From e50c28b63fde4ec2d5a8a81da10ec41afb2f8d8f Mon Sep 17 00:00:00 2001 From: RandomDefaultUser Date: Tue, 26 Nov 2024 13:42:16 +0000 Subject: [PATCH] deploy: eed959c69a97d9bdc8b58c383f1a553353be2751 --- _modules/mala/common/parallelizer.html | 13 +- _modules/mala/common/parameters.html | 121 ++++-- _modules/mala/common/physical_data.html | 74 +++- .../datageneration/ofdft_initializer.html | 43 +- .../datageneration/trajectory_analyzer.html | 81 +++- .../mala/datahandling/data_converter.html | 58 +-- _modules/mala/datahandling/data_handler.html | 163 +++++--- .../mala/datahandling/data_handler_base.html | 16 +- _modules/mala/datahandling/data_scaler.html | 47 +++ _modules/mala/datahandling/data_shuffler.html | 16 +- .../datahandling/fast_tensor_dataset.html | 27 +- .../mala/datahandling/lazy_load_dataset.html | 116 +++--- .../lazy_load_dataset_single.html | 97 +++-- _modules/mala/datahandling/ldos_aligner.html | 33 +- .../multi_lazy_load_data_loader.html | 42 +- _modules/mala/datahandling/snapshot.html | 50 ++- _modules/mala/descriptors/atomic_density.html | 22 +- _modules/mala/descriptors/bispectrum.html | 64 ++- _modules/mala/descriptors/descriptor.html | 140 ++++--- .../descriptors/minterpy_descriptors.html | 24 +- _modules/mala/interfaces/ase_calculator.html | 48 ++- _modules/mala/network/acsd_analyzer.html | 108 ++--- _modules/mala/network/hyper_opt.html | 20 +- _modules/mala/network/hyper_opt_naswot.html | 177 ++++---- _modules/mala/network/hyper_opt_oat.html | 213 +++++----- _modules/mala/network/hyper_opt_optuna.html | 29 +- _modules/mala/network/hyperparameter.html | 31 +- _modules/mala/network/network.html | 62 ++- _modules/mala/network/objective_base.html | 60 ++- _modules/mala/network/objective_naswot.html | 16 +- _modules/mala/network/predictor.html | 16 +- _modules/mala/network/runner.html | 16 +- _modules/mala/network/tester.html | 34 +- _modules/mala/network/trainer.html | 241 +++++------ _modules/mala/targets/atomic_force.html | 5 + _modules/mala/targets/density.html | 19 +- _modules/mala/targets/dos.html | 6 + _modules/mala/targets/ldos.html | 8 +- _modules/mala/targets/target.html | 87 +++- api/mala.common.html | 23 +- api/mala.common.parallelizer.html | 14 +- api/mala.common.parameters.html | 194 +++++++-- api/mala.common.physical_data.html | 92 ++++- api/mala.datageneration.html | 10 + ...mala.datageneration.ofdft_initializer.html | 43 +- ...la.datageneration.trajectory_analyzer.html | 86 ++++ api/mala.datahandling.data_converter.html | 23 ++ api/mala.datahandling.data_handler.html | 134 +++++- api/mala.datahandling.data_handler_base.html | 34 ++ api/mala.datahandling.data_scaler.html | 165 ++++++++ ...mala.datahandling.fast_tensor_dataset.html | 19 + api/mala.datahandling.html | 65 +++ api/mala.datahandling.lazy_load_dataset.html | 33 ++ ...datahandling.lazy_load_dataset_single.html | 167 ++++++++ api/mala.datahandling.ldos_aligner.html | 27 +- api/mala.datahandling.snapshot.html | 156 ++++++- api/mala.descriptors.atomic_density.html | 6 - api/mala.descriptors.bispectrum.html | 6 - api/mala.descriptors.descriptor.html | 17 + api/mala.descriptors.html | 5 +- ...mala.descriptors.minterpy_descriptors.html | 11 +- api/mala.html | 160 +++++++- api/mala.interfaces.ase_calculator.html | 38 +- api/mala.interfaces.html | 2 + api/mala.network.html | 37 +- api/mala.network.hyper_opt.html | 11 + api/mala.network.hyper_opt_naswot.html | 35 +- api/mala.network.hyper_opt_oat.html | 48 +-- api/mala.network.hyper_opt_optuna.html | 43 ++ api/mala.network.hyperparameter.html | 70 +++- api/mala.network.network.html | 62 ++- api/mala.network.objective_base.html | 8 + api/mala.network.predictor.html | 12 + api/mala.network.runner.html | 44 ++ api/mala.network.tester.html | 51 +++ api/mala.network.trainer.html | 37 +- api/mala.targets.density.html | 11 +- api/mala.targets.dos.html | 8 + api/mala.targets.html | 18 + api/mala.targets.ldos.html | 9 + api/mala.targets.target.html | 218 +++++++++- api/modules.html | 160 +++++++- genindex.html | 384 ++++++++++++++++-- objects.inv | Bin 6378 -> 7320 bytes searchindex.js | 2 +- 85 files changed, 4182 insertions(+), 1059 deletions(-) diff --git a/_modules/mala/common/parallelizer.html b/_modules/mala/common/parallelizer.html index c6beafd8b..8a391c5d8 100644 --- a/_modules/mala/common/parallelizer.html +++ b/_modules/mala/common/parallelizer.html @@ -88,7 +88,6 @@

Source code for mala.common.parallelizer

 import os
 import warnings
 
-import torch
 import torch.distributed as dist
 
 use_ddp = False
@@ -254,6 +253,11 @@ 

Source code for mala.common.parallelizer

     LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     DEALINGS IN THE SOFTWARE.
+
+    Returns
+    -------
+    local_rank : int
+        The local rank of the current thread.
     """
     if use_ddp:
         return int(os.environ.get("LOCAL_RANK"))
@@ -293,7 +297,6 @@ 

Source code for mala.common.parallelizer

 
 
 
-# TODO: This is hacky, improve it.
 
[docs] def get_comm(): @@ -303,7 +306,7 @@

Source code for mala.common.parallelizer

     Returns
     -------
     comm : MPI.COMM_WORLD
-        A MPI communicator.
+        An MPI communicator.
 
     """
     return comm
@@ -333,7 +336,7 @@

Source code for mala.common.parallelizer

 
     Parameters
     ----------
-    values
+    values : object
         Values to be printed.
 
     sep : string
@@ -360,7 +363,7 @@ 

Source code for mala.common.parallelizer

 
     Parameters
     ----------
-    warning
+    warning : str
         Warning to be printed.
     min_verbosity : int
         Minimum number of verbosity for this output to still be printed.
diff --git a/_modules/mala/common/parameters.html b/_modules/mala/common/parameters.html
index 1677e13fe..1585d9ef8 100644
--- a/_modules/mala/common/parameters.html
+++ b/_modules/mala/common/parameters.html
@@ -262,7 +262,7 @@ 

Source code for mala.common.parameters

     @classmethod
     def from_json(cls, json_dict):
         """
-        Read this object from a dictionary saved in a JSON file.
+        Read parameters from a dictionary saved in a JSON file.
 
         Parameters
         ----------
@@ -328,6 +328,7 @@ 

Source code for mala.common.parameters

     ----------
     nn_type : string
         Type of the neural network that will be used. Currently supported are
+
             - "feed_forward" (default)
             - "transformer"
             - "lstm"
@@ -372,6 +373,10 @@ 

Source code for mala.common.parameters

         Number of heads to be used in Multi head attention network
         This should be a divisor of input dimension
         Default: None
+
+    dropout : float
+        Dropout rate for positional encoding in transformer.
+        Default: 0.1
     """
 
     def __init__(self):
@@ -384,7 +389,7 @@ 

Source code for mala.common.parameters

         # for LSTM/Gru
         self.no_hidden_state = False
         self.bidirection = False
-        
+
         # for LSTM/Gru + Transformer
         self.num_hidden_layers = 1
 
@@ -415,18 +420,52 @@ 

Source code for mala.common.parameters

         bispectrum descriptors. Default value for jmax is 5, so default value
         for twojmax is 10.
 
-    lammps_compute_file : string
-        Bispectrum calculation: LAMMPS input file that is used to calculate the
-        Bispectrum descriptors. If this string is empty, the standard LAMMPS input
-        file found in this repository will be used (recommended).
-
     descriptors_contain_xyz : bool
         Legacy option. If True, it is assumed that the first three entries of
         the descriptor vector are the xyz coordinates and they are cut from the
         descriptor vector. If False, no such cutting is peformed.
 
     atomic_density_sigma : float
-        Sigma used for the calculation of the Gaussian descriptors.
+        Sigma (=width) used for the calculation of the Gaussian descriptors.
+        Explicitly setting this value is discouraged if the atomic density is
+        used only during the total energy calculation and, e.g., bispectrum
+        descriptors are used for models. In this case, the width will
+        automatically be set correctly during inference based on model
+        parameters. This parameter mainly exists for debugging purposes.
+        If the atomic density is instead used for model training itself, this
+        parameter needs to be set.
+
+    atomic_density_cutoff : float
+        Cutoff radius used for atomic density calculation. Explicitly setting
+        this value is discouraged if the atomic density is used only during the
+        total energy calculation and, e.g., bispectrum descriptors are used
+        for models. In this case, the cutoff will automatically be set
+        correctly during inference based on model parameters. This parameter
+        mainly exists for debugging purposes. If the atomic density is instead
+        used for model training itself, this parameter needs to be set.
+
+    lammps_compute_file : str
+        Path to a LAMMPS compute file for the bispectrum descriptor
+        calculation. MALA has its own collection of compute files which are
+        used by default. Setting this parameter is thus not necessarys for
+        model training and inference, and it exists mainly for debugging
+        purposes.
+
+    minterpy_cutoff_cube_size : float
+        WILL BE DEPRECATED IN MALA v1.4.0 - size of cube for minterpy
+        descriptor calculation.
+
+    minterpy_lp_norm : int
+        WILL BE DEPRECATED IN MALA v1.4.0 - LP norm for minterpy
+        descriptor calculation.
+
+    minterpy_point_list : list
+        WILL BE DEPRECATED IN MALA v1.4.0 - list of points for minterpy
+        descriptor calculation.
+
+    minterpy_polynomial_degree : int
+        WILL BE DEPRECATED IN MALA v1.4.0 - polynomial degree for minterpy
+        descriptor calculation.
     """
 
     def __init__(self):
@@ -820,7 +859,7 @@ 

Source code for mala.common.parameters

     checkpoint_name : string
         Name used for the checkpoints. Using this, multiple runs
         can be performed in the same directory.
-        
+
     run_name : string
         Name of the run used for logging.
 
@@ -831,18 +870,18 @@ 

Source code for mala.common.parameters

         If True, then upon creating logging files, these will be saved
         in a subfolder of logging_dir labelled with the starting date
         of the logging, to avoid having to change input scripts often.
-        
+
     logger : string
         Name of the logger to be used.
         Currently supported are:
-        
+
             - "tensorboard": Tensorboard logger.
             - "wandb": Weights and Biases logger.
-    
+
     validation_metrics : list
         List of metrics to be used for validation. Default is ["ldos"].
         Possible options are:
-        
+
             - "ldos": MSE of the LDOS.
             - "band_energy": Band energy.
             - "band_energy_actual_fe": Band energy computed with ground truth Fermi energy.
@@ -853,44 +892,51 @@ 

Source code for mala.common.parameters

             - "density_relative": Rlectron density (MAPE).
             - "dos": Density of states.
             - "dos_relative": Density of states (MAPE).
-            
+
     validate_on_training_data : bool
         Whether to validate on the training data as well. Default is False.
-        
+
     validate_every_n_epochs : int
         Determines how often validation is performed. Default is 1.
 
-    inference_data_grid : list
-        List holding the grid to be used for inference in the form of
-        [x,y,z].
-
-    use_mixed_precision : bool
-        If True, mixed precision computation (via AMP) will be used.
-
     training_log_interval : int
         Determines how often detailed performance info is printed during
         training (only has an effect if the verbosity is high enough).
 
     profiler_range : list
         List with two entries determining with which batch/iteration number
-        the CUDA profiler will start and stop profiling. Please note that
-        this option only holds significance if the nsys profiler is used.
+         the CUDA profiler will start and stop profiling. Please note that
+         this option only holds significance if the nsys profiler is used.
+
+    inference_data_grid : list
+        Grid dimensions used during inference. Typically, these are automatically
+        determined by DFT reference data, and this parameter does not need to
+        be set. Thus, this parameter mainly exists for debugging purposes.
+
+    use_mixed_precision : bool
+        If True, mixed precision computation (via AMP) will be used.
+
+    l2_regularization : float
+        Weight decay rate for NN optimizer.
+
+    dropout : float
+        Dropout rate for positional encoding in transformer net.
     """
 
     def __init__(self):
         super(ParametersRunning, self).__init__()
         self.optimizer = "Adam"
-        self.learning_rate = 0.5
-        self.learning_rate_embedding = 10 ** (-4)
+        self.learning_rate = 10 ** (-5)
+        # self.learning_rate_embedding = 10 ** (-4)
         self.max_number_epochs = 100
-        self.verbosity = True
         self.mini_batch_size = 10
+        # self.snapshots_per_epoch = -1
 
-        self.l1_regularization = 0.0
+        # self.l1_regularization = 0.0
         self.l2_regularization = 0.0
         self.dropout = 0.0
-        self.batch_norm = False
-        self.input_noise = 0.0
+        # self.batch_norm = False
+        # self.input_noise = 0.0
 
         self.early_stopping_epochs = 0
         self.early_stopping_threshold = 0
@@ -899,10 +945,11 @@ 

Source code for mala.common.parameters

         self.learning_rate_patience = 0
         self._during_training_metric = "ldos"
         self._after_training_metric = "ldos"
-        self.use_compression = False
+        # self.use_compression = False
         self.num_workers = 0
         self.use_shuffling_for_samplers = True
         self.checkpoints_each_epoch = 0
+        # self.checkpoint_best_so_far = False
         self.checkpoint_name = "checkpoint_mala"
         self.run_name = ""
         self.logging_dir = "./mala_logging"
@@ -1133,6 +1180,15 @@ 

Source code for mala.common.parameters

         not recommended because it is file based and can lead to errors;
         With a suitable timeout it can be used somewhat stable though and
         help in HPC settings.
+
+    acsd_points : int
+        Parameter of the ACSD HyperparamterOptimization scheme. Controls
+        the number of point-pairs which are used to compute the ACSD.
+        An array of acsd_points*acsd_points will be computed, i.e., if
+        acsd_points=100, 100 points will be drawn at random, and thereafter
+        each of these 100 points will be compared with a new, random set
+        of 100 points, leading to 10000 points in total for the calculation
+        of the ACSD.
     """
 
     def __init__(self):
@@ -1351,6 +1407,9 @@ 

Source code for mala.common.parameters

     manual_seed: int
         If not none, this value is used as manual seed for the neural networks.
         Can be used to make experiments comparable. Default: None.
+
+    datageneration : ParametersDataGeneration
+        Parameters used for data generation routines.
     """
 
     def __init__(self):
diff --git a/_modules/mala/common/physical_data.html b/_modules/mala/common/physical_data.html
index a5891365b..943fa9f30 100644
--- a/_modules/mala/common/physical_data.html
+++ b/_modules/mala/common/physical_data.html
@@ -97,10 +97,27 @@ 

Source code for mala.common.physical_data

 [docs]
 class PhysicalData(ABC):
     """
-    Base class for physical data.
+    Base class for volumetric physical data.
 
     Implements general framework to read and write such data to and from
-    files.
+    files. Volumetric data is assumed to exist on a 3D grid. As such it
+    either has the dimensions [x,y,z,f], where f is the feature dimension.
+    All loading functions within this class assume such a 4D array. Within
+    MALA, occasionally 2D arrays of dimension [x*y*z,f] are used and reshaped
+    accordingly.
+
+    Parameters
+    ----------
+    parameters : mala.Parameters
+        MALA Parameters object used to create this class.
+
+    Attributes
+    ----------
+    parameters : mala.Parameters
+        MALA parameters object.
+
+    grid_dimensions : list
+        List of the grid dimensions (x,y,z)
     """
 
     ##############################
@@ -173,6 +190,9 @@ 

Source code for mala.common.physical_data

             If not None, the array to save the data into.
             The array has to be 4-dimensional.
 
+        reshape : bool
+            If True, the loaded 4D array will be reshaped into a 2D array.
+
         Returns
         -------
         data : numpy.ndarray or None
@@ -356,6 +376,14 @@ 

Source code for mala.common.physical_data

 
         read_dtype : bool
             If True, the dtype is read alongside the dimensions.
+
+        Returns
+        -------
+        dimension_info : list or tuple
+            If read_dtype is False, then only a list containing the dimensions
+            of the saved array is returned. If read_dtype is True, a tuple
+            containing this list of dimensions and the dtype of the array will
+            be returned.
         """
         loaded_array = np.load(path, mmap_mode="r")
         if read_dtype:
@@ -382,6 +410,14 @@ 

Source code for mala.common.physical_data

 
         read_dtype : bool
             If True, the dtype is read alongside the dimensions.
+
+        comm : MPI.Comm
+            An MPI communicator to be used for parallelized I/O
+
+        Returns
+        -------
+        dimension_info : list
+            A list containing the dimensions of the saved array.
         """
         if comm is None or comm.rank == 0:
             import openpmd_api as io
@@ -481,6 +517,22 @@ 

Source code for mala.common.physical_data

 
         In order to provide this data, the numpy array can be replaced with an
         instance of the class SkipArrayWriting.
+
+        Parameters
+        ----------
+        dataset : openpmd_api.Dataset
+            OpenPMD Data set to eventually write to.
+
+        feature_size : int
+            Size of the feature dimension.
+
+        Attributes
+        ----------
+        dataset : mala.Parameters
+            OpenPMD Data set to eventually write to.
+
+        feature_size : list
+            Size of the feature dimension.
         """
 
         # dataset has type openpmd_api.Dataset (not adding a type hint to avoid
@@ -513,7 +565,7 @@ 

Source code for mala.common.physical_data

             the openPMD structure.
 
         additional_attributes : dict
-            Dict containing additional attributes to be saved.
+            Dictionary containing additional attributes to be saved.
 
         internal_iteration_number : int
             Internal OpenPMD iteration number. Ideally, this number should
@@ -597,6 +649,22 @@ 

Source code for mala.common.physical_data

             If not None, and the selected class implements it, additional
             metadata will be read from this source. This metadata will then,
             depending on the class, be saved in the OpenPMD file.
+
+        local_offset  : list
+            [x,y,z] value from which to start writing the array.
+
+        local_reach  : list
+            [x,y,z] value until which to read the array.
+
+        feature_from  : int
+            Value from which to start writing in the feature dimension. With
+            this parameter and feature_to, one can parallelize over the feature
+            dimension.
+
+        feature_to : int
+            Value until which to write in the feature dimension. With
+            this parameter and feature_from, one can parallelize over the feature
+            dimension.
         """
         import openpmd_api as io
 
diff --git a/_modules/mala/datageneration/ofdft_initializer.html b/_modules/mala/datageneration/ofdft_initializer.html
index 987241d22..8277516f0 100644
--- a/_modules/mala/datageneration/ofdft_initializer.html
+++ b/_modules/mala/datageneration/ofdft_initializer.html
@@ -107,12 +107,26 @@ 

Source code for mala.datageneration.ofdft_initializer

Parameters ---------- - parameters : mala.common.parameters.Parameters - Parameters object used to create this instance. + parameters : mala.Parameters + MALA parameters object used to create this instance. atoms : ase.Atoms Initial atomic configuration for which an equilibrated configuration is to be created. + + + Attributes + ---------- + parameters : mala.mala.common.parameters.ParametersDataGeneration + MALA data generation parameters object. + + atoms : ase.Atoms + Initial atomic configuration for which an + equilibrated configuration is to be created. + + dftpy_configuration : dict + Dictionary containing the DFTpy configuration. Will partially be + populated via the MALA parameters object. """ def __init__(self, parameters, atoms): @@ -122,7 +136,7 @@

Source code for mala.datageneration.ofdft_initializer

"large changes." ) self.atoms = atoms - self.params = parameters.datageneration + self.parameters = parameters.datageneration # Check that only one element is used in the atoms. number_of_elements = len(set([x.symbol for x in self.atoms])) @@ -132,11 +146,13 @@

Source code for mala.datageneration.ofdft_initializer

) self.dftpy_configuration = DefaultOption() - self.dftpy_configuration["PATH"]["pppath"] = self.params.local_psp_path + self.dftpy_configuration["PATH"][ + "pppath" + ] = self.parameters.local_psp_path self.dftpy_configuration["PP"][ self.atoms[0].symbol - ] = self.params.local_psp_name - self.dftpy_configuration["OPT"]["method"] = self.params.ofdft_kedf + ] = self.parameters.local_psp_name + self.dftpy_configuration["OPT"]["method"] = self.parameters.ofdft_kedf self.dftpy_configuration["KEDF"]["kedf"] = "WT" self.dftpy_configuration["JOB"]["calctype"] = "Energy Force" @@ -151,6 +167,11 @@

Source code for mala.datageneration.ofdft_initializer

logging_period : int If not None, a .log and .traj file will be filled with snapshot information every logging_period steps. + + Returns + ------- + equilibrated_configuration : ase.Atoms + Equilibrated atomic configuration. """ # Set the DFTPy configuration. conf = OptionFormat(self.dftpy_configuration) @@ -162,14 +183,14 @@

Source code for mala.datageneration.ofdft_initializer

# Create the initial velocities, and dynamics object. MaxwellBoltzmannDistribution( self.atoms, - temperature_K=self.params.ofdft_temperature, + temperature_K=self.parameters.ofdft_temperature, force_temp=True, ) dyn = Langevin( self.atoms, - self.params.ofdft_timestep * units.fs, - temperature_K=self.params.ofdft_temperature, - friction=self.params.ofdft_friction, + self.parameters.ofdft_timestep * units.fs, + temperature_K=self.parameters.ofdft_temperature, + friction=self.parameters.ofdft_friction, ) # If logging is desired, do the logging. @@ -192,7 +213,7 @@

Source code for mala.datageneration.ofdft_initializer

# Let the OF-DFT-MD run. ase.io.write("POSCAR_initial", self.atoms, "vasp") - dyn.run(self.params.ofdft_number_of_timesteps) + dyn.run(self.parameters.ofdft_number_of_timesteps) ase.io.write("POSCAR_equilibrated", self.atoms, "vasp")
diff --git a/_modules/mala/datageneration/trajectory_analyzer.html b/_modules/mala/datageneration/trajectory_analyzer.html index 044f52085..9641f3884 100644 --- a/_modules/mala/datageneration/trajectory_analyzer.html +++ b/_modules/mala/datageneration/trajectory_analyzer.html @@ -114,6 +114,44 @@

Source code for mala.datageneration.trajectory_analyzer

target_calculator : mala.targets.target.Target A target calculator to calculate e.g. the RDF. If None is provided, one will be generated ad-hoc (recommended). + + temperatures : string or numpy.ndarray + Array holding the temperatures for the trajectory or path to numpy + file containing temperatures. + + target_temperature : float + Target temperature for equilibration. + + malada_compatability : bool + If True, twice the radius set by the minimum imaging convention (MIC) + will be used for RDF calculation. This is generally discouraged, + but some older malada calculations have been performed with it, so + this parameter provides reproducibility. + + Attributes + ---------- + parameters : mala.common.parameters.ParametersDataGeneration + MALA data generation parameters. + + average_distance_equilibrated : float + Distance threshold for determination of first equilibrated snapshot. + + distance_metrics_denoised : numpy.ndarray + RDF based distance metrics used for equilibration analysis. + + distances_realspace : numpy.ndarray + Realspace distance metrics used to sample snapshots. + + first_considered_snapshot : int + First snapshot to be considered during equilibration analysis (i.e., + after pruning). + + last_considered_snapshot : int + Last snapshot to be considered during equilibration analysis (i.e., + after pruning). + + target_calculator : mala.targets.target.Target + Target calculator used for computing RDFs. """ def __init__( @@ -131,7 +169,7 @@

Source code for mala.datageneration.trajectory_analyzer

"large changes." ) - self.params: ParametersDataGeneration = parameters.datageneration + self.parameters: ParametersDataGeneration = parameters.datageneration # If needed, read the trajectory self.trajectory = None @@ -143,12 +181,12 @@

Source code for mala.datageneration.trajectory_analyzer

raise Exception("Incompatible trajectory format provided.") # If needed, read the temperature files - self.temperatures = None + self._temperatures = None if temperatures is not None: if isinstance(temperatures, np.ndarray): - self.temperatures = temperatures + self._temperatures = temperatures elif isinstance(temperatures, str): - self.temperatures = np.load(temperatures) + self._temperatures = np.load(temperatures) else: raise Exception("Incompatible temperature format provided.") @@ -161,7 +199,7 @@

Source code for mala.datageneration.trajectory_analyzer

self.target_calculator.temperature = target_temperature # Initialize variables. - self.distance_metrics = [] + self._distance_metrics = [] self.distance_metrics_denoised = [] self.average_distance_equilibrated = None self.__saved_rdf = None @@ -240,11 +278,11 @@

Source code for mala.datageneration.trajectory_analyzer

# First, we ned to calculate the reduced metrics for the trajectory. # For this, we calculate the distance between all the snapshots # and the last one. - self.distance_metrics = [] + self._distance_metrics = [] if equilibrated_snapshot is None: equilibrated_snapshot = self.trajectory[-1] for idx, step in enumerate(self.trajectory): - self.distance_metrics.append( + self._distance_metrics.append( self._calculate_distance_between_snapshots( equilibrated_snapshot, step, @@ -255,16 +293,16 @@

Source code for mala.datageneration.trajectory_analyzer

) # Now, we denoise the distance metrics. - self.distance_metrics_denoised = self.__denoise(self.distance_metrics) + self.distance_metrics_denoised = self.__denoise(self._distance_metrics) # Which snapshots are considered depends on how we denoise the # distance metrics. self.first_considered_snapshot = ( - self.params.trajectory_analysis_denoising_width + self.parameters.trajectory_analysis_denoising_width ) self.last_considered_snapshot = ( np.shape(self.distance_metrics_denoised)[0] - - self.params.trajectory_analysis_denoising_width + - self.parameters.trajectory_analysis_denoising_width ) considered_length = ( self.last_considered_snapshot - self.first_considered_snapshot @@ -279,7 +317,7 @@

Source code for mala.datageneration.trajectory_analyzer

self.distance_metrics_denoised[ considered_length - int( - self.params.trajectory_analysis_estimated_equilibrium + self.parameters.trajectory_analysis_estimated_equilibrium * considered_length ) : self.last_considered_snapshot ] @@ -302,7 +340,7 @@

Source code for mala.datageneration.trajectory_analyzer

is_below = False if ( counter - == self.params.trajectory_analysis_below_average_counter + == self.parameters.trajectory_analysis_below_average_counter ): first_snapshot = idx break @@ -335,10 +373,12 @@

Source code for mala.datageneration.trajectory_analyzer

to each other to a degree that suggests temporal neighborhood. """ - if self.params.trajectory_analysis_correlation_metric_cutoff < 0: + if self.parameters.trajectory_analysis_correlation_metric_cutoff < 0: return self._analyze_distance_metric(self.trajectory) else: - return self.params.trajectory_analysis_correlation_metric_cutoff
+ return ( + self.parameters.trajectory_analysis_correlation_metric_cutoff + )
@@ -361,7 +401,8 @@

Source code for mala.datageneration.trajectory_analyzer

filename_uncorrelated_snapshots ).split(".")[0] allowed_temp_diff_K = ( - self.params.trajectory_analysis_temperature_tolerance_percent / 100 + self.parameters.trajectory_analysis_temperature_tolerance_percent + / 100 ) * self.target_calculator.temperature current_snapshot = self.first_snapshot begin_snapshot = self.first_snapshot + 1 @@ -371,9 +412,9 @@

Source code for mala.datageneration.trajectory_analyzer

for i in range(begin_snapshot, end_snapshot): if self.__check_if_snapshot_is_valid( self.trajectory[i], - self.temperatures[i], + self._temperatures[i], self.trajectory[current_snapshot], - self.temperatures[current_snapshot], + self._temperatures[current_snapshot], self.snapshot_correlation_cutoff, allowed_temp_diff_K, ): @@ -413,7 +454,7 @@

Source code for mala.datageneration.trajectory_analyzer

+ self.first_snapshot ) width = int( - self.params.trajectory_analysis_estimated_equilibrium + self.parameters.trajectory_analysis_estimated_equilibrium * np.shape(self.distance_metrics_denoised)[0] ) self.distances_realspace = [] @@ -500,8 +541,8 @@

Source code for mala.datageneration.trajectory_analyzer

def __denoise(self, signal): denoised_signal = np.convolve( signal, - np.ones(self.params.trajectory_analysis_denoising_width) - / self.params.trajectory_analysis_denoising_width, + np.ones(self.parameters.trajectory_analysis_denoising_width) + / self.parameters.trajectory_analysis_denoising_width, mode="same", ) return denoised_signal diff --git a/_modules/mala/datahandling/data_converter.html b/_modules/mala/datahandling/data_converter.html index 7aa518f0d..da1b5f635 100644 --- a/_modules/mala/datahandling/data_converter.html +++ b/_modules/mala/datahandling/data_converter.html @@ -128,6 +128,13 @@

Source code for mala.datahandling.data_converter

target_calculator : mala.targets.target.Target Target calculator used for parsing/converting target data. + + parameters : mala.common.parameters.ParametersData + MALA data handling parameters object. + + parameters_full : mala.common.parameters.Parameters + MALA parameters object. The full object is necessary for some data + handling tasks. """ def __init__( @@ -154,9 +161,9 @@

Source code for mala.datahandling.data_converter

self.__snapshot_units = [] # Keep track of what has to be done by this data converter. - self.process_descriptors = False - self.process_targets = False - self.process_additional_info = False + self.__process_descriptors = False + self.__process_targets = False + self.__process_additional_info = False
[docs] @@ -230,7 +237,7 @@

Source code for mala.datahandling.data_converter

) if descriptor_input_type not in descriptor_input_types: raise Exception("Cannot process this type of descriptor data.") - self.process_descriptors = True + self.__process_descriptors = True if target_input_type is not None: if target_input_path is None: @@ -239,7 +246,7 @@

Source code for mala.datahandling.data_converter

) if target_input_type not in target_input_types: raise Exception("Cannot process this type of target data.") - self.process_targets = True + self.__process_targets = True if additional_info_input_type is not None: metadata_input_type = additional_info_input_type @@ -252,7 +259,7 @@

Source code for mala.datahandling.data_converter

raise Exception( "Cannot process this type of additional info data." ) - self.process_additional_info = True + self.__process_additional_info = True metadata_input_path = additional_info_input_path @@ -389,19 +396,19 @@

Source code for mala.datahandling.data_converter

target_save_path = complete_save_path additional_info_save_path = complete_save_path else: - if self.process_targets is True and target_save_path is None: + if self.__process_targets is True and target_save_path is None: raise Exception( "No target path specified, cannot process data." ) if ( - self.process_descriptors is True + self.__process_descriptors is True and descriptor_save_path is None ): raise Exception( "No descriptor path specified, cannot process data." ) if ( - self.process_additional_info is True + self.__process_additional_info is True and additional_info_save_path is None ): raise Exception( @@ -413,7 +420,7 @@

Source code for mala.datahandling.data_converter

snapshot_name = naming_scheme series_name = snapshot_name.replace("*", str("%01T")) - if self.process_descriptors: + if self.__process_descriptors: if self.parameters._configuration["mpi"]: input_series = io.Series( os.path.join( @@ -441,7 +448,7 @@

Source code for mala.datahandling.data_converter

input_series.set_software(name="MALA", version="x.x.x") input_series.author = "..." - if self.process_targets: + if self.__process_targets: if self.parameters._configuration["mpi"]: output_series = io.Series( os.path.join( @@ -476,7 +483,7 @@

Source code for mala.datahandling.data_converter

snapshot_name = snapshot_name.replace("*", str(snapshot_number)) # Create the paths as needed. - if self.process_additional_info: + if self.__process_additional_info: info_path = os.path.join( additional_info_save_path, snapshot_name + ".info.json" ) @@ -487,7 +494,7 @@

Source code for mala.datahandling.data_converter

if file_ending == "npy": # Create the actual paths, if needed. - if self.process_descriptors: + if self.__process_descriptors: descriptor_path = os.path.join( descriptor_save_path, snapshot_name + ".in." + file_ending, @@ -496,7 +503,7 @@

Source code for mala.datahandling.data_converter

descriptor_path = None memmap = None - if self.process_targets: + if self.__process_targets: target_path = os.path.join( target_save_path, snapshot_name + ".out." + file_ending, @@ -515,13 +522,13 @@

Source code for mala.datahandling.data_converter

descriptor_path = None target_path = None memmap = None - if self.process_descriptors: + if self.__process_descriptors: input_iteration = input_series.write_iterations()[ i + starts_at ] input_iteration.dt = i + starts_at input_iteration.time = 0 - if self.process_targets: + if self.__process_targets: output_iteration = output_series.write_iterations()[ i + starts_at ] @@ -550,9 +557,9 @@

Source code for mala.datahandling.data_converter

# Properly close series if file_ending != "npy": - if self.process_descriptors: + if self.__process_descriptors: del input_series - if self.process_targets: + if self.__process_targets: del output_series
@@ -591,9 +598,6 @@

Source code for mala.datahandling.data_converter

output_path : string If not None, outputs will be saved in this file. - return_data : bool - If True, inputs and outputs will be returned directly. - target_calculator_kwargs : dict Dictionary with additional keyword arguments for the calculation or parsing of the target quantities. @@ -727,10 +731,8 @@

Source code for mala.datahandling.data_converter

snapshot["output"], units=original_units["output"] ) elif description["output"] == "numpy": - tmp_output = ( - self.target_calculator.read_from_numpy_file( - snapshot["output"], units=original_units["output"] - ) + tmp_output = self.target_calculator.read_from_numpy_file( + snapshot["output"], units=original_units["output"] ) elif description["output"] is None: @@ -778,10 +780,8 @@

Source code for mala.datahandling.data_converter

snapshot["output"], units=original_units["output"] ) elif description["output"] == "numpy": - tmp_output = ( - self.target_calculator.read_from_numpy_file( - snapshot["output"] - ) + tmp_output = self.target_calculator.read_from_numpy_file( + snapshot["output"] ) elif description["output"] is None: diff --git a/_modules/mala/datahandling/data_handler.html b/_modules/mala/datahandling/data_handler.html index 535540b02..60fc787e2 100644 --- a/_modules/mala/datahandling/data_handler.html +++ b/_modules/mala/datahandling/data_handler.html @@ -103,10 +103,10 @@

Source code for mala.datahandling.data_handler

[docs] class DataHandler(DataHandlerBase): """ - Loads and scales data. Can only process numpy arrays at the moment. + Loads and scales data. Can load from numpy or OpenPMD files. - Data that is not in a numpy array can be converted using the DataConverter - class. + Data that is not saved as numpy or OpenPMD file can be converted using the + DataConverter class. Parameters ---------- @@ -132,6 +132,41 @@

Source code for mala.datahandling.data_handler

clear_data : bool If true (default), the data list will be cleared upon creation of the object. + + Attributes + ---------- + input_data_scaler : mala.datahandling.data_scaler.DataScaler + Used to scale the input data. + + nr_test_data : int + Number of test data points. + + nr_test_snapshots : int + Number of test snapshots. + + nr_training_data : int + Number of training data points. + + nr_training_snapshots : int + Number of training snapshots. + + nr_validation_data : int + Number of validation data points. + + nr_validation_snapshots : int + Number of validation snapshots. + + output_data_scaler : mala.datahandling.data_scaler.DataScaler + Used to scale the output data. + + test_data_sets : list + List containing torch data sets for test data. + + training_data_sets : list + List containing torch data sets for training data. + + validation_data_sets : list + List containing torch data sets for validation data. """ ############################## @@ -157,14 +192,14 @@

Source code for mala.datahandling.data_handler

if self.input_data_scaler is None: self.input_data_scaler = DataScaler( self.parameters.input_rescaling_type, - use_ddp=self.use_ddp, + use_ddp=self._use_ddp, ) self.output_data_scaler = output_data_scaler if self.output_data_scaler is None: self.output_data_scaler = DataScaler( self.parameters.output_rescaling_type, - use_ddp=self.use_ddp, + use_ddp=self._use_ddp, ) # Actual data points in the different categories. @@ -178,18 +213,18 @@

Source code for mala.datahandling.data_handler

self.nr_validation_snapshots = 0 # Arrays and data sets containing the actual data. - self.training_data_inputs = torch.empty(0) - self.validation_data_inputs = torch.empty(0) - self.test_data_inputs = torch.empty(0) - self.training_data_outputs = torch.empty(0) - self.validation_data_outputs = torch.empty(0) - self.test_data_outputs = torch.empty(0) + self._training_data_inputs = torch.empty(0) + self._validation_data_inputs = torch.empty(0) + self._test_data_inputs = torch.empty(0) + self._training_data_outputs = torch.empty(0) + self._validation_data_outputs = torch.empty(0) + self._test_data_outputs = torch.empty(0) self.training_data_sets = [] self.validation_data_sets = [] self.test_data_sets = [] # Needed for the fast tensor data sets. - self.mini_batch_size = parameters.running.mini_batch_size + self._mini_batch_size = parameters.running.mini_batch_size if clear_data: self.clear_data() @@ -359,7 +394,7 @@

Source code for mala.datahandling.data_handler

Returns ------- - torch.Tensor + gradient : torch.Tensor Tensor holding the gradient. """ @@ -375,7 +410,7 @@

Source code for mala.datahandling.data_handler

) return self.test_data_sets[0].input_data.grad else: - return self.test_data_inputs.grad[ + return self._test_data_inputs.grad[ snapshot.grid_size * snapshot_number : snapshot.grid_size * (snapshot_number + 1) @@ -425,8 +460,10 @@

Source code for mala.datahandling.data_handler

---------- numpy_array : np.array Array that is to be converted. + data_type : string Either "in" or "out", depending if input or output data is + processed. units : string Units of the data that is processed. @@ -590,31 +627,31 @@

Source code for mala.datahandling.data_handler

def __allocate_arrays(self): if self.nr_training_data > 0: - self.training_data_inputs = np.zeros( + self._training_data_inputs = np.zeros( (self.nr_training_data, self.input_dimension), dtype=DEFAULT_NP_DATA_DTYPE, ) - self.training_data_outputs = np.zeros( + self._training_data_outputs = np.zeros( (self.nr_training_data, self.output_dimension), dtype=DEFAULT_NP_DATA_DTYPE, ) if self.nr_validation_data > 0: - self.validation_data_inputs = np.zeros( + self._validation_data_inputs = np.zeros( (self.nr_validation_data, self.input_dimension), dtype=DEFAULT_NP_DATA_DTYPE, ) - self.validation_data_outputs = np.zeros( + self._validation_data_outputs = np.zeros( (self.nr_validation_data, self.output_dimension), dtype=DEFAULT_NP_DATA_DTYPE, ) if self.nr_test_data > 0: - self.test_data_inputs = np.zeros( + self._test_data_inputs = np.zeros( (self.nr_test_data, self.input_dimension), dtype=DEFAULT_NP_DATA_DTYPE, ) - self.test_data_outputs = np.zeros( + self._test_data_outputs = np.zeros( (self.nr_test_data, self.output_dimension), dtype=DEFAULT_NP_DATA_DTYPE, ) @@ -642,7 +679,7 @@

Source code for mala.datahandling.data_handler

raise Exception("Unknown data type detected.") # Extracting all the information pertaining to the data set. - array = function + "_data_" + data_type + array = "_" + function + "_data_" + data_type if data_type == "inputs": calculator = self.descriptor_calculator else: @@ -704,34 +741,34 @@

Source code for mala.datahandling.data_handler

# all ears. if data_type == "inputs": if function == "training": - self.training_data_inputs = torch.from_numpy( - self.training_data_inputs + self._training_data_inputs = torch.from_numpy( + self._training_data_inputs ).float() if function == "validation": - self.validation_data_inputs = torch.from_numpy( - self.validation_data_inputs + self._validation_data_inputs = torch.from_numpy( + self._validation_data_inputs ).float() if function == "test": - self.test_data_inputs = torch.from_numpy( - self.test_data_inputs + self._test_data_inputs = torch.from_numpy( + self._test_data_inputs ).float() if data_type == "outputs": if function == "training": - self.training_data_outputs = torch.from_numpy( - self.training_data_outputs + self._training_data_outputs = torch.from_numpy( + self._training_data_outputs ).float() if function == "validation": - self.validation_data_outputs = torch.from_numpy( - self.validation_data_outputs + self._validation_data_outputs = torch.from_numpy( + self._validation_data_outputs ).float() if function == "test": - self.test_data_outputs = torch.from_numpy( - self.test_data_outputs + self._test_data_outputs = torch.from_numpy( + self._test_data_outputs ).float() def __build_datasets(self): @@ -750,7 +787,7 @@

Source code for mala.datahandling.data_handler

self.output_data_scaler, self.descriptor_calculator, self.target_calculator, - self.use_ddp, + self._use_ddp, self.parameters._configuration["device"], ) ) @@ -762,7 +799,7 @@

Source code for mala.datahandling.data_handler

self.output_data_scaler, self.descriptor_calculator, self.target_calculator, - self.use_ddp, + self._use_ddp, self.parameters._configuration["device"], ) ) @@ -776,7 +813,7 @@

Source code for mala.datahandling.data_handler

self.output_data_scaler, self.descriptor_calculator, self.target_calculator, - self.use_ddp, + self._use_ddp, self.parameters._configuration["device"], input_requires_grad=True, ) @@ -812,7 +849,7 @@

Source code for mala.datahandling.data_handler

if snapshot.snapshot_function == "tr": self.training_data_sets.append( LazyLoadDatasetSingle( - self.mini_batch_size, + self._mini_batch_size, snapshot, self.input_dimension, self.output_dimension, @@ -820,13 +857,13 @@

Source code for mala.datahandling.data_handler

self.output_data_scaler, self.descriptor_calculator, self.target_calculator, - self.use_ddp, + self._use_ddp, ) ) if snapshot.snapshot_function == "va": self.validation_data_sets.append( LazyLoadDatasetSingle( - self.mini_batch_size, + self._mini_batch_size, snapshot, self.input_dimension, self.output_dimension, @@ -834,13 +871,13 @@

Source code for mala.datahandling.data_handler

self.output_data_scaler, self.descriptor_calculator, self.target_calculator, - self.use_ddp, + self._use_ddp, ) ) if snapshot.snapshot_function == "te": self.test_data_sets.append( LazyLoadDatasetSingle( - self.mini_batch_size, + self._mini_batch_size, snapshot, self.input_dimension, self.output_dimension, @@ -848,65 +885,67 @@

Source code for mala.datahandling.data_handler

self.output_data_scaler, self.descriptor_calculator, self.target_calculator, - self.use_ddp, + self._use_ddp, input_requires_grad=True, ) ) else: if self.nr_training_data != 0: - self.input_data_scaler.transform(self.training_data_inputs) - self.output_data_scaler.transform(self.training_data_outputs) + self.input_data_scaler.transform(self._training_data_inputs) + self.output_data_scaler.transform(self._training_data_outputs) if self.parameters.use_fast_tensor_data_set: printout("Using FastTensorDataset.", min_verbosity=2) self.training_data_sets.append( FastTensorDataset( - self.mini_batch_size, - self.training_data_inputs, - self.training_data_outputs, + self._mini_batch_size, + self._training_data_inputs, + self._training_data_outputs, ) ) else: self.training_data_sets.append( TensorDataset( - self.training_data_inputs, - self.training_data_outputs, + self._training_data_inputs, + self._training_data_outputs, ) ) if self.nr_validation_data != 0: self.__load_data("validation", "inputs") - self.input_data_scaler.transform(self.validation_data_inputs) + self.input_data_scaler.transform(self._validation_data_inputs) self.__load_data("validation", "outputs") - self.output_data_scaler.transform(self.validation_data_outputs) + self.output_data_scaler.transform( + self._validation_data_outputs + ) if self.parameters.use_fast_tensor_data_set: printout("Using FastTensorDataset.", min_verbosity=2) self.validation_data_sets.append( FastTensorDataset( - self.mini_batch_size, - self.validation_data_inputs, - self.validation_data_outputs, + self._mini_batch_size, + self._validation_data_inputs, + self._validation_data_outputs, ) ) else: self.validation_data_sets.append( TensorDataset( - self.validation_data_inputs, - self.validation_data_outputs, + self._validation_data_inputs, + self._validation_data_outputs, ) ) if self.nr_test_data != 0: self.__load_data("test", "inputs") - self.input_data_scaler.transform(self.test_data_inputs) - self.test_data_inputs.requires_grad = True + self.input_data_scaler.transform(self._test_data_inputs) + self._test_data_inputs.requires_grad = True self.__load_data("test", "outputs") - self.output_data_scaler.transform(self.test_data_outputs) + self.output_data_scaler.transform(self._test_data_outputs) self.test_data_sets.append( TensorDataset( - self.test_data_inputs, self.test_data_outputs + self._test_data_inputs, self._test_data_outputs ) ) @@ -967,7 +1006,7 @@

Source code for mala.datahandling.data_handler

else: self.__load_data("training", "inputs") - self.input_data_scaler.fit(self.training_data_inputs) + self.input_data_scaler.fit(self._training_data_inputs) printout("Input scaler parametrized.", min_verbosity=1) @@ -1024,7 +1063,7 @@

Source code for mala.datahandling.data_handler

else: self.__load_data("training", "outputs") - self.output_data_scaler.fit(self.training_data_outputs) + self.output_data_scaler.fit(self._training_data_outputs) printout("Output scaler parametrized.", min_verbosity=1) diff --git a/_modules/mala/datahandling/data_handler_base.html b/_modules/mala/datahandling/data_handler_base.html index 2b57ec3aa..a7f324fa9 100644 --- a/_modules/mala/datahandling/data_handler_base.html +++ b/_modules/mala/datahandling/data_handler_base.html @@ -113,6 +113,20 @@

Source code for mala.datahandling.data_handler_base

target_calculator : mala.targets.target.Target Used to do unit conversion on output data. If None, then one will be created by this class. + + Attributes + ---------- + descriptor_calculator + Used to do unit conversion on input data. + + nr_snapshots : int + Number of snapshots loaded. + + parameters : mala.common.parameters.ParametersData + MALA data handling parameters. + + target_calculator + Used to do unit conversion on output data. """ def __init__( @@ -122,7 +136,7 @@

Source code for mala.datahandling.data_handler_base

descriptor_calculator=None, ): self.parameters: ParametersData = parameters.data - self.use_ddp = parameters.use_ddp + self._use_ddp = parameters.use_ddp # Calculators used to parse data from compatible files. self.target_calculator = target_calculator diff --git a/_modules/mala/datahandling/data_scaler.html b/_modules/mala/datahandling/data_scaler.html index cecf405a5..d8238f326 100644 --- a/_modules/mala/datahandling/data_scaler.html +++ b/_modules/mala/datahandling/data_scaler.html @@ -132,6 +132,53 @@

Source code for mala.datahandling.data_scaler

use_ddp : bool If True, the DataScaler will use ddp to check that data is only saved on the root process in parallel execution. + + Attributes + ---------- + cantransform : bool + If True, this scaler is set up to perform scaling. + + feature_wise : bool + (Managed internally, not set to private due to legacy issues) + + maxs : torch.Tensor + (Managed internally, not set to private due to legacy issues) + + means : torch.Tensor + (Managed internally, not set to private due to legacy issues) + + mins : torch.Tensor + (Managed internally, not set to private due to legacy issues) + + scale_minmax : bool + (Managed internally, not set to private due to legacy issues) + + scale_standard : bool + (Managed internally, not set to private due to legacy issues) + + stds : torch.Tensor + (Managed internally, not set to private due to legacy issues) + + total_data_count : int + (Managed internally, not set to private due to legacy issues) + + total_max : float + (Managed internally, not set to private due to legacy issues) + + total_mean : float + (Managed internally, not set to private due to legacy issues) + + total_min : float + (Managed internally, not set to private due to legacy issues) + + total_std : float + (Managed internally, not set to private due to legacy issues) + + typestring : str + (Managed internally, not set to private due to legacy issues) + + use_ddp : bool + (Managed internally, not set to private due to legacy issues) """ def __init__(self, typestring, use_ddp=False): diff --git a/_modules/mala/datahandling/data_shuffler.html b/_modules/mala/datahandling/data_shuffler.html index aafdbcb46..bbc204c23 100644 --- a/_modules/mala/datahandling/data_shuffler.html +++ b/_modules/mala/datahandling/data_shuffler.html @@ -138,7 +138,7 @@

Source code for mala.datahandling.data_shuffler

< self.descriptor_calculator.parameters.descriptors_contain_xyz = ( False ) - self.data_points_to_remove = None + self._data_points_to_remove = None
[docs] @@ -223,8 +223,8 @@

Source code for mala.datahandling.data_shuffler

< # then we have to trim the original snapshots to size # the indicies to be removed are selected at random if ( - self.data_points_to_remove is not None - and np.sum(self.data_points_to_remove) > 0 + self._data_points_to_remove is not None + and np.sum(self._data_points_to_remove) > 0 ): if self.parameters.shuffling_seed is not None: np.random.seed(idx * self.parameters.shuffling_seed) @@ -243,7 +243,7 @@

Source code for mala.datahandling.data_shuffler

< indices = np.random.choice( ngrid, - size=ngrid - self.data_points_to_remove[idx], + size=ngrid - self._data_points_to_remove[idx], ) descriptor_data[idx] = current_descriptor[indices] @@ -638,7 +638,7 @@

Source code for mala.datahandling.data_shuffler

< ] ) number_of_data_points = np.sum(snapshot_size_list) - self.data_points_to_remove = None + self._data_points_to_remove = None if number_of_shuffled_snapshots is None: number_of_shuffled_snapshots = self.nr_snapshots @@ -674,13 +674,13 @@

Source code for mala.datahandling.data_shuffler

< np.sum(shuffled_gridsizes) * number_of_shuffled_snapshots ) - self.data_points_to_remove = [] + self._data_points_to_remove = [] for i in range(0, self.nr_snapshots): - self.data_points_to_remove.append( + self._data_points_to_remove.append( snapshot_size_list[i] - shuffled_gridsizes[i] * number_of_shuffled_snapshots ) - tot_points_missing = sum(self.data_points_to_remove) + tot_points_missing = sum(self._data_points_to_remove) if tot_points_missing > 0: printout( diff --git a/_modules/mala/datahandling/fast_tensor_dataset.html b/_modules/mala/datahandling/fast_tensor_dataset.html index 9f3e445ea..663636ce2 100644 --- a/_modules/mala/datahandling/fast_tensor_dataset.html +++ b/_modules/mala/datahandling/fast_tensor_dataset.html @@ -95,15 +95,28 @@

Source code for mala.datahandling.fast_tensor_dataset

This version of TensorDataset gathers data using a single call within __getitem__. A bit more tricky to manage but is faster still. + + Parameters + ---------- + batch_size : int + Batch size to be used with this data set. + + tensors : object + Torch tensors for this data set. + + Attributes + ---------- + batch_size : int + Batch size to be used with this data set. """ def __init__(self, batch_size, *tensors): super(FastTensorDataset).__init__() self.batch_size = batch_size - self.tensors = tensors + self._tensors = tensors total_samples = tensors[0].shape[0] - self.indices = np.arange(total_samples) - self.len = total_samples // self.batch_size + self._indices = np.arange(total_samples) + self._len = total_samples // self.batch_size def __getitem__(self, idx): """ @@ -121,21 +134,21 @@

Source code for mala.datahandling.fast_tensor_dataset

batch : tuple The data tuple for this batch. """ - batch = self.indices[ + batch = self._indices[ idx * self.batch_size : (idx + 1) * self.batch_size ] - rv = tuple(t[batch, ...] for t in self.tensors) + rv = tuple(t[batch, ...] for t in self._tensors) return rv def __len__(self): """Get the length of the data set.""" - return self.len + return self._len
[docs] def shuffle(self): """Shuffle the data set.""" - np.random.shuffle(self.indices)
+ np.random.shuffle(self._indices)
diff --git a/_modules/mala/datahandling/lazy_load_dataset.html b/_modules/mala/datahandling/lazy_load_dataset.html index 87a368cb2..547893718 100644 --- a/_modules/mala/datahandling/lazy_load_dataset.html +++ b/_modules/mala/datahandling/lazy_load_dataset.html @@ -133,6 +133,17 @@

Source code for mala.datahandling.lazy_load_dataset

input_requires_grad : bool If True, then the gradient is stored for the inputs. + + Attributes + ---------- + currently_loaded_file : int + Index of currently loaded file. + + input_data : torch.Tensor + Input data tensor. + + output_data : torch.Tensor + Output data tensor. """ def __init__( @@ -147,25 +158,22 @@

Source code for mala.datahandling.lazy_load_dataset

device, input_requires_grad=False, ): - self.snapshot_list = [] - self.input_dimension = input_dimension - self.output_dimension = output_dimension - self.input_data_scaler = input_data_scaler - self.output_data_scaler = output_data_scaler - self.descriptor_calculator = descriptor_calculator - self.target_calculator = target_calculator - self.number_of_snapshots = 0 - self.total_size = 0 - self.descriptors_contain_xyz = ( - self.descriptor_calculator.descriptors_contain_xyz - ) + self._snapshot_list = [] + self._input_dimension = input_dimension + self._output_dimension = output_dimension + self._input_data_scaler = input_data_scaler + self._output_data_scaler = output_data_scaler + self._descriptor_calculator = descriptor_calculator + self._target_calculator = target_calculator + self._number_of_snapshots = 0 + self._total_size = 0 self.currently_loaded_file = None self.input_data = np.empty(0) self.output_data = np.empty(0) - self.use_ddp = use_ddp + self._use_ddp = use_ddp self.return_outputs_directly = False - self.input_requires_grad = input_requires_grad - self.device = device + self._input_requires_grad = input_requires_grad + self._device = device @property def return_outputs_directly(self): @@ -195,9 +203,9 @@

Source code for mala.datahandling.lazy_load_dataset

Snapshot that is to be added to this DataSet. """ - self.snapshot_list.append(snapshot) - self.number_of_snapshots += 1 - self.total_size += snapshot.grid_size
+ self._snapshot_list.append(snapshot) + self._number_of_snapshots += 1 + self._total_size += snapshot.grid_size
@@ -208,16 +216,16 @@

Source code for mala.datahandling.lazy_load_dataset

With this, there can be some variance between runs. """ - used_perm = torch.randperm(self.number_of_snapshots) + used_perm = torch.randperm(self._number_of_snapshots) barrier() - if self.use_ddp: - used_perm = used_perm.to(device=self.device) + if self._use_ddp: + used_perm = used_perm.to(device=self._device) dist.broadcast(used_perm, 0) - self.snapshot_list = [ - self.snapshot_list[i] for i in used_perm.to("cpu") + self._snapshot_list = [ + self._snapshot_list[i] for i in used_perm.to("cpu") ] else: - self.snapshot_list = [self.snapshot_list[i] for i in used_perm] + self._snapshot_list = [self._snapshot_list[i] for i in used_perm] self.get_new_data(0)
@@ -233,50 +241,50 @@

Source code for mala.datahandling.lazy_load_dataset

File to be read. """ # Load the data into RAM. - if self.snapshot_list[file_index].snapshot_type == "numpy": - self.input_data = self.descriptor_calculator.read_from_numpy_file( + if self._snapshot_list[file_index].snapshot_type == "numpy": + self.input_data = self._descriptor_calculator.read_from_numpy_file( os.path.join( - self.snapshot_list[file_index].input_npy_directory, - self.snapshot_list[file_index].input_npy_file, + self._snapshot_list[file_index].input_npy_directory, + self._snapshot_list[file_index].input_npy_file, ), - units=self.snapshot_list[file_index].input_units, + units=self._snapshot_list[file_index].input_units, ) - self.output_data = self.target_calculator.read_from_numpy_file( + self.output_data = self._target_calculator.read_from_numpy_file( os.path.join( - self.snapshot_list[file_index].output_npy_directory, - self.snapshot_list[file_index].output_npy_file, + self._snapshot_list[file_index].output_npy_directory, + self._snapshot_list[file_index].output_npy_file, ), - units=self.snapshot_list[file_index].output_units, + units=self._snapshot_list[file_index].output_units, ) - elif self.snapshot_list[file_index].snapshot_type == "openpmd": + elif self._snapshot_list[file_index].snapshot_type == "openpmd": self.input_data = ( - self.descriptor_calculator.read_from_openpmd_file( + self._descriptor_calculator.read_from_openpmd_file( os.path.join( - self.snapshot_list[file_index].input_npy_directory, - self.snapshot_list[file_index].input_npy_file, + self._snapshot_list[file_index].input_npy_directory, + self._snapshot_list[file_index].input_npy_file, ) ) ) - self.output_data = self.target_calculator.read_from_openpmd_file( + self.output_data = self._target_calculator.read_from_openpmd_file( os.path.join( - self.snapshot_list[file_index].output_npy_directory, - self.snapshot_list[file_index].output_npy_file, + self._snapshot_list[file_index].output_npy_directory, + self._snapshot_list[file_index].output_npy_file, ) ) # Transform the data. self.input_data = self.input_data.reshape( - [self.snapshot_list[file_index].grid_size, self.input_dimension] + [self._snapshot_list[file_index].grid_size, self._input_dimension] ) if self.input_data.dtype != DEFAULT_NP_DATA_DTYPE: self.input_data = self.input_data.astype(DEFAULT_NP_DATA_DTYPE) self.input_data = torch.from_numpy(self.input_data).float() - self.input_data_scaler.transform(self.input_data) - self.input_data.requires_grad = self.input_requires_grad + self._input_data_scaler.transform(self.input_data) + self.input_data.requires_grad = self._input_requires_grad self.output_data = self.output_data.reshape( - [self.snapshot_list[file_index].grid_size, self.output_dimension] + [self._snapshot_list[file_index].grid_size, self._output_dimension] ) if self.return_outputs_directly is False: self.output_data = np.array(self.output_data) @@ -285,7 +293,7 @@

Source code for mala.datahandling.lazy_load_dataset

DEFAULT_NP_DATA_DTYPE ) self.output_data = torch.from_numpy(self.output_data).float() - self.output_data_scaler.transform(self.output_data) + self._output_data_scaler.transform(self.output_data) # Save which data we have currently loaded. self.currently_loaded_file = file_index
@@ -295,28 +303,28 @@

Source code for mala.datahandling.lazy_load_dataset

file_index = None index_in_file = idx if is_slice: - for i in range(len(self.snapshot_list)): - if index_in_file - self.snapshot_list[i].grid_size <= 0: + for i in range(len(self._snapshot_list)): + if index_in_file - self._snapshot_list[i].grid_size <= 0: file_index = i # From the end of previous file to beginning of new. if ( - index_in_file == self.snapshot_list[i].grid_size + index_in_file == self._snapshot_list[i].grid_size and is_start ): file_index = i + 1 index_in_file = 0 break else: - index_in_file -= self.snapshot_list[i].grid_size + index_in_file -= self._snapshot_list[i].grid_size return file_index, index_in_file else: - for i in range(len(self.snapshot_list)): - if index_in_file - self.snapshot_list[i].grid_size < 0: + for i in range(len(self._snapshot_list)): + if index_in_file - self._snapshot_list[i].grid_size < 0: file_index = i break else: - index_in_file -= self.snapshot_list[i].grid_size + index_in_file -= self._snapshot_list[i].grid_size return file_index, index_in_file def __getitem__(self, idx): @@ -360,7 +368,7 @@

Source code for mala.datahandling.lazy_load_dataset

# the stop index will point to the wrong file. if file_index_start != file_index_stop: if index_in_file_stop == 0: - index_in_file_stop = self.snapshot_list[ + index_in_file_stop = self._snapshot_list[ file_index_stop ].grid_size else: @@ -391,7 +399,7 @@

Source code for mala.datahandling.lazy_load_dataset

length : int Number of data points in DataSet. """ - return self.total_size
+ return self._total_size
diff --git a/_modules/mala/datahandling/lazy_load_dataset_single.html b/_modules/mala/datahandling/lazy_load_dataset_single.html index bfc76789a..971ff8b83 100644 --- a/_modules/mala/datahandling/lazy_load_dataset_single.html +++ b/_modules/mala/datahandling/lazy_load_dataset_single.html @@ -129,6 +129,56 @@

Source code for mala.datahandling.lazy_load_dataset_single

input_requires_grad : bool If True, then the gradient is stored for the inputs. + + Attributes + ---------- + allocated : bool + True if dataset is allocated. + + currently_loaded_file : int + Index of currently loaded file + + descriptor_calculator : mala.descriptors.descriptor.Descriptor + Used to do unit conversion on input data. + + input_data : torch.Tensor + Input data tensor. + + input_dtype : numpy.dtype + Input data type. + + input_shape : list + Input data dimensions + + input_shm_name : str + Name of shared memory allocated for input data + + loaded : bool + True if data has been loaded to shared memory. + + output_data : torch.Tensor + Output data tensor. + + output_dtype : numpy.dtype + Output data dtype. + + output_shape : list + Output data dimensions. + + output_shm_name : str + Name of shared memory allocated for output data. + + return_outputs_directly : bool + + Control whether outputs are actually transformed. + Has to be False for training. In the testing case, + Numerical errors are smaller if set to True. + + snapshot : mala.datahandling.snapshot.Snapshot + Currently loaded snapshot object. + + target_calculator : mala.targets.target.Target or derivative + Used to do unit conversion on output data. """ def __init__( @@ -145,27 +195,24 @@

Source code for mala.datahandling.lazy_load_dataset_single

input_requires_grad=False, ): self.snapshot = snapshot - self.input_dimension = input_dimension - self.output_dimension = output_dimension - self.input_data_scaler = input_data_scaler - self.output_data_scaler = output_data_scaler + self._input_dimension = input_dimension + self._output_dimension = output_dimension + self._input_data_scaler = input_data_scaler + self._output_data_scaler = output_data_scaler self.descriptor_calculator = descriptor_calculator self.target_calculator = target_calculator - self.number_of_snapshots = 0 - self.total_size = 0 - self.descriptors_contain_xyz = ( - self.descriptor_calculator.descriptors_contain_xyz - ) + self._number_of_snapshots = 0 + self._total_size = 0 self.currently_loaded_file = None self.input_data = np.empty(0) self.output_data = np.empty(0) - self.use_ddp = use_ddp + self._use_ddp = use_ddp self.return_outputs_directly = False - self.input_requires_grad = input_requires_grad + self._input_requires_grad = input_requires_grad - self.batch_size = batch_size - self.len = int(np.ceil(snapshot.grid_size / self.batch_size)) - self.indices = np.arange(snapshot.grid_size) + self._batch_size = batch_size + self._len = int(np.ceil(snapshot.grid_size / self._batch_size)) + self._indices = np.arange(snapshot.grid_size) self.input_shm_name = None self.output_shm_name = None self.loaded = False @@ -291,20 +338,20 @@

Source code for mala.datahandling.lazy_load_dataset_single

output_shm = shared_memory.SharedMemory(name=self.output_shm_name) input_data = np.ndarray( - shape=[self.snapshot.grid_size, self.input_dimension], + shape=[self.snapshot.grid_size, self._input_dimension], dtype=np.float32, buffer=input_shm.buf, ) output_data = np.ndarray( - shape=[self.snapshot.grid_size, self.output_dimension], + shape=[self.snapshot.grid_size, self._output_dimension], dtype=np.float32, buffer=output_shm.buf, ) - if idx == self.len - 1: - batch = self.indices[idx * self.batch_size :] + if idx == self._len - 1: + batch = self._indices[idx * self._batch_size :] else: - batch = self.indices[ - idx * self.batch_size : (idx + 1) * self.batch_size + batch = self._indices[ + idx * self._batch_size : (idx + 1) * self._batch_size ] # print(batch.shape) @@ -313,12 +360,12 @@

Source code for mala.datahandling.lazy_load_dataset_single

# Perform conversion to tensor and perform transforms input_batch = torch.from_numpy(input_batch) - self.input_data_scaler.transform(input_batch) - input_batch.requires_grad = self.input_requires_grad + self._input_data_scaler.transform(input_batch) + input_batch.requires_grad = self._input_requires_grad if self.return_outputs_directly is False: output_batch = torch.from_numpy(output_batch) - self.output_data_scaler.transform(output_batch) + self._output_data_scaler.transform(output_batch) input_shm.close() output_shm.close() @@ -334,7 +381,7 @@

Source code for mala.datahandling.lazy_load_dataset_single

length : int Number of data points in DataSet. """ - return self.len + return self._len
[docs] @@ -353,7 +400,7 @@

Source code for mala.datahandling.lazy_load_dataset_single

avoid erroneously overwriting shared memory data in cases where a single dataset object is used back to back. """ - np.random.shuffle(self.indices)
+ np.random.shuffle(self._indices)
diff --git a/_modules/mala/datahandling/ldos_aligner.html b/_modules/mala/datahandling/ldos_aligner.html index 498c5009e..130199805 100644 --- a/_modules/mala/datahandling/ldos_aligner.html +++ b/_modules/mala/datahandling/ldos_aligner.html @@ -118,6 +118,11 @@

Source code for mala.datahandling.ldos_aligner

target_calculator : mala.targets.target.Target Used to do unit conversion on output data. If None, then one will be created by this class. + + Attributes + ---------- + ldos_parameters : mala.common.parameters.ParametersTargets + MALA target calculation parameters. """ def __init__( @@ -175,8 +180,6 @@

Source code for mala.datahandling.ldos_aligner

[docs] def align_ldos_to_ref( self, - save_path=None, - save_name=None, save_path_ext="aligned/", reference_index=0, zero_tol=1e-5, @@ -186,35 +189,34 @@

Source code for mala.datahandling.ldos_aligner

n_shift_mse=None, ): """ - Add a snapshot to the data pipeline. + Align LDOS to reference. Parameters ---------- - save_path : string - path to save the aligned LDOS vectors - save_name : string - naming convention for the aligned LDOS vectors save_path_ext : string - additional path for the LDOS vectors (useful if - save_path is left as default None) + Extra path to be added to the input path before saving. + By default, new snapshot files are saved into exactly the + same directory they were read from with exactly the same name. + reference_index : int the snapshot number (in the snapshot directory list) to which all other LDOS vectors are aligned + zero_tol : float the "zero" value for alignment / left side truncation always scaled by norm of reference LDOS mean + left_truncate : bool whether to truncate the zero values on the LHS + right_truncate_value : float right-hand energy value (based on reference LDOS vector) to which truncate LDOS vectors if None, no right-side truncation - egrid_spacing_ev : float - spacing of energy grid - egrid_offset_ev : float - original offset of energy grid + number_of_electrons : float / int if not None, computes the energy shift relative to QE energies + n_shift_mse : int how many energy grid points to consider when aligning LDOS vectors based on mean-squared error @@ -395,12 +397,11 @@

Source code for mala.datahandling.ldos_aligner

barrier()

- +
[docs] @staticmethod def calc_optimal_ldos_shift( - e_grid, ldos_mean, ldos_mean_ref, left_index, @@ -415,8 +416,6 @@

Source code for mala.datahandling.ldos_aligner

Parameters ---------- - e_grid : array_like - energy grid ldos_mean : array_like mean of LDOS vector for shifting ldos_mean_ref : array_like diff --git a/_modules/mala/datahandling/multi_lazy_load_data_loader.html b/_modules/mala/datahandling/multi_lazy_load_data_loader.html index f7740e40b..62eadeedd 100644 --- a/_modules/mala/datahandling/multi_lazy_load_data_loader.html +++ b/_modules/mala/datahandling/multi_lazy_load_data_loader.html @@ -105,23 +105,23 @@

Source code for mala.datahandling.multi_lazy_load_data_loader

""" def __init__(self, datasets, **kwargs): - self.datasets = datasets - self.loaders = [] + self._datasets = datasets + self._loaders = [] for d in datasets: - self.loaders.append( + self._loaders.append( DataLoader(d, batch_size=None, **kwargs, shuffle=False) ) # Create single process pool for prefetching # Can use ThreadPoolExecutor for debugging. # self.pool = concurrent.futures.ThreadPoolExecutor(1) - self.pool = concurrent.futures.ProcessPoolExecutor(1) + self._pool = concurrent.futures.ProcessPoolExecutor(1) # Allocate shared memory and commence file load for first # dataset in list - dset = self.datasets[0] + dset = self._datasets[0] dset.allocate_shared_mem() - self.load_future = self.pool.submit( + self._load_future = self._pool.submit( self.load_snapshot_to_shm, dset.snapshot, dset.descriptor_calculator, @@ -139,7 +139,7 @@

Source code for mala.datahandling.multi_lazy_load_data_loader

length : int Number of datasets/snapshots contained within this loader. """ - return len(self.loaders) + return len(self._loaders) def __iter__(self): """ @@ -151,7 +151,7 @@

Source code for mala.datahandling.multi_lazy_load_data_loader

An iterator over the individual datasets/snapshots in this object. """ - self.count = 0 + self._count = 0 return self def __next__(self): @@ -163,25 +163,25 @@

Source code for mala.datahandling.multi_lazy_load_data_loader

iterator: DataLoader The next data loader. """ - self.count += 1 - if self.count > len(self.loaders): + self._count += 1 + if self._count > len(self._loaders): raise StopIteration else: # Wait on last prefetch - if self.count - 1 >= 0: - if not self.datasets[self.count - 1].loaded: - self.load_future.result() - self.datasets[self.count - 1].loaded = True + if self._count - 1 >= 0: + if not self._datasets[self._count - 1].loaded: + self._load_future.result() + self._datasets[self._count - 1].loaded = True # Delete last - if self.count - 2 >= 0: - self.datasets[self.count - 2].delete_data() + if self._count - 2 >= 0: + self._datasets[self._count - 2].delete_data() # Prefetch next file (looping around epoch boundary) - dset = self.datasets[self.count % len(self.loaders)] + dset = self._datasets[self._count % len(self._loaders)] if not dset.loaded: dset.allocate_shared_mem() - self.load_future = self.pool.submit( + self._load_future = self._pool.submit( self.load_snapshot_to_shm, dset.snapshot, dset.descriptor_calculator, @@ -191,7 +191,7 @@

Source code for mala.datahandling.multi_lazy_load_data_loader

) # Return current - return self.loaders[self.count - 1] + return self._loaders[self._count - 1] # TODO: Without this function, I get 2 times the number of snapshots # memory leaks after shutdown. With it, I get 1 times the number of @@ -201,9 +201,9 @@

Source code for mala.datahandling.multi_lazy_load_data_loader

[docs] def cleanup(self): """Deallocate arrays still left in memory.""" - for dset in self.datasets: + for dset in self._datasets: dset.deallocate_shared_mem() - self.pool.shutdown()
+ self._pool.shutdown()
# Worker function to load data into shared memory (limited to numpy files diff --git a/_modules/mala/datahandling/snapshot.html b/_modules/mala/datahandling/snapshot.html index 3c826b172..54b8fcaec 100644 --- a/_modules/mala/datahandling/snapshot.html +++ b/_modules/mala/datahandling/snapshot.html @@ -128,8 +128,54 @@

Source code for mala.datahandling.snapshot

           - tr: This snapshot will be a training snapshot.
           - va: This snapshot will be a validation snapshot.
 
-        Replaces the old approach of MALA to have a separate list.
-        Default is None.
+    Attributes
+    ----------
+    grid_dimensions :  list
+        Grid dimension [x,y,z].
+
+    grid_size : int
+        Number of grid points in total.
+
+    input_dimension : int
+        Input feature dimension.
+
+    output_dimension : int
+        Output feature dimension
+
+    input_npy_file : string
+        File with saved numpy input array.
+
+    input_npy_directory : string
+        Directory containing input_npy_directory.
+
+    output_npy_file : string
+        File with saved numpy output array.
+
+    output_npy_directory : string
+        Directory containing output_npy_file.
+
+    input_units : string
+        Units of input data. See descriptor classes to see which units are
+        supported.
+
+    output_units : string
+        Units of output data. See target classes to see which units are
+        supported.
+
+    calculation_output : string
+        File with the output of the original snapshot calculation. This is
+        only needed when testing multiple snapshots.
+
+    snapshot_function : string
+        "Function" of the snapshot in the MALA workflow.
+
+          - te: This snapshot will be a testing snapshot.
+          - tr: This snapshot will be a training snapshot.
+          - va: This snapshot will be a validation snapshot.
+
+    snapshot_type : string
+        Can be either "numpy" or "openpmd" and denotes which type of files
+        this snapshot contains.
     """
 
     def __init__(
diff --git a/_modules/mala/descriptors/atomic_density.html b/_modules/mala/descriptors/atomic_density.html
index 1674276d3..be6b3be65 100644
--- a/_modules/mala/descriptors/atomic_density.html
+++ b/_modules/mala/descriptors/atomic_density.html
@@ -116,18 +116,12 @@ 

Source code for mala.descriptors.atomic_density

< def __init__(self, parameters): super(AtomicDensity, self).__init__(parameters) - self.verbosity = parameters.verbosity @property def data_name(self): """Get a string that describes the target (for e.g. metadata).""" return "AtomicDensity" - @property - def feature_size(self): - """Get the feature dimension of this data.""" - return self.fingerprint_length -
[docs] @staticmethod @@ -234,7 +228,7 @@

Source code for mala.descriptors.atomic_density

< self.setup_lammps_tmp_files("ggrid", outdir) ase.io.write( - self.lammps_temporary_input, self.atoms, format=lammps_format + self._lammps_temporary_input, self._atoms, format=lammps_format ) nx = self.grid_dimensions[0] @@ -245,7 +239,7 @@

Source code for mala.descriptors.atomic_density

< if self.parameters.atomic_density_sigma is None: self.grid_dimensions = [nx, ny, nz] self.parameters.atomic_density_sigma = self.get_optimal_sigma( - self.voxel + self._voxel ) # Create LAMMPS instance. @@ -307,7 +301,7 @@

Source code for mala.descriptors.atomic_density

< if return_directly: return gaussian_descriptors_np else: - self.fingerprint_length = 4 + self.feature_size = 4 return gaussian_descriptors_np, nrows_ggrid else: # Since the atomic density may be directly fed back into QE @@ -332,10 +326,10 @@

Source code for mala.descriptors.atomic_density

< [2, 1, 0, 3] ) if self.parameters.descriptors_contain_xyz: - self.fingerprint_length = 4 + self.feature_size = 4 return gaussian_descriptors_np[:, :, :, 3:], nx * ny * nz else: - self.fingerprint_length = 1 + self.feature_size = 1 return gaussian_descriptors_np[:, :, :, 6:], nx * ny * nz def __calculate_python(self, **kwargs): @@ -375,7 +369,7 @@

Source code for mala.descriptors.atomic_density

< # This follows the implementation in the LAMMPS code. if self.parameters.atomic_density_sigma is None: self.parameters.atomic_density_sigma = self.get_optimal_sigma( - self.voxel + self._voxel ) cutoff_squared = ( self.parameters.atomic_density_cutoff @@ -423,10 +417,10 @@

Source code for mala.descriptors.atomic_density

< ) if self.parameters.descriptors_contain_xyz: - self.fingerprint_length = 4 + self.feature_size = 4 return gaussian_descriptors_np, np.prod(self.grid_dimensions) else: - self.fingerprint_length = 1 + self.feature_size = 1 return gaussian_descriptors_np[:, :, :, 3:], np.prod( self.grid_dimensions )
diff --git a/_modules/mala/descriptors/bispectrum.html b/_modules/mala/descriptors/bispectrum.html index fd4a7a97f..518716b16 100644 --- a/_modules/mala/descriptors/bispectrum.html +++ b/_modules/mala/descriptors/bispectrum.html @@ -142,11 +142,6 @@

Source code for mala.descriptors.bispectrum

         """Get a string that describes the target (for e.g. metadata)."""
         return "Bispectrum"
 
-    @property
-    def feature_size(self):
-        """Get the feature dimension of this data."""
-        return self.fingerprint_length
-
 
[docs] @staticmethod @@ -235,7 +230,7 @@

Source code for mala.descriptors.bispectrum

         self.setup_lammps_tmp_files("bgrid", outdir)
 
         ase.io.write(
-            self.lammps_temporary_input, self.atoms, format=lammps_format
+            self._lammps_temporary_input, self._atoms, format=lammps_format
         )
 
         nx = self.grid_dimensions[0]
@@ -281,7 +276,7 @@ 

Source code for mala.descriptors.bispectrum

             * (self.parameters.bispectrum_twojmax + 4)
         )
         ncoeff = ncoeff // 24  # integer division
-        self.fingerprint_length = ncols0 + ncoeff
+        self.feature_size = ncols0 + ncoeff
 
         # Extract data from LAMMPS calculation.
         # This is different for the parallel and the serial case.
@@ -301,7 +296,7 @@ 

Source code for mala.descriptors.bispectrum

                 lammps_constants.LMP_STYLE_LOCAL,
                 lammps_constants.LMP_SIZE_COLS,
             )
-            if ncols_local != self.fingerprint_length + 3:
+            if ncols_local != self.feature_size + 3:
                 raise Exception("Inconsistent number of features.")
 
             snap_descriptors_np = extract_compute_np(
@@ -326,7 +321,7 @@ 

Source code for mala.descriptors.bispectrum

                 "bgrid",
                 0,
                 2,
-                (nz, ny, nx, self.fingerprint_length),
+                (nz, ny, nx, self.feature_size),
                 use_fp64=use_fp64,
             )
 
@@ -388,13 +383,13 @@ 

Source code for mala.descriptors.bispectrum

             * (self.parameters.bispectrum_twojmax + 4)
         )
         ncoeff = ncoeff // 24  # integer division
-        self.fingerprint_length = ncoeff + 3
+        self.feature_size = ncoeff + 3
         bispectrum_np = np.zeros(
             (
                 self.grid_dimensions[0],
                 self.grid_dimensions[1],
                 self.grid_dimensions[2],
-                self.fingerprint_length,
+                self.feature_size,
             ),
             dtype=np.float64,
         )
@@ -404,16 +399,16 @@ 

Source code for mala.descriptors.bispectrum

 
         # These are technically hyperparameters. We currently simply set them
         # to set values for everything.
-        self.rmin0 = 0.0
-        self.rfac0 = 0.99363
-        self.bzero_flag = False
-        self.wselfall_flag = False
+        self._rmin0 = 0.0
+        self._rfac0 = 0.99363
+        self._bzero_flag = False
+        self._wselfall_flag = False
         # Currently not supported
-        self.bnorm_flag = False
+        self._bnorm_flag = False
         # Currently not supported
-        self.quadraticflag = False
-        self.number_elements = 1
-        self.wself = 1.0
+        self._quadraticflag = False
+        self._python_calculation_number_elements = 1
+        self._wself = 1.0
 
         # What follows is the python implementation of the
         # bispectrum descriptor calculation.
@@ -587,7 +582,7 @@ 

Source code for mala.descriptors.bispectrum

         if self.parameters.descriptors_contain_xyz:
             return bispectrum_np, np.prod(self.grid_dimensions)
         else:
-            self.fingerprint_length -= 3
+            self.feature_size -= 3
             return bispectrum_np[:, :, :, 3:], np.prod(self.grid_dimensions)
 
     ########
@@ -993,10 +988,10 @@ 

Source code for mala.descriptors.bispectrum

         """
         # Precompute and prepare ui stuff
         theta0 = (
-            (distances_cutoff - self.rmin0)
-            * self.rfac0
+            (distances_cutoff - self._rmin0)
+            * self._rfac0
             * np.pi
-            / (self.parameters.bispectrum_cutoff - self.rmin0)
+            / (self.parameters.bispectrum_cutoff - self._rmin0)
         )
         z0 = np.squeeze(distances_cutoff / np.tan(theta0))
 
@@ -1077,13 +1072,14 @@ 

Source code for mala.descriptors.bispectrum

                 sfac += 1.0
             else:
                 rcutfac = np.pi / (
-                    self.parameters.bispectrum_cutoff - self.rmin0
+                    self.parameters.bispectrum_cutoff - self._rmin0
                 )
                 if nr_atoms > 1:
                     sfac = 0.5 * (
-                        np.cos((distances_cutoff - self.rmin0) * rcutfac) + 1.0
+                        np.cos((distances_cutoff - self._rmin0) * rcutfac)
+                        + 1.0
                     )
-                    sfac[np.where(distances_cutoff <= self.rmin0)] = 1.0
+                    sfac[np.where(distances_cutoff <= self._rmin0)] = 1.0
                     sfac[
                         np.where(
                             distances_cutoff
@@ -1091,8 +1087,8 @@ 

Source code for mala.descriptors.bispectrum

                         )
                     ] = 0.0
                 else:
-                    sfac = 1.0 if distances_cutoff <= self.rmin0 else sfac
-                    sfac = 0.0 if distances_cutoff <= self.rmin0 else sfac
+                    sfac = 1.0 if distances_cutoff <= self._rmin0 else sfac
+                    sfac = 0.0 if distances_cutoff <= self._rmin0 else sfac
 
             # sfac technically has to be weighted according to the chemical
             # species. But this is a minimal implementation only for a single
@@ -1190,12 +1186,12 @@ 

Source code for mala.descriptors.bispectrum

         itriple = 0
         idouble = 0
 
-        if self.bzero_flag:
+        if self._bzero_flag:
             wself = 1.0
             bzero = np.zeros(self.parameters.bispectrum_twojmax + 1)
             www = wself * wself * wself
             for j in range(self.parameters.bispectrum_twojmax + 1):
-                if self.bnorm_flag:
+                if self._bnorm_flag:
                     bzero[j] = www
                 else:
                     bzero[j] = www * (j + 1)
@@ -1249,8 +1245,8 @@ 

Source code for mala.descriptors.bispectrum

                     itriple += 1
                 idouble += 1
 
-        if self.bzero_flag:
-            if not self.wselfall_flag:
+        if self._bzero_flag:
+            if not self._wselfall_flag:
                 itriple = (
                     ielem * number_elements + ielem
                 ) * number_elements + ielem
@@ -1270,9 +1266,9 @@ 

Source code for mala.descriptors.bispectrum

                             itriple += 1
 
         # Untested  & Unoptimized
-        if self.quadraticflag:
+        if self._quadraticflag:
             xyz_length = 3 if self.parameters.descriptors_contain_xyz else 0
-            ncount = self.fingerprint_length - xyz_length
+            ncount = self.feature_size - xyz_length
             for icoeff in range(ncount):
                 bveci = blist[icoeff]
                 blist[3 + ncount] = 0.5 * bveci * bveci
diff --git a/_modules/mala/descriptors/descriptor.html b/_modules/mala/descriptors/descriptor.html
index 847d89825..27f3efc4a 100644
--- a/_modules/mala/descriptors/descriptor.html
+++ b/_modules/mala/descriptors/descriptor.html
@@ -121,6 +121,10 @@ 

Source code for mala.descriptors.descriptor

     parameters : mala.common.parameters.Parameters
         Parameters object used to create this object.
 
+    Attributes
+    ----------
+    parameters: mala.common.parameters.ParametersDescriptors
+        MALA descriptor calculation parameters.
     """
 
     ##############################
@@ -191,17 +195,16 @@ 

Source code for mala.descriptors.descriptor

     def __init__(self, parameters):
         super(Descriptor, self).__init__(parameters)
         self.parameters: ParametersDescriptors = parameters.descriptors
-        self.fingerprint_length = 0  # so iterations will fail
-        self.verbosity = parameters.verbosity
-        self.in_format_ase = ""
-        self.atoms = None
-        self.voxel = None
+        self.feature_size = 0  # so iterations will fail
+        self._in_format_ase = ""
+        self._atoms = None
+        self._voxel = None
 
         # If we ever have NON LAMMPS descriptors, these parameters have no
         # meaning anymore and should probably be moved to an intermediate
         # DescriptorsLAMMPS class, from which the LAMMPS descriptors inherit.
-        self.lammps_temporary_input = None
-        self.lammps_temporary_log = None
+        self._lammps_temporary_input = None
+        self._lammps_temporary_log = None
 
     ##############################
     # Properties
@@ -270,6 +273,15 @@ 

Source code for mala.descriptors.descriptor

         )
+ @property + def feature_size(self): + """Get the feature dimension of this data.""" + return self._feature_size + + @feature_size.setter + def feature_size(self, value): + self._feature_size = value +
[docs] @staticmethod @@ -320,24 +332,24 @@

Source code for mala.descriptors.descriptor

             lammps_tmp_input_file = tempfile.NamedTemporaryFile(
                 delete=False, prefix=prefix_inp_str, suffix="_.tmp", dir=outdir
             )
-            self.lammps_temporary_input = lammps_tmp_input_file.name
+            self._lammps_temporary_input = lammps_tmp_input_file.name
             lammps_tmp_input_file.close()
 
             lammps_tmp_log_file = tempfile.NamedTemporaryFile(
                 delete=False, prefix=prefix_log_str, suffix="_.tmp", dir=outdir
             )
-            self.lammps_temporary_log = lammps_tmp_log_file.name
+            self._lammps_temporary_log = lammps_tmp_log_file.name
             lammps_tmp_log_file.close()
         else:
-            self.lammps_temporary_input = None
-            self.lammps_temporary_log = None
+            self._lammps_temporary_input = None
+            self._lammps_temporary_log = None
 
         if self.parameters._configuration["mpi"]:
-            self.lammps_temporary_input = get_comm().bcast(
-                self.lammps_temporary_input, root=0
+            self._lammps_temporary_input = get_comm().bcast(
+                self._lammps_temporary_input, root=0
             )
-            self.lammps_temporary_log = get_comm().bcast(
-                self.lammps_temporary_log, root=0
+            self._lammps_temporary_log = get_comm().bcast(
+                self._lammps_temporary_log, root=0
             )
@@ -427,13 +439,13 @@

Source code for mala.descriptors.descriptor

             (x,y,z,descriptor_dimension)
 
         """
-        self.in_format_ase = "espresso-out"
+        self._in_format_ase = "espresso-out"
         printout("Calculating descriptors from", qe_out_file, min_verbosity=0)
         # We get the atomic information by using ASE.
-        self.atoms = ase.io.read(qe_out_file, format=self.in_format_ase)
+        self._atoms = ase.io.read(qe_out_file, format=self._in_format_ase)
 
         # Enforcing / Checking PBC on the read atoms.
-        self.atoms = self.enforce_pbc(self.atoms)
+        self._atoms = self.enforce_pbc(self._atoms)
 
         # Get the grid dimensions.
         if "grid_dimensions" in kwargs.keys():
@@ -455,10 +467,10 @@ 

Source code for mala.descriptors.descriptor

                     self.grid_dimensions[2] = int(tmp.split(",")[2])
                     break
 
-        self.voxel = self.atoms.cell.copy()
-        self.voxel[0] = self.voxel[0] / (self.grid_dimensions[0])
-        self.voxel[1] = self.voxel[1] / (self.grid_dimensions[1])
-        self.voxel[2] = self.voxel[2] / (self.grid_dimensions[2])
+        self._voxel = self._atoms.cell.copy()
+        self._voxel[0] = self._voxel[0] / (self.grid_dimensions[0])
+        self._voxel[1] = self._voxel[1] / (self.grid_dimensions[1])
+        self._voxel[2] = self._voxel[2] / (self.grid_dimensions[2])
 
         return self._calculate(working_directory, **kwargs)
@@ -502,12 +514,12 @@

Source code for mala.descriptors.descriptor

             (x,y,z,descriptor_dimension)
         """
         # Enforcing / Checking PBC on the input atoms.
-        self.atoms = self.enforce_pbc(atoms)
+        self._atoms = self.enforce_pbc(atoms)
         self.grid_dimensions = grid_dimensions
-        self.voxel = self.atoms.cell.copy()
-        self.voxel[0] = self.voxel[0] / (self.grid_dimensions[0])
-        self.voxel[1] = self.voxel[1] / (self.grid_dimensions[1])
-        self.voxel[2] = self.voxel[2] / (self.grid_dimensions[2])
+        self._voxel = self._atoms.cell.copy()
+        self._voxel[0] = self._voxel[0] / (self.grid_dimensions[0])
+        self._voxel[1] = self._voxel[1] / (self.grid_dimensions[1])
+        self._voxel[2] = self._voxel[2] / (self.grid_dimensions[2])
         return self._calculate(working_directory, **kwargs)
@@ -550,7 +562,7 @@

Source code for mala.descriptors.descriptor

             sendcounts = np.array(
                 comm.gather(np.shape(descriptors_np)[0], root=0)
             )
-            raw_feature_length = self.fingerprint_length + 3
+            raw_feature_length = self.feature_size + 3
 
             if get_rank() == 0:
                 # print("sendcounts: {}, total: {}".format(sendcounts,
@@ -595,7 +607,7 @@ 

Source code for mala.descriptors.descriptor

             nx = self.grid_dimensions[0]
             ny = self.grid_dimensions[1]
             nz = self.grid_dimensions[2]
-            descriptors_full = np.zeros([nx, ny, nz, self.fingerprint_length])
+            descriptors_full = np.zeros([nx, ny, nz, self.feature_size])
             # Fill the full bispectrum descriptors array.
             for idx, local_grid in enumerate(all_descriptors_list):
                 # We glue the individual cells back together, and transpose.
@@ -613,7 +625,7 @@ 

Source code for mala.descriptors.descriptor

                         last_z - first_z,
                         last_y - first_y,
                         last_x - first_x,
-                        self.fingerprint_length,
+                        self.feature_size,
                     ],
                 ).transpose(
                     [2, 1, 0, 3]
@@ -662,10 +674,10 @@ 

Source code for mala.descriptors.descriptor

         ny = local_reach[1] - local_offset[1]
         nz = local_reach[2] - local_offset[2]
 
-        descriptors_full = np.zeros([nx, ny, nz, self.fingerprint_length])
+        descriptors_full = np.zeros([nx, ny, nz, self.feature_size])
 
         descriptors_full[0:nx, 0:ny, 0:nz] = np.reshape(
-            descriptors_np[:, 3:], [nz, ny, nx, self.fingerprint_length]
+            descriptors_np[:, 3:], [nz, ny, nx, self.feature_size]
         ).transpose([2, 1, 0, 3])
         return descriptors_full, local_offset, local_reach
@@ -689,20 +701,20 @@

Source code for mala.descriptors.descriptor

 
     def _set_geometry_info(self, mesh):
         # Geometry: Save the cell parameters and angles of the grid.
-        if self.atoms is not None:
+        if self._atoms is not None:
             import openpmd_api as io
 
-            self.voxel = self.atoms.cell.copy()
-            self.voxel[0] = self.voxel[0] / (self.grid_dimensions[0])
-            self.voxel[1] = self.voxel[1] / (self.grid_dimensions[1])
-            self.voxel[2] = self.voxel[2] / (self.grid_dimensions[2])
+            self._voxel = self._atoms.cell.copy()
+            self._voxel[0] = self._voxel[0] / (self.grid_dimensions[0])
+            self._voxel[1] = self._voxel[1] / (self.grid_dimensions[1])
+            self._voxel[2] = self._voxel[2] / (self.grid_dimensions[2])
 
             mesh.geometry = io.Geometry.cartesian
-            mesh.grid_spacing = self.voxel.cellpar()[0:3]
-            mesh.set_attribute("angles", self.voxel.cellpar()[3:])
+            mesh.grid_spacing = self._voxel.cellpar()[0:3]
+            mesh.set_attribute("angles", self._voxel.cellpar()[3:])
 
     def _get_atoms(self):
-        return self.atoms
+        return self._atoms
 
     def _feature_mask(self):
         if self.descriptors_contain_xyz:
@@ -723,9 +735,9 @@ 

Source code for mala.descriptors.descriptor

             "-screen",
             "none",
             "-log",
-            self.lammps_temporary_log,
+            self._lammps_temporary_log,
         ]
-        lammps_dict["atom_config_fname"] = self.lammps_temporary_input
+        lammps_dict["atom_config_fname"] = self._lammps_temporary_input
 
         if self.parameters._configuration["mpi"]:
             size = get_size()
@@ -942,8 +954,8 @@ 

Source code for mala.descriptors.descriptor

         lmp.close()
         if not keep_logs:
             if get_rank() == 0:
-                os.remove(self.lammps_temporary_log)
-                os.remove(self.lammps_temporary_input)
+                os.remove(self._lammps_temporary_log)
+                os.remove(self._lammps_temporary_input)
 
     def _setup_atom_list(self):
         """
@@ -956,7 +968,7 @@ 

Source code for mala.descriptors.descriptor

         FURTHER OPTIMIZATION: Probably not that much, this mostly already uses
         optimized python functions.
         """
-        if np.any(self.atoms.pbc):
+        if np.any(self._atoms.pbc):
 
             # To determine the list of relevant atoms we first take the edges
             # of the simulation cell and use them to determine all cells
@@ -983,19 +995,19 @@ 

Source code for mala.descriptors.descriptor

             for edge in edges:
                 edge_point = self._grid_to_coord(edge)
                 neighborlist = NeighborList(
-                    np.zeros(len(self.atoms) + 1)
+                    np.zeros(len(self._atoms) + 1)
                     + [self.parameters.atomic_density_cutoff],
                     bothways=True,
                     self_interaction=False,
                     primitive=NewPrimitiveNeighborList,
                 )
 
-                atoms_with_grid_point = self.atoms.copy()
+                atoms_with_grid_point = self._atoms.copy()
 
                 # Construct a ghost atom representing the grid point.
                 atoms_with_grid_point.append(ase.Atom("H", edge_point))
                 neighborlist.update(atoms_with_grid_point)
-                indices, offsets = neighborlist.get_neighbors(len(self.atoms))
+                indices, offsets = neighborlist.get_neighbors(len(self._atoms))
 
                 # Incrementally fill the list containing all cells to be
                 # considered.
@@ -1020,18 +1032,18 @@ 

Source code for mala.descriptors.descriptor

             # First, instantiate it by filling it will all atoms from all
             # potentiall relevant cells, as identified above.
             all_atoms = None
-            for a in range(0, len(self.atoms)):
+            for a in range(0, len(self._atoms)):
                 if all_atoms is None:
                     all_atoms = (
-                        self.atoms.positions[a]
-                        + all_cells @ self.atoms.get_cell()
+                        self._atoms.positions[a]
+                        + all_cells @ self._atoms.get_cell()
                     )
                 else:
                     all_atoms = np.concatenate(
                         (
                             all_atoms,
-                            self.atoms.positions[a]
-                            + all_cells @ self.atoms.get_cell(),
+                            self._atoms.positions[a]
+                            + all_cells @ self._atoms.get_cell(),
                         )
                     )
 
@@ -1084,11 +1096,11 @@ 

Source code for mala.descriptors.descriptor

                     :,
                 ]
             )
-            return np.concatenate((all_atoms, self.atoms.positions))
+            return np.concatenate((all_atoms, self._atoms.positions))
 
         else:
             # If no PBC are used, only consider a single cell.
-            return self.atoms.positions
+            return self._atoms.positions
 
     def _grid_to_coord(self, gridpoint):
         # Convert grid indices to real space grid point.
@@ -1098,20 +1110,20 @@ 

Source code for mala.descriptors.descriptor

         # Orthorhombic cells and triclinic ones have
         # to be treated differently, see domain.cpp
 
-        if self.atoms.cell.orthorhombic:
-            return np.diag(self.voxel) * [i, j, k]
+        if self._atoms.cell.orthorhombic:
+            return np.diag(self._voxel) * [i, j, k]
         else:
             ret = [0, 0, 0]
             ret[0] = (
-                i / self.grid_dimensions[0] * self.atoms.cell[0, 0]
-                + j / self.grid_dimensions[1] * self.atoms.cell[1, 0]
-                + k / self.grid_dimensions[2] * self.atoms.cell[2, 0]
+                i / self.grid_dimensions[0] * self._atoms.cell[0, 0]
+                + j / self.grid_dimensions[1] * self._atoms.cell[1, 0]
+                + k / self.grid_dimensions[2] * self._atoms.cell[2, 0]
             )
             ret[1] = (
-                j / self.grid_dimensions[1] * self.atoms.cell[1, 1]
-                + k / self.grid_dimensions[2] * self.atoms.cell[1, 2]
+                j / self.grid_dimensions[1] * self._atoms.cell[1, 1]
+                + k / self.grid_dimensions[2] * self._atoms.cell[1, 2]
             )
-            ret[2] = k / self.grid_dimensions[2] * self.atoms.cell[2, 2]
+            ret[2] = k / self.grid_dimensions[2] * self._atoms.cell[2, 2]
             return np.array(ret)
 
     @abstractmethod
@@ -1119,7 +1131,7 @@ 

Source code for mala.descriptors.descriptor

         pass
 
     def _set_feature_size_from_array(self, array):
-        self.fingerprint_length = np.shape(array)[-1]
+ self.feature_size = np.shape(array)[-1]
diff --git a/_modules/mala/descriptors/minterpy_descriptors.html b/_modules/mala/descriptors/minterpy_descriptors.html index 199539751..c3d1292d7 100644 --- a/_modules/mala/descriptors/minterpy_descriptors.html +++ b/_modules/mala/descriptors/minterpy_descriptors.html @@ -81,7 +81,7 @@

Source code for mala.descriptors.minterpy_descriptors

-"""Gaussian descriptor class."""
+"""Minterpy descriptor class."""
 
 import os
 
@@ -93,12 +93,16 @@ 

Source code for mala.descriptors.minterpy_descriptors

from mala.descriptors.lammps_utils import extract_compute_np from mala.descriptors.descriptor import Descriptor from mala.descriptors.atomic_density import AtomicDensity +from mala.common.parallelizer import parallel_warn
[docs] class MinterpyDescriptors(Descriptor): - """Class for calculation and parsing of Gaussian descriptors. + """ + Class for calculation and parsing of Minterpy descriptors. + + Marked for deprecation. Parameters ---------- @@ -108,18 +112,16 @@

Source code for mala.descriptors.minterpy_descriptors

def __init__(self, parameters): super(MinterpyDescriptors, self).__init__(parameters) - self.verbosity = parameters.verbosity + parallel_warn( + "Minterpy descriptors will be deprecated starting with MALA v1.4.0", + category=FutureWarning, + ) @property def data_name(self): """Get a string that describes the target (for e.g. metadata).""" return "Minterpy" - @property - def feature_size(self): - """Get the feature dimension of this data.""" - return self.fingerprint_length -
[docs] @staticmethod @@ -240,11 +242,11 @@

Source code for mala.descriptors.minterpy_descriptors

], dtype=np.float64, ) - self.fingerprint_length = ( + self.feature_size = ( len(self.parameters.minterpy_point_list) + coord_length ) - self.fingerprint_length = len(self.parameters.minterpy_point_list) + self.feature_size = len(self.parameters.minterpy_point_list) # Perform one LAMMPS call for each point in the Minterpy point list. for idx, point in enumerate(self.parameters.minterpy_point_list): # Shift the atoms in negative direction of the point(s) we actually @@ -257,7 +259,7 @@

Source code for mala.descriptors.minterpy_descriptors

self.setup_lammps_tmp_files("minterpy", outdir) ase.io.write( - self.lammps_temporary_input, self.atoms, format=lammps_format + self._lammps_temporary_input, self._atoms, format=lammps_format ) # Create LAMMPS instance. diff --git a/_modules/mala/interfaces/ase_calculator.html b/_modules/mala/interfaces/ase_calculator.html index 3b02c33bf..e750f77f8 100644 --- a/_modules/mala/interfaces/ase_calculator.html +++ b/_modules/mala/interfaces/ase_calculator.html @@ -119,9 +119,21 @@

Source code for mala.interfaces.ase_calculator

the neural network), calculator can access all important data such as temperature, number of electrons, etc. that might not be known simply from the atomic positions. + + predictor : mala.network.predictor.Predictor + A Predictor class object to be used for the underlying MALA + predictions. + + Attributes + ---------- + mala_parameters : mala.common.parameters.Parameters + MALA parameters used for predictions. + + last_energy_contributions : dict + Contains all total energy contributions for the last prediction. """ - implemented_properties = ["energy", "forces"] + implemented_properties = ["energy"] def __init__( self, @@ -140,21 +152,21 @@

Source code for mala.interfaces.ase_calculator

"The MALA calculator currently only works with the LDOS." ) - self.network: Network = network - self.data_handler: DataHandler = data + self._network: Network = network + self._data_handler: DataHandler = data # Prepare for prediction. if predictor is None: - self.predictor = Predictor( - self.mala_parameters, self.network, self.data_handler + self._predictor = Predictor( + self.mala_parameters, self._network, self._data_handler ) else: - self.predictor = predictor + self._predictor = predictor if reference_data is not None: # Get critical values from a reference file (cutoff, # temperature, etc.) - self.data_handler.target_calculator.read_additional_calculation_data( + self._data_handler.target_calculator.read_additional_calculation_data( reference_data ) @@ -178,6 +190,11 @@

Source code for mala.interfaces.ase_calculator

path : str Path where the model is saved. + + Returns + ------- + calculator : mala.interfaces.calculator.Calculator + The calculator object. """ parallel_warn( "MALA.load_model() will be deprecated in MALA v1.4.0." @@ -205,6 +222,11 @@

Source code for mala.interfaces.ase_calculator

path : str Path where the model is saved. + + Returns + ------- + calculator : mala.interfaces.calculator.Calculator + The calculator object. """ loaded_params, loaded_network, new_datahandler, loaded_runner = ( Predictor.load_run(run_name, path=path) @@ -245,10 +267,10 @@

Source code for mala.interfaces.ase_calculator

Calculator.calculate(self, atoms, properties, system_changes) # Get the LDOS from the NN. - ldos = self.predictor.predict_for_atoms(atoms) + ldos = self._predictor.predict_for_atoms(atoms) # Use the LDOS determined DOS and density to get energy and forces. - ldos_calculator: LDOS = self.data_handler.target_calculator + ldos_calculator: LDOS = self._data_handler.target_calculator ldos_calculator.read_from_array(ldos) self.results["energy"] = ldos_calculator.total_energy energy, self.last_energy_contributions = ( @@ -293,19 +315,19 @@

Source code for mala.interfaces.ase_calculator

if "rdf" in properties: self.results["rdf"] = ( - self.data_handler.target_calculator.get_radial_distribution_function( + self._data_handler.target_calculator.get_radial_distribution_function( atoms ) ) if "tpcf" in properties: self.results["tpcf"] = ( - self.data_handler.target_calculator.get_three_particle_correlation_function( + self._data_handler.target_calculator.get_three_particle_correlation_function( atoms ) ) if "static_structure_factor" in properties: self.results["static_structure_factor"] = ( - self.data_handler.target_calculator.get_static_structure_factor( + self._data_handler.target_calculator.get_static_structure_factor( atoms ) ) @@ -332,7 +354,7 @@

Source code for mala.interfaces.ase_calculator

Path where the calculator should be saved. """ - self.predictor.save_run( + self._predictor.save_run( filename, path=path, additional_calculation_data=True )

diff --git a/_modules/mala/network/acsd_analyzer.html b/_modules/mala/network/acsd_analyzer.html index 837d520ee..5dbed83b5 100644 --- a/_modules/mala/network/acsd_analyzer.html +++ b/_modules/mala/network/acsd_analyzer.html @@ -134,16 +134,18 @@

Source code for mala.network.acsd_analyzer

     ):
         super(ACSDAnalyzer, self).__init__(params)
         # Calculators used to parse data from compatible files.
-        self.target_calculator = target_calculator
-        if self.target_calculator is None:
-            self.target_calculator = Target(params)
-        self.descriptor_calculator = descriptor_calculator
-        if self.descriptor_calculator is None:
-            self.descriptor_calculator = Descriptor(params)
+        self._target_calculator = target_calculator
+        if self._target_calculator is None:
+            self._target_calculator = Target(params)
+        self._descriptor_calculator = descriptor_calculator
+        if self._descriptor_calculator is None:
+            self._descriptor_calculator = Descriptor(params)
         if (
-            not isinstance(self.descriptor_calculator, Bispectrum)
-            and not isinstance(self.descriptor_calculator, AtomicDensity)
-            and not isinstance(self.descriptor_calculator, MinterpyDescriptors)
+            not isinstance(self._descriptor_calculator, Bispectrum)
+            and not isinstance(self._descriptor_calculator, AtomicDensity)
+            and not isinstance(
+                self._descriptor_calculator, MinterpyDescriptors
+            )
         ):
             raise Exception(
                 "Cannot calculate ACSD for the selected descriptors."
@@ -155,10 +157,10 @@ 

Source code for mala.network.acsd_analyzer

         self.__snapshot_units = []
 
         # Filled after the analysis.
-        self.labels = []
-        self.study = []
-        self.reduced_study = None
-        self.internal_hyperparam_list = None
+        self._labels = []
+        self._study = []
+        self._reduced_study = None
+        self._internal_hyperparam_list = None
 
 
[docs] @@ -282,7 +284,7 @@

Source code for mala.network.acsd_analyzer

         # Prepare the hyperparameter lists.
         self._construct_hyperparam_list()
         hyperparameter_tuples = list(
-            itertools.product(*self.internal_hyperparam_list)
+            itertools.product(*self._internal_hyperparam_list)
         )
 
         # Perform the ACSD analysis separately for each snapshot.
@@ -301,14 +303,14 @@ 

Source code for mala.network.acsd_analyzer

             )
 
             for idx, hyperparameter_tuple in enumerate(hyperparameter_tuples):
-                if isinstance(self.descriptor_calculator, Bispectrum):
+                if isinstance(self._descriptor_calculator, Bispectrum):
                     self.params.descriptors.bispectrum_cutoff = (
                         hyperparameter_tuple[0]
                     )
                     self.params.descriptors.bispectrum_twojmax = (
                         hyperparameter_tuple[1]
                     )
-                elif isinstance(self.descriptor_calculator, AtomicDensity):
+                elif isinstance(self._descriptor_calculator, AtomicDensity):
                     self.params.descriptors.atomic_density_cutoff = (
                         hyperparameter_tuple[0]
                     )
@@ -316,7 +318,7 @@ 

Source code for mala.network.acsd_analyzer

                         hyperparameter_tuple[1]
                     )
                 elif isinstance(
-                    self.descriptor_calculator, MinterpyDescriptors
+                    self._descriptor_calculator, MinterpyDescriptors
                 ):
                     self.params.descriptors.atomic_density_cutoff = (
                         hyperparameter_tuple[0]
@@ -362,11 +364,11 @@ 

Source code for mala.network.acsd_analyzer

                         )
 
                     outstring = "["
-                    for label_id, label in enumerate(self.labels):
+                    for label_id, label in enumerate(self._labels):
                         outstring += (
                             label + ": " + str(hyperparameter_tuple[label_id])
                         )
-                        if label_id < len(self.labels) - 1:
+                        if label_id < len(self._labels) - 1:
                             outstring += ", "
                     outstring += "]"
                     best_trial_string = ". No suitable trial found yet."
@@ -388,34 +390,34 @@ 

Source code for mala.network.acsd_analyzer

                     )
 
             if get_rank() == 0:
-                self.study.append(current_list)
+                self._study.append(current_list)
 
         if get_rank() == 0:
-            self.study = np.mean(self.study, axis=0)
+            self._study = np.mean(self._study, axis=0)
 
             # TODO: Does this even make sense for the minterpy descriptors?
             if return_plotting:
                 results_to_plot = []
-                if len(self.internal_hyperparam_list) == 2:
-                    len_first_dim = len(self.internal_hyperparam_list[0])
-                    len_second_dim = len(self.internal_hyperparam_list[1])
+                if len(self._internal_hyperparam_list) == 2:
+                    len_first_dim = len(self._internal_hyperparam_list[0])
+                    len_second_dim = len(self._internal_hyperparam_list[1])
                     for i in range(0, len_first_dim):
                         results_to_plot.append(
-                            self.study[
+                            self._study[
                                 i * len_second_dim : (i + 1) * len_second_dim,
                                 2:,
                             ]
                         )
 
-                    if isinstance(self.descriptor_calculator, Bispectrum):
+                    if isinstance(self._descriptor_calculator, Bispectrum):
                         return results_to_plot, {
-                            "twojmax": self.internal_hyperparam_list[1],
-                            "cutoff": self.internal_hyperparam_list[0],
+                            "twojmax": self._internal_hyperparam_list[1],
+                            "cutoff": self._internal_hyperparam_list[0],
                         }
-                    if isinstance(self.descriptor_calculator, AtomicDensity):
+                    if isinstance(self._descriptor_calculator, AtomicDensity):
                         return results_to_plot, {
-                            "sigma": self.internal_hyperparam_list[1],
-                            "cutoff": self.internal_hyperparam_list[0],
+                            "sigma": self._internal_hyperparam_list[1],
+                            "cutoff": self._internal_hyperparam_list[0],
                         }
@@ -429,9 +431,9 @@

Source code for mala.network.acsd_analyzer

         hyperparameter optimizer was created.
         """
         if get_rank() == 0:
-            minimum_acsd = self.study[np.argmin(self.study[:, -1])]
-            if len(self.internal_hyperparam_list) == 2:
-                if isinstance(self.descriptor_calculator, Bispectrum):
+            minimum_acsd = self._study[np.argmin(self._study[:, -1])]
+            if len(self._internal_hyperparam_list) == 2:
+                if isinstance(self._descriptor_calculator, Bispectrum):
                     self.params.descriptors.bispectrum_cutoff = minimum_acsd[0]
                     self.params.descriptors.bispectrum_twojmax = int(
                         minimum_acsd[1]
@@ -447,7 +449,7 @@ 

Source code for mala.network.acsd_analyzer

                         "Bispectrum cutoff: ",
                         self.params.descriptors.bispectrum_cutoff,
                     )
-                if isinstance(self.descriptor_calculator, AtomicDensity):
+                if isinstance(self._descriptor_calculator, AtomicDensity):
                     self.params.descriptors.atomic_density_cutoff = (
                         minimum_acsd[0]
                     )
@@ -465,8 +467,10 @@ 

Source code for mala.network.acsd_analyzer

                         "Atomic density cutoff: ",
                         self.params.descriptors.atomic_density_cutoff,
                     )
-            elif len(self.internal_hyperparam_list) == 5:
-                if isinstance(self.descriptor_calculator, MinterpyDescriptors):
+            elif len(self._internal_hyperparam_list) == 5:
+                if isinstance(
+                    self._descriptor_calculator, MinterpyDescriptors
+                ):
                     self.params.descriptors.atomic_density_cutoff = (
                         minimum_acsd[0]
                     )
@@ -508,7 +512,7 @@ 

Source code for mala.network.acsd_analyzer

 
 
     def _construct_hyperparam_list(self):
-        if isinstance(self.descriptor_calculator, Bispectrum):
+        if isinstance(self._descriptor_calculator, Bispectrum):
             if (
                 list(
                     map(
@@ -549,10 +553,10 @@ 

Source code for mala.network.acsd_analyzer

                     ).index(True)
                 ].choices
 
-            self.internal_hyperparam_list = [first_dim_list, second_dim_list]
-            self.labels = ["cutoff", "twojmax"]
+            self._internal_hyperparam_list = [first_dim_list, second_dim_list]
+            self._labels = ["cutoff", "twojmax"]
 
-        elif isinstance(self.descriptor_calculator, AtomicDensity):
+        elif isinstance(self._descriptor_calculator, AtomicDensity):
             if (
                 list(
                     map(
@@ -596,10 +600,10 @@ 

Source code for mala.network.acsd_analyzer

                         )
                     ).index(True)
                 ].choices
-            self.internal_hyperparam_list = [first_dim_list, second_dim_list]
-            self.labels = ["cutoff", "sigma"]
+            self._internal_hyperparam_list = [first_dim_list, second_dim_list]
+            self._labels = ["cutoff", "sigma"]
 
-        elif isinstance(self.descriptor_calculator, MinterpyDescriptors):
+        elif isinstance(self._descriptor_calculator, MinterpyDescriptors):
             if (
                 list(
                     map(
@@ -708,14 +712,14 @@ 

Source code for mala.network.acsd_analyzer

                     ).index(True)
                 ].choices
 
-            self.internal_hyperparam_list = [
+            self._internal_hyperparam_list = [
                 first_dim_list,
                 second_dim_list,
                 third_dim_list,
                 fourth_dim_list,
                 fifth_dim_list,
             ]
-            self.labels = [
+            self._labels = [
                 "cutoff",
                 "sigma",
                 "minterpy_cutoff",
@@ -735,7 +739,7 @@ 

Source code for mala.network.acsd_analyzer

         if description["input"] == "espresso-out":
             descriptor_calculation_kwargs["units"] = original_units["input"]
             tmp_input, local_size = (
-                self.descriptor_calculator.calculate_from_qe_out(
+                self._descriptor_calculator.calculate_from_qe_out(
                     snapshot["input"], **descriptor_calculation_kwargs
                 )
             )
@@ -749,7 +753,7 @@ 

Source code for mala.network.acsd_analyzer

                 "Unknown file extension, cannot convert descriptor"
             )
         if self.params.descriptors._configuration["mpi"]:
-            tmp_input = self.descriptor_calculator.gather_descriptors(
+            tmp_input = self._descriptor_calculator.gather_descriptors(
                 tmp_input
             )
 
@@ -773,7 +777,7 @@ 

Source code for mala.network.acsd_analyzer

             target_calculator_kwargs["units"] = original_units["output"]
             target_calculator_kwargs["use_memmap"] = memmap
             # If no units are provided we just assume standard units.
-            tmp_output = self.target_calculator.read_from_cube(
+            tmp_output = self._target_calculator.read_from_cube(
                 snapshot["output"], **target_calculator_kwargs
             )
 
@@ -781,19 +785,19 @@ 

Source code for mala.network.acsd_analyzer

             target_calculator_kwargs["units"] = original_units["output"]
             target_calculator_kwargs["use_memmap"] = memmap
             # If no units are provided we just assume standard units.
-            tmp_output = self.target_calculator.read_from_xsf(
+            tmp_output = self._target_calculator.read_from_xsf(
                 snapshot["output"], **target_calculator_kwargs
             )
 
         elif description["output"] == "numpy":
             if get_rank() == 0:
-                tmp_output = self.target_calculator.read_from_numpy_file(
+                tmp_output = self._target_calculator.read_from_numpy_file(
                     snapshot["output"], units=original_units["output"]
                 )
 
         elif description["output"] == "openpmd":
             if get_rank() == 0:
-                tmp_output = self.target_calculator.read_from_numpy_file(
+                tmp_output = self._target_calculator.read_from_numpy_file(
                     snapshot["output"], units=original_units["output"]
                 )
         else:
diff --git a/_modules/mala/network/hyper_opt.html b/_modules/mala/network/hyper_opt.html
index 5d9537bfe..6d8f6a6a6 100644
--- a/_modules/mala/network/hyper_opt.html
+++ b/_modules/mala/network/hyper_opt.html
@@ -109,6 +109,11 @@ 

Source code for mala.network.hyper_opt

 
     use_pkl_checkpoints : bool
         If true, .pkl checkpoints will be created.
+
+    Attributes
+    ----------
+    params : mala.common.parametes.Parameters
+        MALA Parameters object.
     """
 
     def __new__(cls, params: Parameters, data=None, use_pkl_checkpoints=False):
@@ -158,9 +163,9 @@ 

Source code for mala.network.hyper_opt

         self, params: Parameters, data=None, use_pkl_checkpoints=False
     ):
         self.params: Parameters = params
-        self.data_handler = data
-        self.objective = ObjectiveBase(self.params, self.data_handler)
-        self.use_pkl_checkpoints = use_pkl_checkpoints
+        self._data_handler = data
+        self._objective = ObjectiveBase(self.params, self._data_handler)
+        self._use_pkl_checkpoints = use_pkl_checkpoints
 
 
[docs] @@ -252,7 +257,7 @@

Source code for mala.network.hyper_opt

         The parameters will be written to the parameter object with which the
         hyperparameter optimizer was created.
         """
-        self.objective.parse_trial(trial)
+ self._objective.parse_trial(trial)
def _save_params_and_scaler(self): @@ -263,12 +268,12 @@

Source code for mala.network.hyper_opt

         oscaler_name = (
             self.params.hyperparameters.checkpoint_name + "_oscaler.pkl"
         )
-        self.data_handler.input_data_scaler.save(iscaler_name)
-        self.data_handler.output_data_scaler.save(oscaler_name)
+        self._data_handler.input_data_scaler.save(iscaler_name)
+        self._data_handler.output_data_scaler.save(oscaler_name)
 
         # For the parameters we have to make sure we choose the correct
         # format.
-        if self.use_pkl_checkpoints:
+        if self._use_pkl_checkpoints:
             param_name = (
                 self.params.hyperparameters.checkpoint_name + "_params.pkl"
             )
@@ -300,7 +305,6 @@ 

Source code for mala.network.hyper_opt

         -------
         checkpoint_exists : bool
             True if the checkpoint exists, False otherwise.
-
         """
         iscaler_name = checkpoint_name + "_iscaler.pkl"
         oscaler_name = checkpoint_name + "_oscaler.pkl"
diff --git a/_modules/mala/network/hyper_opt_naswot.html b/_modules/mala/network/hyper_opt_naswot.html
index 7dd7b1be4..d3080d1e3 100644
--- a/_modules/mala/network/hyper_opt_naswot.html
+++ b/_modules/mala/network/hyper_opt_naswot.html
@@ -85,8 +85,9 @@ 

Source code for mala.network.hyper_opt_naswot

import itertools -import optuna +from functools import cached_property import numpy as np +import optuna from mala.common.parallelizer import ( printout, @@ -94,6 +95,7 @@

Source code for mala.network.hyper_opt_naswot

get_size, get_comm, barrier, + parallel_warn, ) from mala.network.hyper_opt import HyperOpt from mala.network.objective_naswot import ObjectiveNASWOT @@ -118,11 +120,10 @@

Source code for mala.network.hyper_opt_naswot

def __init__(self, params, data): super(HyperOptNASWOT, self).__init__(params, data) - self.objective = None - self.trial_losses = None - self.best_trial = None - self.trial_list = None - self.ignored_hyperparameters = [ + self._objective = None + self._trial_losses = None + self._trial_list = None + self._ignored_hyperparameters = [ "learning_rate", "optimizer", "mini_batch_size", @@ -132,8 +133,68 @@

Source code for mala.network.hyper_opt_naswot

] # For parallelization. - self.first_trial = None - self.last_trial = None + self._first_trial = None + self._last_trial = None + + @property + def best_trial_index(self): + """ + Get the index and loss of best trial determined in this NASWOT run. + + This property is read only, and will be recomputed. + + Returns + ------- + best_trial_index : list + A list containing [0] the best trial index and [1] the best + trial loss. + """ + if self._trial_losses is None: + parallel_warn( + "Trial list is not yet computed, cannot determine " + "best trial." + ) + return [-1, np.inf] + + if self.params.use_mpi: + comm = get_comm() + local_result = np.array( + [ + float(np.argmax(self._trial_losses) + self._first_trial), + np.max(self._trial_losses), + ] + ) + all_results = comm.allgather(local_result) + max_on_node = np.argmax(np.array(all_results)[:, 1]) + return [ + int(all_results[max_on_node][0]), + all_results[max_on_node][1], + ] + else: + return [np.argmax(self._trial_losses), np.max(self._trial_losses)] + + @best_trial_index.setter + def best_trial_index(self, value): + pass + + @property + def best_trial(self): + """ + Get the best trial determined in this NASWOT run. + + This property is read only, and will be recomputed. + """ + if self._trial_losses is None: + parallel_warn( + "Trial list is not yet computed, cannot determine " + "best trial." + ) + return None + return self._trial_list[self.best_trial_index[0]] + + @best_trial.setter + def best_trial(self, value): + pass
[docs] @@ -149,6 +210,11 @@

Source code for mala.network.hyper_opt_naswot

---------- trial_list : list A list containing trials from either HyperOptOptuna or HyperOptOAT. + + Returns + ------- + best_trial_loss : float + Loss of the best trial. """ # The minibatch size can not vary in the analysis. # This check ensures that e.g. optuna results can be used. @@ -163,29 +229,29 @@

Source code for mala.network.hyper_opt_naswot

# Ideally, this type of HO is called with a list of trials for which # the parameter has to be identified. - self.trial_list = trial_list - if self.trial_list is None: + self._trial_list = trial_list + if self._trial_list is None: printout( "No trial list provided, one will be created using all " "possible permutations of hyperparameters. " "The following hyperparameters will be ignored:", min_verbosity=0, ) - printout(self.ignored_hyperparameters) + printout(self._ignored_hyperparameters) # Please note for the parallel case: The trial list returned # here is deterministic. - self.trial_list = self.__all_combinations() + self._trial_list = self.__all_combinations() if self.params.use_mpi: trials_per_rank = int( - np.floor((len(self.trial_list) / get_size())) + np.floor((len(self._trial_list) / get_size())) ) - self.first_trial = get_rank() * trials_per_rank - self.last_trial = (get_rank() + 1) * trials_per_rank + self._first_trial = get_rank() * trials_per_rank + self._last_trial = (get_rank() + 1) * trials_per_rank if get_size() == get_rank() + 1: - trials_per_rank += len(self.trial_list) % get_size() - self.last_trial += len(self.trial_list) % get_size() + trials_per_rank += len(self._trial_list) % get_size() + self._last_trial += len(self._trial_list) % get_size() # We currently do not support checkpointing in parallel mode # for performance reasons. @@ -196,81 +262,58 @@

Source code for mala.network.hyper_opt_naswot

) self.params.hyperparameters.checkpoints_each_trial = 0 else: - self.first_trial = 0 - self.last_trial = len(self.trial_list) + self._first_trial = 0 + self._last_trial = len(self._trial_list) # TODO: For now. Needs some refinements later. if isinstance( - self.trial_list[0], optuna.trial.FrozenTrial - ) or isinstance(self.trial_list[0], optuna.trial.FixedTrial): + self._trial_list[0], optuna.trial.FrozenTrial + ) or isinstance(self._trial_list[0], optuna.trial.FixedTrial): trial_type = "optuna" else: trial_type = "oat" - self.objective = ObjectiveNASWOT( - self.params, self.data_handler, trial_type + self._objective = ObjectiveNASWOT( + self.params, self._data_handler, trial_type ) printout( "Starting NASWOT hyperparameter optimization,", - len(self.trial_list), + len(self._trial_list), "trials will be performed.", min_verbosity=0, ) - self.trial_losses = [] + self._trial_losses = [] for idx, row in enumerate( - self.trial_list[self.first_trial : self.last_trial] + self._trial_list[self._first_trial : self._last_trial] ): - trial_loss = self.objective(row) - self.trial_losses.append(trial_loss) + trial_loss = self._objective(row) + self._trial_losses.append(trial_loss) # Output diagnostic information. if self.params.use_mpi: print( "Trial number", - idx + self.first_trial, + idx + self._first_trial, "finished with:", - self.trial_losses[idx], + self._trial_losses[idx], ) else: - best_trial = self.get_best_trial_results() printout( "Trial number", idx, "finished with:", - self.trial_losses[idx], + self._trial_losses[idx], ", best is trial", - best_trial[0], + self.best_trial_index[0], "with", - best_trial[1], + self.best_trial_index[1], min_verbosity=0, ) barrier() # Return the best loss value we could achieve. - return self.get_best_trial_results()[1]
- - -
-[docs] - def get_best_trial_results(self): - """Get the best trial out of the list, including the value.""" - if self.params.use_mpi: - comm = get_comm() - local_result = np.array( - [ - float(np.argmax(self.trial_losses) + self.first_trial), - np.max(self.trial_losses), - ] - ) - all_results = comm.allgather(local_result) - max_on_node = np.argmax(np.array(all_results)[:, 1]) - return [ - int(all_results[max_on_node][0]), - all_results[max_on_node][1], - ] - else: - return [np.argmax(self.trial_losses), np.max(self.trial_losses)]
+ return self.best_trial_index[1]
@@ -282,30 +325,14 @@

Source code for mala.network.hyper_opt_naswot

The parameters will be written to the parameter object with which the hyperparameter optimizer was created. """ - # Getting the best trial based on the test errors - if self.params.use_mpi: - comm = get_comm() - local_result = np.array( - [ - float(np.argmax(self.trial_losses) + self.first_trial), - np.max(self.trial_losses), - ] - ) - all_results = comm.allgather(local_result) - max_on_node = np.argmax(np.array(all_results)[:, 1]) - idx = int(all_results[max_on_node][0]) - else: - idx = self.trial_losses.index(max(self.trial_losses)) - - self.best_trial = self.trial_list[idx] - self.objective.parse_trial(self.best_trial)
+ self._objective.parse_trial(self.best_trial)
def __all_combinations(self): # First, remove all the hyperparameters we don't actually need. indices_to_remove = [] for idx, par in enumerate(self.params.hyperparameters.hlist): - if par.name in self.ignored_hyperparameters: + if par.name in self._ignored_hyperparameters: indices_to_remove.append(idx) for index in sorted(indices_to_remove, reverse=True): del self.params.hyperparameters.hlist[index] diff --git a/_modules/mala/network/hyper_opt_oat.html b/_modules/mala/network/hyper_opt_oat.html index cc2a6e455..a3e9d1a1d 100644 --- a/_modules/mala/network/hyper_opt_oat.html +++ b/_modules/mala/network/hyper_opt_oat.html @@ -97,7 +97,7 @@

Source code for mala.network.hyper_opt_oat

 from mala.network.hyper_opt import HyperOpt
 from mala.network.objective_base import ObjectiveBase
 from mala.network.hyperparameter_oat import HyperparameterOAT
-from mala.common.parallelizer import printout
+from mala.common.parallelizer import printout, parallel_warn
 
 
 
@@ -123,22 +123,55 @@

Source code for mala.network.hyper_opt_oat

         super(HyperOptOAT, self).__init__(
             params, data, use_pkl_checkpoints=use_pkl_checkpoints
         )
-        self.objective = None
-        self.optimal_params = None
-        self.checkpoint_counter = 0
+        self._objective = None
+        self._optimal_params = None
+        self._checkpoint_counter = 0
 
         # Related to the OA itself.
-        self.importance = None
-        self.n_factors = None
-        self.factor_levels = None
-        self.strength = None
-        self.N_runs = None
+        self._importance = None
+        self._n_factors = None
+        self._factor_levels = None
+        self._strength = None
+        self._N_runs = None
         self.__OA = None
 
         # Tracking the trial progress.
-        self.sorted_num_choices = []
-        self.current_trial = 0
-        self.trial_losses = None
+        self._sorted_num_choices = []
+        self._current_trial = 0
+        self._trial_losses = None
+
+    @property
+    def best_trial_index(self):
+        """
+        Get the index and loss of best trial determined in this NASWOT run.
+
+        This property is read only, and will be recomputed.
+
+        Returns
+        -------
+        best_trial_index : list
+            A list containing [0] the best trial index and [1] the best
+            trial loss.
+        """
+        if self._trial_losses is None:
+            parallel_warn(
+                "Trial list is not yet computed, cannot determine "
+                "best trial."
+            )
+            return [-1, np.inf]
+
+        if self.params.hyperparameters.direction == "minimize":
+            return [np.argmin(self._trial_losses), np.min(self._trial_losses)]
+        elif self.params.hyperparameters.direction == "maximize":
+            return [np.argmax(self._trial_losses), np.max(self._trial_losses)]
+        else:
+            raise Exception(
+                "Invalid direction for hyperparameter optimization selected."
+            )
+
+    @best_trial_index.setter
+    def best_trial_index(self, value):
+        pass
 
 
[docs] @@ -157,15 +190,15 @@

Source code for mala.network.hyper_opt_oat

             Datatype of the hyperparameter. Follows optuna's naming
             conventions, but currently only supports "categorical" (a list).
         """
-        if not self.sorted_num_choices:  # if empty
+        if not self._sorted_num_choices:  # if empty
             super(HyperOptOAT, self).add_hyperparameter(
                 opttype=opttype, name=name, choices=choices
             )
-            self.sorted_num_choices.append(len(choices))
+            self._sorted_num_choices.append(len(choices))
 
         else:
-            index = bisect(self.sorted_num_choices, len(choices))
-            self.sorted_num_choices.insert(index, len(choices))
+            index = bisect(self._sorted_num_choices, len(choices))
+            self._sorted_num_choices.insert(index, len(choices))
             self.params.hyperparameters.hlist.insert(
                 index,
                 HyperparameterOAT(opttype=opttype, name=name, choices=choices),
@@ -178,53 +211,51 @@ 

Source code for mala.network.hyper_opt_oat

         """
         Perform the study, i.e. the optimization.
 
-        Uses Optunas TPE sampler.
+        Internally constructs an orthogonal array and performs trial NN
+        trainings based on it.
         """
         if self.__OA is None:
-            self.__OA = self.get_orthogonal_array()
+            self.__OA = self._get_orthogonal_array()
         print(self.__OA)
-        if self.trial_losses is None:
-            self.trial_losses = np.zeros(self.__OA.shape[0]) + float("inf")
+        if self._trial_losses is None:
+            self._trial_losses = np.zeros(self.__OA.shape[0]) + float("inf")
 
         printout(
             "Performing",
-            self.N_runs,
+            self._N_runs,
             "trials, starting with trial number",
-            self.current_trial,
+            self._current_trial,
             min_verbosity=0,
         )
 
         # The parameters could have changed.
-        self.objective = ObjectiveBase(self.params, self.data_handler)
+        self._objective = ObjectiveBase(self.params, self._data_handler)
 
         # Iterate over the OA and perform the trials.
-        for i in range(self.current_trial, self.N_runs):
+        for i in range(self._current_trial, self._N_runs):
             row = self.__OA[i]
-            self.trial_losses[self.current_trial] = self.objective(row)
+            self._trial_losses[self._current_trial] = self._objective(row)
 
             # Output diagnostic information.
-            best_trial = self.get_best_trial_results()
             printout(
                 "Trial number",
-                self.current_trial,
+                self._current_trial,
                 "finished with:",
-                self.trial_losses[self.current_trial],
+                self._trial_losses[self._current_trial],
                 ", best is trial",
-                best_trial[0],
+                self.best_trial_index[0],
                 "with",
-                best_trial[1],
+                self.best_trial_index[1],
                 min_verbosity=0,
             )
-            self.current_trial += 1
+            self._current_trial += 1
             self.__create_checkpointing(row)
 
         # Perform Range Analysis
-        self.get_optimal_parameters()
+ self._range_analysis()
-
-[docs] - def get_optimal_parameters(self): + def _range_analysis(self): """ Find the optimal set of hyperparameters by doing range analysis. @@ -236,16 +267,15 @@

Source code for mala.network.hyper_opt_oat

             return np.where(self.__OA[:, idx] == val)[0]
 
         R = [
-            [self.trial_losses[indices(idx, l)].sum() for l in range(levels)]
-            for (idx, levels) in enumerate(self.factor_levels)
+            [self._trial_losses[indices(idx, l)].sum() for l in range(levels)]
+            for (idx, levels) in enumerate(self._factor_levels)
         ]
 
         A = [[i / len(j) for i in j] for j in R]
 
         # Taking loss as objective to minimise
-        self.optimal_params = np.array([i.index(min(i)) for i in A])
-        self.importance = np.argsort([max(i) - min(i) for i in A])
- + self._optimal_params = np.array([i.index(min(i)) for i in A]) + self._importance = np.argsort([max(i) - min(i) for i in A])
[docs] @@ -255,7 +285,7 @@

Source code for mala.network.hyper_opt_oat

         printout(
             *[
                 self.params.hyperparameters.hlist[idx].name
-                for idx in self.importance
+                for idx in self._importance
             ],
             sep=" < ",
             min_verbosity=0
@@ -271,26 +301,24 @@ 

Source code for mala.network.hyper_opt_oat

         The parameters will be written to the parameter object with which the
         hyperparameter optimizer was created.
         """
-        self.objective.parse_trial_oat(self.optimal_params)
+ self._objective.parse_trial_oat(self._optimal_params)
-
-[docs] - def get_orthogonal_array(self): + def _get_orthogonal_array(self): """ Generate the best OA used for optimal hyperparameter sampling. This is function is taken from the example notebook of OApackage. """ self.__check_factor_levels() - print("Sorted factor levels:", self.sorted_num_choices) - self.n_factors = len(self.params.hyperparameters.hlist) + print("Sorted factor levels:", self._sorted_num_choices) + self._n_factors = len(self.params.hyperparameters.hlist) - self.factor_levels = [ + self._factor_levels = [ par.num_choices for par in self.params.hyperparameters.hlist ] - self.strength = 2 + self._strength = 2 arraylist = None # This is a little bit hacky. @@ -302,11 +330,14 @@

Source code for mala.network.hyper_opt_oat

         # holds. x is unknown, but we can be confident that it should be
         # small. So simply trying 3 time should be fine for now.
         for i in range(1, 4):
-            self.N_runs = self.number_of_runs() * i
-            print("Trying run size:", self.N_runs)
+            self._N_runs = self._number_of_runs() * i
+            print("Trying run size:", self._N_runs)
             print("Generating Suitable Orthogonal Array.")
             arrayclass = oa.arraydata_t(
-                self.factor_levels, self.N_runs, self.strength, self.n_factors
+                self._factor_levels,
+                self._N_runs,
+                self._strength,
+                self._n_factors,
             )
             arraylist = [arrayclass.create_root()]
 
@@ -314,7 +345,7 @@ 

Source code for mala.network.hyper_opt_oat

             options = oa.OAextend()
             options.setAlgorithmAuto(arrayclass)
 
-            for _ in range(self.strength + 1, self.n_factors + 1):
+            for _ in range(self._strength + 1, self._n_factors + 1):
                 arraylist_extensions = oa.extend_arraylist(
                     arraylist, arrayclass, options
                 )
@@ -331,12 +362,9 @@ 

Source code for mala.network.hyper_opt_oat

             )
 
         else:
-            return np.unique(np.array(arraylist[0]), axis=0)
+ return np.unique(np.array(arraylist[0]), axis=0) - -
-[docs] - def number_of_runs(self): + def _number_of_runs(self): """ Calculate the minimum number of runs required for an Orthogonal array. @@ -346,33 +374,20 @@

Source code for mala.network.hyper_opt_oat

         """
         runs = [
             np.prod(tt)
-            for tt in itertools.combinations(self.factor_levels, self.strength)
+            for tt in itertools.combinations(
+                self._factor_levels, self._strength
+            )
         ]
 
         N = np.lcm.reduce(runs)
-        return int(N)
- - -
-[docs] - def get_best_trial_results(self): - """Get the best trial out of the list, including the value.""" - if self.params.hyperparameters.direction == "minimize": - return [np.argmin(self.trial_losses), np.min(self.trial_losses)] - elif self.params.hyperparameters.direction == "maximize": - return [np.argmax(self.trial_losses), np.max(self.trial_losses)] - else: - raise Exception( - "Invalid direction for hyperparameter optimization selected." - )
- + return int(N) def __check_factor_levels(self): """Check that the factors are in a decreasing order.""" - dx = np.diff(self.sorted_num_choices) + dx = np.diff(self._sorted_num_choices) if np.all(dx >= 0): # Factors in increasing order, we have to reverse the order. - self.sorted_num_choices.reverse() + self._sorted_num_choices.reverse() self.params.hyperparameters.hlist.reverse() elif np.all(dx <= 0): # Factors are in decreasing order, we don't have to do anything. @@ -462,20 +477,22 @@

Source code for mala.network.hyper_opt_oat

         with open(file_path, "rb") as handle:
             loaded_tracking_data = pickle.load(handle)
             loaded_hyperopt = HyperOptOAT(params, data)
-            loaded_hyperopt.sorted_num_choices = loaded_tracking_data[
+            loaded_hyperopt._sorted_num_choices = loaded_tracking_data[
                 "sorted_num_choices"
             ]
-            loaded_hyperopt.current_trial = loaded_tracking_data[
+            loaded_hyperopt._current_trial = loaded_tracking_data[
                 "current_trial"
             ]
-            loaded_hyperopt.trial_losses = loaded_tracking_data["trial_losses"]
-            loaded_hyperopt.importance = loaded_tracking_data["importance"]
-            loaded_hyperopt.n_factors = loaded_tracking_data["n_factors"]
-            loaded_hyperopt.factor_levels = loaded_tracking_data[
+            loaded_hyperopt._trial_losses = loaded_tracking_data[
+                "trial_losses"
+            ]
+            loaded_hyperopt._importance = loaded_tracking_data["importance"]
+            loaded_hyperopt._n_factors = loaded_tracking_data["n_factors"]
+            loaded_hyperopt._factor_levels = loaded_tracking_data[
                 "factor_levels"
             ]
-            loaded_hyperopt.strength = loaded_tracking_data["strength"]
-            loaded_hyperopt.N_runs = loaded_tracking_data["N_runs"]
+            loaded_hyperopt._strength = loaded_tracking_data["strength"]
+            loaded_hyperopt._N_runs = loaded_tracking_data["N_runs"]
             loaded_hyperopt.__OA = loaded_tracking_data["OA"]
 
         return loaded_hyperopt
@@ -483,11 +500,11 @@

Source code for mala.network.hyper_opt_oat

 
     def __create_checkpointing(self, trial):
         """Create a checkpoint of optuna study, if necessary."""
-        self.checkpoint_counter += 1
+        self._checkpoint_counter += 1
         need_to_checkpoint = False
 
         if (
-            self.checkpoint_counter
+            self._checkpoint_counter
             >= self.params.hyperparameters.checkpoints_each_trial
             and self.params.hyperparameters.checkpoints_each_trial > 0
         ):
@@ -501,12 +518,12 @@ 

Source code for mala.network.hyper_opt_oat

             )
         if (
             self.params.hyperparameters.checkpoints_each_trial < 0
-            and np.argmin(self.trial_losses) == self.current_trial - 1
+            and np.argmin(self._trial_losses) == self._current_trial - 1
         ):
             need_to_checkpoint = True
             printout(
                 "Best trial is "
-                + str(self.current_trial - 1)
+                + str(self._current_trial - 1)
                 + ", creating a "
                 "checkpoint for it.",
                 min_verbosity=1,
@@ -514,7 +531,7 @@ 

Source code for mala.network.hyper_opt_oat

 
         if need_to_checkpoint is True:
             # We need to create a checkpoint!
-            self.checkpoint_counter = 0
+            self._checkpoint_counter = 0
 
             self._save_params_and_scaler()
 
@@ -526,14 +543,14 @@ 

Source code for mala.network.hyper_opt_oat

                 )
 
                 study = {
-                    "sorted_num_choices": self.sorted_num_choices,
-                    "current_trial": self.current_trial,
-                    "trial_losses": self.trial_losses,
-                    "importance": self.importance,
-                    "n_factors": self.n_factors,
-                    "factor_levels": self.factor_levels,
-                    "strength": self.strength,
-                    "N_runs": self.N_runs,
+                    "sorted_num_choices": self._sorted_num_choices,
+                    "current_trial": self._current_trial,
+                    "trial_losses": self._trial_losses,
+                    "importance": self._importance,
+                    "n_factors": self._n_factors,
+                    "factor_levels": self._factor_levels,
+                    "strength": self._strength,
+                    "N_runs": self._N_runs,
                     "OA": self.__OA,
                 }
                 with open(hyperopt_name, "wb") as handle:
diff --git a/_modules/mala/network/hyper_opt_optuna.html b/_modules/mala/network/hyper_opt_optuna.html
index db7c73bf8..133eb832d 100644
--- a/_modules/mala/network/hyper_opt_optuna.html
+++ b/_modules/mala/network/hyper_opt_optuna.html
@@ -110,6 +110,18 @@ 

Source code for mala.network.hyper_opt_optuna

use_pkl_checkpoints : bool If true, .pkl checkpoints will be created. + + Attributes + ---------- + params : mala.common.parameters.Parameters + MALA Parameters object. + + objective : mala.network.objective_base.ObjectiveBase + MALA objective to be optimized, i.e., a MALA NN model training. + + study : optuna.study.Study + An Optuna study used to collect the results of the hyperparameter + optimization. """ def __init__(self, params, data, use_pkl_checkpoints=False): @@ -178,7 +190,7 @@

Source code for mala.network.hyper_opt_optuna

load_if_exists=True, pruner=pruner, ) - self.checkpoint_counter = 0 + self._checkpoint_counter = 0
[docs] @@ -188,9 +200,14 @@

Source code for mala.network.hyper_opt_optuna

This is done by sampling a certain subset of network architectures. In this case, optuna is used. + + Returns + ------- + best_trial_loss : float + Loss of the best trial. """ # The parameters could have changed. - self.objective = ObjectiveBase(self.params, self.data_handler) + self.objective = ObjectiveBase(self.params, self._data_handler) # Fill callback list based on user checkpoint wishes. callback_list = [self.__check_stopping] @@ -224,6 +241,8 @@

Source code for mala.network.hyper_opt_optuna

""" Return the trials from the last study. + Only returns completed trials. + Returns ------- last_trials: list @@ -453,11 +472,11 @@

Source code for mala.network.hyper_opt_optuna

def __create_checkpointing(self, study, trial): """Create a checkpoint of optuna study, if necessary.""" - self.checkpoint_counter += 1 + self._checkpoint_counter += 1 need_to_checkpoint = False if ( - self.checkpoint_counter + self._checkpoint_counter >= self.params.hyperparameters.checkpoints_each_trial and self.params.hyperparameters.checkpoints_each_trial > 0 ): @@ -483,7 +502,7 @@

Source code for mala.network.hyper_opt_optuna

if need_to_checkpoint is True: # We need to create a checkpoint! - self.checkpoint_counter = 0 + self._checkpoint_counter = 0 self._save_params_and_scaler() diff --git a/_modules/mala/network/hyperparameter.html b/_modules/mala/network/hyperparameter.html index 73e8172cb..d866e8d46 100644 --- a/_modules/mala/network/hyperparameter.html +++ b/_modules/mala/network/hyperparameter.html @@ -129,10 +129,33 @@

Source code for mala.network.hyperparameter

     choices : list
         List of possible choices (for categorical parameter).
 
-    Returns
-    -------
-    hyperparameter : HyperparameterOptuna or HyperparameterOAT or HyperparameterNASWOT or HyperparameterACSD
-        Hyperparameter in desired format.
+    Attributes
+    ----------
+    opttype : string
+        Datatype of the hyperparameter. Follows optunas naming convetions.
+        In principle supported are:
+
+            - float
+            - int
+            - categorical (list)
+
+        Float and int are not available for OA based approaches at the
+        moment.
+
+    name : string
+        Name of the hyperparameter. Please note that these names always
+        have to be distinct; if you e.g. want to investigate multiple
+        layer sizes use e.g. ff_neurons_layer_001, ff_neurons_layer_002,
+        etc. as names.
+
+    low : float or int
+        Lower bound for numerical parameter.
+
+    high : float or int
+        Higher bound for numerical parameter.
+
+    choices : list
+        List of possible choices (for categorical parameter).
     """
 
     def __new__(
diff --git a/_modules/mala/network/network.html b/_modules/mala/network/network.html
index a273367d8..505643681 100644
--- a/_modules/mala/network/network.html
+++ b/_modules/mala/network/network.html
@@ -91,7 +91,7 @@ 

Source code for mala.network.network

 import torch.nn.functional as functional
 
 from mala.common.parameters import Parameters
-from mala.common.parallelizer import printout
+from mala.common.parallelizer import printout, parallel_warn
 
 
 
@@ -108,6 +108,23 @@

Source code for mala.network.network

     ----------
     params : mala.common.parametes.Parameters
         Parameters used to create this neural network.
+
+    Attributes
+    ----------
+    loss_func : function
+        Loss function.
+
+    mini_batch_size : int
+        Size of mini batches propagated through network.
+
+    number_of_layers : int
+        Number of NN layers.
+
+    params : mala.common.parametes.ParametersNetwork
+        MALA neural network parameters.
+
+    use_ddp : bool
+        If True, the torch distributed data parallel formalism will be used.
     """
 
     def __new__(cls, params: Parameters):
@@ -163,7 +180,7 @@ 

Source code for mala.network.network

         super(Network, self).__init__()
 
         # Mappings for parsing of the activation layers.
-        self.activation_mappings = {
+        self._activation_mappings = {
             "Sigmoid": nn.Sigmoid,
             "ReLU": nn.ReLU,
             "LeakyReLU": nn.LeakyReLU,
@@ -183,7 +200,14 @@ 

Source code for mala.network.network

 [docs]
     @abstractmethod
     def forward(self, inputs):
-        """Abstract method. To be implemented by the derived class."""
+        """
+        Abstract method. To be implemented by the derived class.
+
+        Parameters
+        ----------
+        inputs : torch.Tensor
+            Torch tensor to be propagated.
+        """
         pass
@@ -191,7 +215,7 @@

Source code for mala.network.network

 [docs]
     def do_prediction(self, array):
         """
-        Predict the output values for an input array..
+        Predict the output values for an input array.
 
         Interface to do predictions. The data put in here is assumed to be a
         scaled torch.Tensor and in the right units. Be aware that this will
@@ -237,8 +261,6 @@ 

Source code for mala.network.network

         return self.loss_func(output, target)
- # FIXME: This guarentees downwards compatibility, but it is ugly. - # Rather enforce the right package versions in the repo.
[docs] def save_network(self, path_to_file): @@ -341,13 +363,13 @@

Source code for mala.network.network

             try:
                 if use_only_one_activation_type:
                     self.layers.append(
-                        self.activation_mappings[
+                        self._activation_mappings[
                             self.params.layer_activations[0]
                         ]()
                     )
                 else:
                     self.layers.append(
-                        self.activation_mappings[
+                        self._activation_mappings[
                             self.params.layer_activations[i]
                         ]()
                     )
@@ -390,6 +412,11 @@ 

Source code for mala.network.network

     # was passed to be used in the entire network.
     def __init__(self, params):
         super(LSTM, self).__init__(params)
+        parallel_warn(
+            "The LSTM class will be deprecated in MALA v1.4.0.",
+            0,
+            category=FutureWarning,
+        )
 
         self.hidden_dim = self.params.layer_sizes[-1]
 
@@ -421,7 +448,7 @@ 

Source code for mala.network.network

                 self.params.num_hidden_layers,
                 batch_first=True,
             )
-        self.activation = self.activation_mappings[
+        self.activation = self._activation_mappings[
             self.params.layer_activations[0]
         ]()
 
@@ -535,6 +562,11 @@ 

Source code for mala.network.network

     # layer as GRU.
     def __init__(self, params):
         Network.__init__(self, params)
+        parallel_warn(
+            "The GRU class will be deprecated in MALA v1.4.0.",
+            0,
+            category=FutureWarning,
+        )
 
         self.hidden_dim = self.params.layer_sizes[-1]
 
@@ -563,7 +595,7 @@ 

Source code for mala.network.network

                 self.params.num_hidden_layers,
                 batch_first=True,
             )
-        self.activation = self.activation_mappings[
+        self.activation = self._activation_mappings[
             self.params.layer_activations[0]
         ]()
 
@@ -663,6 +695,11 @@ 

Source code for mala.network.network

 
     def __init__(self, params):
         super(TransformerNet, self).__init__(params)
+        parallel_warn(
+            "The TransformerNet class will be deprecated in MALA v1.4.0.",
+            0,
+            category=FutureWarning,
+        )
 
         # Adjust number of heads.
         if self.params.layer_sizes[0] % self.params.num_heads != 0:
@@ -776,6 +813,11 @@ 

Source code for mala.network.network

     """
 
     def __init__(self, d_model, dropout=0.1, max_len=400):
+        parallel_warn(
+            "The PositionalEncoding class will be deprecated in MALA v1.4.0.",
+            0,
+            category=FutureWarning,
+        )
         super(PositionalEncoding, self).__init__()
         self.dropout = nn.Dropout(p=dropout)
 
diff --git a/_modules/mala/network/objective_base.html b/_modules/mala/network/objective_base.html
index 6b285be83..ee44eea5a 100644
--- a/_modules/mala/network/objective_base.html
+++ b/_modules/mala/network/objective_base.html
@@ -90,6 +90,7 @@ 

Source code for mala.network.objective_base

 from mala.network.hyperparameter_oat import HyperparameterOAT
 from mala.network.network import Network
 from mala.network.trainer import Trainer
+from mala.common.parameters import Parameters
 from mala import printout
 
 
@@ -100,22 +101,19 @@ 

Source code for mala.network.objective_base

     Represents the objective function of a training process.
 
     This is usually the result of a training of a network.
-    """
 
-    def __init__(self, params, data_handler):
-        """
-        Create an ObjectiveBase object.
+    Parameters
+    ----------
+    params : mala.common.parametes.Parameters
+        Parameters used to create this objective.
 
-        Parameters
-        ----------
-        params : mala.common.parametes.Parameters
-            Parameters used to create this objective.
+    data_handler : mala.datahandling.data_handler.DataHandler
+        datahandler to be used during the hyperparameter optimization.
+    """
 
-        data_handler : mala.datahandling.data_handler.DataHandler
-            datahandler to be used during the hyperparameter optimization.
-        """
-        self.params = params
-        self.data_handler = data_handler
+    def __init__(self, params, data_handler):
+        self.params: Parameters = params
+        self._data_handler = data_handler
 
         # We need to find out if we have to reparametrize the lists with the
         # layers and the activations.
@@ -143,17 +141,17 @@ 

Source code for mala.network.objective_base

                 "the range of neurons or number of layers is missing. "
                 "This input will be ignored."
             )
-        self.optimize_layer_list = contains_single_layer or (
+        self._optimize_layer_list = contains_single_layer or (
             contains_multiple_layer_neurons and contains_multiple_layers_count
         )
-        self.optimize_activation_list = list(
+        self._optimize_activation_list = list(
             map(
                 lambda p: "layer_activation" in p.name,
                 self.params.hyperparameters.hlist,
             )
         ).count(True)
 
-        self.trial_type = self.params.hyperparameters.hyper_opt_method
+        self._trial_type = self.params.hyperparameters.hyper_opt_method
 
     def __call__(self, trial):
         """
@@ -168,7 +166,7 @@ 

Source code for mala.network.objective_base

         # Parse the parameters included in the trial.
         self.parse_trial(trial)
         if (
-            self.trial_type == "optuna"
+            self._trial_type == "optuna"
             and self.params.hyperparameters.pruner == "naswot"
         ):
             if trial.should_prune():
@@ -181,12 +179,12 @@ 

Source code for mala.network.objective_base

         ):
             test_network = Network(self.params)
             test_trainer = Trainer(
-                self.params, test_network, self.data_handler
+                self.params, test_network, self._data_handler
             )
             test_trainer.train_network()
             final_validation_loss.append(test_trainer.final_validation_loss)
             if (
-                self.trial_type == "optuna"
+                self._trial_type == "optuna"
                 and self.params.hyperparameters.pruner == "multi_training"
             ):
 
@@ -235,9 +233,9 @@ 

Source code for mala.network.objective_base

             A trial is a set of hyperparameters; can be an optuna based
             trial or simply a OAT compatible list.
         """
-        if self.trial_type == "optuna":
+        if self._trial_type == "optuna":
             self.parse_trial_optuna(trial)
-        elif self.trial_type == "oat":
+        elif self._trial_type == "oat":
             self.parse_trial_oat(trial)
         else:
             raise Exception(
@@ -257,11 +255,11 @@ 

Source code for mala.network.objective_base

         trial : optuna.trial.Trial.
             A set of hyperparameters encoded by optuna.
         """
-        if self.optimize_layer_list:
+        if self._optimize_layer_list:
             self.params.network.layer_sizes = [
-                self.data_handler.input_dimension
+                self._data_handler.input_dimension
             ]
-        if self.optimize_activation_list > 0:
+        if self._optimize_activation_list > 0:
             self.params.network.layer_activations = []
 
         # Some layers may have been turned off by optuna.
@@ -364,9 +362,9 @@ 

Source code for mala.network.objective_base

                     )
                 layer_counter += 1
 
-        if self.optimize_layer_list:
+        if self._optimize_layer_list:
             self.params.network.layer_sizes.append(
-                self.data_handler.output_dimension
+                self._data_handler.output_dimension
             )
@@ -381,12 +379,12 @@

Source code for mala.network.objective_base

         trial : numpy.array
             Row in an orthogonal array which respresents current trial.
         """
-        if self.optimize_layer_list:
+        if self._optimize_layer_list:
             self.params.network.layer_sizes = [
-                self.data_handler.input_dimension
+                self._data_handler.input_dimension
             ]
 
-        if self.optimize_activation_list:
+        if self._optimize_activation_list:
             self.params.network.layer_activations = []
 
         # Some layers may have been turned off by optuna.
@@ -497,9 +495,9 @@ 

Source code for mala.network.objective_base

                     )
                 layer_counter += 1
 
-        if self.optimize_layer_list:
+        if self._optimize_layer_list:
             self.params.network.layer_sizes.append(
-                self.data_handler.output_dimension
+                self._data_handler.output_dimension
             )
diff --git a/_modules/mala/network/objective_naswot.html b/_modules/mala/network/objective_naswot.html index 47c0a4f15..90a6f0057 100644 --- a/_modules/mala/network/objective_naswot.html +++ b/_modules/mala/network/objective_naswot.html @@ -131,10 +131,10 @@

Source code for mala.network.objective_naswot

batch_size=None, ): super(ObjectiveNASWOT, self).__init__(search_parameters, data_handler) - self.trial_type = trial_type - self.batch_size = batch_size - if self.batch_size is None: - self.batch_size = search_parameters.running.mini_batch_size + self._trial_type = trial_type + self._batch_size = batch_size + if self._batch_size is None: + self._batch_size = search_parameters.running.mini_batch_size def __call__(self, trial): """ @@ -160,15 +160,15 @@

Source code for mala.network.objective_naswot

# Load the batchesand get the jacobian. do_shuffle = self.params.running.use_shuffling_for_samplers if ( - self.data_handler.parameters.use_lazy_loading + self._data_handler.parameters.use_lazy_loading or self.params.use_ddp ): do_shuffle = False if self.params.running.use_shuffling_for_samplers: - self.data_handler.mix_datasets() + self._data_handler.mix_datasets() loader = DataLoader( - self.data_handler.training_data_sets[0], - batch_size=self.batch_size, + self._data_handler.training_data_sets[0], + batch_size=self._batch_size, shuffle=do_shuffle, ) jac = ObjectiveNASWOT.__get_batch_jacobian(net, loader, device) diff --git a/_modules/mala/network/predictor.html b/_modules/mala/network/predictor.html index 115d945fa..4fd08c11d 100644 --- a/_modules/mala/network/predictor.html +++ b/_modules/mala/network/predictor.html @@ -111,6 +111,12 @@

Source code for mala.network.predictor

     data : mala.datahandling.data_handler.DataHandler
         DataHandler, in this case not directly holding data, but serving
         as an interface to Target and Descriptor objects.
+
+    Attributes
+    ----------
+    target_calculator : mala.targets.target.Target
+        Target calculator used for predictions. Can be used for further
+        processing.
     """
 
     def __init__(self, params, network, data):
@@ -122,8 +128,8 @@ 

Source code for mala.network.predictor

             * self.data.grid_dimension[1]
             * self.data.grid_dimension[2]
         )
-        self.test_data_loader = None
-        self.number_of_batches_per_snapshot = 0
+        self._test_data_loader = None
+        self._number_of_batches_per_snapshot = 0
         self.target_calculator = data.target_calculator
 
 
@@ -229,7 +235,7 @@

Source code for mala.network.predictor

         self.data.target_calculator.read_additional_calculation_data(
             [atoms, self.data.grid_dimension], "atoms+grid"
         )
-        feature_length = self.data.descriptor_calculator.fingerprint_length
+        feature_length = self.data.descriptor_calculator.feature_size
 
         # The actual calculation of the LDOS from the descriptors depends
         # on whether we run in parallel or serial. In the former case,
@@ -319,11 +325,11 @@ 

Source code for mala.network.predictor

                 )
                 self.parameters.mini_batch_size = optimal_batch_size
 
-            self.number_of_batches_per_snapshot = int(
+            self._number_of_batches_per_snapshot = int(
                 local_data_size / self.parameters.mini_batch_size
             )
 
-            for i in range(0, self.number_of_batches_per_snapshot):
+            for i in range(0, self._number_of_batches_per_snapshot):
                 sl = slice(
                     i * self.parameters.mini_batch_size,
                     (i + 1) * self.parameters.mini_batch_size,
diff --git a/_modules/mala/network/runner.html b/_modules/mala/network/runner.html
index 6e8c77823..ebab9e526 100644
--- a/_modules/mala/network/runner.html
+++ b/_modules/mala/network/runner.html
@@ -123,6 +123,20 @@ 

Source code for mala.network.runner

     network : mala.network.network.Network
         Network which is being run.
 
+    data : mala.datahandling.data_handler.DataHandler
+        DataHandler holding the data for the run.
+
+    Attributes
+    ----------
+    parameters : mala.common.parametes.ParametersRunning
+        MALA neural network training/inference parameters.
+
+    parameters_full : mala.common.parametes.Parameters
+        Full MALA Parameters object.
+
+    network : mala.network.network.Network
+        Network which is being run.
+
     data : mala.datahandling.data_handler.DataHandler
         DataHandler holding the data for the run.
     """
@@ -131,7 +145,7 @@ 

Source code for mala.network.runner

         self.parameters_full: Parameters = params
         self.parameters: ParametersRunning = params.running
         self.network = network
-        self.data = data
+        self.data: DataHandler = data
         self.__prepare_to_run()
 
     def _calculate_errors(
diff --git a/_modules/mala/network/tester.html b/_modules/mala/network/tester.html
index af914e4f1..bbd09343a 100644
--- a/_modules/mala/network/tester.html
+++ b/_modules/mala/network/tester.html
@@ -126,6 +126,32 @@ 

Source code for mala.network.tester

             - "density": MAPE of the density prediction
             - "dos": MAPE of the DOS prediction
 
+    output_format : string
+        Can be "list" or "mae". If "list", then a list of results across all
+        snapshots is returned. If "mae", then the MAE across all snapshots
+        will be calculated and returned.
+
+    Attributes
+    ----------
+    target_calculator : mala.targets.target.Target
+        Target calculator used for predictions. Can be used for further
+        processing.
+
+    observables_to_test : list
+        List of observables to test. Supported are:
+
+            - "ldos": Calculate the MSE loss of the LDOS.
+            - "band_energy": Band energy error
+            - "band_energy_full": Band energy absolute values (only works with
+              list, as both actual and predicted are returned)
+            - "total_energy": Total energy error
+            - "total_energy_full": Total energy absolute values (only works
+              with list, as both actual and predicted are returned)
+            - "number_of_electrons": Number of electrons (Fermi energy is not
+              determined dynamically for this quantity.
+            - "density": MAPE of the density prediction
+            - "dos": MAPE of the DOS prediction
+
     output_format : string
         Can be "list" or "mae". If "list", then a list of results across all
         snapshots is returned. If "mae", then the MAE across all snapshots
@@ -142,8 +168,8 @@ 

Source code for mala.network.tester

     ):
         # copy the parameters into the class.
         super(Tester, self).__init__(params, network, data)
-        self.test_data_loader = None
-        self.number_of_batches_per_snapshot = 0
+        self._test_data_loader = None
+        self._number_of_batches_per_snapshot = 0
         self.observables_to_test = observables_to_test
         self.output_format = output_format
         if self.output_format != "list" and self.output_format != "mae":
@@ -301,7 +327,7 @@ 

Source code for mala.network.tester

             offset_snapshots + snapshot_number,
             data_set,
             data_type,
-            self.number_of_batches_per_snapshot,
+            self._number_of_batches_per_snapshot,
             self.parameters.mini_batch_size,
         )
@@ -332,7 +358,7 @@

Source code for mala.network.tester

                 min_verbosity=0,
             )
             self.parameters.mini_batch_size = optimal_batch_size
-        self.number_of_batches_per_snapshot = int(
+        self._number_of_batches_per_snapshot = int(
             grid_size / self.parameters.mini_batch_size
         )
diff --git a/_modules/mala/network/trainer.html b/_modules/mala/network/trainer.html index 788c552f7..1356fe1cf 100644 --- a/_modules/mala/network/trainer.html +++ b/_modules/mala/network/trainer.html @@ -123,11 +123,22 @@

Source code for mala.network.trainer

     data : mala.datahandling.data_handler.DataHandler
         DataHandler holding the training data.
 
-    use_pkl_checkpoints : bool
-        If true, .pkl checkpoints will be created.
+    _optimizer_dict : dict
+        For internal use by the Trainer class during loading procecdures only.
+
+    Attributes
+    ----------
+    final_validation_loss : float
+        Validation loss after training
+
+    network : mala.network.network.Network
+        Network which is being trained.
+
+    full_logging_path : str
+        Full path to training logs.
     """
 
-    def __init__(self, params, network, data, optimizer_dict=None):
+    def __init__(self, params, network, data, _optimizer_dict=None):
         # copy the parameters into the class.
         super(Trainer, self).__init__(params, network, data)
 
@@ -141,22 +152,21 @@ 

Source code for mala.network.trainer

             torch.cuda.current_stream().wait_stream(s)
 
         self.final_validation_loss = float("inf")
-        self.initial_validation_loss = float("inf")
-        self.optimizer = None
-        self.scheduler = None
-        self.patience_counter = 0
-        self.last_epoch = 0
-        self.last_loss = None
-        self.training_data_loaders = []
-        self.validation_data_loaders = []
+        self._optimizer = None
+        self._scheduler = None
+        self._patience_counter = 0
+        self._last_epoch = 0
+        self._last_loss = None
+        self._training_data_loaders = []
+        self._validation_data_loaders = []
 
         # Samplers for the ddp case.
-        self.train_sampler = None
-        self.validation_sampler = None
+        self._train_sampler = None
+        self._validation_sampler = None
 
-        self.__prepare_to_train(optimizer_dict)
+        self.__prepare_to_train(_optimizer_dict)
 
-        self.logger = None
+        self._logger = None
         self.full_logging_path = None
         if self.parameters.logger is not None:
             os.makedirs(self.parameters.logging_dir, exist_ok=True)
@@ -177,9 +187,9 @@ 

Source code for mala.network.trainer

             if self.parameters.logger == "wandb":
                 import wandb
 
-                self.logger = wandb
+                self._logger = wandb
             elif self.parameters.logger == "tensorboard":
-                self.logger = SummaryWriter(self.full_logging_path)
+                self._logger = SummaryWriter(self.full_logging_path)
             else:
                 raise Exception(
                     f"Unsupported logger {self.parameters.logger}."
@@ -190,13 +200,13 @@ 

Source code for mala.network.trainer

                 min_verbosity=1,
             )
 
-        self.gradscaler = None
+        self._gradscaler = None
         if self.parameters.use_mixed_precision:
             printout("Using mixed precision via AMP.", min_verbosity=1)
-            self.gradscaler = torch.cuda.amp.GradScaler()
+            self._gradscaler = torch.cuda.amp.GradScaler()
 
-        self.train_graph = None
-        self.validation_graph = None
+        self._train_graph = None
+        self._validation_graph = None
 
 
[docs] @@ -344,7 +354,7 @@

Source code for mala.network.trainer

 
         # Now, create the Trainer class with it.
         loaded_trainer = Trainer(
-            params, network, data, optimizer_dict=checkpoint
+            params, network, data, _optimizer_dict=checkpoint
         )
         return loaded_trainer
 
@@ -358,18 +368,15 @@ 

Source code for mala.network.trainer

 
         vloss = float("inf")
 
-        # Save losses for later use.
-        self.initial_validation_loss = vloss
-
         # Initialize all the counters.
         checkpoint_counter = 0
 
         # If we restarted from a checkpoint, we have to differently initialize
         # the loss.
-        if self.last_loss is None:
+        if self._last_loss is None:
             vloss_old = vloss
         else:
-            vloss_old = self.last_loss
+            vloss_old = self._last_loss
 
         ############################
         # PERFORM TRAINING
@@ -377,7 +384,9 @@ 

Source code for mala.network.trainer

 
         total_batch_id = 0
 
-        for epoch in range(self.last_epoch, self.parameters.max_number_epochs):
+        for epoch in range(
+            self._last_epoch, self.parameters.max_number_epochs
+        ):
             start_time = time.time()
 
             # Prepare model for training.
@@ -391,8 +400,8 @@ 

Source code for mala.network.trainer

             )
 
             # train sampler
-            if self.train_sampler:
-                self.train_sampler.set_epoch(epoch)
+            if self._train_sampler:
+                self._train_sampler.set_epoch(epoch)
 
             # shuffle dataset if necessary
             if isinstance(self.data.training_data_sets[0], FastTensorDataset):
@@ -405,7 +414,7 @@ 

Source code for mala.network.trainer

                 tsample = time.time()
                 t0 = time.time()
                 batchid = 0
-                for loader in self.training_data_loaders:
+                for loader in self._training_data_loaders:
                     t = time.time()
                     for inputs, outputs in tqdm(
                         loader,
@@ -480,19 +489,19 @@ 

Source code for mala.network.trainer

                                     training_loss_sum_logging
                                     / self.parameters.training_log_interval
                                 )
-                                self.logger.add_scalars(
+                                self._logger.add_scalars(
                                     "ldos",
                                     {"during_training": training_loss_mean},
                                     total_batch_id,
                                 )
-                                self.logger.close()
+                                self._logger.close()
                                 training_loss_sum_logging = 0.0
                             if self.parameters.logger == "wandb":
                                 training_loss_mean = (
                                     training_loss_sum_logging
                                     / self.parameters.training_log_interval
                                 )
-                                self.logger.log(
+                                self._logger.log(
                                     {
                                         "ldos_during_training": training_loss_mean
                                     },
@@ -515,7 +524,7 @@ 

Source code for mala.network.trainer

                 )
             else:
                 batchid = 0
-                for loader in self.training_data_loaders:
+                for loader in self._training_data_loaders:
                     for inputs, outputs in loader:
                         inputs = inputs.to(
                             self.parameters._configuration["device"]
@@ -566,7 +575,7 @@ 

Source code for mala.network.trainer

             if self.parameters.logger == "tensorboard":
                 for dataset_fraction in dataset_fractions:
                     for metric in errors[dataset_fraction]:
-                        self.logger.add_scalars(
+                        self._logger.add_scalars(
                             metric,
                             {
                                 dataset_fraction: errors[dataset_fraction][
@@ -575,11 +584,11 @@ 

Source code for mala.network.trainer

                             },
                             total_batch_id,
                         )
-                self.logger.close()
+                self._logger.close()
             if self.parameters.logger == "wandb":
                 for dataset_fraction in dataset_fractions:
                     for metric in errors[dataset_fraction]:
-                        self.logger.log(
+                        self._logger.log(
                             {
                                 f"{dataset_fraction}_{metric}": errors[
                                     dataset_fraction
@@ -603,38 +612,38 @@ 

Source code for mala.network.trainer

                 )
 
             # If a scheduler is used, update it.
-            if self.scheduler is not None:
+            if self._scheduler is not None:
                 if (
                     self.parameters.learning_rate_scheduler
                     == "ReduceLROnPlateau"
                 ):
-                    self.scheduler.step(vloss)
+                    self._scheduler.step(vloss)
 
             # If early stopping is used, check if we need to do something.
             if self.parameters.early_stopping_epochs > 0:
                 if vloss < vloss_old * (
                     1.0 - self.parameters.early_stopping_threshold
                 ):
-                    self.patience_counter = 0
+                    self._patience_counter = 0
                     vloss_old = vloss
                 else:
-                    self.patience_counter += 1
+                    self._patience_counter += 1
                     printout(
                         "Validation accuracy has not improved enough.",
                         min_verbosity=1,
                     )
                     if (
-                        self.patience_counter
+                        self._patience_counter
                         >= self.parameters.early_stopping_epochs
                     ):
                         printout(
                             "Stopping the training, validation "
                             "accuracy has not improved for",
-                            self.patience_counter,
+                            self._patience_counter,
                             "epochs.",
                             min_verbosity=1,
                         )
-                        self.last_epoch = epoch
+                        self._last_epoch = epoch
                         break
 
             # If checkpointing is enabled, we need to checkpoint.
@@ -645,8 +654,8 @@ 

Source code for mala.network.trainer

                     >= self.parameters.checkpoints_each_epoch
                 ):
                     printout("Checkpointing training.", min_verbosity=0)
-                    self.last_epoch = epoch
-                    self.last_loss = vloss_old
+                    self._last_epoch = epoch
+                    self._last_loss = vloss_old
                     self.__create_training_checkpoint()
                     checkpoint_counter = 0
 
@@ -683,8 +692,8 @@ 

Source code for mala.network.trainer

 
         # Clean-up for pre-fetching lazy loading.
         if self.data.parameters.use_lazy_loading_prefetch:
-            self.training_data_loaders.cleanup()
-            self.validation_data_loaders.cleanup()
+ self._training_data_loaders.cleanup() + self._validation_data_loaders.cleanup()
def _validate_network(self, data_set_fractions, metrics): @@ -693,13 +702,13 @@

Source code for mala.network.trainer

         errors = {}
         for data_set_type in data_set_fractions:
             if data_set_type == "train":
-                data_loaders = self.training_data_loaders
+                data_loaders = self._training_data_loaders
                 data_sets = self.data.training_data_sets
                 number_of_snapshots = self.data.nr_training_snapshots
                 offset_snapshots = 0
 
             elif data_set_type == "validation":
-                data_loaders = self.validation_data_loaders
+                data_loaders = self._validation_data_loaders
                 data_sets = self.data.validation_data_sets
                 number_of_snapshots = self.data.nr_validation_snapshots
                 offset_snapshots = self.data.nr_training_snapshots
@@ -814,11 +823,11 @@ 

Source code for mala.network.trainer

 
         # Read last epoch
         if optimizer_dict is not None:
-            self.last_epoch = optimizer_dict["epoch"] + 1
+            self._last_epoch = optimizer_dict["epoch"] + 1
 
         # Scale the learning rate according to ddp.
         if self.parameters_full.use_ddp:
-            if dist.get_world_size() > 1 and self.last_epoch == 0:
+            if dist.get_world_size() > 1 and self._last_epoch == 0:
                 printout(
                     "Rescaling learning rate because multiple workers are"
                     " used for training.",
@@ -830,20 +839,20 @@ 

Source code for mala.network.trainer

 
         # Choose an optimizer to use.
         if self.parameters.optimizer == "SGD":
-            self.optimizer = optim.SGD(
+            self._optimizer = optim.SGD(
                 self.network.parameters(),
                 lr=self.parameters.learning_rate,
                 weight_decay=self.parameters.l2_regularization,
             )
         elif self.parameters.optimizer == "Adam":
-            self.optimizer = optim.Adam(
+            self._optimizer = optim.Adam(
                 self.network.parameters(),
                 lr=self.parameters.learning_rate,
                 weight_decay=self.parameters.l2_regularization,
             )
         elif self.parameters.optimizer == "FusedAdam":
             if version.parse(torch.__version__) >= version.parse("1.13.0"):
-                self.optimizer = optim.Adam(
+                self._optimizer = optim.Adam(
                     self.network.parameters(),
                     lr=self.parameters.learning_rate,
                     weight_decay=self.parameters.l2_regularization,
@@ -856,11 +865,11 @@ 

Source code for mala.network.trainer

 
         # Load data from pytorch file.
         if optimizer_dict is not None:
-            self.optimizer.load_state_dict(
+            self._optimizer.load_state_dict(
                 optimizer_dict["optimizer_state_dict"]
             )
-            self.patience_counter = optimizer_dict["early_stopping_counter"]
-            self.last_loss = optimizer_dict["early_stopping_last_loss"]
+            self._patience_counter = optimizer_dict["early_stopping_counter"]
+            self._last_loss = optimizer_dict["early_stopping_last_loss"]
 
         if self.parameters_full.use_ddp:
             # scaling the batch size for multiGPU per node
@@ -875,7 +884,7 @@ 

Source code for mala.network.trainer

             if self.data.parameters.use_lazy_loading:
                 do_shuffle = False
 
-            self.train_sampler = (
+            self._train_sampler = (
                 torch.utils.data.distributed.DistributedSampler(
                     self.data.training_data_sets[0],
                     num_replicas=dist.get_world_size(),
@@ -883,7 +892,7 @@ 

Source code for mala.network.trainer

                     shuffle=do_shuffle,
                 )
             )
-            self.validation_sampler = (
+            self._validation_sampler = (
                 torch.utils.data.distributed.DistributedSampler(
                     self.data.validation_data_sets[0],
                     num_replicas=dist.get_world_size(),
@@ -894,8 +903,8 @@ 

Source code for mala.network.trainer

 
         # Instantiate the learning rate scheduler, if necessary.
         if self.parameters.learning_rate_scheduler == "ReduceLROnPlateau":
-            self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
-                self.optimizer,
+            self._scheduler = optim.lr_scheduler.ReduceLROnPlateau(
+                self._optimizer,
                 patience=self.parameters.learning_rate_patience,
                 mode="min",
                 factor=self.parameters.learning_rate_decay,
@@ -905,8 +914,8 @@ 

Source code for mala.network.trainer

             pass
         else:
             raise Exception("Unsupported learning rate schedule.")
-        if self.scheduler is not None and optimizer_dict is not None:
-            self.scheduler.load_state_dict(
+        if self._scheduler is not None and optimizer_dict is not None:
+            self._scheduler.load_state_dict(
                 optimizer_dict["lr_scheduler_state_dict"]
             )
 
@@ -942,11 +951,11 @@ 

Source code for mala.network.trainer

         if isinstance(self.data.training_data_sets[0], FastTensorDataset):
             # Not shuffling in loader.
             # I manually shuffle the data set each epoch.
-            self.training_data_loaders.append(
+            self._training_data_loaders.append(
                 DataLoader(
                     self.data.training_data_sets[0],
                     batch_size=None,
-                    sampler=self.train_sampler,
+                    sampler=self._train_sampler,
                     **kwargs,
                     shuffle=False,
                 )
@@ -955,26 +964,26 @@ 

Source code for mala.network.trainer

             if isinstance(
                 self.data.training_data_sets[0], LazyLoadDatasetSingle
             ):
-                self.training_data_loaders = MultiLazyLoadDataLoader(
+                self._training_data_loaders = MultiLazyLoadDataLoader(
                     self.data.training_data_sets, **kwargs
                 )
             else:
-                self.training_data_loaders.append(
+                self._training_data_loaders.append(
                     DataLoader(
                         self.data.training_data_sets[0],
                         batch_size=self.parameters.mini_batch_size,
-                        sampler=self.train_sampler,
+                        sampler=self._train_sampler,
                         **kwargs,
                         shuffle=do_shuffle,
                     )
                 )
 
         if isinstance(self.data.validation_data_sets[0], FastTensorDataset):
-            self.validation_data_loaders.append(
+            self._validation_data_loaders.append(
                 DataLoader(
                     self.data.validation_data_sets[0],
                     batch_size=None,
-                    sampler=self.validation_sampler,
+                    sampler=self._validation_sampler,
                     **kwargs,
                 )
             )
@@ -982,15 +991,15 @@ 

Source code for mala.network.trainer

             if isinstance(
                 self.data.validation_data_sets[0], LazyLoadDatasetSingle
             ):
-                self.validation_data_loaders = MultiLazyLoadDataLoader(
+                self._validation_data_loaders = MultiLazyLoadDataLoader(
                     self.data.validation_data_sets, **kwargs
                 )
             else:
-                self.validation_data_loaders.append(
+                self._validation_data_loaders.append(
                     DataLoader(
                         self.data.validation_data_sets[0],
                         batch_size=self.parameters.mini_batch_size * 1,
-                        sampler=self.validation_sampler,
+                        sampler=self._validation_sampler,
                         **kwargs,
                     )
                 )
@@ -998,7 +1007,7 @@ 

Source code for mala.network.trainer

     def __process_mini_batch(self, network, input_data, target_data):
         """Process a mini batch."""
         if self.parameters._configuration["gpu"]:
-            if self.parameters.use_graphs and self.train_graph is None:
+            if self.parameters.use_graphs and self._train_graph is None:
                 printout("Capturing CUDA graph for training.", min_verbosity=2)
                 s = torch.cuda.Stream(self.parameters._configuration["device"])
                 s.wait_stream(
@@ -1025,8 +1034,8 @@ 

Source code for mala.network.trainer

                                     prediction, target_data
                                 )
 
-                        if self.gradscaler:
-                            self.gradscaler.scale(loss).backward()
+                        if self._gradscaler:
+                            self._gradscaler.scale(loss).backward()
                         else:
                             loss.backward()
                 torch.cuda.current_stream(
@@ -1034,38 +1043,40 @@ 

Source code for mala.network.trainer

                 ).wait_stream(s)
 
                 # Create static entry point tensors to graph
-                self.static_input_data = torch.empty_like(input_data)
-                self.static_target_data = torch.empty_like(target_data)
+                self._static_input_data = torch.empty_like(input_data)
+                self._static_target_data = torch.empty_like(target_data)
 
                 # Capture graph
-                self.train_graph = torch.cuda.CUDAGraph()
+                self._train_graph = torch.cuda.CUDAGraph()
                 network.zero_grad(set_to_none=True)
-                with torch.cuda.graph(self.train_graph):
+                with torch.cuda.graph(self._train_graph):
                     with torch.cuda.amp.autocast(
                         enabled=self.parameters.use_mixed_precision
                     ):
-                        self.static_prediction = network(
-                            self.static_input_data
+                        self._static_prediction = network(
+                            self._static_input_data
                         )
 
                         if self.parameters_full.use_ddp:
-                            self.static_loss = network.module.calculate_loss(
-                                self.static_prediction, self.static_target_data
+                            self._static_loss = network.module.calculate_loss(
+                                self._static_prediction,
+                                self._static_target_data,
                             )
                         else:
-                            self.static_loss = network.calculate_loss(
-                                self.static_prediction, self.static_target_data
+                            self._static_loss = network.calculate_loss(
+                                self._static_prediction,
+                                self._static_target_data,
                             )
 
-                    if self.gradscaler:
-                        self.gradscaler.scale(self.static_loss).backward()
+                    if self._gradscaler:
+                        self._gradscaler.scale(self._static_loss).backward()
                     else:
-                        self.static_loss.backward()
+                        self._static_loss.backward()
 
-            if self.train_graph:
-                self.static_input_data.copy_(input_data)
-                self.static_target_data.copy_(target_data)
-                self.train_graph.replay()
+            if self._train_graph:
+                self._static_input_data.copy_(input_data)
+                self._static_target_data.copy_(target_data)
+                self._train_graph.replay()
             else:
                 torch.cuda.nvtx.range_push("zero_grad")
                 self.network.zero_grad(set_to_none=True)
@@ -1095,24 +1106,24 @@ 

Source code for mala.network.trainer

                     # loss
                     torch.cuda.nvtx.range_pop()
 
-                if self.gradscaler:
-                    self.gradscaler.scale(loss).backward()
+                if self._gradscaler:
+                    self._gradscaler.scale(loss).backward()
                 else:
                     loss.backward()
 
             t = time.time()
             torch.cuda.nvtx.range_push("optimizer")
-            if self.gradscaler:
-                self.gradscaler.step(self.optimizer)
-                self.gradscaler.update()
+            if self._gradscaler:
+                self._gradscaler.step(self._optimizer)
+                self._gradscaler.update()
             else:
-                self.optimizer.step()
+                self._optimizer.step()
             dt = time.time() - t
             printout(f"optimizer time: {dt}", min_verbosity=3)
             torch.cuda.nvtx.range_pop()  # optimizer
 
-            if self.train_graph:
-                return self.static_loss
+            if self._train_graph:
+                return self._static_loss
             else:
                 return loss
         else:
@@ -1122,8 +1133,8 @@ 

Source code for mala.network.trainer

             else:
                 loss = network.calculate_loss(prediction, target_data)
             loss.backward()
-            self.optimizer.step()
-            self.optimizer.zero_grad()
+            self._optimizer.step()
+            self._optimizer.zero_grad()
             return loss
 
     def __create_training_checkpoint(self):
@@ -1140,20 +1151,20 @@ 

Source code for mala.network.trainer

         if self.parameters_full.use_ddp:
             if dist.get_rank() != 0:
                 return
-        if self.scheduler is None:
+        if self._scheduler is None:
             save_dict = {
-                "epoch": self.last_epoch,
-                "optimizer_state_dict": self.optimizer.state_dict(),
-                "early_stopping_counter": self.patience_counter,
-                "early_stopping_last_loss": self.last_loss,
+                "epoch": self._last_epoch,
+                "optimizer_state_dict": self._optimizer.state_dict(),
+                "early_stopping_counter": self._patience_counter,
+                "early_stopping_last_loss": self._last_loss,
             }
         else:
             save_dict = {
-                "epoch": self.last_epoch,
-                "optimizer_state_dict": self.optimizer.state_dict(),
-                "lr_scheduler_state_dict": self.scheduler.state_dict(),
-                "early_stopping_counter": self.patience_counter,
-                "early_stopping_last_loss": self.last_loss,
+                "epoch": self._last_epoch,
+                "optimizer_state_dict": self._optimizer.state_dict(),
+                "lr_scheduler_state_dict": self._scheduler.state_dict(),
+                "early_stopping_counter": self._patience_counter,
+                "early_stopping_last_loss": self._last_loss,
             }
         torch.save(
             save_dict, optimizer_name, _use_new_zipfile_serialization=False
diff --git a/_modules/mala/targets/atomic_force.html b/_modules/mala/targets/atomic_force.html
index ce0126beb..03b783bfe 100644
--- a/_modules/mala/targets/atomic_force.html
+++ b/_modules/mala/targets/atomic_force.html
@@ -86,6 +86,7 @@ 

Source code for mala.targets.atomic_force

 from ase.units import Rydberg, Bohr
 
 from .target import Target
+from mala.common.parallelizer import parallel_warn
 
 
 
@@ -109,6 +110,10 @@

Source code for mala.targets.atomic_force

             Parameters used to create this TargetBase object.
 
         """
+        parallel_warn(
+            "The AtomicForce class is currently be developed and"
+            " not feature-complete."
+        )
         super(AtomicForce, self).__init__(params)
 
 
diff --git a/_modules/mala/targets/density.html b/_modules/mala/targets/density.html index e906cd44b..8ca4273cb 100644 --- a/_modules/mala/targets/density.html +++ b/_modules/mala/targets/density.html @@ -114,7 +114,8 @@

Source code for mala.targets.density

 
[docs] class Density(Target): - """Postprocessing / parsing functions for the electronic density. + """ + Postprocessing / parsing functions for the electronic density. Parameters ---------- @@ -125,7 +126,10 @@

Source code for mala.targets.density

     ##############################
     # Class attributes
     ##############################
-
+    """
+    Total energy module mutual exclusion token used to make sure there
+    the total energy module is not initialized twice.
+    """
     te_mutex = False
 
     ##############################
@@ -383,6 +387,12 @@ 

Source code for mala.targets.density

 
         This is the generic interface for cached target quantities.
         It should work for all implemented targets.
+
+        Returns
+        -------
+        density : numpy.ndarray
+            Electronic charge density as a volumetric array. May be 4D or 2D
+            depending on workflow.
         """
         return self.density
@@ -527,7 +537,8 @@

Source code for mala.targets.density

             Units the density is saved in. Usually none.
         """
         printout("Reading density from .cube file ", path, min_verbosity=0)
-        # automatically convert units if they are None since cube files take atomic units
+        # automatically convert units if they are None since cube files take
+        # atomic units
         if units is None:
             units = "1/Bohr^3"
         if units != "1/Bohr^3":
@@ -717,7 +728,7 @@ 

Source code for mala.targets.density

 
         voxel : ase.cell.Cell
             Voxel to be used for grid intergation. Needs to reflect the
-            symmetry of the simulation cell. In Bohr.
+            symmetry of the simulation cell.
 
         integration_method : str
             Integration method used to integrate density on the grid.
diff --git a/_modules/mala/targets/dos.html b/_modules/mala/targets/dos.html
index aa9da5fe6..c049ab22c 100644
--- a/_modules/mala/targets/dos.html
+++ b/_modules/mala/targets/dos.html
@@ -350,6 +350,12 @@ 

Source code for mala.targets.dos

 
         This is the generic interface for cached target quantities.
         It should work for all implemented targets.
+
+        Returns
+        -------
+        density_of_states : numpy.ndarray
+            Electronic density of states.
+
         """
         return self.density_of_states
diff --git a/_modules/mala/targets/ldos.html b/_modules/mala/targets/ldos.html index 0743105d9..e842385fc 100644 --- a/_modules/mala/targets/ldos.html +++ b/_modules/mala/targets/ldos.html @@ -341,6 +341,12 @@

Source code for mala.targets.ldos

 
         This is the generic interface for cached target quantities.
         It should work for all implemented targets.
+
+        Returns
+        -------
+        local_density_of_states : numpy.ndarray
+            Electronic local density of states as a volumetric array.
+            May be 4D- or 2D depending on workflow.
         """
         return self.local_density_of_states
@@ -727,8 +733,6 @@

Source code for mala.targets.ldos

         If neither LDOS nor DOS+Density data is provided, the cached LDOS will
         be attempted to be used for the calculation.
 
-
-
         Parameters
         ----------
         ldos_data : numpy.array
diff --git a/_modules/mala/targets/target.html b/_modules/mala/targets/target.html
index ab49023d6..57884d254 100644
--- a/_modules/mala/targets/target.html
+++ b/_modules/mala/targets/target.html
@@ -112,18 +112,88 @@ 

Source code for mala.targets.target

 
[docs] class Target(PhysicalData): - """ + r""" Base class for all target quantity parser. Target parsers read the target quantity (i.e. the quantity the NN will learn to predict) from a specified file format and performs postprocessing calculations on the quantity. + Target parsers often read DFT reference information. + Parameters ---------- params : mala.common.parameters.Parameters or mala.common.parameters.ParametersTargets Parameters used to create this Target object. + + Attributes + ---------- + atomic_forces_dft : numpy.ndarray + Atomic forces as per DFT reference file. + + atoms : ase.Atoms + ASE atoms object used for calculations. + + band_energy_dft_calculation + Band energy as per DFT reference file. + + electrons_per_atom : int + Electrons per atom, usually determined by DFT reference file. + + entropy_contribution_dft_calculation : float + Electronic entropy contribution as per DFT reference file. + + fermi_energy_dft : float + Fermi energy as per DFT reference file. + + kpoints : list + k-grid used for MALA calculations. Managed internally. + + local_grid : list + Size of local grid (in MPI mode). + + number_of_electrons_exact + Exact number of electrons, usually given via DFT reference file. + + number_of_electrons_from_eigenvals : float + Number of electrons as calculated from DFT reference eigenvalues. + + parameters : mala.common.parameters.ParametersTarget + MALA target calculation parameters. + + qe_pseudopotentials : list + List of Quantum ESPRESSO pseudopotentials, read from DFT reference file + and used for the total energy module. + + save_target_data : bool + Control whether target data will be saved. Can be important for I/O + applications. Managed internally, default is True. + + temperature : float + Temperature used for all computations. By default read from DFT + reference file, but can freely be changed from the outside. + + total_energy_contributions_dft_calculation : dict + Dictionary holding contributions to total free energy not given + as individual properties, as read from the DFT reference file. + Contains: + + - "one_electron_contribution", :math:`n\,V_\mathrm{xc}` plus band + energy + - "hartree_contribution", :math:`E_\mathrm{H}` + - "xc_contribution", :math:`E_\mathrm{xc}` + - "ewald_contribution", :math:`E_\mathrm{Ewald}` + + total_energy_dft_calculation : float + Total free energy as read from DFT reference file. + voxel : ase.cell.Cell + Voxel to be used for grid intergation. Reflects the + symmetry of the simulation cell. Calculated from DFT reference data. + + y_planes : int + Number of y_planes used for Quantum ESPRESSO parallelization. Handled + internally. """ ############################## @@ -184,7 +254,6 @@

Source code for mala.targets.target

 
         Used for pickling.
 
-
         Returns
         -------
         params : mala.Parameters
@@ -906,7 +975,14 @@ 

Source code for mala.targets.target

 
[docs] def get_real_space_grid(self): - """Get the real space grid.""" + """ + Get the real space grid. + + Returns + ------- + grid3D : numpy.ndarray + Numpy array holding the entire grid. + """ grid3D = np.zeros( ( self.grid_dimensions[0], @@ -1509,8 +1585,7 @@

Source code for mala.targets.target

             None.
 
         mpi_rank : int
-            Rank within MPI
-
+            Rank within MPI.
         """
         # Specify grid dimensions, if any are given.
         if (
@@ -1747,7 +1822,7 @@ 

Source code for mala.targets.target

             "electrons_per_atom",
             default_value=self.electrons_per_atom,
         )
-        self.number_of_electrons_from_eigenval = (
+        self.number_of_electrons_from_eigenvals = (
             self._get_attribute_if_attribute_exists(
                 iteration,
                 "number_of_electrons_from_eigenvals",
diff --git a/api/mala.common.html b/api/mala.common.html
index 5cb3d3ca1..40026a6c6 100644
--- a/api/mala.common.html
+++ b/api/mala.common.html
@@ -147,6 +147,7 @@ 

common<
  • Parameters.running
  • Parameters.hyperparameters
  • Parameters.manual_seed
  • +
  • Parameters.datageneration
  • Parameters.load_from_file()
  • Parameters.load_from_json()
  • Parameters.load_from_pickle()
  • @@ -201,9 +202,14 @@

    common<
  • ParametersDescriptors
  • ParametersRunning
      @@ -252,10 +259,12 @@

      common<
    • ParametersRunning.validation_metrics
    • ParametersRunning.validate_on_training_data
    • ParametersRunning.validate_every_n_epochs
    • -
    • ParametersRunning.inference_data_grid
    • -
    • ParametersRunning.use_mixed_precision
    • ParametersRunning.training_log_interval
    • ParametersRunning.profiler_range
    • +
    • ParametersRunning.inference_data_grid
    • +
    • ParametersRunning.use_mixed_precision
    • +
    • ParametersRunning.l2_regularization
    • +
    • ParametersRunning.dropout
    • ParametersRunning.after_training_metric
    • ParametersRunning.during_training_metric
    • ParametersRunning.use_graphs
    • @@ -278,7 +287,13 @@

      common<
    • physical_data
      • PhysicalData
          -
        • PhysicalData.SkipArrayWriting
        • +
        • PhysicalData.parameters
        • +
        • PhysicalData.grid_dimensions
        • +
        • PhysicalData.SkipArrayWriting +
        • PhysicalData.read_dimensions_from_numpy_file()
        • PhysicalData.read_dimensions_from_openpmd_file()
        • PhysicalData.read_from_numpy_file()
        • diff --git a/api/mala.common.parallelizer.html b/api/mala.common.parallelizer.html index e05803792..ce6880d58 100644 --- a/api/mala.common.parallelizer.html +++ b/api/mala.common.parallelizer.html @@ -127,7 +127,7 @@

          Return the MPI communicator, if MPI is being used.

          Returns:
          -

          comm – A MPI communicator.

          +

          comm – An MPI communicator.

          Return type:

          MPI.COMM_WORLD

          @@ -161,6 +161,14 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

          +
          +
          Returns:
          +

          local_rank – The local rank of the current thread.

          +
          +
          Return type:
          +

          int

          +
          +
          @@ -201,7 +209,7 @@
          Parameters:
            -
          • warning – Warning to be printed.

          • +
          • warning (str) – Warning to be printed.

          • min_verbosity (int) – Minimum number of verbosity for this output to still be printed.

          • category (class) – Category of the warning to be thrown.

          @@ -218,7 +226,7 @@
          Parameters:
            -
          • values – Values to be printed.

          • +
          • values (object) – Values to be printed.

          • sep (string) – Separator between printed values.

          • min_verbosity (int) – Minimum number of verbosity for this output to still be printed.

          diff --git a/api/mala.common.parameters.html b/api/mala.common.parameters.html index a8563751d..fe847c461 100644 --- a/api/mala.common.parameters.html +++ b/api/mala.common.parameters.html @@ -204,6 +204,17 @@
          +
          +
          +datageneration
          +

          Parameters used for data generation routines.

          +
          +
          Type:
          +

          ParametersDataGeneration

          +
          +
          +
          +
          classmethod load_from_file(file, save_format='json', no_snapshots=False, force_no_ddp=False)[source]
          @@ -426,7 +437,7 @@
          classmethod from_json(json_dict)[source]
          -

          Read this object from a dictionary saved in a JSON file.

          +

          Read parameters from a dictionary saved in a JSON file.

          Parameters:

          json_dict (dict) – A dictionary containing all attributes, properties, etc. as saved @@ -808,19 +819,6 @@

          -
          -
          -lammps_compute_file
          -

          Bispectrum calculation: LAMMPS input file that is used to calculate the -Bispectrum descriptors. If this string is empty, the standard LAMMPS input -file found in this repository will be used (recommended).

          -
          -
          Type:
          -

          string

          -
          -
          -
          -
          descriptors_contain_xyz
          @@ -837,7 +835,58 @@
          atomic_density_sigma
          -

          Sigma used for the calculation of the Gaussian descriptors.

          +

          Sigma (=width) used for the calculation of the Gaussian descriptors. +Explicitly setting this value is discouraged if the atomic density is +used only during the total energy calculation and, e.g., bispectrum +descriptors are used for models. In this case, the width will +automatically be set correctly during inference based on model +parameters. This parameter mainly exists for debugging purposes. +If the atomic density is instead used for model training itself, this +parameter needs to be set.

          +
          +
          Type:
          +

          float

          +
          +
          +
          + +
          +
          +atomic_density_cutoff
          +

          Cutoff radius used for atomic density calculation. Explicitly setting +this value is discouraged if the atomic density is used only during the +total energy calculation and, e.g., bispectrum descriptors are used +for models. In this case, the cutoff will automatically be set +correctly during inference based on model parameters. This parameter +mainly exists for debugging purposes. If the atomic density is instead +used for model training itself, this parameter needs to be set.

          +
          +
          Type:
          +

          float

          +
          +
          +
          + +
          +
          +lammps_compute_file
          +

          Path to a LAMMPS compute file for the bispectrum descriptor +calculation. MALA has its own collection of compute files which are +used by default. Setting this parameter is thus not necessarys for +model training and inference, and it exists mainly for debugging +purposes.

          +
          +
          Type:
          +

          str

          +
          +
          +
          + +
          +
          +minterpy_cutoff_cube_size
          +

          WILL BE DEPRECATED IN MALA v1.4.0 - size of cube for minterpy +descriptor calculation.

          Type:

          float

          @@ -845,6 +894,42 @@
          +
          +
          +minterpy_lp_norm
          +

          WILL BE DEPRECATED IN MALA v1.4.0 - LP norm for minterpy +descriptor calculation.

          +
          +
          Type:
          +

          int

          +
          +
          +
          + +
          +
          +minterpy_point_list
          +

          WILL BE DEPRECATED IN MALA v1.4.0 - list of points for minterpy +descriptor calculation.

          +
          +
          Type:
          +

          list

          +
          +
          +
          + +
          +
          +minterpy_polynomial_degree
          +

          WILL BE DEPRECATED IN MALA v1.4.0 - polynomial degree for minterpy +descriptor calculation.

          +
          +
          Type:
          +

          int

          +
          +
          +
          +
          property bispectrum_cutoff
          @@ -1024,6 +1109,14 @@ With a suitable timeout it can be used somewhat stable though and help in HPC settings.

          +
          acsd_pointsint

          Parameter of the ACSD HyperparamterOptimization scheme. Controls +the number of point-pairs which are used to compute the ACSD. +An array of acsd_points*acsd_points will be computed, i.e., if +acsd_points=100, 100 points will be drawn at random, and thereafter +each of these 100 points will be compared with a new, random set +of 100 points, leading to 10000 points in total for the calculation +of the ACSD.

          +
          @@ -1070,15 +1163,15 @@
          nn_type
          -
          -
          Type of the neural network that will be used. Currently supported are
            +

            Type of the neural network that will be used. Currently supported are

            +
            +
            • “feed_forward” (default)

            • “transformer”

            • “lstm”

            • “gru”

            -
            -
          +
  • Type:

    string

    @@ -1188,6 +1281,18 @@
    +
    +
    +dropout
    +

    Dropout rate for positional encoding in transformer. +Default: 0.1

    +
    +
    Type:
    +

    float

    +
    +
    +
    +
    @@ -1470,11 +1575,39 @@
    +
    +
    +training_log_interval
    +

    Determines how often detailed performance info is printed during +training (only has an effect if the verbosity is high enough).

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +profiler_range
    +
    +
    List with two entries determining with which batch/iteration number

    the CUDA profiler will start and stop profiling. Please note that +this option only holds significance if the nsys profiler is used.

    +
    +
    +
    +
    Type:
    +

    list

    +
    +
    +
    +
    inference_data_grid
    -

    List holding the grid to be used for inference in the form of -[x,y,z].

    +

    Grid dimensions used during inference. Typically, these are automatically +determined by DFT reference data, and this parameter does not need to +be set. Thus, this parameter mainly exists for debugging purposes.

    Type:

    list

    @@ -1494,26 +1627,23 @@
    -
    -training_log_interval
    -

    Determines how often detailed performance info is printed during -training (only has an effect if the verbosity is high enough).

    +
    +l2_regularization
    +

    Weight decay rate for NN optimizer.

    Type:
    -

    int

    +

    float

    -
    -profiler_range
    -

    List with two entries determining with which batch/iteration number -the CUDA profiler will start and stop profiling. Please note that -this option only holds significance if the nsys profiler is used.

    +
    +dropout
    +

    Dropout rate for positional encoding in transformer net.

    Type:
    -

    list

    +

    float

    diff --git a/api/mala.common.physical_data.html b/api/mala.common.physical_data.html index 4b03b4d02..2ab28f2a4 100644 --- a/api/mala.common.physical_data.html +++ b/api/mala.common.physical_data.html @@ -113,9 +113,40 @@
    class PhysicalData(parameters)[source]

    Bases: ABC

    -

    Base class for physical data.

    +

    Base class for volumetric physical data.

    Implements general framework to read and write such data to and from -files.

    +files. Volumetric data is assumed to exist on a 3D grid. As such it +either has the dimensions [x,y,z,f], where f is the feature dimension. +All loading functions within this class assume such a 4D array. Within +MALA, occasionally 2D arrays of dimension [x*y*z,f] are used and reshaped +accordingly.

    +
    +
    Parameters:
    +

    parameters (mala.Parameters) – MALA Parameters object used to create this class.

    +
    +
    +
    +
    +parameters
    +

    MALA parameters object.

    +
    +
    Type:
    +

    mala.Parameters

    +
    +
    +
    + +
    +
    +grid_dimensions
    +

    List of the grid dimensions (x,y,z)

    +
    +
    Type:
    +

    list

    +
    +
    +
    +
    class SkipArrayWriting(dataset, feature_size)[source]
    @@ -138,6 +169,36 @@

    In order to provide this data, the numpy array can be replaced with an instance of the class SkipArrayWriting.

    +
    +
    Parameters:
    +
      +
    • dataset (openpmd_api.Dataset) – OpenPMD Data set to eventually write to.

    • +
    • feature_size (int) – Size of the feature dimension.

    • +
    +
    +
    +
    +
    +dataset
    +

    OpenPMD Data set to eventually write to.

    +
    +
    Type:
    +

    mala.Parameters

    +
    +
    +
    + +
    +
    +feature_size
    +

    Size of the feature dimension.

    +
    +
    Type:
    +

    list

    +
    +
    +
    +
    @@ -151,6 +212,15 @@
  • read_dtype (bool) – If True, the dtype is read alongside the dimensions.

  • +
    Returns:
    +

    dimension_info – If read_dtype is False, then only a list containing the dimensions +of the saved array is returned. If read_dtype is True, a tuple +containing this list of dimensions and the dtype of the array will +be returned.

    +
    +
    Return type:
    +

    list or tuple

    +
    @@ -163,8 +233,15 @@
    • path (string) – Path to the openPMD file.

    • read_dtype (bool) – If True, the dtype is read alongside the dimensions.

    • +
    • comm (MPI.Comm) – An MPI communicator to be used for parallelized I/O

    +
    Returns:
    +

    dimension_info – A list containing the dimensions of the saved array.

    +
    +
    Return type:
    +

    list

    +
    @@ -179,6 +256,7 @@
  • units (string) – Units the data is saved in.

  • array (np.ndarray) – If not None, the array to save the data into. The array has to be 4-dimensional.

  • +
  • reshape (bool) – If True, the loaded 4D array will be reshaped into a 2D array.

  • Returns:
    @@ -241,7 +319,7 @@ Alternatively: A Series, opened already.

  • array (Either numpy.ndarray or an SkipArrayWriting object) – Either the array to save or the meta information needed to create the openPMD structure.

  • -
  • additional_attributes (dict) – Dict containing additional attributes to be saved.

  • +
  • additional_attributes (dict) – Dictionary containing additional attributes to be saved.

  • internal_iteration_number (int) – Internal OpenPMD iteration number. Ideally, this number should match any number present in the file name, if this data is part of a larger data set.

  • @@ -262,6 +340,14 @@
  • additional_metadata (list) – If not None, and the selected class implements it, additional metadata will be read from this source. This metadata will then, depending on the class, be saved in the OpenPMD file.

  • +
  • local_offset (list) – [x,y,z] value from which to start writing the array.

  • +
  • local_reach (list) – [x,y,z] value until which to read the array.

  • +
  • feature_from (int) – Value from which to start writing in the feature dimension. With +this parameter and feature_to, one can parallelize over the feature +dimension.

  • +
  • feature_to (int) – Value until which to write in the feature dimension. With +this parameter and feature_from, one can parallelize over the feature +dimension.

  • diff --git a/api/mala.datageneration.html b/api/mala.datageneration.html index 228f9fd6e..364cc7e8b 100644 --- a/api/mala.datageneration.html +++ b/api/mala.datageneration.html @@ -109,6 +109,9 @@

    datagenerationofdft_initializer
    • OFDFTInitializer
    • @@ -116,6 +119,13 @@

      datagenerationtrajectory_analyzer
      • TrajectoryAnalyzer
          +
        • TrajectoryAnalyzer.parameters
        • +
        • TrajectoryAnalyzer.average_distance_equilibrated
        • +
        • TrajectoryAnalyzer.distance_metrics_denoised
        • +
        • TrajectoryAnalyzer.distances_realspace
        • +
        • TrajectoryAnalyzer.first_considered_snapshot
        • +
        • TrajectoryAnalyzer.last_considered_snapshot
        • +
        • TrajectoryAnalyzer.target_calculator
        • TrajectoryAnalyzer.get_first_snapshot()
        • TrajectoryAnalyzer.get_snapshot_correlation_cutoff()
        • TrajectoryAnalyzer.get_uncorrelated_snapshots()
        • diff --git a/api/mala.datageneration.ofdft_initializer.html b/api/mala.datageneration.ofdft_initializer.html index ff2af694d..2bf312dea 100644 --- a/api/mala.datageneration.ofdft_initializer.html +++ b/api/mala.datageneration.ofdft_initializer.html @@ -114,12 +114,47 @@
          Parameters:
            -
          • parameters (mala.common.parameters.Parameters) – Parameters object used to create this instance.

          • +
          • parameters (mala.Parameters) – MALA parameters object used to create this instance.

          • atoms (ase.Atoms) – Initial atomic configuration for which an equilibrated configuration is to be created.

          +
          +
          +parameters
          +

          MALA data generation parameters object.

          +
          +
          Type:
          +

          mala.mala.common.parameters.ParametersDataGeneration

          +
          +
          +
          + +
          +
          +atoms
          +

          Initial atomic configuration for which an +equilibrated configuration is to be created.

          +
          +
          Type:
          +

          ase.Atoms

          +
          +
          +
          + +
          +
          +dftpy_configuration
          +

          Dictionary containing the DFTpy configuration. Will partially be +populated via the MALA parameters object.

          +
          +
          Type:
          +

          dict

          +
          +
          +
          +
          get_equilibrated_configuration(logging_period=None)[source]
          @@ -129,6 +164,12 @@

          logging_period (int) – If not None, a .log and .traj file will be filled with snapshot information every logging_period steps.

          +
          Returns:
          +

          equilibrated_configuration – Equilibrated atomic configuration.

          +
          +
          Return type:
          +

          ase.Atoms

          +
          diff --git a/api/mala.datageneration.trajectory_analyzer.html b/api/mala.datageneration.trajectory_analyzer.html index d6db841a3..c84207d19 100644 --- a/api/mala.datageneration.trajectory_analyzer.html +++ b/api/mala.datageneration.trajectory_analyzer.html @@ -118,9 +118,95 @@
        • trajectory (ase.io.Trajectory or string) – Trajectory or path to trajectory to be analyzed.

        • target_calculator (mala.targets.target.Target) – A target calculator to calculate e.g. the RDF. If None is provided, one will be generated ad-hoc (recommended).

        • +
        • temperatures (string or numpy.ndarray) – Array holding the temperatures for the trajectory or path to numpy +file containing temperatures.

        • +
        • target_temperature (float) – Target temperature for equilibration.

        • +
        • malada_compatability (bool) – If True, twice the radius set by the minimum imaging convention (MIC) +will be used for RDF calculation. This is generally discouraged, +but some older malada calculations have been performed with it, so +this parameter provides reproducibility.

        +
        +
        +parameters
        +

        MALA data generation parameters.

        +
        +
        Type:
        +

        mala.common.parameters.ParametersDataGeneration

        +
        +
        +
        + +
        +
        +average_distance_equilibrated
        +

        Distance threshold for determination of first equilibrated snapshot.

        +
        +
        Type:
        +

        float

        +
        +
        +
        + +
        +
        +distance_metrics_denoised
        +

        RDF based distance metrics used for equilibration analysis.

        +
        +
        Type:
        +

        numpy.ndarray

        +
        +
        +
        + +
        +
        +distances_realspace
        +

        Realspace distance metrics used to sample snapshots.

        +
        +
        Type:
        +

        numpy.ndarray

        +
        +
        +
        + +
        +
        +first_considered_snapshot
        +

        First snapshot to be considered during equilibration analysis (i.e., +after pruning).

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +last_considered_snapshot
        +

        Last snapshot to be considered during equilibration analysis (i.e., +after pruning).

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +target_calculator
        +

        Target calculator used for computing RDFs.

        +
        +
        Type:
        +

        mala.targets.target.Target

        +
        +
        +
        +
        get_first_snapshot(equilibrated_snapshot=None, distance_threshold=None)[source]
        diff --git a/api/mala.datahandling.data_converter.html b/api/mala.datahandling.data_converter.html index 40d2fbf51..5f19e2598 100644 --- a/api/mala.datahandling.data_converter.html +++ b/api/mala.datahandling.data_converter.html @@ -157,6 +157,29 @@
        +
        +
        +parameters
        +

        MALA data handling parameters object.

        +
        +
        Type:
        +

        mala.common.parameters.ParametersData

        +
        +
        +
        + +
        +
        +parameters_full
        +

        MALA parameters object. The full object is necessary for some data +handling tasks.

        +
        +
        Type:
        +

        mala.common.parameters.Parameters

        +
        +
        +
        +
        add_snapshot(descriptor_input_type=None, descriptor_input_path=None, target_input_type=None, target_input_path=None, additional_info_input_type=None, additional_info_input_path=None, descriptor_units=None, metadata_input_type=None, metadata_input_path=None, target_units=None)[source]
        diff --git a/api/mala.datahandling.data_handler.html b/api/mala.datahandling.data_handler.html index 53e74cd26..9a7ddf2f2 100644 --- a/api/mala.datahandling.data_handler.html +++ b/api/mala.datahandling.data_handler.html @@ -120,9 +120,9 @@
        class DataHandler(parameters: Parameters, target_calculator=None, descriptor_calculator=None, input_data_scaler=None, output_data_scaler=None, clear_data=True)[source]

        Bases: DataHandlerBase

        -

        Loads and scales data. Can only process numpy arrays at the moment.

        -

        Data that is not in a numpy array can be converted using the DataConverter -class.

        +

        Loads and scales data. Can load from numpy or OpenPMD files.

        +

        Data that is not saved as numpy or OpenPMD file can be converted using the +DataConverter class.

        Parameters:
          @@ -140,6 +140,127 @@
        +
        +
        +input_data_scaler
        +

        Used to scale the input data.

        +
        +
        Type:
        +

        mala.datahandling.data_scaler.DataScaler

        +
        +
        +
        + +
        +
        +nr_test_data
        +

        Number of test data points.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +nr_test_snapshots
        +

        Number of test snapshots.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +nr_training_data
        +

        Number of training data points.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +nr_training_snapshots
        +

        Number of training snapshots.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +nr_validation_data
        +

        Number of validation data points.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +nr_validation_snapshots
        +

        Number of validation snapshots.

        +
        +
        Type:
        +

        int

        +
        +
        +
        + +
        +
        +output_data_scaler
        +

        Used to scale the output data.

        +
        +
        Type:
        +

        mala.datahandling.data_scaler.DataScaler

        +
        +
        +
        + +
        +
        +test_data_sets
        +

        List containing torch data sets for test data.

        +
        +
        Type:
        +

        list

        +
        +
        +
        + +
        +
        +training_data_sets
        +

        List containing torch data sets for training data.

        +
        +
        Type:
        +

        list

        +
        +
        +
        + +
        +
        +validation_data_sets
        +

        List containing torch data sets for validation data.

        +
        +
        Type:
        +

        list

        +
        +
        +
        +
        clear_data()[source]
        @@ -179,7 +300,7 @@

        snapshot_number (int) – Number of the snapshot for which the entire test inputs.

        Returns:
        -

        Tensor holding the gradient.

        +

        gradient – Tensor holding the gradient.

        Return type:

        torch.Tensor

        @@ -233,8 +354,9 @@
        Parameters:
        • numpy_array (np.array) – Array that is to be converted.

        • -
        • data_type (string) – Either “in” or “out”, depending if input or output data is -processed.

        • +
        • data_type (string) –

          Either “in” or “out”, depending if input or output data is

          +

          processed.

          +

        • units (string) – Units of the data that is processed.

        diff --git a/api/mala.datahandling.data_handler_base.html b/api/mala.datahandling.data_handler_base.html index 5e5dd6ad5..1e0548610 100644 --- a/api/mala.datahandling.data_handler_base.html +++ b/api/mala.datahandling.data_handler_base.html @@ -132,6 +132,40 @@
      +
      +
      +descriptor_calculator
      +

      Used to do unit conversion on input data.

      +
      + +
      +
      +nr_snapshots
      +

      Number of snapshots loaded.

      +
      +
      Type:
      +

      int

      +
      +
      +
      + +
      +
      +parameters
      +

      MALA data handling parameters.

      +
      +
      Type:
      +

      mala.common.parameters.ParametersData

      +
      +
      +
      + +
      +
      +target_calculator
      +

      Used to do unit conversion on output data.

      +
      +
      add_snapshot(input_file, input_directory, output_file, output_directory, add_snapshot_as, output_units='1/(eV*A^3)', input_units='None', calculation_output_file='', snapshot_type='numpy')[source]
      diff --git a/api/mala.datahandling.data_scaler.html b/api/mala.datahandling.data_scaler.html index a0d4ca47f..64523c420 100644 --- a/api/mala.datahandling.data_scaler.html +++ b/api/mala.datahandling.data_scaler.html @@ -155,6 +155,171 @@

    +
    +
    +cantransform
    +

    If True, this scaler is set up to perform scaling.

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +feature_wise
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +maxs
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +means
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +mins
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +scale_minmax
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +scale_standard
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +stds
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +total_data_count
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +total_max
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    float

    +
    +
    +
    + +
    +
    +total_mean
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    float

    +
    +
    +
    + +
    +
    +total_min
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    float

    +
    +
    +
    + +
    +
    +total_std
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    float

    +
    +
    +
    + +
    +
    +typestring
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    str

    +
    +
    +
    + +
    +
    +use_ddp
    +

    (Managed internally, not set to private due to legacy issues)

    +
    +
    Type:
    +

    bool

    +
    +
    +
    +
    fit(unscaled)[source]
    diff --git a/api/mala.datahandling.fast_tensor_dataset.html b/api/mala.datahandling.fast_tensor_dataset.html index 5e4827f25..02f915ba2 100644 --- a/api/mala.datahandling.fast_tensor_dataset.html +++ b/api/mala.datahandling.fast_tensor_dataset.html @@ -123,6 +123,25 @@

    A special type of tensor data set for improved performance.

    This version of TensorDataset gathers data using a single call within __getitem__. A bit more tricky to manage but is faster still.

    +
    +
    Parameters:
    +
      +
    • batch_size (int) – Batch size to be used with this data set.

    • +
    • tensors (object) – Torch tensors for this data set.

    • +
    +
    +
    +
    +
    +batch_size
    +

    Batch size to be used with this data set.

    +
    +
    Type:
    +

    int

    +
    +
    +
    +
    shuffle()[source]
    diff --git a/api/mala.datahandling.html b/api/mala.datahandling.html index 79c96c2d3..3d94aa468 100644 --- a/api/mala.datahandling.html +++ b/api/mala.datahandling.html @@ -121,6 +121,8 @@

    datahandlingDataConverter @@ -129,6 +131,17 @@

    datahandlingdata_handler

    +
    +
    +currently_loaded_file
    +

    Index of currently loaded file.

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +input_data
    +

    Input data tensor.

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +output_data
    +

    Output data tensor.

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    +
    add_snapshot_to_dataset(snapshot: Snapshot)[source]
    diff --git a/api/mala.datahandling.lazy_load_dataset_single.html b/api/mala.datahandling.lazy_load_dataset_single.html index 4b8cc30b5..a8846419c 100644 --- a/api/mala.datahandling.lazy_load_dataset_single.html +++ b/api/mala.datahandling.lazy_load_dataset_single.html @@ -141,6 +141,173 @@
    +
    +
    +allocated
    +

    True if dataset is allocated.

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +currently_loaded_file
    +

    Index of currently loaded file

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +descriptor_calculator
    +

    Used to do unit conversion on input data.

    +
    +
    Type:
    +

    mala.descriptors.descriptor.Descriptor

    +
    +
    +
    + +
    +
    +input_data
    +

    Input data tensor.

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +input_dtype
    +

    Input data type.

    +
    +
    Type:
    +

    numpy.dtype

    +
    +
    +
    + +
    +
    +input_shape
    +

    Input data dimensions

    +
    +
    Type:
    +

    list

    +
    +
    +
    + +
    +
    +input_shm_name
    +

    Name of shared memory allocated for input data

    +
    +
    Type:
    +

    str

    +
    +
    +
    + +
    +
    +loaded
    +

    True if data has been loaded to shared memory.

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +output_data
    +

    Output data tensor.

    +
    +
    Type:
    +

    torch.Tensor

    +
    +
    +
    + +
    +
    +output_dtype
    +

    Output data dtype.

    +
    +
    Type:
    +

    numpy.dtype

    +
    +
    +
    + +
    +
    +output_shape
    +

    Output data dimensions.

    +
    +
    Type:
    +

    list

    +
    +
    +
    + +
    +
    +output_shm_name
    +

    Name of shared memory allocated for output data.

    +
    +
    Type:
    +

    str

    +
    +
    +
    + +
    +
    +return_outputs_directly
    +

    Control whether outputs are actually transformed. +Has to be False for training. In the testing case, +Numerical errors are smaller if set to True.

    +
    +
    Type:
    +

    bool

    +
    +
    +
    + +
    +
    +snapshot
    +

    Currently loaded snapshot object.

    +
    +
    Type:
    +

    mala.datahandling.snapshot.Snapshot

    +
    +
    +
    + +
    +
    +target_calculator
    +

    Used to do unit conversion on output data.

    +
    +
    Type:
    +

    mala.targets.target.Target or derivative

    +
    +
    +
    +
    allocate_shared_mem()[source]
    diff --git a/api/mala.datahandling.ldos_aligner.html b/api/mala.datahandling.ldos_aligner.html index 181142481..e4cc0b124 100644 --- a/api/mala.datahandling.ldos_aligner.html +++ b/api/mala.datahandling.ldos_aligner.html @@ -133,6 +133,17 @@
    +
    +
    +ldos_parameters
    +

    MALA target calculation parameters.

    +
    +
    Type:
    +

    mala.common.parameters.ParametersTargets

    +
    +
    +
    +
    add_snapshot(output_file, output_directory, snapshot_type='numpy')[source]
    @@ -150,15 +161,14 @@
    -align_ldos_to_ref(save_path=None, save_name=None, save_path_ext='aligned/', reference_index=0, zero_tol=1e-05, left_truncate=False, right_truncate_value=None, number_of_electrons=None, n_shift_mse=None)[source]
    -

    Add a snapshot to the data pipeline.

    +align_ldos_to_ref(save_path_ext='aligned/', reference_index=0, zero_tol=1e-05, left_truncate=False, right_truncate_value=None, number_of_electrons=None, n_shift_mse=None)[source] +

    Align LDOS to reference.

    Parameters:
      -
    • save_path (string) – path to save the aligned LDOS vectors

    • -
    • save_name (string) – naming convention for the aligned LDOS vectors

    • -
    • save_path_ext (string) – additional path for the LDOS vectors (useful if -save_path is left as default None)

    • +
    • save_path_ext (string) – Extra path to be added to the input path before saving. +By default, new snapshot files are saved into exactly the +same directory they were read from with exactly the same name.

    • reference_index (int) – the snapshot number (in the snapshot directory list) to which all other LDOS vectors are aligned

    • zero_tol (float) – the “zero” value for alignment / left side truncation @@ -167,8 +177,6 @@

    • right_truncate_value (float) – right-hand energy value (based on reference LDOS vector) to which truncate LDOS vectors if None, no right-side truncation

    • -
    • egrid_spacing_ev (float) – spacing of energy grid

    • -
    • egrid_offset_ev (float) – original offset of energy grid

    • number_of_electrons (float / int) – if not None, computes the energy shift relative to QE energies

    • n_shift_mse (int) – how many energy grid points to consider when aligning LDOS vectors based on mean-squared error @@ -180,14 +188,13 @@

      -static calc_optimal_ldos_shift(e_grid, ldos_mean, ldos_mean_ref, left_index, left_index_ref, n_shift_mse)[source]
      +static calc_optimal_ldos_shift(ldos_mean, ldos_mean_ref, left_index, left_index_ref, n_shift_mse)[source]

      Calculate the optimal amount by which to align the LDOS with reference.

      ‘Optimized’ is currently based on minimizing the mean-square error with the reference, up to a cut-off (typically 10% of the full LDOS length).

      Parameters:
        -
      • e_grid (array_like) – energy grid

      • ldos_mean (array_like) – mean of LDOS vector for shifting

      • ldos_mean_ref (array_like) – mean of LDOS reference vector

      • left_index (int) – index at which LDOS for shifting becomes non-zero

      • diff --git a/api/mala.datahandling.snapshot.html b/api/mala.datahandling.snapshot.html index c4a3a73d8..014777d51 100644 --- a/api/mala.datahandling.snapshot.html +++ b/api/mala.datahandling.snapshot.html @@ -144,12 +144,164 @@
      • va: This snapshot will be a validation snapshot.

    -

    Replaces the old approach of MALA to have a separate list. -Default is None.

    +
    +
    +grid_dimensions
    +

    Grid dimension [x,y,z].

    +
    +
    Type:
    +

    list

    +
    +
    +
    + +
    +
    +grid_size
    +

    Number of grid points in total.

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +input_dimension
    +

    Input feature dimension.

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +output_dimension
    +

    Output feature dimension

    +
    +
    Type:
    +

    int

    +
    +
    +
    + +
    +
    +input_npy_file
    +

    File with saved numpy input array.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +input_npy_directory
    +

    Directory containing input_npy_directory.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +output_npy_file
    +

    File with saved numpy output array.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +output_npy_directory
    +

    Directory containing output_npy_file.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +input_units
    +

    Units of input data. See descriptor classes to see which units are +supported.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +output_units
    +

    Units of output data. See target classes to see which units are +supported.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +calculation_output
    +

    File with the output of the original snapshot calculation. This is +only needed when testing multiple snapshots.

    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +snapshot_function
    +

    “Function” of the snapshot in the MALA workflow.

    +
    +
      +
    • te: This snapshot will be a testing snapshot.

    • +
    • tr: This snapshot will be a training snapshot.

    • +
    • va: This snapshot will be a validation snapshot.

    • +
    +
    +
    +
    Type:
    +

    string

    +
    +
    +
    + +
    +
    +snapshot_type
    +

    Can be either “numpy” or “openpmd” and denotes which type of files +this snapshot contains.

    +
    +
    Type:
    +

    string

    +
    +
    +
    +
    classmethod from_json(json_dict)[source]
    diff --git a/api/mala.descriptors.atomic_density.html b/api/mala.descriptors.atomic_density.html index 63b3331a0..62fa89c8c 100644 --- a/api/mala.descriptors.atomic_density.html +++ b/api/mala.descriptors.atomic_density.html @@ -184,12 +184,6 @@

    Get a string that describes the target (for e.g. metadata).

    -
    -
    -property feature_size
    -

    Get the feature dimension of this data.

    -
    - diff --git a/api/mala.descriptors.bispectrum.html b/api/mala.descriptors.bispectrum.html index 9471daa5e..fccfc2a03 100644 --- a/api/mala.descriptors.bispectrum.html +++ b/api/mala.descriptors.bispectrum.html @@ -167,12 +167,6 @@

    Get a string that describes the target (for e.g. metadata).

    -
    -
    -property feature_size
    -

    Get the feature dimension of this data.

    -
    - diff --git a/api/mala.descriptors.descriptor.html b/api/mala.descriptors.descriptor.html index ae2a4123b..78c090f7e 100644 --- a/api/mala.descriptors.descriptor.html +++ b/api/mala.descriptors.descriptor.html @@ -120,6 +120,17 @@

    parameters (mala.common.parameters.Parameters) – Parameters object used to create this object.

    +
    +
    +parameters
    +

    MALA descriptor calculation parameters.

    +
    +
    Type:
    +

    mala.common.parameters.ParametersDescriptors

    +
    +
    +
    +
    static backconvert_units(array, out_units)[source]
    @@ -319,6 +330,12 @@

    Control whether descriptor vectors will contain xyz coordinates.

    +
    +
    +property feature_size
    +

    Get the feature dimension of this data.

    +
    +
    property si_dimension
    diff --git a/api/mala.descriptors.html b/api/mala.descriptors.html index 308438b13..ee34fbecf 100644 --- a/api/mala.descriptors.html +++ b/api/mala.descriptors.html @@ -116,7 +116,6 @@

    descriptorsAtomicDensity.convert_units()
  • AtomicDensity.get_optimal_sigma()
  • AtomicDensity.data_name
  • -
  • AtomicDensity.feature_size
  • @@ -126,13 +125,13 @@

    descriptorsBispectrum.backconvert_units()
  • Bispectrum.convert_units()
  • Bispectrum.data_name
  • -
  • Bispectrum.feature_size
  • descriptor
  • diff --git a/api/mala.descriptors.minterpy_descriptors.html b/api/mala.descriptors.minterpy_descriptors.html index ad137cfc4..14c3e8fd5 100644 --- a/api/mala.descriptors.minterpy_descriptors.html +++ b/api/mala.descriptors.minterpy_descriptors.html @@ -108,12 +108,13 @@

    minterpy_descriptors

    -

    Gaussian descriptor class.

    +

    Minterpy descriptor class.

    class MinterpyDescriptors(params: Parameters = None)[source]

    Bases: Descriptor

    -

    Class for calculation and parsing of Gaussian descriptors.

    +

    Class for calculation and parsing of Minterpy descriptors.

    +

    Marked for deprecation.

    Parameters:

    parameters (mala.common.parameters.Parameters) – Parameters object used to create this object.

    @@ -167,12 +168,6 @@

    Get a string that describes the target (for e.g. metadata).

    -
    -
    -property feature_size
    -

    Get the feature dimension of this data.

    -
    -
    diff --git a/api/mala.html b/api/mala.html index 253372855..91e47550b 100644 --- a/api/mala.html +++ b/api/mala.html @@ -143,6 +143,7 @@

    mala<
  • Parameters.running
  • Parameters.hyperparameters
  • Parameters.manual_seed
  • +
  • Parameters.datageneration
  • Parameters.load_from_file()
  • Parameters.load_from_json()
  • Parameters.load_from_pickle()
  • @@ -197,9 +198,14 @@

    mala<
  • ParametersDescriptors
  • ParametersRunning
  • +
    +
    +mala_parameters
    +

    MALA parameters used for predictions.

    +
    +
    Type:
    +

    mala.common.parameters.Parameters

    +
    +
    +
    + +
    +
    +last_energy_contributions
    +

    Contains all total energy contributions for the last prediction.

    +
    +
    Type:
    +

    dict

    +
    +
    +
    +
    calculate(atoms=None, properties=['energy'], system_changes=ase.calculators.calculator.all_changes)[source]
    @@ -183,6 +207,12 @@
  • path (str) – Path where the model is saved.

  • +
    Returns:
    +

    calculator – The calculator object.

    +
    +
    Return type:
    +

    mala.interfaces.calculator.Calculator

    +
    @@ -199,6 +229,12 @@
  • path (str) – Path where the model is saved.

  • +
    Returns:
    +

    calculator – The calculator object.

    +
    +
    Return type:
    +

    mala.interfaces.calculator.Calculator

    +
    @@ -219,7 +255,7 @@
    -implemented_properties = ['energy', 'forces']
    +implemented_properties = ['energy']
    diff --git a/api/mala.interfaces.html b/api/mala.interfaces.html index ac090b8f1..9ff61937e 100644 --- a/api/mala.interfaces.html +++ b/api/mala.interfaces.html @@ -108,6 +108,8 @@

    interfacesase_calculator

    A

    @@ -133,25 +135,39 @@

    A

  • (LDOSAligner method)
  • - - + @@ -177,16 +193,28 @@

    B

  • (Target static method)
  • - - +
  • CubeFile (class in mala.targets.cube_parser)
  • +
  • currently_loaded_file (LazyLoadDataset attribute) + +
  • @@ -270,7 +310,11 @@

    D

    - + @@ -352,6 +418,8 @@

    E

  • early_stopping_epochs (ParametersRunning attribute)
  • early_stopping_threshold (ParametersRunning attribute) +
  • +
  • electrons_per_atom (Target attribute)
  • energy_grid (DOS property) @@ -369,6 +437,8 @@

    E

  • (LDOS property)
  • +
  • entropy_contribution_dft_calculation (Target attribute) +
  • entropy_multiplicator() (in module mala.targets.calculation_helpers)
  • extract_compute_np() (in module mala.descriptors.lammps_utils) @@ -381,24 +451,24 @@

    F

  • + +
  • fermi_energy_dft (Target attribute) +
  • fermi_function() (in module mala.targets.calculation_helpers) +
  • +
  • final_validation_loss (Trainer attribute)
  • finalize() (in module mala.common.parallelizer) +
  • +
  • first_considered_snapshot (TrajectoryAnalyzer attribute)
  • first_snapshot (TrajectoryAnalyzer property)
  • @@ -483,6 +559,8 @@

    F

  • (LDOS class method)
  • +
  • full_logging_path (Trainer attribute) +
  • @@ -505,12 +583,6 @@

    G

    -
  • get_best_trial_results() (HyperOptNASWOT method) - -
  • get_beta() (in module mala.targets.calculation_helpers) @@ -569,10 +641,10 @@

    G

  • get_int() (HyperparameterOptuna method)
  • - - + -
  • get_optimal_parameters() (HyperOptOAT method) -
  • get_optimal_sigma() (AtomicDensity static method) -
  • -
  • get_orthogonal_array() (HyperOptOAT method)
  • get_parameter() (HyperparameterOAT method) @@ -640,6 +708,14 @@

    G

  • get_trials_from_study() (HyperOptOptuna method)
  • get_uncorrelated_snapshots() (TrajectoryAnalyzer method) +
  • +
  • grid_dimensions (PhysicalData attribute) + +
  • +
  • grid_size (Snapshot attribute)
  • GRU (class in mala.network.network)
  • @@ -649,6 +725,8 @@

    G

    H

  • init_weights() (TransformerNet method) +
  • +
  • input_data (LazyLoadDataset attribute) + +
  • +
  • input_data_scaler (DataHandler attribute)
  • input_dimension (DataHandlerBase property) + +
  • +
  • input_dtype (LazyLoadDatasetSingle attribute)
  • +

    K

    + + +
    +

    L

    - +
  • load_snapshot_to_shm() (MultiLazyLoadDataLoader static method) +
  • +
  • loaded (LazyLoadDatasetSingle attribute)
  • local_density_of_states (LDOS property) +
  • +
  • local_grid (Target attribute)
  • local_psp_name (ParametersDataGeneration attribute)
  • @@ -794,8 +916,12 @@

    L

  • logging_dir (ParametersRunning attribute)
  • logging_dir_append_date (ParametersRunning attribute) +
  • +
  • loss_func (Network attribute)
  • loss_function_type (ParametersNetwork attribute) +
  • +
  • low (Hyperparameter attribute)
  • LSTM (class in mala.network.network)
  • @@ -1143,8 +1269,6 @@

    M

  • module
  • -
    • mala.network.runner @@ -1159,6 +1283,8 @@

      M

    • module
    +
    • mala.network.trainer @@ -1236,11 +1362,31 @@

      M

    • module
    +
  • mala_parameters (MALA attribute) +
  • manual_seed (Parameters attribute)
  • max_number_epochs (ParametersRunning attribute)
  • -
  • mini_batch_size (ParametersRunning attribute) +
  • maxs (DataScaler attribute) +
  • +
  • means (DataScaler attribute) +
  • +
  • mini_batch_size (Network attribute) + +
  • +
  • mins (DataScaler attribute) +
  • +
  • minterpy_cutoff_cube_size (ParametersDescriptors attribute) +
  • +
  • minterpy_lp_norm (ParametersDescriptors attribute) +
  • +
  • minterpy_point_list (ParametersDescriptors attribute) +
  • +
  • minterpy_polynomial_degree (ParametersDescriptors attribute)
  • MinterpyDescriptors (class in mala.descriptors.minterpy_descriptors)
  • @@ -1390,21 +1536,43 @@

    N

    + -
    -
  • number_of_runs() (HyperOptOAT method) +
  • number_of_electrons_exact (Target attribute) +
  • +
  • number_of_electrons_from_eigenvals (Target attribute) +
  • +
  • number_of_layers (Network attribute)
  • number_training_per_trial (ParametersHyperparameterOptimization property)
  • @@ -1429,9 +1601,13 @@

    N

    O

    - +
    @@ -1469,6 +1673,30 @@

    P

  • Parameters (class in mala.common.parameters)
  • +
  • parameters (DataConverter attribute) + +
  • +
  • parameters_full (DataConverter attribute) + +
  • ParametersBase (class in mala.common.parameters)
  • ParametersData (class in mala.common.parameters) @@ -1485,6 +1713,16 @@

    P

  • ParametersTargets (class in mala.common.parameters)
  • +
  • params (HyperOpt attribute) + +
  • +
    -
  • return_outputs_directly (LazyLoadDataset property) + +
  • run_exists() (Runner class method)
  • Snapshot (class in mala.datahandling.snapshot) +
  • +
  • snapshot (LazyLoadDatasetSingle attribute)
  • snapshot_correlation_cutoff (TrajectoryAnalyzer property)
  • snapshot_directories_list (ParametersData attribute) +
  • +
  • snapshot_function (Snapshot attribute) +
  • +
  • snapshot_type (Snapshot attribute)
  • ssf_parameters (ParametersTargets attribute)
  • static_structure_factor_from_atoms() (Target static method) +
  • +
  • stds (DataScaler attribute) +
  • +
  • study (HyperOptOptuna attribute)
  • @@ -1750,14 +2010,30 @@

    T

  • Target (class in mala.targets.target)
  • target_calculator (DataConverter attribute) + +
  • target_type (ParametersTargets attribute)
  • targets (Parameters attribute)
  • te_mutex (Density attribute) +
  • +
  • temperature (Target attribute)
  • test_all_snapshots() (Tester method) +
  • +
  • test_data_sets (DataHandler attribute)
  • test_snapshot() (Tester method)
  • @@ -1771,17 +2047,33 @@

    T

  • (ParametersBase method)
  • +
  • total_data_count (DataScaler attribute) +
  • total_energy (LDOS property)
  • total_energy_contributions (Density property)
  • @@ -1823,14 +2117,20 @@

    U

  • use_atomic_density_formula (Parameters property)
  • -
  • use_ddp (Parameters property) +
  • use_ddp (DataScaler attribute) + +
  • use_fast_tensor_data_set (ParametersData attribute) -
  • -
  • use_gpu (Parameters property)
  • @@ -1902,6 +2206,14 @@

    W

    +

    Y

    + + +
    +
    diff --git a/objects.inv b/objects.inv index e2e4390eb1df505630f8182cc3636efde0053b45..e2021dd9bc1fe306accd1da2f25823b5c2a90397 100644 GIT binary patch delta 7231 zcmV-F9Khr1F_<}!U<^4mEoWtAWH~iCV>Xd&Jbz1fsM$_?qX)q%FUhK-8peO z$(-)ACw5MjJdg-UO!L(MXj}d3FJ2_U7g!(xx>vTy;`bGR0#JArGL)iydHZ)(#8ry- z|JJv%{;_|zlMhctmKFK<2kM>eyTj>l|dP$s9(LDG<+yy9Ia#W)UA3OQyk1^FBXoSS7{W-<3F z@^f;j+Un-rVr!-gcL%Bz5#3b<;9*scxO3^{s{vR@>;ccnJW@5aB*$pnqnxqC8JnktL@n#<}p(qH{sAN{z|AR{%lBUAAD@ zm$C|mt=z$2@Z1>;g57bxeWU+~DE96b3eZEqo>$_BsjLzjGQF?}{a(AYUUOT3N|!dG zWtuR?dyR;34=zZ1BgvAytoX>Ad$=eK&&Ef#Thh^Mbv{d;U|yHv$x+E|n17Fe6M|2C zoRDA|r3q!>C`BuEMwCU2_Y?(*l+ob8j4Aqhi-fNn%AFZyib{gdn4PY{D1YgUAiY=V z7XF~-&q`WGITzRGcVmOZQmnunj&q7G8r zp!*t@?$^#5(WjDk;D5>2Fr%Sqs)HIkhZ-H|4L3?csH0}YNnc1tT36T)3T1_Z->nevc*hK1( zi$)lot`RPaK$FomWynUa;i!mQg4wRnct4-sM7Lj-f>35-PX)h#H13b#ahj%A*+mNs1S&8*l(~T%8 zZ)wCHP!g82xLh`%5UJuG;#NEnDodQlqRNFWvJAb}Yd;$_U>R?lqa$Lx*9kUzRC5Ve zMEE3uoe;6}PK=2H+aT}6#7rL%#|kcCGmcbwcrT>sr+>N8M{@e>S&iC*G0II`1eI4B z(kYPpt&&$9i)H>(LPPgog0I~eaxVBt3}s~++UR*BS)571&)d)i z>sf|OC4V|e*FS8^N{XwPkDwUNnV515w)3SXB=I>4e9EGs!cHM`+-hz|!oJbq5fJ3`RyFOsmi znIf-Da=$BN=b~TMGgjL|KyBYDYB>o|yN9-#x_^qLpPpbuq8V>{L>e~l94hK69)gjX zD0LK!kB7<|;7FT)=K2iO7Tg;rb<6b8q|Mo&b%GOBc_Pl-=iIvwPWQswFtMR+n__F& zHY&9NAOG2I&R#@1JS9Brrn@rZ9du7dZHwi@DkdXSOhuiT`)V22;nVy3_fNld$p>9F zjDLGMsoWAc-8cuQ=K^ArRsU4#+bAO(*m~Ei+yXn$YiPZ}l>&63>vZUEyoJ_-k?%k? zVeGr7=GmR0!dz{b)LNJTl;T5_*>Gf?WW@eVb^KQ`1PuDIzs^WH#?<;sa-fgBWQ2Wb%!=N>(~|o&$L`wST^; zjT1J&`srH(U<(?KHab^nx+%9?gSeDk{({$4Ee@@zwYW&xuPqaxmUf8T7!D_~9jRT( z0927RY+XN1mzL;ORg{RWRA88j!LEo)aUm#9^vTfB)QVAsZQzN=E>^mRH%ne4z2ZW* zNM}w|4qLY!grV#-_#5$pc3Fg@eSd=_8{0j$O|(J0b+UCFo9%0FNigqP@n&sw%_p`= zi8@s~yn$&6deLhetZ4e=SY>srL*8tn2Nuhzt$E3Oi1D$K+fKL8plLfJiZ?UwPAj%0 zajz{2OdTC{#54y7PJZL)#i?(MbWTQUgU~MITQvCc$G+IL^uWD#6y{G8?SJ&mtx1Pe zfp?rMdP@%q)P3h$X2POTu|N7XBUC3Xc<)_68#o~gZP;3$2ZF4m-LPezJvKCemeOQ# zfj^v3&O5xEo^8Q0Jo42$wO$g6H{nab?fqhoMDBaRQ70pVGD2dGd!)~r1cvCC4U~gfC++D}vS%0P@Zu=w=eUdjqSIu&;nqy@O&2}i`!8d>s9)9zIKl#8PfJ=9Rb|GJ zIJQTd45^8jVaV|dbk5B)d%L{(CW&`k<@C&MEDya&>Ir5Qsn^k|zLg-ofo9s)siLn_ zTGH<5PnR@5^{2gjcz zWzDLTB~jO&)o24^q?WG%Hf#I(qj+c5*$<6Qc5|Lp$(t^6BUe6kP4ZhQB?Zm-Ki)}& z)38(T?Y2^j0)Gsn5q&h^?Zw_j2f`l4k6O&vu4Qa9cgK2QfCeP;MFn3ySVl6kNiZx` zUf!CUOK;oI!RK_=Fo~EvLG58|FJoY?%?iul3td{8DtK`wOo_fEl) zF2}epYP_SFyu)uEuq*G1f4GxB?_0KEmo`J@%yKxQ(|_ms)Nf-{BYlr|;x{3kjW6h* zQVbvKaY1tlq^GpD7a`8uW-B{ymxk<*9SW;K_8H*NORR7O+jdM&_6Fi<|DP}N_W$`J zH)QWS6xJf|Gr*yj6!{9a+L6aBZ_-#SXQ{MxFh=E_-L2l=OxS*@yv3V?IAqy-el#lHA8p^W-x zkfBJr$?(r2p{HBTHOO$YUx2>E)EClthkxgeDt#%Sl}Sqj>r^dWr{MRy$G<*3!75mX z$(7=86d|Cv38~BH#(eN#gi(^m_;n-NC3d}zah0t@sS5-)NG=MsMj=|K=F=V24jTeE z^71x+5!-UxTfznjBI1W>k#R2}B3NEq*>kG=IV? zXUVD@fh(<)2G?69-6W}@g4AAv$(2Hdx)t?GUoqxph-;V^Rg}y$Thy4WVI=rVg)1C=EwW>RwIOZ9ytF-A!@9CzTSZ+Lsy9pOcHH(Rt&s&ZXszt8 z0~&jC)?;yl=R?FIIbmRJTSs+GE`Qf8c+%o!3mWUW9gjTRCat^PR!~J^Ud6?b940XQypST&1(e<_|1Ulp6%zrB=*V&Rs z9nNW8Yu|z$=G=whURa%M8mQAnO)T}2RQa3>Hu{O(u*W}<2c@3$!-s}>(ylGU%NY;y zl|4gUh*j?c%E*qWJp;RF*k{`8<9M}P6G)InUG8(ot)#<>s3506hDJtS1X_)Mw9^PJS*TYFxa zT8(6Ec}WXOJ?eOf3tl&IoSddFcU}hUv5aa+mpM3BWJ=|Es@cJw8*aueD*}XTT!zja z*`u05PSMS_yJZFjbFfBBTYzWZJiGwVa7ldW2-tSK3e|oo@d9Z63$$I)0aChq z>&i)79yn*$O2%&2TIQ*No3v{a%?=}H-Si%PRikNy^4J(s&3|O2169GjBJzxmDVEW* z#LL;jcY#;oD}p7`QhGzx`2xvTqsTFE;3jO4cl67M-|hJvlT-L&D0Dn z^wc6w*9{YJ4(V`C_-Mzx@P3IIvmq2Y-gDUyd7S{ZfbBkf*-wFs39NQwIilU*iv~e;OW)3poqvgGR1^^$xDD zVlpGGU2$4sGE;rk`go$-Tv7&}A1l1FiV@HN(sX?4LXQU`^kzCFxQ%G~57>Sh@RQSfb1b-h|h%BZxr5R2yqpm=f@vG;~z^}m1tBm_-h!AuOgdHSXc)YX0nM3%=o}u;QrI2-S;i%G{5-T+1~{K=CQV; zS<9IP^Qsx#NuGyNWhZWll$i0T7Q2;Slk&|q7(L?2+_OqW`-xBI?2L4qtomxy(0(2 zH*tl$5-c~iaphCYYXBiwZ>jWN1dd*o1G0+F>9rwN?ptjpzEDRTw+O#-O9@RPJtmx7 zuqXqs83i~mxd8PGj`UsR`UtA0Hj?9(6jyOk7Gj{2c+L!4Q#N~3<`O>P4S%CJ))6Yq z4y(yIPedX`C*~Jbo-@@a0SSB5zcgTK0giW4qkw#ftO&zCxji)Z&8_|9Ixzq z#Jn=(R7)#oAAcKivSZOREPu9h5q;rpoV4R7;AN8J~4yDp-cQGeYxDzolt^@P%9 zerbiwt5+wXzVBbE*{Ud8i?%b|*)!WhF;*;YC7^+Hg|$#=2}SY96D6`(Cgdey*Zn8{ z`r+e!AJ>cyF^z3VDf~aFK$mxTCcHWjZtbTrwL6w!AsAZFoW1B;*TJl7qWoU`*N7cX zMV9f3J0`7OsgKnE{eREY9cq!P)6@pi5!8_8qXF{YR2&V&A`%oY`D2Q0=mTNJFnBy* z5jK{ln7`&`W+5=;6t?+f6n3NvOiHzo>h}=vdZY53wX|CsrYWdl%||V=_@$$|B@+hF z6;Wv2XH#&8;w(HQ5yMSp{zUH1eWWM{k0)7qjSvyF3UX_2)PDr zHZPMbwLqJB^^4HEqXK%t`VIq|eH-S&gWHb#QW z0>~sp4F>VkhAhwfKyyn88|dnR75`eD&khV)+~m-YCRonmzGB9Q$$Xe8UQo>Dxkf%x zj3X~5cvJNC7JtbgEnwEcCyI0M7|Ixlo;k$}i1n8f{QB*b8e(@MZ?!Htq*P65O=mor zpiqI$yL!q0AdHrewYM-WFriNqHfff;mQ+mjuie;<@8e*7Kh=0Jic&8R*1J{aK)d3K zqx)=}=9th@%*9sOEJZ7-;M?Eh(Cz=T(Cz>I+!=>XQGb?|G~y$zbUwdL;kstDPsRx{ zd8;-bySo(Z*hktlN8ap4ZtxzZFfRC(VD0bS{3YOXh$B~q@4L@-{kTk{kY;4tz5cPY z-~VjI8Qv7V?>yQ~-~MISuXAtizWKSEz0?#2YsN?2_n+?UmoNeu>T6^6okzRb>(HR^ z?fo75{(sZm%;g{R6y1xhdc)@(}DqyzCq#lU+n;Q0=W=&ZK3mg z2fL`niLGxM{Z~8KT_#q}>Dy2Cqpx=MOG2z%!|O!$okzQ=2;O#7P+QoG_H6?ki5y`p3>1QO^o92)(yApX?w(s;u}^L9O;9FLt&tMRt~6IHSGs zU^jKx+ltunhzG8)c`)3HQq+EXF_OA;?(=4kq8ugdCRS6d5XORwww9e`(ZdSWTN~N8 zzkhfAm5@;!bCqP@%&&{L6SJ%4TCEMS zcz6H)X)h<>>HaJ>d9{Kaj>$RwNg>5k-+yJs_3yClP6_MHEvhGaVNAW1<;62WU1Hx^ zjjEsObp!G5t`*aehQwbuJrx<=vqGZ&7Z>KHk*444zrsCGqr5J_giuXeKi+@1`}pzU zaSXM;Vlg2yK$M9e5&nW_(7xaS*8f*1XMDu|^W(!GKR-Tx+W)s)@!#uR*s8w$Pk+re zm^C+_cd(V6t1KCO+?16)7r*<*NIqubewsm{m$!HI3#G)-HEhq5Bn$CvI}tto=8-l$9H7`|UgN?Ss(-a1DQX_>-FO^@7e~jt1bN z{>N-6jAEH7uZJ7Ea{W5RMlm9%Ybf_a^-M2os`n3E#~mLs$l~eEu}meYKdthe`u?5y N{p9-Ze*i^^F{ZNT5O@Fp delta 6281 zcmV;47-lBWq%1ig|?G!6c z(#MX}mU6P>K^0L|j5!$~C6#}DW8eTzzy%4=ZzUCY@qHLBfQ#uOLn#W&+rP3Ru2UTT zGel+bW5xmx*D6bYkiqZ%5xxsV;Hk*6BA<^Szv&|XHsMl zmlJuz)wPJd@>PX1wh|GPrkKfKqOBQKP+KVj!6PChk;ob~nqq4~&q>ZRh25fFa24@z z_o!)cLTN-${>44EA5`kRblV@%DFQ}@^@%CeG1NzMrJ6LwFKm5Iy5v%U-yYV3uin6VFP#2yF0OJl(p7X&CiGX3Dd zsH#YEtSjscJVq7rgpBElBxO~|GVww1l1P0kNl{|L8jdUI>y6B5HUIz^-zMm+FTb&lB3onKO%7cpj4Q`M!1nkRLhGZsG;L(z*5ZRM~LqQ2T& z3-7J9(QEPQ0k%Sf*?XS4(VDU{seg(rIYlwfx&0KK3zF4xzU;gKa5`pAdBeVxwKr^O zs(FKFhME`bfnn?#{bxk6bDNEW9z2e`0^d(#70{5W|0?wR#@uvT+8k6EvJoxQq^j7c z5mn5B^U~i4vLr8SHY;WpE=v8gv03Mybo5%E&w|IB)g^gyR5BfAv(tp&6Mvg0B$!5N zLMwliyq7v7T16EbDGCxvrNN#VQ}pc?aa-A!IWx-?l?0!0b-H?^{1xZ8H))+W=^p+d z*S1PpMmZDMAwvpdiK;z{@KBuNbH!#;$*C>TeHg#s_`DxmUS~&4qT(D?Nrq{KOS&I< zg|m`})CBKH+T?Q&#)_c7MSoX%i%^cz8%=0*#A)#wv6%xw7tCg&bzaG(^6!zDQ$Yw$ z#rKFsV#*$!>Z&-OzgL3Tl%YuYY&LpL;(Z$WTr!x3BpIr39O18Zk|sxz)YF`*?ZVp3;{u7A6p#w-xh*MwOB z=M-IbB&}YHzccjayeK6;#%P=B0CEQ=(s{4GjNx!6<@ zovsls3r`DsEoEF2vDCa@fwJ*2z476)EIFabqE}rUGgeoE*=U)@UP+Vuj0xs5YO(r! zA&FnUl;u*?Ao0~*%`&k`_6gl~ zE53N-ZO^?WB=I@&e7?J*!jw0vDpF2Cy6&4>E=qUHmduU6^_GsOJUPwN^+pqZw4?1- zmoI^+l7ISpAOp$A=9lrP+Y}!Te0chjly`)n+g~K9OzSF}n8Yl#wU%^>yNTtD<$iP9 zwRs~V7{&bnLFM%YW=WSfz%>l_%Yn+dNnf&F)rS$)dBX2-=FBeiPWQ@M zH$Q~2PqlSyJJs5RkNxZq6s{uWL6^a~#AydVlz*A;+D9_-C>JxxD{<3#=@zpo);g}k z!-xA1&%Y1JC!IZvdp)VRvfG|c5=WILx058K!2?=&tV^@^NX=A<5_iC-ga{tvy2t!@kC6%tDT!>)JaNuM3 zdzEjtSJcwk^Bhnd1Ns}+tW7wi-MXe$jyW=;=Tx(1S}ZTc`$$1E*Z0gWe!&&D5r?X6 zE6#KFTh9bg*#VIq!{Nj?4EwbPfWB;D8-I>~O>OZmUEUzuD+v{*+{oj1)-D9aNpou4 zH+7c0iIS!m-a5DNl?0cF;N5Ds<>Ol*yolRz!!s>Gug&a}P1M@f%(`HvU+j;(NViKm zFkc($J77@`F+SE}OW9KjqGNMC*rG=gaV)zf8Ar+P;pKms6Dgny&1IpAEcyfR;4P)?utkYIbu@sMp|aS(vuQS1|5tM)VgV8J zjozGcj}_h-Ar6Ne(y_rxZ07Azm~3#s{#lm2#yBMLrVru_g+&u>wjx)CKjOX=3;$dVb3DyzGv50<0AP6*0zuVMQcgl z`AM)S-boxl;ZEaxWFa3}0JvZmXjk$LnhH1Q)%@#=*l|MmL@~#&PV(+S;fgDdGp?P?}tFkRhdtLmG}M{_+0d>8@uoG?59B z9fPe2wVjXujl^d*3K4wXgOo3cM&dL(o0bSEdQHwQ^PAOal|)0$690kJMH3sKJ-XPR z_&2rHeC*PsS1ehBz|7Pt{WbX$QTJ0J$z@gV@*9NwByB^CGdfu3KCH#t`V)2N8 zBgUpMrEg7UOZ`v03!neW(|86mwW$rPI6oJJd*(ZyyyotLsw?Ju?L*Vd7oB)epnX=R z%1W_Y<(U$2eZU2L+AVM9|Wa3J8d5f%O9CNYEg*O}PQxjxA#Jgsw^Ocl;lVn(#V7?MzYo7tq zAtcV|wDhcF|9xJqmG6k+(UDLs+)&&S{qX7T|=XB22ia z1pa!MaMz$x&K}=ƿ&Sl!~(Yvu$EsdKL+;?13rny=Z={ls-Z*e#xVmadHcOqKV@y#m}RaS{cZyRo+ z6t%*U4Vv1D>3_AW7ZYAXAIeIrRU=dYoV6ycpitcX;kSfV)IEbZ|2p&Zpi>qLpRO;Y=7JIZ!P0`C0NZ!81{v`oQe?l z%i@y{a**2%Q~z8Kv$MUH;i}GJ4H4JCjM?bjc7)PFCFDK--_jk>c@^ol(nMI1|hZUP@W=0&~M5U*!E zh)?V z);WJv%wZZ2alv0Qi2HZ9T>(3+qy9lP_)>u#ve@TVyP=J^j|ELC;e!8{{8YqCE~>YJ zx-8`9*7E|JQaR}|hk*W)dT1OE;)s5&xqpi&S|2H2Z^^4DL-dOWM$uoq;^cCzHZ{iL z$lW9+O!t;OEzQg7hryBTL;G{luab_$3Z45sp}2o;bh%`lQbk6K-!WZ3zjMV1Swb00 zL$#oh?(zdzGnuEFa5Q5_VX$O7F@1`Au}2kmF_9x!2woc|9H?pT891SkR|^(z7JooF znC)zwD@YlA@isD_JGjMyRnhb?hI42u0Qvh=kV7UGkYae>mPYP#&{PLfMqdYw%yS2~ zSO+Sa9!5GRXKBCO+ILnWl*fu;XDCVws#dp^_gtLd3b&akO-(+9)$pa}`s8tpKl4S&)ORs4q8-1ESy22QG@`8ZzgYuNCMMNG?-i#dCWfkax;K!CP z{qqfTH*1X4AWk+BAw_wM#42H#GV;c*@ke>aBul!t$Nh3$P)%uqa_X5z9Dk*f-gf-5 zoc|fUptQz2F#WU}(|_;9M0YDax=ZP`-2|3ols`||JPhcNxIXeXoY@4E7&^gT(9roQ zg74Y?ACgo*22GGbkm9i`enC+`9@v442ef#Av4HJilgvG^e96fduB#Ml{lJWb^t#mw z>3qG+0-BJZS25RtdjmFJmw#Ld+ZV4pP{^&ymB@UxL#W~M>ih;|;e^a|6>S5)^zyGc zy}TLQOR<fvs?}Ep995 zsLgGMn{RbnaqW$A5G=*%nWvQ|wBkpV#tm{SKFCNmBH3EqM!+?ewh`3My0(CG*Io3O z?)r=Yrh|^d$}ESV*_z@;Ol$jf5ivEIfT__26cQgzR$!`6gnt0AH3Wf}U|SG`=Q@30 zix7qeTP?N0f*Y71R0|suh-YtRf`Dx-O&}oL*n|OEtTn>{!N#U7q{~FYr@(Mb*g7u= z&vJPej0rYq!HA%BVp}w*g$%|88_5=kwstZY+S*hGBd@oX!4wet77nH?=sAG2G{Zrd z(h<3zp>Bnh4}Ze7GW0DG&5M?nfW}305T1=u4h6Kd%R#VXjo%DtYwK%3l{T|z?#sV= zgTIk^?%)=Ueicm*V{7_bAp1eJu?{U@tp+~|f}1mO&a1$3n6yCtilZbK zFVr^=K04BRon{)}LRrJdM<*1=%|+5kJ)*e$mgOoUo}*Lc7S(1jw1c%A5^cce+pUk< z1++CEv~qiP53Oo8f^pWgM)RcA9=rfg+Sg#ir|(*HK4XWR7w+ZsmW?7Ox`@Vh)txvU zLwA@;6Mvc}tob-e&HINxoM$2jaA z+E5WYMMs?S_^m`#Q*^;Uj@(PjM6@#RRFvN{*7{!t(88~daB7!)6RO?wx1L|LWJu%YUm$koxw^BGixL*EIShik97XnSs8r zH57BzVpjtVP}8_HRE>nBcw(92MJzJ%npD^Dfqj1bbU(&bFH$aJD^e2wPyVEGC?4-f zSaTpu+fQ@J9%zP!V5&hTeQ8?V0JCk0B0m4G6JryGEMpCKPFjAFk>vm5Xwpf1B-=FA zfqx7H8%Q;1g3Mo4jaWy+OeI$H#}w<(C&H3p5MPDpkVMgZR18GSx|tXh(sHPEx{d%bA0BG(U^IFmP^+Z zNm5RN7g<@0;4Taba_gTA0r1X5lgu+8f`8f9eHU4}=YPAxYeVLN3eKzzPiaP&Un!ZA1pY^(!wadv_koRu;kfEkE3{h3Y#Cncr|(! zL3IKZHa`NbuOcnX#HmrJhJOSQ_a9pPC3hj=%!fed07B0)aug9N0m0HWIxXVBBA%GS z>Xkb!O3~Ww#Z2x}Q}piihnOV=3%e;=2xY^i(Uw57>7j)h?Tv)}?_j(WGK-_`l7!v* zI{&(`x~i_F-aY;v5`4x4^EF`BcQF;6Y#1oPGS;uSs^sDoA{CD1dVe@yyH*i&i~1Td z$?!85&@Shz5LrR+WQB89K%(DsQDqI2%`4T-2{q=za{hwIU@iaSyZaB%p;&;Y;hCSl z=miHHi);FeLXxL_e1N5Yz!sd6YP7Z}Lz;~-`Bl^xD}*GE@!N1Wsts-S4fwx7FV;XR z5`W?JRAe};3W53`On;cEMwoaGGx7KB>bHaPrv_vzE)(;Vt}$6`Tbf+#XS zBm5N`(7xgc*8kNguh@+Jm#4?izdSuXg#Rhdw}s95Hrd|(t7V(4nycXhY^mq6NG6fH zy3&{85C51c$Ba7!pHzBzd)I!D$@nBUWM%cY+htuVTiUu*cXG{sXnwpCv6i>c`t2?) z^thq1%q?!4_5VhfvbKZmIG- zOW&Z{C`ROT9Y&O4&9ai8uqlJ6p3xf1QkKTcDnH2h@6`B<`@jDWr{{GJZ6Z#- diff --git a/searchindex.js b/searchindex.js index 69e20c49d..7a92f4dab 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API reference": [[68, "api-reference"]], "Adding dependencies": [[0, "adding-dependencies"]], "Adding training data": [[73, "adding-training-data"]], "Advanced optimization algorithms": [[3, "advanced-optimization-algorithms"]], "Advanced options": [[1, "advanced-options"]], "Advanced training metrics": [[6, "advanced-training-metrics"]], "Basic hyperparameter optimization": [[70, "basic-hyperparameter-optimization"]], "Branching strategy": [[0, "branching-strategy"]], "Build LAMMPS": [[76, "build-lammps"]], "Build Quantum ESPRESSO": [[78, "build-quantum-espresso"]], "Build documentation locally (Optional)": [[77, "build-documentation-locally-optional"]], "Building and training a model": [[73, "building-and-training-a-model"]], "Checkpointing a hyperparameter search": [[3, "checkpointing-a-hyperparameter-search"]], "Checkpointing a training run": [[6, "checkpointing-a-training-run"]], "Citing MALA": [[74, "citing-mala"]], "Contents": [[75, "contents"]], "Contributions": [[0, "contributions"]], "Creating a release": [[0, "creating-a-release"]], "Data conversion": [[71, "data-conversion"]], "Data generation": [[71, "data-generation"]], "Data generation and conversion": [[71, "data-generation-and-conversion"]], "Developing code": [[0, "developing-code"]], "Downloading and adding example data (Recommended)": [[77, "downloading-and-adding-example-data-recommended"]], "Formatting code": [[0, "formatting-code"]], "Getting started with MALA": [[69, "getting-started-with-mala"]], "How does MALA work?": [[75, "how-does-mala-work"]], "Improved data conversion": [[2, "improved-data-conversion"]], "Improved hyperparameter optimization": [[3, "improved-hyperparameter-optimization"]], "Improved training performance": [[6, "improved-training-performance"]], "Installation": [[79, "installation"]], "Installing LAMMPS": [[76, "installing-lammps"]], "Installing MALA": [[77, "installing-mala"]], "Installing Quantum ESPRESSO (total energy module)": [[78, "installing-quantum-espresso-total-energy-module"]], "Installing the Python extension": [[76, "installing-the-python-extension"], [78, "installing-the-python-extension"]], "Installing the Python library": [[77, "installing-the-python-library"]], "Issues": [[0, "issues"]], "License": [[0, "license"]], "List of hyperparameters": [[70, "list-of-hyperparameters"], [70, "id1"]], "Logging metrics during training": [[6, "logging-metrics-during-training"]], "MALA contributors": [[0, "mala-contributors"]], "MALA publications": [[75, "mala-publications"]], "Parallel data conversion": [[2, "parallel-data-conversion"]], "Parallel predictions": [[5, "parallel-predictions"]], "Parallelizing a hyperparameter search": [[3, "parallelizing-a-hyperparameter-search"]], "Predictions on GPUs": [[5, "predictions-on-gpus"]], "Prerequisites": [[76, "prerequisites"], [77, "prerequisites"], [78, "prerequisites"]], "Pull Requests": [[0, "pull-requests"]], "Setting parameters": [[73, "setting-parameters"]], "Storing data with OpenPMD": [[4, "storing-data-with-openpmd"]], "Testing a model": [[73, "testing-a-model"]], "Training an ML-DFT model": [[73, "training-an-ml-dft-model"]], "Training in parallel": [[6, "training-in-parallel"]], "Tuning descriptors": [[2, "id1"]], "Using MALA in production": [[5, "using-mala-in-production"]], "Using ML-DFT models for predictions": [[72, "using-ml-dft-models-for-predictions"]], "Using a GPU": [[6, "using-a-gpu"]], "Using lazy loading": [[6, "using-lazy-loading"]], "Using the MALA ASE calculator": [[72, "using-the-mala-ase-calculator"]], "Versioning and releases": [[0, "versioning-and-releases"]], "Visualizing observables": [[5, "visualizing-observables"]], "Welcome to MALA!": [[75, "welcome-to-mala"]], "What is MALA?": [[75, "what-is-mala"]], "Where to start?": [[75, "where-to-start"]], "Who is behind MALA?": [[75, "who-is-behind-mala"]], "acsd_analyzer": [[39, "module-mala.network.acsd_analyzer"]], "ase_calculator": [[37, "module-mala.interfaces.ase_calculator"]], "atomic_density": [[31, "module-mala.descriptors.atomic_density"]], "atomic_force": [[59, "module-mala.targets.atomic_force"]], "bispectrum": [[32, "module-mala.descriptors.bispectrum"]], "calculation_helpers": [[60, "module-mala.targets.calculation_helpers"]], "check_modules": [[9, "module-mala.common.check_modules"]], "common": [[8, "common"]], "cube_parser": [[61, "module-mala.targets.cube_parser"]], "data_converter": [[18, "module-mala.datahandling.data_converter"]], "data_handler": [[19, "module-mala.datahandling.data_handler"]], "data_handler_base": [[20, "module-mala.datahandling.data_handler_base"]], "data_repo": [[21, "module-mala.datahandling.data_repo"]], "data_scaler": [[22, "module-mala.datahandling.data_scaler"]], "data_shuffler": [[23, "module-mala.datahandling.data_shuffler"]], "datageneration": [[14, "datageneration"]], "datahandling": [[17, "datahandling"]], "density": [[62, "module-mala.targets.density"]], "descriptor": [[33, "module-mala.descriptors.descriptor"]], "descriptors": [[30, "descriptors"]], "dos": [[63, "module-mala.targets.dos"]], "fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset"]], "hyper_opt": [[40, "module-mala.network.hyper_opt"]], "hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot"]], "hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat"]], "hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna"]], "hyperparameter": [[44, "module-mala.network.hyperparameter"]], "hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd"]], "hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot"]], "hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat"]], "hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna"]], "interfaces": [[36, "interfaces"]], "json_serializable": [[10, "module-mala.common.json_serializable"]], "lammps_utils": [[34, "module-mala.descriptors.lammps_utils"]], "lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset"]], "lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single"]], "ldos": [[64, "module-mala.targets.ldos"]], "ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner"]], "mala": [[7, "mala"]], "minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors"]], "multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader"]], "multi_training_pruner": [[49, "module-mala.network.multi_training_pruner"]], "naswot_pruner": [[50, "module-mala.network.naswot_pruner"]], "network": [[38, "network"], [51, "module-mala.network.network"]], "objective_base": [[52, "module-mala.network.objective_base"]], "objective_naswot": [[53, "module-mala.network.objective_naswot"]], "ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer"]], "parallelizer": [[11, "module-mala.common.parallelizer"]], "parameters": [[12, "module-mala.common.parameters"]], "physical_data": [[13, "module-mala.common.physical_data"]], "predictor": [[54, "module-mala.network.predictor"]], "runner": [[55, "module-mala.network.runner"]], "snapshot": [[29, "module-mala.datahandling.snapshot"]], "target": [[65, "module-mala.targets.target"]], "targets": [[58, "targets"]], "tester": [[56, "module-mala.network.tester"]], "trainer": [[57, "module-mala.network.trainer"]], "trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer"]], "version": [[67, "module-mala.version"]], "xsf_parser": [[66, "module-mala.targets.xsf_parser"]]}, "docnames": ["CONTRIBUTE", "advanced_usage", "advanced_usage/descriptors", "advanced_usage/hyperparameters", "advanced_usage/openpmd", "advanced_usage/predictions", "advanced_usage/trainingmodel", "api/mala", "api/mala.common", "api/mala.common.check_modules", "api/mala.common.json_serializable", "api/mala.common.parallelizer", "api/mala.common.parameters", "api/mala.common.physical_data", "api/mala.datageneration", "api/mala.datageneration.ofdft_initializer", "api/mala.datageneration.trajectory_analyzer", "api/mala.datahandling", "api/mala.datahandling.data_converter", "api/mala.datahandling.data_handler", "api/mala.datahandling.data_handler_base", "api/mala.datahandling.data_repo", "api/mala.datahandling.data_scaler", "api/mala.datahandling.data_shuffler", "api/mala.datahandling.fast_tensor_dataset", "api/mala.datahandling.lazy_load_dataset", "api/mala.datahandling.lazy_load_dataset_single", "api/mala.datahandling.ldos_aligner", "api/mala.datahandling.multi_lazy_load_data_loader", "api/mala.datahandling.snapshot", "api/mala.descriptors", "api/mala.descriptors.atomic_density", "api/mala.descriptors.bispectrum", "api/mala.descriptors.descriptor", "api/mala.descriptors.lammps_utils", "api/mala.descriptors.minterpy_descriptors", "api/mala.interfaces", "api/mala.interfaces.ase_calculator", "api/mala.network", "api/mala.network.acsd_analyzer", "api/mala.network.hyper_opt", "api/mala.network.hyper_opt_naswot", "api/mala.network.hyper_opt_oat", "api/mala.network.hyper_opt_optuna", "api/mala.network.hyperparameter", "api/mala.network.hyperparameter_acsd", "api/mala.network.hyperparameter_naswot", "api/mala.network.hyperparameter_oat", "api/mala.network.hyperparameter_optuna", "api/mala.network.multi_training_pruner", "api/mala.network.naswot_pruner", "api/mala.network.network", "api/mala.network.objective_base", "api/mala.network.objective_naswot", "api/mala.network.predictor", "api/mala.network.runner", "api/mala.network.tester", "api/mala.network.trainer", "api/mala.targets", "api/mala.targets.atomic_force", "api/mala.targets.calculation_helpers", "api/mala.targets.cube_parser", "api/mala.targets.density", "api/mala.targets.dos", "api/mala.targets.ldos", "api/mala.targets.target", "api/mala.targets.xsf_parser", "api/mala.version", "api/modules", "basic_usage", "basic_usage/hyperparameters", "basic_usage/more_data", "basic_usage/predictions", "basic_usage/trainingmodel", "citing", "index", "install/installing_lammps", "install/installing_mala", "install/installing_qe", "installation"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1}, "filenames": ["CONTRIBUTE.md", "advanced_usage.rst", "advanced_usage/descriptors.rst", "advanced_usage/hyperparameters.rst", "advanced_usage/openpmd.rst", "advanced_usage/predictions.rst", "advanced_usage/trainingmodel.rst", "api/mala.rst", "api/mala.common.rst", "api/mala.common.check_modules.rst", "api/mala.common.json_serializable.rst", "api/mala.common.parallelizer.rst", "api/mala.common.parameters.rst", "api/mala.common.physical_data.rst", "api/mala.datageneration.rst", "api/mala.datageneration.ofdft_initializer.rst", "api/mala.datageneration.trajectory_analyzer.rst", "api/mala.datahandling.rst", "api/mala.datahandling.data_converter.rst", "api/mala.datahandling.data_handler.rst", "api/mala.datahandling.data_handler_base.rst", "api/mala.datahandling.data_repo.rst", "api/mala.datahandling.data_scaler.rst", "api/mala.datahandling.data_shuffler.rst", "api/mala.datahandling.fast_tensor_dataset.rst", "api/mala.datahandling.lazy_load_dataset.rst", "api/mala.datahandling.lazy_load_dataset_single.rst", "api/mala.datahandling.ldos_aligner.rst", "api/mala.datahandling.multi_lazy_load_data_loader.rst", "api/mala.datahandling.snapshot.rst", "api/mala.descriptors.rst", "api/mala.descriptors.atomic_density.rst", "api/mala.descriptors.bispectrum.rst", "api/mala.descriptors.descriptor.rst", "api/mala.descriptors.lammps_utils.rst", "api/mala.descriptors.minterpy_descriptors.rst", "api/mala.interfaces.rst", "api/mala.interfaces.ase_calculator.rst", "api/mala.network.rst", "api/mala.network.acsd_analyzer.rst", "api/mala.network.hyper_opt.rst", "api/mala.network.hyper_opt_naswot.rst", "api/mala.network.hyper_opt_oat.rst", "api/mala.network.hyper_opt_optuna.rst", "api/mala.network.hyperparameter.rst", "api/mala.network.hyperparameter_acsd.rst", "api/mala.network.hyperparameter_naswot.rst", "api/mala.network.hyperparameter_oat.rst", "api/mala.network.hyperparameter_optuna.rst", "api/mala.network.multi_training_pruner.rst", "api/mala.network.naswot_pruner.rst", "api/mala.network.network.rst", "api/mala.network.objective_base.rst", "api/mala.network.objective_naswot.rst", "api/mala.network.predictor.rst", "api/mala.network.runner.rst", "api/mala.network.tester.rst", "api/mala.network.trainer.rst", "api/mala.targets.rst", "api/mala.targets.atomic_force.rst", "api/mala.targets.calculation_helpers.rst", "api/mala.targets.cube_parser.rst", "api/mala.targets.density.rst", "api/mala.targets.dos.rst", "api/mala.targets.ldos.rst", "api/mala.targets.target.rst", "api/mala.targets.xsf_parser.rst", "api/mala.version.rst", "api/modules.rst", "basic_usage.rst", "basic_usage/hyperparameters.rst", "basic_usage/more_data.rst", "basic_usage/predictions.rst", "basic_usage/trainingmodel.rst", "citing.rst", "index.md", "install/installing_lammps.rst", "install/installing_mala.rst", "install/installing_qe.rst", "installation.rst"], "indexentries": {"acsdanalyzer (class in mala.network.acsd_analyzer)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer", false]], "add_hyperparameter() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_hyperparameter", false]], "add_hyperparameter() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.add_hyperparameter", false]], "add_hyperparameter() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.add_hyperparameter", false]], "add_snapshot() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_snapshot", false]], "add_snapshot() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.add_snapshot", false]], "add_snapshot() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.add_snapshot", false]], "add_snapshot() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.add_snapshot", false]], "add_snapshot() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.add_snapshot", false]], "add_snapshot_to_dataset() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.add_snapshot_to_dataset", false]], "after_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.after_training_metric", false]], "align_ldos_to_ref() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.align_ldos_to_ref", false]], "allocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.allocate_shared_mem", false]], "analytical_integration() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.analytical_integration", false]], "assume_two_dimensional (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.assume_two_dimensional", false]], "atomic_density_sigma (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.atomic_density_sigma", false]], "atomicdensity (class in mala.descriptors.atomic_density)": [[31, "mala.descriptors.atomic_density.AtomicDensity", false]], "atomicforce (class in mala.targets.atomic_force)": [[59, "mala.targets.atomic_force.AtomicForce", false]], "backconvert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.backconvert_units", false]], "backconvert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.backconvert_units", false]], "backconvert_units() (density static method)": [[62, "mala.targets.density.Density.backconvert_units", false]], "backconvert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.backconvert_units", false]], "backconvert_units() (dos static method)": [[63, "mala.targets.dos.DOS.backconvert_units", false]], "backconvert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.backconvert_units", false]], "backconvert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.backconvert_units", false]], "backconvert_units() (target static method)": [[65, "mala.targets.target.Target.backconvert_units", false]], "band_energy (dos property)": [[63, "mala.targets.dos.DOS.band_energy", false]], "band_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.band_energy", false]], "barrier() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.barrier", false]], "bidirection (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.bidirection", false]], "bispectrum (class in mala.descriptors.bispectrum)": [[32, "mala.descriptors.bispectrum.Bispectrum", false]], "bispectrum_cutoff (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_cutoff", false]], "bispectrum_switchflag (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_switchflag", false]], "bispectrum_twojmax (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_twojmax", false]], "calc_optimal_ldos_shift() (ldosaligner static method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.calc_optimal_ldos_shift", false]], "calculate() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate", false]], "calculate_from_atoms() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_atoms", false]], "calculate_from_qe_out() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_qe_out", false]], "calculate_loss() (network method)": [[51, "mala.network.network.Network.calculate_loss", false]], "calculate_properties() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate_properties", false]], "check_modules() (in module mala.common.check_modules)": [[9, "mala.common.check_modules.check_modules", false]], "checkpoint_exists() (hyperopt class method)": [[40, "mala.network.hyper_opt.HyperOpt.checkpoint_exists", false]], "checkpoint_name (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoint_name", false]], "checkpoints_each_epoch (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoints_each_epoch", false]], "cleanup() (multilazyloaddataloader method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.cleanup", false]], "clear_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.clear_data", false]], "clear_data() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.clear_data", false]], "clear_hyperparameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.clear_hyperparameters", false]], "comment (parameters attribute)": [[12, "mala.common.parameters.Parameters.comment", false]], "convert_local_to_3d() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_local_to_3d", false]], "convert_snapshots() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.convert_snapshots", false]], "convert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.convert_units", false]], "convert_units() (atomicforce static method)": [[59, "mala.targets.atomic_force.AtomicForce.convert_units", false]], "convert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.convert_units", false]], "convert_units() (density static method)": [[62, "mala.targets.density.Density.convert_units", false]], "convert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_units", false]], "convert_units() (dos static method)": [[63, "mala.targets.dos.DOS.convert_units", false]], "convert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.convert_units", false]], "convert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.convert_units", false]], "convert_units() (target static method)": [[65, "mala.targets.target.Target.convert_units", false]], "cubefile (class in mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.CubeFile", false]], "data (parameters attribute)": [[12, "mala.common.parameters.Parameters.data", false]], "data_name (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.data_name", false]], "data_name (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.data_name", false]], "data_name (density property)": [[62, "mala.targets.density.Density.data_name", false]], "data_name (dos property)": [[63, "mala.targets.dos.DOS.data_name", false]], "data_name (ldos property)": [[64, "mala.targets.ldos.LDOS.data_name", false]], "data_name (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.data_name", false]], "data_name (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.data_name", false]], "data_splitting_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.data_splitting_type", false]], "dataconverter (class in mala.datahandling.data_converter)": [[18, "mala.datahandling.data_converter.DataConverter", false]], "datahandler (class in mala.datahandling.data_handler)": [[19, "mala.datahandling.data_handler.DataHandler", false]], "datahandlerbase (class in mala.datahandling.data_handler_base)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase", false]], "datascaler (class in mala.datahandling.data_scaler)": [[22, "mala.datahandling.data_scaler.DataScaler", false]], "datashuffler (class in mala.datahandling.data_shuffler)": [[23, "mala.datahandling.data_shuffler.DataShuffler", false]], "deallocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.deallocate_shared_mem", false]], "delete_data() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.delete_data", false]], "density (class in mala.targets.density)": [[62, "mala.targets.density.Density", false]], "density (density property)": [[62, "mala.targets.density.Density.density", false]], "density (ldos property)": [[64, "mala.targets.ldos.LDOS.density", false]], "density_of_states (dos property)": [[63, "mala.targets.dos.DOS.density_of_states", false]], "density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.density_of_states", false]], "descriptor (class in mala.descriptors.descriptor)": [[33, "mala.descriptors.descriptor.Descriptor", false]], "descriptor_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.descriptor_calculator", false]], "descriptor_type (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptor_type", false]], "descriptors (parameters attribute)": [[12, "mala.common.parameters.Parameters.descriptors", false]], "descriptors_contain_xyz (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.descriptors_contain_xyz", false]], "descriptors_contain_xyz (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptors_contain_xyz", false]], "device (parameters property)": [[12, "mala.common.parameters.Parameters.device", false]], "direction (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.direction", false]], "do_prediction() (network method)": [[51, "mala.network.network.Network.do_prediction", false]], "dos (class in mala.targets.dos)": [[63, "mala.targets.dos.DOS", false]], "during_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.during_training_metric", false]], "early_stopping_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_epochs", false]], "early_stopping_threshold (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_threshold", false]], "energy_grid (dos property)": [[63, "mala.targets.dos.DOS.energy_grid", false]], "energy_grid (ldos property)": [[64, "mala.targets.ldos.LDOS.energy_grid", false]], "enforce_pbc() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.enforce_pbc", false]], "entropy_contribution (dos property)": [[63, "mala.targets.dos.DOS.entropy_contribution", false]], "entropy_contribution (ldos property)": [[64, "mala.targets.ldos.LDOS.entropy_contribution", false]], "entropy_multiplicator() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.entropy_multiplicator", false]], "extract_compute_np() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.extract_compute_np", false]], "fasttensordataset (class in mala.datahandling.fast_tensor_dataset)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset", false]], "feature_size (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.feature_size", false]], "feature_size (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.feature_size", false]], "feature_size (density property)": [[62, "mala.targets.density.Density.feature_size", false]], "feature_size (dos property)": [[63, "mala.targets.dos.DOS.feature_size", false]], "feature_size (ldos property)": [[64, "mala.targets.ldos.LDOS.feature_size", false]], "feature_size (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.feature_size", false]], "feature_size (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.feature_size", false]], "feature_size (target property)": [[65, "mala.targets.target.Target.feature_size", false]], "feedforwardnet (class in mala.network.network)": [[51, "mala.network.network.FeedForwardNet", false]], "fermi_energy (dos property)": [[63, "mala.targets.dos.DOS.fermi_energy", false]], "fermi_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.fermi_energy", false]], "fermi_function() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.fermi_function", false]], "finalize() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.finalize", false]], "first_snapshot (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.first_snapshot", false]], "fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.fit", false]], "forward() (feedforwardnet method)": [[51, "mala.network.network.FeedForwardNet.forward", false]], "forward() (gru method)": [[51, "mala.network.network.GRU.forward", false]], "forward() (lstm method)": [[51, "mala.network.network.LSTM.forward", false]], "forward() (network method)": [[51, "mala.network.network.Network.forward", false]], "forward() (positionalencoding method)": [[51, "mala.network.network.PositionalEncoding.forward", false]], "forward() (transformernet method)": [[51, "mala.network.network.TransformerNet.forward", false]], "from_cube_file() (density class method)": [[62, "mala.targets.density.Density.from_cube_file", false]], "from_cube_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_cube_file", false]], "from_json() (jsonserializable class method)": [[10, "mala.common.json_serializable.JSONSerializable.from_json", false]], "from_json() (parametersbase class method)": [[12, "mala.common.parameters.ParametersBase.from_json", false]], "from_json() (snapshot class method)": [[29, "mala.datahandling.snapshot.Snapshot.from_json", false]], "from_ldos_calculator() (density class method)": [[62, "mala.targets.density.Density.from_ldos_calculator", false]], "from_ldos_calculator() (dos class method)": [[63, "mala.targets.dos.DOS.from_ldos_calculator", false]], "from_numpy_array() (density class method)": [[62, "mala.targets.density.Density.from_numpy_array", false]], "from_numpy_array() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_array", false]], "from_numpy_array() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_array", false]], "from_numpy_file() (density class method)": [[62, "mala.targets.density.Density.from_numpy_file", false]], "from_numpy_file() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_file", false]], "from_numpy_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_file", false]], "from_openpmd_file() (density class method)": [[62, "mala.targets.density.Density.from_openpmd_file", false]], "from_openpmd_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_openpmd_file", false]], "from_qe_dos_txt() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_dos_txt", false]], "from_qe_out() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_out", false]], "from_xsf_file() (density class method)": [[62, "mala.targets.density.Density.from_xsf_file", false]], "from_xsf_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_xsf_file", false]], "gather_descriptors() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.gather_descriptors", false]], "gaussians() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.gaussians", false]], "generate_square_subsequent_mask() (transformernet static method)": [[51, "mala.network.network.TransformerNet.generate_square_subsequent_mask", false]], "get_atomic_forces() (density method)": [[62, "mala.targets.density.Density.get_atomic_forces", false]], "get_atomic_forces() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_atomic_forces", false]], "get_band_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_band_energy", false]], "get_band_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_band_energy", false]], "get_best_trial_results() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.get_best_trial_results", false]], "get_best_trial_results() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_best_trial_results", false]], "get_beta() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_beta", false]], "get_categorical() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_categorical", false]], "get_categorical() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_categorical", false]], "get_comm() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_comm", false]], "get_density() (density method)": [[62, "mala.targets.density.Density.get_density", false]], "get_density() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density", false]], "get_density_of_states() (dos method)": [[63, "mala.targets.dos.DOS.get_density_of_states", false]], "get_density_of_states() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density_of_states", false]], "get_energy_contributions() (density method)": [[62, "mala.targets.density.Density.get_energy_contributions", false]], "get_energy_grid() (dos method)": [[63, "mala.targets.dos.DOS.get_energy_grid", false]], "get_energy_grid() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_energy_grid", false]], "get_energy_grid() (target method)": [[65, "mala.targets.target.Target.get_energy_grid", false]], "get_energy_targets_and_predictions() (tester method)": [[56, "mala.network.tester.Tester.get_energy_targets_and_predictions", false]], "get_entropy_contribution() (dos method)": [[63, "mala.targets.dos.DOS.get_entropy_contribution", false]], "get_entropy_contribution() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_entropy_contribution", false]], "get_equilibrated_configuration() (ofdftinitializer method)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.get_equilibrated_configuration", false]], "get_f0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f0_value", false]], "get_f1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f1_value", false]], "get_f2_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f2_value", false]], "get_feature_size() (atomicforce method)": [[59, "mala.targets.atomic_force.AtomicForce.get_feature_size", false]], "get_first_snapshot() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_first_snapshot", false]], "get_float() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_float", false]], "get_int() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_int", false]], "get_local_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_local_rank", false]], "get_new_data() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.get_new_data", false]], "get_number_of_electrons() (density method)": [[62, "mala.targets.density.Density.get_number_of_electrons", false]], "get_number_of_electrons() (dos method)": [[63, "mala.targets.dos.DOS.get_number_of_electrons", false]], "get_number_of_electrons() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_number_of_electrons", false]], "get_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_optimal_parameters", false]], "get_optimal_sigma() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.get_optimal_sigma", false]], "get_orthogonal_array() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_orthogonal_array", false]], "get_parameter() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_parameter", false]], "get_parameter() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_parameter", false]], "get_radial_distribution_function() (target method)": [[65, "mala.targets.target.Target.get_radial_distribution_function", false]], "get_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_rank", false]], "get_real_space_grid() (target method)": [[65, "mala.targets.target.Target.get_real_space_grid", false]], "get_s0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s0_value", false]], "get_s1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s1_value", false]], "get_scaled_positions_for_qe() (density static method)": [[62, "mala.targets.density.Density.get_scaled_positions_for_qe", false]], "get_self_consistent_fermi_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_self_consistent_fermi_energy", false]], "get_self_consistent_fermi_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_self_consistent_fermi_energy", false]], "get_size() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_size", false]], "get_snapshot_calculation_output() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_snapshot_calculation_output", false]], "get_snapshot_correlation_cutoff() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_snapshot_correlation_cutoff", false]], "get_static_structure_factor() (target method)": [[65, "mala.targets.target.Target.get_static_structure_factor", false]], "get_target() (density method)": [[62, "mala.targets.density.Density.get_target", false]], "get_target() (dos method)": [[63, "mala.targets.dos.DOS.get_target", false]], "get_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_target", false]], "get_target() (target method)": [[65, "mala.targets.target.Target.get_target", false]], "get_test_input_gradient() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_test_input_gradient", false]], "get_three_particle_correlation_function() (target method)": [[65, "mala.targets.target.Target.get_three_particle_correlation_function", false]], "get_total_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_total_energy", false]], "get_trials_from_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.get_trials_from_study", false]], "get_uncorrelated_snapshots() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_uncorrelated_snapshots", false]], "gru (class in mala.network.network)": [[51, "mala.network.network.GRU", false]], "hlist (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.hlist", false]], "hyperopt (class in mala.network.hyper_opt)": [[40, "mala.network.hyper_opt.HyperOpt", false]], "hyperoptnaswot (class in mala.network.hyper_opt_naswot)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT", false]], "hyperoptoat (class in mala.network.hyper_opt_oat)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT", false]], "hyperoptoptuna (class in mala.network.hyper_opt_optuna)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna", false]], "hyperparameter (class in mala.network.hyperparameter)": [[44, "mala.network.hyperparameter.Hyperparameter", false]], "hyperparameteracsd (class in mala.network.hyperparameter_acsd)": [[45, "mala.network.hyperparameter_acsd.HyperparameterACSD", false]], "hyperparameternaswot (class in mala.network.hyperparameter_naswot)": [[46, "mala.network.hyperparameter_naswot.HyperparameterNASWOT", false]], "hyperparameteroat (class in mala.network.hyperparameter_oat)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT", false]], "hyperparameteroptuna (class in mala.network.hyperparameter_optuna)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna", false]], "hyperparameters (parameters attribute)": [[12, "mala.common.parameters.Parameters.hyperparameters", false]], "implemented_properties (mala attribute)": [[37, "mala.interfaces.ase_calculator.MALA.implemented_properties", false]], "inference_data_grid (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.inference_data_grid", false]], "init_hidden() (gru method)": [[51, "mala.network.network.GRU.init_hidden", false]], "init_hidden() (lstm method)": [[51, "mala.network.network.LSTM.init_hidden", false]], "init_weights() (transformernet method)": [[51, "mala.network.network.TransformerNet.init_weights", false]], "input_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.input_dimension", false]], "input_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.input_rescaling_type", false]], "integrate_values_on_spacing() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.integrate_values_on_spacing", false]], "invalidate_target() (density method)": [[62, "mala.targets.density.Density.invalidate_target", false]], "invalidate_target() (dos method)": [[63, "mala.targets.dos.DOS.invalidate_target", false]], "invalidate_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.invalidate_target", false]], "invalidate_target() (target method)": [[65, "mala.targets.target.Target.invalidate_target", false]], "inverse_transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.inverse_transform", false]], "jsonserializable (class in mala.common.json_serializable)": [[10, "mala.common.json_serializable.JSONSerializable", false]], "lammps_compute_file (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.lammps_compute_file", false]], "layer_activations (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_activations", false]], "layer_sizes (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_sizes", false]], "lazyloaddataset (class in mala.datahandling.lazy_load_dataset)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset", false]], "lazyloaddatasetsingle (class in mala.datahandling.lazy_load_dataset_single)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle", false]], "ldos (class in mala.targets.ldos)": [[64, "mala.targets.ldos.LDOS", false]], "ldos_gridoffset_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridoffset_ev", false]], "ldos_gridsize (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridsize", false]], "ldos_gridspacing_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridspacing_ev", false]], "ldosaligner (class in mala.datahandling.ldos_aligner)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner", false]], "learning_rate (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate", false]], "learning_rate_decay (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_decay", false]], "learning_rate_patience (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_patience", false]], "learning_rate_scheduler (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_scheduler", false]], "load_from_file() (datascaler class method)": [[22, "mala.datahandling.data_scaler.DataScaler.load_from_file", false]], "load_from_file() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.load_from_file", false]], "load_from_file() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.load_from_file", false]], "load_from_file() (network class method)": [[51, "mala.network.network.Network.load_from_file", false]], "load_from_file() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_file", false]], "load_from_json() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_json", false]], "load_from_pickle() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_pickle", false]], "load_model() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_model", false]], "load_run() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_run", false]], "load_run() (runner class method)": [[55, "mala.network.runner.Runner.load_run", false]], "load_run() (trainer class method)": [[57, "mala.network.trainer.Trainer.load_run", false]], "load_snapshot_to_shm() (multilazyloaddataloader static method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.load_snapshot_to_shm", false]], "local_density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.local_density_of_states", false]], "local_psp_name (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_name", false]], "local_psp_path (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_path", false]], "logger (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logger", false]], "logging_dir (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir", false]], "logging_dir_append_date (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir_append_date", false]], "loss_function_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.loss_function_type", false]], "lstm (class in mala.network.network)": [[51, "mala.network.network.LSTM", false]], "mala": [[7, "module-mala", false]], "mala (class in mala.interfaces.ase_calculator)": [[37, "mala.interfaces.ase_calculator.MALA", false]], "mala.common": [[8, "module-mala.common", false]], "mala.common.check_modules": [[9, "module-mala.common.check_modules", false]], "mala.common.json_serializable": [[10, "module-mala.common.json_serializable", false]], "mala.common.parallelizer": [[11, "module-mala.common.parallelizer", false]], "mala.common.parameters": [[12, "module-mala.common.parameters", false]], "mala.common.physical_data": [[13, "module-mala.common.physical_data", false]], "mala.datageneration": [[14, "module-mala.datageneration", false]], "mala.datageneration.ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer", false]], "mala.datageneration.trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer", false]], "mala.datahandling": [[17, "module-mala.datahandling", false]], "mala.datahandling.data_converter": [[18, "module-mala.datahandling.data_converter", false]], "mala.datahandling.data_handler": [[19, "module-mala.datahandling.data_handler", false]], "mala.datahandling.data_handler_base": [[20, "module-mala.datahandling.data_handler_base", false]], "mala.datahandling.data_repo": [[21, "module-mala.datahandling.data_repo", false]], "mala.datahandling.data_scaler": [[22, "module-mala.datahandling.data_scaler", false]], "mala.datahandling.data_shuffler": [[23, "module-mala.datahandling.data_shuffler", false]], "mala.datahandling.fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset", false]], "mala.datahandling.lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset", false]], "mala.datahandling.lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single", false]], "mala.datahandling.ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner", false]], "mala.datahandling.multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader", false]], "mala.datahandling.snapshot": [[29, "module-mala.datahandling.snapshot", false]], "mala.descriptors": [[30, "module-mala.descriptors", false]], "mala.descriptors.atomic_density": [[31, "module-mala.descriptors.atomic_density", false]], "mala.descriptors.bispectrum": [[32, "module-mala.descriptors.bispectrum", false]], "mala.descriptors.descriptor": [[33, "module-mala.descriptors.descriptor", false]], "mala.descriptors.lammps_utils": [[34, "module-mala.descriptors.lammps_utils", false]], "mala.descriptors.minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors", false]], "mala.interfaces": [[36, "module-mala.interfaces", false]], "mala.interfaces.ase_calculator": [[37, "module-mala.interfaces.ase_calculator", false]], "mala.network": [[38, "module-mala.network", false]], "mala.network.acsd_analyzer": [[39, "module-mala.network.acsd_analyzer", false]], "mala.network.hyper_opt": [[40, "module-mala.network.hyper_opt", false]], "mala.network.hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot", false]], "mala.network.hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat", false]], "mala.network.hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna", false]], "mala.network.hyperparameter": [[44, "module-mala.network.hyperparameter", false]], "mala.network.hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd", false]], "mala.network.hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot", false]], "mala.network.hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat", false]], "mala.network.hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna", false]], "mala.network.multi_training_pruner": [[49, "module-mala.network.multi_training_pruner", false]], "mala.network.naswot_pruner": [[50, "module-mala.network.naswot_pruner", false]], "mala.network.network": [[51, "module-mala.network.network", false]], "mala.network.objective_base": [[52, "module-mala.network.objective_base", false]], "mala.network.objective_naswot": [[53, "module-mala.network.objective_naswot", false]], "mala.network.predictor": [[54, "module-mala.network.predictor", false]], "mala.network.runner": [[55, "module-mala.network.runner", false]], "mala.network.tester": [[56, "module-mala.network.tester", false]], "mala.network.trainer": [[57, "module-mala.network.trainer", false]], "mala.targets": [[58, "module-mala.targets", false]], "mala.targets.atomic_force": [[59, "module-mala.targets.atomic_force", false]], "mala.targets.calculation_helpers": [[60, "module-mala.targets.calculation_helpers", false]], "mala.targets.cube_parser": [[61, "module-mala.targets.cube_parser", false]], "mala.targets.density": [[62, "module-mala.targets.density", false]], "mala.targets.dos": [[63, "module-mala.targets.dos", false]], "mala.targets.ldos": [[64, "module-mala.targets.ldos", false]], "mala.targets.target": [[65, "module-mala.targets.target", false]], "mala.targets.xsf_parser": [[66, "module-mala.targets.xsf_parser", false]], "mala.version": [[67, "module-mala.version", false]], "manual_seed (parameters attribute)": [[12, "mala.common.parameters.Parameters.manual_seed", false]], "max_number_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.max_number_epochs", false]], "mini_batch_size (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.mini_batch_size", false]], "minterpydescriptors (class in mala.descriptors.minterpy_descriptors)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors", false]], "mix_datasets() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.mix_datasets", false]], "mix_datasets() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.mix_datasets", false]], "mix_datasets() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.mix_datasets", false]], "module": [[7, "module-mala", false], [8, "module-mala.common", false], [9, "module-mala.common.check_modules", false], [10, "module-mala.common.json_serializable", false], [11, "module-mala.common.parallelizer", false], [12, "module-mala.common.parameters", false], [13, "module-mala.common.physical_data", false], [14, "module-mala.datageneration", false], [15, "module-mala.datageneration.ofdft_initializer", false], [16, "module-mala.datageneration.trajectory_analyzer", false], [17, "module-mala.datahandling", false], [18, "module-mala.datahandling.data_converter", false], [19, "module-mala.datahandling.data_handler", false], [20, "module-mala.datahandling.data_handler_base", false], [21, "module-mala.datahandling.data_repo", false], [22, "module-mala.datahandling.data_scaler", false], [23, "module-mala.datahandling.data_shuffler", false], [24, "module-mala.datahandling.fast_tensor_dataset", false], [25, "module-mala.datahandling.lazy_load_dataset", false], [26, "module-mala.datahandling.lazy_load_dataset_single", false], [27, "module-mala.datahandling.ldos_aligner", false], [28, "module-mala.datahandling.multi_lazy_load_data_loader", false], [29, "module-mala.datahandling.snapshot", false], [30, "module-mala.descriptors", false], [31, "module-mala.descriptors.atomic_density", false], [32, "module-mala.descriptors.bispectrum", false], [33, "module-mala.descriptors.descriptor", false], [34, "module-mala.descriptors.lammps_utils", false], [35, "module-mala.descriptors.minterpy_descriptors", false], [36, "module-mala.interfaces", false], [37, "module-mala.interfaces.ase_calculator", false], [38, "module-mala.network", false], [39, "module-mala.network.acsd_analyzer", false], [40, "module-mala.network.hyper_opt", false], [41, "module-mala.network.hyper_opt_naswot", false], [42, "module-mala.network.hyper_opt_oat", false], [43, "module-mala.network.hyper_opt_optuna", false], [44, "module-mala.network.hyperparameter", false], [45, "module-mala.network.hyperparameter_acsd", false], [46, "module-mala.network.hyperparameter_naswot", false], [47, "module-mala.network.hyperparameter_oat", false], [48, "module-mala.network.hyperparameter_optuna", false], [49, "module-mala.network.multi_training_pruner", false], [50, "module-mala.network.naswot_pruner", false], [51, "module-mala.network.network", false], [52, "module-mala.network.objective_base", false], [53, "module-mala.network.objective_naswot", false], [54, "module-mala.network.predictor", false], [55, "module-mala.network.runner", false], [56, "module-mala.network.tester", false], [57, "module-mala.network.trainer", false], [58, "module-mala.targets", false], [59, "module-mala.targets.atomic_force", false], [60, "module-mala.targets.calculation_helpers", false], [61, "module-mala.targets.cube_parser", false], [62, "module-mala.targets.density", false], [63, "module-mala.targets.dos", false], [64, "module-mala.targets.ldos", false], [65, "module-mala.targets.target", false], [66, "module-mala.targets.xsf_parser", false], [67, "module-mala.version", false]], "multilazyloaddataloader (class in mala.datahandling.multi_lazy_load_data_loader)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader", false]], "multitrainingpruner (class in mala.network.multi_training_pruner)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner", false]], "n_trials (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.n_trials", false]], "naswotpruner (class in mala.network.naswot_pruner)": [[50, "mala.network.naswot_pruner.NASWOTPruner", false]], "network (class in mala.network.network)": [[51, "mala.network.network.Network", false]], "network (parameters attribute)": [[12, "mala.common.parameters.Parameters.network", false]], "nn_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.nn_type", false]], "no_hidden_state (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.no_hidden_state", false]], "num_choices (hyperparameteroat property)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.num_choices", false]], "num_heads (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_heads", false]], "num_hidden_layers (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_hidden_layers", false]], "num_workers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.num_workers", false]], "number_of_electrons (density property)": [[62, "mala.targets.density.Density.number_of_electrons", false]], "number_of_electrons (dos property)": [[63, "mala.targets.dos.DOS.number_of_electrons", false]], "number_of_electrons (ldos property)": [[64, "mala.targets.ldos.LDOS.number_of_electrons", false]], "number_of_runs() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.number_of_runs", false]], "number_training_per_trial (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.number_training_per_trial", false]], "objectivebase (class in mala.network.objective_base)": [[52, "mala.network.objective_base.ObjectiveBase", false]], "objectivenaswot (class in mala.network.objective_naswot)": [[53, "mala.network.objective_naswot.ObjectiveNASWOT", false]], "ofdft_friction (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_friction", false]], "ofdft_kedf (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_kedf", false]], "ofdft_number_of_timesteps (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_number_of_timesteps", false]], "ofdft_temperature (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_temperature", false]], "ofdft_timestep (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_timestep", false]], "ofdftinitializer (class in mala.datageneration.ofdft_initializer)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer", false]], "openpmd_configuration (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_configuration", false]], "openpmd_granularity (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_granularity", false]], "optimizer (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.optimizer", false]], "optuna_singlenode_setup() (parameters method)": [[12, "mala.common.parameters.Parameters.optuna_singlenode_setup", false]], "output_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.output_dimension", false]], "output_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.output_rescaling_type", false]], "parallel_warn() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.parallel_warn", false]], "parameters (class in mala.common.parameters)": [[12, "mala.common.parameters.Parameters", false]], "parametersbase (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersBase", false]], "parametersdata (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersData", false]], "parametersdatageneration (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDataGeneration", false]], "parametersdescriptors (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDescriptors", false]], "parametershyperparameteroptimization (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization", false]], "parametersnetwork (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersNetwork", false]], "parametersrunning (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersRunning", false]], "parameterstargets (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersTargets", false]], "parse_trial() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial", false]], "parse_trial_oat() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_oat", false]], "parse_trial_optuna() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_optuna", false]], "partial_fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.partial_fit", false]], "perform_study() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.perform_study", false]], "perform_study() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.perform_study", false]], "perform_study() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.perform_study", false]], "perform_study() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.perform_study", false]], "perform_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.perform_study", false]], "physicaldata (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData", false]], "physicaldata.skiparraywriting (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData.SkipArrayWriting", false]], "positionalencoding (class in mala.network.network)": [[51, "mala.network.network.PositionalEncoding", false]], "predict_for_atoms() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_for_atoms", false]], "predict_from_qeout() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_from_qeout", false]], "predict_targets() (tester method)": [[56, "mala.network.tester.Tester.predict_targets", false]], "predictor (class in mala.network.predictor)": [[54, "mala.network.predictor.Predictor", false]], "prepare_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_data", false]], "prepare_for_testing() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_for_testing", false]], "printout() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.printout", false]], "profiler_range (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.profiler_range", false]], "prune() (multitrainingpruner method)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner.prune", false]], "prune() (naswotpruner method)": [[50, "mala.network.naswot_pruner.NASWOTPruner.prune", false]], "pseudopotential_path (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.pseudopotential_path", false]], "qe_input_data (target property)": [[65, "mala.targets.target.Target.qe_input_data", false]], "radial_distribution_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.radial_distribution_function_from_atoms", false]], "raw_numpy_to_converted_scaled_tensor() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.raw_numpy_to_converted_scaled_tensor", false]], "rdb_storage_heartbeat (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.rdb_storage_heartbeat", false]], "rdf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.rdf_parameters", false]], "read_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.read_additional_calculation_data", false]], "read_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_cube", false]], "read_dimensions_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_numpy_file", false]], "read_dimensions_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_openpmd_file", false]], "read_from_array() (density method)": [[62, "mala.targets.density.Density.read_from_array", false]], "read_from_array() (dos method)": [[63, "mala.targets.dos.DOS.read_from_array", false]], "read_from_array() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_array", false]], "read_from_cube() (density method)": [[62, "mala.targets.density.Density.read_from_cube", false]], "read_from_cube() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_cube", false]], "read_from_numpy_file() (dos method)": [[63, "mala.targets.dos.DOS.read_from_numpy_file", false]], "read_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_numpy_file", false]], "read_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_openpmd_file", false]], "read_from_qe_dos_txt() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_dos_txt", false]], "read_from_qe_out() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_out", false]], "read_from_xsf() (density method)": [[62, "mala.targets.density.Density.read_from_xsf", false]], "read_from_xsf() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_xsf", false]], "read_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_imcube", false]], "read_xsf() (in module mala.targets.xsf_parser)": [[66, "mala.targets.xsf_parser.read_xsf", false]], "readline() (cubefile method)": [[61, "mala.targets.cube_parser.CubeFile.readline", false]], "requeue_zombie_trials() (hyperoptoptuna static method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.requeue_zombie_trials", false]], "reset() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.reset", false]], "resize_snapshots_for_debugging() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.resize_snapshots_for_debugging", false]], "restrict_data() (target method)": [[65, "mala.targets.target.Target.restrict_data", false]], "restrict_targets (parameterstargets property)": [[12, "mala.common.parameters.ParametersTargets.restrict_targets", false]], "resume_checkpoint() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.resume_checkpoint", false]], "resume_checkpoint() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.resume_checkpoint", false]], "return_outputs_directly (lazyloaddataset property)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.return_outputs_directly", false]], "run_exists() (runner class method)": [[55, "mala.network.runner.Runner.run_exists", false]], "run_exists() (trainer class method)": [[57, "mala.network.trainer.Trainer.run_exists", false]], "run_name (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.run_name", false]], "runner (class in mala.network.runner)": [[55, "mala.network.runner.Runner", false]], "running (parameters attribute)": [[12, "mala.common.parameters.Parameters.running", false]], "save() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.save", false]], "save() (parameters method)": [[12, "mala.common.parameters.Parameters.save", false]], "save_as_json() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_json", false]], "save_as_pickle() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_pickle", false]], "save_calculator() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.save_calculator", false]], "save_network() (network method)": [[51, "mala.network.network.Network.save_network", false]], "save_run() (runner method)": [[55, "mala.network.runner.Runner.save_run", false]], "set_cmdlinevars() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.set_cmdlinevars", false]], "set_current_verbosity() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_current_verbosity", false]], "set_ddp_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_ddp_status", false]], "set_lammps_instance() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_lammps_instance", false]], "set_mpi_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_mpi_status", false]], "set_optimal_parameters() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.set_optimal_parameters", false]], "set_optimal_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.set_optimal_parameters", false]], "set_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_parameters", false]], "setup_lammps_tmp_files() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.setup_lammps_tmp_files", false]], "show() (parameters method)": [[12, "mala.common.parameters.Parameters.show", false]], "show() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.show", false]], "show() (parametershyperparameteroptimization method)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.show", false]], "show_order_of_importance() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.show_order_of_importance", false]], "shuffle() (fasttensordataset method)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset.shuffle", false]], "shuffle_snapshots() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.shuffle_snapshots", false]], "shuffling_seed (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.shuffling_seed", false]], "si_dimension (density property)": [[62, "mala.targets.density.Density.si_dimension", false]], "si_dimension (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_dimension", false]], "si_dimension (dos property)": [[63, "mala.targets.dos.DOS.si_dimension", false]], "si_dimension (ldos property)": [[64, "mala.targets.ldos.LDOS.si_dimension", false]], "si_dimension (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_dimension", false]], "si_dimension (target property)": [[65, "mala.targets.target.Target.si_dimension", false]], "si_unit_conversion (density property)": [[62, "mala.targets.density.Density.si_unit_conversion", false]], "si_unit_conversion (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_unit_conversion", false]], "si_unit_conversion (dos property)": [[63, "mala.targets.dos.DOS.si_unit_conversion", false]], "si_unit_conversion (ldos property)": [[64, "mala.targets.ldos.LDOS.si_unit_conversion", false]], "si_unit_conversion (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_unit_conversion", false]], "si_unit_conversion (target property)": [[65, "mala.targets.target.Target.si_unit_conversion", false]], "snapshot (class in mala.datahandling.snapshot)": [[29, "mala.datahandling.snapshot.Snapshot", false]], "snapshot_correlation_cutoff (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.snapshot_correlation_cutoff", false]], "snapshot_directories_list (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.snapshot_directories_list", false]], "ssf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ssf_parameters", false]], "static_structure_factor_from_atoms() (target static method)": [[65, "mala.targets.target.Target.static_structure_factor_from_atoms", false]], "target (class in mala.targets.target)": [[65, "mala.targets.target.Target", false]], "target_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.target_calculator", false]], "target_type (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.target_type", false]], "targets (parameters attribute)": [[12, "mala.common.parameters.Parameters.targets", false]], "te_mutex (density attribute)": [[62, "mala.targets.density.Density.te_mutex", false]], "test_all_snapshots() (tester method)": [[56, "mala.network.tester.Tester.test_all_snapshots", false]], "test_snapshot() (tester method)": [[56, "mala.network.tester.Tester.test_snapshot", false]], "tester (class in mala.network.tester)": [[56, "mala.network.tester.Tester", false]], "three_particle_correlation_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.three_particle_correlation_function_from_atoms", false]], "to_json() (jsonserializable method)": [[10, "mala.common.json_serializable.JSONSerializable.to_json", false]], "to_json() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.to_json", false]], "total_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.total_energy", false]], "total_energy_contributions (density property)": [[62, "mala.targets.density.Density.total_energy_contributions", false]], "tpcf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.tpcf_parameters", false]], "train_network() (trainer method)": [[57, "mala.network.trainer.Trainer.train_network", false]], "trainer (class in mala.network.trainer)": [[57, "mala.network.trainer.Trainer", false]], "training_log_interval (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.training_log_interval", false]], "trajectory (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.trajectory", false]], "trajectory_analysis_below_average_counter (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_below_average_counter", false]], "trajectory_analysis_correlation_metric_cutoff (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_correlation_metric_cutoff", false]], "trajectory_analysis_denoising_width (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_denoising_width", false]], "trajectory_analysis_estimated_equilibrium (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_estimated_equilibrium", false]], "trajectory_analysis_temperature_tolerance_percent (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_temperature_tolerance_percent", false]], "trajectoryanalyzer (class in mala.datageneration.trajectory_analyzer)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer", false]], "transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.transform", false]], "transformernet (class in mala.network.network)": [[51, "mala.network.network.TransformerNet", false]], "trial_ensemble_evaluation (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.trial_ensemble_evaluation", false]], "uncache_properties() (density method)": [[62, "mala.targets.density.Density.uncache_properties", false]], "uncache_properties() (dos method)": [[63, "mala.targets.dos.DOS.uncache_properties", false]], "uncache_properties() (ldos method)": [[64, "mala.targets.ldos.LDOS.uncache_properties", false]], "uncache_properties() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.uncache_properties", false]], "use_atomic_density_formula (parameters property)": [[12, "mala.common.parameters.Parameters.use_atomic_density_formula", false]], "use_ddp (parameters property)": [[12, "mala.common.parameters.Parameters.use_ddp", false]], "use_fast_tensor_data_set (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_fast_tensor_data_set", false]], "use_gpu (parameters property)": [[12, "mala.common.parameters.Parameters.use_gpu", false]], "use_graphs (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.use_graphs", false]], "use_lammps (parameters property)": [[12, "mala.common.parameters.Parameters.use_lammps", false]], "use_lazy_loading (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading", false]], "use_lazy_loading_prefetch (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading_prefetch", false]], "use_mixed_precision (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_mixed_precision", false]], "use_mpi (parameters property)": [[12, "mala.common.parameters.Parameters.use_mpi", false]], "use_shuffling_for_samplers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_shuffling_for_samplers", false]], "use_y_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_y_splitting", false]], "use_z_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_z_splitting", false]], "validate_every_n_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.validate_every_n_epochs", false]], "validate_on_training_data (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.validate_on_training_data", false]], "validation_metrics (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.validation_metrics", false]], "verbosity (parameters property)": [[12, "mala.common.parameters.Parameters.verbosity", false]], "write_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.write_additional_calculation_data", false]], "write_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_cube", false]], "write_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_imcube", false]], "write_tem_input_file() (target static method)": [[65, "mala.targets.target.Target.write_tem_input_file", false]], "write_to_cube() (density method)": [[62, "mala.targets.density.Density.write_to_cube", false]], "write_to_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_numpy_file", false]], "write_to_numpy_file() (target method)": [[65, "mala.targets.target.Target.write_to_numpy_file", false]], "write_to_openpmd_file() (density method)": [[62, "mala.targets.density.Density.write_to_openpmd_file", false]], "write_to_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_file", false]], "write_to_openpmd_file() (target method)": [[65, "mala.targets.target.Target.write_to_openpmd_file", false]], "write_to_openpmd_iteration() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_iteration", false]]}, "objects": {"": [[7, 0, 0, "-", "mala"]], "mala": [[8, 0, 0, "-", "common"], [14, 0, 0, "-", "datageneration"], [17, 0, 0, "-", "datahandling"], [30, 0, 0, "-", "descriptors"], [36, 0, 0, "-", "interfaces"], [38, 0, 0, "-", "network"], [58, 0, 0, "-", "targets"], [67, 0, 0, "-", "version"]], "mala.common": [[9, 0, 0, "-", "check_modules"], [10, 0, 0, "-", "json_serializable"], [11, 0, 0, "-", "parallelizer"], [12, 0, 0, "-", "parameters"], [13, 0, 0, "-", "physical_data"]], "mala.common.check_modules": [[9, 1, 1, "", "check_modules"]], "mala.common.json_serializable": [[10, 2, 1, "", "JSONSerializable"]], "mala.common.json_serializable.JSONSerializable": [[10, 3, 1, "", "from_json"], [10, 3, 1, "", "to_json"]], "mala.common.parallelizer": [[11, 1, 1, "", "barrier"], [11, 1, 1, "", "finalize"], [11, 1, 1, "", "get_comm"], [11, 1, 1, "", "get_local_rank"], [11, 1, 1, "", "get_rank"], [11, 1, 1, "", "get_size"], [11, 1, 1, "", "parallel_warn"], [11, 1, 1, "", "printout"], [11, 1, 1, "", "set_current_verbosity"], [11, 1, 1, "", "set_ddp_status"], [11, 1, 1, "", "set_lammps_instance"], [11, 1, 1, "", "set_mpi_status"]], "mala.common.parameters": [[12, 2, 1, "", "Parameters"], [12, 2, 1, "", "ParametersBase"], [12, 2, 1, "", "ParametersData"], [12, 2, 1, "", "ParametersDataGeneration"], [12, 2, 1, "", "ParametersDescriptors"], [12, 2, 1, "", "ParametersHyperparameterOptimization"], [12, 2, 1, "", "ParametersNetwork"], [12, 2, 1, "", "ParametersRunning"], [12, 2, 1, "", "ParametersTargets"]], "mala.common.parameters.Parameters": [[12, 4, 1, "", "comment"], [12, 4, 1, "", "data"], [12, 4, 1, "", "descriptors"], [12, 5, 1, "", "device"], [12, 4, 1, "", "hyperparameters"], [12, 3, 1, "", "load_from_file"], [12, 3, 1, "", "load_from_json"], [12, 3, 1, "", "load_from_pickle"], [12, 4, 1, "", "manual_seed"], [12, 4, 1, "", "network"], [12, 5, 1, "", "openpmd_configuration"], [12, 5, 1, "", "openpmd_granularity"], [12, 3, 1, "", "optuna_singlenode_setup"], [12, 4, 1, "", "running"], [12, 3, 1, "", "save"], [12, 3, 1, "", "save_as_json"], [12, 3, 1, "", "save_as_pickle"], [12, 3, 1, "", "show"], [12, 4, 1, "", "targets"], [12, 5, 1, "", "use_atomic_density_formula"], [12, 5, 1, "", "use_ddp"], [12, 5, 1, "", "use_gpu"], [12, 5, 1, "", "use_lammps"], [12, 5, 1, "", "use_mpi"], [12, 5, 1, "", "verbosity"]], "mala.common.parameters.ParametersBase": [[12, 3, 1, "", "from_json"], [12, 3, 1, "", "show"], [12, 3, 1, "", "to_json"]], "mala.common.parameters.ParametersData": [[12, 4, 1, "", "data_splitting_type"], [12, 4, 1, "", "input_rescaling_type"], [12, 4, 1, "", "output_rescaling_type"], [12, 4, 1, "", "shuffling_seed"], [12, 4, 1, "", "snapshot_directories_list"], [12, 4, 1, "", "use_fast_tensor_data_set"], [12, 4, 1, "", "use_lazy_loading"], [12, 4, 1, "", "use_lazy_loading_prefetch"]], "mala.common.parameters.ParametersDataGeneration": [[12, 4, 1, "", "local_psp_name"], [12, 4, 1, "", "local_psp_path"], [12, 4, 1, "", "ofdft_friction"], [12, 4, 1, "", "ofdft_kedf"], [12, 4, 1, "", "ofdft_number_of_timesteps"], [12, 4, 1, "", "ofdft_temperature"], [12, 4, 1, "", "ofdft_timestep"], [12, 4, 1, "", "trajectory_analysis_below_average_counter"], [12, 4, 1, "", "trajectory_analysis_correlation_metric_cutoff"], [12, 4, 1, "", "trajectory_analysis_denoising_width"], [12, 4, 1, "", "trajectory_analysis_estimated_equilibrium"], [12, 4, 1, "", "trajectory_analysis_temperature_tolerance_percent"]], "mala.common.parameters.ParametersDescriptors": [[12, 4, 1, "", "atomic_density_sigma"], [12, 5, 1, "", "bispectrum_cutoff"], [12, 5, 1, "", "bispectrum_switchflag"], [12, 4, 1, "", "bispectrum_twojmax"], [12, 4, 1, "", "descriptor_type"], [12, 4, 1, "", "descriptors_contain_xyz"], [12, 4, 1, "", "lammps_compute_file"], [12, 5, 1, "", "use_y_splitting"], [12, 5, 1, "", "use_z_splitting"]], "mala.common.parameters.ParametersHyperparameterOptimization": [[12, 4, 1, "", "direction"], [12, 4, 1, "", "hlist"], [12, 4, 1, "", "n_trials"], [12, 5, 1, "", "number_training_per_trial"], [12, 5, 1, "", "rdb_storage_heartbeat"], [12, 3, 1, "", "show"], [12, 5, 1, "", "trial_ensemble_evaluation"]], "mala.common.parameters.ParametersNetwork": [[12, 4, 1, "", "bidirection"], [12, 4, 1, "", "layer_activations"], [12, 4, 1, "", "layer_sizes"], [12, 4, 1, "", "loss_function_type"], [12, 4, 1, "", "nn_type"], [12, 4, 1, "", "no_hidden_state"], [12, 4, 1, "", "num_heads"], [12, 4, 1, "", "num_hidden_layers"]], "mala.common.parameters.ParametersRunning": [[12, 5, 1, "", "after_training_metric"], [12, 4, 1, "", "checkpoint_name"], [12, 4, 1, "", "checkpoints_each_epoch"], [12, 5, 1, "", "during_training_metric"], [12, 4, 1, "", "early_stopping_epochs"], [12, 4, 1, "", "early_stopping_threshold"], [12, 4, 1, "", "inference_data_grid"], [12, 4, 1, "", "learning_rate"], [12, 4, 1, "", "learning_rate_decay"], [12, 4, 1, "", "learning_rate_patience"], [12, 4, 1, "", "learning_rate_scheduler"], [12, 4, 1, "", "logger"], [12, 4, 1, "", "logging_dir"], [12, 4, 1, "", "logging_dir_append_date"], [12, 4, 1, "", "max_number_epochs"], [12, 4, 1, "", "mini_batch_size"], [12, 4, 1, "", "num_workers"], [12, 4, 1, "", "optimizer"], [12, 4, 1, "", "profiler_range"], [12, 4, 1, "", "run_name"], [12, 4, 1, "", "training_log_interval"], [12, 5, 1, "", "use_graphs"], [12, 4, 1, "", "use_mixed_precision"], [12, 4, 1, "", "use_shuffling_for_samplers"], [12, 4, 1, "", "validate_every_n_epochs"], [12, 4, 1, "", "validate_on_training_data"], [12, 4, 1, "", "validation_metrics"]], "mala.common.parameters.ParametersTargets": [[12, 4, 1, "", "assume_two_dimensional"], [12, 4, 1, "", "ldos_gridoffset_ev"], [12, 4, 1, "", "ldos_gridsize"], [12, 4, 1, "", "ldos_gridspacing_ev"], [12, 4, 1, "", "pseudopotential_path"], [12, 4, 1, "", "rdf_parameters"], [12, 5, 1, "", "restrict_targets"], [12, 4, 1, "", "ssf_parameters"], [12, 4, 1, "", "target_type"], [12, 4, 1, "", "tpcf_parameters"]], "mala.common.physical_data": [[13, 2, 1, "", "PhysicalData"]], "mala.common.physical_data.PhysicalData": [[13, 2, 1, "", "SkipArrayWriting"], [13, 5, 1, "", "data_name"], [13, 5, 1, "", "feature_size"], [13, 3, 1, "", "read_dimensions_from_numpy_file"], [13, 3, 1, "", "read_dimensions_from_openpmd_file"], [13, 3, 1, "", "read_from_numpy_file"], [13, 3, 1, "", "read_from_openpmd_file"], [13, 5, 1, "", "si_dimension"], [13, 5, 1, "", "si_unit_conversion"], [13, 3, 1, "", "write_to_numpy_file"], [13, 3, 1, "", "write_to_openpmd_file"], [13, 3, 1, "", "write_to_openpmd_iteration"]], "mala.datageneration": [[15, 0, 0, "-", "ofdft_initializer"], [16, 0, 0, "-", "trajectory_analyzer"]], "mala.datageneration.ofdft_initializer": [[15, 2, 1, "", "OFDFTInitializer"]], "mala.datageneration.ofdft_initializer.OFDFTInitializer": [[15, 3, 1, "", "get_equilibrated_configuration"]], "mala.datageneration.trajectory_analyzer": [[16, 2, 1, "", "TrajectoryAnalyzer"]], "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer": [[16, 5, 1, "", "first_snapshot"], [16, 3, 1, "", "get_first_snapshot"], [16, 3, 1, "", "get_snapshot_correlation_cutoff"], [16, 3, 1, "", "get_uncorrelated_snapshots"], [16, 5, 1, "", "snapshot_correlation_cutoff"], [16, 5, 1, "", "trajectory"], [16, 3, 1, "", "uncache_properties"]], "mala.datahandling": [[18, 0, 0, "-", "data_converter"], [19, 0, 0, "-", "data_handler"], [20, 0, 0, "-", "data_handler_base"], [21, 0, 0, "-", "data_repo"], [22, 0, 0, "-", "data_scaler"], [23, 0, 0, "-", "data_shuffler"], [24, 0, 0, "-", "fast_tensor_dataset"], [25, 0, 0, "-", "lazy_load_dataset"], [26, 0, 0, "-", "lazy_load_dataset_single"], [27, 0, 0, "-", "ldos_aligner"], [28, 0, 0, "-", "multi_lazy_load_data_loader"], [29, 0, 0, "-", "snapshot"]], "mala.datahandling.data_converter": [[18, 2, 1, "", "DataConverter"]], "mala.datahandling.data_converter.DataConverter": [[18, 3, 1, "", "add_snapshot"], [18, 3, 1, "", "convert_snapshots"], [18, 4, 1, "", "descriptor_calculator"], [18, 4, 1, "", "target_calculator"]], "mala.datahandling.data_handler": [[19, 2, 1, "", "DataHandler"]], "mala.datahandling.data_handler.DataHandler": [[19, 3, 1, "", "clear_data"], [19, 3, 1, "", "get_snapshot_calculation_output"], [19, 3, 1, "", "get_test_input_gradient"], [19, 3, 1, "", "mix_datasets"], [19, 3, 1, "", "prepare_data"], [19, 3, 1, "", "prepare_for_testing"], [19, 3, 1, "", "raw_numpy_to_converted_scaled_tensor"], [19, 3, 1, "", "resize_snapshots_for_debugging"]], "mala.datahandling.data_handler_base": [[20, 2, 1, "", "DataHandlerBase"]], "mala.datahandling.data_handler_base.DataHandlerBase": [[20, 3, 1, "", "add_snapshot"], [20, 3, 1, "", "clear_data"], [20, 5, 1, "", "input_dimension"], [20, 5, 1, "", "output_dimension"]], "mala.datahandling.data_scaler": [[22, 2, 1, "", "DataScaler"]], "mala.datahandling.data_scaler.DataScaler": [[22, 3, 1, "", "fit"], [22, 3, 1, "", "inverse_transform"], [22, 3, 1, "", "load_from_file"], [22, 3, 1, "", "partial_fit"], [22, 3, 1, "", "reset"], [22, 3, 1, "", "save"], [22, 3, 1, "", "transform"]], "mala.datahandling.data_shuffler": [[23, 2, 1, "", "DataShuffler"]], "mala.datahandling.data_shuffler.DataShuffler": [[23, 3, 1, "", "add_snapshot"], [23, 3, 1, "", "shuffle_snapshots"]], "mala.datahandling.fast_tensor_dataset": [[24, 2, 1, "", "FastTensorDataset"]], "mala.datahandling.fast_tensor_dataset.FastTensorDataset": [[24, 3, 1, "", "shuffle"]], "mala.datahandling.lazy_load_dataset": [[25, 2, 1, "", "LazyLoadDataset"]], "mala.datahandling.lazy_load_dataset.LazyLoadDataset": [[25, 3, 1, "", "add_snapshot_to_dataset"], [25, 3, 1, "", "get_new_data"], [25, 3, 1, "", "mix_datasets"], [25, 5, 1, "", "return_outputs_directly"]], "mala.datahandling.lazy_load_dataset_single": [[26, 2, 1, "", "LazyLoadDatasetSingle"]], "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle": [[26, 3, 1, "", "allocate_shared_mem"], [26, 3, 1, "", "deallocate_shared_mem"], [26, 3, 1, "", "delete_data"], [26, 3, 1, "", "mix_datasets"]], "mala.datahandling.ldos_aligner": [[27, 2, 1, "", "LDOSAligner"]], "mala.datahandling.ldos_aligner.LDOSAligner": [[27, 3, 1, "", "add_snapshot"], [27, 3, 1, "", "align_ldos_to_ref"], [27, 3, 1, "", "calc_optimal_ldos_shift"]], "mala.datahandling.multi_lazy_load_data_loader": [[28, 2, 1, "", "MultiLazyLoadDataLoader"]], "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader": [[28, 3, 1, "", "cleanup"], [28, 3, 1, "", "load_snapshot_to_shm"]], "mala.datahandling.snapshot": [[29, 2, 1, "", "Snapshot"]], "mala.datahandling.snapshot.Snapshot": [[29, 3, 1, "", "from_json"]], "mala.descriptors": [[31, 0, 0, "-", "atomic_density"], [32, 0, 0, "-", "bispectrum"], [33, 0, 0, "-", "descriptor"], [34, 0, 0, "-", "lammps_utils"], [35, 0, 0, "-", "minterpy_descriptors"]], "mala.descriptors.atomic_density": [[31, 2, 1, "", "AtomicDensity"]], "mala.descriptors.atomic_density.AtomicDensity": [[31, 3, 1, "", "backconvert_units"], [31, 3, 1, "", "convert_units"], [31, 5, 1, "", "data_name"], [31, 5, 1, "", "feature_size"], [31, 3, 1, "", "get_optimal_sigma"]], "mala.descriptors.bispectrum": [[32, 2, 1, "", "Bispectrum"]], "mala.descriptors.bispectrum.Bispectrum": [[32, 3, 1, "", "backconvert_units"], [32, 3, 1, "", "convert_units"], [32, 5, 1, "", "data_name"], [32, 5, 1, "", "feature_size"]], "mala.descriptors.descriptor": [[33, 2, 1, "", "Descriptor"]], "mala.descriptors.descriptor.Descriptor": [[33, 3, 1, "", "backconvert_units"], [33, 3, 1, "", "calculate_from_atoms"], [33, 3, 1, "", "calculate_from_qe_out"], [33, 3, 1, "", "convert_local_to_3d"], [33, 3, 1, "", "convert_units"], [33, 5, 1, "", "descriptors_contain_xyz"], [33, 3, 1, "", "enforce_pbc"], [33, 3, 1, "", "gather_descriptors"], [33, 3, 1, "", "setup_lammps_tmp_files"], [33, 5, 1, "", "si_dimension"], [33, 5, 1, "", "si_unit_conversion"]], "mala.descriptors.lammps_utils": [[34, 1, 1, "", "extract_compute_np"], [34, 1, 1, "", "set_cmdlinevars"]], "mala.descriptors.minterpy_descriptors": [[35, 2, 1, "", "MinterpyDescriptors"]], "mala.descriptors.minterpy_descriptors.MinterpyDescriptors": [[35, 3, 1, "", "backconvert_units"], [35, 3, 1, "", "convert_units"], [35, 5, 1, "", "data_name"], [35, 5, 1, "", "feature_size"]], "mala.interfaces": [[37, 0, 0, "-", "ase_calculator"]], "mala.interfaces.ase_calculator": [[37, 2, 1, "", "MALA"]], "mala.interfaces.ase_calculator.MALA": [[37, 3, 1, "", "calculate"], [37, 3, 1, "", "calculate_properties"], [37, 4, 1, "", "implemented_properties"], [37, 3, 1, "", "load_model"], [37, 3, 1, "", "load_run"], [37, 3, 1, "", "save_calculator"]], "mala.network": [[39, 0, 0, "-", "acsd_analyzer"], [40, 0, 0, "-", "hyper_opt"], [41, 0, 0, "-", "hyper_opt_naswot"], [42, 0, 0, "-", "hyper_opt_oat"], [43, 0, 0, "-", "hyper_opt_optuna"], [44, 0, 0, "-", "hyperparameter"], [45, 0, 0, "-", "hyperparameter_acsd"], [46, 0, 0, "-", "hyperparameter_naswot"], [47, 0, 0, "-", "hyperparameter_oat"], [48, 0, 0, "-", "hyperparameter_optuna"], [49, 0, 0, "-", "multi_training_pruner"], [50, 0, 0, "-", "naswot_pruner"], [51, 0, 0, "-", "network"], [52, 0, 0, "-", "objective_base"], [53, 0, 0, "-", "objective_naswot"], [54, 0, 0, "-", "predictor"], [55, 0, 0, "-", "runner"], [56, 0, 0, "-", "tester"], [57, 0, 0, "-", "trainer"]], "mala.network.acsd_analyzer": [[39, 2, 1, "", "ACSDAnalyzer"]], "mala.network.acsd_analyzer.ACSDAnalyzer": [[39, 3, 1, "", "add_hyperparameter"], [39, 3, 1, "", "add_snapshot"], [39, 3, 1, "", "perform_study"], [39, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt": [[40, 2, 1, "", "HyperOpt"]], "mala.network.hyper_opt.HyperOpt": [[40, 3, 1, "", "add_hyperparameter"], [40, 3, 1, "", "checkpoint_exists"], [40, 3, 1, "", "clear_hyperparameters"], [40, 3, 1, "", "perform_study"], [40, 3, 1, "", "set_optimal_parameters"], [40, 3, 1, "", "set_parameters"]], "mala.network.hyper_opt_naswot": [[41, 2, 1, "", "HyperOptNASWOT"]], "mala.network.hyper_opt_naswot.HyperOptNASWOT": [[41, 3, 1, "", "get_best_trial_results"], [41, 3, 1, "", "perform_study"], [41, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt_oat": [[42, 2, 1, "", "HyperOptOAT"]], "mala.network.hyper_opt_oat.HyperOptOAT": [[42, 3, 1, "", "add_hyperparameter"], [42, 3, 1, "", "get_best_trial_results"], [42, 3, 1, "", "get_optimal_parameters"], [42, 3, 1, "", "get_orthogonal_array"], [42, 3, 1, "", "load_from_file"], [42, 3, 1, "", "number_of_runs"], [42, 3, 1, "", "perform_study"], [42, 3, 1, "", "resume_checkpoint"], [42, 3, 1, "", "set_optimal_parameters"], [42, 3, 1, "", "show_order_of_importance"]], "mala.network.hyper_opt_optuna": [[43, 2, 1, "", "HyperOptOptuna"]], "mala.network.hyper_opt_optuna.HyperOptOptuna": [[43, 3, 1, "", "get_trials_from_study"], [43, 3, 1, "", "load_from_file"], [43, 3, 1, "", "perform_study"], [43, 3, 1, "", "requeue_zombie_trials"], [43, 3, 1, "", "resume_checkpoint"], [43, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyperparameter": [[44, 2, 1, "", "Hyperparameter"]], "mala.network.hyperparameter_acsd": [[45, 2, 1, "", "HyperparameterACSD"]], "mala.network.hyperparameter_naswot": [[46, 2, 1, "", "HyperparameterNASWOT"]], "mala.network.hyperparameter_oat": [[47, 2, 1, "", "HyperparameterOAT"]], "mala.network.hyperparameter_oat.HyperparameterOAT": [[47, 3, 1, "", "get_categorical"], [47, 3, 1, "", "get_parameter"], [47, 5, 1, "", "num_choices"]], "mala.network.hyperparameter_optuna": [[48, 2, 1, "", "HyperparameterOptuna"]], "mala.network.hyperparameter_optuna.HyperparameterOptuna": [[48, 3, 1, "", "get_categorical"], [48, 3, 1, "", "get_float"], [48, 3, 1, "", "get_int"], [48, 3, 1, "", "get_parameter"]], "mala.network.multi_training_pruner": [[49, 2, 1, "", "MultiTrainingPruner"]], "mala.network.multi_training_pruner.MultiTrainingPruner": [[49, 3, 1, "", "prune"]], "mala.network.naswot_pruner": [[50, 2, 1, "", "NASWOTPruner"]], "mala.network.naswot_pruner.NASWOTPruner": [[50, 3, 1, "", "prune"]], "mala.network.network": [[51, 2, 1, "", "FeedForwardNet"], [51, 2, 1, "", "GRU"], [51, 2, 1, "", "LSTM"], [51, 2, 1, "", "Network"], [51, 2, 1, "", "PositionalEncoding"], [51, 2, 1, "", "TransformerNet"]], "mala.network.network.FeedForwardNet": [[51, 3, 1, "", "forward"]], "mala.network.network.GRU": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.LSTM": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.Network": [[51, 3, 1, "", "calculate_loss"], [51, 3, 1, "", "do_prediction"], [51, 3, 1, "", "forward"], [51, 3, 1, "", "load_from_file"], [51, 3, 1, "", "save_network"]], "mala.network.network.PositionalEncoding": [[51, 3, 1, "", "forward"]], "mala.network.network.TransformerNet": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "generate_square_subsequent_mask"], [51, 3, 1, "", "init_weights"]], "mala.network.objective_base": [[52, 2, 1, "", "ObjectiveBase"]], "mala.network.objective_base.ObjectiveBase": [[52, 3, 1, "", "parse_trial"], [52, 3, 1, "", "parse_trial_oat"], [52, 3, 1, "", "parse_trial_optuna"]], "mala.network.objective_naswot": [[53, 2, 1, "", "ObjectiveNASWOT"]], "mala.network.predictor": [[54, 2, 1, "", "Predictor"]], "mala.network.predictor.Predictor": [[54, 3, 1, "", "predict_for_atoms"], [54, 3, 1, "", "predict_from_qeout"]], "mala.network.runner": [[55, 2, 1, "", "Runner"]], "mala.network.runner.Runner": [[55, 3, 1, "", "load_run"], [55, 3, 1, "", "run_exists"], [55, 3, 1, "", "save_run"]], "mala.network.tester": [[56, 2, 1, "", "Tester"]], "mala.network.tester.Tester": [[56, 3, 1, "", "get_energy_targets_and_predictions"], [56, 3, 1, "", "predict_targets"], [56, 3, 1, "", "test_all_snapshots"], [56, 3, 1, "", "test_snapshot"]], "mala.network.trainer": [[57, 2, 1, "", "Trainer"]], "mala.network.trainer.Trainer": [[57, 3, 1, "", "load_run"], [57, 3, 1, "", "run_exists"], [57, 3, 1, "", "train_network"]], "mala.targets": [[59, 0, 0, "-", "atomic_force"], [60, 0, 0, "-", "calculation_helpers"], [61, 0, 0, "-", "cube_parser"], [62, 0, 0, "-", "density"], [63, 0, 0, "-", "dos"], [64, 0, 0, "-", "ldos"], [65, 0, 0, "-", "target"], [66, 0, 0, "-", "xsf_parser"]], "mala.targets.atomic_force": [[59, 2, 1, "", "AtomicForce"]], "mala.targets.atomic_force.AtomicForce": [[59, 3, 1, "", "convert_units"], [59, 3, 1, "", "get_feature_size"]], "mala.targets.calculation_helpers": [[60, 1, 1, "", "analytical_integration"], [60, 1, 1, "", "entropy_multiplicator"], [60, 1, 1, "", "fermi_function"], [60, 1, 1, "", "gaussians"], [60, 1, 1, "", "get_beta"], [60, 1, 1, "", "get_f0_value"], [60, 1, 1, "", "get_f1_value"], [60, 1, 1, "", "get_f2_value"], [60, 1, 1, "", "get_s0_value"], [60, 1, 1, "", "get_s1_value"], [60, 1, 1, "", "integrate_values_on_spacing"]], "mala.targets.cube_parser": [[61, 2, 1, "", "CubeFile"], [61, 1, 1, "", "read_cube"], [61, 1, 1, "", "read_imcube"], [61, 1, 1, "", "write_cube"], [61, 1, 1, "", "write_imcube"]], "mala.targets.cube_parser.CubeFile": [[61, 3, 1, "", "readline"]], "mala.targets.density": [[62, 2, 1, "", "Density"]], "mala.targets.density.Density": [[62, 3, 1, "", "backconvert_units"], [62, 3, 1, "", "convert_units"], [62, 5, 1, "", "data_name"], [62, 5, 1, "", "density"], [62, 5, 1, "", "feature_size"], [62, 3, 1, "", "from_cube_file"], [62, 3, 1, "", "from_ldos_calculator"], [62, 3, 1, "", "from_numpy_array"], [62, 3, 1, "", "from_numpy_file"], [62, 3, 1, "", "from_openpmd_file"], [62, 3, 1, "", "from_xsf_file"], [62, 3, 1, "", "get_atomic_forces"], [62, 3, 1, "", "get_density"], [62, 3, 1, "", "get_energy_contributions"], [62, 3, 1, "", "get_number_of_electrons"], [62, 3, 1, "", "get_scaled_positions_for_qe"], [62, 3, 1, "", "get_target"], [62, 3, 1, "", "invalidate_target"], [62, 5, 1, "", "number_of_electrons"], [62, 3, 1, "", "read_from_array"], [62, 3, 1, "", "read_from_cube"], [62, 3, 1, "", "read_from_xsf"], [62, 5, 1, "", "si_dimension"], [62, 5, 1, "", "si_unit_conversion"], [62, 4, 1, "", "te_mutex"], [62, 5, 1, "", "total_energy_contributions"], [62, 3, 1, "", "uncache_properties"], [62, 3, 1, "", "write_to_cube"], [62, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.dos": [[63, 2, 1, "", "DOS"]], "mala.targets.dos.DOS": [[63, 3, 1, "", "backconvert_units"], [63, 5, 1, "", "band_energy"], [63, 3, 1, "", "convert_units"], [63, 5, 1, "", "data_name"], [63, 5, 1, "", "density_of_states"], [63, 5, 1, "", "energy_grid"], [63, 5, 1, "", "entropy_contribution"], [63, 5, 1, "", "feature_size"], [63, 5, 1, "", "fermi_energy"], [63, 3, 1, "", "from_ldos_calculator"], [63, 3, 1, "", "from_numpy_array"], [63, 3, 1, "", "from_numpy_file"], [63, 3, 1, "", "from_qe_dos_txt"], [63, 3, 1, "", "from_qe_out"], [63, 3, 1, "", "get_band_energy"], [63, 3, 1, "", "get_density_of_states"], [63, 3, 1, "", "get_energy_grid"], [63, 3, 1, "", "get_entropy_contribution"], [63, 3, 1, "", "get_number_of_electrons"], [63, 3, 1, "", "get_self_consistent_fermi_energy"], [63, 3, 1, "", "get_target"], [63, 3, 1, "", "invalidate_target"], [63, 5, 1, "", "number_of_electrons"], [63, 3, 1, "", "read_from_array"], [63, 3, 1, "", "read_from_numpy_file"], [63, 3, 1, "", "read_from_qe_dos_txt"], [63, 3, 1, "", "read_from_qe_out"], [63, 5, 1, "", "si_dimension"], [63, 5, 1, "", "si_unit_conversion"], [63, 3, 1, "", "uncache_properties"]], "mala.targets.ldos": [[64, 2, 1, "", "LDOS"]], "mala.targets.ldos.LDOS": [[64, 3, 1, "", "backconvert_units"], [64, 5, 1, "", "band_energy"], [64, 3, 1, "", "convert_units"], [64, 5, 1, "", "data_name"], [64, 5, 1, "", "density"], [64, 5, 1, "", "density_of_states"], [64, 5, 1, "", "energy_grid"], [64, 5, 1, "", "entropy_contribution"], [64, 5, 1, "", "feature_size"], [64, 5, 1, "", "fermi_energy"], [64, 3, 1, "", "from_cube_file"], [64, 3, 1, "", "from_numpy_array"], [64, 3, 1, "", "from_numpy_file"], [64, 3, 1, "", "from_openpmd_file"], [64, 3, 1, "", "from_xsf_file"], [64, 3, 1, "", "get_atomic_forces"], [64, 3, 1, "", "get_band_energy"], [64, 3, 1, "", "get_density"], [64, 3, 1, "", "get_density_of_states"], [64, 3, 1, "", "get_energy_grid"], [64, 3, 1, "", "get_entropy_contribution"], [64, 3, 1, "", "get_number_of_electrons"], [64, 3, 1, "", "get_self_consistent_fermi_energy"], [64, 3, 1, "", "get_target"], [64, 3, 1, "", "get_total_energy"], [64, 3, 1, "", "invalidate_target"], [64, 5, 1, "", "local_density_of_states"], [64, 5, 1, "", "number_of_electrons"], [64, 3, 1, "", "read_from_array"], [64, 3, 1, "", "read_from_cube"], [64, 3, 1, "", "read_from_xsf"], [64, 5, 1, "", "si_dimension"], [64, 5, 1, "", "si_unit_conversion"], [64, 5, 1, "", "total_energy"], [64, 3, 1, "", "uncache_properties"]], "mala.targets.target": [[65, 2, 1, "", "Target"]], "mala.targets.target.Target": [[65, 3, 1, "", "backconvert_units"], [65, 3, 1, "", "convert_units"], [65, 5, 1, "", "feature_size"], [65, 3, 1, "", "get_energy_grid"], [65, 3, 1, "", "get_radial_distribution_function"], [65, 3, 1, "", "get_real_space_grid"], [65, 3, 1, "", "get_static_structure_factor"], [65, 3, 1, "", "get_target"], [65, 3, 1, "", "get_three_particle_correlation_function"], [65, 3, 1, "", "invalidate_target"], [65, 5, 1, "", "qe_input_data"], [65, 3, 1, "", "radial_distribution_function_from_atoms"], [65, 3, 1, "", "read_additional_calculation_data"], [65, 3, 1, "", "restrict_data"], [65, 5, 1, "", "si_dimension"], [65, 5, 1, "", "si_unit_conversion"], [65, 3, 1, "", "static_structure_factor_from_atoms"], [65, 3, 1, "", "three_particle_correlation_function_from_atoms"], [65, 3, 1, "", "write_additional_calculation_data"], [65, 3, 1, "", "write_tem_input_file"], [65, 3, 1, "", "write_to_numpy_file"], [65, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.xsf_parser": [[66, 1, 1, "", "read_xsf"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute", "5": "py:property"}, "terms": {"": [0, 12, 40, 42, 61, 63, 65, 73, 74, 75, 78], "0": [2, 5, 6, 11, 12, 13, 18, 22, 27, 33, 34, 37, 40, 44, 45, 46, 47, 48, 54, 60, 62, 64, 65, 70, 73], "000": [2, 75], "00001": 73, "0048450": 65, "005": 70, "01": 70, "01070": 74, "015": 70, "023": 74, "030": 42, "035120": 74, "03610": 65, "045008": 74, "05": [12, 27], "1": [2, 6, 12, 20, 22, 33, 37, 59, 60, 61, 62, 63, 64, 65, 71, 73, 74, 77], "10": [2, 3, 6, 12, 27, 39, 42, 65, 71, 73, 74, 77], "100": [2, 6, 12, 73, 75], "1007": 42, "1038": 74, "104": 74, "1063": 65, "108": 74, "1088": [39, 74], "11": [6, 12, 71, 73], "1103": 74, "115": 74, "12": [3, 5, 74], "1234": 6, "125146": 74, "16": 74, "1606": 65, "1696": 65, "17": [65, 74], "1883": 12, "1_31": 42, "1d": [62, 64], "1e": [27, 71], "2": [2, 5, 6, 12, 34, 60, 63, 65, 71, 73, 78], "20": 70, "200": 5, "2017": 61, "2019": [11, 61], "2021": 74, "2022": 74, "2023": 74, "2153": [39, 74], "224": 5, "25th": 61, "2632": [39, 74], "2685": 12, "27": 74, "29500": 6, "2d": [71, 72], "2mic": 65, "3": [2, 3, 12, 20, 33, 42, 62, 64, 71, 74, 77], "32": [60, 70], "33": 60, "36808": 42, "39m": 78, "3d": [62, 64], "4": [2, 6, 12, 13, 18, 37, 63, 71, 73, 74, 77], "40": 73, "400": 5, "5": [3, 6, 12, 65, 71, 73], "500": 5, "57": 65, "6": [65, 71], "64": [33, 70], "67637": [71, 73], "7": [71, 78], "8": [12, 76, 77], "9": [71, 74], "91": [33, 71], "94": 33, "96": 70, "97": 33, "978": 42, "A": [0, 3, 6, 10, 11, 12, 13, 16, 20, 24, 28, 29, 33, 37, 41, 43, 49, 50, 52, 54, 56, 57, 61, 62, 64, 65, 70, 74, 75], "AND": [11, 43, 51, 61], "AS": [11, 61], "ASE": [5, 13, 31, 33, 37, 54, 62, 63, 64, 65], "As": [0, 2, 3, 4, 5, 63, 73, 77, 79], "At": 78, "BE": [11, 43, 61], "BUT": [11, 61], "Be": [6, 12, 51], "By": [0, 5, 6, 11, 12, 62, 63, 64, 70, 71, 73], "FOR": [11, 61], "For": [2, 3, 4, 5, 12, 16, 19, 26, 33, 37, 43, 55, 57, 64, 65, 70, 71, 72, 73, 75, 76, 79], "IN": [11, 61], "IT": 43, "If": [0, 2, 3, 4, 5, 6, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 33, 34, 39, 40, 42, 43, 49, 50, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 70, 71, 72, 74, 75, 76, 78], "In": [0, 2, 5, 6, 12, 13, 25, 40, 43, 44, 45, 46, 47, 48, 49, 62, 63, 64, 65, 70, 71, 72, 73, 76, 78], "It": [3, 5, 6, 12, 26, 54, 56, 61, 62, 63, 64, 65, 69, 72, 73, 75], "NO": [11, 61], "NOT": [11, 12, 43, 61], "No": [2, 12, 22, 37, 73], "OF": [11, 12, 15, 61, 75], "OR": [11, 61], "Of": [6, 12, 73], "On": 3, "One": [3, 5, 6, 61, 70, 73], "THE": [11, 43, 61], "THEN": 43, "TO": [4, 11, 43, 61], "That": [55, 70], "The": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 18, 19, 29, 31, 33, 34, 39, 40, 41, 42, 43, 51, 53, 55, 57, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "Their": 71, "Then": [2, 5], "There": [2, 63, 70, 73], "These": [2, 3, 6, 18, 43, 63, 70, 71, 75], "To": [2, 4, 5, 6, 12, 26, 33, 51, 73, 74, 75, 76, 78], "WILL": 43, "WITH": [11, 61], "Will": [16, 34, 44, 64], "With": [5, 12, 25, 37, 70], "__getitem__": 24, "_build": 77, "_xxx": 12, "ab": 65, "abc": [13, 20, 40], "abil": 6, "abl": 0, "about": [61, 65], "abov": [2, 11, 12, 16, 50, 61, 73], "absolut": [6, 51, 56], "absolute_valu": 12, "abstract": [13, 40, 51, 65, 74], "ac9956": [39, 74], "acceler": [1, 3, 5, 6, 12, 69, 74, 75], "acces": 62, "access": [3, 5, 6, 9, 16, 21, 22, 26, 37, 70, 71, 72, 73, 75, 78, 79], "accessibli": 65, "accompani": [0, 73, 79], "accord": [2, 62, 65, 70], "accordingli": [71, 75], "account": [27, 65, 75], "accur": [2, 3, 6, 65, 71], "accuraci": [3, 6, 12, 42, 71, 73], "achiev": 12, "acitv": 12, "acquaint": 75, "acquir": 72, "across": [1, 6, 12, 56, 73, 74, 75], "acsd": [2, 39, 71], "acsd_analyz": [7, 38, 68], "acsd_point": 2, "acsdanalyz": [2, 7, 38, 39, 68], "action": [11, 12, 61], "activ": [0, 3, 4, 5, 6, 12, 55, 70, 73, 75], "actual": [0, 6, 13, 16, 25, 42, 43, 51, 56, 70, 73, 79], "actual_output": 56, "ad": [6, 12, 16, 20, 22, 25, 34, 70, 71], "adam": [0, 12, 73], "add": [0, 2, 6, 12, 18, 20, 22, 23, 25, 27, 34, 39, 40, 42, 70, 71, 73, 74, 76, 78], "add_hyperparamet": [2, 7, 38, 39, 40, 42, 68, 70], "add_snapshot": [2, 4, 6, 7, 17, 18, 20, 23, 27, 38, 39, 68, 70, 71, 73], "add_snapshot_a": 20, "add_snapshot_to_dataset": [7, 17, 25, 68], "addit": [0, 5, 6, 12, 13, 18, 27, 37, 55, 62, 65, 74, 77], "addition": [73, 75], "additional_attribut": [13, 62, 65], "additional_calculation_data": [55, 73], "additional_info_input_": 71, "additional_info_input_path": [18, 71], "additional_info_input_typ": [18, 71], "additional_info_save_path": [18, 23, 71], "additional_metadata": 13, "additon": 37, "aditya95sriram": 61, "adjust": [5, 12, 65, 70, 72], "adress": [12, 43], "advanc": [2, 5, 69, 70, 71, 72, 73, 74, 75, 77], "advantag": 18, "advers": 6, "advis": [2, 5, 12, 55, 71], "affect": [6, 18], "aforement": 3, "after": [0, 3, 6, 12, 37, 71, 73, 76, 77], "after_training_metr": [3, 6, 7, 8, 12, 68], "afterward": [2, 6, 25, 63, 72, 73], "again": [0, 22, 77], "against": [49, 50], "aggres": 12, "agre": [0, 73], "aidan": [0, 74], "aim": [5, 6], "akin": 6, "al": 43, "algorihm": 12, "algorithm": [5, 6, 12, 70, 75], "align": 27, "align_ldos_to_ref": [7, 17, 27, 68], "all": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 26, 27, 29, 33, 37, 40, 43, 44, 52, 54, 55, 56, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 77, 78, 79], "all_chang": 37, "allevi": 5, "alloc": [2, 12, 26], "allocate_shared_mem": [7, 17, 26, 68], "allow": [0, 4, 5, 6, 12, 73, 75, 77], "almost": 6, "along": [5, 60, 74, 75], "alongsid": [4, 13, 62, 64, 77], "alphabet": 0, "alreadi": [6, 13, 55, 72, 73, 77], "also": [1, 2, 4, 5, 6, 10, 12, 19, 42, 51, 55, 69, 71, 72, 73, 74, 77, 79], "alter": [3, 72], "altern": [12, 13, 43], "alternative_storage_path": 43, "although": [41, 62, 75], "aluminium": 75, "alwai": [6, 11, 27, 39, 40, 44, 45, 46, 47, 48, 64, 69, 70, 71, 76], "am": 33, "american": 74, "among": 70, "amount": [2, 6, 23, 27, 73], "amp": 12, "an": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 19, 25, 26, 29, 31, 33, 34, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 54, 55, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 75, 76, 77, 78], "analys": 41, "analysi": [2, 4, 5, 12, 16, 39, 42, 43], "analyt": [60, 63, 64], "analytical_integr": [7, 58, 60, 68], "analyz": [16, 39], "ang": [59, 62], "angstrom": 33, "ani": [0, 5, 6, 11, 12, 13, 16, 18, 24, 25, 26, 37, 49, 50, 51, 61, 62, 65, 70, 71, 72, 73, 74, 75], "anoth": [3, 6, 12, 26], "anyth": [12, 62], "anywai": 18, "ap": 74, "apart": [6, 71], "api": [4, 72, 73, 75], "apidoc": 77, "appli": [12, 19, 22, 43, 65, 73, 74], "applic": [43, 53], "approach": [18, 25, 26, 29, 40, 44, 45, 46, 47, 48, 74], "appropri": [0, 6, 64, 71], "approxim": 60, "apt": 78, "ar": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 20, 25, 26, 27, 29, 33, 40, 41, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 77, 79], "arbitrari": 65, "arbitrarili": 6, "architectur": [3, 38, 40, 41, 43, 51, 52, 70, 76, 77], "archiv": [16, 73], "arg": [24, 25, 26, 37, 49, 50, 51, 61], "argdict": 34, "argument": [6, 12, 18, 33, 34, 60, 71], "aris": [11, 61, 78], "around": 2, "arrai": [3, 12, 13, 18, 19, 20, 22, 23, 27, 28, 29, 31, 32, 33, 34, 35, 42, 47, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 73, 77], "array_lik": 27, "array_shap": 34, "articl": [74, 75], "arxiv": 65, "as_numpi": 22, "asap": 65, "asap3": 65, "ase": [15, 16, 31, 33, 37, 54, 62, 64, 65, 72], "ase_calcul": [7, 36, 68], "aspect": 73, "assert": 75, "assign": [6, 12, 51], "associ": [11, 61, 62, 63], "assum": [12, 13, 16, 22, 25, 26, 34, 51, 60, 62, 65, 69, 70, 73, 78], "assume_two_dimension": [7, 8, 12, 68, 72], "assumpt": 12, "asterisk": 64, "atom": [2, 5, 6, 12, 15, 16, 29, 33, 37, 54, 59, 61, 62, 64, 65, 71, 72, 73, 75, 79], "atomic_dens": [7, 30, 68], "atomic_density_sigma": [7, 8, 12, 68], "atomic_forc": [7, 58, 62, 68], "atomicdens": [7, 30, 31, 68], "atomicforc": [7, 58, 59, 68], "atomist": 72, "atoms_angstrom": [62, 64, 65], "attach": 6, "attempt": [4, 23, 55, 57, 62, 64, 65], "attent": [12, 74], "attila": [0, 74, 75], "attribut": [10, 12, 13, 16, 21, 29, 52, 62, 65], "austin": [0, 74], "author": [11, 61, 74], "automat": [0, 3, 5, 6, 12, 16, 27, 42, 51, 55, 65, 77], "avail": [0, 2, 5, 6, 9, 12, 18, 27, 33, 40, 44, 45, 46, 47, 48, 60, 70, 71, 73, 76, 77], "availab": 6, "averag": [2, 3, 12, 65, 73], "avoid": [0, 3, 12, 26], "awar": [5, 51, 65, 71, 76, 78], "axi": [12, 60], "b": [60, 74, 75], "back": [12, 26, 43], "backbon": 73, "backconvert_unit": [7, 30, 31, 32, 33, 35, 58, 62, 63, 64, 65, 68], "backend": [5, 12], "background": 3, "bad": 6, "band": [6, 12, 49, 56, 63, 64, 73], "band_energi": [3, 6, 7, 12, 49, 56, 58, 63, 64, 68, 73], "band_energy_actual_f": [6, 12], "band_energy_ful": 56, "barrier": [7, 8, 11, 68], "bartosz": 0, "base": [0, 2, 3, 4, 5, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 73, 75], "baselin": 11, "baseprun": [49, 50], "bash": 6, "basi": [12, 61], "basic": [2, 5, 6, 69, 71, 73, 75], "bat": 77, "batch": [12, 53, 70], "batch_siz": 53, "be_dens": 5, "be_ldo": 71, "be_model": [72, 73], "be_shuffl": [4, 6], "be_snapshot": [4, 71], "be_snapshot0": [4, 6, 71, 73], "be_snapshot1": [2, 6, 72, 73], "be_snapshot2": 2, "becaus": [3, 12, 37, 73], "becom": [5, 27], "been": [0, 2, 3, 6, 33, 63, 71, 73, 74, 75, 77, 78, 79], "befor": [0, 6, 12, 49, 50, 64, 65, 72, 73, 77], "behavior": 12, "being": [6, 11, 25, 26, 37, 55, 56, 57, 62, 63, 64, 73], "believ": 12, "below": [0, 5, 12, 16, 61], "benchmark": 55, "benefici": 12, "benefit": 12, "best": [12, 41, 42, 62, 70], "beta": [60, 63], "better": 6, "between": [2, 3, 6, 11, 12, 16, 23, 25, 43, 70], "bgrid": 33, "bias": 12, "bidirect": [7, 8, 12, 68], "big": [0, 65], "bigger": 12, "bin": [12, 65, 76, 78], "binari": 71, "bind": 78, "bispectrum": [2, 5, 7, 12, 30, 33, 68, 71, 72, 73, 76], "bispectrum_cutoff": [2, 7, 8, 12, 68, 71, 73], "bispectrum_switchflag": [7, 8, 12, 68], "bispectrum_twojmax": [2, 7, 8, 12, 68, 71, 73], "bit": [12, 24, 62], "black": 0, "blob": [11, 65], "bohr": [2, 62, 64, 71], "boldsymbol": 64, "bool": [11, 12, 13, 18, 19, 22, 25, 26, 27, 33, 34, 40, 42, 43, 49, 50, 54, 55, 57, 60, 62, 63, 64, 65], "boolean": [49, 50], "both": [2, 3, 12, 56, 61, 75], "bottleneck": 6, "bound": [40, 44, 45, 46, 48, 70], "boundari": 12, "bp": 4, "branch": 76, "break": 33, "briefli": 6, "brillouin": 60, "broadcast_band_energi": 63, "broadcast_entropi": 63, "broadcast_fermi_energi": 63, "brown": 11, "brzoza": 0, "buffer": [26, 28], "bug": 0, "bugfix": 0, "build": [0, 4, 12, 19, 69, 75], "build_fold": 76, "build_mpi": 76, "build_shared_lib": 76, "build_total_energy_modul": 78, "built": [0, 11, 76], "bump2vers": 77, "bumpvers": 0, "busi": 6, "by_snapshot": 12, "c": [6, 11, 61, 65], "cach": [16, 25, 26, 62, 63, 64, 65], "calc_optimal_ldos_shift": [7, 17, 27, 68], "calcul": [0, 2, 5, 6, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 51, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 73, 74, 75, 76, 79], "calculate_from_atom": [7, 30, 33, 68], "calculate_from_qe_out": [7, 30, 33, 68], "calculate_loss": [7, 38, 51, 68], "calculate_properti": [7, 36, 37, 68], "calculation_help": [7, 58, 68], "calculation_output": [19, 29], "calculation_output_fil": 20, "calculation_typ": 65, "calibr": [49, 50], "call": [2, 3, 6, 11, 12, 13, 16, 18, 24, 42, 43, 50, 51, 63, 65, 71, 72, 73, 74, 75, 79], "callow": 0, "can": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 18, 19, 22, 25, 26, 33, 37, 42, 43, 51, 52, 54, 55, 56, 57, 65, 70, 71, 72, 73, 75, 76, 78, 79], "cancel": 71, "candid": [49, 50, 70], "cangi": [0, 74, 75], "cannot": [6, 33, 62, 64], "capabilit": 2, "capabl": [1, 3, 4, 75], "care": [6, 26, 43], "case": [6, 11, 12, 13, 25, 26, 42, 43, 49, 54, 55, 64, 65, 70, 76, 78], "categor": [3, 12, 40, 42, 44, 45, 46, 47, 48, 70], "categori": 11, "caus": 74, "cd": 77, "cell": [5, 12, 31, 33, 37, 51, 62, 64, 65], "center": [60, 75], "cento": 79, "central": [3, 51, 73], "certain": [12, 18, 40, 41, 43, 63], "cff": 0, "cflag": 78, "challeng": [74, 75], "chanc": [3, 12], "chang": [0, 3, 4, 12, 37, 63, 65, 76, 77, 78], "changelog": 0, "chapter": 42, "character": [12, 31], "charg": [11, 37, 61], "check": [0, 4, 6, 9, 19, 22, 37, 40, 49, 55, 57, 76, 77], "check_modul": [7, 8, 68], "checkout": [21, 76, 77], "checkpoint": [12, 37, 40, 42, 43, 55, 57], "checkpoint_exist": [7, 38, 40, 57, 68], "checkpoint_nam": [3, 6, 7, 8, 12, 40, 42, 43, 68], "checkpoints_each_epoch": [6, 7, 8, 12, 68], "checkpoints_each_tri": [3, 12], "chemistri": 74, "choic": [39, 40, 42, 44, 45, 46, 47, 48, 53, 70, 73], "choos": [0, 2, 12], "chosen": [2, 6, 12, 71], "ci": 0, "circumv": [6, 74], "citat": [0, 74], "cite": 75, "citeseerx": 65, "cl": 55, "claim": [11, 61], "class": [0, 2, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "classic": 37, "classmethod": [10, 12, 22, 29, 37, 40, 42, 43, 51, 55, 57, 62, 63, 64], "clean": [43, 77], "cleanup": [7, 17, 28, 68], "clear": [0, 19, 40], "clear_data": [7, 17, 19, 20, 68], "clear_hyperparamet": [7, 38, 40, 68], "clone": 77, "cloud": 2, "cluster": [3, 6, 43, 78], "cmake": [76, 78], "cmake_cxx_compil": 76, "cmdarg": 34, "coars": [2, 73], "code": [3, 12, 33, 36, 65, 69, 72, 74, 75, 76, 77, 79], "coeffici": 73, "collabor": 0, "collect": [3, 12, 33, 34], "collector": 37, "column": [12, 22], "com": [0, 11, 12, 21, 42, 61, 65, 76, 77, 78], "combin": [2, 33, 37, 70], "come": [12, 33], "comm": [11, 13], "comm_world": [11, 65], "command": [3, 12, 34, 55, 70], "comment": [7, 8, 12, 68], "comminuc": 65, "commit": 0, "common": [7, 11, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68], "commonli": 33, "commun": [3, 6, 11, 12, 33], "compar": [2, 12, 16, 73, 75], "comparison": 65, "compat": [3, 4, 12, 21, 42, 43, 51, 52, 66, 72, 76], "compil": [76, 78], "complei": 61, "complet": [6, 71], "complete_save_path": [6, 18, 23, 71], "complex": 61, "complianc": 0, "compliant": 4, "complic": [2, 6], "compon": [33, 71], "comprehens": 75, "compress": 4, "compuat": 65, "comput": [1, 2, 5, 6, 12, 22, 27, 34, 69, 74, 75], "computation": [3, 5], "compute_typ": 34, "concept": [3, 75], "concern": 38, "concert": 55, "conda": 0, "condens": 71, "condit": [3, 11, 12, 61], "conduct": 75, "config": 0, "configur": [0, 4, 12, 15, 16, 33, 54, 72, 73, 76, 78], "confirm": 6, "conjunct": [3, 12], "connect": [11, 61], "consecut": 12, "conserve_dimens": 64, "consid": [0, 12, 19, 27], "consist": [18, 19, 29, 61, 63, 64, 70, 73, 79], "consquenc": 16, "const": 61, "constant": 61, "constitut": 0, "construct": [3, 12, 18, 60, 65, 73, 74, 75], "constructor": 61, "consult": [0, 4], "contain": [2, 4, 10, 12, 13, 20, 23, 27, 29, 30, 33, 37, 41, 56, 61, 62, 63, 64, 65, 73], "continu": [55, 57, 77], "contract": [11, 61], "contribut": [12, 62, 63, 64, 75], "control": [12, 25, 33, 65, 73], "convent": [27, 40, 42, 65], "convers": [1, 13, 19, 20, 23, 25, 26, 27, 28, 33, 34, 59, 62, 63, 64, 65, 69], "convert": [4, 10, 12, 18, 19, 31, 32, 33, 34, 35, 39, 59, 62, 63, 64, 65, 71], "convert_local_to_3d": [7, 30, 33, 68], "convert_snapshot": [4, 7, 17, 18, 68, 71], "convert_to_threedimension": 62, "convert_unit": [7, 30, 31, 32, 33, 35, 58, 59, 62, 63, 64, 65, 68], "converted_arrai": [31, 32, 33, 35, 59, 62, 63, 64, 65], "converted_tensor": 19, "convet": [44, 45, 46, 47, 48], "cooper": 6, "coordin": [12, 33], "copi": [11, 22, 49, 50, 55, 61, 62, 63], "copyright": [11, 61], "core": [0, 78], "correct": [2, 5, 6, 37, 44, 51, 61, 62, 70, 73, 77], "correctli": [0, 62, 77], "correl": [3, 12, 16, 65], "correspond": [6, 12, 65, 70, 71], "cosin": [2, 16], "cost": 12, "costli": 75, "could": [5, 12], "count": 12, "counter": 12, "cours": [6, 12, 73], "cover": [69, 72], "covers": [62, 64], "cpp": 65, "cppflag": 78, "cpu": [1, 2, 3, 5, 6, 54, 55, 64, 69, 76], "cpython": 78, "creat": [5, 6, 12, 13, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77], "create_fil": 62, "create_qe_fil": 64, "creation": [19, 71], "critic": 73, "crucial": 4, "csv": 73, "cube": [5, 61, 62, 64, 71], "cube_pars": [7, 58, 68], "cubefil": [7, 58, 61, 68], "cubetool": 61, "cubic": [62, 64, 65, 75], "cuda": [6, 12, 76], "current": [0, 3, 4, 5, 6, 11, 12, 14, 25, 26, 27, 39, 40, 41, 42, 44, 47, 48, 51, 52, 55, 59, 60, 61, 62, 63, 64, 65, 71], "curv": 12, "custom": [64, 70], "cut": [12, 27], "cutoff": [2, 12, 16, 71], "d": [12, 22, 60, 63, 64, 74, 75, 76], "d_model": 51, "dai": 74, "damag": [11, 61], "daniel": [0, 11], "data": [0, 1, 3, 5, 6, 7, 8, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 79], "data_": 4, "data_convert": [4, 7, 17, 39, 68, 71], "data_handl": [4, 5, 7, 17, 37, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 64, 68, 70, 72, 73], "data_handler_bas": [7, 17, 68], "data_nam": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 68], "data_path": [2, 4, 6, 71, 72, 73], "data_repo": [7, 17, 68], "data_repo_path": 21, "data_scal": [7, 17, 19, 25, 26, 68], "data_shuffl": [4, 6, 7, 17, 68], "data_splitting_typ": [7, 8, 12, 68], "data_typ": [19, 56, 65], "databas": 3, "databasenam": 3, "dataconvert": [2, 4, 6, 7, 17, 18, 19, 68, 71], "dataformat": 61, "datagener": [7, 68], "datahandl": [2, 3, 4, 6, 7, 18, 19, 25, 26, 28, 37, 39, 40, 41, 42, 43, 50, 53, 54, 55, 56, 57, 64, 68, 70, 73], "datahandlerbas": [7, 17, 19, 20, 23, 27, 68], "dataload": [25, 26], "datasampl": [25, 26], "datascal": [7, 17, 19, 22, 25, 26, 68], "dataset": [13, 19, 24, 25, 26, 28], "datashuffl": [4, 6, 7, 12, 17, 23, 68], "datashufl": 6, "datatyp": [40, 42, 44, 45, 46, 47, 48], "date": [0, 12, 61], "dayton": 74, "db": 64, "dd": 64, "dd_db": 64, "ddp": [6, 11, 12, 22, 25, 26, 55], "de": 64, "de_dd": 64, "deactivt": 70, "dead": 43, "deadlin": 0, "deal": [11, 13, 61, 73], "dealloc": [26, 28], "deallocate_shared_mem": [7, 17, 26, 68], "debian": 78, "debug": [3, 33, 73, 77], "decad": 74, "decai": 12, "decid": [0, 12, 70, 73], "declar": 4, "decreas": [12, 70], "deep": [74, 75], "default": [4, 5, 6, 11, 12, 18, 19, 22, 27, 29, 33, 34, 39, 53, 54, 55, 57, 63, 64, 70, 71, 78], "defin": [12, 49, 50, 60, 63, 64, 72], "degre": [6, 16], "delet": 33, "delete_data": [7, 17, 26, 68], "delta": [60, 63], "demand": [2, 3, 12, 51], "demonstr": [74, 75], "denois": 12, "dens_object": 62, "denser": 71, "densiti": [2, 5, 6, 7, 12, 56, 58, 59, 63, 64, 68, 71, 72, 74, 75], "density_calcul": [5, 62], "density_data": [62, 64], "density_of_st": [5, 7, 58, 63, 64, 68, 72], "density_rel": [6, 12], "depend": [12, 13, 19, 55, 57, 61, 62, 64, 71, 77], "deprec": [12, 22, 37], "depth": [1, 70], "deriv": [25, 26, 28, 51, 64], "descent": 12, "desciptor": 33, "describ": [5, 13, 31, 32, 35, 62, 63, 64, 70], "descript": [0, 61, 70], "descriptor": [0, 5, 7, 8, 11, 12, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 39, 54, 64, 68, 71, 72, 73, 75, 76], "descriptor_calcul": [7, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68], "descriptor_calculation_kwarg": [18, 71], "descriptor_dimens": 33, "descriptor_input_path": [18, 39, 71], "descriptor_input_typ": [18, 39, 71], "descriptor_save_path": [18, 23, 71], "descriptor_typ": [7, 8, 12, 68, 71, 73], "descriptor_unit": [18, 39], "descriptors_contain_xyz": [7, 8, 12, 30, 33, 68], "descriptors_np": 33, "deseri": 10, "deserialized_object": [10, 12, 29], "design": 3, "desir": [12, 16, 19, 31, 32, 33, 35, 44, 51, 62, 63, 64, 65, 75], "despit": 74, "detail": [2, 3, 5, 12, 18, 39, 75, 76], "determin": [2, 3, 5, 12, 16, 56, 70, 71, 73], "determinist": 12, "detriment": 12, "dev": 77, "develop": [6, 33, 71, 75, 77, 79], "deviat": [3, 12, 22, 73], "devic": [7, 8, 12, 68], "devis": 2, "dft": [3, 5, 6, 7, 12, 15, 18, 22, 29, 33, 62, 63, 64, 69, 71, 75], "diagnost": 12, "dicitionari": 34, "dict": [10, 12, 13, 18, 29, 33, 34, 56, 61, 62, 64, 65, 66], "dictionari": [10, 12, 13, 18, 29, 33, 34, 56, 62, 63, 64, 65, 73], "dictionati": [62, 64, 65], "diff": 0, "differ": [2, 5, 6, 33, 39, 43, 53, 60, 62, 70], "differenti": 12, "dimens": [5, 12, 13, 20, 22, 25, 26, 31, 32, 33, 35, 51, 59, 62, 63, 64, 65, 73], "dimension": [2, 13, 63, 71], "dipol": 37, "direct": [0, 5, 7, 8, 12, 18, 65, 68, 72], "directli": [0, 2, 6, 11, 12, 33, 51, 54, 55, 62, 63, 64, 65, 73], "directori": [0, 6, 12, 18, 19, 20, 23, 27, 29, 33, 64, 77, 78], "dirti": 0, "disabl": [6, 12, 25, 26, 55], "discontinu": 12, "discourag": [25, 26], "discret": [5, 62, 63, 64, 71], "discuss": [1, 2, 3, 6, 71, 73, 75], "disentangl": 3, "disk": [6, 23, 64, 73], "displac": 16, "distanc": [2, 12, 16], "distance_threshold": 16, "distinct": [2, 40, 44, 45, 46, 47, 48], "distinguish": 3, "distribut": [3, 5, 11, 12, 51, 55, 61, 63, 65], "distributeddataparallel": 6, "divid": [5, 62], "divisor": [12, 60], "do": [0, 2, 3, 4, 5, 6, 7, 11, 12, 19, 20, 23, 25, 26, 27, 28, 31, 32, 33, 35, 42, 43, 51, 56, 58, 60, 61, 62, 64, 68, 70, 71, 72, 73, 76, 79], "do_predict": [7, 38, 51, 68], "doc": 77, "dockerfil": 0, "docstr": 0, "document": [0, 4, 6, 11, 12, 61, 72, 79], "documentari": 77, "doe": [6, 11, 12, 19, 31, 32, 35, 40, 41, 57, 61, 62, 63, 64, 70, 77], "doesn": [61, 63, 78], "doi": [39, 65, 74], "don": [12, 65], "done": [0, 2, 3, 5, 11, 12, 33, 39, 40, 41, 42, 43, 54, 56, 61, 62, 65, 70, 71, 73], "dornheim": 75, "dos_calcul": 63, "dos_data": [63, 64], "dos_object": 63, "dos_rel": [6, 12], "dos_valu": 64, "dot": 61, "doubl": [18, 34], "doubt": 33, "down": 11, "download": 78, "draft": 0, "drastic": [6, 18], "drawback": 6, "dresden": 75, "drive": 29, "driven": [4, 73], "dropout": 51, "dtype": [13, 61], "due": [62, 63, 64, 71], "dummi": 61, "dure": [0, 2, 5, 11, 12, 33, 50, 53, 55, 64, 65, 70, 72, 73, 74, 77], "during_training_metr": [7, 8, 12, 68], "dx": 74, "dynam": [12, 56, 72, 75], "e": [1, 3, 4, 5, 6, 12, 13, 16, 18, 19, 22, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 60, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "e_": 62, "e_ewald": 62, "e_grid": [27, 63, 64], "e_hartre": 62, "e_rho_times_v_hxc": 62, "e_xc": 62, "each": [0, 2, 3, 5, 12, 16, 22, 43, 49, 50, 70, 71, 73, 75], "earli": 12, "earlier": 65, "early_stopping_epoch": [7, 8, 12, 68, 70], "early_stopping_threshold": [7, 8, 12, 68], "easi": [3, 6, 56], "easier": [19, 72, 73], "easili": [0, 2, 3, 6, 70, 73], "echo": 6, "edu": 65, "effect": [3, 6, 12, 34, 55, 64, 75], "effici": [4, 5, 65, 75, 79], "effort": [0, 75], "effortlessli": 75, "egrid": 27, "egrid_offset_ev": 27, "egrid_spacing_ev": 27, "eigenvalu": 63, "either": [0, 5, 12, 13, 19, 20, 23, 41, 56, 60, 62, 64, 65, 70, 71, 73], "electron": [5, 6, 7, 12, 37, 56, 59, 62, 63, 64, 65, 71, 72, 73, 74, 75], "elem_snapshot": 18, "elimin": 3, "elli": [0, 74, 75], "els": [3, 6], "elsewis": [13, 16, 63], "emploi": [1, 6, 12, 73, 75], "empti": [12, 66], "emul": 22, "en": 42, "enabl": [2, 3, 5, 6, 54, 55, 56, 65, 71, 73, 76], "encapsul": 6, "encod": [2, 33, 52, 71, 73, 79], "encourag": 4, "end": [3, 4, 11, 12, 13, 16, 43, 62, 63, 64, 65, 70, 73], "energi": [0, 5, 6, 7, 12, 27, 37, 49, 56, 60, 62, 63, 64, 65, 71, 72, 73, 75, 79], "energy_grid": [5, 7, 58, 60, 63, 64, 68], "energy_integration_method": 64, "energy_unit": 60, "energygrid": [63, 64], "enforc": [33, 51, 65], "enforce_pbc": [7, 30, 33, 68], "enhanc": [0, 75], "enough": [2, 6, 12, 49, 50, 71, 79], "ensur": [0, 6, 11, 12, 18, 19, 62, 64, 75], "enter": 64, "entir": [5, 6, 12, 13, 19, 20, 22, 29, 33, 51, 55, 71, 73], "entiti": 6, "entri": [0, 5, 12, 22, 62, 73], "entropi": [60, 63, 64], "entropy_contribut": [7, 58, 63, 64, 68], "entropy_multipl": [7, 58, 60, 68], "enviro": 71, "environ": [0, 2, 6], "epoch": [6, 12, 70], "epsilon": [60, 63], "epsilon_": 63, "epsilon_f": [60, 63, 64], "eq": [60, 65], "equal": 34, "equat": [63, 65], "equilibr": [12, 15, 16, 75], "equilibrated_snapshot": 16, "equival": 63, "erro": 77, "erron": 26, "error": [5, 6, 11, 12, 25, 27, 56, 62, 63, 64, 71, 77], "especi": [3, 12, 49, 79], "espresso": [2, 5, 18, 33, 62, 63, 64, 65, 71, 72, 79], "essenti": [6, 12, 18, 70], "establish": 6, "estim": [12, 16], "etc": [0, 3, 10, 12, 20, 29, 37, 40, 44, 45, 46, 47, 48, 55, 70, 71, 72, 73], "euclidean": 12, "ev": [12, 20, 33, 59, 60, 62, 63, 64, 65], "evalu": [3, 5, 6, 12, 19, 64], "even": [1, 5, 6, 65, 72], "evenli": 5, "event": [11, 61], "eventu": [37, 64], "everi": [0, 15, 64], "everyth": [12, 38], "evid": 12, "ewald": [12, 62], "ex01_checkpoint": 6, "ex01_checkpoint_train": 6, "ex01_train_network": 73, "ex02_shuffle_data": 6, "ex02_test_network": 73, "ex03_preprocess_data": 71, "ex03_tensor_board": 6, "ex04_acsd": 2, "ex04_hyperparameter_optim": 70, "ex05_checkpoint": 3, "ex05_checkpoint_hyperparameter_optim": 3, "ex05_run_predict": 72, "ex06_ase_calcul": 72, "ex06_distributed_hyperparameter_optim": 3, "ex07_advanced_hyperparameter_optim": 3, "ex08_visualize_observ": 5, "exact": [63, 64], "exactli": [62, 63, 64], "exampl": [0, 2, 3, 4, 5, 6, 21, 42, 69, 70, 71, 72, 73, 75, 76], "example_minimal_number_of_runs_oa": 42, "except": [3, 5, 12, 62, 65], "excess": 74, "exchang": 12, "exclud": 12, "exclus": 70, "execut": [0, 3, 22, 43, 69, 76], "exhibit": 75, "exist": [3, 6, 26, 40, 55, 57, 61, 63, 72], "expans": 2, "expect": [6, 12], "expens": 0, "experi": 12, "experiment": [12, 14, 70], "experiment_ddmmyi": 12, "explain": 70, "explan": 70, "explicitli": [12, 33, 72], "explictli": 33, "explor": 75, "exploratori": [2, 4], "expon": 60, "export": [6, 10, 12, 77, 78], "express": [11, 61, 63, 64], "extend": [5, 18, 70, 72, 75], "extens": [4, 6], "extent": 13, "external_modul": 78, "extra": [0, 33], "extract": [3, 13, 34, 47, 48, 62, 66], "extract_compute_np": [7, 30, 34, 68], "f": [12, 22, 60], "f0": 60, "f1": 60, "f2": 60, "f2py": 62, "f90": 78, "f90exec": 78, "facilit": 75, "factor": [2, 5, 6, 12, 42, 60, 63, 65, 70], "fail": [0, 12], "fairli": [33, 72], "falkner18a": 12, "fals": [2, 6, 12, 13, 16, 18, 22, 25, 27, 33, 34, 39, 40, 41, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65], "familiar": [3, 69, 73], "far": [12, 71], "faruk": 0, "fashion": [5, 70], "fast": 12, "fast_tensor_dataset": [7, 17, 68], "faster": [5, 6, 18, 24, 33, 72, 76, 78], "fasttensordataset": [7, 17, 24, 26, 68], "featur": [0, 3, 6, 12, 13, 20, 22, 31, 32, 35, 59, 62, 63, 64, 65, 69, 70, 73, 75, 79], "feature_from": 13, "feature_s": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 65, 68], "feature_to": 13, "fed": 75, "feed": [12, 51], "feed_forward": 12, "feedforwardnet": [7, 38, 51, 68], "fermi": [6, 12, 56, 60, 63, 64, 65], "fermi_energi": [6, 7, 12, 58, 60, 63, 64, 68], "fermi_energy_self_consist": [63, 64], "fermi_funct": [7, 58, 60, 68], "fermi_v": 60, "fetch": 28, "few": [3, 5, 73], "feynman": 62, "ff": 0, "ff_multiple_layers_count": 70, "ff_multiple_layers_neuron": 70, "ff_neurons_lay": 70, "ff_neurons_layer_00": 70, "ff_neurons_layer_001": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_002": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_01": 70, "ff_neurons_layer_xx": 70, "ff_neurons_layer_xxx": 12, "fflag": 78, "fiedler": [0, 74, 75], "field": 71, "file": [0, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 37, 42, 43, 51, 54, 55, 57, 61, 62, 63, 64, 65, 66, 70, 71, 73, 75, 78], "file_based_commun": [18, 39], "file_index": 25, "file_nam": 62, "file_path": [42, 43], "filenam": [4, 12, 22, 37, 61, 66], "filename_uncorrelated_snapshot": 16, "filepath": 65, "fill": [12, 15, 70, 71], "final": [6, 7, 8, 11, 68, 73], "find": [0, 6, 42, 74, 78], "fine": [6, 12, 71], "fingerprint": [12, 18, 33, 39], "finish": [6, 43], "finit": [74, 75], "first": [2, 5, 12, 16, 18, 27, 49, 50, 62, 70, 71, 72, 73, 75, 77, 79], "first_snapshot": [7, 14, 16, 68], "firstli": [2, 70, 73], "fit": [7, 11, 17, 22, 61, 68], "fix": [0, 77], "flag": 73, "flexibl": 65, "float": [12, 16, 27, 31, 33, 34, 40, 44, 45, 46, 47, 48, 51, 54, 60, 61, 63, 64, 65, 70], "fname": 61, "focu": 75, "folder": [0, 12, 76, 77], "follow": [0, 1, 6, 11, 12, 40, 42, 44, 45, 46, 47, 48, 60, 61, 62, 69, 70, 72, 73, 75, 77], "footprint": [12, 64], "forc": [7, 37, 59, 62, 64], "force_no_ddp": 12, "forgiv": 12, "fork": 0, "form": [0, 12, 22, 61, 62, 72], "formal": [4, 6], "format": [5, 12, 13, 22, 33, 44, 53, 57, 61, 62, 63, 64, 65, 66, 71, 72, 73], "former": 1, "formerli": 12, "formula": [12, 60], "fortran": 62, "forward": [7, 12, 38, 51, 53, 68], "found": [3, 6, 12, 39, 40, 41, 42, 43], "fourier": [12, 65], "fourier_transform": 65, "fox": 0, "fp32": 18, "fpic": 78, "frac": [60, 64], "fraction": 12, "framework": [3, 7, 13, 51, 73], "franz": 0, "free": [3, 11, 26, 61, 71, 74, 75, 79], "freedom": 22, "friction": 12, "from": [0, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 22, 25, 26, 27, 29, 33, 34, 37, 41, 42, 43, 47, 48, 51, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 77], "from_cube_fil": [7, 58, 62, 64, 68], "from_json": [7, 8, 10, 12, 17, 29, 68], "from_ldos_calcul": [5, 7, 58, 62, 63, 68], "from_numpy_arrai": [7, 58, 62, 63, 64, 68], "from_numpy_fil": [7, 58, 62, 63, 64, 68], "from_openpmd_fil": [7, 58, 62, 64, 68], "from_qe_dos_txt": [7, 58, 63, 68], "from_qe_out": [7, 58, 63, 68], "from_xsf_fil": [7, 58, 62, 64, 68], "front": 12, "frozentri": [43, 49, 50], "full": [4, 6, 27, 39, 73, 76, 78], "full_logging_path": 6, "fulli": [3, 4, 19], "function": [0, 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 22, 29, 31, 32, 33, 34, 35, 37, 42, 43, 44, 50, 51, 52, 53, 59, 60, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 77, 79], "function_valu": 60, "fundament": 0, "furnish": [11, 61], "further": [0, 3, 4, 5, 6, 12, 55, 57, 70, 71, 72, 73, 74, 75, 76], "furthermor": [4, 79], "futur": [63, 73], "g": [3, 4, 5, 6, 12, 13, 16, 18, 31, 32, 33, 35, 36, 37, 40, 44, 45, 46, 47, 48, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "gabriel": [0, 74], "gain": 74, "gather": [18, 24, 33, 54, 64, 73], "gather_dens": 64, "gather_descriptor": [7, 30, 33, 68], "gather_do": 64, "gather_ldo": 54, "gaussian": [5, 7, 12, 31, 35, 58, 60, 61, 68], "gcc": [76, 78], "gener": [0, 2, 5, 6, 8, 11, 12, 13, 14, 16, 18, 42, 51, 62, 63, 64, 65, 69, 72, 73, 74, 78], "generate_square_subsequent_mask": [7, 38, 51, 68], "get": [5, 11, 12, 13, 19, 31, 32, 33, 35, 41, 42, 44, 47, 54, 56, 59, 60, 62, 63, 64, 65, 72, 73, 75], "get_atomic_forc": [7, 58, 62, 64, 68], "get_band_energi": [7, 58, 63, 64, 68], "get_best_trial_result": [7, 38, 41, 42, 68], "get_beta": [7, 58, 60, 68], "get_categor": [7, 38, 47, 48, 68], "get_comm": [7, 8, 11, 68], "get_dens": [7, 58, 62, 64, 68], "get_density_of_st": [7, 58, 63, 64, 68], "get_energy_contribut": [7, 58, 62, 68], "get_energy_grid": [7, 58, 63, 64, 65, 68], "get_energy_targets_and_predict": [7, 38, 56, 68], "get_entropy_contribut": [7, 58, 63, 64, 68], "get_equilibrated_configur": [7, 14, 15, 68], "get_f0_valu": [7, 58, 60, 68], "get_f1_valu": [7, 58, 60, 68], "get_f2_valu": [7, 58, 60, 68], "get_feature_s": [7, 58, 59, 68], "get_first_snapshot": [7, 14, 16, 68], "get_float": [7, 38, 48, 68], "get_int": [7, 38, 48, 68], "get_local_rank": [7, 8, 11, 68], "get_new_data": [7, 17, 25, 68], "get_number_of_electron": [7, 58, 62, 63, 64, 68], "get_optimal_paramet": [7, 38, 42, 68], "get_optimal_sigma": [7, 30, 31, 68], "get_orthogonal_arrai": [7, 38, 42, 68], "get_paramet": [7, 38, 47, 48, 68], "get_potential_energi": 72, "get_radial_distribution_funct": [7, 58, 65, 68], "get_rank": [7, 8, 11, 68], "get_real_space_grid": [7, 58, 65, 68], "get_s0_valu": [7, 58, 60, 68], "get_s1_valu": [7, 58, 60, 68], "get_scaled_positions_for_q": [7, 58, 62, 68], "get_self_consistent_fermi_energi": [7, 58, 63, 64, 68], "get_siz": [7, 8, 11, 68], "get_snapshot_calculation_output": [7, 17, 19, 68], "get_snapshot_correlation_cutoff": [7, 14, 16, 68], "get_static_structure_factor": [7, 58, 65, 68], "get_target": [7, 58, 62, 63, 64, 65, 68], "get_test_input_gradi": [7, 17, 19, 68], "get_three_particle_correlation_funct": [7, 58, 65, 68], "get_total_energi": [7, 58, 64, 68], "get_trials_from_studi": [7, 38, 43, 68], "get_uncorrelated_snapshot": [7, 14, 16, 68], "git": [0, 76, 77], "github": [0, 11, 12, 21, 74, 76, 77], "gitlab": [65, 78], "give": [1, 3, 6, 12, 16, 64, 69, 70, 71, 73, 76], "given": [0, 6, 13, 18, 33, 54, 57, 60, 61, 62, 63, 64, 65, 70, 71, 75, 79], "glimps": 73, "global": 12, "gmail": 61, "gnn": 0, "gnu": 78, "go": 12, "goal": 66, "goe": 12, "goo": 11, "good": [2, 3, 6, 12, 49, 50], "got": 0, "govern": [70, 71], "gpaw": 72, "gpu": [0, 3, 11, 12, 55, 69, 76], "gradient": [12, 19, 25, 26, 70], "grand": 74, "grant": [11, 61], "granular": 71, "graph": [6, 12], "grate": 0, "gre": 6, "greater": 12, "greatli": [12, 73], "grid": [0, 5, 12, 27, 31, 33, 60, 62, 63, 64, 65, 71, 73, 75, 79], "grid_dimens": [33, 62, 65], "grid_integration_method": 64, "gridi": [62, 64], "gridpoint": 62, "gridsiz": [12, 62, 64], "gridspac": 12, "gridx": [62, 64], "gridz": [62, 64], "ground": [6, 12, 73], "grow": 74, "gru": [7, 12, 38, 51, 68], "guarante": 6, "guess": 65, "gui": 4, "guid": [1, 2, 5, 69, 70, 71, 72, 73, 75], "guidelin": 0, "h": [62, 76], "h5": [4, 13, 62, 65], "ha": [0, 2, 4, 5, 6, 11, 12, 13, 22, 25, 34, 37, 42, 43, 49, 50, 51, 54, 55, 62, 63, 64, 70, 71, 73, 74, 75, 77, 78, 79], "hacki": 12, "had": [6, 71], "hand": [5, 12, 13, 27], "handl": [3, 4, 6, 17, 19, 20, 23, 27, 65], "handler": [42, 43, 55, 57, 64], "happen": 63, "har": 75, "hard": 29, "hardwar": [1, 5, 69], "haswel": 76, "have": [0, 2, 3, 5, 6, 10, 12, 13, 22, 25, 26, 29, 31, 32, 33, 35, 39, 40, 43, 44, 45, 46, 47, 48, 60, 63, 64, 65, 70, 71, 72, 73, 74, 76, 78, 79], "haven": 77, "head": [0, 6, 12], "heartbeat": 12, "heavi": [5, 65], "hellman": 62, "helmholtz": 75, "help": [3, 12, 54, 64, 69, 73], "helper": [4, 60], "here": [3, 5, 6, 12, 16, 18, 25, 26, 39, 42, 51, 55, 63, 70, 71, 72, 73, 76], "herebi": [11, 61], "hidden": [12, 51, 70], "hierarchi": 13, "high": [11, 12, 40, 44, 45, 46, 47, 48, 74], "higher": [12, 40, 44, 45, 46, 48], "highli": [2, 4, 5, 6, 14, 77, 79], "hint": 6, "histogram": [12, 65], "hiwonjoon": 11, "hlist": [7, 8, 12, 68], "hoc": 16, "hoffmann": [0, 74, 75], "hold": [6, 12, 19, 33, 40, 41, 42, 43, 54, 55, 56, 57, 64], "holder": [11, 61], "horovod": 0, "hossein": 0, "host": 6, "hostnam": 6, "hotyp": [44, 45, 46, 47, 48], "how": [2, 3, 12, 22, 27, 63, 64, 65, 69, 70, 71, 73, 76], "howev": [2, 4, 6, 12, 26, 33, 53, 64, 73, 74], "hpc": [3, 6, 12, 43, 78], "html": [12, 42, 77], "http": [0, 11, 12, 21, 42, 61, 65, 74, 76, 77, 78], "huge": 6, "hundr": 75, "hyper_opt": [7, 38, 68], "hyper_opt_method": [3, 12], "hyper_opt_naswot": [7, 38, 68], "hyper_opt_oat": [7, 38, 68], "hyper_opt_optuna": [7, 38, 68], "hyperopt": [3, 7, 38, 39, 40, 41, 42, 43, 68, 70], "hyperoptim": [2, 70], "hyperoptnaswot": [7, 38, 41, 44, 68], "hyperoptoat": [7, 38, 41, 42, 44, 68], "hyperoptoptuna": [7, 38, 41, 43, 44, 68], "hyperparam": 12, "hyperparamet": [0, 1, 2, 7, 8, 12, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 57, 68, 69, 73, 74, 75, 77], "hyperparameter_acsd": [7, 38, 68], "hyperparameter_naswot": [7, 38, 68], "hyperparameter_oat": [7, 38, 68], "hyperparameter_optuna": [7, 38, 68], "hyperparameteracsd": [7, 38, 44, 45, 68], "hyperparameternaswot": [7, 38, 44, 46, 68], "hyperparameteroat": [7, 38, 44, 47, 68], "hyperparameteroptuna": [7, 38, 44, 46, 48, 68], "hyperparemet": 12, "i": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 74, 76, 77, 78, 79], "i0": 60, "i1": 60, "i_0": 60, "i_1": 60, "ibrav": 62, "icml2019": 11, "idea": 6, "ideal": [2, 13, 62, 65], "identif": 75, "identifi": 70, "idx": 47, "ifnam": 61, "ignor": [3, 12, 18, 62, 65, 69, 76], "ik": 63, "imag": [61, 65], "imaginari": 61, "immens": 0, "impact": [6, 64], "imped": 12, "implement": [0, 3, 6, 10, 12, 13, 22, 33, 37, 49, 50, 51, 62, 63, 64, 65, 75, 79], "implemented_properti": [7, 36, 37, 68], "impli": [11, 13, 61, 65], "import": [1, 2, 3, 6, 37, 42, 54, 64, 65, 72, 78, 79], "improv": [0, 1, 12, 23, 24, 73], "in_unit": [31, 32, 33, 35, 59, 62, 63, 64, 65], "includ": [0, 4, 11, 12, 19, 29, 33, 41, 42, 55, 61, 64, 70, 71, 75], "incopor": 71, "incorpor": 65, "increas": [3, 12], "increment": [6, 22, 73, 77], "indent": 12, "index": [27, 47, 77], "indic": [26, 49, 50, 56], "indisput": 12, "individu": [3, 6, 12, 22, 71, 73, 75, 79], "indiviu": [12, 22], "industri": 6, "inf": 12, "infer": [0, 5, 12, 54, 55, 56, 61, 64, 72, 73, 75], "inference_data_grid": [5, 7, 8, 12, 68], "infinit": 49, "infint": 49, "info": [12, 18, 73], "inform": [2, 3, 4, 6, 12, 13, 15, 51, 63, 65, 66, 71, 72, 73], "infrastructur": [0, 6, 43], "inher": 4, "inherit": 10, "init": 6, "init_hidden": [7, 38, 51, 68], "init_weight": [7, 38, 51, 68], "initi": [3, 13, 15, 51, 71, 75], "initial_charg": 37, "initial_magmom": 37, "initial_setup": [3, 6], "initialis": 51, "initil": 12, "initrang": 51, "inject": 51, "input": [12, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 51, 62, 63, 64, 65, 71, 73, 79], "input_data_scal": [19, 25, 26], "input_dimens": [7, 17, 20, 25, 26, 68, 73], "input_directori": [20, 23], "input_fil": [20, 23], "input_npy_directori": [20, 23, 29], "input_npy_fil": 29, "input_requires_grad": [25, 26], "input_rescaling_typ": [7, 8, 12, 68, 70, 73], "input_shm_nam": 28, "input_unit": [20, 29], "inputpp": 71, "insid": [76, 77], "instal": [0, 2, 5, 6, 75], "instanc": [2, 3, 4, 5, 11, 12, 13, 15, 16, 18, 33], "instanti": [12, 51, 55, 57, 73], "instead": [2, 3, 5, 25, 26, 37, 42, 50, 61, 65, 69, 71], "institut": 75, "instruct": [0, 2, 5, 75, 76, 78], "int": [11, 12, 13, 15, 16, 18, 19, 23, 25, 26, 27, 40, 44, 45, 46, 47, 48, 51, 53, 56, 60, 61, 62, 63, 65, 70], "integ": [5, 12, 18, 48, 70], "integr": [54, 60, 62, 63, 64, 72], "integral_valu": 60, "integrate_values_on_spac": [7, 58, 60, 68], "integration_method": [62, 63, 64], "integration_valu": 60, "intel": 76, "intend": 4, "inter": 6, "interact": 4, "interest": [4, 5, 66, 70, 72, 73], "interfac": [0, 2, 3, 7, 11, 12, 13, 33, 37, 44, 50, 51, 54, 62, 63, 64, 65, 68, 70, 71, 72], "interfer": 55, "interg": [62, 64], "intern": [13, 18, 33, 54, 55, 62, 65], "internal_iteration_numb": [13, 62, 65], "interpret": 6, "interv": [3, 6, 12], "intra": 6, "introduc": [12, 75], "introduct": 69, "introductori": 71, "intuit": [2, 6], "invalid": [62, 63, 64, 65], "invalidate_target": [7, 58, 62, 63, 64, 65, 68], "inverse_transform": [7, 17, 22, 68], "investig": [5, 19, 20, 39, 40, 43, 44, 45, 46, 47, 48, 70], "invok": 5, "involv": [2, 5, 6, 73], "io": [16, 42, 72], "ion": 12, "ionic": [12, 75], "iop": 74, "ish": 78, "issu": [5, 12, 74], "ist": 65, "iter": [12, 13, 62, 65], "its": [4, 12, 19, 70, 73, 75], "itself": [3, 5, 6, 12, 16, 60, 65, 71, 72, 73, 74, 77], "j": [61, 74, 75, 78], "jacobian": [12, 41, 53], "jame": 0, "jiang": 75, "jmax": 12, "job": [3, 12, 43], "join": [2, 71, 72, 73], "jointli": 75, "jon": [0, 75], "josh": [0, 12], "journal": 74, "json": [10, 12, 29, 37, 55, 57, 65, 70, 71], "json_dict": [10, 12, 29], "json_serializ": [7, 8, 68], "jsonserializ": [7, 8, 10, 12, 29, 44, 68], "judg": [6, 49, 50], "jul": 74, "jun": 74, "june": 61, "jupyt": 4, "just": [0, 2, 3, 4, 5, 12, 26, 55, 57, 72, 73, 79], "justifi": 60, "k": [5, 54, 60, 62, 63, 64, 65, 71, 75], "k_": 60, "keep": [0, 12, 25, 26], "keep_log": 33, "kei": 61, "kept": [12, 33, 61], "keyword": [6, 12, 18, 33, 72], "kind": [11, 13, 20, 23, 61], "kindli": [0, 74], "kinet": 12, "kmax": [5, 12, 65], "known": [6, 37], "kohn": [74, 75], "kokko": [5, 11, 76], "kokkos_arch_gpuarch": 76, "kokkos_arch_hostarch": 76, "kokkos_arch_hsw": 76, "kokkos_arch_volta70": 76, "kokkos_enable_cuda": 76, "kotik": 0, "kpoint": [5, 65], "kulkarni": 0, "kwarg": [24, 25, 26, 28, 33, 37, 42, 49, 50, 51, 62, 64], "kyle": [0, 74], "l": [12, 74, 75, 76], "label": 12, "laboratori": 75, "lammp": [2, 5, 11, 12, 33, 34, 79], "lammps_compute_fil": [7, 8, 12, 68], "lammps_typ": 33, "lammps_util": [7, 30, 68], "langevin": 12, "larg": [2, 4, 5, 6, 33, 65, 73, 74, 75, 77], "larger": [5, 12, 13, 62, 65, 74], "last": [12, 25, 26, 37, 43, 62, 70, 73], "last_trial": 43, "lastli": 71, "latenc": 6, "later": [3, 6, 22, 41, 64, 70], "latest": 42, "latter": [3, 13, 65, 71], "lattic": 61, "launch": [3, 6, 12], "layer": [3, 12, 21, 40, 44, 45, 46, 47, 48, 70, 73], "layer_activ": [7, 8, 12, 68, 70, 73], "layer_activation_00": 70, "layer_activation_xxx": 12, "layer_s": [7, 8, 12, 68, 70, 73], "lazi": [12, 22, 23, 25, 26, 73], "lazili": [12, 19], "lazy_load_dataset": [7, 17, 68], "lazy_load_dataset_singl": [7, 17, 68], "lazyloaddataset": [7, 17, 25, 26, 68], "lazyloaddatasetsingl": [7, 17, 26, 68], "lbla": 78, "ldo": [2, 5, 6, 7, 12, 18, 27, 54, 56, 58, 59, 60, 62, 63, 65, 68, 71, 72, 73, 75, 79], "ldos_align": [7, 17, 68], "ldos_calcul": [5, 64, 72], "ldos_data": 64, "ldos_gridoffset_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_grids": [6, 7, 8, 12, 68, 71, 73], "ldos_gridspacing_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_mean": 27, "ldos_mean_ref": 27, "ldos_object": [62, 63], "ldosalign": [7, 17, 27, 68], "ldosfil": 71, "lead": [2, 5, 12, 65, 75], "leaf": 19, "leakyrelu": [12, 70], "learn": [5, 7, 12, 22, 65, 70, 73, 74, 75], "learner": 11, "learning_r": [7, 8, 12, 68, 70, 73], "learning_rate_decai": [7, 8, 12, 68, 70], "learning_rate_pati": [7, 8, 12, 68, 70], "learning_rate_schedul": [7, 8, 12, 68], "least": 65, "leastearly_stopping_threshold": 12, "leav": 26, "left": [4, 27, 28], "left_index": 27, "left_index_ref": 27, "left_trunc": 27, "legaci": [12, 37, 65], "length": [5, 27, 51, 74, 75], "lenz": [0, 74, 75], "less": [12, 18, 65], "let": [12, 71, 73], "level": [11, 12, 21, 25, 26, 42, 54, 60, 63, 64, 73, 74, 75], "lfftw3": 78, "lh": 27, "liabil": [11, 61], "liabl": [11, 61], "lib": [76, 78], "liblammp": 76, "librari": [3, 4, 5, 6, 22, 50, 70, 72, 73, 76, 78, 79], "licens": [11, 61], "lie": 33, "like": [3, 5, 6, 11, 26, 73, 78], "likewis": [2, 5, 6], "limit": [3, 6, 11, 12, 28, 50, 61, 75], "line": [4, 34, 61, 73, 74], "linger": 11, "link": [11, 42, 70, 74, 76], "linux": [77, 78, 79], "list": [0, 2, 4, 5, 6, 12, 13, 18, 19, 20, 27, 28, 29, 33, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 56, 61, 62, 65, 73], "littl": 62, "llapack": 78, "lmkl_core": 78, "lmkl_intel_lp64": 78, "lmkl_sequenti": 78, "lmp": 34, "load": [12, 19, 20, 22, 23, 25, 26, 28, 37, 40, 42, 43, 51, 54, 55, 57, 63, 70, 72, 73, 76, 78], "load_from_fil": [7, 8, 12, 17, 22, 38, 42, 43, 51, 68, 70], "load_from_json": [7, 8, 12, 68], "load_from_pickl": [7, 8, 12, 68], "load_model": [7, 36, 37, 68, 72], "load_run": [3, 6, 7, 36, 37, 38, 55, 57, 68, 72, 73], "load_runn": [55, 57], "load_snapshot_to_shm": [7, 17, 28, 68], "load_with_ddp": 55, "load_with_gpu": 55, "load_with_mpi": 55, "loaded_hyperopt": 42, "loaded_network": [51, 55, 57], "loaded_param": [42, 43, 55, 57], "loaded_paramet": 12, "loaded_train": 43, "local": [0, 3, 11, 12, 33, 62, 64, 75, 76], "local_density_of_st": [7, 58, 63, 64, 68], "local_offset": 13, "local_psp_nam": [7, 8, 12, 68], "local_psp_path": [7, 8, 12, 68], "local_rank": 6, "local_reach": 13, "locat": [0, 12, 64], "log": [0, 12, 15, 33, 60], "logdir": 6, "logger": [6, 7, 8, 12, 68], "logging_dir": [6, 7, 8, 12, 68], "logging_dir_append_d": [7, 8, 12, 68], "logging_period": 15, "long": [6, 12], "longer": [0, 2, 12, 19], "look": 55, "loos": 65, "loss": [6, 12, 42, 49, 51, 56, 70], "loss_function_typ": [7, 8, 12, 68], "loss_val": 51, "lot": [66, 73, 79], "low": [12, 40, 44, 45, 46, 47, 48, 73], "lower": [16, 40, 44, 45, 46, 48, 70], "lowest": [12, 71], "lstm": [7, 12, 38, 51, 68], "m": 75, "mach": 75, "machin": [5, 6, 73, 74, 75, 76, 78], "maco": [77, 79], "made": [0, 5, 72], "mae": [56, 73], "magmom": 37, "magnitud": [71, 74], "mai": [2, 3, 5, 6, 12, 16, 18, 33, 60, 63, 64, 70, 71, 73, 76, 77, 78], "main": 78, "mainli": [4, 33], "maintain": [0, 6], "mainten": [0, 75], "major": 0, "make": [0, 3, 4, 5, 6, 12, 53, 64, 71, 72, 73, 75, 76, 77, 78], "mala": [1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 73, 76, 78, 79], "mala_data_repo": [21, 77], "mala_foundational_pap": 74, "mala_hyperparamet": 74, "mala_paramet": [5, 72], "mala_shuffled_snapshot": 23, "mala_sizetransf": 74, "mala_temperaturetransf": 74, "mala_train": 6, "mala_vi": 6, "malada_compat": 16, "manag": [12, 24, 73], "mandatori": 41, "mani": [0, 2, 3, 12, 27, 71, 72], "manual": [0, 5, 12, 70, 78], "manual_se": [7, 8, 12, 68], "map": 64, "mape": [12, 56], "mark": [0, 43], "mask": 51, "mass": 61, "massiv": [3, 74], "master": [0, 11, 65], "master_addr": 6, "master_port": 6, "match": [2, 13, 61, 62, 63, 64, 65], "mater": 75, "materi": [72, 74, 75], "mathemat": [3, 39, 60], "mathrm": [60, 62], "matplotlib": 5, "matrix": 62, "matter": [5, 19, 74, 75], "max": [12, 22, 73], "max_len": 51, "max_number_epoch": [7, 8, 12, 68, 73], "maxim": 12, "maximum": [2, 3, 5, 12, 51, 65], "mc": [12, 36, 37], "md": [12, 15, 16, 36, 37, 65, 75], "mean": [6, 12, 13, 22, 27, 33, 49, 50, 53, 59, 62, 63, 64, 70, 71, 73], "mean_std": 12, "meaning": [12, 65], "measur": 73, "mechan": [18, 50, 75], "medium": 12, "melt": 75, "member": [16, 65], "memori": [6, 11, 12, 18, 25, 26, 28, 34, 55, 57, 62, 63, 64, 73], "mention": [2, 5, 6], "merchant": [11, 61], "merg": [0, 11, 61], "merit": 72, "mess": 43, "messag": [1, 11], "meta": [13, 61, 66], "metadata": [4, 13, 18, 26, 31, 32, 35, 61, 62, 63, 64, 66], "metadata_input_path": 18, "metadata_input_typ": 18, "metal": 71, "method": [0, 2, 3, 5, 6, 10, 12, 49, 50, 51, 60, 61, 62, 63, 64, 65, 71, 74, 75, 77], "metric": [3, 12, 16, 49, 75], "mev": 6, "mic": 65, "might": [12, 26, 37, 43, 51, 53], "miller": [0, 74, 75], "mimic": 61, "min": [12, 22, 73], "min_verbos": 11, "mini": [12, 53, 70], "mini_batch_s": [7, 8, 12, 68, 70, 73], "minim": [12, 27], "minimum": [11, 12, 42, 65], "minmax": [12, 22, 73], "minor": 0, "minterpi": 0, "minterpy_descriptor": [7, 30, 68], "minterpydescriptor": [7, 30, 35, 68], "mit": [11, 61], "mitig": 6, "mix": [6, 12, 19, 23, 25, 26], "mix_dataset": [7, 17, 19, 25, 26, 68], "mkl": 78, "ml": [2, 3, 5, 6, 15, 59, 62, 63, 64, 65, 69, 71, 75], "mlr": 12, "mode": [11, 33, 55, 64, 65], "model": [0, 2, 3, 5, 6, 18, 37, 51, 54, 55, 57, 69, 70, 71, 74, 75, 79], "moder": 5, "modern": 74, "modif": [6, 65], "modifi": [0, 11, 22, 43, 49, 50, 61, 71, 78], "modin": [0, 74, 75], "modul": [0, 6, 9, 21, 51, 61, 62, 65, 79], "modular": 0, "moham": [0, 74, 75], "moldabekov": 75, "molecular": [72, 75], "moment": [12, 19, 40, 44, 45, 46, 47, 48, 78], "monitor": 6, "month": 74, "more": [1, 2, 3, 5, 6, 12, 22, 24, 37, 60, 65, 71, 72, 75], "moreov": 75, "most": [2, 5, 6, 12, 55, 74, 75, 76, 77, 78, 79], "move": [12, 74], "mpi": [2, 3, 5, 11, 12, 18, 54, 55, 64, 65, 76, 78], "mpi4pi": 33, "mpi_commun": 65, "mpi_rank": 65, "mpi_util": 11, "mpif90": 78, "mpirun": [3, 5], "mse": [6, 12, 27, 56], "much": [6, 26, 63], "mujoco": 11, "multi": 12, "multi_lazy_load_data_load": [7, 17, 68], "multi_train": 12, "multi_training_prun": [7, 38, 68], "multilazyloaddataload": [7, 17, 28, 68], "multipl": [0, 1, 2, 3, 5, 6, 11, 12, 16, 19, 20, 28, 29, 33, 40, 44, 45, 46, 47, 48, 49, 54, 60, 64, 70, 71, 73], "multiple_gaussian": 60, "multipli": 12, "multiplicator_v": 60, "multitrainingprun": [7, 38, 49, 68], "multivari": 12, "must": [12, 20, 27, 64], "mutat": 34, "mutual": 70, "my": 33, "my_modified_fil": 0, "my_studi": 3, "myriad": 74, "mysql": 3, "n": [3, 6, 12, 62, 74, 75], "n_shift_ms": 27, "n_trial": [7, 8, 12, 68, 70], "na": 12, "naiv": 6, "name": [0, 3, 6, 12, 13, 16, 18, 19, 22, 23, 27, 28, 33, 34, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 55, 57, 62, 64, 65, 70, 71, 73, 76, 78], "naming_schem": [4, 18, 71], "naming_scheme_input": 19, "naming_scheme_output": 19, "naswot": [0, 3, 12, 44, 46, 49, 50], "naswot_prun": [7, 38, 68], "naswot_pruner_batch_s": 12, "naswot_pruner_cutoff": 12, "naswotprun": [7, 38, 50, 68], "nation": 75, "natom": 62, "natur": [0, 12], "nccl": 6, "ndarrai": [13, 56, 62, 63, 64, 65], "ndarri": 13, "necessari": [0, 3, 4, 6, 10, 12, 18, 22, 43, 65, 69, 70, 71, 72, 73, 76], "necessarili": [62, 63, 64, 65], "need": [2, 5, 6, 10, 12, 13, 19, 20, 25, 29, 33, 37, 51, 55, 57, 60, 62, 63, 64, 65, 71, 73, 76, 77, 78, 79], "neg": [6, 12, 65], "neglect": 12, "neighbor": 65, "neighborhood": 16, "neither": 64, "net": [12, 51, 61], "netwok": 12, "network": [3, 6, 7, 8, 12, 19, 22, 37, 40, 41, 43, 49, 50, 52, 54, 55, 56, 57, 64, 68, 70, 72, 73, 74, 75], "neural": [3, 12, 37, 51, 54, 56, 57, 73, 74, 75], "neuron": [12, 70, 73], "new": [0, 3, 6, 11, 12, 23, 25, 26, 34, 70, 73], "new_atom": 33, "new_datahandl": [42, 43, 55, 57], "new_hyperopt": [42, 43], "new_inst": 11, "new_runn": 55, "new_train": 57, "new_valu": 11, "newer": 78, "newli": [55, 57, 71], "next": [6, 43, 61], "nil": [0, 74], "nlogn": 12, "nn": [3, 5, 6, 51, 53, 65, 70, 73], "nn_type": [7, 8, 12, 68], "no_data": [42, 43], "no_hidden_st": [7, 8, 12, 68], "no_snapshot": 12, "node": [6, 11, 12, 43], "nodelist": 6, "nois": 12, "nomenclatur": 70, "non": [2, 4, 27, 62, 65, 71], "none": [12, 13, 15, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 62, 63, 64, 65, 73], "noninfring": [11, 61], "nor": 64, "norm": 27, "normal": [12, 13, 22, 73], "normand": [0, 74], "note": [0, 5, 6, 12, 26, 34, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 60, 72, 76], "notebook": [4, 42], "noteworthi": 70, "noth": [31, 32, 35], "notic": [11, 61], "now": [4, 6, 28, 64, 66, 70, 71, 72, 73, 78], "np": [3, 13, 19, 60, 61, 63, 64], "npj": [74, 75], "npy": [2, 4, 6, 18, 71, 73], "nsy": 12, "ntask": 6, "num_choic": [7, 38, 47, 68], "num_head": [7, 8, 12, 68], "num_hidden_lay": [7, 8, 12, 68], "num_work": [6, 7, 8, 12, 68], "number": [0, 3, 5, 6, 11, 12, 13, 16, 18, 19, 23, 27, 34, 37, 42, 47, 56, 61, 62, 63, 64, 65, 67, 70, 71, 73, 74, 75, 78], "number_bad_trials_befor": 12, "number_bad_trials_before_stop": 12, "number_of_bin": [5, 12, 65], "number_of_electron": [7, 27, 56, 58, 62, 63, 64, 68, 73], "number_of_nod": 6, "number_of_run": [7, 38, 42, 68], "number_of_shuffled_snapshot": [6, 23], "number_of_tasks_per_nod": 6, "number_training_per_tri": [3, 7, 8, 12, 68], "numer": [12, 13, 16, 25, 33, 40, 44, 45, 46, 48, 61, 62, 63, 64, 65], "numpag": 74, "numpi": [0, 2, 4, 13, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 47, 52, 54, 56, 59, 60, 61, 62, 63, 64, 65, 66, 71], "numpy_arrai": 19, "nvcc_wrapper": 76, "nvidia": [6, 76], "o": [2, 12, 19, 71, 72, 73], "oa": [40, 42, 44, 45, 46, 47, 48, 52], "oapackag": [42, 77], "oat": [0, 3, 12, 44, 47, 52, 53], "object": [0, 3, 4, 5, 6, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "objective_bas": [7, 38, 68], "objective_naswot": [7, 38, 68], "objectivebas": [7, 38, 52, 53, 68], "objectivenaswot": [7, 38, 53, 68], "observ": [56, 72, 73, 75], "observables_to_test": [56, 73], "obtain": [5, 11, 19, 61, 77], "occur": [43, 60, 73, 77], "oct": 74, "ofdft_frict": [7, 8, 12, 68], "ofdft_initi": [7, 14, 68], "ofdft_kedf": [7, 8, 12, 68], "ofdft_number_of_timestep": [7, 8, 12, 68], "ofdft_temperatur": [7, 8, 12, 68], "ofdft_timestep": [7, 8, 12, 68], "ofdftiniti": [7, 14, 15, 68], "off": [0, 12, 27], "offer": [4, 6, 12, 66, 75], "offici": [4, 6, 12, 69, 72, 76, 77], "offload": [5, 6, 12], "offset": 27, "often": [6, 12], "ol": [0, 74, 75], "old": [12, 22, 29], "omar": 0, "onc": [0, 1, 2, 3, 5, 6, 43, 61, 70, 71, 73], "one": [0, 2, 3, 4, 6, 11, 12, 16, 19, 20, 23, 27, 33, 49, 54, 61, 62, 63, 64, 65, 70, 71, 73, 75, 79], "ones": [5, 25, 26, 33, 70], "ongo": 77, "onli": [0, 1, 2, 3, 5, 6, 11, 12, 13, 16, 18, 19, 20, 22, 25, 26, 29, 34, 37, 42, 43, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 70, 71], "onto": 0, "onward": 6, "open": [0, 4, 13, 61, 77], "openmpi": 78, "openpmd": [0, 1, 12, 13, 18, 20, 23, 27, 29, 33, 62, 63, 64, 65], "openpmd_configur": [7, 8, 12, 68], "openpmd_granular": [7, 8, 12, 68], "oper": [5, 6, 11, 12, 19, 20, 23, 65, 71, 73, 75], "opt": 77, "optim": [0, 1, 2, 5, 6, 7, 8, 12, 27, 31, 33, 39, 40, 41, 42, 43, 50, 52, 53, 57, 65, 68, 69, 73, 74, 75, 77], "optimal_shift": 27, "optimal_sigma": 31, "optimizer_dict": 57, "option": [3, 4, 5, 6, 9, 11, 12, 13, 18, 22, 26, 27, 29, 39, 41, 55, 57, 61, 65, 70, 71, 73, 74, 75, 76, 79], "option1": 76, "option2": 76, "opttyp": [40, 42, 44, 45, 46, 47, 48], "optuna": [3, 12, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 70], "optuna_singlenode_setup": [3, 7, 8, 12, 68], "orbit": 75, "order": [0, 3, 6, 11, 12, 13, 19, 25, 26, 42, 70, 71, 72, 74, 77], "org": [39, 61, 65, 74], "orient": 0, "origin": [3, 11, 20, 27, 29, 34, 61, 74], "orthogon": [3, 12, 42, 47, 52, 77], "oscil": 16, "ot": [25, 26], "other": [3, 6, 10, 11, 16, 27, 33, 36, 61, 62, 63, 65, 70, 72, 75], "otherwis": [11, 22, 40, 57, 61], "our": [4, 74], "ourselv": 22, "out": [0, 2, 4, 6, 11, 19, 41, 42, 54, 61, 63, 65, 71, 72, 73, 76, 77], "out_unit": [31, 32, 33, 35, 62, 63, 64, 65], "outdir": 33, "outfil": [33, 71], "outlin": [6, 60], "output": [1, 2, 6, 11, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 51, 56, 58, 61, 62, 63, 64, 65, 71, 73, 77, 79], "output_data_scal": [19, 25, 26], "output_dimens": [7, 17, 20, 25, 26, 68, 73], "output_directori": [20, 23, 27], "output_fil": [20, 23, 27], "output_format": [56, 73], "output_npy_directori": 29, "output_npy_fil": [20, 23, 27, 29], "output_rescaling_typ": [7, 8, 12, 68, 73], "output_shm_nam": 28, "output_unit": [20, 29], "outsid": [33, 64], "over": [1, 2, 65], "overal": 0, "overfit": [6, 73], "overflow": 60, "overhead": [3, 5, 12, 74], "overview": [1, 6, 76], "overwrit": [18, 23, 26], "overwritten": [55, 61], "own": [4, 12, 51, 73], "p": [61, 74, 75, 76], "packag": [75, 76, 79], "page": 74, "pairs": 61, "paper": [42, 49, 50, 74], "paral": 12, "parallel": [0, 1, 4, 7, 8, 12, 22, 33, 55, 64, 68, 69, 75, 76], "parallel_warn": [7, 8, 11, 68], "param": [31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 51, 52, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70], "paramet": [2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 75, 76], "parametersbas": [7, 8, 12, 68], "parametersdata": [7, 8, 12, 68], "parametersdatagener": [7, 8, 12, 68], "parametersdescriptor": [7, 8, 12, 39, 68], "parametershyperparameteroptim": [7, 8, 12, 68], "parametersnetwork": [7, 8, 12, 68], "parametersrun": [7, 8, 12, 53, 68], "parameterstarget": [7, 8, 12, 65, 68], "parametr": 19, "params_format": [55, 57], "paraview": 4, "parent": 55, "pars": [2, 12, 18, 30, 31, 32, 35, 39, 52, 59, 62, 63, 64, 66], "parse_tri": [7, 38, 52, 68], "parse_trial_oat": [7, 38, 52, 68], "parse_trial_optuna": [7, 38, 52, 68], "parser": [61, 65], "part": [5, 12, 13, 61, 62, 65, 73, 79], "partial_fit": [7, 17, 22, 68], "particl": [12, 65], "particular": [11, 49, 50, 61], "partit": 56, "parvez": [0, 74], "pass": [0, 12, 51, 54, 64], "path": [2, 6, 12, 13, 16, 18, 19, 21, 27, 37, 39, 42, 43, 51, 54, 55, 57, 62, 63, 64, 65, 71, 72, 73, 76, 77, 78], "path_name_schem": 64, "path_schem": 64, "path_to_fil": [51, 54], "path_to_log_directori": 6, "patienc": 12, "paulbourk": 61, "pavanello": 75, "pbc": [33, 37], "peform": 12, "penalti": 12, "peopl": 0, "pep8": 0, "per": [6, 12, 33, 37, 70, 73], "percent": 12, "percentag": 6, "perform": [1, 3, 5, 12, 18, 19, 22, 24, 26, 37, 39, 40, 41, 42, 43, 51, 54, 60, 63, 64, 65, 69, 71, 72, 73, 74, 75, 76, 79], "perform_studi": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "period": 12, "permiss": [11, 61], "permit": [11, 61], "permut": 26, "person": [11, 61, 71], "phase": 74, "phenomena": 74, "phy": [74, 75], "phyiscal": 6, "physic": [2, 3, 6, 12, 13, 58, 65, 74], "physical_data": [7, 8, 68], "physicaldata": [7, 8, 13, 33, 65, 68], "physrevb": 74, "pickl": [12, 22, 33], "pip": 77, "pipelin": [0, 19, 20, 23, 27], "pkg_kokko": 76, "pkg_ml": 76, "pkl": [40, 42, 43, 55, 57], "place": [22, 73], "plan": 76, "plane": 5, "plateau": [12, 70], "plea": 65, "pleas": [0, 2, 3, 4, 5, 6, 12, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 64, 70, 72, 73, 74, 75, 76, 77, 78], "plot": [2, 5, 65], "plu": [3, 12], "plugin": 4, "pmd": 4, "point": [2, 3, 5, 6, 12, 21, 25, 26, 27, 33, 34, 55, 63, 65, 71, 73, 75], "popoola": [0, 74, 75], "popular": 74, "port": 6, "portion": [11, 12, 18, 61], "pose": 75, "posit": [5, 7, 33, 37, 51, 54, 61, 62, 71, 72], "positionalencod": [7, 38, 51, 68], "possibl": [6, 12, 39, 40, 44, 45, 46, 47, 48, 51, 63, 70], "possibli": 51, "post": [4, 29, 65, 75, 79], "postgresql": 3, "postprocess": [7, 59, 62, 63, 64, 65], "potenti": [0, 33, 70, 75], "power": [4, 6, 72], "pp": 71, "pr": 0, "practic": 6, "pre": [0, 28], "precalcul": 79, "preced": 71, "precict": [54, 56], "precis": [6, 12, 18, 33, 34], "predict": [6, 7, 37, 51, 54, 56, 64, 65, 69, 73, 74, 75, 76], "predict_for_atom": [5, 7, 38, 54, 68, 72], "predict_from_qeout": [7, 38, 54, 68], "predict_target": [7, 38, 56, 68], "predicted_arrai": 51, "predicted_ldo": 54, "predicted_output": 56, "predictor": [5, 7, 38, 55, 57, 68, 72], "prefer": [37, 71], "prefetch": [6, 12, 26], "prepar": [6, 13, 19, 42, 43], "prepare_data": [7, 17, 19, 55, 57, 68, 70, 73], "prepare_for_test": [7, 17, 19, 68], "preprocess": [2, 7, 12, 33, 65, 71], "present": [13, 39, 40, 41, 42, 43, 55, 62, 65], "press": [12, 74], "previou": [51, 72], "primari": 70, "principl": [2, 5, 40, 44, 45, 46, 47, 48, 73, 75], "print": [1, 3, 6, 11, 12, 42], "printout": [1, 3, 7, 8, 11, 68], "prior": [0, 2, 5, 6, 12], "priorli": 16, "problem": [0, 5, 6, 78], "problemat": 12, "proceed": 12, "process": [0, 2, 3, 4, 5, 6, 11, 12, 18, 19, 22, 25, 26, 29, 33, 34, 39, 52, 65, 71, 72, 73, 74, 75, 76, 78, 79], "product": [1, 4, 6, 22, 54, 73, 76], "profil": 12, "profiler_rang": [7, 8, 12, 68], "progress": [6, 64], "project": [0, 4, 6, 21, 76, 77], "proof": 75, "proper": [62, 63, 64, 74], "properli": [0, 11, 12], "properti": [6, 10, 12, 13, 16, 20, 25, 29, 31, 32, 33, 35, 37, 47, 62, 63, 64, 65, 70, 72, 75], "provid": [2, 3, 5, 6, 11, 12, 13, 16, 18, 21, 23, 39, 41, 50, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 76, 77], "prudent": [3, 73], "prune": [7, 38, 49, 50, 68], "pruner": [12, 49, 50], "pseudopotenti": [12, 62, 64, 65, 72], "pseudopotential_path": [7, 8, 12, 68, 72], "psu": 65, "public": [2, 3, 5, 6, 70, 71, 74], "publish": [0, 11, 61, 74], "pure": [6, 46, 63], "purpos": [2, 11, 42, 43, 61], "push": 0, "put": [12, 19, 43, 51], "pw": [62, 71], "py": [0, 2, 3, 6, 11, 72, 73, 76], "pypi": 0, "pyproject": 0, "pytest": 77, "python": [2, 3, 4, 5, 6, 19, 20, 33, 34, 62, 65, 72, 79], "python3": [3, 6, 76], "pythonpath": 78, "pytorch": [12, 19, 51, 55], "p\u00f6schel": 0, "q": 78, "qe": [12, 27, 33, 54, 62, 63, 64, 65, 78, 79], "qe_input_data": [7, 58, 62, 64, 65, 68], "qe_out_fil": 33, "qe_pseudopotenti": [62, 64, 65], "qef": 78, "qualiti": 0, "quantif": 0, "quantit": 12, "quantiti": [12, 16, 18, 22, 56, 58, 62, 63, 64, 65], "quantum": [5, 18, 33, 62, 63, 64, 65, 71, 72, 74, 75, 79], "quantumespresso": 65, "question": 6, "queue": 43, "quick": 33, "r": [42, 61, 64, 77], "race": 3, "radial": [5, 12, 65], "radial_distribution_funct": 65, "radial_distribution_function_from_atom": [5, 7, 58, 65, 68], "radii": [2, 5, 12, 65], "radiu": [2, 12, 65, 71], "rais": 62, "rajamanickam": [0, 74, 75], "ram": [6, 25, 42, 43, 51, 64], "random": [6, 51], "randomli": 3, "rang": [2, 12, 22, 42, 51, 73, 74, 75], "rank": [3, 5, 6, 11, 12, 33, 54, 63, 64, 65], "rapid": 75, "rate": [12, 51, 70], "rather": [3, 19, 55, 62, 63, 64], "raw": [2, 18, 19, 33, 71], "raw_numpy_to_converted_scaled_tensor": [7, 17, 19, 68], "rawradialdistribut": 65, "rdb": [12, 43], "rdb_storag": [3, 12, 43], "rdb_storage_heartbeat": [7, 8, 12, 68], "rdf": [5, 12, 16, 37, 65], "rdf_paramet": [7, 8, 12, 68], "re": [0, 2, 6, 19], "read": [4, 10, 12, 13, 16, 22, 25, 26, 29, 54, 60, 61, 62, 63, 64, 65, 66, 72], "read_additional_calculation_data": [7, 58, 63, 65, 68], "read_additional_read_additional_calculation_data": 62, "read_cub": [7, 58, 61, 68], "read_dimensions_from_numpy_fil": [7, 8, 13, 68], "read_dimensions_from_openpmd_fil": [7, 8, 13, 68], "read_dtyp": 13, "read_from_arrai": [7, 58, 62, 63, 64, 68, 72], "read_from_cub": [7, 58, 62, 64, 68], "read_from_numpy_fil": [7, 8, 13, 58, 63, 68], "read_from_openpmd_fil": [7, 8, 13, 68], "read_from_qe_dos_txt": [7, 58, 63, 68], "read_from_qe_out": [7, 58, 63, 68], "read_from_xsf": [7, 58, 62, 64, 68], "read_imcub": [7, 58, 61, 68], "read_xsf": [7, 58, 66, 68], "readi": [0, 71, 73], "readlin": [7, 58, 61, 68], "readthedoc": 42, "real": [22, 61, 65, 70, 73, 75, 79], "realist": 79, "realiz": 5, "realli": [31, 32, 35, 37], "realspac": [5, 16], "reason": [6, 12, 19, 63, 66, 73], "rebas": 0, "recap": 6, "recent": [74, 75, 76, 77, 78], "recogn": 12, "recommend": [6, 12, 16, 62, 63, 64, 65, 76, 79], "reconstruct": [42, 43, 55, 57], "record": [6, 12], "recv": 33, "redistribut": 23, "reduc": [12, 26, 64, 71], "reducelronplateau": 12, "reduct": 12, "redund": 27, "refer": [2, 3, 27, 62, 69, 70, 71, 73, 75, 76], "reference_data": 37, "reference_index": 27, "reflect": [5, 62, 64], "reformat": 0, "regain": 26, "regard": 74, "region": 71, "regular": [2, 3, 5, 12, 53, 71], "regularli": 0, "reimplement": 10, "rel": [26, 27, 51, 63], "relat": [3, 12, 76], "releas": 78, "relev": [2, 4, 6, 12], "reli": 74, "relu": [12, 70, 73], "remark": [2, 5], "remind": [2, 5], "remov": [27, 33], "renam": 78, "reorder": [12, 63], "reparametrize_scal": 19, "repeat": 0, "replac": [4, 13, 18, 29, 61, 64, 75], "repo": [0, 77], "report": [3, 12, 49, 50], "repositori": [0, 12, 69, 73, 74, 75, 77, 78], "repres": [2, 12, 29, 45, 46, 47, 48, 52, 53, 71, 73], "represent": [5, 12, 46, 71, 75], "reproduc": [0, 6, 63, 64, 65], "request": [12, 42, 74], "requeue_zombie_tri": [7, 38, 43, 68], "requir": [0, 3, 5, 6, 12, 13, 26, 41, 42, 61, 71, 73, 76, 77, 79], "research": [74, 75], "reset": [7, 17, 19, 20, 22, 68], "reshap": [13, 62, 63], "resiz": 19, "resize_snapshots_for_debug": [7, 17, 19, 68], "resourc": 6, "resp": [5, 12], "respect": [3, 10, 12, 20, 71, 73, 74], "respres": [47, 52], "restart": 3, "restrict": [11, 12, 61, 65], "restrict_data": [7, 58, 65, 68], "restrict_target": [7, 8, 12, 68], "resubmit": 43, "result": [3, 6, 12, 18, 19, 34, 52, 56, 65, 71, 72, 73, 75], "result_typ": 34, "resultsfor": 75, "resum": [3, 6, 42, 43], "resume_checkpoint": [7, 38, 42, 43, 68], "resumpt": [6, 42, 43], "retain": [33, 61], "return": [0, 2, 10, 11, 12, 13, 16, 19, 22, 27, 29, 31, 32, 33, 34, 35, 40, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "return_energy_contribut": 64, "return_outputs_directli": [7, 17, 25, 68], "return_plot": [2, 39], "return_str": 65, "return_valu": [47, 48], "retval": 61, "reusabl": 0, "rev": [74, 75], "review": 0, "rewrit": 26, "rfname": 61, "right": [11, 19, 27, 51, 61], "right_truncate_valu": 27, "rlectron": [6, 12], "rmax": [12, 65], "robust": 3, "romero": [0, 12], "room": 75, "root": [0, 22], "rossendorf": 75, "roughli": [71, 74], "rout": 33, "routin": [2, 4, 5, 6, 12, 73], "row": [47, 52], "rst": 77, "run": [0, 3, 5, 7, 8, 11, 12, 25, 33, 37, 42, 43, 54, 55, 57, 64, 68, 70, 73, 77, 78], "run_exist": [3, 6, 7, 38, 55, 57, 68], "run_nam": [7, 8, 12, 37, 55, 57, 68], "runner": [7, 38, 54, 56, 57, 68], "runner_dict": 55, "runtim": 4, "ry": [2, 59, 63, 64, 71], "s0": 60, "s1": 60, "s41524": 74, "safe": 1, "sai": 78, "same": [3, 5, 6, 12, 18, 19, 20, 23, 33, 39, 43, 51, 60, 61, 64, 65, 70, 78], "samefileerror": 76, "sampl": [12, 16, 39, 40, 41, 42, 43, 71, 73], "sampler": [12, 42], "sandia": 75, "save": [3, 4, 5, 6, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 27, 29, 37, 42, 43, 51, 55, 57, 62, 63, 64, 65, 68, 70, 71, 72, 73], "save_as_json": [7, 8, 12, 68], "save_as_pickl": [7, 8, 12, 68], "save_calcul": [7, 36, 37, 68], "save_format": [12, 22], "save_nam": [4, 6, 23, 27], "save_network": [7, 38, 51, 68], "save_path": 27, "save_path_ext": 27, "save_run": [7, 38, 55, 68, 73], "save_runn": 55, "sbatch": 6, "scalabl": 75, "scalar": 34, "scale": [3, 4, 5, 6, 12, 19, 22, 25, 26, 27, 42, 43, 51, 62, 64, 70, 73, 74, 75, 77], "scaled_posit": 62, "scaler": 22, "scarc": 18, "scf": [62, 71], "schedul": [6, 12, 43], "scheme": [18, 19, 64], "schmerler": [0, 74, 75], "sci": 75, "scienc": 74, "scientif": [0, 4, 75], "scikit": 22, "scontrol": 6, "score": [49, 50], "script": [3, 5, 6, 11, 12, 70, 78], "se": 37, "search": [1, 2, 70], "search_paramet": [49, 50, 53], "second": 12, "secondli": [2, 73], "section": [6, 69, 70, 71, 72, 73], "see": [0, 2, 5, 12, 18, 20, 29, 39, 42, 61, 65, 71, 72, 73, 76, 78], "seed": [6, 12], "seem": [5, 26], "select": [2, 6, 12, 13, 56, 71, 73, 78], "self": [63, 64], "sell": [11, 61], "sendv": 33, "sens": [12, 37, 53, 55, 63, 64, 73], "sep": [11, 74], "separ": [11, 18, 29, 37, 55, 57, 71, 73, 79], "sequenc": 51, "seri": [4, 13], "serial": [10, 11], "serializ": 10, "serv": [51, 54, 75], "server": 43, "servernam": 3, "set": [0, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 23, 24, 25, 26, 28, 33, 39, 40, 41, 42, 43, 52, 54, 55, 56, 62, 63, 64, 65, 70, 71, 72, 75, 76], "set_calcul": 72, "set_cmdlinevar": [7, 30, 34, 68], "set_current_verbos": [7, 8, 11, 68], "set_ddp_statu": [7, 8, 11, 68], "set_lammps_inst": [7, 8, 11, 68], "set_mpi_statu": [7, 8, 11, 68], "set_optimal_paramet": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "set_paramet": [7, 38, 40, 68], "setup": [0, 3, 6, 36, 77], "setup_lammps_tmp_fil": [7, 30, 33, 68], "sever": [3, 5, 60, 70, 73], "sgd": 12, "sh": 78, "shall": [11, 61], "sham": [74, 75], "shao": 75, "shape": [34, 62, 65], "share": [26, 28], "shift": [27, 33], "ship": 76, "shorter": 6, "should": [0, 2, 3, 5, 6, 11, 12, 13, 19, 21, 22, 31, 32, 33, 35, 37, 42, 43, 48, 49, 50, 51, 54, 55, 59, 60, 62, 63, 64, 65, 70, 71, 73, 76, 78], "should_prun": [49, 50], "show": [0, 6, 7, 8, 12, 68, 75], "show_order_of_import": [7, 38, 42, 68], "showcas": [2, 75], "shown": [2, 3, 5, 6, 71, 73], "shuffl": [0, 4, 6, 7, 12, 17, 20, 23, 24, 25, 26, 68], "shuffle_snapshot": [4, 6, 7, 17, 23, 68], "shuffling_se": [6, 7, 8, 12, 68], "shut": 11, "shutil": 76, "si": [13, 33, 62, 63, 64, 65], "si_dimens": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "si_unit_convers": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "side": 27, "sigma": [12, 31, 60], "sigmoid": [12, 70], "sign": 0, "signal": 73, "signific": [12, 75], "significantli": [64, 65], "silver": 74, "similar": [2, 3, 16, 75], "simpl": [71, 72, 73], "simplest": 6, "simpli": [5, 6, 12, 16, 19, 37, 52, 62, 65], "simpson": [60, 62, 63, 64], "simul": [5, 12, 37, 61, 62, 64, 71, 72, 73, 74, 75, 79], "sinc": [2, 3, 5, 6, 12, 18, 31, 32, 33, 35, 37, 43, 72, 73, 77], "singl": [3, 6, 18, 24, 26, 34, 56, 69], "site": 13, "siva": 0, "sivasankaran": [74, 75], "six": 37, "size": [0, 3, 5, 11, 12, 13, 26, 40, 44, 45, 46, 47, 48, 51, 53, 70, 73, 75], "skip": 34, "skiparraywrit": [7, 8, 13, 68], "slice": [5, 19], "slightli": 43, "slow": 6, "slowest": 12, "slurm": 6, "slurm_job_nodelist": 6, "slurm_localid": 6, "slurm_nodelist": 6, "slurm_ntask": 6, "slurm_procid": 6, "small": [2, 6, 65, 71, 79], "smaller": [5, 12, 25, 70], "smallest": [12, 16], "smear": 63, "smearing_factor": 63, "smith": 65, "smoothli": 12, "snap": [12, 76], "snapshot": [6, 7, 12, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 33, 39, 56, 64, 68, 71, 73], "snapshot4": 18, "snapshot_correlation_cutoff": [7, 14, 16, 68], "snapshot_directories_list": [7, 8, 12, 68], "snapshot_funct": 29, "snapshot_numb": [19, 56, 64], "snapshot_typ": [4, 20, 23, 27, 29], "sneha": 0, "so": [2, 3, 4, 5, 6, 11, 12, 22, 51, 55, 61, 62, 63, 71, 73, 75, 76, 77, 78, 79], "societi": 74, "softwar": [0, 5, 11, 61, 71, 72, 74, 75, 79], "sole": 76, "solv": 60, "somashekhar": 0, "some": [2, 6, 12, 25, 26, 51, 53, 55, 65, 73], "someth": [53, 78], "sometim": 77, "somewhat": 12, "soon": [0, 7], "sort": [22, 25, 26, 33, 42], "sourc": [0, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 72], "space": [2, 6, 27, 60, 63, 65, 70, 71, 73, 75, 79], "spatial": 22, "special": [2, 24], "specif": [3, 4, 6, 12, 19, 22, 40, 51, 60, 65, 72, 77], "specifi": [0, 2, 3, 4, 5, 6, 12, 13, 22, 33, 53, 63, 65, 70, 71, 72, 73], "speed": [6, 12, 75], "speedup": 6, "sphere": 71, "sphinxopt": 77, "split": [5, 12], "springer": 42, "sql": [3, 43], "sqlite": [3, 12], "sqlite_timeout": 12, "sqrt": 60, "squar": [6, 12, 27], "src": 76, "srcname": 61, "srun": [5, 6], "ssf": [12, 65], "ssf_paramet": [7, 8, 12, 68], "stabl": 12, "standard": [3, 4, 5, 12, 22, 70, 73], "start": [2, 3, 5, 12, 22, 71], "starts_at": 18, "state": [6, 12, 51, 63, 64, 72, 75], "statement": [5, 11], "static": [5, 12, 27, 28, 31, 32, 33, 35, 43, 51, 59, 61, 62, 63, 64, 65], "static_structur": 5, "static_structure_factor_from_atom": [5, 7, 58, 65, 68], "statu": 11, "stem": [63, 64], "step": [0, 2, 5, 12, 15, 16, 69, 70, 79], "stephen": [0, 74, 75], "steve": [0, 74], "still": [6, 11, 13, 24, 28, 42, 43, 74, 75], "stochast": 12, "stop": [12, 19, 70, 77], "storag": [4, 12, 43], "store": [1, 3, 12, 25, 26, 37, 62, 65, 71, 73], "str": [28, 33, 37, 55, 56, 57, 62, 64], "straightforward": [0, 2, 75], "strategi": [3, 70], "strength": 42, "stress": 37, "stretch": 5, "string": [11, 12, 13, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "strongli": 71, "structur": [5, 7, 12, 13, 65, 71, 72, 73, 74, 75, 79], "studi": [3, 12, 39, 40, 41, 42, 43, 49, 50, 70, 74], "study_nam": [3, 12, 43], "style": [0, 52, 65], "sub": 73, "subclass": [44, 51], "subfold": 12, "subject": [11, 61, 77], "sublicens": [11, 61], "submit": 0, "subobject": 73, "subroutin": 64, "subsequ": [12, 54, 75], "subset": [40, 41, 43], "substanti": [11, 61], "success": [76, 78], "successfulli": [76, 77], "suffic": 33, "suffici": [0, 71], "suggest": [0, 12, 16, 65], "suit": [0, 78], "suitabl": [5, 12, 74, 75, 76, 77], "sum_i": 63, "sum_k": 63, "summari": 65, "summat": [62, 64, 65], "supervis": 0, "supervisor": 75, "support": [0, 3, 4, 5, 6, 12, 20, 29, 33, 37, 40, 42, 44, 45, 46, 47, 48, 53, 56, 59, 60, 62, 63, 64, 65, 76], "suppos": [0, 34, 50, 60, 64], "suppress": 60, "suppress_overflow": 60, "sure": [0, 3, 4, 6, 33, 64, 71, 72, 73, 75, 76, 77, 78], "surrog": [12, 49, 50, 75], "switch": [2, 5, 12], "switchflag": 12, "symbol": 18, "symmetri": [62, 64], "syntax": [2, 3, 6, 73, 77], "system": [0, 2, 3, 5, 6, 12, 43, 62, 63, 64, 65, 71, 72, 73, 75, 78], "system_chang": 37, "t": [4, 12, 42, 43, 60, 61, 63, 64, 65, 75, 77, 78], "tag": [0, 77], "tahmasbi": 0, "take": [2, 6, 12, 43, 49, 50, 65], "taken": [42, 61], "tamar": 74, "target": [2, 6, 7, 8, 11, 12, 16, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 49, 50, 51, 54, 56, 59, 62, 63, 64, 68, 71, 72, 73], "target_calcul": [5, 7, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68, 72], "target_calculation_kwarg": 71, "target_calculator_kwarg": 18, "target_data": 65, "target_input_path": [18, 39, 71], "target_input_typ": [18, 39, 71], "target_save_path": [18, 23, 71], "target_temperatur": 16, "target_typ": [7, 8, 12, 68, 71, 73], "target_unit": [2, 18, 39, 71], "targetbas": [59, 63], "task": [12, 60, 73, 79], "te": [20, 29, 56, 73], "te_mutex": [7, 58, 62, 68], "team": [0, 4, 6, 71, 76, 77], "technic": [33, 65], "techniqu": [3, 71, 75], "technol": 75, "technologi": 74, "tell": [3, 73, 76], "tem": [12, 65], "temperatur": [5, 6, 12, 16, 37, 54, 60, 63, 64, 65, 73, 74, 75], "tempor": 16, "temporari": 33, "tend": 65, "tensor": [19, 22, 24, 51, 64], "tensorboard": [0, 6, 12], "tensordataset": [6, 12, 24], "term": [51, 63, 64], "termin": 12, "test": [0, 4, 6, 12, 19, 20, 21, 25, 29, 49, 50, 56, 70, 71, 77, 78, 79], "test_al_debug_2k_nr": 19, "test_all_snapshot": [7, 38, 56, 68, 73], "test_exampl": 0, "test_snapshot": [7, 38, 56, 68], "tester": [6, 7, 19, 38, 55, 57, 68, 73], "text": 4, "than": [12, 55, 70], "thei": [0, 3, 4, 5, 6, 12, 27, 43, 65, 72], "them": [0, 6, 23, 33, 63, 71], "themselv": [4, 16, 19], "theorem": 62, "theori": [3, 74, 75], "thereaft": [63, 65], "therefor": [4, 5, 25, 26, 33, 62, 79], "therein": [12, 74], "thermodynam": 60, "thi": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "thing": [70, 71], "third": 73, "thompson": [0, 74, 75], "those": [12, 73, 78], "though": [12, 65], "thread": 11, "three": [5, 12, 65, 71, 73, 79], "three_particle_correlation_function_from_atom": [7, 58, 65, 68], "threshold": [16, 71], "through": [0, 3, 5, 11, 51, 62, 73], "throughout": 56, "thrown": 11, "thu": [0, 6, 12, 19, 77], "time": [0, 3, 5, 6, 12, 43, 71, 73, 74, 78], "timeout": 12, "timestep": [12, 16], "timothi": 0, "titl": 74, "tmp": 71, "to_json": [7, 8, 10, 12, 68], "togeth": [6, 70, 78], "token": 51, "toml": [0, 12], "too": [2, 33], "tool": [4, 14, 15, 16, 65], "topic": [71, 72], "torch": [6, 18, 19, 22, 51, 64, 77], "torchrun": 6, "tort": [11, 61], "total": [0, 5, 6, 12, 56, 62, 63, 64, 65, 71, 72, 73, 75, 79], "total_energi": [6, 7, 12, 56, 58, 64, 68, 72, 78], "total_energy_actual_f": [6, 12], "total_energy_contribut": [7, 58, 62, 68], "total_energy_ful": 56, "total_energy_modul": 78, "tpcf": [12, 65], "tpcf_paramet": [7, 8, 12, 68], "tpe": 42, "tr": [4, 20, 29, 56, 73], "track": 19, "train": [0, 1, 2, 3, 5, 7, 12, 19, 20, 22, 23, 25, 29, 37, 41, 42, 43, 49, 50, 52, 53, 55, 57, 65, 69, 70, 72, 74, 75, 79], "train_network": [7, 38, 57, 68, 73], "trainer": [3, 6, 7, 12, 38, 55, 68, 73], "training_log_interv": [7, 8, 12, 68], "traj": 15, "trajectori": [7, 12, 14, 15, 16, 65, 68], "trajectory_analysis_below_average_count": [7, 8, 12, 68], "trajectory_analysis_correlation_metric_cutoff": [7, 8, 12, 68], "trajectory_analysis_denoising_width": [7, 8, 12, 68], "trajectory_analysis_estimated_equilibrium": [7, 8, 12, 68], "trajectory_analysis_temperature_tolerance_perc": [7, 8, 12, 68], "trajectory_analyz": [7, 14, 68], "trajectoryanalyz": [7, 14, 16, 68], "transfer": [0, 6, 74, 75], "transform": [7, 12, 17, 19, 22, 25, 51, 62, 65, 68, 71], "transformernet": [7, 38, 51, 68], "trapezoid": [60, 62, 63, 64], "trapz": 64, "treat": [11, 77], "tree": [0, 76], "trex": 11, "trial": [3, 12, 40, 41, 42, 43, 47, 48, 49, 50, 52, 70], "trial_ensemble_evalu": [7, 8, 12, 68], "trial_list": 41, "trial_typ": 53, "tricki": 24, "trigger": 0, "trivial": [2, 5, 6], "true": [2, 3, 5, 6, 12, 13, 18, 19, 22, 25, 26, 33, 34, 40, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65, 71, 72, 73, 76], "truncat": [12, 27], "truth": [6, 12, 73], "try": 26, "tune": [0, 3, 6, 12, 42, 70, 73], "turn": 6, "tutori": [4, 6, 73], "tweak": [69, 72], "twice": [5, 65], "two": [2, 12, 13, 16, 61, 70, 73, 74], "twojmax": 12, "txt": [0, 63, 77], "type": [10, 11, 12, 13, 16, 18, 19, 22, 24, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 71], "typestr": 22, "typic": [27, 76], "u": [3, 6, 12, 33], "ubuntu": 79, "uncach": [16, 62, 63, 64], "uncache_properti": [7, 14, 16, 58, 62, 63, 64, 68], "uncertainti": 0, "unchang": [26, 62], "uncorrel": [12, 16], "under": [0, 37, 55, 57], "underlin": 64, "understand": 75, "uniform": [51, 60], "unit": [5, 13, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 39, 51, 59, 62, 63, 64, 65], "unless": 62, "unload": 6, "unnecessari": [19, 55], "unproblemat": 5, "unscal": 22, "unseen": 73, "untest": 78, "until": [12, 25, 26, 70, 71], "untouch": 4, "up": [0, 2, 6, 12, 27, 33, 43, 62, 63, 64, 65, 70, 71, 75], "updat": 0, "upon": [0, 3, 12, 19, 43, 46, 51, 71], "upper": 70, "upward": 12, "url": 74, "us": [0, 1, 2, 3, 4, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79], "usag": [0, 5, 6, 19, 55, 64, 69, 72, 73, 75, 76], "use_atomic_density_formula": [5, 7, 8, 12, 68], "use_ddp": [6, 7, 8, 12, 22, 25, 26, 68], "use_fast_tensor_data_set": [6, 7, 8, 12, 68], "use_fp64": [18, 33, 34], "use_gauss_ldo": 71, "use_gpu": [5, 6, 7, 8, 12, 68, 76], "use_graph": [6, 7, 8, 12, 68], "use_lammp": [7, 8, 12, 68], "use_lazy_load": [6, 7, 8, 12, 68, 73], "use_lazy_loading_prefetch": [6, 7, 8, 12, 68], "use_memmap": 64, "use_mixed_precis": [6, 7, 8, 12, 68], "use_mpi": [2, 3, 5, 7, 8, 12, 68], "use_multivari": 12, "use_pickled_comm": 33, "use_pkl_checkpoint": [39, 40, 41, 42, 43, 57], "use_shuffling_for_sampl": [7, 8, 12, 68], "use_y_split": [5, 7, 8, 12, 68], "use_z_split": [7, 8, 12, 68], "useabl": 71, "used_data_handl": 64, "user": [4, 11, 12, 16, 49, 50, 60, 64, 73, 77], "userwarn": 11, "usual": [6, 12, 16, 33, 51, 52, 62, 63, 65, 71], "util": [5, 6], "v": [75, 76], "v1": [37, 77], "v2": 12, "v80": 12, "v_": 62, "va": [20, 29, 56, 73], "vaidyanathan": 61, "valid": [3, 6, 12, 19, 20, 29, 70, 73], "validate_every_n_epoch": [6, 7, 8, 12, 68], "validate_on_training_data": [6, 7, 8, 12, 68], "validation_loss": 12, "validation_loss_old": 12, "validation_metr": [6, 7, 8, 12, 68], "valu": [2, 5, 6, 11, 12, 13, 16, 25, 26, 27, 31, 33, 41, 42, 47, 48, 49, 50, 51, 53, 54, 56, 60, 61, 62, 63, 64, 65, 70, 71, 73], "valuabl": 0, "var": 21, "vari": 78, "variabl": [6, 12, 16, 19, 55, 65], "varianc": 25, "varieti": 75, "variou": [12, 72, 73, 75], "vector": [2, 12, 25, 26, 27, 33, 61, 65, 71, 73], "verbos": [7, 8, 11, 12, 63, 68, 71, 73], "veri": [0, 3, 6, 12, 51, 63], "verif": 73, "verifi": 73, "verma": 0, "versatil": 75, "version": [7, 12, 18, 24, 49, 50, 68, 71, 76, 77, 78], "via": [0, 2, 3, 5, 6, 11, 12, 16, 21, 26, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "viabl": 49, "view": [2, 6, 34], "viewdoc": 65, "viewer": 4, "virtu": 6, "visibl": 51, "visit": [3, 4], "visual": [4, 6, 75], "vladyslav": [0, 74], "vogel": [0, 74, 75], "volta": 76, "volum": 74, "volumetr": [4, 61, 66, 71, 73], "voxel": [31, 62, 64], "w": [42, 64, 77], "w_k": 63, "wa": [5, 6, 22, 25, 26, 39, 40, 41, 42, 43, 51, 55, 57, 62, 63, 64, 65, 72], "wai": [0, 3, 6, 12, 65], "wait": [12, 43], "wait_tim": [3, 12], "wandb": [6, 12], "want": [2, 5, 6, 20, 23, 40, 44, 45, 46, 47, 48, 65, 70, 73, 76, 77], "warmli": 0, "warn": [3, 11, 77], "warranti": [11, 61], "wave": [12, 65], "wavefunct": 62, "we": [0, 2, 3, 5, 12, 22, 25, 26, 33, 37, 65, 66, 70, 71, 73, 74, 76, 78], "websit": [3, 6, 77], "weight": [12, 51, 60, 73], "welcom": 0, "well": [2, 3, 6, 12, 62, 69, 70, 77], "were": [5, 73], "what": [0, 20, 23, 33, 37, 55, 57, 61, 73], "whatev": 76, "when": [0, 1, 3, 4, 6, 11, 12, 18, 19, 20, 27, 29, 33, 43, 49, 50, 51, 55, 57, 61, 64, 65, 70, 71, 73, 76, 78, 79], "whenev": 73, "where": [4, 6, 12, 22, 26, 33, 37, 42, 43, 55, 57, 73, 76], "wherea": 71, "whether": [9, 11, 12, 25, 27, 33, 49, 50, 61], "which": [0, 2, 3, 4, 5, 6, 9, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "whichev": 5, "while": [2, 6, 12, 62, 64, 65, 74], "whom": [11, 61], "wide": 75, "width": [12, 31], "window": [77, 79], "wip": 64, "wise": [6, 12, 22, 70, 73], "wish": [5, 78], "within": [2, 11, 12, 13, 19, 24, 64, 65, 73], "without": [0, 3, 6, 11, 12, 13, 41, 53, 60, 61, 65, 76], "won": [42, 43], "wonjoon": 11, "work": [0, 3, 5, 6, 11, 12, 34, 41, 56, 61, 62, 63, 64, 65, 70, 71, 72, 78, 79], "worker": [6, 12], "workflow": [0, 2, 3, 4, 5, 6, 29, 36, 72, 73, 74, 75, 78], "working_directori": [33, 71], "world": 22, "world_siz": 6, "worldwid": 75, "would": [2, 13, 62], "wrap": 0, "wrapper": 5, "write": [4, 13, 33, 61, 62, 65], "write_additional_calculation_data": [7, 58, 65, 68], "write_cub": [7, 58, 61, 68], "write_imcub": [7, 58, 61, 68], "write_tem_input_fil": [7, 58, 65, 68], "write_to_cub": [5, 7, 58, 62, 68], "write_to_numpy_fil": [7, 8, 13, 58, 65, 68], "write_to_openpmd_fil": [7, 8, 13, 58, 62, 65, 68], "write_to_openpmd_iter": [7, 8, 13, 68], "written": [39, 40, 41, 42, 43, 62, 65], "wuantiti": [62, 63, 64], "x": [5, 12, 22, 33, 51, 60, 65, 71, 75], "x86_64": 78, "xarg": 0, "xc": 62, "xcrysden": 64, "xsf": [62, 64, 66], "xsf_parser": [7, 58, 68], "xvec": 61, "xyz": [12, 33], "y": [5, 12, 22, 33, 65], "yaml": 0, "ye": 76, "year": 74, "yet": [4, 6, 13, 27, 31, 32, 35, 65], "yield": [2, 6], "you": [0, 2, 3, 4, 5, 6, 12, 20, 23, 40, 44, 45, 46, 47, 48, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79], "your": [0, 2, 4, 5, 6, 12, 22, 71, 73, 74, 75, 76, 78], "your_wandb_ent": 6, "yourself": 69, "yovel": [74, 75], "ysplit": 5, "yt": 4, "yvec": 61, "z": [5, 12, 22, 33, 65, 74, 75], "zentrum": 75, "zero": [5, 12, 27, 51, 70], "zero_out_neg": 12, "zero_tol": 27, "zip": [37, 55, 57, 73], "zip_run": [55, 57], "zipextfil": [12, 22, 51], "zombi": 43, "zone": 60, "zvec": 61}, "titles": ["Contributions", "Advanced options", "Improved data conversion", "Improved hyperparameter optimization", "Storing data with OpenPMD", "Using MALA in production", "Improved training performance", "mala", "common", "check_modules", "json_serializable", "parallelizer", "parameters", "physical_data", "datageneration", "ofdft_initializer", "trajectory_analyzer", "datahandling", "data_converter", "data_handler", "data_handler_base", "data_repo", "data_scaler", "data_shuffler", "fast_tensor_dataset", "lazy_load_dataset", "lazy_load_dataset_single", "ldos_aligner", "multi_lazy_load_data_loader", "snapshot", "descriptors", "atomic_density", "bispectrum", "descriptor", "lammps_utils", "minterpy_descriptors", "interfaces", "ase_calculator", "network", "acsd_analyzer", "hyper_opt", "hyper_opt_naswot", "hyper_opt_oat", "hyper_opt_optuna", "hyperparameter", "hyperparameter_acsd", "hyperparameter_naswot", "hyperparameter_oat", "hyperparameter_optuna", "multi_training_pruner", "naswot_pruner", "network", "objective_base", "objective_naswot", "predictor", "runner", "tester", "trainer", "targets", "atomic_force", "calculation_helpers", "cube_parser", "density", "dos", "ldos", "target", "xsf_parser", "version", "API reference", "Getting started with MALA", "Basic hyperparameter optimization", "Data generation and conversion", "Using ML-DFT models for predictions", "Training an ML-DFT model", "Citing MALA", "Welcome to MALA!", "Installing LAMMPS", "Installing MALA", "Installing Quantum ESPRESSO (total energy module)", "Installation"], "titleterms": {"ASE": 72, "acsd_analyz": 39, "ad": [0, 73, 77], "advanc": [1, 3, 6], "algorithm": 3, "an": 73, "api": 68, "ase_calcul": 37, "atomic_dens": 31, "atomic_forc": 59, "basic": 70, "behind": 75, "bispectrum": 32, "branch": 0, "build": [73, 76, 77, 78], "calcul": 72, "calculation_help": 60, "check_modul": 9, "checkpoint": [3, 6], "cite": 74, "code": 0, "common": 8, "content": 75, "contribut": 0, "contributor": 0, "convers": [2, 71], "creat": 0, "cube_pars": 61, "data": [2, 4, 71, 73, 77], "data_convert": 18, "data_handl": 19, "data_handler_bas": 20, "data_repo": 21, "data_scal": 22, "data_shuffl": 23, "datagener": 14, "datahandl": 17, "densiti": 62, "depend": 0, "descriptor": [2, 30, 33], "develop": 0, "dft": [72, 73], "do": 63, "document": 77, "doe": 75, "download": 77, "dure": 6, "energi": 78, "espresso": 78, "exampl": 77, "extens": [76, 78], "fast_tensor_dataset": 24, "format": 0, "gener": 71, "get": 69, "gpu": [5, 6], "how": 75, "hyper_opt": 40, "hyper_opt_naswot": 41, "hyper_opt_oat": 42, "hyper_opt_optuna": 43, "hyperparamet": [3, 44, 70], "hyperparameter_acsd": 45, "hyperparameter_naswot": 46, "hyperparameter_oat": 47, "hyperparameter_optuna": 48, "i": 75, "improv": [2, 3, 6], "instal": [76, 77, 78, 79], "interfac": 36, "issu": 0, "json_serializ": 10, "lammp": 76, "lammps_util": 34, "lazi": 6, "lazy_load_dataset": 25, "lazy_load_dataset_singl": 26, "ldo": 64, "ldos_align": 27, "librari": 77, "licens": 0, "list": 70, "load": 6, "local": 77, "log": 6, "mala": [0, 5, 7, 69, 72, 74, 75, 77], "metric": 6, "minterpy_descriptor": 35, "ml": [72, 73], "model": [72, 73], "modul": 78, "multi_lazy_load_data_load": 28, "multi_training_prun": 49, "naswot_prun": 50, "network": [38, 51], "objective_bas": 52, "objective_naswot": 53, "observ": 5, "ofdft_initi": 15, "openpmd": 4, "optim": [3, 70], "option": [1, 77], "parallel": [2, 3, 5, 6, 11], "paramet": [12, 73], "perform": 6, "physical_data": 13, "predict": [5, 72], "predictor": 54, "prerequisit": [76, 77, 78], "product": 5, "public": 75, "pull": 0, "python": [76, 77, 78], "quantum": 78, "recommend": 77, "refer": 68, "releas": 0, "request": 0, "run": 6, "runner": 55, "search": 3, "set": 73, "snapshot": 29, "start": [69, 75], "store": 4, "strategi": 0, "target": [58, 65], "test": 73, "tester": 56, "total": 78, "train": [6, 73], "trainer": 57, "trajectory_analyz": 16, "tune": 2, "us": [5, 6, 72], "version": [0, 67], "visual": 5, "welcom": 75, "what": 75, "where": 75, "who": 75, "work": 75, "xsf_parser": 66}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API reference": [[68, "api-reference"]], "Adding dependencies": [[0, "adding-dependencies"]], "Adding training data": [[73, "adding-training-data"]], "Advanced optimization algorithms": [[3, "advanced-optimization-algorithms"]], "Advanced options": [[1, "advanced-options"]], "Advanced training metrics": [[6, "advanced-training-metrics"]], "Basic hyperparameter optimization": [[70, "basic-hyperparameter-optimization"]], "Branching strategy": [[0, "branching-strategy"]], "Build LAMMPS": [[76, "build-lammps"]], "Build Quantum ESPRESSO": [[78, "build-quantum-espresso"]], "Build documentation locally (Optional)": [[77, "build-documentation-locally-optional"]], "Building and training a model": [[73, "building-and-training-a-model"]], "Checkpointing a hyperparameter search": [[3, "checkpointing-a-hyperparameter-search"]], "Checkpointing a training run": [[6, "checkpointing-a-training-run"]], "Citing MALA": [[74, "citing-mala"]], "Contents": [[75, "contents"]], "Contributions": [[0, "contributions"]], "Creating a release": [[0, "creating-a-release"]], "Data conversion": [[71, "data-conversion"]], "Data generation": [[71, "data-generation"]], "Data generation and conversion": [[71, "data-generation-and-conversion"]], "Developing code": [[0, "developing-code"]], "Downloading and adding example data (Recommended)": [[77, "downloading-and-adding-example-data-recommended"]], "Formatting code": [[0, "formatting-code"]], "Getting started with MALA": [[69, "getting-started-with-mala"]], "How does MALA work?": [[75, "how-does-mala-work"]], "Improved data conversion": [[2, "improved-data-conversion"]], "Improved hyperparameter optimization": [[3, "improved-hyperparameter-optimization"]], "Improved training performance": [[6, "improved-training-performance"]], "Installation": [[79, "installation"]], "Installing LAMMPS": [[76, "installing-lammps"]], "Installing MALA": [[77, "installing-mala"]], "Installing Quantum ESPRESSO (total energy module)": [[78, "installing-quantum-espresso-total-energy-module"]], "Installing the Python extension": [[76, "installing-the-python-extension"], [78, "installing-the-python-extension"]], "Installing the Python library": [[77, "installing-the-python-library"]], "Issues": [[0, "issues"]], "License": [[0, "license"]], "List of hyperparameters": [[70, "list-of-hyperparameters"], [70, "id1"]], "Logging metrics during training": [[6, "logging-metrics-during-training"]], "MALA contributors": [[0, "mala-contributors"]], "MALA publications": [[75, "mala-publications"]], "Parallel data conversion": [[2, "parallel-data-conversion"]], "Parallel predictions": [[5, "parallel-predictions"]], "Parallelizing a hyperparameter search": [[3, "parallelizing-a-hyperparameter-search"]], "Predictions on GPUs": [[5, "predictions-on-gpus"]], "Prerequisites": [[76, "prerequisites"], [77, "prerequisites"], [78, "prerequisites"]], "Pull Requests": [[0, "pull-requests"]], "Setting parameters": [[73, "setting-parameters"]], "Storing data with OpenPMD": [[4, "storing-data-with-openpmd"]], "Testing a model": [[73, "testing-a-model"]], "Training an ML-DFT model": [[73, "training-an-ml-dft-model"]], "Training in parallel": [[6, "training-in-parallel"]], "Tuning descriptors": [[2, "id1"]], "Using MALA in production": [[5, "using-mala-in-production"]], "Using ML-DFT models for predictions": [[72, "using-ml-dft-models-for-predictions"]], "Using a GPU": [[6, "using-a-gpu"]], "Using lazy loading": [[6, "using-lazy-loading"]], "Using the MALA ASE calculator": [[72, "using-the-mala-ase-calculator"]], "Versioning and releases": [[0, "versioning-and-releases"]], "Visualizing observables": [[5, "visualizing-observables"]], "Welcome to MALA!": [[75, "welcome-to-mala"]], "What is MALA?": [[75, "what-is-mala"]], "Where to start?": [[75, "where-to-start"]], "Who is behind MALA?": [[75, "who-is-behind-mala"]], "acsd_analyzer": [[39, "module-mala.network.acsd_analyzer"]], "ase_calculator": [[37, "module-mala.interfaces.ase_calculator"]], "atomic_density": [[31, "module-mala.descriptors.atomic_density"]], "atomic_force": [[59, "module-mala.targets.atomic_force"]], "bispectrum": [[32, "module-mala.descriptors.bispectrum"]], "calculation_helpers": [[60, "module-mala.targets.calculation_helpers"]], "check_modules": [[9, "module-mala.common.check_modules"]], "common": [[8, "common"]], "cube_parser": [[61, "module-mala.targets.cube_parser"]], "data_converter": [[18, "module-mala.datahandling.data_converter"]], "data_handler": [[19, "module-mala.datahandling.data_handler"]], "data_handler_base": [[20, "module-mala.datahandling.data_handler_base"]], "data_repo": [[21, "module-mala.datahandling.data_repo"]], "data_scaler": [[22, "module-mala.datahandling.data_scaler"]], "data_shuffler": [[23, "module-mala.datahandling.data_shuffler"]], "datageneration": [[14, "datageneration"]], "datahandling": [[17, "datahandling"]], "density": [[62, "module-mala.targets.density"]], "descriptor": [[33, "module-mala.descriptors.descriptor"]], "descriptors": [[30, "descriptors"]], "dos": [[63, "module-mala.targets.dos"]], "fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset"]], "hyper_opt": [[40, "module-mala.network.hyper_opt"]], "hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot"]], "hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat"]], "hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna"]], "hyperparameter": [[44, "module-mala.network.hyperparameter"]], "hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd"]], "hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot"]], "hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat"]], "hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna"]], "interfaces": [[36, "interfaces"]], "json_serializable": [[10, "module-mala.common.json_serializable"]], "lammps_utils": [[34, "module-mala.descriptors.lammps_utils"]], "lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset"]], "lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single"]], "ldos": [[64, "module-mala.targets.ldos"]], "ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner"]], "mala": [[7, "mala"]], "minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors"]], "multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader"]], "multi_training_pruner": [[49, "module-mala.network.multi_training_pruner"]], "naswot_pruner": [[50, "module-mala.network.naswot_pruner"]], "network": [[38, "network"], [51, "module-mala.network.network"]], "objective_base": [[52, "module-mala.network.objective_base"]], "objective_naswot": [[53, "module-mala.network.objective_naswot"]], "ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer"]], "parallelizer": [[11, "module-mala.common.parallelizer"]], "parameters": [[12, "module-mala.common.parameters"]], "physical_data": [[13, "module-mala.common.physical_data"]], "predictor": [[54, "module-mala.network.predictor"]], "runner": [[55, "module-mala.network.runner"]], "snapshot": [[29, "module-mala.datahandling.snapshot"]], "target": [[65, "module-mala.targets.target"]], "targets": [[58, "targets"]], "tester": [[56, "module-mala.network.tester"]], "trainer": [[57, "module-mala.network.trainer"]], "trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer"]], "version": [[67, "module-mala.version"]], "xsf_parser": [[66, "module-mala.targets.xsf_parser"]]}, "docnames": ["CONTRIBUTE", "advanced_usage", "advanced_usage/descriptors", "advanced_usage/hyperparameters", "advanced_usage/openpmd", "advanced_usage/predictions", "advanced_usage/trainingmodel", "api/mala", "api/mala.common", "api/mala.common.check_modules", "api/mala.common.json_serializable", "api/mala.common.parallelizer", "api/mala.common.parameters", "api/mala.common.physical_data", "api/mala.datageneration", "api/mala.datageneration.ofdft_initializer", "api/mala.datageneration.trajectory_analyzer", "api/mala.datahandling", "api/mala.datahandling.data_converter", "api/mala.datahandling.data_handler", "api/mala.datahandling.data_handler_base", "api/mala.datahandling.data_repo", "api/mala.datahandling.data_scaler", "api/mala.datahandling.data_shuffler", "api/mala.datahandling.fast_tensor_dataset", "api/mala.datahandling.lazy_load_dataset", "api/mala.datahandling.lazy_load_dataset_single", "api/mala.datahandling.ldos_aligner", "api/mala.datahandling.multi_lazy_load_data_loader", "api/mala.datahandling.snapshot", "api/mala.descriptors", "api/mala.descriptors.atomic_density", "api/mala.descriptors.bispectrum", "api/mala.descriptors.descriptor", "api/mala.descriptors.lammps_utils", "api/mala.descriptors.minterpy_descriptors", "api/mala.interfaces", "api/mala.interfaces.ase_calculator", "api/mala.network", "api/mala.network.acsd_analyzer", "api/mala.network.hyper_opt", "api/mala.network.hyper_opt_naswot", "api/mala.network.hyper_opt_oat", "api/mala.network.hyper_opt_optuna", "api/mala.network.hyperparameter", "api/mala.network.hyperparameter_acsd", "api/mala.network.hyperparameter_naswot", "api/mala.network.hyperparameter_oat", "api/mala.network.hyperparameter_optuna", "api/mala.network.multi_training_pruner", "api/mala.network.naswot_pruner", "api/mala.network.network", "api/mala.network.objective_base", "api/mala.network.objective_naswot", "api/mala.network.predictor", "api/mala.network.runner", "api/mala.network.tester", "api/mala.network.trainer", "api/mala.targets", "api/mala.targets.atomic_force", "api/mala.targets.calculation_helpers", "api/mala.targets.cube_parser", "api/mala.targets.density", "api/mala.targets.dos", "api/mala.targets.ldos", "api/mala.targets.target", "api/mala.targets.xsf_parser", "api/mala.version", "api/modules", "basic_usage", "basic_usage/hyperparameters", "basic_usage/more_data", "basic_usage/predictions", "basic_usage/trainingmodel", "citing", "index", "install/installing_lammps", "install/installing_mala", "install/installing_qe", "installation"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1}, "filenames": ["CONTRIBUTE.md", "advanced_usage.rst", "advanced_usage/descriptors.rst", "advanced_usage/hyperparameters.rst", "advanced_usage/openpmd.rst", "advanced_usage/predictions.rst", "advanced_usage/trainingmodel.rst", "api/mala.rst", "api/mala.common.rst", "api/mala.common.check_modules.rst", "api/mala.common.json_serializable.rst", "api/mala.common.parallelizer.rst", "api/mala.common.parameters.rst", "api/mala.common.physical_data.rst", "api/mala.datageneration.rst", "api/mala.datageneration.ofdft_initializer.rst", "api/mala.datageneration.trajectory_analyzer.rst", "api/mala.datahandling.rst", "api/mala.datahandling.data_converter.rst", "api/mala.datahandling.data_handler.rst", "api/mala.datahandling.data_handler_base.rst", "api/mala.datahandling.data_repo.rst", "api/mala.datahandling.data_scaler.rst", "api/mala.datahandling.data_shuffler.rst", "api/mala.datahandling.fast_tensor_dataset.rst", "api/mala.datahandling.lazy_load_dataset.rst", "api/mala.datahandling.lazy_load_dataset_single.rst", "api/mala.datahandling.ldos_aligner.rst", "api/mala.datahandling.multi_lazy_load_data_loader.rst", "api/mala.datahandling.snapshot.rst", "api/mala.descriptors.rst", "api/mala.descriptors.atomic_density.rst", "api/mala.descriptors.bispectrum.rst", "api/mala.descriptors.descriptor.rst", "api/mala.descriptors.lammps_utils.rst", "api/mala.descriptors.minterpy_descriptors.rst", "api/mala.interfaces.rst", "api/mala.interfaces.ase_calculator.rst", "api/mala.network.rst", "api/mala.network.acsd_analyzer.rst", "api/mala.network.hyper_opt.rst", "api/mala.network.hyper_opt_naswot.rst", "api/mala.network.hyper_opt_oat.rst", "api/mala.network.hyper_opt_optuna.rst", "api/mala.network.hyperparameter.rst", "api/mala.network.hyperparameter_acsd.rst", "api/mala.network.hyperparameter_naswot.rst", "api/mala.network.hyperparameter_oat.rst", "api/mala.network.hyperparameter_optuna.rst", "api/mala.network.multi_training_pruner.rst", "api/mala.network.naswot_pruner.rst", "api/mala.network.network.rst", "api/mala.network.objective_base.rst", "api/mala.network.objective_naswot.rst", "api/mala.network.predictor.rst", "api/mala.network.runner.rst", "api/mala.network.tester.rst", "api/mala.network.trainer.rst", "api/mala.targets.rst", "api/mala.targets.atomic_force.rst", "api/mala.targets.calculation_helpers.rst", "api/mala.targets.cube_parser.rst", "api/mala.targets.density.rst", "api/mala.targets.dos.rst", "api/mala.targets.ldos.rst", "api/mala.targets.target.rst", "api/mala.targets.xsf_parser.rst", "api/mala.version.rst", "api/modules.rst", "basic_usage.rst", "basic_usage/hyperparameters.rst", "basic_usage/more_data.rst", "basic_usage/predictions.rst", "basic_usage/trainingmodel.rst", "citing.rst", "index.md", "install/installing_lammps.rst", "install/installing_mala.rst", "install/installing_qe.rst", "installation.rst"], "indexentries": {"acsdanalyzer (class in mala.network.acsd_analyzer)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer", false]], "add_hyperparameter() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_hyperparameter", false]], "add_hyperparameter() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.add_hyperparameter", false]], "add_hyperparameter() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.add_hyperparameter", false]], "add_snapshot() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_snapshot", false]], "add_snapshot() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.add_snapshot", false]], "add_snapshot() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.add_snapshot", false]], "add_snapshot() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.add_snapshot", false]], "add_snapshot() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.add_snapshot", false]], "add_snapshot_to_dataset() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.add_snapshot_to_dataset", false]], "after_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.after_training_metric", false]], "align_ldos_to_ref() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.align_ldos_to_ref", false]], "allocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.allocate_shared_mem", false]], "allocated (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.allocated", false]], "analytical_integration() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.analytical_integration", false]], "assume_two_dimensional (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.assume_two_dimensional", false]], "atomic_density_cutoff (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.atomic_density_cutoff", false]], "atomic_density_sigma (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.atomic_density_sigma", false]], "atomic_forces_dft (target attribute)": [[65, "mala.targets.target.Target.atomic_forces_dft", false]], "atomicdensity (class in mala.descriptors.atomic_density)": [[31, "mala.descriptors.atomic_density.AtomicDensity", false]], "atomicforce (class in mala.targets.atomic_force)": [[59, "mala.targets.atomic_force.AtomicForce", false]], "atoms (ofdftinitializer attribute)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.atoms", false]], "atoms (target attribute)": [[65, "mala.targets.target.Target.atoms", false]], "average_distance_equilibrated (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.average_distance_equilibrated", false]], "backconvert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.backconvert_units", false]], "backconvert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.backconvert_units", false]], "backconvert_units() (density static method)": [[62, "mala.targets.density.Density.backconvert_units", false]], "backconvert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.backconvert_units", false]], "backconvert_units() (dos static method)": [[63, "mala.targets.dos.DOS.backconvert_units", false]], "backconvert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.backconvert_units", false]], "backconvert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.backconvert_units", false]], "backconvert_units() (target static method)": [[65, "mala.targets.target.Target.backconvert_units", false]], "band_energy (dos property)": [[63, "mala.targets.dos.DOS.band_energy", false]], "band_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.band_energy", false]], "band_energy_dft_calculation (target attribute)": [[65, "mala.targets.target.Target.band_energy_dft_calculation", false]], "barrier() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.barrier", false]], "batch_size (fasttensordataset attribute)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset.batch_size", false]], "best_trial (hyperoptnaswot property)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.best_trial", false]], "best_trial_index (hyperoptnaswot property)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.best_trial_index", false]], "best_trial_index (hyperoptoat property)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.best_trial_index", false]], "bidirection (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.bidirection", false]], "bispectrum (class in mala.descriptors.bispectrum)": [[32, "mala.descriptors.bispectrum.Bispectrum", false]], "bispectrum_cutoff (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_cutoff", false]], "bispectrum_switchflag (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_switchflag", false]], "bispectrum_twojmax (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_twojmax", false]], "calc_optimal_ldos_shift() (ldosaligner static method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.calc_optimal_ldos_shift", false]], "calculate() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate", false]], "calculate_from_atoms() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_atoms", false]], "calculate_from_qe_out() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_qe_out", false]], "calculate_loss() (network method)": [[51, "mala.network.network.Network.calculate_loss", false]], "calculate_properties() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate_properties", false]], "calculation_output (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.calculation_output", false]], "cantransform (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.cantransform", false]], "check_modules() (in module mala.common.check_modules)": [[9, "mala.common.check_modules.check_modules", false]], "checkpoint_exists() (hyperopt class method)": [[40, "mala.network.hyper_opt.HyperOpt.checkpoint_exists", false]], "checkpoint_name (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoint_name", false]], "checkpoints_each_epoch (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoints_each_epoch", false]], "choices (hyperparameter attribute)": [[44, "mala.network.hyperparameter.Hyperparameter.choices", false]], "cleanup() (multilazyloaddataloader method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.cleanup", false]], "clear_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.clear_data", false]], "clear_data() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.clear_data", false]], "clear_hyperparameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.clear_hyperparameters", false]], "comment (parameters attribute)": [[12, "mala.common.parameters.Parameters.comment", false]], "convert_local_to_3d() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_local_to_3d", false]], "convert_snapshots() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.convert_snapshots", false]], "convert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.convert_units", false]], "convert_units() (atomicforce static method)": [[59, "mala.targets.atomic_force.AtomicForce.convert_units", false]], "convert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.convert_units", false]], "convert_units() (density static method)": [[62, "mala.targets.density.Density.convert_units", false]], "convert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_units", false]], "convert_units() (dos static method)": [[63, "mala.targets.dos.DOS.convert_units", false]], "convert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.convert_units", false]], "convert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.convert_units", false]], "convert_units() (target static method)": [[65, "mala.targets.target.Target.convert_units", false]], "cubefile (class in mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.CubeFile", false]], "currently_loaded_file (lazyloaddataset attribute)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.currently_loaded_file", false]], "currently_loaded_file (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.currently_loaded_file", false]], "data (parameters attribute)": [[12, "mala.common.parameters.Parameters.data", false]], "data (runner attribute)": [[55, "mala.network.runner.Runner.data", false]], "data_name (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.data_name", false]], "data_name (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.data_name", false]], "data_name (density property)": [[62, "mala.targets.density.Density.data_name", false]], "data_name (dos property)": [[63, "mala.targets.dos.DOS.data_name", false]], "data_name (ldos property)": [[64, "mala.targets.ldos.LDOS.data_name", false]], "data_name (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.data_name", false]], "data_name (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.data_name", false]], "data_splitting_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.data_splitting_type", false]], "dataconverter (class in mala.datahandling.data_converter)": [[18, "mala.datahandling.data_converter.DataConverter", false]], "datageneration (parameters attribute)": [[12, "mala.common.parameters.Parameters.datageneration", false]], "datahandler (class in mala.datahandling.data_handler)": [[19, "mala.datahandling.data_handler.DataHandler", false]], "datahandlerbase (class in mala.datahandling.data_handler_base)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase", false]], "datascaler (class in mala.datahandling.data_scaler)": [[22, "mala.datahandling.data_scaler.DataScaler", false]], "dataset (physicaldata.skiparraywriting attribute)": [[13, "mala.common.physical_data.PhysicalData.SkipArrayWriting.dataset", false]], "datashuffler (class in mala.datahandling.data_shuffler)": [[23, "mala.datahandling.data_shuffler.DataShuffler", false]], "deallocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.deallocate_shared_mem", false]], "delete_data() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.delete_data", false]], "density (class in mala.targets.density)": [[62, "mala.targets.density.Density", false]], "density (density property)": [[62, "mala.targets.density.Density.density", false]], "density (ldos property)": [[64, "mala.targets.ldos.LDOS.density", false]], "density_of_states (dos property)": [[63, "mala.targets.dos.DOS.density_of_states", false]], "density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.density_of_states", false]], "descriptor (class in mala.descriptors.descriptor)": [[33, "mala.descriptors.descriptor.Descriptor", false]], "descriptor_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.descriptor_calculator", false]], "descriptor_calculator (datahandlerbase attribute)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.descriptor_calculator", false]], "descriptor_calculator (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.descriptor_calculator", false]], "descriptor_type (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptor_type", false]], "descriptors (parameters attribute)": [[12, "mala.common.parameters.Parameters.descriptors", false]], "descriptors_contain_xyz (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.descriptors_contain_xyz", false]], "descriptors_contain_xyz (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptors_contain_xyz", false]], "device (parameters property)": [[12, "mala.common.parameters.Parameters.device", false]], "dftpy_configuration (ofdftinitializer attribute)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.dftpy_configuration", false]], "direction (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.direction", false]], "distance_metrics_denoised (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.distance_metrics_denoised", false]], "distances_realspace (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.distances_realspace", false]], "do_prediction() (network method)": [[51, "mala.network.network.Network.do_prediction", false]], "dos (class in mala.targets.dos)": [[63, "mala.targets.dos.DOS", false]], "dropout (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.dropout", false]], "dropout (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.dropout", false]], "during_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.during_training_metric", false]], "early_stopping_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_epochs", false]], "early_stopping_threshold (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_threshold", false]], "electrons_per_atom (target attribute)": [[65, "mala.targets.target.Target.electrons_per_atom", false]], "energy_grid (dos property)": [[63, "mala.targets.dos.DOS.energy_grid", false]], "energy_grid (ldos property)": [[64, "mala.targets.ldos.LDOS.energy_grid", false]], "enforce_pbc() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.enforce_pbc", false]], "entropy_contribution (dos property)": [[63, "mala.targets.dos.DOS.entropy_contribution", false]], "entropy_contribution (ldos property)": [[64, "mala.targets.ldos.LDOS.entropy_contribution", false]], "entropy_contribution_dft_calculation (target attribute)": [[65, "mala.targets.target.Target.entropy_contribution_dft_calculation", false]], "entropy_multiplicator() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.entropy_multiplicator", false]], "extract_compute_np() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.extract_compute_np", false]], "fasttensordataset (class in mala.datahandling.fast_tensor_dataset)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset", false]], "feature_size (density property)": [[62, "mala.targets.density.Density.feature_size", false]], "feature_size (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.feature_size", false]], "feature_size (dos property)": [[63, "mala.targets.dos.DOS.feature_size", false]], "feature_size (ldos property)": [[64, "mala.targets.ldos.LDOS.feature_size", false]], "feature_size (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.feature_size", false]], "feature_size (physicaldata.skiparraywriting attribute)": [[13, "mala.common.physical_data.PhysicalData.SkipArrayWriting.feature_size", false]], "feature_size (target property)": [[65, "mala.targets.target.Target.feature_size", false]], "feature_wise (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.feature_wise", false]], "feedforwardnet (class in mala.network.network)": [[51, "mala.network.network.FeedForwardNet", false]], "fermi_energy (dos property)": [[63, "mala.targets.dos.DOS.fermi_energy", false]], "fermi_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.fermi_energy", false]], "fermi_energy_dft (target attribute)": [[65, "mala.targets.target.Target.fermi_energy_dft", false]], "fermi_function() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.fermi_function", false]], "final_validation_loss (trainer attribute)": [[57, "mala.network.trainer.Trainer.final_validation_loss", false]], "finalize() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.finalize", false]], "first_considered_snapshot (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.first_considered_snapshot", false]], "first_snapshot (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.first_snapshot", false]], "fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.fit", false]], "forward() (feedforwardnet method)": [[51, "mala.network.network.FeedForwardNet.forward", false]], "forward() (gru method)": [[51, "mala.network.network.GRU.forward", false]], "forward() (lstm method)": [[51, "mala.network.network.LSTM.forward", false]], "forward() (network method)": [[51, "mala.network.network.Network.forward", false]], "forward() (positionalencoding method)": [[51, "mala.network.network.PositionalEncoding.forward", false]], "forward() (transformernet method)": [[51, "mala.network.network.TransformerNet.forward", false]], "from_cube_file() (density class method)": [[62, "mala.targets.density.Density.from_cube_file", false]], "from_cube_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_cube_file", false]], "from_json() (jsonserializable class method)": [[10, "mala.common.json_serializable.JSONSerializable.from_json", false]], "from_json() (parametersbase class method)": [[12, "mala.common.parameters.ParametersBase.from_json", false]], "from_json() (snapshot class method)": [[29, "mala.datahandling.snapshot.Snapshot.from_json", false]], "from_ldos_calculator() (density class method)": [[62, "mala.targets.density.Density.from_ldos_calculator", false]], "from_ldos_calculator() (dos class method)": [[63, "mala.targets.dos.DOS.from_ldos_calculator", false]], "from_numpy_array() (density class method)": [[62, "mala.targets.density.Density.from_numpy_array", false]], "from_numpy_array() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_array", false]], "from_numpy_array() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_array", false]], "from_numpy_file() (density class method)": [[62, "mala.targets.density.Density.from_numpy_file", false]], "from_numpy_file() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_file", false]], "from_numpy_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_file", false]], "from_openpmd_file() (density class method)": [[62, "mala.targets.density.Density.from_openpmd_file", false]], "from_openpmd_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_openpmd_file", false]], "from_qe_dos_txt() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_dos_txt", false]], "from_qe_out() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_out", false]], "from_xsf_file() (density class method)": [[62, "mala.targets.density.Density.from_xsf_file", false]], "from_xsf_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_xsf_file", false]], "full_logging_path (trainer attribute)": [[57, "mala.network.trainer.Trainer.full_logging_path", false]], "gather_descriptors() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.gather_descriptors", false]], "gaussians() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.gaussians", false]], "generate_square_subsequent_mask() (transformernet static method)": [[51, "mala.network.network.TransformerNet.generate_square_subsequent_mask", false]], "get_atomic_forces() (density method)": [[62, "mala.targets.density.Density.get_atomic_forces", false]], "get_atomic_forces() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_atomic_forces", false]], "get_band_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_band_energy", false]], "get_band_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_band_energy", false]], "get_beta() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_beta", false]], "get_categorical() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_categorical", false]], "get_categorical() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_categorical", false]], "get_comm() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_comm", false]], "get_density() (density method)": [[62, "mala.targets.density.Density.get_density", false]], "get_density() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density", false]], "get_density_of_states() (dos method)": [[63, "mala.targets.dos.DOS.get_density_of_states", false]], "get_density_of_states() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density_of_states", false]], "get_energy_contributions() (density method)": [[62, "mala.targets.density.Density.get_energy_contributions", false]], "get_energy_grid() (dos method)": [[63, "mala.targets.dos.DOS.get_energy_grid", false]], "get_energy_grid() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_energy_grid", false]], "get_energy_grid() (target method)": [[65, "mala.targets.target.Target.get_energy_grid", false]], "get_energy_targets_and_predictions() (tester method)": [[56, "mala.network.tester.Tester.get_energy_targets_and_predictions", false]], "get_entropy_contribution() (dos method)": [[63, "mala.targets.dos.DOS.get_entropy_contribution", false]], "get_entropy_contribution() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_entropy_contribution", false]], "get_equilibrated_configuration() (ofdftinitializer method)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.get_equilibrated_configuration", false]], "get_f0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f0_value", false]], "get_f1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f1_value", false]], "get_f2_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f2_value", false]], "get_feature_size() (atomicforce method)": [[59, "mala.targets.atomic_force.AtomicForce.get_feature_size", false]], "get_first_snapshot() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_first_snapshot", false]], "get_float() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_float", false]], "get_int() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_int", false]], "get_local_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_local_rank", false]], "get_new_data() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.get_new_data", false]], "get_number_of_electrons() (density method)": [[62, "mala.targets.density.Density.get_number_of_electrons", false]], "get_number_of_electrons() (dos method)": [[63, "mala.targets.dos.DOS.get_number_of_electrons", false]], "get_number_of_electrons() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_number_of_electrons", false]], "get_optimal_sigma() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.get_optimal_sigma", false]], "get_parameter() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_parameter", false]], "get_parameter() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_parameter", false]], "get_radial_distribution_function() (target method)": [[65, "mala.targets.target.Target.get_radial_distribution_function", false]], "get_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_rank", false]], "get_real_space_grid() (target method)": [[65, "mala.targets.target.Target.get_real_space_grid", false]], "get_s0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s0_value", false]], "get_s1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s1_value", false]], "get_scaled_positions_for_qe() (density static method)": [[62, "mala.targets.density.Density.get_scaled_positions_for_qe", false]], "get_self_consistent_fermi_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_self_consistent_fermi_energy", false]], "get_self_consistent_fermi_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_self_consistent_fermi_energy", false]], "get_size() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_size", false]], "get_snapshot_calculation_output() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_snapshot_calculation_output", false]], "get_snapshot_correlation_cutoff() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_snapshot_correlation_cutoff", false]], "get_static_structure_factor() (target method)": [[65, "mala.targets.target.Target.get_static_structure_factor", false]], "get_target() (density method)": [[62, "mala.targets.density.Density.get_target", false]], "get_target() (dos method)": [[63, "mala.targets.dos.DOS.get_target", false]], "get_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_target", false]], "get_target() (target method)": [[65, "mala.targets.target.Target.get_target", false]], "get_test_input_gradient() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_test_input_gradient", false]], "get_three_particle_correlation_function() (target method)": [[65, "mala.targets.target.Target.get_three_particle_correlation_function", false]], "get_total_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_total_energy", false]], "get_trials_from_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.get_trials_from_study", false]], "get_uncorrelated_snapshots() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_uncorrelated_snapshots", false]], "grid_dimensions (physicaldata attribute)": [[13, "mala.common.physical_data.PhysicalData.grid_dimensions", false]], "grid_dimensions (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.grid_dimensions", false]], "grid_size (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.grid_size", false]], "gru (class in mala.network.network)": [[51, "mala.network.network.GRU", false]], "high (hyperparameter attribute)": [[44, "mala.network.hyperparameter.Hyperparameter.high", false]], "hlist (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.hlist", false]], "hyperopt (class in mala.network.hyper_opt)": [[40, "mala.network.hyper_opt.HyperOpt", false]], "hyperoptnaswot (class in mala.network.hyper_opt_naswot)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT", false]], "hyperoptoat (class in mala.network.hyper_opt_oat)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT", false]], "hyperoptoptuna (class in mala.network.hyper_opt_optuna)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna", false]], "hyperparameter (class in mala.network.hyperparameter)": [[44, "mala.network.hyperparameter.Hyperparameter", false]], "hyperparameteracsd (class in mala.network.hyperparameter_acsd)": [[45, "mala.network.hyperparameter_acsd.HyperparameterACSD", false]], "hyperparameternaswot (class in mala.network.hyperparameter_naswot)": [[46, "mala.network.hyperparameter_naswot.HyperparameterNASWOT", false]], "hyperparameteroat (class in mala.network.hyperparameter_oat)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT", false]], "hyperparameteroptuna (class in mala.network.hyperparameter_optuna)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna", false]], "hyperparameters (parameters attribute)": [[12, "mala.common.parameters.Parameters.hyperparameters", false]], "implemented_properties (mala attribute)": [[37, "mala.interfaces.ase_calculator.MALA.implemented_properties", false]], "inference_data_grid (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.inference_data_grid", false]], "init_hidden() (gru method)": [[51, "mala.network.network.GRU.init_hidden", false]], "init_hidden() (lstm method)": [[51, "mala.network.network.LSTM.init_hidden", false]], "init_weights() (transformernet method)": [[51, "mala.network.network.TransformerNet.init_weights", false]], "input_data (lazyloaddataset attribute)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.input_data", false]], "input_data (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.input_data", false]], "input_data_scaler (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.input_data_scaler", false]], "input_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.input_dimension", false]], "input_dimension (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.input_dimension", false]], "input_dtype (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.input_dtype", false]], "input_npy_directory (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.input_npy_directory", false]], "input_npy_file (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.input_npy_file", false]], "input_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.input_rescaling_type", false]], "input_shape (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.input_shape", false]], "input_shm_name (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.input_shm_name", false]], "input_units (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.input_units", false]], "integrate_values_on_spacing() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.integrate_values_on_spacing", false]], "invalidate_target() (density method)": [[62, "mala.targets.density.Density.invalidate_target", false]], "invalidate_target() (dos method)": [[63, "mala.targets.dos.DOS.invalidate_target", false]], "invalidate_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.invalidate_target", false]], "invalidate_target() (target method)": [[65, "mala.targets.target.Target.invalidate_target", false]], "inverse_transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.inverse_transform", false]], "jsonserializable (class in mala.common.json_serializable)": [[10, "mala.common.json_serializable.JSONSerializable", false]], "kpoints (target attribute)": [[65, "mala.targets.target.Target.kpoints", false]], "l2_regularization (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.l2_regularization", false]], "lammps_compute_file (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.lammps_compute_file", false]], "last_considered_snapshot (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.last_considered_snapshot", false]], "last_energy_contributions (mala attribute)": [[37, "mala.interfaces.ase_calculator.MALA.last_energy_contributions", false]], "layer_activations (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_activations", false]], "layer_sizes (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_sizes", false]], "lazyloaddataset (class in mala.datahandling.lazy_load_dataset)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset", false]], "lazyloaddatasetsingle (class in mala.datahandling.lazy_load_dataset_single)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle", false]], "ldos (class in mala.targets.ldos)": [[64, "mala.targets.ldos.LDOS", false]], "ldos_gridoffset_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridoffset_ev", false]], "ldos_gridsize (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridsize", false]], "ldos_gridspacing_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridspacing_ev", false]], "ldos_parameters (ldosaligner attribute)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.ldos_parameters", false]], "ldosaligner (class in mala.datahandling.ldos_aligner)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner", false]], "learning_rate (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate", false]], "learning_rate_decay (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_decay", false]], "learning_rate_patience (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_patience", false]], "learning_rate_scheduler (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_scheduler", false]], "load_from_file() (datascaler class method)": [[22, "mala.datahandling.data_scaler.DataScaler.load_from_file", false]], "load_from_file() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.load_from_file", false]], "load_from_file() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.load_from_file", false]], "load_from_file() (network class method)": [[51, "mala.network.network.Network.load_from_file", false]], "load_from_file() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_file", false]], "load_from_json() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_json", false]], "load_from_pickle() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_pickle", false]], "load_model() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_model", false]], "load_run() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_run", false]], "load_run() (runner class method)": [[55, "mala.network.runner.Runner.load_run", false]], "load_run() (trainer class method)": [[57, "mala.network.trainer.Trainer.load_run", false]], "load_snapshot_to_shm() (multilazyloaddataloader static method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.load_snapshot_to_shm", false]], "loaded (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.loaded", false]], "local_density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.local_density_of_states", false]], "local_grid (target attribute)": [[65, "mala.targets.target.Target.local_grid", false]], "local_psp_name (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_name", false]], "local_psp_path (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_path", false]], "logger (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logger", false]], "logging_dir (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir", false]], "logging_dir_append_date (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir_append_date", false]], "loss_func (network attribute)": [[51, "mala.network.network.Network.loss_func", false]], "loss_function_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.loss_function_type", false]], "low (hyperparameter attribute)": [[44, "mala.network.hyperparameter.Hyperparameter.low", false]], "lstm (class in mala.network.network)": [[51, "mala.network.network.LSTM", false]], "mala": [[7, "module-mala", false]], "mala (class in mala.interfaces.ase_calculator)": [[37, "mala.interfaces.ase_calculator.MALA", false]], "mala.common": [[8, "module-mala.common", false]], "mala.common.check_modules": [[9, "module-mala.common.check_modules", false]], "mala.common.json_serializable": [[10, "module-mala.common.json_serializable", false]], "mala.common.parallelizer": [[11, "module-mala.common.parallelizer", false]], "mala.common.parameters": [[12, "module-mala.common.parameters", false]], "mala.common.physical_data": [[13, "module-mala.common.physical_data", false]], "mala.datageneration": [[14, "module-mala.datageneration", false]], "mala.datageneration.ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer", false]], "mala.datageneration.trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer", false]], "mala.datahandling": [[17, "module-mala.datahandling", false]], "mala.datahandling.data_converter": [[18, "module-mala.datahandling.data_converter", false]], "mala.datahandling.data_handler": [[19, "module-mala.datahandling.data_handler", false]], "mala.datahandling.data_handler_base": [[20, "module-mala.datahandling.data_handler_base", false]], "mala.datahandling.data_repo": [[21, "module-mala.datahandling.data_repo", false]], "mala.datahandling.data_scaler": [[22, "module-mala.datahandling.data_scaler", false]], "mala.datahandling.data_shuffler": [[23, "module-mala.datahandling.data_shuffler", false]], "mala.datahandling.fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset", false]], "mala.datahandling.lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset", false]], "mala.datahandling.lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single", false]], "mala.datahandling.ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner", false]], "mala.datahandling.multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader", false]], "mala.datahandling.snapshot": [[29, "module-mala.datahandling.snapshot", false]], "mala.descriptors": [[30, "module-mala.descriptors", false]], "mala.descriptors.atomic_density": [[31, "module-mala.descriptors.atomic_density", false]], "mala.descriptors.bispectrum": [[32, "module-mala.descriptors.bispectrum", false]], "mala.descriptors.descriptor": [[33, "module-mala.descriptors.descriptor", false]], "mala.descriptors.lammps_utils": [[34, "module-mala.descriptors.lammps_utils", false]], "mala.descriptors.minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors", false]], "mala.interfaces": [[36, "module-mala.interfaces", false]], "mala.interfaces.ase_calculator": [[37, "module-mala.interfaces.ase_calculator", false]], "mala.network": [[38, "module-mala.network", false]], "mala.network.acsd_analyzer": [[39, "module-mala.network.acsd_analyzer", false]], "mala.network.hyper_opt": [[40, "module-mala.network.hyper_opt", false]], "mala.network.hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot", false]], "mala.network.hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat", false]], "mala.network.hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna", false]], "mala.network.hyperparameter": [[44, "module-mala.network.hyperparameter", false]], "mala.network.hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd", false]], "mala.network.hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot", false]], "mala.network.hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat", false]], "mala.network.hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna", false]], "mala.network.multi_training_pruner": [[49, "module-mala.network.multi_training_pruner", false]], "mala.network.naswot_pruner": [[50, "module-mala.network.naswot_pruner", false]], "mala.network.network": [[51, "module-mala.network.network", false]], "mala.network.objective_base": [[52, "module-mala.network.objective_base", false]], "mala.network.objective_naswot": [[53, "module-mala.network.objective_naswot", false]], "mala.network.predictor": [[54, "module-mala.network.predictor", false]], "mala.network.runner": [[55, "module-mala.network.runner", false]], "mala.network.tester": [[56, "module-mala.network.tester", false]], "mala.network.trainer": [[57, "module-mala.network.trainer", false]], "mala.targets": [[58, "module-mala.targets", false]], "mala.targets.atomic_force": [[59, "module-mala.targets.atomic_force", false]], "mala.targets.calculation_helpers": [[60, "module-mala.targets.calculation_helpers", false]], "mala.targets.cube_parser": [[61, "module-mala.targets.cube_parser", false]], "mala.targets.density": [[62, "module-mala.targets.density", false]], "mala.targets.dos": [[63, "module-mala.targets.dos", false]], "mala.targets.ldos": [[64, "module-mala.targets.ldos", false]], "mala.targets.target": [[65, "module-mala.targets.target", false]], "mala.targets.xsf_parser": [[66, "module-mala.targets.xsf_parser", false]], "mala.version": [[67, "module-mala.version", false]], "mala_parameters (mala attribute)": [[37, "mala.interfaces.ase_calculator.MALA.mala_parameters", false]], "manual_seed (parameters attribute)": [[12, "mala.common.parameters.Parameters.manual_seed", false]], "max_number_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.max_number_epochs", false]], "maxs (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.maxs", false]], "means (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.means", false]], "mini_batch_size (network attribute)": [[51, "mala.network.network.Network.mini_batch_size", false]], "mini_batch_size (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.mini_batch_size", false]], "mins (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.mins", false]], "minterpy_cutoff_cube_size (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.minterpy_cutoff_cube_size", false]], "minterpy_lp_norm (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.minterpy_lp_norm", false]], "minterpy_point_list (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.minterpy_point_list", false]], "minterpy_polynomial_degree (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.minterpy_polynomial_degree", false]], "minterpydescriptors (class in mala.descriptors.minterpy_descriptors)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors", false]], "mix_datasets() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.mix_datasets", false]], "mix_datasets() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.mix_datasets", false]], "mix_datasets() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.mix_datasets", false]], "module": [[7, "module-mala", false], [8, "module-mala.common", false], [9, "module-mala.common.check_modules", false], [10, "module-mala.common.json_serializable", false], [11, "module-mala.common.parallelizer", false], [12, "module-mala.common.parameters", false], [13, "module-mala.common.physical_data", false], [14, "module-mala.datageneration", false], [15, "module-mala.datageneration.ofdft_initializer", false], [16, "module-mala.datageneration.trajectory_analyzer", false], [17, "module-mala.datahandling", false], [18, "module-mala.datahandling.data_converter", false], [19, "module-mala.datahandling.data_handler", false], [20, "module-mala.datahandling.data_handler_base", false], [21, "module-mala.datahandling.data_repo", false], [22, "module-mala.datahandling.data_scaler", false], [23, "module-mala.datahandling.data_shuffler", false], [24, "module-mala.datahandling.fast_tensor_dataset", false], [25, "module-mala.datahandling.lazy_load_dataset", false], [26, "module-mala.datahandling.lazy_load_dataset_single", false], [27, "module-mala.datahandling.ldos_aligner", false], [28, "module-mala.datahandling.multi_lazy_load_data_loader", false], [29, "module-mala.datahandling.snapshot", false], [30, "module-mala.descriptors", false], [31, "module-mala.descriptors.atomic_density", false], [32, "module-mala.descriptors.bispectrum", false], [33, "module-mala.descriptors.descriptor", false], [34, "module-mala.descriptors.lammps_utils", false], [35, "module-mala.descriptors.minterpy_descriptors", false], [36, "module-mala.interfaces", false], [37, "module-mala.interfaces.ase_calculator", false], [38, "module-mala.network", false], [39, "module-mala.network.acsd_analyzer", false], [40, "module-mala.network.hyper_opt", false], [41, "module-mala.network.hyper_opt_naswot", false], [42, "module-mala.network.hyper_opt_oat", false], [43, "module-mala.network.hyper_opt_optuna", false], [44, "module-mala.network.hyperparameter", false], [45, "module-mala.network.hyperparameter_acsd", false], [46, "module-mala.network.hyperparameter_naswot", false], [47, "module-mala.network.hyperparameter_oat", false], [48, "module-mala.network.hyperparameter_optuna", false], [49, "module-mala.network.multi_training_pruner", false], [50, "module-mala.network.naswot_pruner", false], [51, "module-mala.network.network", false], [52, "module-mala.network.objective_base", false], [53, "module-mala.network.objective_naswot", false], [54, "module-mala.network.predictor", false], [55, "module-mala.network.runner", false], [56, "module-mala.network.tester", false], [57, "module-mala.network.trainer", false], [58, "module-mala.targets", false], [59, "module-mala.targets.atomic_force", false], [60, "module-mala.targets.calculation_helpers", false], [61, "module-mala.targets.cube_parser", false], [62, "module-mala.targets.density", false], [63, "module-mala.targets.dos", false], [64, "module-mala.targets.ldos", false], [65, "module-mala.targets.target", false], [66, "module-mala.targets.xsf_parser", false], [67, "module-mala.version", false]], "multilazyloaddataloader (class in mala.datahandling.multi_lazy_load_data_loader)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader", false]], "multitrainingpruner (class in mala.network.multi_training_pruner)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner", false]], "n_trials (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.n_trials", false]], "name (hyperparameter attribute)": [[44, "mala.network.hyperparameter.Hyperparameter.name", false]], "naswotpruner (class in mala.network.naswot_pruner)": [[50, "mala.network.naswot_pruner.NASWOTPruner", false]], "network (class in mala.network.network)": [[51, "mala.network.network.Network", false]], "network (parameters attribute)": [[12, "mala.common.parameters.Parameters.network", false]], "network (runner attribute)": [[55, "mala.network.runner.Runner.network", false]], "network (trainer attribute)": [[57, "mala.network.trainer.Trainer.network", false]], "nn_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.nn_type", false]], "no_hidden_state (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.no_hidden_state", false]], "nr_snapshots (datahandlerbase attribute)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.nr_snapshots", false]], "nr_test_data (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.nr_test_data", false]], "nr_test_snapshots (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.nr_test_snapshots", false]], "nr_training_data (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.nr_training_data", false]], "nr_training_snapshots (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.nr_training_snapshots", false]], "nr_validation_data (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.nr_validation_data", false]], "nr_validation_snapshots (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.nr_validation_snapshots", false]], "num_choices (hyperparameteroat property)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.num_choices", false]], "num_heads (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_heads", false]], "num_hidden_layers (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_hidden_layers", false]], "num_workers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.num_workers", false]], "number_of_electrons (density property)": [[62, "mala.targets.density.Density.number_of_electrons", false]], "number_of_electrons (dos property)": [[63, "mala.targets.dos.DOS.number_of_electrons", false]], "number_of_electrons (ldos property)": [[64, "mala.targets.ldos.LDOS.number_of_electrons", false]], "number_of_electrons_exact (target attribute)": [[65, "mala.targets.target.Target.number_of_electrons_exact", false]], "number_of_electrons_from_eigenvals (target attribute)": [[65, "mala.targets.target.Target.number_of_electrons_from_eigenvals", false]], "number_of_layers (network attribute)": [[51, "mala.network.network.Network.number_of_layers", false]], "number_training_per_trial (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.number_training_per_trial", false]], "objective (hyperoptoptuna attribute)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.objective", false]], "objectivebase (class in mala.network.objective_base)": [[52, "mala.network.objective_base.ObjectiveBase", false]], "objectivenaswot (class in mala.network.objective_naswot)": [[53, "mala.network.objective_naswot.ObjectiveNASWOT", false]], "observables_to_test (tester attribute)": [[56, "mala.network.tester.Tester.observables_to_test", false]], "ofdft_friction (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_friction", false]], "ofdft_kedf (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_kedf", false]], "ofdft_number_of_timesteps (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_number_of_timesteps", false]], "ofdft_temperature (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_temperature", false]], "ofdft_timestep (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_timestep", false]], "ofdftinitializer (class in mala.datageneration.ofdft_initializer)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer", false]], "openpmd_configuration (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_configuration", false]], "openpmd_granularity (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_granularity", false]], "optimizer (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.optimizer", false]], "opttype (hyperparameter attribute)": [[44, "mala.network.hyperparameter.Hyperparameter.opttype", false]], "optuna_singlenode_setup() (parameters method)": [[12, "mala.common.parameters.Parameters.optuna_singlenode_setup", false]], "output_data (lazyloaddataset attribute)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.output_data", false]], "output_data (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.output_data", false]], "output_data_scaler (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.output_data_scaler", false]], "output_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.output_dimension", false]], "output_dimension (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.output_dimension", false]], "output_dtype (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.output_dtype", false]], "output_format (tester attribute)": [[56, "mala.network.tester.Tester.output_format", false]], "output_npy_directory (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.output_npy_directory", false]], "output_npy_file (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.output_npy_file", false]], "output_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.output_rescaling_type", false]], "output_shape (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.output_shape", false]], "output_shm_name (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.output_shm_name", false]], "output_units (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.output_units", false]], "parallel_warn() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.parallel_warn", false]], "parameters (class in mala.common.parameters)": [[12, "mala.common.parameters.Parameters", false]], "parameters (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.parameters", false]], "parameters (datahandlerbase attribute)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.parameters", false]], "parameters (descriptor attribute)": [[33, "mala.descriptors.descriptor.Descriptor.parameters", false]], "parameters (ofdftinitializer attribute)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.parameters", false]], "parameters (physicaldata attribute)": [[13, "mala.common.physical_data.PhysicalData.parameters", false]], "parameters (runner attribute)": [[55, "mala.network.runner.Runner.parameters", false]], "parameters (target attribute)": [[65, "mala.targets.target.Target.parameters", false]], "parameters (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.parameters", false]], "parameters_full (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.parameters_full", false]], "parameters_full (runner attribute)": [[55, "mala.network.runner.Runner.parameters_full", false]], "parametersbase (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersBase", false]], "parametersdata (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersData", false]], "parametersdatageneration (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDataGeneration", false]], "parametersdescriptors (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDescriptors", false]], "parametershyperparameteroptimization (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization", false]], "parametersnetwork (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersNetwork", false]], "parametersrunning (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersRunning", false]], "parameterstargets (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersTargets", false]], "params (hyperopt attribute)": [[40, "mala.network.hyper_opt.HyperOpt.params", false]], "params (hyperoptoptuna attribute)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.params", false]], "params (network attribute)": [[51, "mala.network.network.Network.params", false]], "parse_trial() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial", false]], "parse_trial_oat() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_oat", false]], "parse_trial_optuna() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_optuna", false]], "partial_fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.partial_fit", false]], "perform_study() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.perform_study", false]], "perform_study() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.perform_study", false]], "perform_study() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.perform_study", false]], "perform_study() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.perform_study", false]], "perform_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.perform_study", false]], "physicaldata (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData", false]], "physicaldata.skiparraywriting (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData.SkipArrayWriting", false]], "positionalencoding (class in mala.network.network)": [[51, "mala.network.network.PositionalEncoding", false]], "predict_for_atoms() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_for_atoms", false]], "predict_from_qeout() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_from_qeout", false]], "predict_targets() (tester method)": [[56, "mala.network.tester.Tester.predict_targets", false]], "predictor (class in mala.network.predictor)": [[54, "mala.network.predictor.Predictor", false]], "prepare_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_data", false]], "prepare_for_testing() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_for_testing", false]], "printout() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.printout", false]], "profiler_range (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.profiler_range", false]], "prune() (multitrainingpruner method)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner.prune", false]], "prune() (naswotpruner method)": [[50, "mala.network.naswot_pruner.NASWOTPruner.prune", false]], "pseudopotential_path (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.pseudopotential_path", false]], "qe_input_data (target property)": [[65, "mala.targets.target.Target.qe_input_data", false]], "qe_pseudopotentials (target attribute)": [[65, "mala.targets.target.Target.qe_pseudopotentials", false]], "radial_distribution_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.radial_distribution_function_from_atoms", false]], "raw_numpy_to_converted_scaled_tensor() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.raw_numpy_to_converted_scaled_tensor", false]], "rdb_storage_heartbeat (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.rdb_storage_heartbeat", false]], "rdf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.rdf_parameters", false]], "read_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.read_additional_calculation_data", false]], "read_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_cube", false]], "read_dimensions_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_numpy_file", false]], "read_dimensions_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_openpmd_file", false]], "read_from_array() (density method)": [[62, "mala.targets.density.Density.read_from_array", false]], "read_from_array() (dos method)": [[63, "mala.targets.dos.DOS.read_from_array", false]], "read_from_array() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_array", false]], "read_from_cube() (density method)": [[62, "mala.targets.density.Density.read_from_cube", false]], "read_from_cube() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_cube", false]], "read_from_numpy_file() (dos method)": [[63, "mala.targets.dos.DOS.read_from_numpy_file", false]], "read_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_numpy_file", false]], "read_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_openpmd_file", false]], "read_from_qe_dos_txt() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_dos_txt", false]], "read_from_qe_out() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_out", false]], "read_from_xsf() (density method)": [[62, "mala.targets.density.Density.read_from_xsf", false]], "read_from_xsf() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_xsf", false]], "read_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_imcube", false]], "read_xsf() (in module mala.targets.xsf_parser)": [[66, "mala.targets.xsf_parser.read_xsf", false]], "readline() (cubefile method)": [[61, "mala.targets.cube_parser.CubeFile.readline", false]], "requeue_zombie_trials() (hyperoptoptuna static method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.requeue_zombie_trials", false]], "reset() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.reset", false]], "resize_snapshots_for_debugging() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.resize_snapshots_for_debugging", false]], "restrict_data() (target method)": [[65, "mala.targets.target.Target.restrict_data", false]], "restrict_targets (parameterstargets property)": [[12, "mala.common.parameters.ParametersTargets.restrict_targets", false]], "resume_checkpoint() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.resume_checkpoint", false]], "resume_checkpoint() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.resume_checkpoint", false]], "return_outputs_directly (lazyloaddataset property)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.return_outputs_directly", false]], "return_outputs_directly (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.return_outputs_directly", false]], "run_exists() (runner class method)": [[55, "mala.network.runner.Runner.run_exists", false]], "run_exists() (trainer class method)": [[57, "mala.network.trainer.Trainer.run_exists", false]], "run_name (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.run_name", false]], "runner (class in mala.network.runner)": [[55, "mala.network.runner.Runner", false]], "running (parameters attribute)": [[12, "mala.common.parameters.Parameters.running", false]], "save() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.save", false]], "save() (parameters method)": [[12, "mala.common.parameters.Parameters.save", false]], "save_as_json() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_json", false]], "save_as_pickle() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_pickle", false]], "save_calculator() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.save_calculator", false]], "save_network() (network method)": [[51, "mala.network.network.Network.save_network", false]], "save_run() (runner method)": [[55, "mala.network.runner.Runner.save_run", false]], "save_target_data (target attribute)": [[65, "mala.targets.target.Target.save_target_data", false]], "scale_minmax (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.scale_minmax", false]], "scale_standard (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.scale_standard", false]], "set_cmdlinevars() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.set_cmdlinevars", false]], "set_current_verbosity() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_current_verbosity", false]], "set_ddp_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_ddp_status", false]], "set_lammps_instance() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_lammps_instance", false]], "set_mpi_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_mpi_status", false]], "set_optimal_parameters() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.set_optimal_parameters", false]], "set_optimal_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.set_optimal_parameters", false]], "set_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_parameters", false]], "setup_lammps_tmp_files() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.setup_lammps_tmp_files", false]], "show() (parameters method)": [[12, "mala.common.parameters.Parameters.show", false]], "show() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.show", false]], "show() (parametershyperparameteroptimization method)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.show", false]], "show_order_of_importance() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.show_order_of_importance", false]], "shuffle() (fasttensordataset method)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset.shuffle", false]], "shuffle_snapshots() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.shuffle_snapshots", false]], "shuffling_seed (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.shuffling_seed", false]], "si_dimension (density property)": [[62, "mala.targets.density.Density.si_dimension", false]], "si_dimension (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_dimension", false]], "si_dimension (dos property)": [[63, "mala.targets.dos.DOS.si_dimension", false]], "si_dimension (ldos property)": [[64, "mala.targets.ldos.LDOS.si_dimension", false]], "si_dimension (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_dimension", false]], "si_dimension (target property)": [[65, "mala.targets.target.Target.si_dimension", false]], "si_unit_conversion (density property)": [[62, "mala.targets.density.Density.si_unit_conversion", false]], "si_unit_conversion (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_unit_conversion", false]], "si_unit_conversion (dos property)": [[63, "mala.targets.dos.DOS.si_unit_conversion", false]], "si_unit_conversion (ldos property)": [[64, "mala.targets.ldos.LDOS.si_unit_conversion", false]], "si_unit_conversion (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_unit_conversion", false]], "si_unit_conversion (target property)": [[65, "mala.targets.target.Target.si_unit_conversion", false]], "snapshot (class in mala.datahandling.snapshot)": [[29, "mala.datahandling.snapshot.Snapshot", false]], "snapshot (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.snapshot", false]], "snapshot_correlation_cutoff (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.snapshot_correlation_cutoff", false]], "snapshot_directories_list (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.snapshot_directories_list", false]], "snapshot_function (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.snapshot_function", false]], "snapshot_type (snapshot attribute)": [[29, "mala.datahandling.snapshot.Snapshot.snapshot_type", false]], "ssf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ssf_parameters", false]], "static_structure_factor_from_atoms() (target static method)": [[65, "mala.targets.target.Target.static_structure_factor_from_atoms", false]], "stds (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.stds", false]], "study (hyperoptoptuna attribute)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.study", false]], "target (class in mala.targets.target)": [[65, "mala.targets.target.Target", false]], "target_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.target_calculator", false]], "target_calculator (datahandlerbase attribute)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.target_calculator", false]], "target_calculator (lazyloaddatasetsingle attribute)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.target_calculator", false]], "target_calculator (predictor attribute)": [[54, "mala.network.predictor.Predictor.target_calculator", false]], "target_calculator (tester attribute)": [[56, "mala.network.tester.Tester.target_calculator", false]], "target_calculator (trajectoryanalyzer attribute)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.target_calculator", false]], "target_type (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.target_type", false]], "targets (parameters attribute)": [[12, "mala.common.parameters.Parameters.targets", false]], "te_mutex (density attribute)": [[62, "mala.targets.density.Density.te_mutex", false]], "temperature (target attribute)": [[65, "mala.targets.target.Target.temperature", false]], "test_all_snapshots() (tester method)": [[56, "mala.network.tester.Tester.test_all_snapshots", false]], "test_data_sets (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.test_data_sets", false]], "test_snapshot() (tester method)": [[56, "mala.network.tester.Tester.test_snapshot", false]], "tester (class in mala.network.tester)": [[56, "mala.network.tester.Tester", false]], "three_particle_correlation_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.three_particle_correlation_function_from_atoms", false]], "to_json() (jsonserializable method)": [[10, "mala.common.json_serializable.JSONSerializable.to_json", false]], "to_json() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.to_json", false]], "total_data_count (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.total_data_count", false]], "total_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.total_energy", false]], "total_energy_contributions (density property)": [[62, "mala.targets.density.Density.total_energy_contributions", false]], "total_energy_contributions_dft_calculation (target attribute)": [[65, "mala.targets.target.Target.total_energy_contributions_dft_calculation", false]], "total_energy_dft_calculation (target attribute)": [[65, "mala.targets.target.Target.total_energy_dft_calculation", false]], "total_max (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.total_max", false]], "total_mean (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.total_mean", false]], "total_min (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.total_min", false]], "total_std (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.total_std", false]], "tpcf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.tpcf_parameters", false]], "train_network() (trainer method)": [[57, "mala.network.trainer.Trainer.train_network", false]], "trainer (class in mala.network.trainer)": [[57, "mala.network.trainer.Trainer", false]], "training_data_sets (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.training_data_sets", false]], "training_log_interval (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.training_log_interval", false]], "trajectory (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.trajectory", false]], "trajectory_analysis_below_average_counter (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_below_average_counter", false]], "trajectory_analysis_correlation_metric_cutoff (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_correlation_metric_cutoff", false]], "trajectory_analysis_denoising_width (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_denoising_width", false]], "trajectory_analysis_estimated_equilibrium (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_estimated_equilibrium", false]], "trajectory_analysis_temperature_tolerance_percent (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_temperature_tolerance_percent", false]], "trajectoryanalyzer (class in mala.datageneration.trajectory_analyzer)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer", false]], "transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.transform", false]], "transformernet (class in mala.network.network)": [[51, "mala.network.network.TransformerNet", false]], "trial_ensemble_evaluation (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.trial_ensemble_evaluation", false]], "typestring (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.typestring", false]], "uncache_properties() (density method)": [[62, "mala.targets.density.Density.uncache_properties", false]], "uncache_properties() (dos method)": [[63, "mala.targets.dos.DOS.uncache_properties", false]], "uncache_properties() (ldos method)": [[64, "mala.targets.ldos.LDOS.uncache_properties", false]], "uncache_properties() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.uncache_properties", false]], "use_atomic_density_formula (parameters property)": [[12, "mala.common.parameters.Parameters.use_atomic_density_formula", false]], "use_ddp (datascaler attribute)": [[22, "mala.datahandling.data_scaler.DataScaler.use_ddp", false]], "use_ddp (network attribute)": [[51, "mala.network.network.Network.use_ddp", false]], "use_ddp (parameters property)": [[12, "mala.common.parameters.Parameters.use_ddp", false]], "use_fast_tensor_data_set (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_fast_tensor_data_set", false]], "use_gpu (parameters property)": [[12, "mala.common.parameters.Parameters.use_gpu", false]], "use_graphs (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.use_graphs", false]], "use_lammps (parameters property)": [[12, "mala.common.parameters.Parameters.use_lammps", false]], "use_lazy_loading (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading", false]], "use_lazy_loading_prefetch (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading_prefetch", false]], "use_mixed_precision (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_mixed_precision", false]], "use_mpi (parameters property)": [[12, "mala.common.parameters.Parameters.use_mpi", false]], "use_shuffling_for_samplers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_shuffling_for_samplers", false]], "use_y_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_y_splitting", false]], "use_z_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_z_splitting", false]], "validate_every_n_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.validate_every_n_epochs", false]], "validate_on_training_data (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.validate_on_training_data", false]], "validation_data_sets (datahandler attribute)": [[19, "mala.datahandling.data_handler.DataHandler.validation_data_sets", false]], "validation_metrics (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.validation_metrics", false]], "verbosity (parameters property)": [[12, "mala.common.parameters.Parameters.verbosity", false]], "voxel (target attribute)": [[65, "mala.targets.target.Target.voxel", false]], "write_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.write_additional_calculation_data", false]], "write_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_cube", false]], "write_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_imcube", false]], "write_tem_input_file() (target static method)": [[65, "mala.targets.target.Target.write_tem_input_file", false]], "write_to_cube() (density method)": [[62, "mala.targets.density.Density.write_to_cube", false]], "write_to_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_numpy_file", false]], "write_to_numpy_file() (target method)": [[65, "mala.targets.target.Target.write_to_numpy_file", false]], "write_to_openpmd_file() (density method)": [[62, "mala.targets.density.Density.write_to_openpmd_file", false]], "write_to_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_file", false]], "write_to_openpmd_file() (target method)": [[65, "mala.targets.target.Target.write_to_openpmd_file", false]], "write_to_openpmd_iteration() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_iteration", false]], "y_planes (target attribute)": [[65, "mala.targets.target.Target.y_planes", false]]}, "objects": {"": [[7, 0, 0, "-", "mala"]], "mala": [[8, 0, 0, "-", "common"], [14, 0, 0, "-", "datageneration"], [17, 0, 0, "-", "datahandling"], [30, 0, 0, "-", "descriptors"], [36, 0, 0, "-", "interfaces"], [38, 0, 0, "-", "network"], [58, 0, 0, "-", "targets"], [67, 0, 0, "-", "version"]], "mala.common": [[9, 0, 0, "-", "check_modules"], [10, 0, 0, "-", "json_serializable"], [11, 0, 0, "-", "parallelizer"], [12, 0, 0, "-", "parameters"], [13, 0, 0, "-", "physical_data"]], "mala.common.check_modules": [[9, 1, 1, "", "check_modules"]], "mala.common.json_serializable": [[10, 2, 1, "", "JSONSerializable"]], "mala.common.json_serializable.JSONSerializable": [[10, 3, 1, "", "from_json"], [10, 3, 1, "", "to_json"]], "mala.common.parallelizer": [[11, 1, 1, "", "barrier"], [11, 1, 1, "", "finalize"], [11, 1, 1, "", "get_comm"], [11, 1, 1, "", "get_local_rank"], [11, 1, 1, "", "get_rank"], [11, 1, 1, "", "get_size"], [11, 1, 1, "", "parallel_warn"], [11, 1, 1, "", "printout"], [11, 1, 1, "", "set_current_verbosity"], [11, 1, 1, "", "set_ddp_status"], [11, 1, 1, "", "set_lammps_instance"], [11, 1, 1, "", "set_mpi_status"]], "mala.common.parameters": [[12, 2, 1, "", "Parameters"], [12, 2, 1, "", "ParametersBase"], [12, 2, 1, "", "ParametersData"], [12, 2, 1, "", "ParametersDataGeneration"], [12, 2, 1, "", "ParametersDescriptors"], [12, 2, 1, "", "ParametersHyperparameterOptimization"], [12, 2, 1, "", "ParametersNetwork"], [12, 2, 1, "", "ParametersRunning"], [12, 2, 1, "", "ParametersTargets"]], "mala.common.parameters.Parameters": [[12, 4, 1, "", "comment"], [12, 4, 1, "", "data"], [12, 4, 1, "", "datageneration"], [12, 4, 1, "", "descriptors"], [12, 5, 1, "", "device"], [12, 4, 1, "", "hyperparameters"], [12, 3, 1, "", "load_from_file"], [12, 3, 1, "", "load_from_json"], [12, 3, 1, "", "load_from_pickle"], [12, 4, 1, "", "manual_seed"], [12, 4, 1, "", "network"], [12, 5, 1, "", "openpmd_configuration"], [12, 5, 1, "", "openpmd_granularity"], [12, 3, 1, "", "optuna_singlenode_setup"], [12, 4, 1, "", "running"], [12, 3, 1, "", "save"], [12, 3, 1, "", "save_as_json"], [12, 3, 1, "", "save_as_pickle"], [12, 3, 1, "", "show"], [12, 4, 1, "", "targets"], [12, 5, 1, "", "use_atomic_density_formula"], [12, 5, 1, "", "use_ddp"], [12, 5, 1, "", "use_gpu"], [12, 5, 1, "", "use_lammps"], [12, 5, 1, "", "use_mpi"], [12, 5, 1, "", "verbosity"]], "mala.common.parameters.ParametersBase": [[12, 3, 1, "", "from_json"], [12, 3, 1, "", "show"], [12, 3, 1, "", "to_json"]], "mala.common.parameters.ParametersData": [[12, 4, 1, "", "data_splitting_type"], [12, 4, 1, "", "input_rescaling_type"], [12, 4, 1, "", "output_rescaling_type"], [12, 4, 1, "", "shuffling_seed"], [12, 4, 1, "", "snapshot_directories_list"], [12, 4, 1, "", "use_fast_tensor_data_set"], [12, 4, 1, "", "use_lazy_loading"], [12, 4, 1, "", "use_lazy_loading_prefetch"]], "mala.common.parameters.ParametersDataGeneration": [[12, 4, 1, "", "local_psp_name"], [12, 4, 1, "", "local_psp_path"], [12, 4, 1, "", "ofdft_friction"], [12, 4, 1, "", "ofdft_kedf"], [12, 4, 1, "", "ofdft_number_of_timesteps"], [12, 4, 1, "", "ofdft_temperature"], [12, 4, 1, "", "ofdft_timestep"], [12, 4, 1, "", "trajectory_analysis_below_average_counter"], [12, 4, 1, "", "trajectory_analysis_correlation_metric_cutoff"], [12, 4, 1, "", "trajectory_analysis_denoising_width"], [12, 4, 1, "", "trajectory_analysis_estimated_equilibrium"], [12, 4, 1, "", "trajectory_analysis_temperature_tolerance_percent"]], "mala.common.parameters.ParametersDescriptors": [[12, 4, 1, "", "atomic_density_cutoff"], [12, 4, 1, "", "atomic_density_sigma"], [12, 5, 1, "", "bispectrum_cutoff"], [12, 5, 1, "", "bispectrum_switchflag"], [12, 4, 1, "", "bispectrum_twojmax"], [12, 4, 1, "", "descriptor_type"], [12, 4, 1, "", "descriptors_contain_xyz"], [12, 4, 1, "", "lammps_compute_file"], [12, 4, 1, "", "minterpy_cutoff_cube_size"], [12, 4, 1, "", "minterpy_lp_norm"], [12, 4, 1, "", "minterpy_point_list"], [12, 4, 1, "", "minterpy_polynomial_degree"], [12, 5, 1, "", "use_y_splitting"], [12, 5, 1, "", "use_z_splitting"]], "mala.common.parameters.ParametersHyperparameterOptimization": [[12, 4, 1, "", "direction"], [12, 4, 1, "", "hlist"], [12, 4, 1, "", "n_trials"], [12, 5, 1, "", "number_training_per_trial"], [12, 5, 1, "", "rdb_storage_heartbeat"], [12, 3, 1, "", "show"], [12, 5, 1, "", "trial_ensemble_evaluation"]], "mala.common.parameters.ParametersNetwork": [[12, 4, 1, "", "bidirection"], [12, 4, 1, "", "dropout"], [12, 4, 1, "", "layer_activations"], [12, 4, 1, "", "layer_sizes"], [12, 4, 1, "", "loss_function_type"], [12, 4, 1, "", "nn_type"], [12, 4, 1, "", "no_hidden_state"], [12, 4, 1, "", "num_heads"], [12, 4, 1, "", "num_hidden_layers"]], "mala.common.parameters.ParametersRunning": [[12, 5, 1, "", "after_training_metric"], [12, 4, 1, "", "checkpoint_name"], [12, 4, 1, "", "checkpoints_each_epoch"], [12, 4, 1, "", "dropout"], [12, 5, 1, "", "during_training_metric"], [12, 4, 1, "", "early_stopping_epochs"], [12, 4, 1, "", "early_stopping_threshold"], [12, 4, 1, "", "inference_data_grid"], [12, 4, 1, "", "l2_regularization"], [12, 4, 1, "", "learning_rate"], [12, 4, 1, "", "learning_rate_decay"], [12, 4, 1, "", "learning_rate_patience"], [12, 4, 1, "", "learning_rate_scheduler"], [12, 4, 1, "", "logger"], [12, 4, 1, "", "logging_dir"], [12, 4, 1, "", "logging_dir_append_date"], [12, 4, 1, "", "max_number_epochs"], [12, 4, 1, "", "mini_batch_size"], [12, 4, 1, "", "num_workers"], [12, 4, 1, "", "optimizer"], [12, 4, 1, "", "profiler_range"], [12, 4, 1, "", "run_name"], [12, 4, 1, "", "training_log_interval"], [12, 5, 1, "", "use_graphs"], [12, 4, 1, "", "use_mixed_precision"], [12, 4, 1, "", "use_shuffling_for_samplers"], [12, 4, 1, "", "validate_every_n_epochs"], [12, 4, 1, "", "validate_on_training_data"], [12, 4, 1, "", "validation_metrics"]], "mala.common.parameters.ParametersTargets": [[12, 4, 1, "", "assume_two_dimensional"], [12, 4, 1, "", "ldos_gridoffset_ev"], [12, 4, 1, "", "ldos_gridsize"], [12, 4, 1, "", "ldos_gridspacing_ev"], [12, 4, 1, "", "pseudopotential_path"], [12, 4, 1, "", "rdf_parameters"], [12, 5, 1, "", "restrict_targets"], [12, 4, 1, "", "ssf_parameters"], [12, 4, 1, "", "target_type"], [12, 4, 1, "", "tpcf_parameters"]], "mala.common.physical_data": [[13, 2, 1, "", "PhysicalData"]], "mala.common.physical_data.PhysicalData": [[13, 2, 1, "", "SkipArrayWriting"], [13, 5, 1, "", "data_name"], [13, 5, 1, "", "feature_size"], [13, 4, 1, "", "grid_dimensions"], [13, 4, 1, "", "parameters"], [13, 3, 1, "", "read_dimensions_from_numpy_file"], [13, 3, 1, "", "read_dimensions_from_openpmd_file"], [13, 3, 1, "", "read_from_numpy_file"], [13, 3, 1, "", "read_from_openpmd_file"], [13, 5, 1, "", "si_dimension"], [13, 5, 1, "", "si_unit_conversion"], [13, 3, 1, "", "write_to_numpy_file"], [13, 3, 1, "", "write_to_openpmd_file"], [13, 3, 1, "", "write_to_openpmd_iteration"]], "mala.common.physical_data.PhysicalData.SkipArrayWriting": [[13, 4, 1, "", "dataset"], [13, 4, 1, "", "feature_size"]], "mala.datageneration": [[15, 0, 0, "-", "ofdft_initializer"], [16, 0, 0, "-", "trajectory_analyzer"]], "mala.datageneration.ofdft_initializer": [[15, 2, 1, "", "OFDFTInitializer"]], "mala.datageneration.ofdft_initializer.OFDFTInitializer": [[15, 4, 1, "", "atoms"], [15, 4, 1, "", "dftpy_configuration"], [15, 3, 1, "", "get_equilibrated_configuration"], [15, 4, 1, "", "parameters"]], "mala.datageneration.trajectory_analyzer": [[16, 2, 1, "", "TrajectoryAnalyzer"]], "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer": [[16, 4, 1, "", "average_distance_equilibrated"], [16, 4, 1, "", "distance_metrics_denoised"], [16, 4, 1, "", "distances_realspace"], [16, 4, 1, "", "first_considered_snapshot"], [16, 5, 1, "", "first_snapshot"], [16, 3, 1, "", "get_first_snapshot"], [16, 3, 1, "", "get_snapshot_correlation_cutoff"], [16, 3, 1, "", "get_uncorrelated_snapshots"], [16, 4, 1, "", "last_considered_snapshot"], [16, 4, 1, "", "parameters"], [16, 5, 1, "", "snapshot_correlation_cutoff"], [16, 4, 1, "", "target_calculator"], [16, 5, 1, "", "trajectory"], [16, 3, 1, "", "uncache_properties"]], "mala.datahandling": [[18, 0, 0, "-", "data_converter"], [19, 0, 0, "-", "data_handler"], [20, 0, 0, "-", "data_handler_base"], [21, 0, 0, "-", "data_repo"], [22, 0, 0, "-", "data_scaler"], [23, 0, 0, "-", "data_shuffler"], [24, 0, 0, "-", "fast_tensor_dataset"], [25, 0, 0, "-", "lazy_load_dataset"], [26, 0, 0, "-", "lazy_load_dataset_single"], [27, 0, 0, "-", "ldos_aligner"], [28, 0, 0, "-", "multi_lazy_load_data_loader"], [29, 0, 0, "-", "snapshot"]], "mala.datahandling.data_converter": [[18, 2, 1, "", "DataConverter"]], "mala.datahandling.data_converter.DataConverter": [[18, 3, 1, "", "add_snapshot"], [18, 3, 1, "", "convert_snapshots"], [18, 4, 1, "", "descriptor_calculator"], [18, 4, 1, "", "parameters"], [18, 4, 1, "", "parameters_full"], [18, 4, 1, "", "target_calculator"]], "mala.datahandling.data_handler": [[19, 2, 1, "", "DataHandler"]], "mala.datahandling.data_handler.DataHandler": [[19, 3, 1, "", "clear_data"], [19, 3, 1, "", "get_snapshot_calculation_output"], [19, 3, 1, "", "get_test_input_gradient"], [19, 4, 1, "", "input_data_scaler"], [19, 3, 1, "", "mix_datasets"], [19, 4, 1, "", "nr_test_data"], [19, 4, 1, "", "nr_test_snapshots"], [19, 4, 1, "", "nr_training_data"], [19, 4, 1, "", "nr_training_snapshots"], [19, 4, 1, "", "nr_validation_data"], [19, 4, 1, "", "nr_validation_snapshots"], [19, 4, 1, "", "output_data_scaler"], [19, 3, 1, "", "prepare_data"], [19, 3, 1, "", "prepare_for_testing"], [19, 3, 1, "", "raw_numpy_to_converted_scaled_tensor"], [19, 3, 1, "", "resize_snapshots_for_debugging"], [19, 4, 1, "", "test_data_sets"], [19, 4, 1, "", "training_data_sets"], [19, 4, 1, "", "validation_data_sets"]], "mala.datahandling.data_handler_base": [[20, 2, 1, "", "DataHandlerBase"]], "mala.datahandling.data_handler_base.DataHandlerBase": [[20, 3, 1, "", "add_snapshot"], [20, 3, 1, "", "clear_data"], [20, 4, 1, "", "descriptor_calculator"], [20, 5, 1, "", "input_dimension"], [20, 4, 1, "", "nr_snapshots"], [20, 5, 1, "", "output_dimension"], [20, 4, 1, "", "parameters"], [20, 4, 1, "", "target_calculator"]], "mala.datahandling.data_scaler": [[22, 2, 1, "", "DataScaler"]], "mala.datahandling.data_scaler.DataScaler": [[22, 4, 1, "", "cantransform"], [22, 4, 1, "", "feature_wise"], [22, 3, 1, "", "fit"], [22, 3, 1, "", "inverse_transform"], [22, 3, 1, "", "load_from_file"], [22, 4, 1, "", "maxs"], [22, 4, 1, "", "means"], [22, 4, 1, "", "mins"], [22, 3, 1, "", "partial_fit"], [22, 3, 1, "", "reset"], [22, 3, 1, "", "save"], [22, 4, 1, "", "scale_minmax"], [22, 4, 1, "", "scale_standard"], [22, 4, 1, "", "stds"], [22, 4, 1, "", "total_data_count"], [22, 4, 1, "", "total_max"], [22, 4, 1, "", "total_mean"], [22, 4, 1, "", "total_min"], [22, 4, 1, "", "total_std"], [22, 3, 1, "", "transform"], [22, 4, 1, "", "typestring"], [22, 4, 1, "", "use_ddp"]], "mala.datahandling.data_shuffler": [[23, 2, 1, "", "DataShuffler"]], "mala.datahandling.data_shuffler.DataShuffler": [[23, 3, 1, "", "add_snapshot"], [23, 3, 1, "", "shuffle_snapshots"]], "mala.datahandling.fast_tensor_dataset": [[24, 2, 1, "", "FastTensorDataset"]], "mala.datahandling.fast_tensor_dataset.FastTensorDataset": [[24, 4, 1, "", "batch_size"], [24, 3, 1, "", "shuffle"]], "mala.datahandling.lazy_load_dataset": [[25, 2, 1, "", "LazyLoadDataset"]], "mala.datahandling.lazy_load_dataset.LazyLoadDataset": [[25, 3, 1, "", "add_snapshot_to_dataset"], [25, 4, 1, "", "currently_loaded_file"], [25, 3, 1, "", "get_new_data"], [25, 4, 1, "", "input_data"], [25, 3, 1, "", "mix_datasets"], [25, 4, 1, "", "output_data"], [25, 5, 1, "", "return_outputs_directly"]], "mala.datahandling.lazy_load_dataset_single": [[26, 2, 1, "", "LazyLoadDatasetSingle"]], "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle": [[26, 3, 1, "", "allocate_shared_mem"], [26, 4, 1, "", "allocated"], [26, 4, 1, "", "currently_loaded_file"], [26, 3, 1, "", "deallocate_shared_mem"], [26, 3, 1, "", "delete_data"], [26, 4, 1, "", "descriptor_calculator"], [26, 4, 1, "", "input_data"], [26, 4, 1, "", "input_dtype"], [26, 4, 1, "", "input_shape"], [26, 4, 1, "", "input_shm_name"], [26, 4, 1, "", "loaded"], [26, 3, 1, "", "mix_datasets"], [26, 4, 1, "", "output_data"], [26, 4, 1, "", "output_dtype"], [26, 4, 1, "", "output_shape"], [26, 4, 1, "", "output_shm_name"], [26, 4, 1, "", "return_outputs_directly"], [26, 4, 1, "", "snapshot"], [26, 4, 1, "", "target_calculator"]], "mala.datahandling.ldos_aligner": [[27, 2, 1, "", "LDOSAligner"]], "mala.datahandling.ldos_aligner.LDOSAligner": [[27, 3, 1, "", "add_snapshot"], [27, 3, 1, "", "align_ldos_to_ref"], [27, 3, 1, "", "calc_optimal_ldos_shift"], [27, 4, 1, "", "ldos_parameters"]], "mala.datahandling.multi_lazy_load_data_loader": [[28, 2, 1, "", "MultiLazyLoadDataLoader"]], "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader": [[28, 3, 1, "", "cleanup"], [28, 3, 1, "", "load_snapshot_to_shm"]], "mala.datahandling.snapshot": [[29, 2, 1, "", "Snapshot"]], "mala.datahandling.snapshot.Snapshot": [[29, 4, 1, "", "calculation_output"], [29, 3, 1, "", "from_json"], [29, 4, 1, "", "grid_dimensions"], [29, 4, 1, "", "grid_size"], [29, 4, 1, "", "input_dimension"], [29, 4, 1, "", "input_npy_directory"], [29, 4, 1, "", "input_npy_file"], [29, 4, 1, "", "input_units"], [29, 4, 1, "", "output_dimension"], [29, 4, 1, "", "output_npy_directory"], [29, 4, 1, "", "output_npy_file"], [29, 4, 1, "", "output_units"], [29, 4, 1, "", "snapshot_function"], [29, 4, 1, "", "snapshot_type"]], "mala.descriptors": [[31, 0, 0, "-", "atomic_density"], [32, 0, 0, "-", "bispectrum"], [33, 0, 0, "-", "descriptor"], [34, 0, 0, "-", "lammps_utils"], [35, 0, 0, "-", "minterpy_descriptors"]], "mala.descriptors.atomic_density": [[31, 2, 1, "", "AtomicDensity"]], "mala.descriptors.atomic_density.AtomicDensity": [[31, 3, 1, "", "backconvert_units"], [31, 3, 1, "", "convert_units"], [31, 5, 1, "", "data_name"], [31, 3, 1, "", "get_optimal_sigma"]], "mala.descriptors.bispectrum": [[32, 2, 1, "", "Bispectrum"]], "mala.descriptors.bispectrum.Bispectrum": [[32, 3, 1, "", "backconvert_units"], [32, 3, 1, "", "convert_units"], [32, 5, 1, "", "data_name"]], "mala.descriptors.descriptor": [[33, 2, 1, "", "Descriptor"]], "mala.descriptors.descriptor.Descriptor": [[33, 3, 1, "", "backconvert_units"], [33, 3, 1, "", "calculate_from_atoms"], [33, 3, 1, "", "calculate_from_qe_out"], [33, 3, 1, "", "convert_local_to_3d"], [33, 3, 1, "", "convert_units"], [33, 5, 1, "", "descriptors_contain_xyz"], [33, 3, 1, "", "enforce_pbc"], [33, 5, 1, "", "feature_size"], [33, 3, 1, "", "gather_descriptors"], [33, 4, 1, "", "parameters"], [33, 3, 1, "", "setup_lammps_tmp_files"], [33, 5, 1, "", "si_dimension"], [33, 5, 1, "", "si_unit_conversion"]], "mala.descriptors.lammps_utils": [[34, 1, 1, "", "extract_compute_np"], [34, 1, 1, "", "set_cmdlinevars"]], "mala.descriptors.minterpy_descriptors": [[35, 2, 1, "", "MinterpyDescriptors"]], "mala.descriptors.minterpy_descriptors.MinterpyDescriptors": [[35, 3, 1, "", "backconvert_units"], [35, 3, 1, "", "convert_units"], [35, 5, 1, "", "data_name"]], "mala.interfaces": [[37, 0, 0, "-", "ase_calculator"]], "mala.interfaces.ase_calculator": [[37, 2, 1, "", "MALA"]], "mala.interfaces.ase_calculator.MALA": [[37, 3, 1, "", "calculate"], [37, 3, 1, "", "calculate_properties"], [37, 4, 1, "", "implemented_properties"], [37, 4, 1, "", "last_energy_contributions"], [37, 3, 1, "", "load_model"], [37, 3, 1, "", "load_run"], [37, 4, 1, "", "mala_parameters"], [37, 3, 1, "", "save_calculator"]], "mala.network": [[39, 0, 0, "-", "acsd_analyzer"], [40, 0, 0, "-", "hyper_opt"], [41, 0, 0, "-", "hyper_opt_naswot"], [42, 0, 0, "-", "hyper_opt_oat"], [43, 0, 0, "-", "hyper_opt_optuna"], [44, 0, 0, "-", "hyperparameter"], [45, 0, 0, "-", "hyperparameter_acsd"], [46, 0, 0, "-", "hyperparameter_naswot"], [47, 0, 0, "-", "hyperparameter_oat"], [48, 0, 0, "-", "hyperparameter_optuna"], [49, 0, 0, "-", "multi_training_pruner"], [50, 0, 0, "-", "naswot_pruner"], [51, 0, 0, "-", "network"], [52, 0, 0, "-", "objective_base"], [53, 0, 0, "-", "objective_naswot"], [54, 0, 0, "-", "predictor"], [55, 0, 0, "-", "runner"], [56, 0, 0, "-", "tester"], [57, 0, 0, "-", "trainer"]], "mala.network.acsd_analyzer": [[39, 2, 1, "", "ACSDAnalyzer"]], "mala.network.acsd_analyzer.ACSDAnalyzer": [[39, 3, 1, "", "add_hyperparameter"], [39, 3, 1, "", "add_snapshot"], [39, 3, 1, "", "perform_study"], [39, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt": [[40, 2, 1, "", "HyperOpt"]], "mala.network.hyper_opt.HyperOpt": [[40, 3, 1, "", "add_hyperparameter"], [40, 3, 1, "", "checkpoint_exists"], [40, 3, 1, "", "clear_hyperparameters"], [40, 4, 1, "", "params"], [40, 3, 1, "", "perform_study"], [40, 3, 1, "", "set_optimal_parameters"], [40, 3, 1, "", "set_parameters"]], "mala.network.hyper_opt_naswot": [[41, 2, 1, "", "HyperOptNASWOT"]], "mala.network.hyper_opt_naswot.HyperOptNASWOT": [[41, 5, 1, "", "best_trial"], [41, 5, 1, "", "best_trial_index"], [41, 3, 1, "", "perform_study"], [41, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt_oat": [[42, 2, 1, "", "HyperOptOAT"]], "mala.network.hyper_opt_oat.HyperOptOAT": [[42, 3, 1, "", "add_hyperparameter"], [42, 5, 1, "", "best_trial_index"], [42, 3, 1, "", "load_from_file"], [42, 3, 1, "", "perform_study"], [42, 3, 1, "", "resume_checkpoint"], [42, 3, 1, "", "set_optimal_parameters"], [42, 3, 1, "", "show_order_of_importance"]], "mala.network.hyper_opt_optuna": [[43, 2, 1, "", "HyperOptOptuna"]], "mala.network.hyper_opt_optuna.HyperOptOptuna": [[43, 3, 1, "", "get_trials_from_study"], [43, 3, 1, "", "load_from_file"], [43, 4, 1, "", "objective"], [43, 4, 1, "", "params"], [43, 3, 1, "", "perform_study"], [43, 3, 1, "", "requeue_zombie_trials"], [43, 3, 1, "", "resume_checkpoint"], [43, 3, 1, "", "set_optimal_parameters"], [43, 4, 1, "", "study"]], "mala.network.hyperparameter": [[44, 2, 1, "", "Hyperparameter"]], "mala.network.hyperparameter.Hyperparameter": [[44, 4, 1, "", "choices"], [44, 4, 1, "", "high"], [44, 4, 1, "", "low"], [44, 4, 1, "", "name"], [44, 4, 1, "", "opttype"]], "mala.network.hyperparameter_acsd": [[45, 2, 1, "", "HyperparameterACSD"]], "mala.network.hyperparameter_naswot": [[46, 2, 1, "", "HyperparameterNASWOT"]], "mala.network.hyperparameter_oat": [[47, 2, 1, "", "HyperparameterOAT"]], "mala.network.hyperparameter_oat.HyperparameterOAT": [[47, 3, 1, "", "get_categorical"], [47, 3, 1, "", "get_parameter"], [47, 5, 1, "", "num_choices"]], "mala.network.hyperparameter_optuna": [[48, 2, 1, "", "HyperparameterOptuna"]], "mala.network.hyperparameter_optuna.HyperparameterOptuna": [[48, 3, 1, "", "get_categorical"], [48, 3, 1, "", "get_float"], [48, 3, 1, "", "get_int"], [48, 3, 1, "", "get_parameter"]], "mala.network.multi_training_pruner": [[49, 2, 1, "", "MultiTrainingPruner"]], "mala.network.multi_training_pruner.MultiTrainingPruner": [[49, 3, 1, "", "prune"]], "mala.network.naswot_pruner": [[50, 2, 1, "", "NASWOTPruner"]], "mala.network.naswot_pruner.NASWOTPruner": [[50, 3, 1, "", "prune"]], "mala.network.network": [[51, 2, 1, "", "FeedForwardNet"], [51, 2, 1, "", "GRU"], [51, 2, 1, "", "LSTM"], [51, 2, 1, "", "Network"], [51, 2, 1, "", "PositionalEncoding"], [51, 2, 1, "", "TransformerNet"]], "mala.network.network.FeedForwardNet": [[51, 3, 1, "", "forward"]], "mala.network.network.GRU": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.LSTM": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.Network": [[51, 3, 1, "", "calculate_loss"], [51, 3, 1, "", "do_prediction"], [51, 3, 1, "", "forward"], [51, 3, 1, "", "load_from_file"], [51, 4, 1, "", "loss_func"], [51, 4, 1, "", "mini_batch_size"], [51, 4, 1, "", "number_of_layers"], [51, 4, 1, "", "params"], [51, 3, 1, "", "save_network"], [51, 4, 1, "", "use_ddp"]], "mala.network.network.PositionalEncoding": [[51, 3, 1, "", "forward"]], "mala.network.network.TransformerNet": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "generate_square_subsequent_mask"], [51, 3, 1, "", "init_weights"]], "mala.network.objective_base": [[52, 2, 1, "", "ObjectiveBase"]], "mala.network.objective_base.ObjectiveBase": [[52, 3, 1, "", "parse_trial"], [52, 3, 1, "", "parse_trial_oat"], [52, 3, 1, "", "parse_trial_optuna"]], "mala.network.objective_naswot": [[53, 2, 1, "", "ObjectiveNASWOT"]], "mala.network.predictor": [[54, 2, 1, "", "Predictor"]], "mala.network.predictor.Predictor": [[54, 3, 1, "", "predict_for_atoms"], [54, 3, 1, "", "predict_from_qeout"], [54, 4, 1, "", "target_calculator"]], "mala.network.runner": [[55, 2, 1, "", "Runner"]], "mala.network.runner.Runner": [[55, 4, 1, "", "data"], [55, 3, 1, "", "load_run"], [55, 4, 1, "", "network"], [55, 4, 1, "", "parameters"], [55, 4, 1, "", "parameters_full"], [55, 3, 1, "", "run_exists"], [55, 3, 1, "", "save_run"]], "mala.network.tester": [[56, 2, 1, "", "Tester"]], "mala.network.tester.Tester": [[56, 3, 1, "", "get_energy_targets_and_predictions"], [56, 4, 1, "", "observables_to_test"], [56, 4, 1, "", "output_format"], [56, 3, 1, "", "predict_targets"], [56, 4, 1, "", "target_calculator"], [56, 3, 1, "", "test_all_snapshots"], [56, 3, 1, "", "test_snapshot"]], "mala.network.trainer": [[57, 2, 1, "", "Trainer"]], "mala.network.trainer.Trainer": [[57, 4, 1, "", "final_validation_loss"], [57, 4, 1, "", "full_logging_path"], [57, 3, 1, "", "load_run"], [57, 4, 1, "", "network"], [57, 3, 1, "", "run_exists"], [57, 3, 1, "", "train_network"]], "mala.targets": [[59, 0, 0, "-", "atomic_force"], [60, 0, 0, "-", "calculation_helpers"], [61, 0, 0, "-", "cube_parser"], [62, 0, 0, "-", "density"], [63, 0, 0, "-", "dos"], [64, 0, 0, "-", "ldos"], [65, 0, 0, "-", "target"], [66, 0, 0, "-", "xsf_parser"]], "mala.targets.atomic_force": [[59, 2, 1, "", "AtomicForce"]], "mala.targets.atomic_force.AtomicForce": [[59, 3, 1, "", "convert_units"], [59, 3, 1, "", "get_feature_size"]], "mala.targets.calculation_helpers": [[60, 1, 1, "", "analytical_integration"], [60, 1, 1, "", "entropy_multiplicator"], [60, 1, 1, "", "fermi_function"], [60, 1, 1, "", "gaussians"], [60, 1, 1, "", "get_beta"], [60, 1, 1, "", "get_f0_value"], [60, 1, 1, "", "get_f1_value"], [60, 1, 1, "", "get_f2_value"], [60, 1, 1, "", "get_s0_value"], [60, 1, 1, "", "get_s1_value"], [60, 1, 1, "", "integrate_values_on_spacing"]], "mala.targets.cube_parser": [[61, 2, 1, "", "CubeFile"], [61, 1, 1, "", "read_cube"], [61, 1, 1, "", "read_imcube"], [61, 1, 1, "", "write_cube"], [61, 1, 1, "", "write_imcube"]], "mala.targets.cube_parser.CubeFile": [[61, 3, 1, "", "readline"]], "mala.targets.density": [[62, 2, 1, "", "Density"]], "mala.targets.density.Density": [[62, 3, 1, "", "backconvert_units"], [62, 3, 1, "", "convert_units"], [62, 5, 1, "", "data_name"], [62, 5, 1, "", "density"], [62, 5, 1, "", "feature_size"], [62, 3, 1, "", "from_cube_file"], [62, 3, 1, "", "from_ldos_calculator"], [62, 3, 1, "", "from_numpy_array"], [62, 3, 1, "", "from_numpy_file"], [62, 3, 1, "", "from_openpmd_file"], [62, 3, 1, "", "from_xsf_file"], [62, 3, 1, "", "get_atomic_forces"], [62, 3, 1, "", "get_density"], [62, 3, 1, "", "get_energy_contributions"], [62, 3, 1, "", "get_number_of_electrons"], [62, 3, 1, "", "get_scaled_positions_for_qe"], [62, 3, 1, "", "get_target"], [62, 3, 1, "", "invalidate_target"], [62, 5, 1, "", "number_of_electrons"], [62, 3, 1, "", "read_from_array"], [62, 3, 1, "", "read_from_cube"], [62, 3, 1, "", "read_from_xsf"], [62, 5, 1, "", "si_dimension"], [62, 5, 1, "", "si_unit_conversion"], [62, 4, 1, "", "te_mutex"], [62, 5, 1, "", "total_energy_contributions"], [62, 3, 1, "", "uncache_properties"], [62, 3, 1, "", "write_to_cube"], [62, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.dos": [[63, 2, 1, "", "DOS"]], "mala.targets.dos.DOS": [[63, 3, 1, "", "backconvert_units"], [63, 5, 1, "", "band_energy"], [63, 3, 1, "", "convert_units"], [63, 5, 1, "", "data_name"], [63, 5, 1, "", "density_of_states"], [63, 5, 1, "", "energy_grid"], [63, 5, 1, "", "entropy_contribution"], [63, 5, 1, "", "feature_size"], [63, 5, 1, "", "fermi_energy"], [63, 3, 1, "", "from_ldos_calculator"], [63, 3, 1, "", "from_numpy_array"], [63, 3, 1, "", "from_numpy_file"], [63, 3, 1, "", "from_qe_dos_txt"], [63, 3, 1, "", "from_qe_out"], [63, 3, 1, "", "get_band_energy"], [63, 3, 1, "", "get_density_of_states"], [63, 3, 1, "", "get_energy_grid"], [63, 3, 1, "", "get_entropy_contribution"], [63, 3, 1, "", "get_number_of_electrons"], [63, 3, 1, "", "get_self_consistent_fermi_energy"], [63, 3, 1, "", "get_target"], [63, 3, 1, "", "invalidate_target"], [63, 5, 1, "", "number_of_electrons"], [63, 3, 1, "", "read_from_array"], [63, 3, 1, "", "read_from_numpy_file"], [63, 3, 1, "", "read_from_qe_dos_txt"], [63, 3, 1, "", "read_from_qe_out"], [63, 5, 1, "", "si_dimension"], [63, 5, 1, "", "si_unit_conversion"], [63, 3, 1, "", "uncache_properties"]], "mala.targets.ldos": [[64, 2, 1, "", "LDOS"]], "mala.targets.ldos.LDOS": [[64, 3, 1, "", "backconvert_units"], [64, 5, 1, "", "band_energy"], [64, 3, 1, "", "convert_units"], [64, 5, 1, "", "data_name"], [64, 5, 1, "", "density"], [64, 5, 1, "", "density_of_states"], [64, 5, 1, "", "energy_grid"], [64, 5, 1, "", "entropy_contribution"], [64, 5, 1, "", "feature_size"], [64, 5, 1, "", "fermi_energy"], [64, 3, 1, "", "from_cube_file"], [64, 3, 1, "", "from_numpy_array"], [64, 3, 1, "", "from_numpy_file"], [64, 3, 1, "", "from_openpmd_file"], [64, 3, 1, "", "from_xsf_file"], [64, 3, 1, "", "get_atomic_forces"], [64, 3, 1, "", "get_band_energy"], [64, 3, 1, "", "get_density"], [64, 3, 1, "", "get_density_of_states"], [64, 3, 1, "", "get_energy_grid"], [64, 3, 1, "", "get_entropy_contribution"], [64, 3, 1, "", "get_number_of_electrons"], [64, 3, 1, "", "get_self_consistent_fermi_energy"], [64, 3, 1, "", "get_target"], [64, 3, 1, "", "get_total_energy"], [64, 3, 1, "", "invalidate_target"], [64, 5, 1, "", "local_density_of_states"], [64, 5, 1, "", "number_of_electrons"], [64, 3, 1, "", "read_from_array"], [64, 3, 1, "", "read_from_cube"], [64, 3, 1, "", "read_from_xsf"], [64, 5, 1, "", "si_dimension"], [64, 5, 1, "", "si_unit_conversion"], [64, 5, 1, "", "total_energy"], [64, 3, 1, "", "uncache_properties"]], "mala.targets.target": [[65, 2, 1, "", "Target"]], "mala.targets.target.Target": [[65, 4, 1, "", "atomic_forces_dft"], [65, 4, 1, "", "atoms"], [65, 3, 1, "", "backconvert_units"], [65, 4, 1, "", "band_energy_dft_calculation"], [65, 3, 1, "", "convert_units"], [65, 4, 1, "", "electrons_per_atom"], [65, 4, 1, "", "entropy_contribution_dft_calculation"], [65, 5, 1, "", "feature_size"], [65, 4, 1, "", "fermi_energy_dft"], [65, 3, 1, "", "get_energy_grid"], [65, 3, 1, "", "get_radial_distribution_function"], [65, 3, 1, "", "get_real_space_grid"], [65, 3, 1, "", "get_static_structure_factor"], [65, 3, 1, "", "get_target"], [65, 3, 1, "", "get_three_particle_correlation_function"], [65, 3, 1, "", "invalidate_target"], [65, 4, 1, "", "kpoints"], [65, 4, 1, "", "local_grid"], [65, 4, 1, "", "number_of_electrons_exact"], [65, 4, 1, "", "number_of_electrons_from_eigenvals"], [65, 4, 1, "", "parameters"], [65, 5, 1, "", "qe_input_data"], [65, 4, 1, "", "qe_pseudopotentials"], [65, 3, 1, "", "radial_distribution_function_from_atoms"], [65, 3, 1, "", "read_additional_calculation_data"], [65, 3, 1, "", "restrict_data"], [65, 4, 1, "", "save_target_data"], [65, 5, 1, "", "si_dimension"], [65, 5, 1, "", "si_unit_conversion"], [65, 3, 1, "", "static_structure_factor_from_atoms"], [65, 4, 1, "", "temperature"], [65, 3, 1, "", "three_particle_correlation_function_from_atoms"], [65, 4, 1, "", "total_energy_contributions_dft_calculation"], [65, 4, 1, "", "total_energy_dft_calculation"], [65, 4, 1, "", "voxel"], [65, 3, 1, "", "write_additional_calculation_data"], [65, 3, 1, "", "write_tem_input_file"], [65, 3, 1, "", "write_to_numpy_file"], [65, 3, 1, "", "write_to_openpmd_file"], [65, 4, 1, "", "y_planes"]], "mala.targets.xsf_parser": [[66, 1, 1, "", "read_xsf"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute", "5": "py:property"}, "terms": {"": [0, 12, 40, 42, 61, 63, 65, 73, 74, 75, 78], "0": [2, 5, 6, 11, 12, 13, 18, 22, 27, 33, 34, 37, 40, 41, 42, 44, 45, 46, 47, 48, 54, 60, 62, 64, 65, 70, 73], "000": [2, 75], "00001": 73, "0048450": 65, "005": 70, "01": 70, "01070": 74, "015": 70, "023": 74, "030": 42, "035120": 74, "03610": 65, "045008": 74, "05": [12, 27], "1": [2, 6, 12, 20, 22, 33, 37, 41, 42, 59, 60, 61, 62, 63, 64, 65, 71, 73, 74, 77], "10": [2, 3, 6, 12, 27, 39, 42, 65, 71, 73, 74, 77], "100": [2, 6, 12, 73, 75], "10000": 12, "1007": 42, "1038": 74, "104": 74, "1063": 65, "108": 74, "1088": [39, 74], "11": [6, 12, 71, 73], "1103": 74, "115": 74, "12": [3, 5, 74], "1234": 6, "125146": 74, "16": 74, "1606": 65, "1696": 65, "17": [65, 74], "1883": 12, "1_31": 42, "1d": [62, 64], "1e": [27, 71], "2": [2, 5, 6, 12, 34, 60, 63, 65, 71, 73, 78], "20": 70, "200": 5, "2017": 61, "2019": [11, 61], "2021": 74, "2022": 74, "2023": 74, "2153": [39, 74], "224": 5, "25th": 61, "2632": [39, 74], "2685": 12, "27": 74, "29500": 6, "2d": [13, 62, 64, 71, 72], "2mic": 65, "3": [2, 3, 12, 20, 33, 42, 62, 64, 71, 74, 77], "32": [60, 70], "33": 60, "36808": 42, "39m": 78, "3d": [13, 62, 64], "4": [2, 6, 12, 13, 18, 37, 63, 71, 73, 74, 77], "40": 73, "400": 5, "4d": [13, 62, 64], "5": [3, 6, 12, 65, 71, 73], "500": 5, "57": 65, "6": [65, 71], "64": [33, 70], "67637": [71, 73], "7": [71, 78], "8": [12, 76, 77], "9": [71, 74], "91": [33, 71], "94": 33, "96": 70, "97": 33, "978": 42, "A": [0, 3, 6, 10, 11, 12, 13, 16, 20, 24, 28, 29, 33, 37, 41, 42, 43, 49, 50, 52, 54, 56, 57, 61, 62, 64, 65, 70, 74, 75], "AND": [11, 43, 51, 61], "AS": [11, 61], "ASE": [5, 13, 31, 33, 37, 54, 62, 63, 64, 65], "As": [0, 2, 3, 4, 5, 13, 63, 73, 77, 79], "At": 78, "BE": [11, 12, 43, 61], "BUT": [11, 61], "Be": [6, 12, 51], "By": [0, 5, 6, 11, 12, 27, 62, 63, 64, 65, 70, 71, 73], "FOR": [11, 61], "For": [2, 3, 4, 5, 12, 16, 19, 26, 33, 37, 43, 55, 57, 64, 65, 70, 71, 72, 73, 75, 76, 79], "IN": [11, 12, 61], "IT": 43, "If": [0, 2, 3, 4, 5, 6, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 33, 34, 39, 40, 42, 43, 49, 50, 51, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 70, 71, 72, 74, 75, 76, 78], "In": [0, 2, 5, 6, 12, 13, 25, 26, 40, 43, 44, 45, 46, 47, 48, 49, 63, 64, 65, 70, 71, 72, 73, 76, 78], "It": [3, 5, 6, 12, 26, 54, 56, 61, 62, 63, 64, 65, 69, 72, 73, 75], "NO": [11, 61], "NOT": [11, 12, 43, 61], "No": [2, 12, 22, 37, 73], "OF": [11, 12, 15, 61, 75], "OR": [11, 61], "Of": [6, 12, 73], "On": 3, "One": [3, 5, 6, 61, 70, 73], "THE": [11, 43, 61], "THEN": 43, "TO": [4, 11, 43, 61], "That": [55, 70], "The": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 18, 19, 29, 31, 33, 34, 37, 39, 40, 41, 42, 43, 51, 53, 55, 57, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "Their": 71, "Then": [2, 5], "There": [2, 63, 70, 73], "These": [2, 3, 6, 18, 43, 63, 70, 71, 75], "To": [2, 4, 5, 6, 12, 26, 33, 51, 73, 74, 75, 76, 78], "WILL": [12, 43], "WITH": [11, 61], "Will": [15, 16, 34, 44, 64], "With": [5, 12, 13, 25, 37, 70], "__getitem__": 24, "_build": 77, "_optimizer_dict": 57, "_xxx": 12, "ab": 65, "abc": [13, 20, 40], "abil": 6, "abl": 0, "about": [61, 65], "abov": [2, 11, 12, 16, 50, 61, 73], "absolut": [6, 51, 56], "absolute_valu": 12, "abstract": [13, 40, 51, 65, 74], "ac9956": [39, 74], "acceler": [1, 3, 5, 6, 12, 69, 74, 75], "acces": 62, "access": [3, 5, 6, 9, 16, 21, 22, 26, 37, 70, 71, 72, 73, 75, 78, 79], "accessibli": 65, "accompani": [0, 73, 79], "accord": [2, 62, 65, 70], "accordingli": [13, 71, 75], "account": [27, 65, 75], "accur": [2, 3, 6, 65, 71], "accuraci": [3, 6, 12, 71, 73], "achiev": 12, "acitv": 12, "acquaint": 75, "acquir": 72, "across": [1, 6, 12, 56, 73, 74, 75], "acsd": [2, 12, 39, 71], "acsd_analyz": [7, 38, 68], "acsd_point": [2, 12], "acsdanalyz": [2, 7, 38, 39, 68], "action": [11, 12, 61], "activ": [0, 3, 4, 5, 6, 12, 55, 70, 73, 75], "actual": [0, 6, 13, 16, 25, 26, 42, 43, 51, 56, 70, 73, 79], "actual_output": 56, "ad": [6, 12, 16, 20, 22, 25, 27, 34, 70, 71], "adam": [0, 12, 73], "add": [0, 2, 6, 12, 18, 20, 22, 23, 25, 27, 34, 39, 40, 42, 70, 71, 73, 74, 76, 78], "add_hyperparamet": [2, 7, 38, 39, 40, 42, 68, 70], "add_snapshot": [2, 4, 6, 7, 17, 18, 20, 23, 27, 38, 39, 68, 70, 71, 73], "add_snapshot_a": 20, "add_snapshot_to_dataset": [7, 17, 25, 68], "addit": [0, 5, 6, 12, 13, 18, 37, 55, 62, 65, 74, 77], "addition": [73, 75], "additional_attribut": [13, 62, 65], "additional_calculation_data": [55, 73], "additional_info_input_": 71, "additional_info_input_path": [18, 71], "additional_info_input_typ": [18, 71], "additional_info_save_path": [18, 23, 71], "additional_metadata": 13, "additon": 37, "aditya95sriram": 61, "adjust": [5, 12, 65, 70, 72], "adress": [12, 43], "advanc": [2, 5, 69, 70, 71, 72, 73, 74, 75, 77], "advantag": 18, "advers": 6, "advis": [2, 5, 12, 55, 71], "affect": [6, 18], "aforement": 3, "after": [0, 3, 6, 12, 16, 37, 57, 71, 73, 76, 77], "after_training_metr": [3, 6, 7, 8, 12, 68], "afterward": [2, 6, 25, 63, 72, 73], "again": [0, 22, 77], "against": [49, 50], "aggres": 12, "agre": [0, 73], "aidan": [0, 74], "aim": [5, 6], "akin": 6, "al": 43, "algorihm": 12, "algorithm": [5, 6, 12, 70, 75], "align": 27, "align_ldos_to_ref": [7, 17, 27, 68], "all": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 26, 27, 29, 33, 37, 40, 43, 44, 52, 54, 55, 56, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 77, 78, 79], "all_chang": 37, "allevi": 5, "alloc": [2, 7, 12, 17, 26, 68], "allocate_shared_mem": [7, 17, 26, 68], "allow": [0, 4, 5, 6, 12, 73, 75, 77], "almost": 6, "along": [5, 60, 74, 75], "alongsid": [4, 13, 62, 64, 77], "alphabet": 0, "alreadi": [6, 13, 55, 72, 73, 77], "also": [1, 2, 4, 5, 6, 10, 12, 19, 51, 55, 69, 71, 72, 73, 74, 77, 79], "alter": [3, 72], "altern": [12, 13, 43], "alternative_storage_path": 43, "although": [41, 62, 75], "aluminium": 75, "alwai": [6, 11, 27, 39, 40, 44, 45, 46, 47, 48, 64, 69, 70, 71, 76], "am": 33, "american": 74, "among": 70, "amount": [2, 6, 23, 27, 73], "amp": 12, "an": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 19, 25, 26, 29, 31, 33, 34, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 54, 55, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 75, 76, 77, 78], "analys": 41, "analysi": [2, 4, 5, 12, 16, 39, 42, 43], "analyt": [60, 63, 64], "analytical_integr": [7, 58, 60, 68], "analyz": [16, 39], "ang": [59, 62], "angstrom": 33, "ani": [0, 5, 6, 11, 12, 13, 16, 18, 24, 25, 26, 37, 49, 50, 51, 61, 62, 65, 70, 71, 72, 73, 74, 75], "anoth": [3, 6, 12, 26], "anyth": [12, 62], "anywai": 18, "ap": 74, "apart": [6, 71], "api": [4, 72, 73, 75], "apidoc": 77, "appli": [12, 19, 22, 43, 65, 73, 74], "applic": [43, 53, 65], "approach": [18, 25, 26, 40, 44, 45, 46, 47, 48, 74], "appropri": [0, 6, 64, 71], "approxim": 60, "apt": 78, "ar": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 20, 25, 26, 27, 29, 33, 40, 41, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 77, 79], "arbitrari": 65, "arbitrarili": 6, "architectur": [3, 38, 40, 41, 43, 51, 52, 70, 76, 77], "archiv": [16, 73], "arg": [24, 25, 26, 37, 49, 50, 51, 61], "argdict": 34, "argument": [6, 12, 18, 33, 34, 60, 71], "aris": [11, 61, 78], "around": 2, "arrai": [3, 12, 13, 16, 18, 19, 20, 22, 23, 27, 28, 29, 31, 32, 33, 34, 35, 42, 47, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 73, 77], "array_lik": 27, "array_shap": 34, "articl": [74, 75], "arxiv": 65, "as_numpi": 22, "asap": 65, "asap3": 65, "ase": [15, 16, 31, 33, 37, 54, 62, 64, 65, 72], "ase_calcul": [7, 36, 68], "aspect": 73, "assert": 75, "assign": [6, 12, 51], "associ": [11, 61, 62, 63], "assum": [12, 13, 16, 22, 25, 26, 34, 51, 60, 62, 65, 69, 70, 73, 78], "assume_two_dimension": [7, 8, 12, 68, 72], "assumpt": 12, "asterisk": 64, "atom": [2, 5, 6, 7, 12, 14, 15, 16, 29, 33, 37, 54, 58, 59, 61, 62, 64, 65, 68, 71, 72, 73, 75, 79], "atomic_dens": [7, 30, 68], "atomic_density_cutoff": [7, 8, 12, 68], "atomic_density_sigma": [7, 8, 12, 68], "atomic_forc": [7, 58, 62, 68], "atomic_forces_dft": [7, 58, 65, 68], "atomicdens": [7, 30, 31, 68], "atomicforc": [7, 58, 59, 68], "atomist": 72, "atoms_angstrom": [62, 64, 65], "attach": 6, "attempt": [4, 23, 55, 57, 62, 64, 65], "attent": [12, 74], "attila": [0, 74, 75], "attribut": [10, 12, 13, 16, 21, 29, 52, 62, 65], "austin": [0, 74], "author": [11, 61, 74], "automat": [0, 3, 5, 6, 12, 16, 27, 42, 51, 55, 65, 77], "avail": [0, 2, 5, 6, 9, 12, 18, 27, 33, 40, 44, 45, 46, 47, 48, 60, 70, 71, 73, 76, 77], "availab": 6, "averag": [2, 3, 12, 65, 73], "average_distance_equilibr": [7, 14, 16, 68], "avoid": [0, 3, 12, 26], "awar": [5, 51, 65, 71, 76, 78], "axi": [12, 60], "b": [60, 74, 75], "back": [12, 26, 43], "backbon": 73, "backconvert_unit": [7, 30, 31, 32, 33, 35, 58, 62, 63, 64, 65, 68], "backend": [5, 12], "background": 3, "bad": 6, "band": [6, 12, 49, 56, 63, 64, 65, 73], "band_energi": [3, 6, 7, 12, 49, 56, 58, 63, 64, 68, 73], "band_energy_actual_f": [6, 12], "band_energy_dft_calcul": [7, 58, 65, 68], "band_energy_ful": 56, "barrier": [7, 8, 11, 68], "bartosz": 0, "base": [0, 2, 3, 4, 5, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 73, 75], "baselin": 11, "baseprun": [49, 50], "bash": 6, "basi": [12, 61], "basic": [2, 5, 6, 69, 71, 73, 75], "bat": 77, "batch": [12, 24, 51, 53, 70], "batch_siz": [7, 17, 24, 53, 68], "be_dens": 5, "be_ldo": 71, "be_model": [72, 73], "be_shuffl": [4, 6], "be_snapshot": [4, 71], "be_snapshot0": [4, 6, 71, 73], "be_snapshot1": [2, 6, 72, 73], "be_snapshot2": 2, "becaus": [3, 12, 37, 73], "becom": [5, 27], "been": [0, 2, 3, 6, 16, 26, 33, 63, 71, 73, 74, 75, 77, 78, 79], "befor": [0, 6, 12, 27, 49, 50, 64, 65, 72, 73, 77], "behavior": 12, "being": [6, 11, 25, 26, 37, 55, 56, 57, 62, 63, 64, 73], "believ": 12, "below": [0, 5, 12, 16, 61], "benchmark": 55, "benefici": 12, "benefit": 12, "best": [12, 41, 42, 43, 62, 70], "best_trial": [7, 38, 41, 68], "best_trial_index": [7, 38, 41, 42, 68], "best_trial_loss": [41, 43], "beta": [60, 63], "better": 6, "between": [2, 3, 6, 11, 12, 16, 23, 25, 43, 70], "bgrid": 33, "bias": 12, "bidirect": [7, 8, 12, 68], "big": [0, 65], "bigger": 12, "bin": [12, 65, 76, 78], "binari": 71, "bind": 78, "bispectrum": [2, 5, 7, 12, 30, 33, 68, 71, 72, 73, 76], "bispectrum_cutoff": [2, 7, 8, 12, 68, 71, 73], "bispectrum_switchflag": [7, 8, 12, 68], "bispectrum_twojmax": [2, 7, 8, 12, 68, 71, 73], "bit": [12, 24, 62], "black": 0, "blob": [11, 65], "bohr": [2, 62, 64, 71], "boldsymbol": 64, "bool": [11, 12, 13, 16, 18, 19, 22, 25, 26, 27, 33, 34, 40, 42, 43, 49, 50, 51, 54, 55, 57, 60, 62, 63, 64, 65], "boolean": [49, 50], "both": [2, 3, 12, 56, 61, 75], "bottleneck": 6, "bound": [40, 44, 45, 46, 48, 70], "boundari": 12, "bp": 4, "branch": 76, "break": 33, "briefli": 6, "brillouin": 60, "broadcast_band_energi": 63, "broadcast_entropi": 63, "broadcast_fermi_energi": 63, "brown": 11, "brzoza": 0, "buffer": [26, 28], "bug": 0, "bugfix": 0, "build": [0, 4, 12, 19, 69, 75], "build_fold": 76, "build_mpi": 76, "build_shared_lib": 76, "build_total_energy_modul": 78, "built": [0, 11, 76], "bump2vers": 77, "bumpvers": 0, "busi": 6, "by_snapshot": 12, "c": [6, 11, 61, 65], "cach": [16, 25, 26, 62, 63, 64, 65], "calc_optimal_ldos_shift": [7, 17, 27, 68], "calcul": [0, 2, 5, 6, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 51, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 73, 74, 75, 76, 79], "calculate_from_atom": [7, 30, 33, 68], "calculate_from_qe_out": [7, 30, 33, 68], "calculate_loss": [7, 38, 51, 68], "calculate_properti": [7, 36, 37, 68], "calculation_help": [7, 58, 68], "calculation_output": [7, 17, 19, 29, 68], "calculation_output_fil": 20, "calculation_typ": 65, "calibr": [49, 50], "call": [2, 3, 6, 11, 12, 13, 16, 18, 24, 42, 43, 50, 51, 63, 65, 71, 72, 73, 74, 75, 79], "callow": 0, "can": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 18, 19, 22, 25, 26, 29, 33, 37, 42, 43, 51, 52, 54, 55, 56, 57, 65, 70, 71, 72, 73, 75, 76, 78, 79], "cancel": 71, "candid": [49, 50, 70], "cangi": [0, 74, 75], "cannot": [6, 33, 62, 64], "cantransform": [7, 17, 22, 68], "capabilit": 2, "capabl": [1, 3, 4, 75], "care": [6, 26, 43], "case": [6, 11, 12, 13, 25, 26, 42, 43, 49, 54, 55, 64, 65, 70, 76, 78], "categor": [3, 12, 40, 42, 44, 45, 46, 47, 48, 70], "categori": 11, "caus": 74, "cd": 77, "cell": [5, 12, 31, 33, 37, 51, 62, 64, 65], "center": [60, 75], "cento": 79, "central": [3, 51, 73], "certain": [12, 18, 40, 41, 43, 63], "cff": 0, "cflag": 78, "challeng": [74, 75], "chanc": [3, 12], "chang": [0, 3, 4, 12, 37, 63, 65, 76, 77, 78], "changelog": 0, "chapter": 42, "character": [12, 31], "charg": [11, 37, 61, 62], "check": [0, 4, 6, 9, 19, 22, 37, 40, 49, 55, 57, 76, 77], "check_modul": [7, 8, 68], "checkout": [21, 76, 77], "checkpoint": [12, 37, 40, 42, 43, 55, 57], "checkpoint_exist": [7, 38, 40, 57, 68], "checkpoint_nam": [3, 6, 7, 8, 12, 40, 42, 43, 68], "checkpoints_each_epoch": [6, 7, 8, 12, 68], "checkpoints_each_tri": [3, 12], "chemistri": 74, "choic": [7, 38, 39, 40, 42, 44, 45, 46, 47, 48, 53, 68, 70, 73], "choos": [0, 2, 12], "chosen": [2, 6, 12, 71], "ci": 0, "circumv": [6, 74], "citat": [0, 74], "cite": 75, "citeseerx": 65, "cl": 55, "claim": [11, 61], "class": [0, 2, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "classic": 37, "classmethod": [10, 12, 22, 29, 37, 40, 42, 43, 51, 55, 57, 62, 63, 64], "clean": [43, 77], "cleanup": [7, 17, 28, 68], "clear": [0, 19, 40], "clear_data": [7, 17, 19, 20, 68], "clear_hyperparamet": [7, 38, 40, 68], "clone": 77, "cloud": 2, "cluster": [3, 6, 43, 78], "cmake": [76, 78], "cmake_cxx_compil": 76, "cmdarg": 34, "coars": [2, 73], "code": [3, 12, 33, 36, 65, 69, 72, 74, 75, 76, 77, 79], "coeffici": 73, "collabor": 0, "collect": [3, 12, 33, 34, 43], "collector": 37, "column": [12, 22], "com": [0, 11, 12, 21, 42, 61, 65, 76, 77, 78], "combin": [2, 33, 37, 70], "come": [12, 33], "comm": [11, 13], "comm_world": [11, 65], "command": [3, 12, 34, 55, 70], "comment": [7, 8, 12, 68], "comminuc": 65, "commit": 0, "common": [7, 11, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68], "commonli": 33, "commun": [3, 6, 11, 12, 13, 33], "compar": [2, 12, 16, 73, 75], "comparison": 65, "compat": [3, 4, 12, 21, 42, 43, 51, 52, 66, 72, 76], "compil": [76, 78], "complei": 61, "complet": [6, 43, 71], "complete_save_path": [6, 18, 23, 71], "complex": 61, "complianc": 0, "compliant": 4, "complic": [2, 6], "compon": [33, 71], "comprehens": 75, "compress": 4, "compuat": 65, "comput": [1, 2, 5, 6, 12, 16, 22, 27, 34, 65, 69, 74, 75], "computation": [3, 5], "compute_typ": 34, "concept": [3, 75], "concern": 38, "concert": 55, "conda": 0, "condens": 71, "condit": [3, 11, 12, 61], "conduct": 75, "config": 0, "configur": [0, 4, 12, 15, 16, 33, 54, 72, 73, 76, 78], "confirm": 6, "conjunct": [3, 12], "connect": [11, 61], "consecut": 12, "conserve_dimens": 64, "consid": [0, 12, 16, 19, 27], "consist": [18, 19, 29, 61, 63, 64, 70, 73, 79], "consquenc": 16, "const": 61, "constant": 61, "constitut": 0, "construct": [3, 12, 18, 42, 60, 65, 73, 74, 75], "constructor": 61, "consult": [0, 4], "contain": [2, 4, 10, 12, 13, 15, 16, 19, 20, 23, 27, 29, 30, 33, 37, 41, 42, 56, 61, 62, 63, 64, 65, 73], "continu": [55, 57, 77], "contract": [11, 61], "contribut": [12, 37, 62, 63, 64, 65, 75], "control": [12, 25, 26, 33, 65, 73], "convent": [16, 40, 42, 65], "convers": [1, 13, 19, 20, 23, 25, 26, 27, 28, 33, 34, 59, 62, 63, 64, 65, 69], "convert": [4, 10, 12, 18, 19, 31, 32, 33, 34, 35, 39, 59, 62, 63, 64, 65, 71], "convert_local_to_3d": [7, 30, 33, 68], "convert_snapshot": [4, 7, 17, 18, 68, 71], "convert_to_threedimension": 62, "convert_unit": [7, 30, 31, 32, 33, 35, 58, 59, 62, 63, 64, 65, 68], "converted_arrai": [31, 32, 33, 35, 59, 62, 63, 64, 65], "converted_tensor": 19, "convet": [44, 45, 46, 47, 48], "cooper": 6, "coordin": [12, 33], "copi": [11, 22, 49, 50, 55, 61, 62, 63], "copyright": [11, 61], "core": [0, 78], "correct": [2, 5, 6, 37, 44, 51, 61, 62, 70, 73, 77], "correctli": [0, 12, 62, 77], "correl": [3, 12, 16, 65], "correspond": [6, 12, 65, 70, 71], "cosin": [2, 16], "cost": 12, "costli": 75, "could": [5, 12], "count": 12, "counter": 12, "cours": [6, 12, 73], "cover": [69, 72], "covers": [62, 64], "cpp": 65, "cppflag": 78, "cpu": [1, 2, 3, 5, 6, 54, 55, 64, 69, 76], "cpython": 78, "creat": [5, 6, 12, 13, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77], "create_fil": 62, "create_qe_fil": 64, "creation": [19, 71], "critic": 73, "crucial": 4, "csv": 73, "cube": [5, 12, 61, 62, 64, 71], "cube_pars": [7, 58, 68], "cubefil": [7, 58, 61, 68], "cubetool": 61, "cubic": [62, 64, 65, 75], "cuda": [6, 12, 76], "current": [0, 3, 4, 5, 6, 11, 12, 14, 25, 26, 27, 39, 40, 41, 42, 44, 47, 48, 51, 52, 55, 59, 60, 61, 62, 63, 64, 65, 71], "currently_loaded_fil": [7, 17, 25, 26, 68], "curv": 12, "custom": [64, 70], "cut": [12, 27], "cutoff": [2, 12, 16, 71], "d": [12, 22, 60, 63, 64, 74, 75, 76], "d_model": 51, "dai": 74, "damag": [11, 61], "daniel": [0, 11], "data": [0, 1, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 79], "data_": 4, "data_convert": [4, 7, 17, 39, 68, 71], "data_handl": [4, 5, 7, 17, 37, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 64, 68, 70, 72, 73], "data_handler_bas": [7, 17, 68], "data_nam": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 68], "data_path": [2, 4, 6, 71, 72, 73], "data_repo": [7, 17, 68], "data_repo_path": 21, "data_scal": [7, 17, 19, 25, 26, 68], "data_shuffl": [4, 6, 7, 17, 68], "data_splitting_typ": [7, 8, 12, 68], "data_typ": [19, 56, 65], "databas": 3, "databasenam": 3, "dataconvert": [2, 4, 6, 7, 17, 18, 19, 68, 71], "dataformat": 61, "datagener": [7, 8, 12, 68], "datahandl": [2, 3, 4, 6, 7, 18, 19, 25, 26, 28, 37, 39, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 64, 68, 70, 73], "datahandlerbas": [7, 17, 19, 20, 23, 27, 68], "dataload": [25, 26], "datasampl": [25, 26], "datascal": [7, 17, 19, 22, 25, 26, 68], "dataset": [7, 8, 13, 19, 24, 25, 26, 28, 68], "datashuffl": [4, 6, 7, 12, 17, 23, 68], "datashufl": 6, "datatyp": [40, 42, 44, 45, 46, 47, 48], "date": [0, 12, 61], "dayton": 74, "db": 64, "dd": 64, "dd_db": 64, "ddp": [6, 11, 12, 22, 25, 26, 55], "de": 64, "de_dd": 64, "deactivt": 70, "dead": 43, "deadlin": 0, "deal": [11, 13, 61, 73], "dealloc": [26, 28], "deallocate_shared_mem": [7, 17, 26, 68], "debian": 78, "debug": [3, 12, 33, 73, 77], "decad": 74, "decai": 12, "decid": [0, 12, 70, 73], "declar": 4, "decreas": [12, 70], "deep": [74, 75], "default": [4, 5, 6, 11, 12, 18, 19, 22, 27, 33, 34, 39, 53, 54, 55, 57, 63, 64, 65, 70, 71, 78], "defin": [12, 49, 50, 60, 63, 64, 72], "degre": [6, 12, 16], "delet": 33, "delete_data": [7, 17, 26, 68], "delta": [60, 63], "demand": [2, 3, 12, 51], "demonstr": [74, 75], "denois": 12, "denot": 29, "dens_object": 62, "denser": 71, "densiti": [2, 5, 6, 7, 12, 56, 58, 59, 63, 64, 68, 71, 72, 74, 75], "density_calcul": [5, 62], "density_data": [62, 64], "density_of_st": [5, 7, 58, 63, 64, 68, 72], "density_rel": [6, 12], "depend": [12, 13, 19, 55, 57, 61, 62, 64, 71, 77], "deprec": [12, 22, 35, 37], "depth": [1, 70], "deriv": [25, 26, 28, 51, 64], "descent": 12, "desciptor": 33, "describ": [5, 13, 31, 32, 35, 62, 63, 64, 70], "descript": [0, 61, 70], "descriptor": [0, 5, 7, 8, 11, 12, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 39, 54, 64, 68, 71, 72, 73, 75, 76], "descriptor_calcul": [7, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68], "descriptor_calculation_kwarg": [18, 71], "descriptor_dimens": 33, "descriptor_input_path": [18, 39, 71], "descriptor_input_typ": [18, 39, 71], "descriptor_save_path": [18, 23, 71], "descriptor_typ": [7, 8, 12, 68, 71, 73], "descriptor_unit": [18, 39], "descriptors_contain_xyz": [7, 8, 12, 30, 33, 68], "descriptors_np": 33, "deseri": 10, "deserialized_object": [10, 12, 29], "design": 3, "desir": [12, 16, 19, 31, 32, 33, 35, 51, 62, 63, 64, 65, 75], "despit": 74, "detail": [2, 3, 5, 12, 18, 39, 75, 76], "determin": [2, 3, 5, 12, 16, 41, 42, 56, 65, 70, 71, 73], "determinist": 12, "detriment": 12, "dev": 77, "develop": [6, 33, 71, 75, 77, 79], "deviat": [3, 12, 22, 73], "devic": [7, 8, 12, 68], "devis": 2, "dft": [3, 5, 6, 7, 12, 15, 18, 22, 29, 33, 62, 63, 64, 65, 69, 71, 75], "dftpy": 15, "dftpy_configur": [7, 14, 15, 68], "diagnost": 12, "dicitionari": 34, "dict": [10, 12, 13, 15, 18, 29, 33, 34, 37, 56, 57, 61, 62, 64, 65, 66], "dictionari": [10, 12, 13, 15, 18, 29, 33, 34, 56, 62, 63, 64, 65, 73], "dictionati": [62, 64, 65], "diff": 0, "differ": [2, 5, 6, 33, 39, 43, 53, 60, 62, 70], "differenti": 12, "dimens": [5, 12, 13, 20, 22, 25, 26, 29, 33, 51, 59, 62, 63, 64, 65, 73], "dimension": [2, 13, 63, 71], "dimension_info": 13, "dipol": 37, "direct": [0, 5, 7, 8, 12, 18, 65, 68, 72], "directli": [0, 2, 6, 11, 12, 33, 51, 54, 55, 62, 63, 64, 65, 73], "directori": [0, 6, 12, 18, 19, 20, 23, 27, 29, 33, 64, 77, 78], "dirti": 0, "disabl": [6, 12, 25, 26, 55], "discontinu": 12, "discourag": [12, 16, 25, 26], "discret": [5, 62, 63, 64, 71], "discuss": [1, 2, 3, 6, 71, 73, 75], "disentangl": 3, "disk": [6, 23, 64, 73], "displac": 16, "distanc": [2, 12, 16], "distance_metrics_denois": [7, 14, 16, 68], "distance_threshold": 16, "distances_realspac": [7, 14, 16, 68], "distinct": [2, 40, 44, 45, 46, 47, 48], "distinguish": 3, "distribut": [3, 5, 11, 12, 51, 55, 61, 63, 65], "distributeddataparallel": 6, "divid": [5, 62], "divisor": [12, 60], "do": [0, 2, 3, 4, 5, 6, 7, 11, 12, 19, 20, 23, 25, 26, 27, 28, 31, 32, 33, 35, 43, 51, 56, 58, 60, 61, 62, 64, 68, 70, 71, 72, 73, 76, 79], "do_predict": [7, 38, 51, 68], "doc": 77, "dockerfil": 0, "docstr": 0, "document": [0, 4, 6, 11, 12, 61, 72, 79], "documentari": 77, "doe": [6, 11, 12, 19, 31, 32, 35, 40, 41, 57, 61, 62, 63, 64, 70, 77], "doesn": [61, 63, 78], "doi": [39, 65, 74], "don": [12, 65], "done": [0, 2, 3, 5, 11, 12, 33, 39, 40, 41, 43, 54, 56, 61, 62, 65, 70, 71, 73], "dornheim": 75, "dos_calcul": 63, "dos_data": [63, 64], "dos_object": 63, "dos_rel": [6, 12], "dos_valu": 64, "dot": 61, "doubl": [18, 34], "doubt": 33, "down": 11, "download": 78, "draft": 0, "drastic": [6, 18], "drawback": 6, "drawn": 12, "dresden": 75, "drive": 29, "driven": [4, 73], "dropout": [7, 8, 12, 51, 68], "dtype": [13, 26, 61], "due": [22, 62, 63, 64, 71], "dummi": 61, "dure": [0, 2, 5, 11, 12, 16, 33, 50, 52, 53, 55, 57, 64, 65, 70, 72, 73, 74, 77], "during_training_metr": [7, 8, 12, 68], "dx": 74, "dynam": [12, 56, 72, 75], "e": [1, 3, 4, 5, 6, 12, 13, 16, 18, 19, 22, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 60, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "e_": [62, 65], "e_ewald": 62, "e_grid": [63, 64], "e_hartre": 62, "e_rho_times_v_hxc": 62, "e_xc": 62, "each": [0, 2, 3, 5, 12, 16, 22, 43, 49, 50, 70, 71, 73, 75], "earli": 12, "earlier": 65, "early_stopping_epoch": [7, 8, 12, 68, 70], "early_stopping_threshold": [7, 8, 12, 68], "easi": [3, 6, 56], "easier": [19, 72, 73], "easili": [0, 2, 3, 6, 70, 73], "echo": 6, "edu": 65, "effect": [3, 6, 12, 34, 55, 64, 75], "effici": [4, 5, 65, 75, 79], "effort": [0, 75], "effortlessli": 75, "egrid": 27, "eigenvalu": [63, 65], "either": [0, 5, 12, 13, 19, 20, 23, 29, 41, 56, 60, 62, 64, 65, 70, 71, 73], "electron": [5, 6, 7, 12, 37, 56, 59, 62, 63, 64, 65, 71, 72, 73, 74, 75], "electrons_per_atom": [7, 58, 65, 68], "elem_snapshot": 18, "elimin": 3, "elli": [0, 74, 75], "els": [3, 6], "elsewis": [13, 16, 63], "emploi": [1, 6, 12, 73, 75], "empti": [12, 66], "emul": 22, "enabl": [2, 3, 5, 6, 54, 55, 56, 65, 71, 73, 76], "encapsul": 6, "encod": [2, 12, 33, 52, 71, 73, 79], "encourag": 4, "end": [3, 4, 11, 12, 13, 16, 43, 62, 63, 64, 65, 70, 73], "energi": [0, 5, 6, 7, 12, 27, 37, 49, 56, 60, 62, 63, 64, 65, 71, 72, 73, 75, 79], "energy_grid": [5, 7, 58, 60, 63, 64, 68], "energy_integration_method": 64, "energy_unit": 60, "energygrid": [63, 64], "enforc": [33, 51, 65], "enforce_pbc": [7, 30, 33, 68], "enhanc": [0, 75], "enough": [2, 6, 12, 49, 50, 71, 79], "ensur": [0, 6, 11, 12, 18, 19, 62, 64, 75], "enter": 64, "entir": [5, 6, 12, 13, 19, 20, 22, 29, 33, 51, 55, 65, 71, 73], "entiti": 6, "entri": [0, 5, 12, 22, 62, 73], "entropi": [60, 63, 64, 65], "entropy_contribut": [7, 58, 63, 64, 68], "entropy_contribution_dft_calcul": [7, 58, 65, 68], "entropy_multipl": [7, 58, 60, 68], "enviro": 71, "environ": [0, 2, 6], "epoch": [6, 12, 70], "epsilon": [60, 63], "epsilon_": 63, "epsilon_f": [60, 63, 64], "eq": [60, 65], "equal": 34, "equat": [63, 65], "equilibr": [12, 15, 16, 75], "equilibrated_configur": 15, "equilibrated_snapshot": 16, "equival": 63, "erro": 77, "erron": 26, "error": [5, 6, 11, 12, 25, 26, 27, 56, 62, 63, 64, 71, 77], "especi": [3, 12, 49, 79], "espresso": [2, 5, 18, 33, 62, 63, 64, 65, 71, 72, 79], "essenti": [6, 12, 18, 70], "establish": 6, "estim": [12, 16], "etc": [0, 3, 10, 12, 20, 29, 37, 40, 44, 45, 46, 47, 48, 55, 70, 71, 72, 73], "euclidean": 12, "ev": [12, 20, 33, 59, 60, 62, 63, 64, 65], "evalu": [3, 5, 6, 12, 19, 64], "even": [1, 5, 6, 65, 72], "evenli": 5, "event": [11, 61], "eventu": [13, 37, 64], "everi": [0, 15, 64], "everyth": [12, 38], "evid": 12, "ewald": [12, 62, 65], "ewald_contribut": 65, "ex01_checkpoint": 6, "ex01_checkpoint_train": 6, "ex01_train_network": 73, "ex02_shuffle_data": 6, "ex02_test_network": 73, "ex03_preprocess_data": 71, "ex03_tensor_board": 6, "ex04_acsd": 2, "ex04_hyperparameter_optim": 70, "ex05_checkpoint": 3, "ex05_checkpoint_hyperparameter_optim": 3, "ex05_run_predict": 72, "ex06_ase_calcul": 72, "ex06_distributed_hyperparameter_optim": 3, "ex07_advanced_hyperparameter_optim": 3, "ex08_visualize_observ": 5, "exact": [63, 64, 65], "exactli": [27, 62, 63, 64], "exampl": [0, 2, 3, 4, 5, 6, 21, 69, 70, 71, 72, 73, 75, 76], "except": [3, 5, 12, 62, 65], "excess": 74, "exchang": 12, "exclud": 12, "exclus": 70, "execut": [0, 3, 22, 43, 69, 76], "exhibit": 75, "exist": [3, 6, 12, 13, 26, 40, 55, 57, 61, 63, 72], "expans": 2, "expect": [6, 12], "expens": 0, "experi": 12, "experiment": [12, 14, 70], "experiment_ddmmyi": 12, "explain": 70, "explan": 70, "explicitli": [12, 33, 72], "explictli": 33, "explor": 75, "exploratori": [2, 4], "expon": 60, "export": [6, 10, 12, 77, 78], "express": [11, 61, 63, 64], "extend": [5, 18, 70, 72, 75], "extens": [4, 6], "extent": 13, "external_modul": 78, "extra": [0, 27, 33], "extract": [3, 13, 34, 47, 48, 62, 66], "extract_compute_np": [7, 30, 34, 68], "f": [12, 13, 22, 60], "f0": 60, "f1": 60, "f2": 60, "f2py": 62, "f90": 78, "f90exec": 78, "facilit": 75, "factor": [2, 5, 6, 12, 60, 63, 65, 70], "fail": [0, 12], "fairli": [33, 72], "falkner18a": 12, "fals": [2, 6, 12, 13, 16, 18, 22, 25, 26, 27, 33, 34, 39, 40, 41, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65], "familiar": [3, 69, 73], "far": [12, 71], "faruk": 0, "fashion": [5, 70], "fast": 12, "fast_tensor_dataset": [7, 17, 68], "faster": [5, 6, 18, 24, 33, 72, 76, 78], "fasttensordataset": [7, 17, 24, 26, 68], "featur": [0, 3, 6, 12, 13, 20, 22, 29, 33, 59, 62, 63, 64, 65, 69, 70, 73, 75, 79], "feature_from": 13, "feature_s": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "feature_to": 13, "feature_wis": [7, 17, 22, 68], "fed": 75, "feed": [12, 51], "feed_forward": 12, "feedforwardnet": [7, 38, 51, 68], "fermi": [6, 12, 56, 60, 63, 64, 65], "fermi_energi": [6, 7, 12, 58, 60, 63, 64, 68], "fermi_energy_dft": [7, 58, 65, 68], "fermi_energy_self_consist": [63, 64], "fermi_funct": [7, 58, 60, 68], "fermi_v": 60, "fetch": 28, "few": [3, 5, 73], "feynman": 62, "ff": 0, "ff_multiple_layers_count": 70, "ff_multiple_layers_neuron": 70, "ff_neurons_lay": 70, "ff_neurons_layer_00": 70, "ff_neurons_layer_001": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_002": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_01": 70, "ff_neurons_layer_xx": 70, "ff_neurons_layer_xxx": 12, "fflag": 78, "fiedler": [0, 74, 75], "field": 71, "file": [0, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 37, 42, 43, 51, 54, 55, 57, 61, 62, 63, 64, 65, 66, 70, 71, 73, 75, 78], "file_based_commun": [18, 39], "file_index": 25, "file_nam": 62, "file_path": [42, 43], "filenam": [4, 12, 22, 37, 61, 66], "filename_uncorrelated_snapshot": 16, "filepath": 65, "fill": [12, 15, 70, 71], "final": [6, 7, 8, 11, 68, 73], "final_validation_loss": [7, 38, 57, 68], "find": [0, 6, 74, 78], "fine": [6, 12, 71], "fingerprint": [12, 18, 33, 39], "finish": [6, 43], "finit": [74, 75], "first": [2, 5, 12, 16, 18, 27, 49, 50, 62, 70, 71, 72, 73, 75, 77, 79], "first_considered_snapshot": [7, 14, 16, 68], "first_snapshot": [7, 14, 16, 68], "firstli": [2, 70, 73], "fit": [7, 11, 17, 22, 61, 68], "fix": [0, 77], "flag": 73, "flexibl": 65, "float": [12, 16, 22, 27, 31, 33, 34, 40, 41, 43, 44, 45, 46, 47, 48, 51, 54, 57, 60, 61, 63, 64, 65, 70], "fname": 61, "focu": 75, "folder": [0, 12, 76, 77], "follow": [0, 1, 6, 11, 12, 40, 42, 44, 45, 46, 47, 48, 60, 61, 62, 69, 70, 72, 73, 75, 77], "footprint": [12, 64], "forc": [7, 37, 59, 62, 64, 65], "force_no_ddp": 12, "forgiv": 12, "fork": 0, "form": [0, 22, 61, 62, 72], "formal": [4, 6, 51], "format": [5, 12, 13, 22, 33, 53, 57, 61, 62, 63, 64, 65, 66, 71, 72, 73], "former": 1, "formerli": 12, "formula": [12, 60], "fortran": 62, "forward": [7, 12, 38, 51, 53, 68], "found": [3, 6, 12, 39, 40, 41, 42, 43], "fourier": [12, 65], "fourier_transform": 65, "fox": 0, "fp32": 18, "fpic": 78, "frac": [60, 64], "fraction": 12, "framework": [3, 7, 13, 51, 73], "franz": 0, "free": [3, 11, 26, 61, 65, 71, 74, 75, 79], "freedom": 22, "freeli": 65, "friction": 12, "from": [0, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 19, 22, 25, 26, 27, 29, 33, 34, 37, 41, 42, 43, 47, 48, 51, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 77], "from_cube_fil": [7, 58, 62, 64, 68], "from_json": [7, 8, 10, 12, 17, 29, 68], "from_ldos_calcul": [5, 7, 58, 62, 63, 68], "from_numpy_arrai": [7, 58, 62, 63, 64, 68], "from_numpy_fil": [7, 58, 62, 63, 64, 68], "from_openpmd_fil": [7, 58, 62, 64, 68], "from_qe_dos_txt": [7, 58, 63, 68], "from_qe_out": [7, 58, 63, 68], "from_xsf_fil": [7, 58, 62, 64, 68], "front": 12, "frozentri": [43, 49, 50], "full": [4, 6, 18, 27, 39, 55, 57, 73, 76, 78], "full_logging_path": [6, 7, 38, 57, 68], "fulli": [3, 4, 19], "function": [0, 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 22, 29, 31, 32, 33, 34, 35, 37, 43, 44, 50, 51, 52, 53, 59, 60, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 77, 79], "function_valu": 60, "fundament": 0, "furnish": [11, 61], "further": [0, 3, 4, 5, 6, 12, 54, 55, 56, 57, 70, 71, 72, 73, 74, 75, 76], "furthermor": [4, 79], "futur": [63, 73], "g": [3, 4, 5, 6, 12, 13, 16, 18, 31, 32, 33, 35, 36, 37, 40, 44, 45, 46, 47, 48, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "gabriel": [0, 74], "gain": 74, "gather": [18, 24, 33, 54, 64, 73], "gather_dens": 64, "gather_descriptor": [7, 30, 33, 68], "gather_do": 64, "gather_ldo": 54, "gaussian": [5, 7, 12, 31, 35, 58, 60, 61, 68], "gcc": [76, 78], "gener": [0, 2, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 51, 62, 63, 64, 65, 69, 72, 73, 74, 78], "generate_square_subsequent_mask": [7, 38, 51, 68], "get": [5, 11, 12, 13, 19, 31, 32, 33, 35, 41, 42, 44, 47, 54, 56, 59, 60, 62, 63, 64, 65, 72, 73, 75], "get_atomic_forc": [7, 58, 62, 64, 68], "get_band_energi": [7, 58, 63, 64, 68], "get_beta": [7, 58, 60, 68], "get_categor": [7, 38, 47, 48, 68], "get_comm": [7, 8, 11, 68], "get_dens": [7, 58, 62, 64, 68], "get_density_of_st": [7, 58, 63, 64, 68], "get_energy_contribut": [7, 58, 62, 68], "get_energy_grid": [7, 58, 63, 64, 65, 68], "get_energy_targets_and_predict": [7, 38, 56, 68], "get_entropy_contribut": [7, 58, 63, 64, 68], "get_equilibrated_configur": [7, 14, 15, 68], "get_f0_valu": [7, 58, 60, 68], "get_f1_valu": [7, 58, 60, 68], "get_f2_valu": [7, 58, 60, 68], "get_feature_s": [7, 58, 59, 68], "get_first_snapshot": [7, 14, 16, 68], "get_float": [7, 38, 48, 68], "get_int": [7, 38, 48, 68], "get_local_rank": [7, 8, 11, 68], "get_new_data": [7, 17, 25, 68], "get_number_of_electron": [7, 58, 62, 63, 64, 68], "get_optimal_sigma": [7, 30, 31, 68], "get_paramet": [7, 38, 47, 48, 68], "get_potential_energi": 72, "get_radial_distribution_funct": [7, 58, 65, 68], "get_rank": [7, 8, 11, 68], "get_real_space_grid": [7, 58, 65, 68], "get_s0_valu": [7, 58, 60, 68], "get_s1_valu": [7, 58, 60, 68], "get_scaled_positions_for_q": [7, 58, 62, 68], "get_self_consistent_fermi_energi": [7, 58, 63, 64, 68], "get_siz": [7, 8, 11, 68], "get_snapshot_calculation_output": [7, 17, 19, 68], "get_snapshot_correlation_cutoff": [7, 14, 16, 68], "get_static_structure_factor": [7, 58, 65, 68], "get_target": [7, 58, 62, 63, 64, 65, 68], "get_test_input_gradi": [7, 17, 19, 68], "get_three_particle_correlation_funct": [7, 58, 65, 68], "get_total_energi": [7, 58, 64, 68], "get_trials_from_studi": [7, 38, 43, 68], "get_uncorrelated_snapshot": [7, 14, 16, 68], "git": [0, 76, 77], "github": [0, 11, 12, 21, 74, 76, 77], "gitlab": [65, 78], "give": [1, 3, 6, 12, 16, 64, 69, 70, 71, 73, 76], "given": [0, 6, 13, 18, 33, 54, 57, 60, 61, 62, 63, 64, 65, 70, 71, 75, 79], "glimps": 73, "global": 12, "gmail": 61, "gnn": 0, "gnu": 78, "go": 12, "goal": 66, "goe": 12, "goo": 11, "good": [2, 3, 6, 12, 49, 50], "got": 0, "govern": [70, 71], "gpaw": 72, "gpu": [0, 3, 11, 12, 55, 69, 76], "gradient": [12, 19, 25, 26, 70], "grand": 74, "grant": [11, 61], "granular": 71, "graph": [6, 12], "grate": 0, "gre": 6, "greater": 12, "greatli": [12, 73], "grid": [0, 5, 12, 13, 27, 29, 31, 33, 60, 62, 63, 64, 65, 71, 73, 75, 79], "grid3d": 65, "grid_dimens": [7, 8, 13, 17, 29, 33, 62, 65, 68], "grid_integration_method": 64, "grid_siz": [7, 17, 29, 68], "gridi": [62, 64], "gridpoint": 62, "gridsiz": [12, 62, 64], "gridspac": 12, "gridx": [62, 64], "gridz": [62, 64], "ground": [6, 12, 73], "grow": 74, "gru": [7, 12, 38, 51, 68], "guarante": 6, "guess": 65, "gui": 4, "guid": [1, 2, 5, 69, 70, 71, 72, 73, 75], "guidelin": 0, "h": [62, 65, 76], "h5": [4, 13, 62, 65], "ha": [0, 2, 4, 5, 6, 11, 12, 13, 22, 25, 26, 34, 37, 42, 43, 49, 50, 51, 54, 55, 62, 63, 64, 70, 71, 73, 74, 75, 77, 78, 79], "hacki": 12, "had": [6, 71], "hand": [5, 12, 13, 27], "handl": [3, 4, 6, 17, 18, 19, 20, 23, 27, 65], "handler": [42, 43, 55, 57, 64], "happen": 63, "har": 75, "hard": 29, "hardwar": [1, 5, 69], "hartree_contribut": 65, "haswel": 76, "have": [0, 2, 3, 5, 6, 10, 12, 13, 16, 22, 25, 26, 31, 32, 33, 35, 39, 40, 43, 44, 45, 46, 47, 48, 60, 63, 64, 65, 70, 71, 72, 73, 74, 76, 78, 79], "haven": 77, "head": [0, 6, 12], "heartbeat": 12, "heavi": [5, 65], "hellman": 62, "helmholtz": 75, "help": [3, 12, 54, 64, 69, 73], "helper": [4, 60], "here": [3, 5, 6, 12, 16, 18, 25, 26, 39, 51, 55, 63, 70, 71, 72, 73, 76], "herebi": [11, 61], "hidden": [12, 51, 70], "hierarchi": 13, "high": [7, 11, 12, 38, 40, 44, 45, 46, 47, 48, 68, 74], "higher": [12, 40, 44, 45, 46, 48], "highli": [2, 4, 5, 6, 14, 77, 79], "hint": 6, "histogram": [12, 65], "hiwonjoon": 11, "hlist": [7, 8, 12, 68], "hoc": 16, "hoffmann": [0, 74, 75], "hold": [6, 12, 16, 19, 33, 40, 41, 42, 43, 54, 55, 56, 57, 64, 65], "holder": [11, 61], "horovod": 0, "hossein": 0, "host": 6, "hostnam": 6, "hotyp": [44, 45, 46, 47, 48], "how": [2, 3, 12, 22, 27, 63, 64, 65, 69, 70, 71, 73, 76], "howev": [2, 4, 6, 12, 26, 33, 53, 64, 73, 74], "hpc": [3, 6, 12, 43, 78], "html": [12, 77], "http": [0, 11, 12, 21, 42, 61, 65, 74, 76, 77, 78], "huge": 6, "hundr": 75, "hyper_opt": [7, 38, 68], "hyper_opt_method": [3, 12], "hyper_opt_naswot": [7, 38, 68], "hyper_opt_oat": [7, 38, 68], "hyper_opt_optuna": [7, 38, 68], "hyperopt": [3, 7, 38, 39, 40, 41, 42, 43, 68, 70], "hyperoptim": [2, 70], "hyperoptnaswot": [7, 38, 41, 44, 68], "hyperoptoat": [7, 38, 41, 42, 44, 68], "hyperoptoptuna": [7, 38, 41, 43, 44, 68], "hyperparam": 12, "hyperparamet": [0, 1, 2, 7, 8, 12, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 57, 68, 69, 73, 74, 75, 77], "hyperparameter_acsd": [7, 38, 68], "hyperparameter_naswot": [7, 38, 68], "hyperparameter_oat": [7, 38, 68], "hyperparameter_optuna": [7, 38, 68], "hyperparameteracsd": [7, 38, 45, 68], "hyperparameternaswot": [7, 38, 46, 68], "hyperparameteroat": [7, 38, 47, 68], "hyperparameteroptuna": [7, 38, 46, 48, 68], "hyperparamteroptim": 12, "hyperparemet": 12, "i": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 74, 76, 77, 78, 79], "i0": 60, "i1": 60, "i_0": 60, "i_1": 60, "ibrav": 62, "icml2019": 11, "idea": 6, "ideal": [2, 13, 62, 65], "identif": 75, "identifi": 70, "idx": 47, "ifnam": 61, "ignor": [3, 12, 18, 62, 65, 69, 76], "ik": 63, "imag": [16, 61, 65], "imaginari": 61, "immens": 0, "impact": [6, 64], "imped": 12, "implement": [0, 3, 6, 10, 12, 13, 22, 33, 37, 49, 50, 51, 62, 63, 64, 65, 75, 79], "implemented_properti": [7, 36, 37, 68], "impli": [11, 13, 61, 65], "import": [1, 2, 3, 6, 37, 42, 54, 64, 65, 72, 78, 79], "improv": [0, 1, 12, 23, 24, 73], "in_unit": [31, 32, 33, 35, 59, 62, 63, 64, 65], "includ": [0, 4, 11, 12, 19, 29, 33, 55, 61, 64, 70, 71, 75], "incopor": 71, "incorpor": 65, "increas": [3, 12], "increment": [6, 22, 73, 77], "indent": 12, "index": [25, 26, 27, 41, 42, 47, 77], "indic": [26, 49, 50, 56], "indisput": 12, "individu": [3, 6, 12, 22, 65, 71, 73, 75, 79], "indiviu": [12, 22], "industri": 6, "inf": 12, "infer": [0, 5, 12, 54, 55, 56, 61, 64, 72, 73, 75], "inference_data_grid": [5, 7, 8, 12, 68], "infinit": 49, "infint": 49, "info": [12, 18, 73], "inform": [2, 3, 4, 6, 12, 13, 15, 51, 63, 65, 66, 71, 72, 73], "infrastructur": [0, 6, 43], "inher": 4, "inherit": 10, "init": 6, "init_hidden": [7, 38, 51, 68], "init_weight": [7, 38, 51, 68], "initi": [3, 13, 15, 51, 71, 75], "initial_charg": 37, "initial_magmom": 37, "initial_setup": [3, 6], "initialis": 51, "initil": 12, "initrang": 51, "inject": 51, "input": [12, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 51, 62, 63, 64, 65, 71, 73, 79], "input_data": [7, 17, 25, 26, 68], "input_data_scal": [7, 17, 19, 25, 26, 68], "input_dimens": [7, 17, 20, 25, 26, 29, 68, 73], "input_directori": [20, 23], "input_dtyp": [7, 17, 26, 68], "input_fil": [20, 23], "input_npy_directori": [7, 17, 20, 23, 29, 68], "input_npy_fil": [7, 17, 29, 68], "input_requires_grad": [25, 26], "input_rescaling_typ": [7, 8, 12, 68, 70, 73], "input_shap": [7, 17, 26, 68], "input_shm_nam": [7, 17, 26, 28, 68], "input_unit": [7, 17, 20, 29, 68], "inputpp": 71, "insid": [76, 77], "instal": [0, 2, 5, 6, 75], "instanc": [2, 3, 4, 5, 11, 12, 13, 15, 16, 18, 33], "instanti": [12, 51, 55, 57, 73], "instead": [2, 3, 5, 12, 25, 26, 37, 50, 61, 65, 69, 71], "institut": 75, "instruct": [0, 2, 5, 75, 76, 78], "int": [11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 40, 44, 45, 46, 47, 48, 51, 53, 56, 60, 61, 62, 63, 65, 70], "integ": [5, 12, 18, 48, 70], "integr": [54, 60, 62, 63, 64, 72], "integral_valu": 60, "integrate_values_on_spac": [7, 58, 60, 68], "integration_method": [62, 63, 64], "integration_valu": 60, "intel": 76, "intend": 4, "inter": 6, "interact": 4, "interest": [4, 5, 66, 70, 72, 73], "interfac": [0, 2, 3, 7, 11, 12, 13, 33, 37, 44, 50, 51, 54, 62, 63, 64, 65, 68, 70, 71, 72], "interfer": 55, "interg": [62, 64, 65], "intern": [13, 18, 22, 33, 42, 54, 55, 57, 62, 65], "internal_iteration_numb": [13, 62, 65], "interpret": 6, "interv": [3, 6, 12], "intra": 6, "introduc": [12, 75], "introduct": 69, "introductori": 71, "intuit": [2, 6], "invalid": [62, 63, 64, 65], "invalidate_target": [7, 58, 62, 63, 64, 65, 68], "inverse_transform": [7, 17, 22, 68], "investig": [5, 19, 20, 39, 40, 43, 44, 45, 46, 47, 48, 70], "invok": 5, "involv": [2, 5, 6, 73], "io": [16, 72], "ion": 12, "ionic": [12, 75], "iop": 74, "ish": 78, "issu": [5, 12, 22, 74], "ist": 65, "iter": [12, 13, 62, 65], "its": [4, 12, 19, 70, 73, 75], "itself": [3, 5, 6, 12, 16, 60, 65, 71, 72, 73, 74, 77], "j": [61, 74, 75, 78], "jacobian": [12, 41, 53], "jame": 0, "jiang": 75, "jmax": 12, "job": [3, 12, 43], "join": [2, 71, 72, 73], "jointli": 75, "jon": [0, 75], "josh": [0, 12], "journal": 74, "json": [10, 12, 29, 37, 55, 57, 65, 70, 71], "json_dict": [10, 12, 29], "json_serializ": [7, 8, 68], "jsonserializ": [7, 8, 10, 12, 29, 44, 68], "judg": [6, 49, 50], "jul": 74, "jun": 74, "june": 61, "jupyt": 4, "just": [0, 2, 3, 4, 5, 12, 26, 55, 57, 72, 73, 79], "justifi": 60, "k": [5, 54, 60, 62, 63, 64, 65, 71, 75], "k_": 60, "keep": [0, 12, 25, 26], "keep_log": 33, "kei": 61, "kept": [12, 33, 61], "keyword": [6, 12, 18, 33, 72], "kind": [11, 13, 20, 23, 61], "kindli": [0, 74], "kinet": 12, "kmax": [5, 12, 65], "known": [6, 37], "kohn": [74, 75], "kokko": [5, 11, 76], "kokkos_arch_gpuarch": 76, "kokkos_arch_hostarch": 76, "kokkos_arch_hsw": 76, "kokkos_arch_volta70": 76, "kokkos_enable_cuda": 76, "kotik": 0, "kpoint": [5, 7, 58, 65, 68], "kulkarni": 0, "kwarg": [24, 25, 26, 28, 33, 37, 42, 49, 50, 51, 62, 64], "kyle": [0, 74], "l": [12, 74, 75, 76], "l2_regular": [7, 8, 12, 68], "label": 12, "laboratori": 75, "lammp": [2, 5, 11, 12, 33, 34, 79], "lammps_compute_fil": [7, 8, 12, 68], "lammps_typ": 33, "lammps_util": [7, 30, 68], "langevin": 12, "larg": [2, 4, 5, 6, 33, 65, 73, 74, 75, 77], "larger": [5, 12, 13, 62, 65, 74], "last": [12, 16, 25, 26, 37, 43, 62, 70, 73], "last_considered_snapshot": [7, 14, 16, 68], "last_energy_contribut": [7, 36, 37, 68], "last_trial": 43, "lastli": 71, "latenc": 6, "later": [3, 6, 22, 41, 64, 70], "latter": [3, 13, 65, 71], "lattic": 61, "launch": [3, 6, 12], "layer": [3, 12, 21, 40, 44, 45, 46, 47, 48, 51, 70, 73], "layer_activ": [7, 8, 12, 68, 70, 73], "layer_activation_00": 70, "layer_activation_xxx": 12, "layer_s": [7, 8, 12, 68, 70, 73], "lazi": [12, 22, 23, 25, 26, 73], "lazili": [12, 19], "lazy_load_dataset": [7, 17, 68], "lazy_load_dataset_singl": [7, 17, 68], "lazyloaddataset": [7, 17, 25, 26, 68], "lazyloaddatasetsingl": [7, 17, 26, 68], "lbla": 78, "ldo": [2, 5, 6, 7, 12, 18, 27, 54, 56, 58, 59, 60, 62, 63, 65, 68, 71, 72, 73, 75, 79], "ldos_align": [7, 17, 68], "ldos_calcul": [5, 64, 72], "ldos_data": 64, "ldos_gridoffset_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_grids": [6, 7, 8, 12, 68, 71, 73], "ldos_gridspacing_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_mean": 27, "ldos_mean_ref": 27, "ldos_object": [62, 63], "ldos_paramet": [7, 17, 27, 68], "ldosalign": [7, 17, 27, 68], "ldosfil": 71, "lead": [2, 5, 12, 65, 75], "leaf": 19, "leakyrelu": [12, 70], "learn": [5, 7, 12, 22, 65, 70, 73, 74, 75], "learner": 11, "learning_r": [7, 8, 12, 68, 70, 73], "learning_rate_decai": [7, 8, 12, 68, 70], "learning_rate_pati": [7, 8, 12, 68, 70], "learning_rate_schedul": [7, 8, 12, 68], "least": 65, "leastearly_stopping_threshold": 12, "leav": 26, "left": [4, 27, 28], "left_index": 27, "left_index_ref": 27, "left_trunc": 27, "legaci": [12, 22, 37, 65], "length": [5, 27, 51, 74, 75], "lenz": [0, 74, 75], "less": [12, 18, 65], "let": [12, 71, 73], "level": [11, 12, 21, 25, 26, 54, 60, 63, 64, 73, 74, 75], "lfftw3": 78, "lh": 27, "liabil": [11, 61], "liabl": [11, 61], "lib": [76, 78], "liblammp": 76, "librari": [3, 4, 5, 6, 22, 50, 70, 72, 73, 76, 78, 79], "licens": [11, 61], "lie": 33, "like": [3, 5, 6, 11, 26, 73, 78], "likewis": [2, 5, 6], "limit": [3, 6, 11, 12, 28, 50, 61, 75], "line": [4, 34, 61, 73, 74], "linger": 11, "link": [11, 42, 70, 74, 76], "linux": [77, 78, 79], "list": [0, 2, 4, 5, 6, 12, 13, 18, 19, 20, 26, 27, 28, 29, 33, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 56, 61, 62, 65, 73], "littl": 62, "llapack": 78, "lmkl_core": 78, "lmkl_intel_lp64": 78, "lmkl_sequenti": 78, "lmp": 34, "load": [7, 12, 13, 17, 19, 20, 22, 23, 25, 26, 28, 37, 40, 42, 43, 51, 54, 55, 57, 63, 68, 70, 72, 73, 76, 78], "load_from_fil": [7, 8, 12, 17, 22, 38, 42, 43, 51, 68, 70], "load_from_json": [7, 8, 12, 68], "load_from_pickl": [7, 8, 12, 68], "load_model": [7, 36, 37, 68, 72], "load_run": [3, 6, 7, 36, 37, 38, 55, 57, 68, 72, 73], "load_runn": [55, 57], "load_snapshot_to_shm": [7, 17, 28, 68], "load_with_ddp": 55, "load_with_gpu": 55, "load_with_mpi": 55, "loaded_hyperopt": 42, "loaded_network": [51, 55, 57], "loaded_param": [42, 43, 55, 57], "loaded_paramet": 12, "loaded_train": 43, "local": [0, 3, 11, 12, 33, 62, 64, 65, 75, 76], "local_density_of_st": [7, 58, 63, 64, 68], "local_grid": [7, 58, 65, 68], "local_offset": 13, "local_psp_nam": [7, 8, 12, 68], "local_psp_path": [7, 8, 12, 68], "local_rank": [6, 11], "local_reach": 13, "locat": [0, 12, 64], "log": [0, 12, 15, 33, 57, 60], "logdir": 6, "logger": [6, 7, 8, 12, 68], "logging_dir": [6, 7, 8, 12, 68], "logging_dir_append_d": [7, 8, 12, 68], "logging_period": 15, "long": [6, 12], "longer": [0, 2, 12, 19], "look": 55, "loos": 65, "loss": [6, 12, 41, 42, 43, 49, 51, 56, 57, 70], "loss_func": [7, 38, 51, 68], "loss_function_typ": [7, 8, 12, 68], "loss_val": 51, "lot": [66, 73, 79], "low": [7, 12, 38, 40, 44, 45, 46, 47, 48, 68, 73], "lower": [16, 40, 44, 45, 46, 48, 70], "lowest": [12, 71], "lp": 12, "lstm": [7, 12, 38, 51, 68], "m": 75, "mach": 75, "machin": [5, 6, 73, 74, 75, 76, 78], "maco": [77, 79], "made": [0, 5, 72], "mae": [56, 73], "magmom": 37, "magnitud": [71, 74], "mai": [2, 3, 5, 6, 12, 16, 18, 33, 60, 62, 63, 64, 70, 71, 73, 76, 77, 78], "main": 78, "mainli": [4, 12, 33], "maintain": [0, 6], "mainten": [0, 75], "major": 0, "make": [0, 3, 4, 5, 6, 12, 53, 64, 71, 72, 73, 75, 76, 77, 78], "mala": [1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 73, 76, 78, 79], "mala_data_repo": [21, 77], "mala_foundational_pap": 74, "mala_hyperparamet": 74, "mala_paramet": [5, 7, 36, 37, 68, 72], "mala_shuffled_snapshot": 23, "mala_sizetransf": 74, "mala_temperaturetransf": 74, "mala_train": 6, "mala_vi": 6, "malada": 16, "malada_compat": 16, "manag": [12, 22, 24, 65, 73], "mandatori": 41, "mani": [0, 2, 3, 12, 27, 71, 72], "manual": [0, 5, 12, 70, 78], "manual_se": [7, 8, 12, 68], "map": 64, "mape": [12, 56], "mark": [0, 35, 43], "mask": 51, "mass": 61, "massiv": [3, 74], "master": [0, 11, 65], "master_addr": 6, "master_port": 6, "match": [2, 13, 61, 62, 63, 64, 65], "mater": 75, "materi": [72, 74, 75], "mathemat": [3, 39, 60], "mathrm": [60, 62, 65], "matplotlib": 5, "matrix": 62, "matter": [5, 19, 74, 75], "max": [7, 12, 17, 22, 68, 73], "max_len": 51, "max_number_epoch": [7, 8, 12, 68, 73], "maxim": 12, "maximum": [2, 3, 5, 12, 51, 65], "mc": [12, 36, 37], "md": [12, 15, 16, 36, 37, 65, 75], "mean": [6, 7, 12, 13, 17, 22, 27, 33, 49, 50, 53, 59, 62, 63, 64, 68, 70, 71, 73], "mean_std": 12, "meaning": [12, 65], "measur": 73, "mechan": [18, 50, 75], "medium": 12, "melt": 75, "member": [16, 65], "memori": [6, 11, 12, 18, 25, 26, 28, 34, 55, 57, 62, 63, 64, 73], "mention": [2, 5, 6], "merchant": [11, 61], "merg": [0, 11, 61], "merit": 72, "mess": 43, "messag": [1, 11], "meta": [13, 61, 66], "metadata": [4, 13, 18, 26, 31, 32, 35, 61, 62, 63, 64, 66], "metadata_input_path": 18, "metadata_input_typ": 18, "metal": 71, "method": [0, 2, 3, 5, 6, 10, 12, 49, 50, 51, 60, 61, 62, 63, 64, 65, 71, 74, 75, 77], "metric": [3, 12, 16, 49, 75], "mev": 6, "mic": [16, 65], "might": [12, 26, 37, 43, 51, 53], "miller": [0, 74, 75], "mimic": 61, "min": [7, 12, 17, 22, 68, 73], "min_verbos": 11, "mini": [12, 51, 53, 70], "mini_batch_s": [7, 8, 12, 38, 51, 68, 70, 73], "minim": [12, 27], "minimum": [11, 12, 16, 65], "minmax": [12, 22, 73], "minor": 0, "minterpi": [0, 12, 35], "minterpy_cutoff_cube_s": [7, 8, 12, 68], "minterpy_descriptor": [7, 30, 68], "minterpy_lp_norm": [7, 8, 12, 68], "minterpy_point_list": [7, 8, 12, 68], "minterpy_polynomial_degre": [7, 8, 12, 68], "minterpydescriptor": [7, 30, 35, 68], "mit": [11, 61], "mitig": 6, "mix": [6, 12, 19, 23, 25, 26], "mix_dataset": [7, 17, 19, 25, 26, 68], "mkl": 78, "ml": [2, 3, 5, 6, 15, 59, 62, 63, 64, 65, 69, 71, 75], "mlr": 12, "mode": [11, 33, 55, 64, 65], "model": [0, 2, 3, 5, 6, 12, 18, 37, 43, 51, 54, 55, 57, 69, 70, 71, 74, 75, 79], "moder": 5, "modern": 74, "modif": [6, 65], "modifi": [0, 11, 22, 43, 49, 50, 61, 71, 78], "modin": [0, 74, 75], "modul": [0, 6, 9, 21, 51, 61, 62, 65, 79], "modular": 0, "moham": [0, 74, 75], "moldabekov": 75, "molecular": [72, 75], "moment": [12, 40, 44, 45, 46, 47, 48, 78], "monitor": 6, "month": 74, "more": [1, 2, 3, 5, 6, 12, 22, 24, 37, 60, 65, 71, 72, 75], "moreov": 75, "most": [2, 5, 6, 12, 55, 74, 75, 76, 77, 78, 79], "move": [12, 74], "mpi": [2, 3, 5, 11, 12, 13, 18, 54, 55, 64, 65, 76, 78], "mpi4pi": 33, "mpi_commun": 65, "mpi_rank": 65, "mpi_util": 11, "mpif90": 78, "mpirun": [3, 5], "mse": [6, 12, 27, 56], "much": [6, 26, 63], "mujoco": 11, "multi": 12, "multi_lazy_load_data_load": [7, 17, 68], "multi_train": 12, "multi_training_prun": [7, 38, 68], "multilazyloaddataload": [7, 17, 28, 68], "multipl": [0, 1, 2, 3, 5, 6, 11, 12, 16, 19, 20, 28, 29, 33, 40, 44, 45, 46, 47, 48, 49, 54, 60, 64, 70, 71, 73], "multiple_gaussian": 60, "multipli": 12, "multiplicator_v": 60, "multitrainingprun": [7, 38, 49, 68], "multivari": 12, "must": [12, 20, 27, 64], "mutat": 34, "mutual": 70, "my": 33, "my_modified_fil": 0, "my_studi": 3, "myriad": 74, "mysql": 3, "n": [3, 6, 12, 62, 65, 74, 75], "n_shift_ms": 27, "n_trial": [7, 8, 12, 68, 70], "na": 12, "naiv": 6, "name": [0, 3, 6, 7, 12, 13, 16, 18, 19, 22, 23, 26, 27, 28, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 55, 57, 62, 64, 65, 68, 70, 71, 73, 76, 78], "naming_schem": [4, 18, 71], "naming_scheme_input": 19, "naming_scheme_output": 19, "naswot": [0, 3, 12, 41, 42, 44, 46, 49, 50], "naswot_prun": [7, 38, 68], "naswot_pruner_batch_s": 12, "naswot_pruner_cutoff": 12, "naswotprun": [7, 38, 50, 68], "nation": 75, "natom": 62, "natur": [0, 12], "nccl": 6, "ndarrai": [13, 16, 56, 62, 63, 64, 65], "ndarri": 13, "necessari": [0, 3, 4, 6, 10, 12, 18, 22, 43, 65, 69, 70, 71, 72, 73, 76], "necessarili": [62, 63, 64, 65], "need": [2, 5, 6, 10, 12, 13, 19, 20, 25, 29, 33, 37, 51, 55, 57, 60, 62, 63, 64, 65, 71, 73, 76, 77, 78, 79], "neg": [6, 12, 65], "neglect": 12, "neighbor": 65, "neighborhood": 16, "neither": 64, "net": [12, 51, 61], "netwok": 12, "network": [3, 6, 7, 8, 12, 19, 22, 37, 40, 41, 43, 49, 50, 52, 54, 55, 56, 57, 64, 68, 70, 72, 73, 74, 75], "neural": [3, 12, 37, 51, 54, 55, 56, 57, 73, 74, 75], "neuron": [12, 70, 73], "new": [0, 3, 6, 11, 12, 23, 25, 26, 27, 34, 70, 73], "new_atom": 33, "new_datahandl": [42, 43, 55, 57], "new_hyperopt": [42, 43], "new_inst": 11, "new_runn": 55, "new_train": 57, "new_valu": 11, "newer": 78, "newli": [55, 57, 71], "next": [6, 43, 61], "nil": [0, 74], "nlogn": 12, "nn": [3, 5, 6, 12, 42, 43, 51, 53, 65, 70, 73], "nn_type": [7, 8, 12, 68], "no_data": [42, 43], "no_hidden_st": [7, 8, 12, 68], "no_snapshot": 12, "node": [6, 11, 12, 43], "nodelist": 6, "nois": 12, "nomenclatur": 70, "non": [2, 4, 27, 62, 65, 71], "none": [12, 13, 15, 16, 18, 19, 20, 22, 23, 27, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 62, 63, 64, 65, 73], "noninfring": [11, 61], "nor": 64, "norm": [12, 27], "normal": [12, 13, 22, 73], "normand": [0, 74], "note": [0, 5, 6, 12, 26, 34, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 60, 72, 76], "notebook": 4, "noteworthi": 70, "noth": [31, 32, 35], "notic": [11, 61], "now": [4, 6, 28, 64, 66, 70, 71, 72, 73, 78], "np": [3, 13, 19, 60, 61, 63, 64], "npj": [74, 75], "npy": [2, 4, 6, 18, 71, 73], "nr_snapshot": [7, 17, 20, 68], "nr_test_data": [7, 17, 19, 68], "nr_test_snapshot": [7, 17, 19, 68], "nr_training_data": [7, 17, 19, 68], "nr_training_snapshot": [7, 17, 19, 68], "nr_validation_data": [7, 17, 19, 68], "nr_validation_snapshot": [7, 17, 19, 68], "nsy": 12, "ntask": 6, "num_choic": [7, 38, 47, 68], "num_head": [7, 8, 12, 68], "num_hidden_lay": [7, 8, 12, 68], "num_work": [6, 7, 8, 12, 68], "number": [0, 3, 5, 6, 11, 12, 13, 16, 18, 19, 20, 23, 27, 29, 34, 37, 42, 47, 51, 56, 61, 62, 63, 64, 65, 67, 70, 71, 73, 74, 75, 78], "number_bad_trials_befor": 12, "number_bad_trials_before_stop": 12, "number_of_bin": [5, 12, 65], "number_of_electron": [7, 27, 56, 58, 62, 63, 64, 68, 73], "number_of_electrons_exact": [7, 58, 65, 68], "number_of_electrons_from_eigenv": [7, 58, 65, 68], "number_of_lay": [7, 38, 51, 68], "number_of_nod": 6, "number_of_shuffled_snapshot": [6, 23], "number_of_tasks_per_nod": 6, "number_training_per_tri": [3, 7, 8, 12, 68], "numer": [12, 13, 16, 25, 26, 33, 40, 44, 45, 46, 48, 61, 62, 63, 64, 65], "numpag": 74, "numpi": [0, 2, 4, 13, 16, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 47, 52, 54, 56, 59, 60, 61, 62, 63, 64, 65, 66, 71], "numpy_arrai": 19, "nvcc_wrapper": 76, "nvidia": [6, 76], "o": [2, 12, 13, 19, 65, 71, 72, 73], "oa": [40, 44, 45, 46, 47, 48, 52], "oapackag": 77, "oat": [0, 3, 12, 44, 47, 52, 53], "object": [0, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 68, 70, 71, 72, 73], "objective_bas": [7, 38, 43, 68], "objective_naswot": [7, 38, 68], "objectivebas": [7, 38, 43, 52, 53, 68], "objectivenaswot": [7, 38, 53, 68], "observ": [56, 72, 73, 75], "observables_to_test": [7, 38, 56, 68, 73], "obtain": [5, 11, 19, 61, 77], "occasion": 13, "occur": [43, 60, 73, 77], "oct": 74, "ofdft_frict": [7, 8, 12, 68], "ofdft_initi": [7, 14, 68], "ofdft_kedf": [7, 8, 12, 68], "ofdft_number_of_timestep": [7, 8, 12, 68], "ofdft_temperatur": [7, 8, 12, 68], "ofdft_timestep": [7, 8, 12, 68], "ofdftiniti": [7, 14, 15, 68], "off": [0, 12, 27], "offer": [4, 6, 12, 66, 75], "offici": [4, 6, 12, 69, 72, 76, 77], "offload": [5, 6, 12], "often": [6, 12, 65], "ol": [0, 74, 75], "old": [12, 22], "older": 16, "omar": 0, "onc": [0, 1, 2, 3, 5, 6, 43, 61, 70, 71, 73], "one": [0, 2, 3, 4, 6, 11, 12, 13, 16, 19, 20, 23, 27, 33, 49, 54, 61, 62, 63, 64, 65, 70, 71, 73, 75, 79], "one_electron_contribut": 65, "ones": [5, 25, 26, 33, 70], "ongo": 77, "onli": [0, 1, 2, 3, 5, 6, 11, 12, 13, 16, 18, 19, 20, 22, 25, 26, 29, 34, 37, 41, 42, 43, 51, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71], "onto": 0, "onward": 6, "open": [0, 4, 13, 61, 77], "openmpi": 78, "openpmd": [0, 1, 12, 13, 18, 19, 20, 23, 27, 29, 33, 62, 63, 64, 65], "openpmd_api": 13, "openpmd_configur": [7, 8, 12, 68], "openpmd_granular": [7, 8, 12, 68], "oper": [5, 6, 11, 12, 19, 20, 23, 65, 71, 73, 75], "opt": 77, "optim": [0, 1, 2, 5, 6, 7, 8, 12, 27, 31, 33, 39, 40, 41, 42, 43, 50, 52, 53, 57, 65, 68, 69, 73, 74, 75, 77], "optimal_shift": 27, "optimal_sigma": 31, "option": [3, 4, 5, 6, 9, 11, 12, 13, 18, 22, 26, 27, 29, 39, 41, 55, 57, 61, 65, 70, 71, 73, 74, 75, 76, 79], "option1": 76, "option2": 76, "opttyp": [7, 38, 40, 42, 44, 45, 46, 47, 48, 68], "optuna": [3, 12, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 70], "optuna_singlenode_setup": [3, 7, 8, 12, 68], "orbit": 75, "order": [0, 3, 6, 11, 12, 13, 19, 25, 26, 42, 70, 71, 72, 74, 77], "org": [39, 61, 65, 74], "orient": 0, "origin": [3, 11, 20, 29, 34, 61, 74], "orthogon": [3, 12, 42, 47, 52, 77], "oscil": 16, "ot": [25, 26], "other": [3, 6, 10, 11, 16, 27, 33, 36, 61, 62, 63, 65, 70, 72, 75], "otherwis": [11, 22, 40, 57, 61], "our": [4, 74], "ourselv": 22, "out": [0, 2, 4, 6, 11, 19, 54, 61, 63, 65, 71, 72, 73, 76, 77], "out_unit": [31, 32, 33, 35, 62, 63, 64, 65], "outdir": 33, "outfil": [33, 71], "outlin": [6, 60], "output": [1, 2, 6, 11, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 51, 56, 58, 61, 62, 63, 64, 65, 71, 73, 77, 79], "output_data": [7, 17, 25, 26, 68], "output_data_scal": [7, 17, 19, 25, 26, 68], "output_dimens": [7, 17, 20, 25, 26, 29, 68, 73], "output_directori": [20, 23, 27], "output_dtyp": [7, 17, 26, 68], "output_fil": [20, 23, 27], "output_format": [7, 38, 56, 68, 73], "output_npy_directori": [7, 17, 29, 68], "output_npy_fil": [7, 17, 20, 23, 27, 29, 68], "output_rescaling_typ": [7, 8, 12, 68, 73], "output_shap": [7, 17, 26, 68], "output_shm_nam": [7, 17, 26, 28, 68], "output_unit": [7, 17, 20, 29, 68], "outsid": [33, 64, 65], "over": [1, 2, 13, 65], "overal": 0, "overfit": [6, 73], "overflow": 60, "overhead": [3, 5, 12, 74], "overview": [1, 6, 76], "overwrit": [18, 23, 26], "overwritten": [55, 61], "own": [4, 12, 51, 73], "p": [61, 74, 75, 76], "packag": [75, 76, 79], "page": 74, "pair": 12, "pairs": 61, "paper": [49, 50, 74], "paral": 12, "parallel": [0, 1, 4, 7, 8, 12, 13, 22, 33, 51, 55, 64, 65, 68, 69, 75, 76], "parallel_warn": [7, 8, 11, 68], "param": [7, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 51, 52, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 68, 70], "paramet": [2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 75, 76], "parameters_ful": [7, 17, 18, 38, 55, 68], "parametersbas": [7, 8, 12, 68], "parametersdata": [7, 8, 12, 18, 20, 68], "parametersdatagener": [7, 8, 12, 15, 16, 68], "parametersdescriptor": [7, 8, 12, 33, 39, 68], "parametershyperparameteroptim": [7, 8, 12, 68], "parametersnetwork": [7, 8, 12, 51, 68], "parametersrun": [7, 8, 12, 53, 55, 68], "parameterstarget": [7, 8, 12, 27, 65, 68], "parametr": 19, "params_format": [55, 57], "paraview": 4, "parent": 55, "pars": [2, 12, 18, 30, 31, 32, 35, 39, 52, 59, 62, 63, 64, 66], "parse_tri": [7, 38, 52, 68], "parse_trial_oat": [7, 38, 52, 68], "parse_trial_optuna": [7, 38, 52, 68], "parser": [61, 65], "part": [5, 12, 13, 61, 62, 65, 73, 79], "partial": 15, "partial_fit": [7, 17, 22, 68], "particl": [12, 65], "particular": [11, 49, 50, 61], "partit": 56, "parvez": [0, 74], "pass": [0, 12, 51, 54, 64], "path": [2, 6, 12, 13, 16, 18, 19, 21, 27, 37, 39, 42, 43, 51, 54, 55, 57, 62, 63, 64, 65, 71, 72, 73, 76, 77, 78], "path_name_schem": 64, "path_schem": 64, "path_to_fil": [51, 54], "path_to_log_directori": 6, "patienc": 12, "paulbourk": 61, "pavanello": 75, "pbc": [33, 37], "peform": 12, "penalti": 12, "peopl": 0, "pep8": 0, "per": [6, 12, 33, 37, 65, 70, 73], "percent": 12, "percentag": 6, "perform": [1, 3, 5, 12, 16, 18, 19, 22, 24, 26, 37, 39, 40, 41, 42, 43, 51, 54, 60, 63, 64, 65, 69, 71, 72, 73, 74, 75, 76, 79], "perform_studi": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "period": 12, "permiss": [11, 61], "permit": [11, 61], "permut": 26, "person": [11, 61, 71], "phase": 74, "phenomena": 74, "phy": [74, 75], "phyiscal": 6, "physic": [2, 3, 6, 12, 13, 58, 65, 74], "physical_data": [7, 8, 68], "physicaldata": [7, 8, 13, 33, 65, 68], "physrevb": 74, "pickl": [12, 22, 33], "pip": 77, "pipelin": [0, 19, 20, 23, 27], "pkg_kokko": 76, "pkg_ml": 76, "pkl": [40, 42, 43, 55, 57], "place": [22, 73], "plan": 76, "plane": 5, "plateau": [12, 70], "plea": 65, "pleas": [0, 2, 3, 4, 5, 6, 12, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 64, 70, 72, 73, 74, 75, 76, 77, 78], "plot": [2, 5, 65], "plu": [3, 12, 65], "plugin": 4, "pmd": 4, "point": [2, 3, 5, 6, 12, 19, 21, 25, 26, 27, 29, 33, 34, 55, 63, 65, 71, 73, 75], "polynomi": 12, "popoola": [0, 74, 75], "popul": 15, "popular": 74, "port": 6, "portion": [11, 12, 18, 61], "pose": 75, "posit": [5, 7, 12, 33, 37, 51, 54, 61, 62, 71, 72], "positionalencod": [7, 38, 51, 68], "possibl": [6, 12, 39, 40, 44, 45, 46, 47, 48, 51, 63, 70], "possibli": 51, "post": [4, 29, 65, 75, 79], "postgresql": 3, "postprocess": [7, 59, 62, 63, 64, 65], "potenti": [0, 33, 70, 75], "power": [4, 6, 72], "pp": 71, "pr": 0, "practic": 6, "pre": [0, 28], "precalcul": 79, "preced": 71, "precict": [54, 56], "precis": [6, 12, 18, 33, 34], "predict": [6, 7, 37, 51, 54, 56, 64, 65, 69, 73, 74, 75, 76], "predict_for_atom": [5, 7, 38, 54, 68, 72], "predict_from_qeout": [7, 38, 54, 68], "predict_target": [7, 38, 56, 68], "predicted_arrai": 51, "predicted_ldo": 54, "predicted_output": 56, "predictor": [5, 7, 37, 38, 55, 57, 68, 72], "prefer": [37, 71], "prefetch": [6, 12, 26], "prepar": [6, 13, 19, 42, 43], "prepare_data": [7, 17, 19, 55, 57, 68, 70, 73], "prepare_for_test": [7, 17, 19, 68], "preprocess": [2, 7, 12, 33, 65, 71], "present": [13, 39, 40, 41, 42, 43, 55, 62, 65], "press": [12, 74], "previou": [51, 72], "primari": 70, "principl": [2, 5, 40, 44, 45, 46, 47, 48, 73, 75], "print": [1, 3, 6, 11, 12, 42], "printout": [1, 3, 7, 8, 11, 68], "prior": [0, 2, 5, 6, 12], "priorli": 16, "privat": 22, "problem": [0, 5, 6, 78], "problemat": 12, "procecdur": 57, "proceed": 12, "process": [0, 2, 3, 4, 5, 6, 11, 12, 18, 19, 22, 25, 26, 29, 33, 34, 39, 52, 54, 56, 65, 71, 72, 73, 74, 75, 76, 78, 79], "product": [1, 4, 6, 22, 54, 73, 76], "profil": 12, "profiler_rang": [7, 8, 12, 68], "progress": [6, 64], "project": [0, 4, 6, 21, 76, 77], "proof": 75, "propag": 51, "proper": [62, 63, 64, 74], "properli": [0, 11, 12], "properti": [6, 10, 12, 13, 16, 20, 25, 29, 31, 32, 33, 35, 37, 41, 42, 47, 62, 63, 64, 65, 70, 72, 75], "provid": [2, 3, 5, 6, 11, 12, 13, 16, 18, 21, 23, 39, 41, 50, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 76, 77], "prudent": [3, 73], "prune": [7, 16, 38, 49, 50, 68], "pruner": [12, 49, 50], "pseudopotenti": [12, 62, 64, 65, 72], "pseudopotential_path": [7, 8, 12, 68, 72], "psu": 65, "public": [2, 3, 5, 6, 70, 71, 74], "publish": [0, 11, 61, 74], "pure": [6, 46, 63], "purpos": [2, 11, 12, 42, 43, 61], "push": 0, "put": [12, 19, 43, 51], "pw": [62, 71], "py": [0, 2, 3, 6, 11, 72, 73, 76], "pypi": 0, "pyproject": 0, "pytest": 77, "python": [2, 3, 4, 5, 6, 19, 20, 33, 34, 62, 65, 72, 79], "python3": [3, 6, 76], "pythonpath": 78, "pytorch": [12, 19, 51, 55], "p\u00f6schel": 0, "q": 78, "qe": [12, 27, 33, 54, 62, 63, 64, 65, 78, 79], "qe_input_data": [7, 58, 62, 64, 65, 68], "qe_out_fil": 33, "qe_pseudopotenti": [7, 58, 62, 64, 65, 68], "qef": 78, "qualiti": 0, "quantif": 0, "quantit": 12, "quantiti": [12, 16, 18, 22, 56, 58, 62, 63, 64, 65], "quantum": [5, 18, 33, 62, 63, 64, 65, 71, 72, 74, 75, 79], "quantumespresso": 65, "question": 6, "queue": 43, "quick": 33, "r": [42, 61, 64, 77], "race": 3, "radial": [5, 12, 65], "radial_distribution_funct": 65, "radial_distribution_function_from_atom": [5, 7, 58, 65, 68], "radii": [2, 5, 12, 65], "radiu": [2, 12, 16, 65, 71], "rais": 62, "rajamanickam": [0, 74, 75], "ram": [6, 25, 42, 43, 51, 64], "random": [6, 12, 51], "randomli": 3, "rang": [2, 12, 22, 51, 73, 74, 75], "rank": [3, 5, 6, 11, 12, 33, 54, 63, 64, 65], "rapid": 75, "rate": [12, 51, 70], "rather": [3, 19, 55, 62, 63, 64], "raw": [2, 18, 19, 33, 71], "raw_numpy_to_converted_scaled_tensor": [7, 17, 19, 68], "rawradialdistribut": 65, "rdb": [12, 43], "rdb_storag": [3, 12, 43], "rdb_storage_heartbeat": [7, 8, 12, 68], "rdf": [5, 12, 16, 37, 65], "rdf_paramet": [7, 8, 12, 68], "re": [0, 2, 6, 19], "read": [4, 10, 12, 13, 16, 22, 25, 26, 27, 29, 41, 42, 54, 60, 61, 62, 63, 64, 65, 66, 72], "read_additional_calculation_data": [7, 58, 63, 65, 68], "read_additional_read_additional_calculation_data": 62, "read_cub": [7, 58, 61, 68], "read_dimensions_from_numpy_fil": [7, 8, 13, 68], "read_dimensions_from_openpmd_fil": [7, 8, 13, 68], "read_dtyp": 13, "read_from_arrai": [7, 58, 62, 63, 64, 68, 72], "read_from_cub": [7, 58, 62, 64, 68], "read_from_numpy_fil": [7, 8, 13, 58, 63, 68], "read_from_openpmd_fil": [7, 8, 13, 68], "read_from_qe_dos_txt": [7, 58, 63, 68], "read_from_qe_out": [7, 58, 63, 68], "read_from_xsf": [7, 58, 62, 64, 68], "read_imcub": [7, 58, 61, 68], "read_xsf": [7, 58, 66, 68], "readi": [0, 71, 73], "readlin": [7, 58, 61, 68], "real": [22, 61, 65, 70, 73, 75, 79], "realist": 79, "realiz": 5, "realli": [31, 32, 35, 37], "realspac": [5, 16], "reason": [6, 12, 19, 63, 66, 73], "rebas": 0, "recap": 6, "recent": [74, 75, 76, 77, 78], "recogn": 12, "recommend": [6, 12, 16, 62, 63, 64, 65, 76, 79], "recomput": [41, 42], "reconstruct": [42, 43, 55, 57], "record": [6, 12], "recv": 33, "redistribut": 23, "reduc": [12, 26, 64, 71], "reducelronplateau": 12, "reduct": 12, "redund": 27, "refer": [2, 3, 12, 27, 62, 65, 69, 70, 71, 73, 75, 76], "reference_data": 37, "reference_index": 27, "reflect": [5, 62, 64, 65], "reformat": 0, "regain": 26, "regard": 74, "region": 71, "regular": [2, 3, 5, 12, 53, 71], "regularli": 0, "reimplement": 10, "rel": [26, 27, 51, 63], "relat": [3, 12, 76], "releas": 78, "relev": [2, 4, 6, 12], "reli": 74, "relu": [12, 70, 73], "remark": [2, 5], "remind": [2, 5], "remov": [27, 33], "renam": 78, "reorder": [12, 63], "reparametrize_scal": 19, "repeat": 0, "replac": [4, 13, 18, 61, 64, 75], "repo": [0, 77], "report": [3, 12, 49, 50], "repositori": [0, 69, 73, 74, 75, 77, 78], "repres": [2, 12, 29, 45, 46, 47, 48, 52, 53, 71, 73], "represent": [5, 12, 46, 71, 75], "reproduc": [0, 6, 16, 63, 64, 65], "request": [12, 74], "requeue_zombie_tri": [7, 38, 43, 68], "requir": [0, 3, 5, 6, 12, 13, 26, 41, 61, 71, 73, 76, 77, 79], "research": [74, 75], "reset": [7, 17, 19, 20, 22, 68], "reshap": [13, 62, 63], "resiz": 19, "resize_snapshots_for_debug": [7, 17, 19, 68], "resourc": 6, "resp": [5, 12], "respect": [3, 10, 12, 20, 71, 73, 74], "respres": [47, 52], "restart": 3, "restrict": [11, 12, 61, 65], "restrict_data": [7, 58, 65, 68], "restrict_target": [7, 8, 12, 68], "resubmit": 43, "result": [3, 6, 12, 18, 19, 34, 43, 52, 56, 65, 71, 72, 73, 75], "result_typ": 34, "resultsfor": 75, "resum": [3, 6, 42, 43], "resume_checkpoint": [7, 38, 42, 43, 68], "resumpt": [6, 42, 43], "retain": [33, 61], "return": [0, 2, 10, 11, 12, 13, 15, 16, 19, 22, 27, 29, 31, 32, 33, 34, 35, 37, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "return_energy_contribut": 64, "return_outputs_directli": [7, 17, 25, 26, 68], "return_plot": [2, 39], "return_str": 65, "return_valu": [47, 48], "retval": 61, "reusabl": 0, "rev": [74, 75], "review": 0, "rewrit": 26, "rfname": 61, "right": [11, 19, 27, 51, 61], "right_truncate_valu": 27, "rlectron": [6, 12], "rmax": [12, 65], "robust": 3, "romero": [0, 12], "room": 75, "root": [0, 22], "rossendorf": 75, "roughli": [71, 74], "rout": 33, "routin": [2, 4, 5, 6, 12, 73], "row": [47, 52], "rst": 77, "run": [0, 3, 5, 7, 8, 11, 12, 25, 33, 37, 41, 42, 43, 54, 55, 57, 64, 68, 70, 73, 77, 78], "run_exist": [3, 6, 7, 38, 55, 57, 68], "run_nam": [7, 8, 12, 37, 55, 57, 68], "runner": [7, 38, 54, 56, 57, 68], "runner_dict": 55, "runtim": 4, "ry": [2, 59, 63, 64, 71], "s0": 60, "s1": 60, "s41524": 74, "safe": 1, "sai": 78, "same": [3, 5, 6, 12, 18, 19, 20, 23, 27, 33, 39, 43, 51, 60, 61, 64, 65, 70, 78], "samefileerror": 76, "sampl": [12, 16, 39, 40, 41, 43, 71, 73], "sampler": 12, "sandia": 75, "save": [3, 4, 5, 6, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 27, 29, 37, 42, 43, 51, 55, 57, 62, 63, 64, 65, 68, 70, 71, 72, 73], "save_as_json": [7, 8, 12, 68], "save_as_pickl": [7, 8, 12, 68], "save_calcul": [7, 36, 37, 68], "save_format": [12, 22], "save_nam": [4, 6, 23], "save_network": [7, 38, 51, 68], "save_path_ext": 27, "save_run": [7, 38, 55, 68, 73], "save_runn": 55, "save_target_data": [7, 58, 65, 68], "sbatch": 6, "scalabl": 75, "scalar": 34, "scale": [3, 4, 5, 6, 12, 19, 22, 25, 26, 27, 42, 43, 51, 62, 64, 70, 73, 74, 75, 77], "scale_minmax": [7, 17, 22, 68], "scale_standard": [7, 17, 22, 68], "scaled_posit": 62, "scaler": 22, "scarc": 18, "scf": [62, 71], "schedul": [6, 12, 43], "scheme": [12, 18, 19, 64], "schmerler": [0, 74, 75], "sci": 75, "scienc": 74, "scientif": [0, 4, 75], "scikit": 22, "scontrol": 6, "score": [49, 50], "script": [3, 5, 6, 11, 12, 70, 78], "se": 37, "search": [1, 2, 70], "search_paramet": [49, 50, 53], "second": 12, "secondli": [2, 73], "section": [6, 69, 70, 71, 72, 73], "see": [0, 2, 5, 12, 18, 20, 29, 39, 61, 65, 71, 72, 73, 76, 78], "seed": [6, 12], "seem": [5, 26], "select": [2, 6, 12, 13, 56, 71, 73, 78], "self": [63, 64], "sell": [11, 61], "sendv": 33, "sens": [12, 37, 53, 55, 63, 64, 73], "sep": [11, 74], "separ": [11, 18, 37, 55, 57, 71, 73, 79], "sequenc": 51, "seri": [4, 13], "serial": [10, 11], "serializ": 10, "serv": [51, 54, 75], "server": 43, "servernam": 3, "set": [0, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 22, 23, 24, 25, 26, 28, 33, 39, 40, 41, 42, 43, 52, 54, 55, 56, 62, 63, 64, 65, 70, 71, 72, 75, 76], "set_calcul": 72, "set_cmdlinevar": [7, 30, 34, 68], "set_current_verbos": [7, 8, 11, 68], "set_ddp_statu": [7, 8, 11, 68], "set_lammps_inst": [7, 8, 11, 68], "set_mpi_statu": [7, 8, 11, 68], "set_optimal_paramet": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "set_paramet": [7, 38, 40, 68], "setup": [0, 3, 6, 36, 77], "setup_lammps_tmp_fil": [7, 30, 33, 68], "sever": [3, 5, 60, 70, 73], "sgd": 12, "sh": 78, "shall": [11, 61], "sham": [74, 75], "shao": 75, "shape": [34, 62, 65], "share": [26, 28], "shift": [27, 33], "ship": 76, "shorter": 6, "should": [0, 2, 3, 5, 6, 11, 12, 13, 19, 21, 22, 31, 32, 33, 35, 37, 42, 43, 48, 49, 50, 51, 54, 55, 59, 60, 62, 63, 64, 65, 70, 71, 73, 76, 78], "should_prun": [49, 50], "show": [0, 6, 7, 8, 12, 68, 75], "show_order_of_import": [7, 38, 42, 68], "showcas": [2, 75], "shown": [2, 3, 5, 6, 71, 73], "shuffl": [0, 4, 6, 7, 12, 17, 20, 23, 24, 25, 26, 68], "shuffle_snapshot": [4, 6, 7, 17, 23, 68], "shuffling_se": [6, 7, 8, 12, 68], "shut": 11, "shutil": 76, "si": [13, 33, 62, 63, 64, 65], "si_dimens": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "si_unit_convers": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "side": 27, "sigma": [12, 31, 60], "sigmoid": [12, 70], "sign": 0, "signal": 73, "signific": [12, 75], "significantli": [64, 65], "silver": 74, "similar": [2, 3, 16, 75], "simpl": [71, 72, 73], "simplest": 6, "simpli": [5, 6, 12, 16, 19, 37, 52, 62, 65], "simpson": [60, 62, 63, 64], "simul": [5, 12, 37, 61, 62, 64, 65, 71, 72, 73, 74, 75, 79], "sinc": [2, 3, 5, 6, 12, 18, 31, 32, 33, 35, 37, 43, 72, 73, 77], "singl": [3, 6, 18, 24, 26, 34, 56, 69], "site": 13, "siva": 0, "sivasankaran": [74, 75], "six": 37, "size": [0, 3, 5, 11, 12, 13, 24, 26, 40, 44, 45, 46, 47, 48, 51, 53, 65, 70, 73, 75], "skip": 34, "skiparraywrit": [7, 8, 13, 68], "slice": [5, 19], "slightli": 43, "slow": 6, "slowest": 12, "slurm": 6, "slurm_job_nodelist": 6, "slurm_localid": 6, "slurm_nodelist": 6, "slurm_ntask": 6, "slurm_procid": 6, "small": [2, 6, 65, 71, 79], "smaller": [5, 12, 25, 26, 70], "smallest": [12, 16], "smear": 63, "smearing_factor": 63, "smith": 65, "smoothli": 12, "snap": [12, 76], "snapshot": [6, 7, 12, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 33, 39, 56, 64, 68, 71, 73], "snapshot4": 18, "snapshot_correlation_cutoff": [7, 14, 16, 68], "snapshot_directories_list": [7, 8, 12, 68], "snapshot_funct": [7, 17, 29, 68], "snapshot_numb": [19, 56, 64], "snapshot_typ": [4, 7, 17, 20, 23, 27, 29, 68], "sneha": 0, "so": [2, 3, 4, 5, 6, 11, 12, 16, 22, 51, 55, 61, 62, 63, 71, 73, 75, 76, 77, 78, 79], "societi": 74, "softwar": [0, 5, 11, 61, 71, 72, 74, 75, 79], "sole": 76, "solv": 60, "somashekhar": 0, "some": [2, 6, 12, 16, 18, 25, 26, 51, 53, 55, 65, 73], "someth": [53, 78], "sometim": 77, "somewhat": 12, "soon": [0, 7], "sort": [22, 25, 26, 33, 42], "sourc": [0, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 72], "space": [2, 6, 60, 63, 65, 70, 71, 73, 75, 79], "spatial": 22, "special": [2, 24], "specif": [3, 4, 6, 12, 19, 22, 40, 51, 60, 65, 72, 77], "specifi": [0, 2, 3, 4, 5, 6, 12, 13, 22, 33, 53, 63, 65, 70, 71, 72, 73], "speed": [6, 12, 75], "speedup": 6, "sphere": 71, "sphinxopt": 77, "split": [5, 12], "springer": 42, "sql": [3, 43], "sqlite": [3, 12], "sqlite_timeout": 12, "sqrt": 60, "squar": [6, 12, 27], "src": 76, "srcname": 61, "srun": [5, 6], "ssf": [12, 65], "ssf_paramet": [7, 8, 12, 68], "stabl": 12, "standard": [3, 4, 5, 12, 22, 70, 73], "start": [2, 3, 5, 12, 13, 22, 71], "starts_at": 18, "state": [6, 12, 51, 63, 64, 72, 75], "statement": [5, 11], "static": [5, 12, 27, 28, 31, 32, 33, 35, 43, 51, 59, 61, 62, 63, 64, 65], "static_structur": 5, "static_structure_factor_from_atom": [5, 7, 58, 65, 68], "statu": 11, "std": [7, 17, 22, 68], "stem": [63, 64], "step": [0, 2, 5, 12, 15, 16, 69, 70, 79], "stephen": [0, 74, 75], "steve": [0, 74], "still": [6, 11, 13, 24, 28, 42, 43, 74, 75], "stochast": 12, "stop": [12, 19, 70, 77], "storag": [4, 12, 43], "store": [1, 3, 12, 25, 26, 37, 62, 65, 71, 73], "str": [11, 12, 22, 26, 28, 33, 37, 55, 56, 57, 62, 64], "straightforward": [0, 2, 75], "strategi": [3, 70], "stress": 37, "stretch": 5, "string": [11, 12, 13, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "strongli": 71, "structur": [5, 7, 12, 13, 65, 71, 72, 73, 74, 75, 79], "studi": [3, 7, 12, 38, 39, 40, 41, 42, 43, 49, 50, 68, 70, 74], "study_nam": [3, 12, 43], "style": [0, 52, 65], "sub": 73, "subclass": [44, 51], "subfold": 12, "subject": [11, 61, 77], "sublicens": [11, 61], "submit": 0, "subobject": 73, "subroutin": 64, "subsequ": [12, 54, 75], "subset": [40, 41, 43], "substanti": [11, 61], "success": [76, 78], "successfulli": [76, 77], "suffic": 33, "suffici": [0, 71], "suggest": [0, 12, 16, 65], "suit": [0, 78], "suitabl": [5, 12, 74, 75, 76, 77], "sum_i": 63, "sum_k": 63, "summari": 65, "summat": [62, 64, 65], "supervis": 0, "supervisor": 75, "support": [0, 3, 4, 5, 6, 12, 20, 29, 33, 37, 40, 42, 44, 45, 46, 47, 48, 53, 56, 59, 60, 62, 63, 64, 65, 76], "suppos": [0, 34, 50, 60, 64], "suppress": 60, "suppress_overflow": 60, "sure": [0, 3, 4, 6, 33, 64, 71, 72, 73, 75, 76, 77, 78], "surrog": [12, 49, 50, 75], "switch": [2, 5, 12], "switchflag": 12, "symbol": 18, "symmetri": [62, 64, 65], "syntax": [2, 3, 6, 73, 77], "system": [0, 2, 3, 5, 6, 12, 43, 62, 63, 64, 65, 71, 72, 73, 75, 78], "system_chang": 37, "t": [4, 12, 42, 43, 60, 61, 63, 64, 65, 75, 77, 78], "tag": [0, 77], "tahmasbi": 0, "take": [2, 6, 12, 43, 49, 50, 65], "taken": 61, "tamar": 74, "target": [2, 6, 7, 8, 11, 12, 16, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 49, 50, 51, 54, 56, 59, 62, 63, 64, 68, 71, 72, 73], "target_calcul": [5, 7, 14, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 38, 39, 54, 56, 68, 72], "target_calculation_kwarg": 71, "target_calculator_kwarg": 18, "target_data": 65, "target_input_path": [18, 39, 71], "target_input_typ": [18, 39, 71], "target_save_path": [18, 23, 71], "target_temperatur": 16, "target_typ": [7, 8, 12, 68, 71, 73], "target_unit": [2, 18, 39, 71], "targetbas": [59, 63], "task": [12, 18, 60, 73, 79], "te": [20, 29, 56, 73], "te_mutex": [7, 58, 62, 68], "team": [0, 4, 6, 71, 76, 77], "technic": [33, 65], "techniqu": [3, 71, 75], "technol": 75, "technologi": 74, "tell": [3, 73, 76], "tem": [12, 65], "temperatur": [5, 6, 7, 12, 16, 37, 54, 58, 60, 63, 64, 65, 68, 73, 74, 75], "tempor": 16, "temporari": 33, "tend": 65, "tensor": [19, 22, 24, 25, 26, 51, 64], "tensorboard": [0, 6, 12], "tensordataset": [6, 12, 24], "term": [51, 63, 64], "termin": 12, "test": [0, 4, 6, 12, 19, 20, 21, 25, 26, 29, 49, 50, 56, 70, 71, 77, 78, 79], "test_al_debug_2k_nr": 19, "test_all_snapshot": [7, 38, 56, 68, 73], "test_data_set": [7, 17, 19, 68], "test_exampl": 0, "test_snapshot": [7, 38, 56, 68], "tester": [6, 7, 19, 38, 55, 57, 68, 73], "text": 4, "than": [12, 55, 70], "thei": [0, 3, 4, 5, 6, 12, 27, 43, 65, 72], "them": [0, 6, 23, 33, 63, 71], "themselv": [4, 16, 19], "theorem": 62, "theori": [3, 74, 75], "thereaft": [12, 63, 65], "therefor": [4, 5, 25, 26, 33, 62, 79], "therein": [12, 74], "thermodynam": 60, "thi": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "thing": [70, 71], "third": 73, "thompson": [0, 74, 75], "those": [12, 73, 78], "though": [12, 65], "thread": 11, "three": [5, 12, 65, 71, 73, 79], "three_particle_correlation_function_from_atom": [7, 58, 65, 68], "threshold": [16, 71], "through": [0, 3, 5, 11, 51, 62, 73], "throughout": 56, "thrown": 11, "thu": [0, 6, 12, 19, 77], "time": [0, 3, 5, 6, 12, 43, 71, 73, 74, 78], "timeout": 12, "timestep": [12, 16], "timothi": 0, "titl": 74, "tmp": 71, "to_json": [7, 8, 10, 12, 68], "togeth": [6, 70, 78], "token": 51, "toml": [0, 12], "too": [2, 33], "tool": [4, 14, 15, 16, 65], "topic": [71, 72], "torch": [6, 18, 19, 22, 24, 25, 26, 51, 64, 77], "torchrun": 6, "tort": [11, 61], "total": [0, 5, 6, 12, 29, 37, 56, 62, 63, 64, 65, 71, 72, 73, 75, 79], "total_data_count": [7, 17, 22, 68], "total_energi": [6, 7, 12, 56, 58, 64, 68, 72, 78], "total_energy_actual_f": [6, 12], "total_energy_contribut": [7, 58, 62, 68], "total_energy_contributions_dft_calcul": [7, 58, 65, 68], "total_energy_dft_calcul": [7, 58, 65, 68], "total_energy_ful": 56, "total_energy_modul": 78, "total_max": [7, 17, 22, 68], "total_mean": [7, 17, 22, 68], "total_min": [7, 17, 22, 68], "total_std": [7, 17, 22, 68], "tpcf": [12, 65], "tpcf_paramet": [7, 8, 12, 68], "tr": [4, 20, 29, 56, 73], "track": 19, "train": [0, 1, 2, 3, 5, 7, 12, 19, 20, 22, 23, 25, 26, 29, 37, 41, 42, 43, 49, 50, 52, 53, 55, 57, 65, 69, 70, 72, 74, 75, 79], "train_network": [7, 38, 57, 68, 73], "trainer": [3, 6, 7, 12, 38, 55, 68, 73], "training_data_set": [7, 17, 19, 68], "training_log_interv": [7, 8, 12, 68], "traj": 15, "trajectori": [7, 12, 14, 15, 16, 65, 68], "trajectory_analysis_below_average_count": [7, 8, 12, 68], "trajectory_analysis_correlation_metric_cutoff": [7, 8, 12, 68], "trajectory_analysis_denoising_width": [7, 8, 12, 68], "trajectory_analysis_estimated_equilibrium": [7, 8, 12, 68], "trajectory_analysis_temperature_tolerance_perc": [7, 8, 12, 68], "trajectory_analyz": [7, 14, 68], "trajectoryanalyz": [7, 14, 16, 68], "transfer": [0, 6, 74, 75], "transform": [7, 12, 17, 19, 22, 25, 26, 51, 62, 65, 68, 71], "transformernet": [7, 38, 51, 68], "trapezoid": [60, 62, 63, 64], "trapz": 64, "treat": [11, 77], "tree": [0, 76], "trex": 11, "trial": [3, 12, 40, 41, 42, 43, 47, 48, 49, 50, 52, 70], "trial_ensemble_evalu": [7, 8, 12, 68], "trial_list": 41, "trial_typ": 53, "tricki": 24, "trigger": 0, "trivial": [2, 5, 6], "true": [2, 3, 5, 6, 12, 13, 16, 18, 19, 22, 25, 26, 33, 34, 40, 42, 43, 51, 54, 55, 57, 60, 62, 63, 64, 65, 71, 72, 73, 76], "truncat": [12, 27], "truth": [6, 12, 73], "try": 26, "tune": [0, 3, 6, 12, 42, 70, 73], "tupl": 13, "turn": 6, "tutori": [4, 6, 73], "tweak": [69, 72], "twice": [5, 16, 65], "two": [2, 12, 13, 16, 61, 70, 73, 74], "twojmax": 12, "txt": [0, 63, 77], "type": [10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 71], "typestr": [7, 17, 22, 68], "typic": [12, 27, 76], "u": [3, 6, 12, 33], "ubuntu": 79, "uncach": [16, 62, 63, 64], "uncache_properti": [7, 14, 16, 58, 62, 63, 64, 68], "uncertainti": 0, "unchang": [26, 62], "uncorrel": [12, 16], "under": [0, 37, 55, 57], "underli": 37, "underlin": 64, "understand": 75, "uniform": [51, 60], "unit": [5, 13, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 39, 51, 59, 62, 63, 64, 65], "unless": 62, "unload": 6, "unnecessari": [19, 55], "unproblemat": 5, "unscal": 22, "unseen": 73, "untest": 78, "until": [12, 13, 25, 26, 70, 71], "untouch": 4, "up": [0, 2, 6, 12, 22, 27, 33, 43, 62, 63, 64, 65, 70, 71, 75], "updat": 0, "upon": [0, 3, 12, 19, 43, 46, 51, 71], "upper": 70, "upward": 12, "url": 74, "us": [0, 1, 2, 3, 4, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79], "usag": [0, 5, 6, 19, 55, 64, 69, 72, 73, 75, 76], "use_atomic_density_formula": [5, 7, 8, 12, 68], "use_ddp": [6, 7, 8, 12, 17, 22, 25, 26, 38, 51, 68], "use_fast_tensor_data_set": [6, 7, 8, 12, 68], "use_fp64": [18, 33, 34], "use_gauss_ldo": 71, "use_gpu": [5, 6, 7, 8, 12, 68, 76], "use_graph": [6, 7, 8, 12, 68], "use_lammp": [7, 8, 12, 68], "use_lazy_load": [6, 7, 8, 12, 68, 73], "use_lazy_loading_prefetch": [6, 7, 8, 12, 68], "use_memmap": 64, "use_mixed_precis": [6, 7, 8, 12, 68], "use_mpi": [2, 3, 5, 7, 8, 12, 68], "use_multivari": 12, "use_pickled_comm": 33, "use_pkl_checkpoint": [39, 40, 41, 42, 43], "use_shuffling_for_sampl": [7, 8, 12, 68], "use_y_split": [5, 7, 8, 12, 68], "use_z_split": [7, 8, 12, 68], "useabl": 71, "used_data_handl": 64, "user": [4, 11, 12, 16, 49, 50, 60, 64, 73, 77], "userwarn": 11, "usual": [6, 12, 16, 33, 51, 52, 62, 63, 65, 71], "util": [5, 6], "v": [75, 76], "v1": [12, 37, 77], "v2": 12, "v80": 12, "v_": [62, 65], "va": [20, 29, 56, 73], "vaidyanathan": 61, "valid": [3, 6, 12, 19, 20, 29, 57, 70, 73], "validate_every_n_epoch": [6, 7, 8, 12, 68], "validate_on_training_data": [6, 7, 8, 12, 68], "validation_data_set": [7, 17, 19, 68], "validation_loss": 12, "validation_loss_old": 12, "validation_metr": [6, 7, 8, 12, 68], "valu": [2, 5, 6, 11, 12, 13, 16, 25, 26, 27, 31, 33, 47, 48, 49, 50, 51, 53, 54, 56, 60, 61, 62, 63, 64, 65, 70, 71, 73], "valuabl": 0, "var": 21, "vari": 78, "variabl": [6, 12, 16, 19, 55, 65], "varianc": 25, "varieti": 75, "variou": [12, 72, 73, 75], "vector": [2, 12, 25, 26, 27, 33, 61, 65, 71, 73], "verbos": [7, 8, 11, 12, 63, 68, 71, 73], "veri": [0, 3, 6, 12, 51, 63], "verif": 73, "verifi": 73, "verma": 0, "versatil": 75, "version": [7, 12, 18, 24, 49, 50, 68, 71, 76, 77, 78], "via": [0, 2, 3, 5, 6, 11, 12, 15, 16, 21, 26, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "viabl": 49, "view": [2, 6, 34], "viewdoc": 65, "viewer": 4, "virtu": 6, "visibl": 51, "visit": [3, 4], "visual": [4, 6, 75], "vladyslav": [0, 74], "vogel": [0, 74, 75], "volta": 76, "volum": 74, "volumetr": [4, 13, 61, 62, 64, 66, 71, 73], "voxel": [7, 31, 58, 62, 64, 65, 68], "w": [42, 64, 77], "w_k": 63, "wa": [5, 6, 22, 25, 26, 39, 40, 41, 42, 43, 51, 55, 57, 62, 63, 64, 65, 72], "wai": [0, 3, 6, 12, 65], "wait": [12, 43], "wait_tim": [3, 12], "wandb": [6, 12], "want": [2, 5, 6, 20, 23, 40, 44, 45, 46, 47, 48, 65, 70, 73, 76, 77], "warmli": 0, "warn": [3, 11, 77], "warranti": [11, 61], "wave": [12, 65], "wavefunct": 62, "we": [0, 2, 3, 5, 12, 22, 25, 26, 33, 37, 65, 66, 70, 71, 73, 74, 76, 78], "websit": [3, 6, 77], "weight": [12, 51, 60, 73], "welcom": 0, "well": [2, 3, 6, 12, 62, 69, 70, 77], "were": [5, 27, 73], "what": [0, 20, 23, 33, 37, 55, 57, 61, 73], "whatev": 76, "when": [0, 1, 3, 4, 6, 11, 12, 18, 19, 20, 27, 29, 33, 43, 49, 50, 51, 55, 57, 61, 64, 65, 70, 71, 73, 76, 78, 79], "whenev": 73, "where": [4, 6, 12, 13, 22, 26, 33, 37, 42, 43, 55, 57, 73, 76], "wherea": 71, "whether": [9, 11, 12, 25, 26, 27, 33, 49, 50, 61, 65], "which": [0, 2, 3, 4, 5, 6, 9, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "whichev": 5, "while": [2, 6, 12, 62, 64, 65, 74], "whom": [11, 61], "wide": 75, "width": [12, 31], "window": [77, 79], "wip": 64, "wise": [6, 12, 22, 70, 73], "wish": [5, 78], "within": [2, 11, 12, 13, 19, 24, 64, 65, 73], "without": [0, 3, 6, 11, 12, 13, 41, 53, 60, 61, 65, 76], "won": [42, 43], "wonjoon": 11, "work": [0, 3, 5, 6, 11, 12, 34, 41, 56, 61, 62, 63, 64, 65, 70, 71, 72, 78, 79], "worker": [6, 12], "workflow": [0, 2, 3, 4, 5, 6, 29, 36, 62, 64, 72, 73, 74, 75, 78], "working_directori": [33, 71], "world": 22, "world_siz": 6, "worldwid": 75, "would": [2, 13, 62], "wrap": 0, "wrapper": 5, "write": [4, 13, 33, 61, 62, 65], "write_additional_calculation_data": [7, 58, 65, 68], "write_cub": [7, 58, 61, 68], "write_imcub": [7, 58, 61, 68], "write_tem_input_fil": [7, 58, 65, 68], "write_to_cub": [5, 7, 58, 62, 68], "write_to_numpy_fil": [7, 8, 13, 58, 65, 68], "write_to_openpmd_fil": [7, 8, 13, 58, 62, 65, 68], "write_to_openpmd_iter": [7, 8, 13, 68], "written": [39, 40, 41, 42, 43, 62, 65], "wuantiti": [62, 63, 64], "x": [5, 12, 13, 22, 29, 33, 51, 60, 65, 71, 75], "x86_64": 78, "xarg": 0, "xc": [62, 65], "xc_contribut": 65, "xcrysden": 64, "xsf": [62, 64, 66], "xsf_parser": [7, 58, 68], "xvec": 61, "xyz": [12, 33], "y": [5, 12, 13, 22, 29, 33, 65], "y_plane": [7, 58, 65, 68], "yaml": 0, "ye": 76, "year": 74, "yet": [4, 6, 13, 27, 31, 32, 35, 65], "yield": [2, 6], "you": [0, 2, 3, 4, 5, 6, 12, 20, 23, 40, 44, 45, 46, 47, 48, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79], "your": [0, 2, 4, 5, 6, 12, 22, 71, 73, 74, 75, 76, 78], "your_wandb_ent": 6, "yourself": 69, "yovel": [74, 75], "ysplit": 5, "yt": 4, "yvec": 61, "z": [5, 12, 13, 22, 29, 33, 65, 74, 75], "zentrum": 75, "zero": [5, 12, 27, 51, 70], "zero_out_neg": 12, "zero_tol": 27, "zip": [37, 55, 57, 73], "zip_run": [55, 57], "zipextfil": [12, 22, 51], "zombi": 43, "zone": 60, "zvec": 61}, "titles": ["Contributions", "Advanced options", "Improved data conversion", "Improved hyperparameter optimization", "Storing data with OpenPMD", "Using MALA in production", "Improved training performance", "mala", "common", "check_modules", "json_serializable", "parallelizer", "parameters", "physical_data", "datageneration", "ofdft_initializer", "trajectory_analyzer", "datahandling", "data_converter", "data_handler", "data_handler_base", "data_repo", "data_scaler", "data_shuffler", "fast_tensor_dataset", "lazy_load_dataset", "lazy_load_dataset_single", "ldos_aligner", "multi_lazy_load_data_loader", "snapshot", "descriptors", "atomic_density", "bispectrum", "descriptor", "lammps_utils", "minterpy_descriptors", "interfaces", "ase_calculator", "network", "acsd_analyzer", "hyper_opt", "hyper_opt_naswot", "hyper_opt_oat", "hyper_opt_optuna", "hyperparameter", "hyperparameter_acsd", "hyperparameter_naswot", "hyperparameter_oat", "hyperparameter_optuna", "multi_training_pruner", "naswot_pruner", "network", "objective_base", "objective_naswot", "predictor", "runner", "tester", "trainer", "targets", "atomic_force", "calculation_helpers", "cube_parser", "density", "dos", "ldos", "target", "xsf_parser", "version", "API reference", "Getting started with MALA", "Basic hyperparameter optimization", "Data generation and conversion", "Using ML-DFT models for predictions", "Training an ML-DFT model", "Citing MALA", "Welcome to MALA!", "Installing LAMMPS", "Installing MALA", "Installing Quantum ESPRESSO (total energy module)", "Installation"], "titleterms": {"ASE": 72, "acsd_analyz": 39, "ad": [0, 73, 77], "advanc": [1, 3, 6], "algorithm": 3, "an": 73, "api": 68, "ase_calcul": 37, "atomic_dens": 31, "atomic_forc": 59, "basic": 70, "behind": 75, "bispectrum": 32, "branch": 0, "build": [73, 76, 77, 78], "calcul": 72, "calculation_help": 60, "check_modul": 9, "checkpoint": [3, 6], "cite": 74, "code": 0, "common": 8, "content": 75, "contribut": 0, "contributor": 0, "convers": [2, 71], "creat": 0, "cube_pars": 61, "data": [2, 4, 71, 73, 77], "data_convert": 18, "data_handl": 19, "data_handler_bas": 20, "data_repo": 21, "data_scal": 22, "data_shuffl": 23, "datagener": 14, "datahandl": 17, "densiti": 62, "depend": 0, "descriptor": [2, 30, 33], "develop": 0, "dft": [72, 73], "do": 63, "document": 77, "doe": 75, "download": 77, "dure": 6, "energi": 78, "espresso": 78, "exampl": 77, "extens": [76, 78], "fast_tensor_dataset": 24, "format": 0, "gener": 71, "get": 69, "gpu": [5, 6], "how": 75, "hyper_opt": 40, "hyper_opt_naswot": 41, "hyper_opt_oat": 42, "hyper_opt_optuna": 43, "hyperparamet": [3, 44, 70], "hyperparameter_acsd": 45, "hyperparameter_naswot": 46, "hyperparameter_oat": 47, "hyperparameter_optuna": 48, "i": 75, "improv": [2, 3, 6], "instal": [76, 77, 78, 79], "interfac": 36, "issu": 0, "json_serializ": 10, "lammp": 76, "lammps_util": 34, "lazi": 6, "lazy_load_dataset": 25, "lazy_load_dataset_singl": 26, "ldo": 64, "ldos_align": 27, "librari": 77, "licens": 0, "list": 70, "load": 6, "local": 77, "log": 6, "mala": [0, 5, 7, 69, 72, 74, 75, 77], "metric": 6, "minterpy_descriptor": 35, "ml": [72, 73], "model": [72, 73], "modul": 78, "multi_lazy_load_data_load": 28, "multi_training_prun": 49, "naswot_prun": 50, "network": [38, 51], "objective_bas": 52, "objective_naswot": 53, "observ": 5, "ofdft_initi": 15, "openpmd": 4, "optim": [3, 70], "option": [1, 77], "parallel": [2, 3, 5, 6, 11], "paramet": [12, 73], "perform": 6, "physical_data": 13, "predict": [5, 72], "predictor": 54, "prerequisit": [76, 77, 78], "product": 5, "public": 75, "pull": 0, "python": [76, 77, 78], "quantum": 78, "recommend": 77, "refer": 68, "releas": 0, "request": 0, "run": 6, "runner": 55, "search": 3, "set": 73, "snapshot": 29, "start": [69, 75], "store": 4, "strategi": 0, "target": [58, 65], "test": 73, "tester": 56, "total": 78, "train": [6, 73], "trainer": 57, "trajectory_analyz": 16, "tune": 2, "us": [5, 6, 72], "version": [0, 67], "visual": 5, "welcom": 75, "what": 75, "where": 75, "who": 75, "work": 75, "xsf_parser": 66}}) \ No newline at end of file