forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plugin.cpp
152 lines (136 loc) · 6 KB
/
plugin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "plugin.hpp"
#include "serialize.hpp"
#include <NvInferPlugin.h>
namespace onnx2trt {
// ========================= Plugin =====================
void Plugin::serializeBase(void*& buffer) {
serialize_value(&buffer, _input_dims);
serialize_value(&buffer, _max_batch_size);
serialize_value(&buffer, _data_type);
serialize_value(&buffer, _data_format);
}
void Plugin::deserializeBase(void const*& serialData, size_t& serialLength) {
deserialize_value(&serialData, &serialLength, &_input_dims);
deserialize_value(&serialData, &serialLength, &_max_batch_size);
deserialize_value(&serialData, &serialLength, &_data_type);
deserialize_value(&serialData, &serialLength, &_data_format);
}
size_t Plugin::getBaseSerializationSize() {
return (serialized_size(_input_dims) +
serialized_size(_max_batch_size) +
serialized_size(_data_type) +
serialized_size(_data_format));
}
bool Plugin::supportsFormat(nvinfer1::DataType type,
nvinfer1::PluginFormat format) const {
return ((type == nvinfer1::DataType::kFLOAT || type == nvinfer1::DataType::kHALF) &&
(format == nvinfer1::PluginFormat::kNCHW));
}
void Plugin::configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs,
const nvinfer1::Dims* outputDims, int nbOutputs,
nvinfer1::DataType type,
nvinfer1::PluginFormat format,
int maxBatchSize) {
_data_type = type;
_data_format = format;
_input_dims.assign(inputDims, inputDims + nbInputs);
_max_batch_size = maxBatchSize;
}
// ========================= PluginAdapter =====================
int PluginAdapter::getNbOutputs() const {
return _plugin->getNbOutputs();
}
nvinfer1::Dims PluginAdapter::getOutputDimensions(int index,
const nvinfer1::Dims *inputDims,
int nbInputs) {
return _plugin->getOutputDimensions(index, inputDims, nbInputs);
}
void PluginAdapter::serialize(void* buffer) {
return _plugin->serialize(buffer);
}
size_t PluginAdapter::getSerializationSize() {
return _plugin->getSerializationSize();
}
bool PluginAdapter::supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const
{
if (_ext)
return _ext->supportsFormat(type, format);
else
return (type == nvinfer1::DataType::kFLOAT &&
format == nvinfer1::PluginFormat::kNCHW);
}
void PluginAdapter::configureWithFormat(const nvinfer1::Dims *inputDims, int nbInputs,
const nvinfer1::Dims *outputDims, int nbOutputs,
nvinfer1::DataType type,
nvinfer1::PluginFormat format,
int maxBatchSize) {
if (_ext)
return _ext->configureWithFormat(inputDims, nbInputs,
outputDims, nbOutputs,
type, format, maxBatchSize);
else
return _plugin->configure(inputDims, nbInputs,
outputDims, nbOutputs,
maxBatchSize);
}
size_t PluginAdapter::getWorkspaceSize(int maxBatchSize) const {
return _plugin->getWorkspaceSize(maxBatchSize);
}
int PluginAdapter::initialize() { return _plugin->initialize(); }
void PluginAdapter::terminate() {
if (_plugin) {
_plugin->terminate();
}
}
int PluginAdapter::enqueue(int batchSize,
const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) {
return _plugin->enqueue(batchSize, inputs, outputs, workspace, stream);
}
// ========================= NvPlugin =====================
const char* NvPlugin::getPluginType() const {
using namespace nvinfer1;
switch( _plugin->getPluginType() ) {
case PluginType::kFASTERRCNN: return "FasterRCNN";
case PluginType::kNORMALIZE: return "Normalize";
case PluginType::kPERMUTE: return "Permute";
case PluginType::kPRIORBOX: return "SSDPriorBox";
case PluginType::kSSDDETECTIONOUTPUT: return "SSDDetectionOutput";
case PluginType::kCONCAT: return "Concat";
case PluginType::kPRELU: return "PRelu";
case PluginType::kYOLOREORG: return "YoloReorg";
case PluginType::kYOLOREGION: return "YoloRegion";
default: return "Unknown";
}
}
void NvPlugin::destroy() {
if (_plugin) {
#if NV_TENSORRT_MAJOR >= 4 // WAR for double-free issue with NvPlugins in TRT 3
_plugin->destroy();
#endif // NV_TENSORRT_MAJOR >= 4
_plugin = 0;
}
delete this;
}
} // namespace onnx2trt