-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention.py
78 lines (62 loc) · 2.66 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
from torch import nn
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size, embed_size, block_size, dropout=0.):
super().__init__()
self.query = nn.Linear(embed_size, head_size, bias=False)
self.key = nn.Linear(embed_size, head_size, bias=False)
self.value = nn.Linear(embed_size, head_size, bias=False)
self.dropout = nn.Dropout(dropout)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
#compute attn. scores
weight = q @ k.transpose(-1,-2) * C**-0.5 # (B,T,T)
#mask out upper half of the scores since this is decoder
weight = weight.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B,T,T)
#normalize to [0,1]
weight = torch.softmax(weight, dim=-1) # (B,T,T)
weight = self.dropout(weight) # (B,T,T)
v = self.value(x) # (B,T,C)
#apply attention scores to values
output = weight @ v # (B,T,C)
return output
class MultiHeadAttention(nn.Module):
'''combines multiple self-attention heads with a linear projection'''
def __init__(self, num_heads, head_size, embed_size, block_size, dropout=0.):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, embed_size, block_size, dropout) for _ in range(num_heads)])
self.proj = nn.Linear(embed_size, embed_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1) # (B,T,C)
out = self.proj(out) # (B,T,C)
out = self.dropout(out) # (B,T,C)
return out
class MLP(nn.Module):
def __init__(self, embed_size, dropout):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(embed_size, embed_size*4),
nn.ReLU(),
nn.Linear(embed_size*4, embed_size),
nn.Dropout(dropout)
)
def forward(self, x):
return self.layers(x)
class Block(nn.Module):
'''transformer block'''
def __init__(self, embed_size, num_heads, block_size, dropout):
super().__init__()
head_size = embed_size // num_heads
self.attn = MultiHeadAttention(num_heads, head_size, embed_size, block_size, dropout)
self.mlp = MLP(embed_size, dropout)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x