Skip to content

Latest commit

 

History

History
409 lines (339 loc) · 20.9 KB

README.md

File metadata and controls

409 lines (339 loc) · 20.9 KB

Computer Pointer Controller

Computer Pointer Controller in an application that enables automatic control of computer pointer with use of human eye gaze direction. Application supports following inputs:

  1. Image file,
  2. Video file,
  3. Camera video stream.

alt text

Project Set Up and Installation

Project is based on Intel OpenVINO 2020.2 toolkit so make sure it is installed before moving on.

Project installation procedure is following:

$ git clone https://github.com/marcin-sielski/computer-pointer-controller.git
$ cd computer-pointer-controller
$ ./install.sh

Project removal procedure is following:

Note: Make sure to exit virtual environment before moving on.

$ ./uninstall.sh

Demo

In order to execute the demo make sure the project is properly installed and the commands are executed in virtual environment.

Note: Enter the virtual environment by executing:

$ cd src
$ pipenv shell

Project supports number of bash scripts that simplifies execution of the demo:

  • ./control_pointer_with_camera.sh - executes demo with video input from the camera stream,
  • ./control_pointer_with_image.sh - executes demo with input from image file,
  • ./control_pointer_with_video.sh - executes demo with input from video file.

Documentation

Computer Pointer Controller supports number of parameters that enables:

  • support of various input sources,
  • benchmarking,
  • extended logging,
  • debugging,
  • enhancing inference performance.
$ python3 computer_pointer_controller.py --help
usage: computer_pointer_controller.py [-h] -i INPUT [-o OUTPUT] [-d DEVICE]
                                      [-g [DEBUG]] [-p [PROFILER]]
                                      [-q [PRECISION]] [-l [LOGLEVEL]]
                                      [-s [SILENT]]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        select input path to the image or video file or
                        specify camera pipeline
  -o OUTPUT, --output OUTPUT
                        specify the file where to store image generated by -g
                        1234
  -d DEVICE, --device DEVICE
                        specify the target device for selected model to infer
                        on to get performance gain: CPU, GPU, FPGA or MYRIAD
                        (CPU by default). Most of the models must be run on
                        CPU anyway
  -g [DEBUG], --debug [DEBUG]
                        enable debug mode for specified models (1 by default):
                        1 - face detection (mandatory), 2 - head pose
                        estimation (optional), 3 - facial landmarks detection
                        (optional), 4 - gaze estimation (optional)
  -p [PROFILER], --profiler [PROFILER]
                        enable profiler (False by default)
  -q [PRECISION], --precision [PRECISION]
                        force to use selected precision for some models
                        (FP32-INT8 by default): FP16 - half precision floating
                        point format, FP32 - single precision floating point
                        format, FP32-INT8 - 8-bit precision integer format.
  -l [LOGLEVEL], --loglevel [LOGLEVEL]
                        enable log level (INFO by default): NOTSET, DEBUG,
                        INFO, WARNING, ERROR, CRITICAL
  -s [SILENT], --silent [SILENT]
                        enable silent mode (False by default)

Benchmarks

The benchmark tests were executed on the system equipped with:

  • Intel(R) Core(TM) i5-3360M CPU @ 2.80GHz
  • 16 GB of RAM,
  • Intel Neural Compute Stick 2 attached over USB 2.0 port.

The goal of following benchmark tests is to find out the best parameters that leads to the shortest inference time for the single loop step.

  1. Benchmark with use of default parameters (reference)

    $ ./control_pointer_with_image.sh -p
    Press 'esc' to exit
    Total loading time of the models: 0.45763206481933594 s
    Average inference time: 0.08859419822692871 s
    Frames per second: 11.287420847114166
    Timer unit: 1e-06 s
    
    Total time: 0.787844 s
    File: computer_pointer_controller.py
    Function: run at line 226
    
    Line #      Hits         Time  Per Hit   % Time  Line Contents
    ==============================================================
    ...
      246                                           # ----- Models Load ------------------------------------------------------------
      247         1     197870.0 197870.0     25.1          faceDetection = ModelFaceDetection()
      248         1      64283.0  64283.0      8.2          facialLanmarksDetection = ModelFacialLandmarksDetection(precision=args.precision)
      249         1      89098.0  89098.0     11.3          headPoseEstimation = ModelHeadPoseEstimation(device=args.device, precision=args.precision)
      250         1     106334.0 106334.0     13.5          gazeEstimation = ModelGazeEstimation(precision=args.precision)
      251                                           # ------------------------------------------------------------------------------
    ...
      269                                           # ----- Inference --------------------------------------------------------------
      270         1      11780.0  11780.0      1.5              faceDetection.inputs(frame) # GFlops 0.611
      271         1      55724.0  55724.0      7.1              faceDetection.wait()
      272         1       1752.0   1752.0      0.2              outputs = faceDetection.outputs()
      273         1          5.0      5.0      0.0              if len(outputs) == 0:
      274                                                           logging.warning('No face detected')
      275                                                           continue
      276         1          2.0      2.0      0.0              if len(outputs) > 1:
      277                                                           logging.warning('More then one face detected')
      278         1          4.0      4.0      0.0              if outputs[0].shape[0] == 0 or outputs[0].shape[1] == 0 or \
      279         1          3.0      3.0      0.0                  outputs[0].shape[2] < 3:
      280                                                           logging.warning('Image too small')
      281                                                           continue
      282
      283         1       1458.0   1458.0      0.2              headPoseEstimation.inputs(outputs[0]) # GFlops 0.105
      284         1       1107.0   1107.0      0.1              facialLanmarksDetection.inputs(outputs[0]) # GFlops 0.021
      285
      286         1       4500.0   4500.0      0.6              facialLanmarksDetection.wait()
      287         1       2065.0   2065.0      0.3              outputs = facialLanmarksDetection.outputs()
      288         1          5.0      5.0      0.0              if outputs[0].shape[0] == 0 or outputs[0].shape[1] == 0 or \
      289         1          3.0      3.0      0.0                  outputs[0].shape[2] < 3 or outputs[1].shape[0] == 0 or \
      290         1          3.0      3.0      0.0                  outputs[1].shape[1] == 0 or outputs[1].shape[2] < 3:
      291                                                           logging.warning('Image too small')
      292                                                           continue
      293         1         40.0     40.0      0.0              headPoseEstimation.wait()
      294         1       1234.0   1234.0      0.2              outputs.append(headPoseEstimation.outputs())
      295
      296         1        650.0    650.0      0.1              gazeEstimation.inputs(outputs) # GFlops 0.139
      297         1       7402.0   7402.0      0.9              gazeEstimation.wait()
      298         1        758.0    758.0      0.1              outputs = gazeEstimation.outputs()
      299                                           # ------------------------------------------------------------------------------
    ...
    
  2. Benchmark with use of FP32-INT8 precision for selected models executed on CPU:

    $ ./control_pointer_with_image.sh -p -q FP32-INT8
    Press 'esc' to exit
    Total loading time of the models: 0.4643588066101074 s
    Average inference time: 0.08828258514404297 s
    Frames per second: 11.327262317572458
    Timer unit: 1e-06 s
    
    Total time: 0.846542 s
    File: computer_pointer_controller.py
    Function: run at line 226
    
    Line #      Hits         Time  Per Hit   % Time  Line Contents
    ==============================================================
    ...
       246                                           # ----- Models Load ------------------------------------------------------------
       247         1     197218.0 197218.0     23.3          faceDetection = ModelFaceDetection()
       248         1      67762.0  67762.0      8.0          facialLanmarksDetection = ModelFacialLandmarksDetection(precision=args.precision)
       249         1      88921.0  88921.0     10.5          headPoseEstimation = ModelHeadPoseEstimation(device=args.device, precision=args.precision)
       250         1     110412.0 110412.0     13.0          gazeEstimation = ModelGazeEstimation(precision=args.precision)
       251                                           # ------------------------------------------------------------------------------
    ...
       269                                           # ----- Inference --------------------------------------------------------------
       270         1      11255.0  11255.0      1.3              faceDetection.inputs(frame) # GFlops 0.611
       271         1      54881.0  54881.0      6.5              faceDetection.wait()
       272         1       1670.0   1670.0      0.2              outputs = faceDetection.outputs()
       273         1          3.0      3.0      0.0              if len(outputs) == 0:
       274                                                           logging.warning('No face detected')
       275                                                           continue
       276         1          2.0      2.0      0.0              if len(outputs) > 1:
       277                                                           logging.warning('More then one face detected')
       278         1          4.0      4.0      0.0              if outputs[0].shape[0] == 0 or outputs[0].shape[1] == 0 or \
       279         1          3.0      3.0      0.0                  outputs[0].shape[2] < 3:
       280                                                           logging.warning('Image too small')
       281                                                           continue
       282
       283         1       1485.0   1485.0      0.2              headPoseEstimation.inputs(outputs[0]) # GFlops 0.105
       284         1       1099.0   1099.0      0.1              facialLanmarksDetection.inputs(outputs[0]) # GFlops 0.021
       285
       286         1       5333.0   5333.0      0.6              facialLanmarksDetection.wait()
       287         1       1930.0   1930.0      0.2              outputs = facialLanmarksDetection.outputs()
       288         1          5.0      5.0      0.0              if outputs[0].shape[0] == 0 or outputs[0].shape[1] == 0 or \
       289         1          4.0      4.0      0.0                  outputs[0].shape[2] < 3 or outputs[1].shape[0] == 0 or \
       290         1          3.0      3.0      0.0                  outputs[1].shape[1] == 0 or outputs[1].shape[2] < 3:
       291                                                           logging.warning('Image too small')
       292                                                           continue
       293         1        673.0    673.0      0.1              headPoseEstimation.wait()
       294         1       1409.0   1409.0      0.2              outputs.append(headPoseEstimation.outputs())
       295
       296         1        697.0    697.0      0.1              gazeEstimation.inputs(outputs) # GFlops 0.139
       297         1       6675.0   6675.0      0.8              gazeEstimation.wait()
       298         1       1046.0   1046.0      0.1              outputs = gazeEstimation.outputs()
       299                                           # ------------------------------------------------------------------------------
    ...
    
  3. Benchmark with use of FP32-INT8 precision for selected models executed on CPU and one model offloaded to VPU device:

    $ ./control_pointer_with_image.sh -p -q FP32-INT8 -d MYRIAD
    Press 'esc' to exit
    2020-05-17 14:42:04,321 WARNING: Unsupported layers found: ['data', 'angle_y_fc/flatten_fc_input/Cast_14125_const', 'angle_r_fc/flatten_fc_input/Cast_14127_const', 'angle_p_fc/flatten_fc_input/Cast_14129_const']
    Total loading time of the models: 2.0119919776916504 s
    Average inference time: 0.08335280418395996 s
    Frames per second: 11.997196852465768
    Timer unit: 1e-06 s
    
    Total time: 2.36192 s
    File: computer_pointer_controller.py
    Function: run at line 226
    
    Line #      Hits         Time  Per Hit   % Time  Line Contents
    ==============================================================
    ...
       246                                           # ----- Models Load ------------------------------------------------------------
       247         1     202421.0 202421.0      8.6          faceDetection = ModelFaceDetection()
       248         1      75371.0  75371.0      3.2          facialLanmarksDetection = ModelFacialLandmarksDetection(precision=args.precision)
       249         1    1629757.0 1629757.0     69.0          headPoseEstimation = ModelHeadPoseEstimation(device=args.device, precision=args.precision)
       250         1     104400.0 104400.0      4.4          gazeEstimation = ModelGazeEstimation(precision=args.precision)
       251                                           # ------------------------------------------------------------------------------
    ...
       269                                           # ----- Inference --------------------------------------------------------------
       270         1       9310.0   9310.0      0.4              faceDetection.inputs(frame) # GFlops 0.611
       271         1      56626.0  56626.0      2.4              faceDetection.wait()
       272         1       1148.0   1148.0      0.0              outputs = faceDetection.outputs()
       273         1          2.0      2.0      0.0              if len(outputs) == 0:
       274                                                           logging.warning('No face detected')
       275                                                           continue
       276         1          1.0      1.0      0.0              if len(outputs) > 1:
       277                                                           logging.warning('More then one face detected')
       278         1          3.0      3.0      0.0              if outputs[0].shape[0] == 0 or outputs[0].shape[1] == 0 or \
       279         1          1.0      1.0      0.0                  outputs[0].shape[2] < 3:
       280                                                           logging.warning('Image too small')
       281                                                           continue
       282
       283         1        986.0    986.0      0.0              headPoseEstimation.inputs(outputs[0]) # GFlops 0.105
       284         1       1675.0   1675.0      0.1              facialLanmarksDetection.inputs(outputs[0]) # GFlops 0.021
       285
       286         1        940.0    940.0      0.0              facialLanmarksDetection.wait()
       287         1       2159.0   2159.0      0.1              outputs = facialLanmarksDetection.outputs()
       288         1          7.0      7.0      0.0              if outputs[0].shape[0] == 0 or outputs[0].shape[1] == 0 or \
       289         1          5.0      5.0      0.0                  outputs[0].shape[2] < 3 or outputs[1].shape[0] == 0 or \
       290         1          4.0      4.0      0.0                  outputs[1].shape[1] == 0 or outputs[1].shape[2] < 3:
       291                                                           logging.warning('Image too small')
       292                                                           continue
       293         1         45.0     45.0      0.0              headPoseEstimation.wait()
       294         1       1279.0   1279.0      0.1              outputs.append(headPoseEstimation.outputs())
       295
       296         1        665.0    665.0      0.0              gazeEstimation.inputs(outputs) # GFlops 0.139
       297         1       7250.0   7250.0      0.3              gazeEstimation.wait()
       298         1       1129.0   1129.0      0.0              outputs = gazeEstimation.outputs()
       299                                           # ------------------------------------------------------------------------------
    ...
    

Results

The expectation is that 3rd benchmark should show the best inference time and the worst loading time when comparing to 1st and 2nd. Loading of the model on GPU or VPU takes additional time but is done only once. 2nd benchmark should improve inference time over 1st benchmark because quantized models were used scarifying slightly precision of computer pointer controller application. The intuition seems to match the obtained result.

  1. Results for the first benchmark:

    Total loading time of the models: 0.45763206481933594 s
    Average inference time: 0.08859419822692871 s
    Frames per second: 11.287420847114166
    
  2. Results for the second benchmark:

    Total loading time of the models: 0.4643588066101074 s
    Average inference time: 0.08828258514404297 s
    Frames per second: 11.327262317572458
    
  3. Results for the third benchmark:

    Total loading time of the models: 2.0119919776916504 s
    Average inference time: 0.08335280418395996 s
    Frames per second: 11.997196852465768
    

Let's run the benchmark tests on the video file to confirm the intuition.

  1. Benchmark with use of default parameters (reference)

    $ ./control_pointer_with_video.sh
    Press 'esc' to exit
    Total loading time of the models: 0.46290087699890137 s
    Average inference time: 0.0772402354649135 s
    Frames per second: 12.946620294215073
    
  2. Benchmark with use of FP32-INT8 precision for selected models executed on CPU:

    $ ./control_pointer_with_video.sh -q FP32-INT8
    Press 'esc' to exit
    Total loading time of the models: 0.4582047462463379 s
    Average inference time: 0.07712689888577501 s
    Frames per second: 12.965645117937397
    
  3. Benchmark with use of FP32-INT8 precision for selected models executed on CPU and one model offloaded to VPU device:

    $ ./control_pointer_with_video.sh -q FP32-INT8 -d MYRIAD
    Press 'esc' to exit
    2020-05-17 15:06:26,007 WARNING: Unsupported layers found: ['data', 'angle_y_fc/flatten_fc_input/Cast_14125_const', 'angle_r_fc/flatten_fc_input/Cast_14127_const', 'angle_p_fc/flatten_fc_input/Cast_14129_const']
    Total loading time of the models: 2.01004958152771 s
    Average inference time: 0.07390734087519285 s
    Frames per second: 13.530455678126717
    

Benchmarks executed on video file confirms the intuition. It is puzzling that there is only negligible difference between 1st and 2nd benchmark results. Most likely it is due to the fact that benchmarks were executed on 3rd generation of Intel processor not officially supported by OpenVINO.

Stand Out Suggestions

Async Inference

Project uses two techniques to improve performance of the inference and mouse movement:

  1. First technique requires to find models that can run inference in parallel. As indicated in the Benchmarks section head pose estimation and facial landmarks detection models inference can be run in parallel because their inputs and outputs do not rely on each other. Head pose asynchronous inference was run as the first because the model is ~5x heavier then facial landmarks detection model (according to documentation). Wait function for facial landmarks detection was run as the first because inference completes earlier for this model and we can be run some other operations in parallel before head pose estimation inference completes.

  2. Second technique offloads mouse movement to background thread so that it is possible to run inference for the next frame while mouse is moving.

Edge Cases

There are several edge cases that can be experienced while running inference on video file or camera stream.

  1. Multiple people in the frame

    In this case application selects person with best confidence level of face detection. The solution works in most cases but may introduce flickering effect between two heads.

  2. No head detected in the frame

    In this case application skips the frame.

  3. Eyes detected on the edges of the face image

    Application uses larger image as an input for facial landmarks detection model then it was returned by face detection model. If the detected eyes images are still to small the frame is skipped.

License

MIT License

Copyright (c) 2020 Marcin Sielski