-
Notifications
You must be signed in to change notification settings - Fork 0
/
clock.h
837 lines (713 loc) · 24.6 KB
/
clock.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/* CLOCK.H (C) Copyright Jan Jaeger, 2000-2012 */
/* TOD Clock functions */
/* */
/* Released under "The Q Public License Version 1" */
/* (http://www.hercules-390.org/herclic.html) as modifications to */
/* Hercules. */
#if !defined(_CLOCK_C_)
#define _CLOCK_EXTERN extern
#else
#undef _CLOCK_EXTERN
#define _CLOCK_EXTERN
#endif
#if !defined(_CLOCK_H)
#define _CLOCK_H
/* TOD Clock Definitions */
#define TOD_USEC (4096LL)
#define TOD_SEC (1000000 * TOD_USEC)
#define TOD_MIN (60 * TOD_SEC)
#define TOD_HOUR (60 * TOD_MIN)
#define TOD_DAY (24 * TOD_HOUR)
#define TOD_YEAR (365 * TOD_DAY)
#define TOD_LYEAR (TOD_YEAR + TOD_DAY)
#define TOD_4YEARS (1461 * TOD_DAY)
#define TOD_1970 0x7D91048BCA000000ULL // TOD base for host epoch of 1970
typedef U64 TOD; // one microsecond = Bit 51
/* Hercules and Extended TOD Clock Definitions for high-order 64-bits */
#define ETOD_USEC 16LL
#define ETOD_SEC (1000000 * ETOD_USEC)
#define ETOD_MIN (60 * ETOD_SEC)
#define ETOD_HOUR (60 * ETOD_MIN)
#define ETOD_DAY (24 * ETOD_HOUR)
#define ETOD_YEAR (365 * ETOD_DAY)
#define ETOD_LYEAR (ETOD_YEAR + ETOD_DAY)
#define ETOD_4YEARS (1461 * ETOD_DAY)
#define ETOD_1970 0x007D91048BCA0000ULL // Extended TOD base for host epoch of 1970
#ifdef WORDS_BIGENDIAN
typedef struct ETOD { U64 high, low; } ETOD;
#define ETOD_init(_high,_low) \
{_high,_low}
#else
typedef struct ETOD { U64 low, high; } ETOD;
#define ETOD_init(_high,_low) \
{_low,_high}
#endif
static INLINE void
ETOD_add (ETOD* result, const ETOD a, const ETOD b)
{
register uint64_t high = a.high + b.high;
register uint64_t low = a.low + b.low;
if (low < a.low)
++high;
result->high = high;
result->low = low;
}
static INLINE void
ETOD_sub (ETOD* result, const ETOD a, const ETOD b)
{
register uint64_t high = a.high - b.high;
register uint64_t low = a.low - b.low;
if (a.low < b.low)
--high;
result->high = high;
result->low = low;
}
static INLINE void
ETOD_shift (ETOD* result, const ETOD a, int shift)
{
register uint64_t high;
register uint64_t low;
if (shift == 0)
{
high = a.high;
low = a.low;
}
else if (shift < 0)
{
shift = -shift;
if (shift >= 64)
{
shift -= 64;
if (shift == 0)
high = a.low;
else if (shift > 64)
high = 0;
else
high = a.low << shift;
low = 0;
}
else
{
high = a.high << shift |
a.low >> (64 - shift);
low = a.low << shift;
}
}
else if (shift >= 64)
{
shift -= 64;
high = 0;
if (shift == 0)
low = a.high;
else if (shift < 64)
low = a.high >> shift;
else
low = 0;
}
else
{
high = a.high >> shift;
low = a.high << (64 - shift) |
a.low >> shift;
}
result->low = low;
result->high = high;
}
/* Clock Steering Registers */
#if !defined(_CSR_)
#define _CSR_
typedef struct _CSR {
U64 start_time;
S64 base_offset;
S32 fine_s_rate;
S32 gross_s_rate;
} CSR;
#endif
void csr_reset(void); /* Reset cs registers */
void set_tod_steering(const double); /* Set steering rate */
double get_tod_steering(void); /* Get steering rate */
U64 update_tod_clock(void); /* Update the TOD clock */
void update_cpu_timer(void); /* Update the CPU timer */
void set_tod_epoch(const S64); /* Set TOD epoch */
void adjust_tod_epoch(const S64); /* Adjust TOD epoch */
S64 get_tod_epoch(void); /* Get TOD epoch */
U64 hw_clock(void); /* Get hardware clock */
S64 cpu_timer(REGS *); /* Retrieve CPU timer */
void set_cpu_timer(REGS *, const S64); /* Set CPU timer */
void set_int_timer(REGS *, const S32); /* Set interval timer */
TOD tod_clock(REGS *); /* Get TOD clock non-unique */
typedef enum
{
ETOD_raw,
ETOD_fast,
ETOD_standard,
ETOD_extended
} ETOD_format;
DLL_EXPORT
TOD etod_clock(REGS*, ETOD*, /* Get extended TOD clock */
ETOD_format);
void set_tod_clock(const U64); /* Set TOD clock */
int chk_int_timer(REGS *); /* Check int_timer pending */
int clock_hsuspend(void *file); /* Hercules suspend */
int clock_hresume(void *file); /* Hercules resume */
int query_tzoffset(void); /* Report current TzOFFSET */
ETOD* host_ETOD (ETOD*); /* Retrieve extended TOD */
TOD thread_cputime(const REGS*); /* Thread real CPU used (TOD)*/
U64 thread_cputime_us(const REGS*); /* Thread real CPU used (us) */
/*----------------------------------------------------------------------------*/
/* Define clock_gettime for systems not supporting nanosecond clocks, */
/* other than Windows. */
/*----------------------------------------------------------------------------*/
#if !defined(_MSVC_) && !defined(CLOCK_REALTIME)
typedef int clockid_t;
/* IDs for various POSIX.1b interval timers and system clocks */
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 1
#define CLOCK_PROCESS_CPUTIME_ID 2
#define CLOCK_THREAD_CPUTIME_ID 3
#define CLOCK_MONOTONIC_RAW 4
#define CLOCK_REALTIME_COARSE 5
#define CLOCK_MONOTONIC_COARSE 6
#define CLOCK_BOOTTIME 7
#define CLOCK_REALTIME_ALARM 8
#define CLOCK_BOOTTIME_ALARM 9
static INLINE int
clock_gettime ( clockid_t clk_id, struct timespec *ts )
{
register int result;
/* Validate parameters... */
if ( unlikely ( (clk_id > CLOCK_REALTIME) ||
!ts ) )
{
errno = EINVAL;
return ( -1 );
}
#if defined(__APPLE__) && 0
{
/* FIXME: mach/mach.h include is generating invalid storage
* class errors. Default to gettimeofday until resolved.
*/
#include <mach/mach.h>
/* FIXME: This sequence is slower than gettimeofday call per OS
* X Developer Library. Recommend converting to use the
* mach_absolute_time call, but that will have to wait
* until CLOCK_MONOTONIC support and review of steering
* support to avoid double steering.
*/
mach_timespec_t mts;
static clock_serv_t cserv = 0;
if (!cserv)
{
/* Get clock service port */
result = host_get_clock_service(mach_host_self(),
CALENDAR_CLOCK,
&cserv);
if (result != KERN_SUCCESS)
return ( result );
}
result = clock_get_time(cserv, &mts);
if (result == KERN_SUCCESS)
{
ts->tv_sec = mts.tv_sec;
ts->tv_nsec = mts.tv_nsec;
}
// result = mach_port_deallocate(mach_task_self(), cserv); /* Can this be ignored until shutdown of Hercules? */
}
#else /* Convert standard gettimeofday call */
{
struct timeval tv;
result = gettimeofday(&tv, NULL);
/* Handle microsecond overflow */
if ( unlikely (tv.tv_usec >= 1000000) )
{
register U32 temp = tv.tv_usec / 1000000;
tv.tv_sec += temp;
tv.tv_usec -= temp * 1000000;
}
/* Convert timeval to timespec */
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000;
/* Reset clock precision and force host_ETOD to use minimum
* precision algorithm.
*/
#if defined(TOD_FULL_PRECISION)
#undef TOD_FULL_PRECISION
#endif
#if defined(TOD_120BIT_PRECISION)
#undef TOD_120BIT_PRECISION
#endif
#if defined(TOD_95BIT_PRECISION)
#undef TOD_95BIT_PRECISION)
#endif
#if defined(TOD_64BIT_PRECISION)
#undef TOD_64BIT_PRECISION)
#endif
#if !defined(TOD_MIN_PRECISION)
#define TOD_MIN_PRECISION
#endif
}
#endif
return ( result );
}
#elif !(defined(TOD_FULL_PRECISION) || \
defined(TOD_120BIT_PRECISION) || \
defined(TOD_64BIT_PRECISION) || \
defined(TOD_MIN_PRECISION) || \
defined(TOD_95BIT_PRECISION))
/* Define default clock precision as 95-bits (only one division required) */
#define TOD_95BIT_PRECISION
#endif
static INLINE S64
timeval2us (const struct timeval* tv)
{
S64 result;
result = (S64)tv->tv_sec * 1000000;
result += tv->tv_usec;
return (result);
}
static INLINE void
us2timeval (const U64 us, struct timeval* tv)
{
tv->tv_sec = us / 1000000;
tv->tv_usec = us % 1000000;
}
static INLINE TOD
ns2etod (const S64 ns)
{
return ((ns << 1) / 125); /* (ns << 4) / 1000 @PJJ */
}
static INLINE TOD
us2etod (const S64 us)
{
return (us << 4); /* Adjust to bit 59 */
}
static INLINE TOD
ms2etod (const S64 ms)
{
return (ms * 16000); /* (ms * 1000) << 4 */
}
static INLINE TOD
sec2etod (const S64 sec)
{
return (sec * 16000000); /* (sec * 1000000) << 4 */
}
static INLINE TOD
timespec2etod (const struct timespec* ts)
{
register S64 result;
result = sec2etod(ts->tv_sec);
result += ns2etod(ts->tv_nsec);
return (result);
}
static INLINE TOD
timeval2etod (const struct timeval* tv)
{
register S64 result;
result = sec2etod(tv->tv_sec);
result += us2etod(tv->tv_usec);
return (result);
}
static INLINE TOD
etod2tod (const U64 etod)
{
return (etod << 8);
}
static INLINE S64
etod2ns (const S64 etod)
{
return ((etod * 125) >> 1);
}
static INLINE S64
etod2us (const S64 etod)
{
return (etod >> 4);
}
static INLINE S64
etod2sec (const S64 etod)
{
return (etod / ETOD_SEC);
}
static INLINE void
etod2timespec (const S64 etod, struct timespec* ts)
{
register S64 work = etod - ETOD_1970;
ts->tv_sec = etod2sec(work);
ts->tv_nsec = etod2ns(work % ETOD_SEC);
}
static INLINE void
etod2timeval (const S64 etod, struct timeval* tv)
{
register S64 work = etod - ETOD_1970;
tv->tv_sec = etod2sec(work);
tv->tv_usec = etod2us(work % ETOD_SEC);
}
static INLINE TOD
ns2ETOD (ETOD* ETOD, const S64 ns)
{
/* This conversion, assuming a nanosecond host clock resolution,
* yields a TOD clock resolution of 120-bits, 95-bits, or 64-bits,
* with a period of over 36,533 years.
*
*
* Original 128-bit code:
*
* register U128 result = ((((U128)time.tv_nsec << 68) / 1000)
* + 0x8000) & ~((U128)0xFFFF);
*
* In the 64-bit translation of the routine, bits 121-127 are not
* calculated as a third division is required.
*/
register S64 high = 0;
register S64 low = ns;
#if defined(TOD_FULL_PRECISION) || \
defined(TOD_120BIT_PRECISION) || \
defined(TOD_64BIT_PRECISION) || \
defined(TOD_MIN_PRECISION) || \
!defined(TOD_95BIT_PRECISION)
{
register U64 temp;
temp = low; /* Adjust nanoseconds to bit-59 for */
temp <<= 1; /* division by 1000 (shift compressed), */
temp /= 125; /* calculating microseconds and the top */
/* nibble of the remainder */
/* (us*16 = ns*16/1000 = ns*2/125) */
high = temp; /* Add to upper 64-bits */
#if defined(TOD_MIN_PRECISION) || \
defined(TOD_64BIT_PRECISION)
low = 0; /* Set lower 64-bits to zero */
/* (gettimeofday or other microsecond */
/* clock used as clock source) */
#else /* Calculate full precision fractional clock value */
temp >>= 1; /* Calculate remainder */
temp *= 125; /* ... */
low -= temp; /* ... */
low <<= 57; /* Divide remainder by 1000 and adjust */
low /= 125; /* to proper position, shifting out high- */
low <<= 8; /* order byte */
low += 0x8000; /* Round */
low &= ~0xFFFFULL; /* Mask of low-order two bytes */
#endif
}
#else /* 95-bit resolution */
{
low <<= 32; /* Place nanoseconds in high-order word */
low /= 125; /* Divide by 1000 (125 * 2^3) */
high = low >> 31; /* Adjust and add microseconds and first */
/* nibble of nanosecond remainder to bits */
/* 0-63 */
low <<= 33; /* Adjust remaining nanosecond fraction */
/* to bits 64-93 */
}
#endif
ETOD->high = high,
ETOD->low = low;
return (high);
}
static INLINE TOD
us2ETOD (ETOD* ETOD, const S64 us)
{
register S64 high = us2etod(us);
ETOD->high = high;
ETOD->low = 0;
return (high);
}
static INLINE TOD
ms2ETOD (ETOD* ETOD, const S64 ms)
{
register S64 high = ms2etod(ms);
ETOD->high = high;
ETOD->low = 0;
return (high);
}
static INLINE TOD
sec2ETOD (ETOD* ETOD, const S64 sec)
{
register S64 high = sec2etod(sec);
ETOD->high = high;
ETOD->low = 0;
return (high);
}
static INLINE TOD
timespec2ETOD (ETOD* ETOD, const struct timespec* ts)
{
/* This conversion, assuming a nanosecond host clock resolution,
* yields a TOD clock resolution of 120-bits, 95-bits, or 64-bits,
* with a period of over 36,533 years.
*
*
* Original 128-bit code:
*
* register U128 result;
* result = ((((U128)time.tvsec * ETOD_SEC) + ETOD_1970) << 64) +
* (((U128)time.tv_nsec << 68) / 1000);
*
*
* In the 64-bit translation of the routine, bits 121-127 are not
* calculated as a third division is required.
*
* It is not necessary to normalize the clock_gettime return value,
* ensuring that the tv_nsec field is less than 1 second, as tv_nsec
* is a 32-bit field and 64-bit registers are in use.
*
*/
ETOD->high = ts->tv_sec; /* Convert seconds to microseconds, */
ETOD->high *= ETOD_SEC; /* adjusted to bit-59; truncate above */
/* extended TOD clock resolution */
ETOD->high += ETOD_1970; /* Adjust for open source epoch of 1970 */
ETOD->low = ts->tv_nsec; /* Copy nanoseconds */
#if defined(TOD_FULL_PRECISION) || \
defined(TOD_120BIT_PRECISION) || \
defined(TOD_64BIT_PRECISION) || \
defined(TOD_MIN_PRECISION) || \
!defined(TOD_95BIT_PRECISION)
{
register U64 temp;
temp = ETOD->low; /* Adjust nanoseconds to bit-59 for */
temp <<= 1; /* division by 1000 (shift compressed), */
temp /= 125; /* calculating microseconds and the top */
/* nibble of the remainder */
/* (us*16 = ns*16/1000 = ns*2/125) */
ETOD->high += temp; /* Add to upper 64-bits */
#if defined(TOD_MIN_PRECISION) || \
defined(TOD_64BIT_PRECISION)
ETOD->low = 0; /* Set lower 64-bits to zero */
/* (gettimeofday or other microsecond */
/* clock used as clock source) */
#else /* Calculate full precision fractional clock value */
temp >>= 1; /* Calculate remainder */
temp *= 125; /* ... */
ETOD->low -= temp; /* ... */
ETOD->low <<= 57; /* Divide remainder by 1000 and adjust */
ETOD->low /= 125; /* to proper position, shifting out high- */
ETOD->low <<= 8; /* order byte */
#endif
}
#else /* 95-bit resolution */
{
ETOD->low <<= 32; /* Place nanoseconds in high-order word */
ETOD->low /= 125; /* Divide by 1000 (125 * 2^3) */
ETOD->high += ETOD->low >> 31; /* Adjust and add microseconds and */
/* first nibble of nanosecond remainder */
/* to bits 0-63 */
ETOD->low <<= 33; /* Adjust remaining nanosecond fraction */
/* to bits 64-93 */
}
#endif
return ( ETOD->high ); /* Return address of result */
}
static INLINE TOD
timeval2ETOD (ETOD* ETOD, const struct timeval* tv)
{
ETOD->high = timeval2etod(tv);
ETOD->low = 0;
return (ETOD->high);
}
static INLINE TOD
ns2tod (const U64 ns)
{
return ((ns << 9) / 125); /* (ns << 12) / 1000 */
}
static INLINE TOD
us2tod (const U64 us)
{
return (us << 12); /* Adjust to bit 51 */
}
static INLINE TOD
ms2tod (const S64 ms)
{
return (ms * 4096000); /* (ms * 1000) << 12 */
}
static INLINE TOD
sec2tod (const S64 sec)
{
return (sec * 4096000000LL); /* (sec * 1000000) << 12 */
}
static INLINE TOD
tod2etod (const TOD tod)
{
return (tod >> 8); /* Adjust bit 51 to bit 59 */
}
static INLINE TOD
tod2ETOD (const TOD tod, ETOD *ETOD)
{
ETOD->high = tod >> 8; /* Adjust bit 51 to bit 59 */
ETOD->low = tod << 56;
return (ETOD->high);
}
static INLINE S64
tod2ns (const TOD tod)
{
return ((S64)((tod * 125) >> 9));
}
static INLINE S64
tod2us (const TOD tod)
{
return ((S64)(tod >> 12)); /* Adjust bit 51 to bit 63 */
}
static INLINE S64
tod2sec (const TOD tod)
{
return ((S64)(tod / TOD_SEC));
}
static INLINE void
tod2timespec (const TOD tod, struct timespec* ts)
{
register S64 work = (S64)(tod - TOD_1970);
ts->tv_sec = tod2sec(work);
ts->tv_nsec = tod2ns(work % TOD_SEC);
}
static INLINE void
tod2timeval (const TOD tod, struct timeval* tv)
{
register S64 work = (S64)(tod - TOD_1970);
tv->tv_sec = tod2sec(work);
tv->tv_usec = tod2us(work % TOD_SEC);
}
static INLINE TOD
timespec2tod (const struct timespec* tv)
{
register S64 result;
result = sec2tod(tv->tv_sec);
result += ns2tod(tv->tv_nsec);
return (result);
}
static INLINE TOD
timeval2tod (const struct timeval* tv)
{
register S64 result;
result = sec2tod(tv->tv_sec);
result += us2tod(tv->tv_usec);
return (result);
}
static INLINE S64
timespec2us (const struct timespec* ts)
{
return ((ts->tv_sec) * 1000000 + ((ts->tv_nsec + 500) / 1000));
}
/*----------------------------------------------------------------------------*/
/* host_tod - Clock fetch and conversion for routines that DO NOT use the */
/* synchronized clock services or emulation services (including */
/* clock steering), and can tolerate duplicate time stamp */
/* generation. */
/*----------------------------------------------------------------------------*/
static INLINE TOD
host_tod (void)
{
register TOD result;
register U64 temp;
/* Use the same clock source as host_ETOD; refer to host_ETOD in clock.c for
* additional comments.
*/
#if !defined(_MSVC_) && !defined(CLOCK_REALTIME)
{
struct timeval time;
gettimeofday(&time, NULL); /* Get current host time */
result = time.tv_usec << 4; /* Adjust microseconds to bit-59 */
temp = time.tv_sec; /* Load seconds */
}
#else
{
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
result = time.tv_nsec; /* Adjust nanoseconds to bit-59 and */
result <<= 1; /* divide by 1000 (bit-shift compressed) */
result /= 125; /* ... */
temp = time.tv_sec; /* Load seconds */
}
#endif
temp *= ETOD_SEC; /* Convert seconds to ETOD format */
result += temp; /* Add seconds */
result += ETOD_1970; /* Adjust to open source epoch of 1970 */
return ( result );
}
static INLINE TOD
ETOD2tod (const ETOD ETOD)
{
return ( (ETOD.high << 8) | (ETOD.low >> 56) );
}
static INLINE TOD
ETOD2TOD (const ETOD ETOD)
{
return ETOD2tod(ETOD);
}
static INLINE U64
ETOD2us (const ETOD ETOD)
{
return (ETOD.high >> 4);
}
#endif
DLL_EXPORT
void ARCH_DEP(store_int_timer) (REGS *);
void ARCH_DEP(store_int_timer_nolock) (REGS *);
DLL_EXPORT
void ARCH_DEP(fetch_int_timer) (REGS *);
void ARCH_DEP(set_gross_s_rate) (REGS *);
void ARCH_DEP(set_fine_s_rate) (REGS *);
void ARCH_DEP(set_tod_offset) (REGS *);
void ARCH_DEP(adjust_tod_offset) (REGS *);
void ARCH_DEP(query_physical_clock) (REGS *);
void ARCH_DEP(query_steering_information) (REGS *);
void ARCH_DEP(query_tod_offset) (REGS *);
void ARCH_DEP(query_available_functions) (REGS *);
_CLOCK_EXTERN ETOD tod_value; /* Bits 0-7 TOD clock epoch */
/* Bits 8-63 TOD bits 0-55 */
/* Bits 64-111 TOD bits 56-103 */
_CLOCK_EXTERN S64 tod_epoch; /* Bits 0-7 TOD clock epoch */
/* Bits 8-63 offset bits 0-55 */
_CLOCK_EXTERN ETOD hw_tod; /* Hardware clock */
#define TOD_CLOCK(_regs) \
((tod_value.high & 0x00FFFFFFFFFFFFFFULL) + (_regs)->tod_epoch)
#define CPU_TIMER(_regs) \
(cpu_timer(_regs))
//----------------------------------------------------------------------
//
// Interval Timer Conversions to/from Extended TOD Clock Values
//
// S/360 - Decrementing at 50 or 60 cycles per second, depending on line
// frequency, effectively decrementing at 1/300 second in bit
// position 23.
//
// S/370 - Decrementing at 1/300 second in bit position 23.
//
// Conversions:
//
// ITIMER -> ETOD = (units * ETOD_SEC) / (300 << 8)
// = (units * 16000000) / 76800
// = (units * 625) / 3
//
// ETOD -> ITIMER = (units * (300 << 8)) / ETOD_SEC
// = (units * 768) / 16000000
// = (units * 3) / 625
//
// References:
//
// A22-6821-7 IBM System/360 Principles of Operation, Timer Feature,
// p. 17.1
// GA22-6942-1 IBM System/370 Model 155 Functional Characteristics,
// Interval Timer, p. 7
//
#define ITIMER_TO_TOD(_units) \
(((S64)(_units) * 625) / 3)
#define TOD_TO_ITIMER(_units) \
((S32)(((S64)(_units) * 3) / 625))
#define INT_TIMER(_regs) \
((S32)TOD_TO_ITIMER((S64)((_regs)->int_timer - hw_tod.high)))
#define ITIMER_ACCESS(_addr, _len) \
(unlikely(unlikely((_addr) < 84) && (((_addr) + (_len)) >= 80)))
#undef ITIMER_UPDATE
#undef ITIMER_SYNC
#if defined(FEATURE_INTERVAL_TIMER)
#define ITIMER_UPDATE(_addr, _len, _regs) \
do { \
if( ITIMER_ACCESS((_addr), (_len)) ) \
ARCH_DEP(fetch_int_timer) ((_regs)); \
} while(0)
#define ITIMER_SYNC(_addr, _len, _regs) \
do { \
if( ITIMER_ACCESS((_addr), (_len)) ) \
ARCH_DEP(store_int_timer) ((_regs)); \
} while (0)
#else
#define ITIMER_UPDATE(_addr, _len, _regs)
#define ITIMER_SYNC(_addr, _len, _regs)
#endif