d from four pairs of words. Each instance in the dataset consists of four word pairs: a gender-definition word pair (Definition; e.g., \u201cwaiter-waitress\u201d), a gender-stereotype word pair (Stereotype; e.g., \u201cdoctor-nurse\u201d) and two other pairs of words that have similar meanings (None; e.g.,\u201cdog-cat\u201d, \u201ccup-lid\u201d) (The pair is sampled from the list of word pairs with \u201cSIMILAR: Coordinates\u201d relation annotated in (Jurgens et al., 2012). The original list has 38 pairs. After removing gender-definition word pairs, 29 are left.). We consider 20 gender-stereotype word pairs and 22 gender-definition word pairs and use their Cartesian product to generate 440 instances. Among the 22 gender-definition word pairs, there are 2 word pairs that are not used as a seed word during the training. To test the generalization ability of the model, we generate a subset of data (SemBias (subset)) of 40 instances associated with these 2 pairs.",
"Source Categories":"lexical-resources",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"female_definition_words_2-Zhao_et_al_2018"
},
{
"Category":"male stereotype words",
"Seeds":"['researcher', 'lawyer', 'developer', 'architect', 'dentist', 'doctor', 'boss', 'chef', 'programmer', 'president', 'pilot', 'guard', 'warrior', 'judge', 'janitor', 'captain', 'engineer', 'dispatcher', 'leader', 'manager']",
"Source \/ Justification":"To study the quality of the gender information present in each model, we follow SemEval 2012 Task2 (Jurgens et al., 2012) to create an analogy dataset, SemBias, with the goal to identify the correct analogy of \u201che-she\u201d from four pairs of words. Each instance in the dataset consists of four word pairs: a gender-definition word pair (Definition; e.g., \u201cwaiter-waitress\u201d), a gender-stereotype word pair (Stereotype; e.g., \u201cdoctor-nurse\u201d) and two other pairs of words that have similar meanings (None; e.g.,\u201cdog-cat\u201d, \u201ccup-lid\u201d) (The pair is sampled from the list of word pairs with \u201cSIMILAR: Coordinates\u201d relation annotated in (Jurgens et al., 2012). The original list has 38 pairs. After removing gender-definition word pairs, 29 are left.). We consider 20 gender-stereotype word pairs and 22 gender-definition word pairs and use their Cartesian product to generate 440 instances. Among the 22 gender-definition word pairs, there are 2 word pairs that are not used as a seed word during the training. To test the generalization ability of the model, we generate a subset of data (SemBias (subset)) of 40 instances associated with these 2 pairs.",
"Source Categories":"lexical-resources",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"male_stereotype_words-Zhao_et_al_2018"
},
{
"Category":"female stereotype words",
"Seeds":"['baker', 'counselor', 'nanny', 'librarians', 'socialite', 'assistant', 'tailor', 'dancer', 'hairdresser', 'cashier', 'secretary', 'clerk', 'stenographer', 'optometrist', 'housekeeper', 'bookkeeper', 'homemaker', 'nurse', 'stylist', 'receptionist']",
"Source \/ Justification":"To study the quality of the gender information present in each model, we follow SemEval 2012 Task2 (Jurgens et al., 2012) to create an analogy dataset, SemBias, with the goal to identify the correct analogy of \u201che-she\u201d from four pairs of words. Each instance in the dataset consists of four word pairs: a gender-definition word pair (Definition; e.g., \u201cwaiter-waitress\u201d), a gender-stereotype word pair (Stereotype; e.g., \u201cdoctor-nurse\u201d) and two other pairs of words that have similar meanings (None; e.g.,\u201cdog-cat\u201d, \u201ccup-lid\u201d) (The pair is sampled from the list of word pairs with \u201cSIMILAR: Coordinates\u201d relation annotated in (Jurgens et al., 2012). The original list has 38 pairs. After removing gender-definition word pairs, 29 are left.). We consider 20 gender-stereotype word pairs and 22 gender-definition word pairs and use their Cartesian product to generate 440 instances. Among the 22 gender-definition word pairs, there are 2 word pairs that are not used as a seed word during the training. To test the generalization ability of the model, we generate a subset of data (SemBias (subset)) of 40 instances associated with these 2 pairs.",
"Source Categories":"lexical-resources",
"Used in Paper":"Learning gender-neutral word embeddings (Zhao et al., 2018)",
"Link":"https:\/\/github.com\/uclanlp\/gn_glove",
"Seeds ID":"female_stereotype_words-Zhao_et_al_2018"
},