-
Notifications
You must be signed in to change notification settings - Fork 0
/
Session3_5.py
479 lines (424 loc) · 21.5 KB
/
Session3_5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
"""
GPU notes:
reducing from 32 to 16 bit will increase by 8x and with bfloat 16 will increase by 16x(Use Tensor core or normal core
do read about bfloat and float it had a nice image showing cutting down precision bits
and generally INT 8 used in inference(production) and float 16 in training
"""
"""
Time history: RTX3050
1. 10k, 400
2. torch.set_float32_matmul_precision('high') - 6k, 700 (~2x)
3. with torch.autocast(device_type='cuda', dtype=torch.bfloat16): 4.5k, 900 (~2.3x)
4. torch.compile(model) - not availabble on windows it could have increased by 10x
5. Flash Attention - 1.4k, 2000 (time is faster but memory is same)
6. changed vocab size to 50304 - 1.2k, 2000 (little faster)
7. gradient accumulation - step 9: loss 7.5856 | dt 6795.20ms | tokens/sec 1205.56 | norm 2.46 | lr 6.00e-04 | tokens 8,192
"""
"""
Session3: controlling lr and weight decay
num decayed parameter tensors: 50, with 124,354,560 parameters
num non-decayed parameter tensors: 98, with 121,344 parameters
"""
"""
Clarifications : 0.5M batch size in our code is 0.5M tokens in a batch
so 0.5M/T
I cant use 0.5M batch size because of memory constraints
so there is a technique called gradient accumulation which will run serially but will accumulate the gradients and then do the step
"""
from dataclasses import dataclass
import torch
import torch.distributed
import torch.nn as nn
from torch.nn import functional as F
import math
import tiktoken
import time
import inspect
from hellaswag import render_example, iterate_examples
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
#not really a bias more of a mask but follwing the original code
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
"""attn = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # (B, nh, T, T)
attn = attn.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
attn = F.softmax(attn, dim=-1)
y = attn @ v # (B, nh, T, T) @ (B, nh, T, hs) -> (B, nh, T, hs)
"""
# FlashAttention is a method to compute attention with lower memory usage and faster speed.
# It uses a combination of tiling and recomputation to reduce the memory footprint.
# This allows for larger batch sizes and sequence lengths during training and inference.
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# # output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
#some bug see video 1:02:00
#weight sharing scheme
#because of this bug 30% of the weights are not shared but after doing its wroking better--> 768 * 50257 = 40M which is 30% of 124M
#the issue was the token embedding below of arch (below the box in paper) has the same size as the lm_head which is top after box so pytorch thinks its pointing to the same shape and identical tensor but without writing the below code we r not keeping it same so make it same and in paper they mentioned they want it be to identical
self.transformer.wte.weight = self.lm_head.weight
#initialize params
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5 # remeber from previous playing code why its divided because the std is increasing but we bring to near to 1 and 2* comes from self attn amd mlp see dunction of forward in block class
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) #0.02 because roughly d(model) size --> 1/sqrt(dmodelsize) ~ 0.02
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
# idx of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward model size {T} > {self.config.block_size}"
# forward the tokens and position embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) #Shape (T)
pos_emb = self.transformer.wpe(pos) #Positional embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) #Token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb
# forward the network
for block in self.transformer.h:
x = block(x)
# forward the final layer norm
x = self.transformer.ln_f(x)
# forward the language model head
logits = self.lm_head(x) #Shape (B, T, vocab_size)
loss = None
if targets is not None:
targets = targets.long()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
config = GPTConfig()
model = GPT(config)
sd = model.state_dict()
# print(sd)
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('attn.bias') ]
return model
# decay - wirghts participate in matrix mul, embeddings , no_decay - bias, 1D tensors, layernorm
#so without applying this fucntion we are applying weight decay to all the parameters which will cause problem because we forcing to distriubute the weight decay to all the parameters
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
# print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
# print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# if master_process:
# print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
# print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
# fused is a custom kernel that fuses the elementwise operation and the step into a single kernel basically it does the same thing but in one go
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
# if master_process:
# print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
num_return_sequences = 5 # number of sentences to generate
max_length = 30 # maximum length of the sentence
import numpy as np
def load_tokens(shard_path):
# Load the numpy array from the file
npt = np.load(shard_path)
# Convert the NumPy array to a compatible type (e.g., int32 or int64)
npt = npt.astype(np.int32) # Or np.int64 if needed
# Create a PyTorch tensor from the NumPy array
ptt = torch.tensor(npt, dtype=torch.int32) # Or dtype=torch.int64 if you used np.int64
return ptt
import os
class DataLoaderLite:
def __init__(self, B, T, split):
self.B = B
self.T = T
assert split in {'train', 'val'}
# get the shard filenames
data_root = "edu_fineweb10B"
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found for split {split}"
print(f"found {len(shards)} shards for split {split}")
self.reset()
def reset(self):
# state, init at shard zero
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position:self.current_position+B*T+1]
x = buf[:-1].view(B, T)
y = buf[1:].view(B, T)
self.current_position += B*T
if self.current_position+ B*T+1 > len(self.tokens):
self.current_position = 0
return x, y
# -----------------------------------------------------------------------------
# helper function for HellaSwag eval
# takes tokens, mask, and logits, returns the index of the completion with the lowest loss
def get_most_likely_row(tokens, mask, logits):
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred_norm = avg_loss.argmin().item()
return pred_norm
# gpt logits
model = GPT(GPTConfig(vocab_size=50304)) #nice number not ugly
model = model.to('cuda')
# model = torch.compile(model) #makes it faster doesnt use python interpretar like trying to intrepret one by one but compile has context of full code
#in technical terms instead by mulitple read/reads from gpu to cpu and back to gpu it does in one go
#cosine decay given in gpt3 paper
max_lr = 6e-4
min_lr = max_lr * 0.1
# warmup_steps = 10
warmup_steps = 715 #from ref gpt3 paper
# max_steps = 10
max_steps = 50 #for gpt 10e9/2**19
def get_lr(it):
# 1 . Linear warmup for warmup iterations
if it < warmup_steps:
return max_lr * (it+1) / warmup_steps
# 2 . if it > lr_decay_iters, return min_lr
if it >= max_steps:
return min_lr
# 3 . in between, do cosine decay to min_lr
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (max_lr - min_lr)
torch.manual_seed(1337)
torch.cuda.manual_seed(1337)
# train_loader = DataLoaderLite(4, 32)
# train_loader = DataLoaderLite(16//2, 1024//2)
# gradient accumulation
# total_batch_size = 524288 # 0.5M tokens in a batch
total_batch_size = 4*1024 # 8k tokens in a batch for my pc
B = 4 # micro batch size
T = 1024 # sequence length
assert total_batch_size % (B*T) == 0, "Make sure total batch size is divisible by B*T"
grad_accum_steps = total_batch_size // (B*T)
print(f"gradient accumulation steps: {grad_accum_steps}")
print(f"Calculating {grad_accum_steps} times before doing a step")
train_loader = DataLoaderLite(B, T, split='train')
val_loader = DataLoaderLite(B=B, T=T, split="val")
enc = tiktoken.get_encoding("gpt2")
torch.set_float32_matmul_precision('high')
# optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4) #session2
# optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8) #gpt3 paper
optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type='cuda')
# create the log directory we will write checkpoints to and log to
log_dir = "log"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"log.txt")
with open(log_file, "w") as f: # open for writing to clear the file
pass
for i in range(max_steps):
t0 = time.time()
last_step = (i == max_steps - 1)
#once in a while evaluate the model
if i % 5 == 0 or last_step:
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss_accum = 0.0
val_loss_steps = 20
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to('cuda'), y.to('cuda')
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
print(f"validation loss: {val_loss_accum.item():.4f}")
with open(log_file, "a") as f:
f.write(f"{i} val {val_loss_accum.item():.4f}\n")
if i > 0 and (i % 5000 == 0 or last_step):
# optionally write model checkpoints
checkpoint_path = os.path.join(log_dir, f"model_{i:05d}.pt")
checkpoint = {
'model': model.state_dict(),
'config': model.config,
'step': i,
'val_loss': val_loss_accum.item()
}
# you might also want to add optimizer.state_dict() and
# rng seeds etc., if you wanted to more exactly resume training
torch.save(checkpoint, checkpoint_path)
# once in a while evaluate hellaswag
if (i % 250 == 0 or last_step):
num_correct_norm = 0
num_total = 0
for i, example in enumerate(iterate_examples("val")):
# render the example into tokens and labels
_, tokens, mask, label = render_example(example)
tokens = tokens.to('cuda')
mask = mask.to('cuda')
# get the logits
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(tokens)
pred_norm = get_most_likely_row(tokens, mask, logits)
num_total += 1
num_correct_norm += int(pred_norm == label)
num_total = torch.tensor(num_total, dtype=torch.long, device='cuda')
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device='cuda')
# torch.distributed.all_reduce(num_total, op=torch.distributed.ReduceOp.SUM)
# torch.distributed.all_reduce(num_correct_norm, op=torch.distributed.ReduceOp.SUM)
num_total = num_total.item()
num_correct_norm = num_correct_norm.item()
acc_norm = num_correct_norm / num_total
print(f"HellaSwag accuracy: {num_correct_norm}/{num_total}={acc_norm:.4f}")
with open(log_file, "a") as f:
f.write(f"{i} hella {acc_norm:.4f}\n")
# once in a while generate from the model (except step 0, which is noise)
if ((i > 0 and i % 5 == 0) or last_step):
model.eval()
num_return_sequences = 4
max_length = 32
tokens = enc.encode("Hello, I'm a language model,")
tokens = torch.tensor(tokens, dtype=torch.long)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
xgen = tokens.to('cuda')
sample_rng = torch.Generator(device='cuda')
while xgen.size(1) < max_length:
# forward the model to get the logits
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(xgen) # (B, T, vocab_size)
# take the logits at the last position
logits = logits[:, -1, :] # (B, vocab_size)
# get the probabilities
probs = F.softmax(logits, dim=-1)
# do top-k sampling of 50 (huggingface pipeline default)
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# select a token from the top-k probabilities
# note: multinomial does not demand the input to sum to 1
ix = torch.multinomial(topk_probs, 1, generator=sample_rng) # (B, 1)
# gather the corresponding indices
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
# append to the sequence
xgen = torch.cat((xgen, xcol), dim=1)
# print the generated text
for i in range(num_return_sequences):
# print("generated:")
tokens = xgen[i, :max_length].tolist()
# print(tokens)
decoded = enc.decode(tokens)
print(decoded)
# training loop
model.train()
optimizer.zero_grad()
loss_accum = 0.0
for micro_step in range(grad_accum_steps):
x, y = train_loader.next_batch()
x, y = x.to('cuda'), y.to('cuda')
optimizer.zero_grad()
with torch.autocast(device_type='cuda', dtype=torch.bfloat16): #parameters are in float32 but activations are in bfloat16 Check what converts to bfloat and what remains same
logits, loss = model(x, y)
# import code; code.interact(local=locals())
loss = loss / grad_accum_steps
loss_accum += loss.detach() # detaching the graph so that i use only value and not store the graph
loss.backward() # remeber the issue loss reduction mean
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) #clip gradients to avoid exploding gradients
lr = get_lr(i)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
torch.cuda.synchronize() #waiting for gpu to finish
t1 = time.time()
dt = (t1 - t0)*1000
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps
tokens_per_sec = (train_loader.B * train_loader.T) / (t1-t0)
print(f"step {i}: loss {loss.item():.4f} | dt {dt:.2f}ms | tokens/sec {tokens_per_sec:.2f} | norm {norm:.2f} | lr {lr:.2e}")
with open(log_file, "a") as f:
f.write(f"{i} train {loss_accum.item():.4f}\n")