From 47207eb920d775ff0a99bf4d670c37506b3ea22b Mon Sep 17 00:00:00 2001 From: Jeremy Kun Date: Tue, 11 Oct 2022 21:33:38 -0700 Subject: [PATCH] add rlwe_parameters and LWE reduction --- estimator/rlwe_parameters.py | 83 ++++++++++++++++++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 estimator/rlwe_parameters.py diff --git a/estimator/rlwe_parameters.py b/estimator/rlwe_parameters.py new file mode 100644 index 0000000..ad116c2 --- /dev/null +++ b/estimator/rlwe_parameters.py @@ -0,0 +1,83 @@ +# -*- coding: utf-8 -*- +import math +from sage.all import oo +from dataclasses import dataclass +from copy import copy + +from .lwe_parameters import LWEParameters +from .nd import NoiseDistribution + + +@dataclass +class RLWEParameters: + """The parameters for a Ring Learning With Errors problem instance.""" + + N: int #: The degree of the polynomial modulus x^N + 1 + q: int #: The modulus of the space Z/qZ the coefficients are in. + Xs: NoiseDistribution #: the distribution on Z/qZ from which the LWE secret is drawn. + Xe: NoiseDistribution #: the distribution on Z/qZ from which the error term is drawn. + + #: the number of LWE samples allowed to an attacker, + #: optionally `sage.all.oo` for allowing infinitely many samples. + m: int = oo + + tag: str = None #: a name for the patameter set + + def __post_init__(self, **kwds): + self.Xs = copy(self.Xs) + self.Xs.n = 1 # RLWE instances are a dot product of two polynomials. + + log_N = math.log2(self.N) + if not log_N.is_integer(): + raise ValueError( + "RLWE security estimation only supports power-of-2 polynomial " + f"modulus degrees, but {self.N} (log2={log_N}) was given to " + "RLWEParameters.") + + if self.m < oo: + self.Xe = copy(self.Xe) + self.Xe.n = self.m + + def as_lwe_params(self) -> LWEParameters: + """Reduce this instance of RLWE to LWE. + + This operates under the assumption that no current known attacks exploit the + ring structure of RLWE beyond its LWE structure. + + The reduction starts with an RLWE instance with sample + + a(x) = a_0 + a_1 x + ... + a_{N-1}x^{N-1} + + and secret key + + s(x) = s_0 + s_1 x + ... + s_{N-1}x^{N-1}, + + where b(x) = a(x)s(x) + m(x) + e(x) mod (x^N + 1). + + Noting that b_i x^i = sum_{j+k=i mod N} a_j s_k x^{j+k}, + (i.e., values have their sign inverted if j+k > N), the reduction converts + the instance to the following set of LWE samples: + + (a_0, -a_{N-1}, -a_{N-2}, ..., -a_1), + (a_1, a_0, -a_{N-1}, ..., -a_2), + (a_2, a_1, a_0, ..., -a_3), + ... ... + (a_{N-1}, a_{N-2}, a_{N-3}, ..., a_0), + + With secret s = (s_0, s_1, ..., s_{N-1}), + and b = (b_0, b_1, ..., b_{N-1}). + + As such, an attack against LWE with dimension N is also an attack against + RLWE for polynomials of degree N. + """ + return LWEParameters( + n=self.N, + q=self.q, + Xs=self.Xs, + Xe=self.Xe, + m=self.m, + tag=f"LWE_reduced_from_{self.tag}", + ) + + def __hash__(self): + return hash((self.N, self.q, self.Xs, self.Xe, self.m, self.tag))