-
Notifications
You must be signed in to change notification settings - Fork 25
/
partition.py
738 lines (621 loc) · 28.8 KB
/
partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
import argparse
import subprocess
import shlex
import re
import bisect
import tempfile
import os
import shutil
import copy
import math
import logging
from pathlib import Path
from multiprocessing import Pool
from functools import partial
from collections import namedtuple, defaultdict, Counter
from typing import List, Tuple, Mapping, TextIO
import numpy as np
import spoa
from Bio import AlignIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Align import MultipleSeqAlignment
from logger import logger, TqdmToLogger, MIN_TQDM_INTERVAL
from tqdm import tqdm
FASTA_SUFFIX_LIST = ".fasta, .fas, .fa, .fna, .ffn, .faa, .mpfa, .frn".split(", ")
CHUNK_PREFIX = "chunk"
XMFASequenceEntry = namedtuple("XMFASequenceEntry", "index file header length")
IntervalType = Tuple[int, int]
def interval_intersection(A: List[IntervalType], B: List[IntervalType]) -> List[IntervalType]:
"""
Args:
A: First list
B: Second list
Returns:
A list of the intersection of the input lists
"""
ans = []
i = j = 0
while i < len(A) and j < len(B):
# Let's check if A[i] intersects B[j].
# lo - the startpoint of the intersection
# hi - the endpoint of the intersection
lo = max(A[i][0], B[j][0])
hi = min(A[i][1], B[j][1])
if lo < hi:
ans.append([lo, hi])
# Remove the interval with the smallest endpoint
if A[i][1] < B[j][1]:
i += 1
else:
j += 1
return ans
def get_interval(aln: MultipleSeqAlignment) -> Tuple[int, IntervalType]:
"""
Get the interval of the first sequence (reference) in a MultipleSeqAlignment object
Args:
aln: A MultipleSeqAlignment object representing an LCB
Returns:
A tuple (A, B) where A is the contig idx of the sequence at seqidx, and B is the interval
"""
seqid_parser = re.compile(r'^cluster(\d+) s(\d+):p(\d+)/.*')
seq = aln[0]
aln_len = seq.annotations["end"] - seq.annotations["start"]
cluster_idx, contig_idx, startpos = [int(x) for x in seqid_parser.match(seq.id).groups()]
if seq.annotations["strand"] == -1:
startpos, endpos = startpos - aln_len, startpos
else:
endpos = startpos + aln_len
return (contig_idx, (startpos, endpos))
def cut_overlaps(ilist: List[IntervalType]) -> None:
"""
If two intervals overlap, I1 = (a, b), I2 = (b-10, c)
then trim the second interval to be (b+1, c)
Args:
ilist: List of intervals to be cut
"""
for i in range(len(ilist) - 1):
if ilist[i][1] > ilist[i+1][0]:
ilist[i+1] = (ilist[i][1]+1, ilist[i+1][1])
def trim(aln: MultipleSeqAlignment,
ref_cidx_to_intervals: Mapping[int, List[IntervalType]],
seqidx: int,
cluster_start: int) -> List[MultipleSeqAlignment]:
"""
Slice the input alignment up such that the coordinates of the output alignments with resepct
to sequence seqidx are consistent with intervals of the corresponding contig in the
ref_cidx_to_intervals mapping.
Args:
aln : MultipleSeqAlignment object to be trimmed
ref_cidx_to_intervals : {reference_contig_idx : [(start1, end1), ..., (startn, endn)]}
seqidx : The index of the reference sequence in the Parsnp XMFA header (typically 1)
cluster_start : The index of the first output cluster in the trimmed alignment
Returns:
A list of MultipleSeqAlignment objects
"""
seqid_parser = re.compile(r'^cluster(\d+) s(\d+):p(\d+)')
ret_alns = []
# Store a copy of the SeqRecord objects w/ the correct name, id, annotation dict etc
empty_seqs = [
SeqRecord(Seq(""), id=rec.id, name=rec.name, description=rec.description, annotations=copy.deepcopy(rec.annotations))
for rec in aln
]
# Look for the record in the LCB that represents the reference genome
for rec in aln:
if int(rec.name) == seqidx:
aln_len = rec.annotations["end"] - rec.annotations["start"]
cluster_idx, contig_idx, super_startpos = [int(x) for x in seqid_parser.match(rec.id).groups()]
if rec.annotations["strand"] == -1:
super_startpos, super_endpos = super_startpos - aln_len, super_startpos
else:
super_endpos = super_startpos + aln_len
try:
# super_startpos and super_endpos represent the start and endpoint of this
# LCB in the reference. This LCB may be trimmed into multiple LCBs, each of
# which is represented by one of the trimmed_intervals
trimmed_intervals = interval_intersection(
ref_cidx_to_intervals[contig_idx],
[(super_startpos, super_endpos)])
# assert(all(interval in ref_cidx_to_intervals[contig_idx] for interval in trimmed_intervals))
ref_rec = rec
except Exception as e:
logger.critical(e)
raise e
break
else:
logger.critical("Reference alignment not found!")
raise
# ref_psum[i] = number of nucleotides in first i columns
ref_psum = [0]*(len(ref_rec.seq) + 1)
for i in range(1, len(ref_rec.seq)+1):
ref_psum[i] = ref_psum[i-1] + (0 if ref_rec.seq[i-1] == '-' else 1)
# ref_ssum[i] = number of nucleotides in last i columns
ref_ssum = [0]*(len(ref_rec.seq) + 1)
for i in range(1, len(ref_rec.seq)+1):
ref_ssum[i] = ref_ssum[i-1] + (0 if ref_rec.seq[-i] == '-' else 1)
# aln_psum[j][i] = number of nucleotides in first i columns of the jth sequence
aln_psum = [[0]*(len(ref_rec.seq) + 1) for _ in range(len(aln))]
# aln_ssum[j][i] = number of nucleotides in last i columns of the jth sequence
aln_ssum = [[0]*(len(ref_rec.seq) + 1) for _ in range(len(aln))]
for rec_idx, rec in enumerate(aln):
psum, ssum = aln_psum[rec_idx], aln_ssum[rec_idx]
# psum[i] = number of nucleotides in first i columns
for i in range(1, len(ref_rec.seq)+1):
psum[i] = psum[i-1] + (0 if rec.seq[i-1] == '-' else 1)
# ssum[i] = number of nucleotides in last i columns
for i in range(1, len(ref_rec.seq)+1):
ssum[i] = ssum[i-1] + (0 if rec.seq[-i] == '-' else 1)
for interval_idx, trimmed_interval in (enumerate(trimmed_intervals)):
aln_seqs = copy.deepcopy(empty_seqs)
left_bases_trim = trimmed_interval[0] - super_startpos
right_bases_trim = super_endpos - trimmed_interval[1]
left_cols_to_skip = bisect.bisect_left(ref_psum, left_bases_trim)
right_cols_to_skip = bisect.bisect_left(ref_ssum, right_bases_trim)
for seq_idx, rec in enumerate(aln):
# orig_seq = copy.deepcopy(seq)
new_rec = aln_seqs[seq_idx]
aln_len = rec.annotations["end"] - rec.annotations["start"]
cluster_idx, contig_idx, startpos = [int(x) for x in seqid_parser.match(rec.id).groups()]
left_bases_trim = 0
right_bases_trim = 0
left_bases_trim = aln_psum[seq_idx][left_cols_to_skip]
right_bases_trim = aln_ssum[seq_idx][right_cols_to_skip]
if rec.annotations["strand"] == -1:
new_rec.annotations["start"] += right_bases_trim
new_rec.annotations["end"] -= left_bases_trim
startpos -= left_bases_trim
else:
new_rec.annotations["start"] += left_bases_trim
new_rec.annotations["end"] -= right_bases_trim
startpos += left_bases_trim
new_rec.id = f"cluster{cluster_start + interval_idx} s{contig_idx}:p{startpos}"
if right_cols_to_skip > 0:
new_rec.seq = rec.seq[left_cols_to_skip:-right_cols_to_skip]
else:
new_rec.seq = rec.seq[left_cols_to_skip:]
new_aln = MultipleSeqAlignment(aln_seqs)
ret_alns.append(new_aln)
return ret_alns
def copy_header(orig_xmfa: str, new_xmfa: str) -> None:
"""
Copy header from orig_xmfa to new_xmfa
Args:
orig_xmfa: Path to xmfa which has the header to be copied
new_aln: Path to new xmfa
"""
with open(orig_xmfa) as xmfa_in, open(new_xmfa, 'w') as xmfa_out:
for line in xmfa_in:
if line[0] == "#":
xmfa_out.write(line)
else:
break
def write_aln_to_fna(aln: MultipleSeqAlignment, out_handle: TextIO) -> None:
"""
Write the MultipleSeqAlignment to the output handle in fna format.
Args:
aln : MultipleSeqAlignment
out_handle: An open file handle for the output alignment.
"""
LINESIZE = 80
for rec in aln:
header = f"> {rec.name}:{rec.annotations['start']+1}-{rec.annotations['end']} {'+' if rec.annotations['strand'] == 1 else '-'} {rec.id}\n"
out_handle.write(header)
for i in range(math.ceil(len(rec.seq) / LINESIZE)):
out_handle.write(str(rec.seq[i*LINESIZE:(i+1)*LINESIZE]) + "\n")
def combine_header_info(xmfa_list: List[str]) \
-> Tuple[Mapping[XMFASequenceEntry, int], Mapping[Tuple[str, int], int]]:
"""
Combine the headers of multiple partitioned parsnp outputs. Will avoid duplicate headers, i.e.
if two partitions have a sequence with the same header, only one will be present in the output.
Args:
xmfa_list: A list of xmfa files to be combined.
Returns:
A tuple (A, B, C) where
A: Maps sequence metadata tuple to their index in the combined xmfa file.
B: Maps (file, original_index) pairs to the index in the combined xmfa file.
"""
fidx_to_new_idx = {}
seq_to_idx = {}
file_header_pairs = set()
for xmfa_file in xmfa_list:
with open(xmfa_file) as xmfa_in:
line = next(xmfa_in).strip()
while not line.startswith("##"):
line = next(xmfa_in).strip()
while line.startswith("##"):
seqidx = int(line.split(" ")[1])
line = next(xmfa_in).strip()
file = line.split(" ")[1]
line = next(xmfa_in).strip()
header = line.split(" ")[1]
line = next(xmfa_in).strip()
length = int(line.split(" ")[1][:-2])
entry = XMFASequenceEntry(seqidx, file, header, length)
# Avoid duplicated headers, i.e. if the reference is duplicated
if (file, header) not in file_header_pairs:
file_header_pairs.add((file, header))
fidx_to_new_idx[(xmfa_file, entry.index)] = len(fidx_to_new_idx) + 1
seq_to_idx[entry] = fidx_to_new_idx[(xmfa_file, entry.index)]
line = next(xmfa_in).strip()
return seq_to_idx, fidx_to_new_idx
def write_combined_header(
seq_to_idx: Mapping[XMFASequenceEntry, int],
cluster_count: int,
xmfa_out_f: str) -> None:
"""
Writes an XMFA header for the merged XMFA of the partitioned XMFA files.
Args:
seq_to_idx: Maps sequence metadata tuple to their index in the combined xmfa file.
cluster_count: The number of clusters in the combined output.
xmfa_out_f: Name of output xmfa
fidx_to_new_idx: A mapping of (xmfa_file, sequence_index) to the index in the combined file.
"""
#TODO fix duplicated fidx_to_new_idx
with open(xmfa_out_f, 'w') as xmfa_out:
xmfa_out.write("#FormatVersion Parsnp v1.1\n")
xmfa_out.write(f"#SequenceCount {len(seq_to_idx)}\n")
for entry in sorted(seq_to_idx.keys(), key=lambda k: seq_to_idx[k]):
xmfa_out.write(f"##SequenceIndex {seq_to_idx[entry]}\n")
xmfa_out.write(f"##SequenceFile {entry.file}\n")
xmfa_out.write(f"##SequenceHeader {entry.header}\n")
xmfa_out.write(f"##SequenceLength {entry.length}bp\n")
xmfa_out.write(f"#IntervalCount {cluster_count}\n")
def merge_blocks(
aln_xmfa_pairs: List[Tuple[MultipleSeqAlignment, str]],
fidx_to_new_idx: Mapping[Tuple[str, int], int]) -> MultipleSeqAlignment:
"""
Given a list of MultipleSeqAlignment objects representing the same cluster
and their originating xmfa files, this function combines them into a single
MultipleSeqAlignment object.
Merging the alignment requires two important steps:
(1) The sequence index of the alignments must be updated to reflect their index in the
combined XMFA file
(2) Re-aligning insertion sequences. While there is an equivalence relation for base pairs
which map to the reference, base pairs which are insertions wrt the reference have
no equivalence, and therefore need to be re-aligned to other insertions. This is where
we use the SPOA API.
Args:
aln_xmfa_pairs: A list of pairs of MultipleSeqAlignment and the originating xmfa files.
fidx_to_new_idx: A mapping of (xmfa_file, sequence_index) to the index in the combined file.
Return:
A MultipleSeqAlignment representing the concatenated alignment of all of the input
alignments.
"""
# ref is present in every block, so (len(alns[0].seq)-1)*len(alns) + 1 total seqs
# Set the IDs
aln, xmfa_file = aln_xmfa_pairs[0]
combined_seqs = []
name_to_idx = {}
xmfa_file_to_col = {}
for seq in aln:
# This copies the string as well, but we could do it faster by just copying the seq metadata
new_seq = copy.deepcopy(seq)
new_seq.name = fidx_to_new_idx[(xmfa_file, int(seq.name))]
new_seq.id = new_seq.id.split("/")[0]
xmfa_file_to_col[xmfa_file] = 0
new_seq.seq = Seq("")
name_to_idx[new_seq.name] = len(combined_seqs)
combined_seqs.append(new_seq)
for aln, xmfa_file in aln_xmfa_pairs[1:]:
for seq in aln[1:]:
new_seq = copy.deepcopy(seq)
new_seq.name = fidx_to_new_idx[(xmfa_file, int(seq.name))]
new_seq.id = new_seq.id.split("/")[0]
xmfa_file_to_col[xmfa_file] = 0
new_seq.seq = Seq("")
name_to_idx[new_seq.name] = len(combined_seqs)
combined_seqs.append(new_seq)
sorted_names = sorted(name_to_idx.keys(), key=lambda x: int(x))
gap_sequences = defaultdict(list)
all_done = False
while not all_done:
in_gap = False
all_done = True
for aln, xmfa_file in aln_xmfa_pairs:
col = xmfa_file_to_col[xmfa_file]
if col >= len(aln[0].seq) or aln[0].seq[col] == "-":
in_gap = True
# If any file has remaining base pairs, we are not done
if col < len(aln[0].seq):
all_done = False
if (not in_gap or all_done) and len(gap_sequences) != 0:
# Perform MSA on gap_sequences
gap_name_to_idx = {}
seqs_to_align = []
for name, bases in gap_sequences.items():
gap_name_to_idx[name] = len(seqs_to_align)
seqs_to_align.append("".join(bases))
consensus, aligned_msa_seqs = spoa.poa(seqs_to_align)
# Add resulting alignment and gaps to lcb
aln_len = max(len(s) for s in aligned_msa_seqs)
for name in sorted_names:
record = combined_seqs[name_to_idx[name]]
if name in gap_name_to_idx:
aligned_seq = aligned_msa_seqs[gap_name_to_idx[name]]
else:
aligned_seq = "-"*aln_len
record.seq += aligned_seq
# Clear gap sequences
gap_sequences = defaultdict(list)
elif not in_gap and not all_done:
# Add to alignment
for aln_idx, (aln, xmfa_file) in enumerate(aln_xmfa_pairs):
col = xmfa_file_to_col[xmfa_file]
for rec in aln[0 if aln_idx == 0 else 1:]:
new_name = fidx_to_new_idx[(xmfa_file, int(rec.name))]
new_record = combined_seqs[name_to_idx[new_name]]
new_record.seq += rec.seq[col]
xmfa_file_to_col[xmfa_file] += 1
elif not all_done:
# We are in a gap for some ref sequence
# For each alignment, take the slice starting at the current position
# and ending at the next non-gap reference position for aln_idx, (aln, xmfa_file) in enumerate(aln_xmfa_pairs):
for aln_idx, (aln, xmfa_file) in enumerate(aln_xmfa_pairs):
col = xmfa_file_to_col[xmfa_file]
while col < len(aln[0].seq) and aln[0].seq[col] == "-":
for rec in aln[0 if aln_idx == 0 else 1:]:
if col < len(rec.seq) and rec.seq[col] != "-":
new_name = fidx_to_new_idx[(xmfa_file, int(rec.name))]
gap_sequences[new_name].append(rec.seq[col])
col += 1
xmfa_file_to_col[xmfa_file] = col
return MultipleSeqAlignment(combined_seqs)
def run_command(cmd: str, check: bool=True) -> None:
"""
Runs the provided command string.
Args:
cmd: The command to be run.
check: Raise exception if subprocess fails
"""
res = subprocess.run(cmd, shell=True, check=check)
return res.returncode
def parse_args() -> None:
"""
Parses command line arguments.
"""
parser = argparse.ArgumentParser(description="""
Partition Parsnp Parser
""", formatter_class=argparse.RawTextHelpFormatter)
#TODO Use lambda to check files and directories
input_output_args = parser.add_argument_group(title="Input/Output")
input_output_args.add_argument(
"-c",
"--curated",
action = "store_true",
help = "(c)urated genome directory, use all genomes in dir and ignore MUMi?")
input_output_args.add_argument(
"-d",
"--sequences",
type = str,
nargs = '+',
required = True,
help = "A list of files containing genomes/contigs/scaffolds. If the file ends in .txt, each line in the file corresponds to the path to an input file.")
input_output_args.add_argument(
"-r",
"--reference",
type = str,
default = "",
help = "(r)eference genome (set to ! to pick random one from sequence dir)",
required = True)
input_output_args.add_argument(
"-g",
"--genbank",
nargs = '+',
help = "A list of Genbank file(s) (gbk)")
input_output_args.add_argument(
"-o",
"--output-dir",
type = str,
default = "parsnp-partition-out")
input_output_args.add_argument(
"-n",
"--partition-size",
type = int,
default = 100,
help = "Maximum size of individual partition")
input_output_args.add_argument(
"-t",
"--threads",
type = int,
default = 1,
help = "Maximum number of partitioned parsnp runs to execute in parallel")
input_output_args.add_argument(
"--parsnp-flags",
type = str,
default = "",
help = "Flags other than -d, -r, -g, and -o to pass to each of the partitioned parsnp runs")
return parser.parse_args()
####################################################################################################
def get_chunked_intervals(partition_output_dir: str, chunk_labels: List[str])\
-> Mapping[str, Mapping[int, List[IntervalType]]]:
"""
Returns the aligned reference intervals for each partition.
Args:
partition_output_dir: The output directory of the partitioned Parsnp runs.
chunk_labels: A list of the partition labels/ids.
Returns:
A mapping which maps partition ids to the reference intervals for that partition.
{chunk_label: {contig_idx: [(s1, e1), ... (sn, en)]}}
"""
chunk_to_invervaldict = {}
for chunk_label in chunk_labels:
orig_xmfa = f"{partition_output_dir}/{CHUNK_PREFIX}-{chunk_label}-out/parsnp.xmfa"
orig_alns = AlignIO.parse(orig_xmfa, "mauve")
chunk_to_invervaldict[chunk_label] = defaultdict(list)
for aln in orig_alns:
# Get reference idx and the interval of the alignment wrt the reference contig
ref_cidx, interval = get_interval(aln)
chunk_to_invervaldict[chunk_label][ref_cidx].append(interval)
# Sort the intervals. (They should be sorted already, but worth double checking)
# Sometimes parsnp will yield overlapping intervals, so we trim them back
for ref_cidx, intervals in chunk_to_invervaldict[chunk_label].items():
intervals.sort()
cut_overlaps(intervals)
return chunk_to_invervaldict
def get_intersected_intervals(
chunk_to_invervaldict: Mapping[str, Mapping[int, List[IntervalType]]],
min_interval_size: int=10)\
-> Mapping[str, Mapping[int, List[IntervalType]]]:
"""
Returns the intersection of all of the intervals in chunk_to_invervaldict.
Args:
chunk_to_invervaldict: A mapping of partition IDs to mappings of contigs to intervals
min_interval_size: Minimum interval size to retain. Smaller intervals will be dropped.
Returns:
A mapping which maps reference contigs to the intersected intervals for that contig.
"""
first_chunk = list(chunk_to_invervaldict.keys())[0]
intersected_interval_dict = copy.deepcopy(chunk_to_invervaldict[first_chunk])
num_clusters = []
bp_covered = []
for chunk_intervals in chunk_to_invervaldict.values():
chunk_aligned_bp = 0
num_intervals = 0
for refcidx, intervals in chunk_intervals.items():
chunk_aligned_bp += sum(b - a for a,b in intervals)
num_intervals += len(intervals)
num_clusters.append(num_intervals)
bp_covered.append(chunk_aligned_bp)
for refcidx in set(intersected_interval_dict.keys()) | set(chunk_intervals.keys()):
intersected_interval_dict[refcidx] = interval_intersection(
intersected_interval_dict[refcidx],
chunk_intervals[refcidx])
intersected_interval_dict = {
key: [interval for interval in val if (interval[1] - interval[0]) >= min_interval_size]
for key, val in intersected_interval_dict.items()
}
intersection_sum = 0
num_ints = 0
for refcidx, intervals in intersected_interval_dict.items():
intersection_sum += sum(b - a for a,b in intervals)
num_ints += len(intervals)
logger.info(f"Partition stats: Mean bp covered = {np.mean(bp_covered):.2f}\tMean LCB count = {np.mean(num_clusters):.2f}")
logger.info(f"After intersection: {intersection_sum} reference bases over {num_ints} clusters")
return intersected_interval_dict
def trim_single_xmfa(
xmfa_file: str,
intersected_interval_dict: Mapping[int, List[IntervalType]]) -> int:
"""
Given an input xmfa file, creates a new xmfa file with the ".trimmed" extension such that
f"{xmfa_file}.trimmed is an xmfa file with alignments that correspond to the intervals in
the intersected_interval_dict.
Args:
xmfa_file: XMFA file to be trimmed.
intersected_interval_dict: A map of reference contig indicies to the intervals.
Returns:
The number of clusters in the trimmed XMFA file.
"""
orig_alns = AlignIO.parse(xmfa_file, "mauve")
trimmed_xmfa = xmfa_file + ".trimmed"
copy_header(xmfa_file, trimmed_xmfa)
cluster_start = 1
with open(trimmed_xmfa, 'a') as trimmed_out:
for aln in orig_alns:
new_alns = trim(aln, intersected_interval_dict, seqidx=1, cluster_start=cluster_start)
cluster_start += len(new_alns)
for new_aln in new_alns:
write_aln_to_fna(new_aln, trimmed_out)
trimmed_out.write("=\n")
num_clusters = cluster_start - 1
return (xmfa_file, num_clusters)
def trim_xmfas(
partition_output_dir: str,
chunk_labels: List[str],
intersected_interval_dict: Mapping[int, List[IntervalType]],
threads: int=1) -> int:
"""
Trim all XMFA files so that their LCBs are all wrt the same reference coordinates
Args:
partition_output_dir: The directory containing the partitioned outputs.
chunk_labels: The partition ids.
intersected_interval_dict: A map of reference contig indicies to the intervals.
threads: The number of threads to use.
Returns:
The total number of clusters in each XMFA.
"""
trim_partial = partial(trim_single_xmfa, intersected_interval_dict=intersected_interval_dict)
orig_xmfa_files = [f"{partition_output_dir}/{CHUNK_PREFIX}-{cl}-out/parsnp.xmfa" for cl in chunk_labels]
with Pool(threads) as pool:
num_clusters_per_xmfa = list(tqdm(
pool.imap_unordered(trim_partial, orig_xmfa_files),
total=len(orig_xmfa_files),
file=TqdmToLogger(logger,level=logging.INFO),
mininterval=MIN_TQDM_INTERVAL))
#TODO clean up
if not all(num_clusters_per_xmfa[0][1] == nc for xmfa, nc in num_clusters_per_xmfa):
logger.critical("One of the partitions has a different number of clusters after trimming...")
raise
return num_clusters_per_xmfa[0][1]
def merge_single_LCB(
cluster_idx: int,
aln_xmfa_pairs: List[Tuple[MultipleSeqAlignment, str]],
tmp_directory: str,
fidx_to_new_idx: Mapping[Tuple[str, int], int]) -> str:
"""
Merges the alignments in aln_xmfa_pairs into a single XMFA alignment entry. It creates an
output file in the provided directory representing this alignment.
Args:
cluster_idx: The cluster index of the input alignments.
aln_xmfa_pairs: The input alingments and their xmfa files.
tmp_directory: A temporary directory to store output in.
fidx_to_new_idx: A mapping of (xmfa_file, seqidx) tuples to the idx in the output alignment
Returns:
The path to the output alignment file.
"""
tmp_xmfa = f"{tmp_directory}/cluster-{cluster_idx}.temp"
with open(tmp_xmfa, 'w') as xmfa_out_handle:
new_aln = merge_blocks(aln_xmfa_pairs, fidx_to_new_idx)
write_aln_to_fna(new_aln, xmfa_out_handle)
return tmp_xmfa
def merge_single_LCB_star(idx_pairs_tuple, tmp_directory, fidx_to_new_idx):
"""
A helper function for merging LCBs. See the merge_single_LCB documentation.
"""
merge_single_LCB(idx_pairs_tuple[0], idx_pairs_tuple[1], tmp_directory, fidx_to_new_idx)
def merge_xmfas(
output_dir: str,
partition_output_dir: str,
chunk_labels: List[str],
num_clusters: int,
threads: int=1,
write_blocks: bool=False) -> None:
"""
Take all of the trimmed XMFA files and compile them into a single XMFA
Args:
partition_output_dir: Directory of partitioned parsnp runs.
chunk_labels: IDs of partitions.
xmfa_out_f: Path to merged output XMFA file.
num_clusters: Number of clusters in merged XMFA file.
threads: Number of threads to use.
"""
xmfa_out_f = f"{output_dir}/parsnp.xmfa"
xmfa_files = [f"{partition_output_dir}/{CHUNK_PREFIX}-{cl}-out/parsnp.xmfa.trimmed"
for cl in chunk_labels]
seq_to_idx, fidx_to_new_idx = combine_header_info(xmfa_files)
write_combined_header(seq_to_idx, num_clusters, xmfa_out_f)
alns = [AlignIO.parse(f, "mauve") for f in xmfa_files]
with tempfile.TemporaryDirectory() as tmp_directory:
merge_single_LCB_star_partial = partial(
merge_single_LCB_star,
tmp_directory=tmp_directory,
fidx_to_new_idx=fidx_to_new_idx)
pairs_list = (
[(next(alns[j]), xmfa_files[j]) for j in range(len(xmfa_files))]
for i in range(num_clusters)
)
with Pool(threads) as pool:
tmp_xmfas = list(tqdm(
pool.imap_unordered(merge_single_LCB_star_partial, enumerate(pairs_list)),
total=num_clusters,
file=TqdmToLogger(logger,level=logging.INFO),
mininterval=MIN_TQDM_INTERVAL)
)
with open(xmfa_out_f, 'a') as xmfa_out_handle:
for cluster_idx in range(num_clusters):
tmp_xmfa = f"{tmp_directory}/cluster-{cluster_idx}.temp"
with open(tmp_xmfa) as tx:
xmfa_out_handle.write(tx.read())
xmfa_out_handle.write("=\n")
if write_blocks:
Path(f"{output_dir}/blocks/b{cluster_idx}").mkdir(parents=True)
shutil.move(tmp_xmfa, f"{output_dir}/blocks/b{cluster_idx}/seq.fna")