-
Notifications
You must be signed in to change notification settings - Fork 0
/
recommendations.py
162 lines (136 loc) · 4.16 KB
/
recommendations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# A dictionary of movie critics and their ratings of a small
# set of movies
critics = {
'Lisa Rose': {
'Lady in the Water': 2.5,
'Snakes on a Plane': 3.5,
'Just My Luck': 3.0,
'Superman Returns': 3.5,
'You, Me and Dupree': 2.5,
'The Night Listener': 3.0
},
'Gene Seymour': {
'Lady in the Water': 3.0,
'Snakes on a Plane': 3.5,
'Just My Luck': 1.5,
'Superman Returns': 5.0,
'The Night Listener': 3.0,
'You, Me and Dupree': 3.5
},
'Michael Philips': {
'Lady in the Water': 2.5,
'Snakes on a Plane': 3.0,
'Superman Returns': 3.5,
'The Night Listener': 4.0
},
'Claudia Puig': {
'Snakes on a Plane': 3.5,
'Just My Luck': 3.0,
'The Night Listener': 4.5,
'Superman Returns': 4.0,
'You, Me and Dupree': 2.0
},
'Mick LaSalle': {
'Lady in the Water': 3.0,
'Snakes on a Plane': 4.0,
'Just My Luck': 2.0,
'Superman Returns': 3.0,
'The Night Listener': 3.0,
'You, Me and Dupree': 2.0
},
'Jack Matthews': {
'Lady in the Water': 3.0,
'Snakes on a Plane': 4.0,
'The Night Listener': 3.0,
'Superman Returns': 5.0,
'You, Me and Dupree': 3.5
},
'Toby': {
'Snakes on a Plane': 4.5,
'You, Me and Dupree': 1.0,
'Superman Returns': 4.0
}
}
from math import sqrt
# Returns a distance-based (Euclidean distance) similarity score for person1 and person2
# Note that this similarity score does not account for consistent grande inflation
# If one person tends to give higher grades than the other, even though both people
# might have similar tastes, their distance will be higher. Still, depending on the
# application, this might be what is expected
def sim_distance(prefs,person1,person2):
# Get the list of shared_items
si = {}
for item in prefs[person1]:
if item in prefs[person2]:
si[item]=1
# if they have no ratins in common, return 0
if len(si)==0: return 0
# Add up the squares of all the differences
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) for item in si])
return 1/(1+sqrt(sum_of_squares))
def sim_pearson(prefs,p1,p2):
# Get the list of mutually rated shared_items
si={}
for item in prefs[p1]:
if item in prefs[p2]: si[item]=1
# Find the number of elements
n=len(si)
# if they have no ratings in common, return 0
if n==0: return 0
# Add up all the preferences
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
# Sum up the squares
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
# Sum up the products
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
# Calculate Pearson score
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0
r=num/den
return r
# For more similarity metrics, http://en.wikipedia.org/wiki/Metric_%28mathematics%29#Examples
# Returns the best matches for person from the prefs dictionary
# Number of results and similarity function are optional params.
def topMatches(prefs,person,n=5,similarity=sim_pearson):
scores=[(similarity(prefs,person,other),other) for other in prefs if other!=person]
# Sort the list so the highest scores appear at the top
scores.sort()
scores.reverse()
return scores[0:n]
# Gets recommendations for a person by using a weighted average
# of every other user's rankings
def getRecommendations(prefs,person,similarity=sim_pearson):
totals={}
simSums={}
for other in prefs:
# don't compare me to myself
if other==person: continue
sim=similarity(prefs,person,other)
# ignore scores of 0 or lower
if sim<=0: continue
for item in prefs[other]:
# only score movies I haven't seen yet
if item not in prefs[person] or prefs[person][item]==0:
# Similarity * Score
totals.setdefault(item,0)
totals[item]+=prefs[other][item]*sim
# Sum of similarities
simSums.setdefault(item,0)
simSums[item]+=sim
# Create the normalized list
rankings=[(total/simSums[item],item) for item,total in totals.items()]
# Return the sorted list
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})
# Flip item and person
result[item][person]=prefs[person][item]
return result