See k2-fsa#1254 for more details.
- Non-streaming
- normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M
You can find a pretrained model, training logs, decoding logs, and decoding results at: https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
The tensorboard log for training is available at https://wandb.ai/yifanyeung/icefall-asr-gigaspeech-zipformer-2023-10-20
You can use https://github.com/k2-fsa/sherpa to deploy it.
decoding method | test-clean | test-other | comment |
---|---|---|---|
greedy_search | 10.31 | 10.50 | --epoch 30 --avg 9 |
modified_beam_search | 10.25 | 10.38 | --epoch 30 --avg 9 |
fast_beam_search | 10.26 | 10.48 | --epoch 30 --avg 9 |
The training command is:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--causal 0 \
--subset XL \
--max-duration 700 \
--use-transducer 1 \
--use-ctc 0 \
--lr-epochs 1 \
--master-port 12345
The decoding command is:
export CUDA_VISIBLE_DEVICES=0
# greedy search
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method greedy_search
# modified beam search
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4
# fast beam search (one best)
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
Conformer encoder + non-recurrent decoder. The encoder is a reworked version of the conformer encoder, with many changes. The decoder contains only an embedding layer, a Conv1d (with kernel size 2) and a linear layer (to transform tensor dim). k2 pruned RNN-T loss is used.
The best WER, as of 2022-05-12, for the gigaspeech is below
Results are:
Dev | Test | |
---|---|---|
greedy search | 10.51 | 10.73 |
fast beam search | 10.50 | 10.69 |
modified beam search | 10.40 | 10.51 |
To reproduce the above result, use the following commands for training:
cd egs/gigaspeech/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--max-duration 120 \
--num-workers 1 \
--world-size 8 \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--use-fp16 True
and the following commands for decoding:
# greedy search
./pruned_transducer_stateless2/decode.py \
--iter 3488000 \
--avg 20 \
--decoding-method greedy_search \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 600
# fast beam search
./pruned_transducer_stateless2/decode.py \
--iter 3488000 \
--avg 20 \
--decoding-method fast_beam_search \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 600
# modified beam search
./pruned_transducer_stateless2/decode.py \
--iter 3488000 \
--avg 15 \
--decoding-method modified_beam_search \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 600
Pretrained model is available at https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2
The tensorboard log for training is available at https://tensorboard.dev/experiment/zmmM0MLASnG1N2RmJ4MZBw/
The best WER, as of 2022-04-06, for the gigaspeech is below
Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring:
Dev | Test | |
---|---|---|
WER | 10.47 | 10.58 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
ngram_lm_scale | attention_scale |
---|---|
0.5 | 1.3 |
To reproduce the above result, use the following commands for training:
cd egs/gigaspeech/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./conformer_ctc/train.py \
--max-duration 120 \
--num-workers 1 \
--world-size 8 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500
and the following command for decoding:
./conformer_ctc/decode.py \
--epoch 18 \
--avg 6 \
--method attention-decoder \
--num-paths 1000 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500 \
--max-duration 20 \
--num-workers 1
Results using HLG decoding + whole lattice rescoring:
Dev | Test | |
---|---|---|
WER | 10.51 | 10.62 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
lm_scale |
---|
0.2 |
To reproduce the above result, use the training commands above, and the following command for decoding:
./conformer_ctc/decode.py \
--epoch 18 \
--avg 6 \
--method whole-lattice-rescoring \
--num-paths 1000 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500 \
--max-duration 20 \
--num-workers 1
Note: the whole-lattice-rescoring
method is about twice as fast as the attention-decoder
method, with slightly worse WER.
Pretrained model is available at https://huggingface.co/wgb14/icefall-asr-gigaspeech-conformer-ctc
The tensorboard log for training is available at https://tensorboard.dev/experiment/rz63cmJXSK2fV9GceJtZXQ/