-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
49 lines (40 loc) · 2.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from RobotSimulation import RobotSimulation
import matplotlib.pyplot as plt
import random
def main():
N = 50 # Number of robots
parameters = {
#The parameters have to be set as is indicated in the paper https://arxiv.org/abs/2310.19511.
"R_circle": 0, # If greater than 0, robots in a circle (radius of the circle)
# If equal to 0, robots in a random room
"radius": 1, # Half of the sensing radius: dimension of the cells r_{s,i}=r_{s}
"xlim": (0, 10), # Random room dimensions on the X-axis
"ylim": (0, 10), # Random room dimensions on the Y-axis
"N": N, # Number of robots
"num_steps": 5000, # Number of simulation steps
"dx": 0.075, # Space discretization [It introduce an approximation. The lower the better, but it is computationally expensive]
"dt": 0.033, # Time discretization
"d1": 0.1, # d1 eq. (8)
"d3": 0.1, # d3 eq. (9)
"beta_min": 0.1, # Minimum value for spreading factor rho
"betaD": [0.5]*N, # Desired spreading factor \rho^D
"size": [random.uniform(0.1,0.1) for _ in range(N)], # Robots encumbrance \delta
"k": [20]*N, # Control parameter k_p
"flag_plot": 1,
"write_file": 1,
"v_max": [5]*N, # Maximum velocity for each robot
"N_h": 0, # Number of non-cooperative, not used
"k_h": 6, # not used
"manual": 0, # if you want to set initial positions and goals manually set to 1
"waiting_time": 400, # waiting time after all the robots enter their goal regions.
"h":1,
}
# Create an instance of RobotSimulation
robot_simulation = RobotSimulation(parameters)
# Initialize the simulation
robot_simulation.initialize_simulation()
# Main simulation loop
while robot_simulation.flag_convergence < robot_simulation.P["waiting_time"] and robot_simulation.step < robot_simulation.P["num_steps"]:
robot_simulation.simulate_step()
if __name__ == "__main__":
main()