forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrt_utils.hpp
260 lines (235 loc) · 8.19 KB
/
trt_utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include "onnx2trt.hpp"
#include "Status.hpp"
#include "TensorOrWeights.hpp"
#include <NvInfer.h>
#include <cassert>
#include <cmath>
namespace onnx2trt {
inline int get_dtype_size(nvinfer1::DataType trt_dtype) {
switch( trt_dtype ) {
case nvinfer1::DataType::kFLOAT: return 4;
case nvinfer1::DataType::kINT8: return 1;
case nvinfer1::DataType::kHALF: return 2;
#if NV_TENSORRT_MAJOR >= 4
case nvinfer1::DataType::kINT32: return 4;
#endif
// TODO: Some sort of error handling
default: return -1;
//throw std::invalid_argument("Unsupported TRT data type: " +
// std::to_string((int)trt_dtype));
}
}
inline int64_t get_shape_size(nvinfer1::Dims shape) {
// Returns total number of elements in shape
if( shape.nbDims == 0 ) {
return 0;
}
int64_t count = 1;
for( int d=0; d<shape.nbDims; ++d ) {
count *= shape.d[d];
}
return count;
}
inline nvinfer1::Dims insert_dim(nvinfer1::Dims const& dims, int idx, int value) {
assert(idx < dims.nbDims + 1);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims + 1;
for( int i=0; i<idx; ++i ) {
new_dims.d[i] = dims.d[i];
new_dims.type[i] = dims.type[i];
}
new_dims.d[idx] = value;
for( int i=idx+1; i<new_dims.nbDims; ++i ) {
new_dims.d[i] = dims.d[i - 1];
new_dims.type[i] = dims.type[i - 1];
}
return new_dims;
}
inline nvinfer1::Dims remove_dim(nvinfer1::Dims const& dims, int idx) {
assert(idx < dims.nbDims);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims - 1;
for( int i=0; i<idx; ++i ) {
new_dims.d[i] = dims.d[i];
new_dims.type[i] = dims.type[i];
}
for( int i=idx; i<new_dims.nbDims; ++i ) {
new_dims.d[i] = dims.d[i + 1];
new_dims.type[i] = dims.type[i + 1];
}
// Special case for scalar result (i.e., there was only one dim originally)
if( new_dims.nbDims == 0 ) {
new_dims.nbDims = 1;
new_dims.d[0] = 1;
new_dims.type[0] = nvinfer1::DimensionType::kCHANNEL;
}
return new_dims;
}
// Adds unitary dimensions on the left
inline nvinfer1::Dims expand_dims(nvinfer1::Dims const& dims, int ndim_new) {
assert(dims.nbDims <= ndim_new);
nvinfer1::Dims new_dims;
new_dims.nbDims = ndim_new;
int j = 0;
for( ; j<ndim_new - dims.nbDims; ++j ) {
new_dims.d[j] = 1;
}
for( int i=0; i<dims.nbDims; ++i, ++j ) {
new_dims.d[j] = dims.d[i];
}
return new_dims;
}
inline nvinfer1::Permutation
remove_first_dim(nvinfer1::Permutation const& perm) {
assert(perm.order[0] == 0);
nvinfer1::Permutation new_perm;
int ndim = nvinfer1::Dims::MAX_DIMS;
for( int i=0; i<ndim-1; ++i ) {
new_perm.order[i] = perm.order[i + 1] - 1;
}
return new_perm;
}
inline nvinfer1::Dims squeeze_trailing_dims(nvinfer1::Dims const& dims) {
nvinfer1::Dims new_dims = dims;
// Note: TRT requires at least one dimension, so we don't squeeze [1]->[]
while( new_dims.nbDims > 1 && new_dims.d[new_dims.nbDims - 1] == 1 ) {
--new_dims.nbDims;
}
return new_dims;
}
inline nvinfer1::Dims set_dims_CHW(nvinfer1::Dims const& dims) {
nvinfer1::Dims new_dims = dims;
assert(new_dims.nbDims > 0);
new_dims.type[0] = nvinfer1::DimensionType::kCHANNEL;
for( int i=1; i<new_dims.nbDims; ++i ) {
new_dims.type[i] = nvinfer1::DimensionType::kSPATIAL;
}
return new_dims;
}
inline nvinfer1::DimsHW operator-(nvinfer1::DimsHW dims) {
return nvinfer1::DimsHW(-dims.h(), -dims.w());
}
// Note: These are used for checking beg_padding == end_padding
inline bool operator==(nvinfer1::Dims const& a, nvinfer1::Dims const& b) {
if( a.nbDims != b.nbDims ) {
return false;
}
for( int i=0; i<a.nbDims; ++i ) {
if( a.d[i] != b.d[i] ) {
return false;
}
}
return true;
}
inline bool operator!=(nvinfer1::Dims const& a, nvinfer1::Dims const& b) {
return !(a == b);
}
inline nvinfer1::DimsHW get_DimsHW_from_CHW(nvinfer1::Dims dims) {
assert(dims.nbDims == 3);
return nvinfer1::DimsHW(dims.d[1], dims.d[2]);
}
inline TensorOrWeights identity(IImporterContext* ctx,
TensorOrWeights input) {
if( input.is_weights() ) {
return input;
} else {
auto* layer = ctx->network()->addShuffle(input.tensor());
if( !layer ) {
return nullptr;
}
return layer->getOutput(0);
}
}
namespace detail {
template<typename T, class Func>
void apply_unary_function(T const* idata,
T* odata,
size_t count,
Func func) {
for( size_t i=0; i<count; ++i ) {
odata[i] = func(idata[i]);
}
}
template<typename T>
Status apply_unary_function(T const* idata,
T* odata,
size_t count,
nvinfer1::UnaryOperation func) {
#define TRTUTILS_APPLY_UNARY_FUNC(func) \
apply_unary_function(idata, odata, count, [](T x) { return func; })
using namespace nvinfer1;
switch( func ) {
case UnaryOperation::kEXP: TRTUTILS_APPLY_UNARY_FUNC(exp(x)); break;
case UnaryOperation::kLOG: TRTUTILS_APPLY_UNARY_FUNC(log(x)); break;
case UnaryOperation::kSQRT: TRTUTILS_APPLY_UNARY_FUNC(sqrt(x)); break;
case UnaryOperation::kRECIP: TRTUTILS_APPLY_UNARY_FUNC(T(1) / x); break;
case UnaryOperation::kABS: TRTUTILS_APPLY_UNARY_FUNC(fabs(x)); break;
case UnaryOperation::kNEG: TRTUTILS_APPLY_UNARY_FUNC(-x); break;
default: return MAKE_ERROR("Unsupported unary function",
ErrorCode::kUNSUPPORTED_NODE);
}
return Status::success();
#undef TRTUTILS_APPLY_UNARY_FUNC
}
} // namespace detail
// TODO: This actually uses a combination of ONNX and TRT, so it may belong
// in a different file.
inline Status apply_unary_function(ShapedWeights const& iweights,
ShapedWeights* oweights,
nvinfer1::UnaryOperation func) {
assert(iweights.type == oweights->type);
assert(iweights.shape == oweights->shape);
void const* idata = iweights.values;
void* odata = const_cast<void*>(oweights->values);
size_t count = iweights.count();
switch( iweights.type ) {
case ::ONNX_NAMESPACE::TensorProto::FLOAT:
return detail::apply_unary_function(
(float*)idata, (float*)odata, count, func);
default:
return MAKE_ERROR("Unsupported weights data type for unary function",
ErrorCode::kUNSUPPORTED_NODE);
}
}
ValueOrStatus<std::vector<TensorOrWeights>>
inline apply_unary_function(IImporterContext* ctx,
TensorOrWeights& input,
nvinfer1::UnaryOperation func) {
if( input.is_weights() ) {
ShapedWeights const& weights = input.weights();
ShapedWeights new_weights =
ctx->createTempWeights(weights.type, weights.shape);
// TODO: This is a bit ugly (but safe because they share the same values
// pointer).
TRT_CHECK(apply_unary_function(weights, &new_weights, func));
return {{new_weights}};
} else {
auto* layer = ctx->network()->addUnary(
input.tensor(), func);
ASSERT(layer, ErrorCode::kUNSUPPORTED_NODE);
return {{layer->getOutput(0)}};
}
}
} // namespace onnx2trt