forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
InstanceNormalization.hpp
89 lines (85 loc) · 3.5 KB
/
InstanceNormalization.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include "plugin.hpp"
#include "serialize.hpp"
#include <cudnn.h>
#include <vector>
typedef unsigned short half_type;
class InstanceNormalizationPlugin final : public onnx2trt::Plugin {
float _epsilon;
int _nchan;
std::vector<float> _h_scale;
std::vector<float> _h_bias;
float* _d_scale;
float* _d_bias;
bool _initialized;
cudnnHandle_t _cudnn_handle;
cudnnTensorDescriptor_t _x_desc, _y_desc, _b_desc;
protected:
void deserialize(void const* serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
deserialize_value(&serialData, &serialLength, &_epsilon);
deserialize_value(&serialData, &serialLength, &_nchan);
deserialize_value(&serialData, &serialLength, &_h_scale);
deserialize_value(&serialData, &serialLength, &_h_bias);
}
size_t getSerializationSize() override {
return (serialized_size(_epsilon) +
serialized_size(_nchan) +
serialized_size(_h_scale) +
serialized_size(_h_bias)) + getBaseSerializationSize();
}
void serialize(void *buffer) override {
serializeBase(buffer);
serialize_value(&buffer, _epsilon);
serialize_value(&buffer, _nchan);
serialize_value(&buffer, _h_scale);
serialize_value(&buffer, _h_bias);
}
public:
InstanceNormalizationPlugin(float epsilon,
nvinfer1::Weights const& scale,
nvinfer1::Weights const& bias);
InstanceNormalizationPlugin(void const* serialData, size_t serialLength) : _initialized(false) {
this->deserialize(serialData, serialLength);
}
const char* getPluginType() const override { return "InstanceNormalization"; }
bool supportsFormat(nvinfer1::DataType type,
nvinfer1::PluginFormat format) const override;
int getNbOutputs() const override { return 1; }
nvinfer1::Dims getOutputDimensions(int index,
const nvinfer1::Dims *inputDims,
int nbInputs) override {
assert(index == 0);
assert(inputDims);
assert(nbInputs == 1);
return *inputDims;
}
int initialize() override;
void terminate() override;
int enqueue(int batchSize,
const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) override;
size_t getWorkspaceSize(int maxBatchSize) const override;
~InstanceNormalizationPlugin();
};