From 065f0b59e35d10f8345c9520b96bedd76906548c Mon Sep 17 00:00:00 2001 From: RandomDefaultUser Date: Mon, 25 Nov 2024 09:28:02 +0000 Subject: [PATCH] deploy: 6cb1d3f306033c8aedb7d31d0ab383fcd4dad00e --- _modules/mala/common/parameters.html | 48 +++-- _modules/mala/datahandling/data_handler.html | 23 +-- _modules/mala/datahandling/data_scaler.html | 197 +++++++++++++------ _sources/basic_usage/trainingmodel.rst.txt | 15 +- api/mala.common.parameters.html | 48 +++-- api/mala.datahandling.data_handler.html | 4 +- api/mala.datahandling.data_scaler.html | 86 ++++---- api/mala.datahandling.html | 5 +- api/mala.html | 5 +- api/modules.html | 5 +- basic_usage/trainingmodel.html | 15 +- genindex.html | 10 +- objects.inv | Bin 6356 -> 6340 bytes searchindex.js | 2 +- 14 files changed, 288 insertions(+), 175 deletions(-) diff --git a/_modules/mala/common/parameters.html b/_modules/mala/common/parameters.html index c43d01ffa..292a198ea 100644 --- a/_modules/mala/common/parameters.html +++ b/_modules/mala/common/parameters.html @@ -674,27 +674,45 @@

Source code for mala.common.parameters

         Specifies how input quantities are normalized.
         Options:
 
-            - "None": No normalization is applied.
-            - "standard": Standardization (Scale to mean 0, standard
-              deviation 1)
-            - "normal": Min-Max scaling (Scale to be in range 0...1)
-            - "feature-wise-standard": Row Standardization (Scale to mean 0,
-              standard deviation 1)
-            - "feature-wise-normal": Row Min-Max scaling (Scale to be in range
-              0...1)
+            - "None": No scaling is applied.
+            - "standard": Standardization (Scale to mean 0,
+              standard deviation 1) is applied to the entire array.
+            - "minmax": Min-Max scaling (Scale to be in range 0...1) is applied
+              to the entire array.
+            - "feature-wise-standard": Standardization (Scale to mean 0,
+              standard deviation 1) is applied to each feature dimension
+              individually.
+              I.e., if your training data has dimensions (d,f), then each
+              of the f columns with d entries is scaled indiviually.
+            - "feature-wise-minmax": Min-Max scaling (Scale to be in range
+              0...1) is applied to each feature dimension individually.
+              I.e., if your training data has dimensions (d,f), then each
+              of the f columns with d entries is scaled indiviually.
+            - "normal": (DEPRECATED) Old name for "minmax".
+            - "feature-wise-normal": (DEPRECATED) Old name for
+              "feature-wise-minmax"
 
     output_rescaling_type : string
         Specifies how output quantities are normalized.
         Options:
 
-            - "None": No normalization is applied.
+            - "None": No scaling is applied.
             - "standard": Standardization (Scale to mean 0,
-              standard deviation 1)
-            - "normal": Min-Max scaling (Scale to be in range 0...1)
-            - "feature-wise-standard": Row Standardization (Scale to mean 0,
-              standard deviation 1)
-            - "feature-wise-normal": Row Min-Max scaling (Scale to be in
-              range 0...1)
+              standard deviation 1) is applied to the entire array.
+            - "minmax": Min-Max scaling (Scale to be in range 0...1) is applied
+              to the entire array.
+            - "feature-wise-standard": Standardization (Scale to mean 0,
+              standard deviation 1) is applied to each feature dimension
+              individually.
+              I.e., if your training data has dimensions (d,f), then each
+              of the f columns with d entries is scaled indiviually.
+            - "feature-wise-minmax": Min-Max scaling (Scale to be in range
+              0...1) is applied to each feature dimension individually.
+              I.e., if your training data has dimensions (d,f), then each
+              of the f columns with d entries is scaled indiviually.
+            - "normal": (DEPRECATED) Old name for "minmax".
+            - "feature-wise-normal": (DEPRECATED) Old name for
+              "feature-wise-minmax"
 
     use_lazy_loading : bool
         If True, data is lazily loaded, i.e. only the snapshots that are
diff --git a/_modules/mala/datahandling/data_handler.html b/_modules/mala/datahandling/data_handler.html
index 12a262dcf..535540b02 100644
--- a/_modules/mala/datahandling/data_handler.html
+++ b/_modules/mala/datahandling/data_handler.html
@@ -217,6 +217,8 @@ 

Source code for mala.datahandling.data_handler

self.nr_training_snapshots = 0 self.nr_test_snapshots = 0 self.nr_validation_snapshots = 0 + self.input_data_scaler.reset() + self.output_data_scaler.reset() super(DataHandler, self).clear_data()

@@ -408,7 +410,10 @@

Source code for mala.datahandling.data_handler

[docs] def raw_numpy_to_converted_scaled_tensor( - self, numpy_array, data_type, units, convert3Dto1D=False + self, + numpy_array, + data_type, + units, ): """ Transform a raw numpy array into a scaled torch tensor. @@ -425,9 +430,6 @@

Source code for mala.datahandling.data_handler

processed. units : string Units of the data that is processed. - convert3Dto1D : bool - If True (default: False), then a (x,y,z,dim) array is transformed - into a (x*y*z,dim) array. Returns ------- @@ -446,12 +448,12 @@

Source code for mala.datahandling.data_handler

) # If desired, the dimensions can be changed. - if convert3Dto1D: + if len(np.shape(numpy_array)) == 4: if data_type == "in": data_dimension = self.input_dimension else: data_dimension = self.output_dimension - grid_size = np.prod(numpy_array[0:3]) + grid_size = np.prod(np.shape(numpy_array)[0:3]) desired_dimensions = [grid_size, data_dimension] else: desired_dimensions = None @@ -924,7 +926,6 @@

Source code for mala.datahandling.data_handler

# scaling. This should save some performance. if self.parameters.use_lazy_loading: - self.input_data_scaler.start_incremental_fitting() # We need to perform the data scaling over the entirety of the # training data. for snapshot in self.parameters.snapshot_directories_list: @@ -962,9 +963,7 @@

Source code for mala.datahandling.data_handler

[snapshot.grid_size, self.input_dimension] ) tmp = torch.from_numpy(tmp).float() - self.input_data_scaler.incremental_fit(tmp) - - self.input_data_scaler.finish_incremental_fitting() + self.input_data_scaler.partial_fit(tmp) else: self.__load_data("training", "inputs") @@ -985,7 +984,6 @@

Source code for mala.datahandling.data_handler

if self.parameters.use_lazy_loading: i = 0 - self.output_data_scaler.start_incremental_fitting() # We need to perform the data scaling over the entirety of the # training data. for snapshot in self.parameters.snapshot_directories_list: @@ -1021,9 +1019,8 @@

Source code for mala.datahandling.data_handler

[snapshot.grid_size, self.output_dimension] ) tmp = torch.from_numpy(tmp).float() - self.output_data_scaler.incremental_fit(tmp) + self.output_data_scaler.partial_fit(tmp) i += 1 - self.output_data_scaler.finish_incremental_fitting() else: self.__load_data("training", "outputs") diff --git a/_modules/mala/datahandling/data_scaler.html b/_modules/mala/datahandling/data_scaler.html index 279920bd1..cecf405a5 100644 --- a/_modules/mala/datahandling/data_scaler.html +++ b/_modules/mala/datahandling/data_scaler.html @@ -89,15 +89,21 @@

Source code for mala.datahandling.data_scaler

import torch.distributed as dist from mala.common.parameters import printout +from mala.common.parallelizer import parallel_warn +# IMPORTANT: If you change the docstrings, make sure to also change them +# in the ParametersData subclass, because users do usually not interact +# with this class directly.
[docs] class DataScaler: """Scales input and output data. Sort of emulates the functionality of the scikit-learn library, but by - implementing the class by ourselves we have more freedom. + implementing the class by ourselves we have more freedom. Specifically + assumes data of the form (d,f), where d=x*y*z, i.e., the product of spatial + dimensions, and f is the feature dimension. Parameters ---------- @@ -105,14 +111,23 @@

Source code for mala.datahandling.data_scaler

Specifies how scaling should be performed. Options: - - "None": No normalization is applied. + - "None": No scaling is applied. - "standard": Standardization (Scale to mean 0, - standard deviation 1) - - "normal": Min-Max scaling (Scale to be in range 0...1) - - "feature-wise-standard": Row Standardization (Scale to mean 0, - standard deviation 1) - - "feature-wise-normal": Row Min-Max scaling (Scale to be in range - 0...1) + standard deviation 1) is applied to the entire array. + - "minmax": Min-Max scaling (Scale to be in range 0...1) is applied + to the entire array. + - "feature-wise-standard": Standardization (Scale to mean 0, + standard deviation 1) is applied to each feature dimension + individually. + I.e., if your training data has dimensions (d,f), then each + of the f columns with d entries is scaled indiviually. + - "feature-wise-minmax": Min-Max scaling (Scale to be in range + 0...1) is applied to each feature dimension individually. + I.e., if your training data has dimensions (d,f), then each + of the f columns with d entries is scaled indiviually. + - "normal": (DEPRECATED) Old name for "minmax". + - "feature-wise-normal": (DEPRECATED) Old name for + "feature-wise-minmax" use_ddp : bool If True, the DataScaler will use ddp to check that data is @@ -123,7 +138,7 @@

Source code for mala.datahandling.data_scaler

self.use_ddp = use_ddp self.typestring = typestring self.scale_standard = False - self.scale_normal = False + self.scale_minmax = False self.feature_wise = False self.cantransform = False self.__parse_typestring() @@ -142,25 +157,34 @@

Source code for mala.datahandling.data_scaler

def __parse_typestring(self): """Parse the typestring to class attributes.""" self.scale_standard = False - self.scale_normal = False + self.scale_minmax = False self.feature_wise = False if "standard" in self.typestring: self.scale_standard = True if "normal" in self.typestring: - self.scale_normal = True + parallel_warn( + "Options 'normal' and 'feature-wise-normal' will be " + "deprecated, starting in MALA v1.4.0. Please use 'minmax' and " + "'feature-wise-minmax' instead.", + min_verbosity=0, + category=FutureWarning, + ) + self.scale_minmax = True + if "minmax" in self.typestring: + self.scale_minmax = True if "feature-wise" in self.typestring: self.feature_wise = True - if self.scale_standard is False and self.scale_normal is False: + if self.scale_standard is False and self.scale_minmax is False: printout("No data rescaling will be performed.", min_verbosity=1) self.cantransform = True return - if self.scale_standard is True and self.scale_normal is True: + if self.scale_standard is True and self.scale_minmax is True: raise Exception("Invalid input data rescaling.") -
-[docs] - def start_incremental_fitting(self): +
+[docs] + def reset(self): """ Start the incremental calculation of scaling parameters. @@ -169,9 +193,9 @@

Source code for mala.datahandling.data_scaler

self.total_data_count = 0
-
-[docs] - def incremental_fit(self, unscaled): +
+[docs] + def partial_fit(self, unscaled): """ Add data to the incremental calculation of scaling parameters. @@ -183,7 +207,16 @@

Source code for mala.datahandling.data_scaler

Data that is to be added to the fit. """ - if self.scale_standard is False and self.scale_normal is False: + if len(unscaled.size()) != 2: + raise ValueError( + "MALA DataScaler are designed for 2D-arrays, " + "while a {0}D-array has been provided.".format( + len(unscaled.size()) + ) + ) + + if self.scale_standard is False and self.scale_minmax is False: + self.cantransform = True return else: with torch.no_grad(): @@ -232,7 +265,7 @@

Source code for mala.datahandling.data_scaler

self.stds = new_std self.total_data_count += current_data_count - if self.scale_normal: + if self.scale_minmax: new_maxs = torch.max(unscaled, 0, keepdim=True) if list(self.maxs.size())[0] > 0: for i in range(list(new_maxs.values.size())[1]): @@ -295,24 +328,14 @@

Source code for mala.datahandling.data_scaler

self.total_std = torch.sqrt(self.total_std) self.total_data_count += current_data_count - if self.scale_normal: + if self.scale_minmax: new_max = torch.max(unscaled) if new_max > self.total_max: self.total_max = new_max new_min = torch.min(unscaled) if new_min < self.total_min: - self.total_min = new_min
- - -
-[docs] - def finish_incremental_fitting(self): - """ - Indicate that all data has been added to the incremental calculation. - - This is necessary for lazy loading. - """ + self.total_min = new_min self.cantransform = True
@@ -328,7 +351,15 @@

Source code for mala.datahandling.data_scaler

Data that on which the scaling will be calculated. """ - if self.scale_standard is False and self.scale_normal is False: + if len(unscaled.size()) != 2: + raise ValueError( + "MALA DataScaler are designed for 2D-arrays, " + "while a {0}D-array has been provided.".format( + len(unscaled.size()) + ) + ) + + if self.scale_standard is False and self.scale_minmax is False: return else: with torch.no_grad(): @@ -342,7 +373,7 @@

Source code for mala.datahandling.data_scaler

self.means = torch.mean(unscaled, 0, keepdim=True) self.stds = torch.std(unscaled, 0, keepdim=True) - if self.scale_normal: + if self.scale_minmax: self.maxs = torch.max(unscaled, 0, keepdim=True).values self.mins = torch.min(unscaled, 0, keepdim=True).values @@ -356,7 +387,7 @@

Source code for mala.datahandling.data_scaler

self.total_mean = torch.mean(unscaled) self.total_std = torch.std(unscaled) - if self.scale_normal: + if self.scale_minmax: self.total_max = torch.max(unscaled) self.total_min = torch.min(unscaled) @@ -365,7 +396,7 @@

Source code for mala.datahandling.data_scaler

[docs] - def transform(self, unscaled): + def transform(self, unscaled, copy=False): """ Transform data from unscaled to scaled. @@ -377,13 +408,29 @@

Source code for mala.datahandling.data_scaler

unscaled : torch.Tensor Real world data. + copy : bool + If False, data is modified in-place. If True, a copy of the + data is modified. Default is False. + Returns ------- scaled : torch.Tensor Scaled data. """ + if len(unscaled.size()) != 2: + raise ValueError( + "MALA DataScaler are designed for 2D-arrays, " + "while a {0}D-array has been provided.".format( + len(unscaled.size()) + ) + ) + + # Backward compatability. + if not hasattr(self, "scale_minmax") and hasattr(self, "scale_normal"): + self.scale_minmax = self.scale_normal + # First we need to find out if we even have to do anything. - if self.scale_standard is False and self.scale_normal is False: + if self.scale_standard is False and self.scale_minmax is False: pass elif self.cantransform is False: @@ -394,6 +441,8 @@

Source code for mala.datahandling.data_scaler

# Perform the actual scaling, but use no_grad to make sure # that the next couple of iterations stay untracked. + scaled = unscaled.clone() if copy else unscaled + with torch.no_grad(): if self.feature_wise: @@ -402,12 +451,12 @@

Source code for mala.datahandling.data_scaler

########################## if self.scale_standard: - unscaled -= self.means - unscaled /= self.stds + scaled -= self.means + scaled /= self.stds - if self.scale_normal: - unscaled -= self.mins - unscaled /= self.maxs - self.mins + if self.scale_minmax: + scaled -= self.mins + scaled /= self.maxs - self.mins else: @@ -416,17 +465,19 @@

Source code for mala.datahandling.data_scaler

########################## if self.scale_standard: - unscaled -= self.total_mean - unscaled /= self.total_std + scaled -= self.total_mean + scaled /= self.total_std - if self.scale_normal: - unscaled -= self.total_min - unscaled /= self.total_max - self.total_min
+ if self.scale_minmax: + scaled -= self.total_min + scaled /= self.total_max - self.total_min + + return scaled
[docs] - def inverse_transform(self, scaled, as_numpy=False): + def inverse_transform(self, scaled, copy=False, as_numpy=False): """ Transform data from scaled to unscaled. @@ -439,7 +490,11 @@

Source code for mala.datahandling.data_scaler

Scaled data. as_numpy : bool - If True, a numpy array is returned, otherwsie. + If True, a numpy array is returned, otherwise a torch tensor. + + copy : bool + If False, data is modified in-place. If True, a copy of the + data is modified. Default is False. Returns ------- @@ -447,9 +502,25 @@

Source code for mala.datahandling.data_scaler

Real world data. """ + if len(scaled.size()) != 2: + raise ValueError( + "MALA DataScaler are designed for 2D-arrays, " + "while a {0}D-array has been provided.".format( + len(scaled.size()) + ) + ) + + # Backward compatability. + if not hasattr(self, "scale_minmax") and hasattr(self, "scale_normal"): + self.scale_minmax = self.scale_normal + + # Perform the actual scaling, but use no_grad to make sure + # that the next couple of iterations stay untracked. + unscaled = scaled.clone() if copy else scaled + # First we need to find out if we even have to do anything. - if self.scale_standard is False and self.scale_normal is False: - unscaled = scaled + if self.scale_standard is False and self.scale_minmax is False: + pass else: if self.cantransform is False: @@ -468,12 +539,12 @@

Source code for mala.datahandling.data_scaler

########################## if self.scale_standard: - unscaled = (scaled * self.stds) + self.means + unscaled *= self.stds + unscaled += self.means - if self.scale_normal: - unscaled = ( - scaled * (self.maxs - self.mins) - ) + self.mins + if self.scale_minmax: + unscaled *= self.maxs - self.mins + unscaled += self.mins else: @@ -482,13 +553,13 @@

Source code for mala.datahandling.data_scaler

########################## if self.scale_standard: - unscaled = (scaled * self.total_std) + self.total_mean + unscaled *= self.total_std + unscaled += self.total_mean + + if self.scale_minmax: + unscaled *= self.total_max - self.total_min + unscaled += self.total_min - if self.scale_normal: - unscaled = ( - scaled * (self.total_max - self.total_min) - ) + self.total_min - # if as_numpy: return unscaled.detach().numpy().astype(np.float64) else: diff --git a/_sources/basic_usage/trainingmodel.rst.txt b/_sources/basic_usage/trainingmodel.rst.txt index e6bc8c967..53cb8a8df 100644 --- a/_sources/basic_usage/trainingmodel.rst.txt +++ b/_sources/basic_usage/trainingmodel.rst.txt @@ -28,7 +28,7 @@ options to train a simple network with example data, namely parameters = mala.Parameters() parameters.data.input_rescaling_type = "feature-wise-standard" - parameters.data.output_rescaling_type = "normal" + parameters.data.output_rescaling_type = "minmax" parameters.network.layer_activations = ["ReLU"] @@ -43,15 +43,18 @@ sub-objects dealing with the individual aspects of the workflow. In the first two lines, which data scaling MALA should employ. Scaling data greatly improves the performance of NN based ML models. Options are -* ``None``: No normalization is applied. +* ``None``: No scaling is applied. -* ``standard``: Standardization (Scale to mean 0, standard deviation 1) +* ``standard``: Standardization (Scale to mean 0, standard deviation 1) is + applied to the entire array. -* ``normal``: Min-Max scaling (Scale to be in range 0...1) +* ``minmax``: Min-Max scaling (Scale to be in range 0...1) is applied to the entire array. -* ``feature-wise-standard``: Row Standardization (Scale to mean 0, standard deviation 1) +* ``feature-wise-standard``: Standardization (Scale to mean 0, standard + deviation 1) is applied to each feature dimension individually. -* ``feature-wise-normal``: Row Min-Max scaling (Scale to be in range 0...1) +* ``feature-wise-minmax``: Min-Max scaling (Scale to be in range 0...1) is + applied to each feature dimension individually. Here, we specify that MALA should standardize the input (=descriptors) by feature (i.e., each entry of the vector separately on the grid) and diff --git a/api/mala.common.parameters.html b/api/mala.common.parameters.html index 7e0ca4ecd..ef62caae2 100644 --- a/api/mala.common.parameters.html +++ b/api/mala.common.parameters.html @@ -505,14 +505,23 @@ Options:

    -
  • “None”: No normalization is applied.

  • -
  • “standard”: Standardization (Scale to mean 0, standard -deviation 1)

  • -
  • “normal”: Min-Max scaling (Scale to be in range 0…1)

  • -
  • “feature-wise-standard”: Row Standardization (Scale to mean 0, -standard deviation 1)

  • -
  • “feature-wise-normal”: Row Min-Max scaling (Scale to be in range -0…1)

  • +
  • “None”: No scaling is applied.

  • +
  • “standard”: Standardization (Scale to mean 0, +standard deviation 1) is applied to the entire array.

  • +
  • “minmax”: Min-Max scaling (Scale to be in range 0…1) is applied +to the entire array.

  • +
  • “feature-wise-standard”: Standardization (Scale to mean 0, +standard deviation 1) is applied to each feature dimension +individually. +I.e., if your training data has dimensions (d,f), then each +of the f columns with d entries is scaled indiviually.

  • +
  • “feature-wise-minmax”: Min-Max scaling (Scale to be in range +0…1) is applied to each feature dimension individually. +I.e., if your training data has dimensions (d,f), then each +of the f columns with d entries is scaled indiviually.

  • +
  • “normal”: (DEPRECATED) Old name for “minmax”.

  • +
  • “feature-wise-normal”: (DEPRECATED) Old name for +“feature-wise-minmax”

@@ -529,14 +538,23 @@ Options:

    -
  • “None”: No normalization is applied.

  • +
  • “None”: No scaling is applied.

  • “standard”: Standardization (Scale to mean 0, -standard deviation 1)

  • -
  • “normal”: Min-Max scaling (Scale to be in range 0…1)

  • -
  • “feature-wise-standard”: Row Standardization (Scale to mean 0, -standard deviation 1)

  • -
  • “feature-wise-normal”: Row Min-Max scaling (Scale to be in -range 0…1)

  • +standard deviation 1) is applied to the entire array.

    +
  • “minmax”: Min-Max scaling (Scale to be in range 0…1) is applied +to the entire array.

  • +
  • “feature-wise-standard”: Standardization (Scale to mean 0, +standard deviation 1) is applied to each feature dimension +individually. +I.e., if your training data has dimensions (d,f), then each +of the f columns with d entries is scaled indiviually.

  • +
  • “feature-wise-minmax”: Min-Max scaling (Scale to be in range +0…1) is applied to each feature dimension individually. +I.e., if your training data has dimensions (d,f), then each +of the f columns with d entries is scaled indiviually.

  • +
  • “normal”: (DEPRECATED) Old name for “minmax”.

  • +
  • “feature-wise-normal”: (DEPRECATED) Old name for +“feature-wise-minmax”

diff --git a/api/mala.datahandling.data_handler.html b/api/mala.datahandling.data_handler.html index b4ad1ba50..53e74cd26 100644 --- a/api/mala.datahandling.data_handler.html +++ b/api/mala.datahandling.data_handler.html @@ -225,7 +225,7 @@
-raw_numpy_to_converted_scaled_tensor(numpy_array, data_type, units, convert3Dto1D=False)[source]
+raw_numpy_to_converted_scaled_tensor(numpy_array, data_type, units)[source]

Transform a raw numpy array into a scaled torch tensor.

This tensor will also be in the right units, i.e. a tensor that can simply be put into a MALA network.

@@ -236,8 +236,6 @@
  • data_type (string) – Either “in” or “out”, depending if input or output data is processed.

  • units (string) – Units of the data that is processed.

  • -
  • convert3Dto1D (bool) – If True (default: False), then a (x,y,z,dim) array is transformed -into a (x*y*z,dim) array.

  • Returns:
    diff --git a/api/mala.datahandling.data_scaler.html b/api/mala.datahandling.data_scaler.html index aaa18a513..a0d4ca47f 100644 --- a/api/mala.datahandling.data_scaler.html +++ b/api/mala.datahandling.data_scaler.html @@ -122,21 +122,32 @@

    Bases: object

    Scales input and output data.

    Sort of emulates the functionality of the scikit-learn library, but by -implementing the class by ourselves we have more freedom.

    +implementing the class by ourselves we have more freedom. Specifically +assumes data of the form (d,f), where d=x*y*z, i.e., the product of spatial +dimensions, and f is the feature dimension.

    Parameters:
    • typestring (string) –

      Specifies how scaling should be performed. Options:

        -
      • ”None”: No normalization is applied.

      • +
      • ”None”: No scaling is applied.

      • ”standard”: Standardization (Scale to mean 0, -standard deviation 1)

      • -
      • ”normal”: Min-Max scaling (Scale to be in range 0…1)

      • -
      • ”feature-wise-standard”: Row Standardization (Scale to mean 0, -standard deviation 1)

      • -
      • ”feature-wise-normal”: Row Min-Max scaling (Scale to be in range -0…1)

      • +standard deviation 1) is applied to the entire array.

        +
      • ”minmax”: Min-Max scaling (Scale to be in range 0…1) is applied +to the entire array.

      • +
      • ”feature-wise-standard”: Standardization (Scale to mean 0, +standard deviation 1) is applied to each feature dimension +individually. +I.e., if your training data has dimensions (d,f), then each +of the f columns with d entries is scaled indiviually.

      • +
      • ”feature-wise-minmax”: Min-Max scaling (Scale to be in range +0…1) is applied to each feature dimension individually. +I.e., if your training data has dimensions (d,f), then each +of the f columns with d entries is scaled indiviually.

      • +
      • ”normal”: (DEPRECATED) Old name for “minmax”.

      • +
      • ”feature-wise-normal”: (DEPRECATED) Old name for +“feature-wise-minmax”

    • use_ddp (bool) – If True, the DataScaler will use ddp to check that data is @@ -144,13 +155,6 @@

    -
    -
    -finish_incremental_fitting()[source]
    -

    Indicate that all data has been added to the incremental calculation.

    -

    This is necessary for lazy loading.

    -
    -
    fit(unscaled)[source]
    @@ -162,21 +166,9 @@
    -
    -
    -incremental_fit(unscaled)[source]
    -

    Add data to the incremental calculation of scaling parameters.

    -

    This is necessary for lazy loading.

    -
    -
    Parameters:
    -

    unscaled (torch.Tensor) – Data that is to be added to the fit.

    -
    -
    -
    -
    -inverse_transform(scaled, as_numpy=False)[source]
    +inverse_transform(scaled, copy=False, as_numpy=False)[source]

    Transform data from scaled to unscaled.

    Unscaled means real world data, scaled means data as is used in the network.

    @@ -184,7 +176,9 @@
    Parameters:
    • scaled (torch.Tensor) – Scaled data.

    • -
    • as_numpy (bool) – If True, a numpy array is returned, otherwsie.

    • +
    • as_numpy (bool) – If True, a numpy array is returned, otherwise a torch tensor.

    • +
    • copy (bool) – If False, data is modified in-place. If True, a copy of the +data is modified. Default is False.

    Returns:
    @@ -216,6 +210,25 @@
    +
    +
    +partial_fit(unscaled)[source]
    +

    Add data to the incremental calculation of scaling parameters.

    +

    This is necessary for lazy loading.

    +
    +
    Parameters:
    +

    unscaled (torch.Tensor) – Data that is to be added to the fit.

    +
    +
    +
    + +
    +
    +reset()[source]
    +

    Start the incremental calculation of scaling parameters.

    +

    This is necessary for lazy loading.

    +
    +
    save(filename, save_format='pickle')[source]
    @@ -230,22 +243,19 @@
    -
    -
    -start_incremental_fitting()[source]
    -

    Start the incremental calculation of scaling parameters.

    -

    This is necessary for lazy loading.

    -
    -
    -transform(unscaled)[source]
    +transform(unscaled, copy=False)[source]

    Transform data from unscaled to scaled.

    Unscaled means real world data, scaled means data as is used in the network. Data is transformed in-place.

    Parameters:
    -

    unscaled (torch.Tensor) – Real world data.

    +
      +
    • unscaled (torch.Tensor) – Real world data.

    • +
    • copy (bool) – If False, data is modified in-place. If True, a copy of the +data is modified. Default is False.

    • +
    Returns:

    scaled – Scaled data.

    diff --git a/api/mala.datahandling.html b/api/mala.datahandling.html index 74cd4618f..79c96c2d3 100644 --- a/api/mala.datahandling.html +++ b/api/mala.datahandling.html @@ -154,13 +154,12 @@

    datahandlingdata_repo
  • data_scaler
    • DataScaler
    • diff --git a/api/mala.html b/api/mala.html index 9a063b04e..83a0e7dc4 100644 --- a/api/mala.html +++ b/api/mala.html @@ -348,13 +348,12 @@

      mala<
    • data_repo
    • data_scaler
      • DataScaler
      • diff --git a/api/modules.html b/api/modules.html index a37fb419a..b9120e8bf 100644 --- a/api/modules.html +++ b/api/modules.html @@ -335,13 +335,12 @@

        API referencedata_repo
      • data_scaler

        Here, we specify that MALA should standardize the input (=descriptors) by feature (i.e., each entry of the vector separately on the grid) and diff --git a/genindex.html b/genindex.html index 1e71a7fca..2188f0615 100644 --- a/genindex.html +++ b/genindex.html @@ -410,8 +410,6 @@

        F

      • fermi_function() (in module mala.targets.calculation_helpers)
      • finalize() (in module mala.common.parallelizer) -
      • -
      • finish_incremental_fitting() (DataScaler method)
      • first_snapshot (TrajectoryAnalyzer property)
      • @@ -682,8 +680,6 @@

        I

        • implemented_properties (MALA attribute) -
        • -
        • incremental_fit() (DataScaler method)
        • inference_data_grid (ParametersRunning attribute)
        • @@ -1492,6 +1488,8 @@

          P

        • parse_trial_oat() (ObjectiveBase method)
        • parse_trial_optuna() (ObjectiveBase method) +
        • +
        • partial_fit() (DataScaler method)
        • perform_study() (ACSDAnalyzer method) @@ -1608,6 +1606,8 @@

          R

        • readline() (CubeFile method)
        • requeue_zombie_trials() (HyperOptOptuna static method) +
        • +
        • reset() (DataScaler method)
        • resize_snapshots_for_debugging() (DataHandler method)
        • @@ -1734,8 +1734,6 @@

          S

        • snapshot_directories_list (ParametersData attribute)
        • ssf_parameters (ParametersTargets attribute) -
        • -
        • start_incremental_fitting() (DataScaler method)
        • static_structure_factor_from_atoms() (Target static method)
        • diff --git a/objects.inv b/objects.inv index dc991bf1e7a5e98ca18e2bd6a45affa75fbad0f0..f3b3d4b50e2238bd0106f81d8f2656c3a7ad8de6 100644 GIT binary patch delta 6167 zcmV+y80hEJF~l*DU<@`jEoU}kVliYhW;2m&Jby`d+_sk9^H;D>-lBWq%1ig|?G!6c z(#MX}mU6P>K^0L|j5(PgC6#}DVARJ@xze$lt1Xl@4lW*uqld4PfL|U8hsr3IoJ^b-BB0HsskeS3UaM_a_&Q*~` zOpfOb*ViKU%2yZ8*h*BPG{sZ~SK69U1+|qj5Imx)N(8b-ji%UI&~uWrOkuaE7hFdy z+&yYqoKPB7DF5Of+Yc&nUb^j%=oMADV}Ix>$?Kx2-J%kv4oy|zypCRQbu36y-`rEg zaT$>s)eUivouVu&NtEQ2AU|RE1X-E5Og!z&a7B#0kPtKWK~n5-0K7C7jB!DL{3F#5 z28`;uN{&s9oq@-wMxKx{IaNtn7otpj5WFNp-^!{eaYY-BE9mQu;tiF>efrY^#eWeW z)X#}DSeAy_tpvt#d@DhjoW6L;Lx%E(4r>JC*iS9wxPC3FFMhzOTIOXI(-A*ECzqx| zyyx`U2r z!xpBRH+X8OdBGkS#;(zSMg%*z*%;`-hrqj}9pxls+NSP*e zO-GHWrWTx+{)Uq!dD+leF|}|}>Yt6yI`^a_*XDfYJl?D>!IPts>M)(1CVv$^(Ro6G zNt7m}_D9KjsWT#VRMU~7s3M^>*fV2_zTF~bEBi8MW|^Y0!e?BcuHGnr#X0UxTIWr= zhd+q5t&)^cP6c+zkiuA^dXFMJ6zBL{)7eyVYD;t<#xFQN@5h!m*%4P!agORF!=%O~ z*^j)&S;<103hziN^SK9OU4Nm!c~^RiP>#|YNl0|WY4IA-nL~vxn9f9-ycSF4-y<=n zqN;Gpzeh9@RrcuA)W!Myy%I#H3`N3bv(al3@6*udl0h{j$xw~s2!CyoG&xpDlYOtm zD9t3QiXxLYmu%E_$B zTR)%jtv!tHn_s%$25b5cCGBvNZ+@)TWvYXi>-aM8G{jeLGb;^g9@Xq<0NI^aSebNi zOL9IH;y-9g_EoGy6@MQiLKU1@URR8&`iN1za~k|C6KM!}K}U3m#n~~%5q?2w<89;P zkAC~cX%m*XbXfD-Vq2aR-KdTtO7z0ZitNC~&R=-uDF}($9eaO+bW4}-!BIrlB&HT5 zKa=2@iyBk3+lYyO7Lg^c7k=12_uF|+8>+-TpmVME_+oPDqkqR~3HhnSvPkmU-=fr% zi%u2M=^Ej(@U*bkQpQcimzwu0P&z)QH#S_BB_rfn^s0+v#`;=eI$EZ&SJEUu;|jAG zHD7(cREb}{l;)DxVCAd3nq{Js>=U}}$XC*F6Uzf=J5dtaF4@Vj$}eYexiCsUlh62XdI{?O6wDpU;*Z zDs~e1;7cp=1#>kIdRH(cXpTiqJA(6b{m~G6R65?w{q4M=xx#xn~ z`zR|@U;6mmpYd^O-$~p9g={j+))r|8m9YifBKM>hEq`Si7le<`#rez*BIB2R=)Cn! zQ>GG~xUJ3Smx+qrMgwJ)FXS0(kw{0EYc@|W=>(-a>Le0chjly_ByZhuutZJIW3 zV&apKc7Fn^Q`}7~XDqf8+pf(UQH4?54-iD0PN%k5c>|oXchB4&%ie=~=dA9TKa%t% z>s5UyQIjX^ieCOgI~m_}ue5cuJ@$R7tz+A%)+T)PXMbL76)6k4433>mJNTi@eAhmb z5hr!%w4>%1S(h%UnqsZvIy`*1|M2|#kbKhF!+*Hflkyvx?co!C5@m8}Wm;p~5;Z=1 z0xkEMc%YJ>i}&1x-6=^hmHuK1woxC>Nk!_YJs7*x_3V@wrV!Hv8I{0ia=IhK>N&Fh zP|bHuTa&kmqHU*5DEY3*G8ET$)U96ZJ12zJ8aiEZB$JR}mo;`pd7Mh?eZE&~C6@cI zPJecTFmbsgnG1Z#!^8^hnLe6zixmd>8%fZ`a?-?(O#;gELgnp!!q&mo6>{ z?UjTY6K3SGD@m6M#fdx=?3+4E-grq941aH(TlmTfm#D(K)o#njR_a+1x8sIq+6ukO z*(aT-wXK{(yc}YDZ1|?6rxZj-dHd6%N8)iTyCo4v$?oE< zQwZ%!zEwl3JNDImr2}r!TN#&-d?rC&;`E&c+KCiUg=Vr)Mdtkhc<>g|cG$eco_{(T zK+8~BY~blM8?67UITF5rh}i+EoG^z3-WehOWE|4b!HRF@?NOL?aKQdqmYsq)B=M#X ze5>E0iAs5JBW>k*UKBD&LmhD0lB^oHHd4w^`}rV*cYFiA)op#P&BOxK-CV2>H0+rN z-S_PJYFs4Wz}glvplB`WyKC?k#eX}A11Q{SoR2i*BMkr->;mmdzClxA2ECepeGxlO z2%9M8_!VmJIcB$`PcaNShxtei;q7U>OS@oh_r^vktI-DT7@THi(;mBUk)7Rx3u zNQ#Rz98k*qIj|GES31RxqYP(j)WUtjV*GEMv=rBPbpv*vpskG>k|K664u7S|B?lQ& zsyL+KsNx^*AD-@dCPNdM5ZN)#-@b#a3$y4O_N)#7V4JLBU{H1Wv z0`K^2Y zY#_5{IULdHOS?JAPNpr5e9no#3#suis(VVv$yE2OYLVv4WV+J_%8tvM^ z)^68hu|m%p^R9$naa1fG5pcvP3sbmGq_))m#JlkMuRM+8CsUi+z>4#8Q8CAB$CKCG zT~K|+Y_EN2n)#yR{^HwLL+Y&LyH%bk0oMoIQ2{RySQE-3Yw9Eg7|*J-x%VANE>)r?~> z5W2U9=2gx$i}5(QBf^AT=x2{Zajya@mC5>}j)KvDhLy8bMtTqRgI1Sj=a9JT*bCc z|JE|DSAx}y6~(?Vms1g9ep!6-K@M`eVd`IFp?0>{GJjmvS*#&q8kkWVy&KPcl9AnY zk$Ll`${34Uqw_zinC-L6&N%rSpWsfAON0ACA>C!Eqk{B?3X?5`xVgxk(Tk>Kr-)ma zS2pJ@lTh=0vPZPLyo*knLN80Lb_o-J~saGJ=#lZSB>t1PKzZx;%kOw2QzC}HOAK;9}# z-2m1<7I9~l8N-NWU^)oT1~tAE6>};DXrWH2ZH#bd#LV~b=~^Um8(?lwkxPWpmP{K%C|6p9-QgA=9Wk8%3|! z^HKP*>t@NgFY8nO;T{`K>p4$?qDH=`V;@emix;eOmdtLzHcVIB4FWxEDhBHDc$7?io0t5LXKpZx%o~sO@Z=D+n2V@k*J`9o%BUs%Ux`!#T7Sfbp(@*!wBc(H0_sL`_4*)@>ntK3`J={)#|qLo{JM)?lu#p zsmZ6%T4>nWH$5tw-y3y62pN<>3O)CT%W9wknvj64(GC;ZAnj23ZlUFK@>7QY_}j>NbGCk+XAPHgc=e1L7K7 z?dKfA%JmiI;DTQrU0zjL&(R+^$0>6)zPUtAa%z7iF*C&6 zgD(`kyUwwH6V!PR(?hp*f_r4z5x4|~cpO=c41aVmvJRhWU)I$4ZSfNMO4y=C>0%e- zF8R>++}5FYFPgemM2n|cfdqwNv55*8Y+x#I|L~-@eG9V8&thBKy8ysEmU?8=93z<1 zl);T;GnA-X)?JgD4hUpBq-=VZDv4cyi3LBkA#X>uvfKe^Y=zL3rmV2gVVH2M+y)QO zeG$OmzT${Gaek{^!7XkU!=d<-ixC`uSz1X#YIam<+#t8&gN$S&lC9Nk1YBcj8$s=? zYYRAc-9?Y-uFn`?I_Nm8%yI~tttoEAw6O+BF7eT11*ZB$Z~$9F5Qqu3 z1wnYO(+9Q)VQ8?`QX4F|feAvjurYyn_GTss*v8TX0>X_=7@);kGaL|XY}!J9x=bW| z3Jk}Dt@DELESGn|m|%kzj0jpMwnc+l$Y5Nsk!*ozYbS%DtxaVx@_K6-OaZZP;b6*w zo&!irGaQ5|9FhAO>Q-3!AY3a$-xAThXlV&(Tr>ya*%;+eKufzE1UuIF&49MHz6Mlj zGmGZF_^UVgrOa~&w`laMXnGivr4kZ1S2obxKM940N0zv3v#`3v>(!AD10 zuhUH9TPSPz*yx1fSY9NJ)FX<^Z&|J)VmUh1Zc%LpLpxZ@A<+hWzTNt$T|irZ^Fb@N zXZO%5xe<&r*&5B0R(tRQJZWEp4WGVi(b$2jaA+7KQ)MMs>n z_^m|L5Ol#mj@(O&M6@#RRFvO;GurxJ2GHEE4tHvoeB-L!^S7Q~wB)T2e;Qy!-2rsG zU5Ip6$mD_{qFPYHFQTyS+T^iBtK}sVq`v*K2=(LmHH|)ryk+-YW}q)@4aHow*wugp zl8sA4B_#yK6U`JWVxE!Lq`rm^^z-AV`!TM1k#ZSZkrMcSvL}^8{&+`!LYqTHwf!`g z?15%z2&Nij(ihq42AFM2 zGJ91uq8$x2m1xZ$Q>;Uu2n&Wu@PviwSejz`nW~wFK$R2NYRD|?OcPj?>LJDNDd6=+ z_zgC$w>nH!P{OJ~!QgR!TIoh3Sx|tXh(H^LEx{d%b9`ow(WrTVmP^+ZNl;FL7g=eG zU@i=b>efFQ0^psACYWbF1hcREF0ypb|8|AfhRg$r9WptK*Q95r<@$^nK!bz}>vBG5mWMZNU1N*5%<|nD4r6q(FbP=F`#lJS^vju|`S2<+R z0?QdO$MkeEMJFTd1EKR}BiBqM!8r3_fp_>YIEZx;MQ~1np^On5nNz%iSjJr7mtU8X z!OnfqUh9%WYE_k%bV^8I{q(w-(e!S6s1XSC51pII2T!7h?XO_&skeEsv7M>}1b`=_ zji56xOozj;!0>K=u#sZ)#BkXE4h#=t8lgvTXey->7$1@}f=^zZ4AqbT{9K=rXz`7| zaPCVm^F-M!#pvC?u>T#HUpX@&&b)~h4#R@6$BS7=)sxS{kfHVS91em4qsw}KD17g5Hynos25-G)ilHa^ z(eych_cN#&0}1pp`BHiSc67=#Bf&&pP8W7Qac3SiEMwVccD zio@AYf!?dHmTT(&Hyi{7OD+@jsGz=ZBIp+NHDZF{XC|Os&Q~F_ zqQa9E&RGG0e$PaeHB36MR5vHomaL^7Cz>Jl`hT+kdrxY?D=UHGF_A^js9lByv|*`cnMiA2a2c zF^AxjN-uBk+7BWbpTvf&sQz}ltZQXUTbJst*$?u^J05F!3$5So(n60L8qM6|wpssg zbSWD<*goz%7WYx<0%!_rkBGVtmdt+6a+X}qlRgNXl5jla16`~LF0&q>ED#prov?Zwws32?&q?^;S}XfqO9ofWQ>UP>RCx_OGmn>lBCo z3{jbUpRvHhm1gO8GWf$k!ViH6JQZ1155NZBKeVMQ3jH5%qhdU&QCO9 zX@C9!!Z8N_n-qCOaFw7m`G$@xsk%f@q_qj3O8@WE!|zWcvQvr(nMwQtmp#ehToqZw zZRh25fFFpYS) zd(^Zzp){&c{>44EA5`MJblV@%E2?tG(0^5u)1szsQ3+Rvx~gzaqZeEq3zE>Adx|(N zBSI0aiF@o6Wm!q0BxeNq3A-oA%EV>jSzm@LV(f*an6VFP#2yF0OJl(p7X&CiGX3Dd zh|(%K))YGfj}b+lkTE$`Nl6P?CO!yW5~*)xRg}154aXJq^~Ugq%Hlr#X@TNM41en9 zq%l~QhS{wI#&LWrL7AMsc*#SC@|q261moCGE##QK7S$I&;7l#^GK<-WpP!RUT_MqP z`Ow&w>B5HUIz?48jCkOob&lB3onKO%7cpj4L+jE*%~y4vGZsG;L(q#4ZRM~LBEH&N z3-7J9k!$hl0hXeQ*?XS4(VDO_p?^h|oT3=#+XhhjaQB;vs8tj=dMc-}_x0QXFGqX%lS>ZFLr>i&0UvQ3llh%2Y?%@w| zZL1_@lrw=HGNdq;i0)B@hvFQcDVt3tr?y1*Vf=#Q^L}i3ogHx%73YX18735$WIu9> zvyz9@72c7w$>$!7v_gN2u7C6vp&X?*l91?#)8aK^GlvRYFq?_iIh9N0?~#~OQB^n< z-y;@@DSLFPX>mTkSAy7-p-A{_HhN9seH!{)GMI)W8KO9j@Ygy?lVg?C*?T2MX(kaZ zQuc3t!VwEP`C5j&AFdU;9ZGua!)TsJl1qksXXtQDNXd%0sxw8`U4Ktw76{2}!YqJu ziY_~n(%0he483_T*nWlCqeVQ+$2+o|q9l*rZr{A~Hajd#oJ|98w_5C#lUtLwem><} zdpO-UzjVJ2*7P4r*5M}K{8+EcR0lcN@nzs?h_BveRvOYgqWow8*_~HfnQU-NaxoPW zKUhlkRjfl5A0xsPoPS$hSBxrp#E9;k20zP08bVRf5gTH0c1&@EUr<_m+xYms-@b9$ zgd1Eotod!REl-MWOh*wTdJ$zsc3|V@FFf-UghcI*y}v=arOWr=D57f;GYe9jN$||Y zj49S_#Kb>~%#zRxKWu;W+j&kKYJ+<~XR7x2a&qaT$7u=0sei<>NOJ0LQEJM?ri$ov zjc{3bTG(qTlHXC<$wq{A5_=m$SHBI3+Vg_Tq_9S>inA z8tS(^GxXLj34ia<-ZR#fMMp$g2il%J^~S|VRX)6W9#8p!9Bz7h)!mn_yTT`d(w-RGK~u&#((GHeC7v{@ykAR-uk8~Q;AN( z*7BRPlHfWn%7WsY^0fhPTdFN#6`v!|$9Fp_Ot@i8Bju2r>n^0_B4oF0$=vvxPIo-z z$!VUhH@)>_sQh&^UAoYn){Nnf&F)rS$) zdBU&g2F-ww-Ei!pDC0=fzf$@}SG$*x9s$AIi*k?IRg^Qin}D zsJO_wbV=0|YaQ3&;p6?s=ii3plg=K-y`EIu$bW1PpNNwvlS?bp8rznr@!1n-xzEG{ zmHb@1=Pv9{NrI{L7gMl}`fyGvLZkLz>{8dWQ)0M6OcP{O0-wq0jtr~k$ofMy@0zwc zZxhAZPMc8juE{bK*E{M~FZRv}VYP-%R~$7-NU+NqyP`Z!8|!_(S8FAf`>#$y80yk4 zp?|uLav_2>!-0?CKdF4Py`q-Rp67t#7|`FiW^KYD?bbE5a*B-^J*S#A(_(os*GCGP zxxQz1@e8iFjW|?oTXCMVUwbBi$_|L^7!D`CAJnfk0Q6-G+i(PIYKwR2@`BJ_NuZc; zBadH6x>P7mnnS_9sk7uwlr+Kc*13hRtbcHcD!g0mwtRf0o)>XDZg{4x&}%dMWD~Wv zHM1_5=@LyV8L*p&2?g6P=X{$X*NybsKyLjsqLc5Z0 z)zIpWeRW^yfLr!f#w8@5NoX!{`c4DuL<*=vb6Kb&i~ayScuQ$JY*AuQ9SxvmsDCUr z@Z7amLauBKJ5`vw)=cLO!`&N0f@4t#vA6!WuUIpMw+yfZ>v=QyNW_7>uj zgqh*=U3Ai0y@}HY7QIFz5AHWwd65@|4AOTDxNJ#Q4W%0?n^5~HDuj1@DZaTAZ>Y7I zSb(~li}jI(J&U0Go?Ty!i{u+v+kZj^6s;wFcQfCjcqefHg*%P&iG_S(0pNmNpk2u~ zXexY;q2^y-#Euif=dL+^g_@v_*)6B9j@c_r>#AKSAdSb3^ae6Qw$rmQ7%g6c=eYpp?6q;D?B>Y}Ow~8P3+Ih5LlX_}@5bDW-UJ1Alg(pskG> zk|KUq52eW^2N_bTIHcjI;-Bsxp6+@kLlc=0*)iCfP}}+V-$;CBqfmv>Nh)7*Uin^$ z5`wD1M6Q{?6b@RTURPRCfPZ3iqE8CEzS@WAKvoi5Gb?K4ZWys3Hz&GI5!?yhT29`p7#M)iy)`tia;{m7C)^zoCfvsWKfoXy9jKJECx40^v5F-xR<}6ynmIvJ z)wx#^@yg3c%~x|N&l^qKO7n5PWwamBiNuEcS+k-RsE50sp6<2xuQUu6&|=SF__o)4 z={ls-Z*e#xVmadHcOpXT_~w;~D62%H*Yq|~idx~w22E|n^xD;n2|tw&CDm%x2o(Tl ztw}2=6bEzoEq@`DxMvVYa%Ud9bIM|&oGZ}RDC9~S=kUzjBd-Ni8oVQS}Yi(N?EBv*_HIBX&*)hS&O9VSGuWj&KSU0wOBlU3b);GgW z7SITL*?(UrH2NkuVllu+d>(3(b`ilQ12V!e7ku_?krRc}Lu>SpuJFCnXMl1u;aIEtO}D1EQ`{t3utm}lNVxlNZGrhnm_wypL(*kMDgAMTaSNtXh7mbZVs zh|PpdqwZ`Jy<*Qt5yz6Bo5078c~P%5#OoOk;*-8WZHVRQ11iXYsJ;M)qH;_Gl-LY| z1vI2+Kn#$LA6&by>*It>*MPPbgp zh0eX=6Wl*=xm+?%sUoAr@0hNi-??IhETN30p<2*LcliOVnaop7IGVAeFj%skm_Eh5 z*rSTOn8*<<1g{MfKHW6;44hENs|AZU3!og#b~erxq>R3J8<{^kxW$51(eyBebAMC!2^=MR|+FDq)#2^2V<5 zM|s9omUORO`{lZznvewL#50XJN+rGR_+>f&Gve>W;~kiO*p2DG_hKTul}8@grS#fv z0!uOyv2V>=g${}9BY!oRO)x7%C)f)bIzL75C-(oxB-M{W6J!vicz=suP}GkHcHrVo zFCJhlV0+jka}O*Zmy<*gD}P_@5Nf!*I==x~I3Y7#McaTcA0E)0UfzuDrC7}G=WPIg zBWLHpeB@TA2gEhF+Rr(JZPr(~g9~wWba_=}Jx71w9H-pXj0cM5F^#g>OOkI}e05&K z@|#Q4Bxm+l5_3b$J@`VwyXzeLXG)#-Fg#k{0Fw)TYD3;$lYS8#e|cI-LMT6~G;WYv@j*ti z5y{r-HUh4(w2h#4*0lwkyY8aLbk}DLFdcLpR%ST_&DIn*Vp`j;i-@Vw1Wb)Kppf`v zvI0|mA_Rb~Aqd0-+kzlG*XaXWgfKMNYN-tt+`t5(TG*ICJbN<}1Z-nz0s-O1CJfMG ztr-poHa2Y`e_bXLJ_Uwj!q#~~c$Uk%U`((<3q}O36WgLeEo3k**hscOw6&AL(AK6h z7K(3UbM6XG%lKh@NA57D4?ZX z4uTzP{ANH~TVDgJw3$V7U;fn_{Ef_W2e)YSt7v){lb8|`f9AJ#Vm5fRBi`U}q&p(a zU#uz73A@h(@1B`e#j;SJLK4^zFtmfU91?B7 z=i9B1+6A;Ve;>4Rdv*`4YBqv#*0e_Rq}3k008iT2V8f^HT68{RhnyGg<@A<~A}6|t z#&*@6I2}WGm`W3xCan25NzG3Wzd!%++mC-f{~Qt;|0^y|;fEi>K2$^qe^QS|1So#t z&K={hcW6UI>=Yew%Hy{ZQBBYVe?M|BEfdkod{9w-f6G|we;GgvzdFLHUGhz+cF*5> ze$kS*LgHzF5p@U9@pd7NvqCNx3=!3W8h(+5b=M}3Ct5A9CPC`kFN;v$k6+X1lPFqt z-(?2+!q!mCRf}B>G(b(`(oi)LlH!SFiWjlS$ZJBc;RE~p`1yW}t6rpB##W>x{-69w z|k4wk3-A{J&0&O&GF_HQYIA`AJ5S|Bs_d zC-ISN(?ka{5NsgTpb0X6RW)KA4KtNk%^y>&L!SsshDq>*h3ilh|s= zEbL4ZSd{7^f z<^ftRT~j1UISF25Wi5icFes{9|6~Y&cP5%-p7{{WzV5ro(mns%6WCS7KrF zBhWu^rNx;(g%u8hf@Kfw`t%K+916Rif${Mf7_91$DjbIf`o|rB46UE%a1az2e_hr? z;d_U>;W#ufcdrtH$_K0CPU9}G9L|0U^j>|nTvPwQ;UFkja+#<{1@(m^_li2e8E1XrFf1^- z$O96n8axgSmVLu%(T5)7!tQ6Vf8gXy3#Rx%3+4a8f}<=gjN(fxl>Y}yo}KhKiub3m z`4Nm)qh}FRCs1MYBhdOP(!xxf8ii^|0CE4J#b0t463%=GbPgc&EF(t|p%M@*U8Ba4TpDc&G@Bk;sL|d?f7t&H#ycUi zIO;A**sZVguM4ZI>RRgE<8NVw&$z;T4Vd*^OhqRf21>Au^$Vs{E?%LE;#jVS^R;Ug zLAR){5t9r*aslmfz6y~Q6`rhc&I(BMdoHT1VX}Fpx;df7Tv*Ou5E-oHfBJC$@i`O= z@FYC*(-*zqfMan@e^E&Cf3%Meu=Eeuf>T0AYl||Z*%*^wMSZbCNb(rJ4R@p3&}QF& z{~PpT4WuIR7fw$_hC^Bi)c;_@Of}N<`{pk<59BOw2(Td3(ze0jr@POeAD`w>$2%4a zA`?WB`5ED_*nsvGPq6;4Mmc3O_Me{~|M>ao=^^}2alS2V&bP_-fA(K3+ho;T4If}j zJ(oo?iQLtdz7)Uv$4oh9+#&d+(#zY2_Jd5uXSpFOtH0eY>sr~;)}^{@_FePigNU`f zh1PF(X`#mrjb(0e+pPaLx|FpYY#;XnkNc=}0W5{TJpM^k_;y2QHAe^V*#4t-6iT%i z>g(}FuPl9oY9km`DW~f&q6}-cHRbn5md1ch8ASDr)>xLZG+tKuPR9SB#$Vk3{eRK5 F;IfUV2oeAQ diff --git a/searchindex.js b/searchindex.js index 989859a88..9888b3db6 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API reference": [[68, "api-reference"]], "Adding dependencies": [[0, "adding-dependencies"]], "Adding training data": [[73, "adding-training-data"]], "Advanced optimization algorithms": [[3, "advanced-optimization-algorithms"]], "Advanced options": [[1, "advanced-options"]], "Advanced training metrics": [[6, "advanced-training-metrics"]], "Basic hyperparameter optimization": [[70, "basic-hyperparameter-optimization"]], "Branching strategy": [[0, "branching-strategy"]], "Build LAMMPS": [[76, "build-lammps"]], "Build Quantum ESPRESSO": [[78, "build-quantum-espresso"]], "Build documentation locally (Optional)": [[77, "build-documentation-locally-optional"]], "Building and training a model": [[73, "building-and-training-a-model"]], "Checkpointing a hyperparameter search": [[3, "checkpointing-a-hyperparameter-search"]], "Checkpointing a training run": [[6, "checkpointing-a-training-run"]], "Citing MALA": [[74, "citing-mala"]], "Contents": [[75, "contents"]], "Contributions": [[0, "contributions"]], "Creating a release": [[0, "creating-a-release"]], "Data conversion": [[71, "data-conversion"]], "Data generation": [[71, "data-generation"]], "Data generation and conversion": [[71, "data-generation-and-conversion"]], "Developing code": [[0, "developing-code"]], "Downloading and adding example data (Recommended)": [[77, "downloading-and-adding-example-data-recommended"]], "Formatting code": [[0, "formatting-code"]], "Getting started with MALA": [[69, "getting-started-with-mala"]], "How does MALA work?": [[75, "how-does-mala-work"]], "Improved data conversion": [[2, "improved-data-conversion"]], "Improved hyperparameter optimization": [[3, "improved-hyperparameter-optimization"]], "Improved training performance": [[6, "improved-training-performance"]], "Installation": [[79, "installation"]], "Installing LAMMPS": [[76, "installing-lammps"]], "Installing MALA": [[77, "installing-mala"]], "Installing Quantum ESPRESSO (total energy module)": [[78, "installing-quantum-espresso-total-energy-module"]], "Installing the Python extension": [[76, "installing-the-python-extension"], [78, "installing-the-python-extension"]], "Installing the Python library": [[77, "installing-the-python-library"]], "Issues": [[0, "issues"]], "License": [[0, "license"]], "List of hyperparameters": [[70, "list-of-hyperparameters"], [70, "id1"]], "MALA contributors": [[0, "mala-contributors"]], "MALA publications": [[75, "mala-publications"]], "Parallel data conversion": [[2, "parallel-data-conversion"]], "Parallel predictions": [[5, "parallel-predictions"]], "Parallelizing a hyperparameter search": [[3, "parallelizing-a-hyperparameter-search"]], "Predictions on GPUs": [[5, "predictions-on-gpus"]], "Prerequisites": [[76, "prerequisites"], [77, "prerequisites"], [78, "prerequisites"]], "Pull Requests": [[0, "pull-requests"]], "Setting parameters": [[73, "setting-parameters"]], "Storing data with OpenPMD": [[4, "storing-data-with-openpmd"]], "Testing a model": [[73, "testing-a-model"]], "Training an ML-DFT model": [[73, "training-an-ml-dft-model"]], "Training in parallel": [[6, "training-in-parallel"]], "Tuning descriptors": [[2, "id1"]], "Using MALA in production": [[5, "using-mala-in-production"]], "Using ML-DFT models for predictions": [[72, "using-ml-dft-models-for-predictions"]], "Using a GPU": [[6, "using-a-gpu"]], "Using lazy loading": [[6, "using-lazy-loading"]], "Using tensorboard": [[6, "using-tensorboard"]], "Using the MALA ASE calculator": [[72, "using-the-mala-ase-calculator"]], "Versioning and releases": [[0, "versioning-and-releases"]], "Visualizing observables": [[5, "visualizing-observables"]], "Welcome to MALA!": [[75, "welcome-to-mala"]], "What is MALA?": [[75, "what-is-mala"]], "Where to start?": [[75, "where-to-start"]], "Who is behind MALA?": [[75, "who-is-behind-mala"]], "acsd_analyzer": [[39, "module-mala.network.acsd_analyzer"]], "ase_calculator": [[37, "module-mala.interfaces.ase_calculator"]], "atomic_density": [[31, "module-mala.descriptors.atomic_density"]], "atomic_force": [[59, "module-mala.targets.atomic_force"]], "bispectrum": [[32, "module-mala.descriptors.bispectrum"]], "calculation_helpers": [[60, "module-mala.targets.calculation_helpers"]], "check_modules": [[9, "module-mala.common.check_modules"]], "common": [[8, "common"]], "cube_parser": [[61, "module-mala.targets.cube_parser"]], "data_converter": [[18, "module-mala.datahandling.data_converter"]], "data_handler": [[19, "module-mala.datahandling.data_handler"]], "data_handler_base": [[20, "module-mala.datahandling.data_handler_base"]], "data_repo": [[21, "module-mala.datahandling.data_repo"]], "data_scaler": [[22, "module-mala.datahandling.data_scaler"]], "data_shuffler": [[23, "module-mala.datahandling.data_shuffler"]], "datageneration": [[14, "datageneration"]], "datahandling": [[17, "datahandling"]], "density": [[62, "module-mala.targets.density"]], "descriptor": [[33, "module-mala.descriptors.descriptor"]], "descriptors": [[30, "descriptors"]], "dos": [[63, "module-mala.targets.dos"]], "fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset"]], "hyper_opt": [[40, "module-mala.network.hyper_opt"]], "hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot"]], "hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat"]], "hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna"]], "hyperparameter": [[44, "module-mala.network.hyperparameter"]], "hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd"]], "hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot"]], "hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat"]], "hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna"]], "interfaces": [[36, "interfaces"]], "json_serializable": [[10, "module-mala.common.json_serializable"]], "lammps_utils": [[34, "module-mala.descriptors.lammps_utils"]], "lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset"]], "lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single"]], "ldos": [[64, "module-mala.targets.ldos"]], "ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner"]], "mala": [[7, "mala"]], "minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors"]], "multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader"]], "multi_training_pruner": [[49, "module-mala.network.multi_training_pruner"]], "naswot_pruner": [[50, "module-mala.network.naswot_pruner"]], "network": [[38, "network"], [51, "module-mala.network.network"]], "objective_base": [[52, "module-mala.network.objective_base"]], "objective_naswot": [[53, "module-mala.network.objective_naswot"]], "ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer"]], "parallelizer": [[11, "module-mala.common.parallelizer"]], "parameters": [[12, "module-mala.common.parameters"]], "physical_data": [[13, "module-mala.common.physical_data"]], "predictor": [[54, "module-mala.network.predictor"]], "runner": [[55, "module-mala.network.runner"]], "snapshot": [[29, "module-mala.datahandling.snapshot"]], "target": [[65, "module-mala.targets.target"]], "targets": [[58, "targets"]], "tester": [[56, "module-mala.network.tester"]], "trainer": [[57, "module-mala.network.trainer"]], "trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer"]], "version": [[67, "module-mala.version"]], "xsf_parser": [[66, "module-mala.targets.xsf_parser"]]}, "docnames": ["CONTRIBUTE", "advanced_usage", "advanced_usage/descriptors", "advanced_usage/hyperparameters", "advanced_usage/openpmd", "advanced_usage/predictions", "advanced_usage/trainingmodel", "api/mala", "api/mala.common", "api/mala.common.check_modules", "api/mala.common.json_serializable", "api/mala.common.parallelizer", "api/mala.common.parameters", "api/mala.common.physical_data", "api/mala.datageneration", "api/mala.datageneration.ofdft_initializer", "api/mala.datageneration.trajectory_analyzer", "api/mala.datahandling", "api/mala.datahandling.data_converter", "api/mala.datahandling.data_handler", "api/mala.datahandling.data_handler_base", "api/mala.datahandling.data_repo", "api/mala.datahandling.data_scaler", "api/mala.datahandling.data_shuffler", "api/mala.datahandling.fast_tensor_dataset", "api/mala.datahandling.lazy_load_dataset", "api/mala.datahandling.lazy_load_dataset_single", "api/mala.datahandling.ldos_aligner", "api/mala.datahandling.multi_lazy_load_data_loader", "api/mala.datahandling.snapshot", "api/mala.descriptors", "api/mala.descriptors.atomic_density", "api/mala.descriptors.bispectrum", "api/mala.descriptors.descriptor", "api/mala.descriptors.lammps_utils", "api/mala.descriptors.minterpy_descriptors", "api/mala.interfaces", "api/mala.interfaces.ase_calculator", "api/mala.network", "api/mala.network.acsd_analyzer", "api/mala.network.hyper_opt", "api/mala.network.hyper_opt_naswot", "api/mala.network.hyper_opt_oat", "api/mala.network.hyper_opt_optuna", "api/mala.network.hyperparameter", "api/mala.network.hyperparameter_acsd", "api/mala.network.hyperparameter_naswot", "api/mala.network.hyperparameter_oat", "api/mala.network.hyperparameter_optuna", "api/mala.network.multi_training_pruner", "api/mala.network.naswot_pruner", "api/mala.network.network", "api/mala.network.objective_base", "api/mala.network.objective_naswot", "api/mala.network.predictor", "api/mala.network.runner", "api/mala.network.tester", "api/mala.network.trainer", "api/mala.targets", "api/mala.targets.atomic_force", "api/mala.targets.calculation_helpers", "api/mala.targets.cube_parser", "api/mala.targets.density", "api/mala.targets.dos", "api/mala.targets.ldos", "api/mala.targets.target", "api/mala.targets.xsf_parser", "api/mala.version", "api/modules", "basic_usage", "basic_usage/hyperparameters", "basic_usage/more_data", "basic_usage/predictions", "basic_usage/trainingmodel", "citing", "index", "install/installing_lammps", "install/installing_mala", "install/installing_qe", "installation"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1}, "filenames": ["CONTRIBUTE.md", "advanced_usage.rst", "advanced_usage/descriptors.rst", "advanced_usage/hyperparameters.rst", "advanced_usage/openpmd.rst", "advanced_usage/predictions.rst", "advanced_usage/trainingmodel.rst", "api/mala.rst", "api/mala.common.rst", "api/mala.common.check_modules.rst", "api/mala.common.json_serializable.rst", "api/mala.common.parallelizer.rst", "api/mala.common.parameters.rst", "api/mala.common.physical_data.rst", "api/mala.datageneration.rst", "api/mala.datageneration.ofdft_initializer.rst", "api/mala.datageneration.trajectory_analyzer.rst", "api/mala.datahandling.rst", "api/mala.datahandling.data_converter.rst", "api/mala.datahandling.data_handler.rst", "api/mala.datahandling.data_handler_base.rst", "api/mala.datahandling.data_repo.rst", "api/mala.datahandling.data_scaler.rst", "api/mala.datahandling.data_shuffler.rst", "api/mala.datahandling.fast_tensor_dataset.rst", "api/mala.datahandling.lazy_load_dataset.rst", "api/mala.datahandling.lazy_load_dataset_single.rst", "api/mala.datahandling.ldos_aligner.rst", "api/mala.datahandling.multi_lazy_load_data_loader.rst", "api/mala.datahandling.snapshot.rst", "api/mala.descriptors.rst", "api/mala.descriptors.atomic_density.rst", "api/mala.descriptors.bispectrum.rst", "api/mala.descriptors.descriptor.rst", "api/mala.descriptors.lammps_utils.rst", "api/mala.descriptors.minterpy_descriptors.rst", "api/mala.interfaces.rst", "api/mala.interfaces.ase_calculator.rst", "api/mala.network.rst", "api/mala.network.acsd_analyzer.rst", "api/mala.network.hyper_opt.rst", "api/mala.network.hyper_opt_naswot.rst", "api/mala.network.hyper_opt_oat.rst", "api/mala.network.hyper_opt_optuna.rst", "api/mala.network.hyperparameter.rst", "api/mala.network.hyperparameter_acsd.rst", "api/mala.network.hyperparameter_naswot.rst", "api/mala.network.hyperparameter_oat.rst", "api/mala.network.hyperparameter_optuna.rst", "api/mala.network.multi_training_pruner.rst", "api/mala.network.naswot_pruner.rst", "api/mala.network.network.rst", "api/mala.network.objective_base.rst", "api/mala.network.objective_naswot.rst", "api/mala.network.predictor.rst", "api/mala.network.runner.rst", "api/mala.network.tester.rst", "api/mala.network.trainer.rst", "api/mala.targets.rst", "api/mala.targets.atomic_force.rst", "api/mala.targets.calculation_helpers.rst", "api/mala.targets.cube_parser.rst", "api/mala.targets.density.rst", "api/mala.targets.dos.rst", "api/mala.targets.ldos.rst", "api/mala.targets.target.rst", "api/mala.targets.xsf_parser.rst", "api/mala.version.rst", "api/modules.rst", "basic_usage.rst", "basic_usage/hyperparameters.rst", "basic_usage/more_data.rst", "basic_usage/predictions.rst", "basic_usage/trainingmodel.rst", "citing.rst", "index.md", "install/installing_lammps.rst", "install/installing_mala.rst", "install/installing_qe.rst", "installation.rst"], "indexentries": {"acsdanalyzer (class in mala.network.acsd_analyzer)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer", false]], "add_hyperparameter() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_hyperparameter", false]], "add_hyperparameter() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.add_hyperparameter", false]], "add_hyperparameter() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.add_hyperparameter", false]], "add_snapshot() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_snapshot", false]], "add_snapshot() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.add_snapshot", false]], "add_snapshot() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.add_snapshot", false]], "add_snapshot() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.add_snapshot", false]], "add_snapshot() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.add_snapshot", false]], "add_snapshot_to_dataset() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.add_snapshot_to_dataset", false]], "after_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.after_training_metric", false]], "align_ldos_to_ref() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.align_ldos_to_ref", false]], "allocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.allocate_shared_mem", false]], "analytical_integration() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.analytical_integration", false]], "assume_two_dimensional (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.assume_two_dimensional", false]], "atomic_density_sigma (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.atomic_density_sigma", false]], "atomicdensity (class in mala.descriptors.atomic_density)": [[31, "mala.descriptors.atomic_density.AtomicDensity", false]], "atomicforce (class in mala.targets.atomic_force)": [[59, "mala.targets.atomic_force.AtomicForce", false]], "backconvert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.backconvert_units", false]], "backconvert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.backconvert_units", false]], "backconvert_units() (density static method)": [[62, "mala.targets.density.Density.backconvert_units", false]], "backconvert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.backconvert_units", false]], "backconvert_units() (dos static method)": [[63, "mala.targets.dos.DOS.backconvert_units", false]], "backconvert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.backconvert_units", false]], "backconvert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.backconvert_units", false]], "backconvert_units() (target static method)": [[65, "mala.targets.target.Target.backconvert_units", false]], "band_energy (dos property)": [[63, "mala.targets.dos.DOS.band_energy", false]], "band_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.band_energy", false]], "barrier() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.barrier", false]], "bidirection (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.bidirection", false]], "bispectrum (class in mala.descriptors.bispectrum)": [[32, "mala.descriptors.bispectrum.Bispectrum", false]], "bispectrum_cutoff (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_cutoff", false]], "bispectrum_switchflag (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_switchflag", false]], "bispectrum_twojmax (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_twojmax", false]], "calc_optimal_ldos_shift() (ldosaligner static method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.calc_optimal_ldos_shift", false]], "calculate() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate", false]], "calculate_from_atoms() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_atoms", false]], "calculate_from_qe_out() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_qe_out", false]], "calculate_loss() (network method)": [[51, "mala.network.network.Network.calculate_loss", false]], "calculate_properties() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate_properties", false]], "check_modules() (in module mala.common.check_modules)": [[9, "mala.common.check_modules.check_modules", false]], "checkpoint_exists() (hyperopt class method)": [[40, "mala.network.hyper_opt.HyperOpt.checkpoint_exists", false]], "checkpoint_name (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoint_name", false]], "checkpoints_each_epoch (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoints_each_epoch", false]], "cleanup() (multilazyloaddataloader method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.cleanup", false]], "clear_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.clear_data", false]], "clear_data() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.clear_data", false]], "clear_hyperparameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.clear_hyperparameters", false]], "comment (parameters attribute)": [[12, "mala.common.parameters.Parameters.comment", false]], "convert_local_to_3d() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_local_to_3d", false]], "convert_snapshots() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.convert_snapshots", false]], "convert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.convert_units", false]], "convert_units() (atomicforce static method)": [[59, "mala.targets.atomic_force.AtomicForce.convert_units", false]], "convert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.convert_units", false]], "convert_units() (density static method)": [[62, "mala.targets.density.Density.convert_units", false]], "convert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_units", false]], "convert_units() (dos static method)": [[63, "mala.targets.dos.DOS.convert_units", false]], "convert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.convert_units", false]], "convert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.convert_units", false]], "convert_units() (target static method)": [[65, "mala.targets.target.Target.convert_units", false]], "cubefile (class in mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.CubeFile", false]], "data (parameters attribute)": [[12, "mala.common.parameters.Parameters.data", false]], "data_name (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.data_name", false]], "data_name (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.data_name", false]], "data_name (density property)": [[62, "mala.targets.density.Density.data_name", false]], "data_name (dos property)": [[63, "mala.targets.dos.DOS.data_name", false]], "data_name (ldos property)": [[64, "mala.targets.ldos.LDOS.data_name", false]], "data_name (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.data_name", false]], "data_name (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.data_name", false]], "data_splitting_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.data_splitting_type", false]], "dataconverter (class in mala.datahandling.data_converter)": [[18, "mala.datahandling.data_converter.DataConverter", false]], "datahandler (class in mala.datahandling.data_handler)": [[19, "mala.datahandling.data_handler.DataHandler", false]], "datahandlerbase (class in mala.datahandling.data_handler_base)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase", false]], "datascaler (class in mala.datahandling.data_scaler)": [[22, "mala.datahandling.data_scaler.DataScaler", false]], "datashuffler (class in mala.datahandling.data_shuffler)": [[23, "mala.datahandling.data_shuffler.DataShuffler", false]], "deallocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.deallocate_shared_mem", false]], "delete_data() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.delete_data", false]], "density (class in mala.targets.density)": [[62, "mala.targets.density.Density", false]], "density (density property)": [[62, "mala.targets.density.Density.density", false]], "density (ldos property)": [[64, "mala.targets.ldos.LDOS.density", false]], "density_of_states (dos property)": [[63, "mala.targets.dos.DOS.density_of_states", false]], "density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.density_of_states", false]], "descriptor (class in mala.descriptors.descriptor)": [[33, "mala.descriptors.descriptor.Descriptor", false]], "descriptor_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.descriptor_calculator", false]], "descriptor_type (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptor_type", false]], "descriptors (parameters attribute)": [[12, "mala.common.parameters.Parameters.descriptors", false]], "descriptors_contain_xyz (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.descriptors_contain_xyz", false]], "descriptors_contain_xyz (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptors_contain_xyz", false]], "device (parameters property)": [[12, "mala.common.parameters.Parameters.device", false]], "direction (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.direction", false]], "do_prediction() (network method)": [[51, "mala.network.network.Network.do_prediction", false]], "dos (class in mala.targets.dos)": [[63, "mala.targets.dos.DOS", false]], "during_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.during_training_metric", false]], "early_stopping_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_epochs", false]], "early_stopping_threshold (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_threshold", false]], "energy_grid (dos property)": [[63, "mala.targets.dos.DOS.energy_grid", false]], "energy_grid (ldos property)": [[64, "mala.targets.ldos.LDOS.energy_grid", false]], "enforce_pbc() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.enforce_pbc", false]], "entropy_contribution (dos property)": [[63, "mala.targets.dos.DOS.entropy_contribution", false]], "entropy_contribution (ldos property)": [[64, "mala.targets.ldos.LDOS.entropy_contribution", false]], "entropy_multiplicator() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.entropy_multiplicator", false]], "extract_compute_np() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.extract_compute_np", false]], "fasttensordataset (class in mala.datahandling.fast_tensor_dataset)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset", false]], "feature_size (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.feature_size", false]], "feature_size (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.feature_size", false]], "feature_size (density property)": [[62, "mala.targets.density.Density.feature_size", false]], "feature_size (dos property)": [[63, "mala.targets.dos.DOS.feature_size", false]], "feature_size (ldos property)": [[64, "mala.targets.ldos.LDOS.feature_size", false]], "feature_size (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.feature_size", false]], "feature_size (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.feature_size", false]], "feature_size (target property)": [[65, "mala.targets.target.Target.feature_size", false]], "feedforwardnet (class in mala.network.network)": [[51, "mala.network.network.FeedForwardNet", false]], "fermi_energy (dos property)": [[63, "mala.targets.dos.DOS.fermi_energy", false]], "fermi_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.fermi_energy", false]], "fermi_function() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.fermi_function", false]], "finalize() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.finalize", false]], "finish_incremental_fitting() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.finish_incremental_fitting", false]], "first_snapshot (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.first_snapshot", false]], "fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.fit", false]], "forward() (feedforwardnet method)": [[51, "mala.network.network.FeedForwardNet.forward", false]], "forward() (gru method)": [[51, "mala.network.network.GRU.forward", false]], "forward() (lstm method)": [[51, "mala.network.network.LSTM.forward", false]], "forward() (network method)": [[51, "mala.network.network.Network.forward", false]], "forward() (positionalencoding method)": [[51, "mala.network.network.PositionalEncoding.forward", false]], "forward() (transformernet method)": [[51, "mala.network.network.TransformerNet.forward", false]], "from_cube_file() (density class method)": [[62, "mala.targets.density.Density.from_cube_file", false]], "from_cube_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_cube_file", false]], "from_json() (jsonserializable class method)": [[10, "mala.common.json_serializable.JSONSerializable.from_json", false]], "from_json() (parametersbase class method)": [[12, "mala.common.parameters.ParametersBase.from_json", false]], "from_json() (snapshot class method)": [[29, "mala.datahandling.snapshot.Snapshot.from_json", false]], "from_ldos_calculator() (density class method)": [[62, "mala.targets.density.Density.from_ldos_calculator", false]], "from_ldos_calculator() (dos class method)": [[63, "mala.targets.dos.DOS.from_ldos_calculator", false]], "from_numpy_array() (density class method)": [[62, "mala.targets.density.Density.from_numpy_array", false]], "from_numpy_array() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_array", false]], "from_numpy_array() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_array", false]], "from_numpy_file() (density class method)": [[62, "mala.targets.density.Density.from_numpy_file", false]], "from_numpy_file() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_file", false]], "from_numpy_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_file", false]], "from_openpmd_file() (density class method)": [[62, "mala.targets.density.Density.from_openpmd_file", false]], "from_openpmd_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_openpmd_file", false]], "from_qe_dos_txt() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_dos_txt", false]], "from_qe_out() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_out", false]], "from_xsf_file() (density class method)": [[62, "mala.targets.density.Density.from_xsf_file", false]], "from_xsf_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_xsf_file", false]], "gather_descriptors() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.gather_descriptors", false]], "gaussians() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.gaussians", false]], "generate_square_subsequent_mask() (transformernet static method)": [[51, "mala.network.network.TransformerNet.generate_square_subsequent_mask", false]], "get_atomic_forces() (density method)": [[62, "mala.targets.density.Density.get_atomic_forces", false]], "get_atomic_forces() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_atomic_forces", false]], "get_band_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_band_energy", false]], "get_band_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_band_energy", false]], "get_best_trial_results() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.get_best_trial_results", false]], "get_best_trial_results() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_best_trial_results", false]], "get_beta() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_beta", false]], "get_categorical() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_categorical", false]], "get_categorical() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_categorical", false]], "get_comm() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_comm", false]], "get_density() (density method)": [[62, "mala.targets.density.Density.get_density", false]], "get_density() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density", false]], "get_density_of_states() (dos method)": [[63, "mala.targets.dos.DOS.get_density_of_states", false]], "get_density_of_states() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density_of_states", false]], "get_energy_contributions() (density method)": [[62, "mala.targets.density.Density.get_energy_contributions", false]], "get_energy_grid() (dos method)": [[63, "mala.targets.dos.DOS.get_energy_grid", false]], "get_energy_grid() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_energy_grid", false]], "get_energy_grid() (target method)": [[65, "mala.targets.target.Target.get_energy_grid", false]], "get_energy_targets_and_predictions() (tester method)": [[56, "mala.network.tester.Tester.get_energy_targets_and_predictions", false]], "get_entropy_contribution() (dos method)": [[63, "mala.targets.dos.DOS.get_entropy_contribution", false]], "get_entropy_contribution() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_entropy_contribution", false]], "get_equilibrated_configuration() (ofdftinitializer method)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.get_equilibrated_configuration", false]], "get_f0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f0_value", false]], "get_f1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f1_value", false]], "get_f2_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f2_value", false]], "get_feature_size() (atomicforce method)": [[59, "mala.targets.atomic_force.AtomicForce.get_feature_size", false]], "get_first_snapshot() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_first_snapshot", false]], "get_float() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_float", false]], "get_int() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_int", false]], "get_local_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_local_rank", false]], "get_new_data() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.get_new_data", false]], "get_number_of_electrons() (density method)": [[62, "mala.targets.density.Density.get_number_of_electrons", false]], "get_number_of_electrons() (dos method)": [[63, "mala.targets.dos.DOS.get_number_of_electrons", false]], "get_number_of_electrons() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_number_of_electrons", false]], "get_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_optimal_parameters", false]], "get_optimal_sigma() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.get_optimal_sigma", false]], "get_orthogonal_array() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_orthogonal_array", false]], "get_parameter() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_parameter", false]], "get_parameter() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_parameter", false]], "get_radial_distribution_function() (target method)": [[65, "mala.targets.target.Target.get_radial_distribution_function", false]], "get_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_rank", false]], "get_real_space_grid() (target method)": [[65, "mala.targets.target.Target.get_real_space_grid", false]], "get_s0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s0_value", false]], "get_s1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s1_value", false]], "get_scaled_positions_for_qe() (density static method)": [[62, "mala.targets.density.Density.get_scaled_positions_for_qe", false]], "get_self_consistent_fermi_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_self_consistent_fermi_energy", false]], "get_self_consistent_fermi_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_self_consistent_fermi_energy", false]], "get_size() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_size", false]], "get_snapshot_calculation_output() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_snapshot_calculation_output", false]], "get_snapshot_correlation_cutoff() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_snapshot_correlation_cutoff", false]], "get_static_structure_factor() (target method)": [[65, "mala.targets.target.Target.get_static_structure_factor", false]], "get_target() (density method)": [[62, "mala.targets.density.Density.get_target", false]], "get_target() (dos method)": [[63, "mala.targets.dos.DOS.get_target", false]], "get_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_target", false]], "get_target() (target method)": [[65, "mala.targets.target.Target.get_target", false]], "get_test_input_gradient() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_test_input_gradient", false]], "get_three_particle_correlation_function() (target method)": [[65, "mala.targets.target.Target.get_three_particle_correlation_function", false]], "get_total_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_total_energy", false]], "get_trials_from_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.get_trials_from_study", false]], "get_uncorrelated_snapshots() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_uncorrelated_snapshots", false]], "gru (class in mala.network.network)": [[51, "mala.network.network.GRU", false]], "hlist (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.hlist", false]], "hyperopt (class in mala.network.hyper_opt)": [[40, "mala.network.hyper_opt.HyperOpt", false]], "hyperoptnaswot (class in mala.network.hyper_opt_naswot)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT", false]], "hyperoptoat (class in mala.network.hyper_opt_oat)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT", false]], "hyperoptoptuna (class in mala.network.hyper_opt_optuna)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna", false]], "hyperparameter (class in mala.network.hyperparameter)": [[44, "mala.network.hyperparameter.Hyperparameter", false]], "hyperparameteracsd (class in mala.network.hyperparameter_acsd)": [[45, "mala.network.hyperparameter_acsd.HyperparameterACSD", false]], "hyperparameternaswot (class in mala.network.hyperparameter_naswot)": [[46, "mala.network.hyperparameter_naswot.HyperparameterNASWOT", false]], "hyperparameteroat (class in mala.network.hyperparameter_oat)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT", false]], "hyperparameteroptuna (class in mala.network.hyperparameter_optuna)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna", false]], "hyperparameters (parameters attribute)": [[12, "mala.common.parameters.Parameters.hyperparameters", false]], "implemented_properties (mala attribute)": [[37, "mala.interfaces.ase_calculator.MALA.implemented_properties", false]], "incremental_fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.incremental_fit", false]], "inference_data_grid (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.inference_data_grid", false]], "init_hidden() (gru method)": [[51, "mala.network.network.GRU.init_hidden", false]], "init_hidden() (lstm method)": [[51, "mala.network.network.LSTM.init_hidden", false]], "init_weights() (transformernet method)": [[51, "mala.network.network.TransformerNet.init_weights", false]], "input_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.input_dimension", false]], "input_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.input_rescaling_type", false]], "integrate_values_on_spacing() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.integrate_values_on_spacing", false]], "invalidate_target() (density method)": [[62, "mala.targets.density.Density.invalidate_target", false]], "invalidate_target() (dos method)": [[63, "mala.targets.dos.DOS.invalidate_target", false]], "invalidate_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.invalidate_target", false]], "invalidate_target() (target method)": [[65, "mala.targets.target.Target.invalidate_target", false]], "inverse_transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.inverse_transform", false]], "jsonserializable (class in mala.common.json_serializable)": [[10, "mala.common.json_serializable.JSONSerializable", false]], "lammps_compute_file (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.lammps_compute_file", false]], "layer_activations (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_activations", false]], "layer_sizes (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_sizes", false]], "lazyloaddataset (class in mala.datahandling.lazy_load_dataset)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset", false]], "lazyloaddatasetsingle (class in mala.datahandling.lazy_load_dataset_single)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle", false]], "ldos (class in mala.targets.ldos)": [[64, "mala.targets.ldos.LDOS", false]], "ldos_gridoffset_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridoffset_ev", false]], "ldos_gridsize (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridsize", false]], "ldos_gridspacing_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridspacing_ev", false]], "ldosaligner (class in mala.datahandling.ldos_aligner)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner", false]], "learning_rate (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate", false]], "learning_rate_decay (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_decay", false]], "learning_rate_patience (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_patience", false]], "learning_rate_scheduler (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_scheduler", false]], "load_from_file() (datascaler class method)": [[22, "mala.datahandling.data_scaler.DataScaler.load_from_file", false]], "load_from_file() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.load_from_file", false]], "load_from_file() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.load_from_file", false]], "load_from_file() (network class method)": [[51, "mala.network.network.Network.load_from_file", false]], "load_from_file() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_file", false]], "load_from_json() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_json", false]], "load_from_pickle() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_pickle", false]], "load_model() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_model", false]], "load_run() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_run", false]], "load_run() (runner class method)": [[55, "mala.network.runner.Runner.load_run", false]], "load_run() (trainer class method)": [[57, "mala.network.trainer.Trainer.load_run", false]], "load_snapshot_to_shm() (multilazyloaddataloader static method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.load_snapshot_to_shm", false]], "local_density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.local_density_of_states", false]], "local_psp_name (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_name", false]], "local_psp_path (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_path", false]], "logging_dir (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir", false]], "logging_dir_append_date (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir_append_date", false]], "loss_function_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.loss_function_type", false]], "lstm (class in mala.network.network)": [[51, "mala.network.network.LSTM", false]], "mala": [[7, "module-mala", false]], "mala (class in mala.interfaces.ase_calculator)": [[37, "mala.interfaces.ase_calculator.MALA", false]], "mala.common": [[8, "module-mala.common", false]], "mala.common.check_modules": [[9, "module-mala.common.check_modules", false]], "mala.common.json_serializable": [[10, "module-mala.common.json_serializable", false]], "mala.common.parallelizer": [[11, "module-mala.common.parallelizer", false]], "mala.common.parameters": [[12, "module-mala.common.parameters", false]], "mala.common.physical_data": [[13, "module-mala.common.physical_data", false]], "mala.datageneration": [[14, "module-mala.datageneration", false]], "mala.datageneration.ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer", false]], "mala.datageneration.trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer", false]], "mala.datahandling": [[17, "module-mala.datahandling", false]], "mala.datahandling.data_converter": [[18, "module-mala.datahandling.data_converter", false]], "mala.datahandling.data_handler": [[19, "module-mala.datahandling.data_handler", false]], "mala.datahandling.data_handler_base": [[20, "module-mala.datahandling.data_handler_base", false]], "mala.datahandling.data_repo": [[21, "module-mala.datahandling.data_repo", false]], "mala.datahandling.data_scaler": [[22, "module-mala.datahandling.data_scaler", false]], "mala.datahandling.data_shuffler": [[23, "module-mala.datahandling.data_shuffler", false]], "mala.datahandling.fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset", false]], "mala.datahandling.lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset", false]], "mala.datahandling.lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single", false]], "mala.datahandling.ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner", false]], "mala.datahandling.multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader", false]], "mala.datahandling.snapshot": [[29, "module-mala.datahandling.snapshot", false]], "mala.descriptors": [[30, "module-mala.descriptors", false]], "mala.descriptors.atomic_density": [[31, "module-mala.descriptors.atomic_density", false]], "mala.descriptors.bispectrum": [[32, "module-mala.descriptors.bispectrum", false]], "mala.descriptors.descriptor": [[33, "module-mala.descriptors.descriptor", false]], "mala.descriptors.lammps_utils": [[34, "module-mala.descriptors.lammps_utils", false]], "mala.descriptors.minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors", false]], "mala.interfaces": [[36, "module-mala.interfaces", false]], "mala.interfaces.ase_calculator": [[37, "module-mala.interfaces.ase_calculator", false]], "mala.network": [[38, "module-mala.network", false]], "mala.network.acsd_analyzer": [[39, "module-mala.network.acsd_analyzer", false]], "mala.network.hyper_opt": [[40, "module-mala.network.hyper_opt", false]], "mala.network.hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot", false]], "mala.network.hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat", false]], "mala.network.hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna", false]], "mala.network.hyperparameter": [[44, "module-mala.network.hyperparameter", false]], "mala.network.hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd", false]], "mala.network.hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot", false]], "mala.network.hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat", false]], "mala.network.hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna", false]], "mala.network.multi_training_pruner": [[49, "module-mala.network.multi_training_pruner", false]], "mala.network.naswot_pruner": [[50, "module-mala.network.naswot_pruner", false]], "mala.network.network": [[51, "module-mala.network.network", false]], "mala.network.objective_base": [[52, "module-mala.network.objective_base", false]], "mala.network.objective_naswot": [[53, "module-mala.network.objective_naswot", false]], "mala.network.predictor": [[54, "module-mala.network.predictor", false]], "mala.network.runner": [[55, "module-mala.network.runner", false]], "mala.network.tester": [[56, "module-mala.network.tester", false]], "mala.network.trainer": [[57, "module-mala.network.trainer", false]], "mala.targets": [[58, "module-mala.targets", false]], "mala.targets.atomic_force": [[59, "module-mala.targets.atomic_force", false]], "mala.targets.calculation_helpers": [[60, "module-mala.targets.calculation_helpers", false]], "mala.targets.cube_parser": [[61, "module-mala.targets.cube_parser", false]], "mala.targets.density": [[62, "module-mala.targets.density", false]], "mala.targets.dos": [[63, "module-mala.targets.dos", false]], "mala.targets.ldos": [[64, "module-mala.targets.ldos", false]], "mala.targets.target": [[65, "module-mala.targets.target", false]], "mala.targets.xsf_parser": [[66, "module-mala.targets.xsf_parser", false]], "mala.version": [[67, "module-mala.version", false]], "manual_seed (parameters attribute)": [[12, "mala.common.parameters.Parameters.manual_seed", false]], "max_number_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.max_number_epochs", false]], "mini_batch_size (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.mini_batch_size", false]], "minterpydescriptors (class in mala.descriptors.minterpy_descriptors)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors", false]], "mix_datasets() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.mix_datasets", false]], "mix_datasets() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.mix_datasets", false]], "mix_datasets() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.mix_datasets", false]], "module": [[7, "module-mala", false], [8, "module-mala.common", false], [9, "module-mala.common.check_modules", false], [10, "module-mala.common.json_serializable", false], [11, "module-mala.common.parallelizer", false], [12, "module-mala.common.parameters", false], [13, "module-mala.common.physical_data", false], [14, "module-mala.datageneration", false], [15, "module-mala.datageneration.ofdft_initializer", false], [16, "module-mala.datageneration.trajectory_analyzer", false], [17, "module-mala.datahandling", false], [18, "module-mala.datahandling.data_converter", false], [19, "module-mala.datahandling.data_handler", false], [20, "module-mala.datahandling.data_handler_base", false], [21, "module-mala.datahandling.data_repo", false], [22, "module-mala.datahandling.data_scaler", false], [23, "module-mala.datahandling.data_shuffler", false], [24, "module-mala.datahandling.fast_tensor_dataset", false], [25, "module-mala.datahandling.lazy_load_dataset", false], [26, "module-mala.datahandling.lazy_load_dataset_single", false], [27, "module-mala.datahandling.ldos_aligner", false], [28, "module-mala.datahandling.multi_lazy_load_data_loader", false], [29, "module-mala.datahandling.snapshot", false], [30, "module-mala.descriptors", false], [31, "module-mala.descriptors.atomic_density", false], [32, "module-mala.descriptors.bispectrum", false], [33, "module-mala.descriptors.descriptor", false], [34, "module-mala.descriptors.lammps_utils", false], [35, "module-mala.descriptors.minterpy_descriptors", false], [36, "module-mala.interfaces", false], [37, "module-mala.interfaces.ase_calculator", false], [38, "module-mala.network", false], [39, "module-mala.network.acsd_analyzer", false], [40, "module-mala.network.hyper_opt", false], [41, "module-mala.network.hyper_opt_naswot", false], [42, "module-mala.network.hyper_opt_oat", false], [43, "module-mala.network.hyper_opt_optuna", false], [44, "module-mala.network.hyperparameter", false], [45, "module-mala.network.hyperparameter_acsd", false], [46, "module-mala.network.hyperparameter_naswot", false], [47, "module-mala.network.hyperparameter_oat", false], [48, "module-mala.network.hyperparameter_optuna", false], [49, "module-mala.network.multi_training_pruner", false], [50, "module-mala.network.naswot_pruner", false], [51, "module-mala.network.network", false], [52, "module-mala.network.objective_base", false], [53, "module-mala.network.objective_naswot", false], [54, "module-mala.network.predictor", false], [55, "module-mala.network.runner", false], [56, "module-mala.network.tester", false], [57, "module-mala.network.trainer", false], [58, "module-mala.targets", false], [59, "module-mala.targets.atomic_force", false], [60, "module-mala.targets.calculation_helpers", false], [61, "module-mala.targets.cube_parser", false], [62, "module-mala.targets.density", false], [63, "module-mala.targets.dos", false], [64, "module-mala.targets.ldos", false], [65, "module-mala.targets.target", false], [66, "module-mala.targets.xsf_parser", false], [67, "module-mala.version", false]], "multilazyloaddataloader (class in mala.datahandling.multi_lazy_load_data_loader)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader", false]], "multitrainingpruner (class in mala.network.multi_training_pruner)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner", false]], "n_trials (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.n_trials", false]], "naswotpruner (class in mala.network.naswot_pruner)": [[50, "mala.network.naswot_pruner.NASWOTPruner", false]], "network (class in mala.network.network)": [[51, "mala.network.network.Network", false]], "network (parameters attribute)": [[12, "mala.common.parameters.Parameters.network", false]], "nn_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.nn_type", false]], "no_hidden_state (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.no_hidden_state", false]], "num_choices (hyperparameteroat property)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.num_choices", false]], "num_heads (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_heads", false]], "num_hidden_layers (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_hidden_layers", false]], "num_workers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.num_workers", false]], "number_of_electrons (density property)": [[62, "mala.targets.density.Density.number_of_electrons", false]], "number_of_electrons (dos property)": [[63, "mala.targets.dos.DOS.number_of_electrons", false]], "number_of_electrons (ldos property)": [[64, "mala.targets.ldos.LDOS.number_of_electrons", false]], "number_of_runs() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.number_of_runs", false]], "number_training_per_trial (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.number_training_per_trial", false]], "objectivebase (class in mala.network.objective_base)": [[52, "mala.network.objective_base.ObjectiveBase", false]], "objectivenaswot (class in mala.network.objective_naswot)": [[53, "mala.network.objective_naswot.ObjectiveNASWOT", false]], "ofdft_friction (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_friction", false]], "ofdft_kedf (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_kedf", false]], "ofdft_number_of_timesteps (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_number_of_timesteps", false]], "ofdft_temperature (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_temperature", false]], "ofdft_timestep (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_timestep", false]], "ofdftinitializer (class in mala.datageneration.ofdft_initializer)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer", false]], "openpmd_configuration (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_configuration", false]], "openpmd_granularity (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_granularity", false]], "optimizer (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.optimizer", false]], "optuna_singlenode_setup() (parameters method)": [[12, "mala.common.parameters.Parameters.optuna_singlenode_setup", false]], "output_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.output_dimension", false]], "output_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.output_rescaling_type", false]], "parallel_warn() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.parallel_warn", false]], "parameters (class in mala.common.parameters)": [[12, "mala.common.parameters.Parameters", false]], "parametersbase (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersBase", false]], "parametersdata (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersData", false]], "parametersdatageneration (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDataGeneration", false]], "parametersdescriptors (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDescriptors", false]], "parametershyperparameteroptimization (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization", false]], "parametersnetwork (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersNetwork", false]], "parametersrunning (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersRunning", false]], "parameterstargets (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersTargets", false]], "parse_trial() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial", false]], "parse_trial_oat() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_oat", false]], "parse_trial_optuna() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_optuna", false]], "perform_study() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.perform_study", false]], "perform_study() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.perform_study", false]], "perform_study() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.perform_study", false]], "perform_study() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.perform_study", false]], "perform_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.perform_study", false]], "physicaldata (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData", false]], "physicaldata.skiparraywriting (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData.SkipArrayWriting", false]], "positionalencoding (class in mala.network.network)": [[51, "mala.network.network.PositionalEncoding", false]], "predict_for_atoms() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_for_atoms", false]], "predict_from_qeout() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_from_qeout", false]], "predict_targets() (tester method)": [[56, "mala.network.tester.Tester.predict_targets", false]], "predictor (class in mala.network.predictor)": [[54, "mala.network.predictor.Predictor", false]], "prepare_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_data", false]], "prepare_for_testing() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_for_testing", false]], "printout() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.printout", false]], "profiler_range (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.profiler_range", false]], "prune() (multitrainingpruner method)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner.prune", false]], "prune() (naswotpruner method)": [[50, "mala.network.naswot_pruner.NASWOTPruner.prune", false]], "pseudopotential_path (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.pseudopotential_path", false]], "qe_input_data (target property)": [[65, "mala.targets.target.Target.qe_input_data", false]], "radial_distribution_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.radial_distribution_function_from_atoms", false]], "raw_numpy_to_converted_scaled_tensor() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.raw_numpy_to_converted_scaled_tensor", false]], "rdb_storage_heartbeat (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.rdb_storage_heartbeat", false]], "rdf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.rdf_parameters", false]], "read_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.read_additional_calculation_data", false]], "read_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_cube", false]], "read_dimensions_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_numpy_file", false]], "read_dimensions_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_openpmd_file", false]], "read_from_array() (density method)": [[62, "mala.targets.density.Density.read_from_array", false]], "read_from_array() (dos method)": [[63, "mala.targets.dos.DOS.read_from_array", false]], "read_from_array() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_array", false]], "read_from_cube() (density method)": [[62, "mala.targets.density.Density.read_from_cube", false]], "read_from_cube() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_cube", false]], "read_from_numpy_file() (dos method)": [[63, "mala.targets.dos.DOS.read_from_numpy_file", false]], "read_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_numpy_file", false]], "read_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_openpmd_file", false]], "read_from_qe_dos_txt() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_dos_txt", false]], "read_from_qe_out() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_out", false]], "read_from_xsf() (density method)": [[62, "mala.targets.density.Density.read_from_xsf", false]], "read_from_xsf() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_xsf", false]], "read_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_imcube", false]], "read_xsf() (in module mala.targets.xsf_parser)": [[66, "mala.targets.xsf_parser.read_xsf", false]], "readline() (cubefile method)": [[61, "mala.targets.cube_parser.CubeFile.readline", false]], "requeue_zombie_trials() (hyperoptoptuna static method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.requeue_zombie_trials", false]], "resize_snapshots_for_debugging() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.resize_snapshots_for_debugging", false]], "restrict_data() (target method)": [[65, "mala.targets.target.Target.restrict_data", false]], "restrict_targets (parameterstargets property)": [[12, "mala.common.parameters.ParametersTargets.restrict_targets", false]], "resume_checkpoint() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.resume_checkpoint", false]], "resume_checkpoint() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.resume_checkpoint", false]], "return_outputs_directly (lazyloaddataset property)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.return_outputs_directly", false]], "run_exists() (runner class method)": [[55, "mala.network.runner.Runner.run_exists", false]], "run_exists() (trainer class method)": [[57, "mala.network.trainer.Trainer.run_exists", false]], "runner (class in mala.network.runner)": [[55, "mala.network.runner.Runner", false]], "running (parameters attribute)": [[12, "mala.common.parameters.Parameters.running", false]], "save() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.save", false]], "save() (parameters method)": [[12, "mala.common.parameters.Parameters.save", false]], "save_as_json() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_json", false]], "save_as_pickle() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_pickle", false]], "save_calculator() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.save_calculator", false]], "save_network() (network method)": [[51, "mala.network.network.Network.save_network", false]], "save_run() (runner method)": [[55, "mala.network.runner.Runner.save_run", false]], "set_cmdlinevars() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.set_cmdlinevars", false]], "set_current_verbosity() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_current_verbosity", false]], "set_ddp_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_ddp_status", false]], "set_lammps_instance() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_lammps_instance", false]], "set_mpi_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_mpi_status", false]], "set_optimal_parameters() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.set_optimal_parameters", false]], "set_optimal_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.set_optimal_parameters", false]], "set_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_parameters", false]], "setup_lammps_tmp_files() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.setup_lammps_tmp_files", false]], "show() (parameters method)": [[12, "mala.common.parameters.Parameters.show", false]], "show() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.show", false]], "show() (parametershyperparameteroptimization method)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.show", false]], "show_order_of_importance() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.show_order_of_importance", false]], "shuffle() (fasttensordataset method)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset.shuffle", false]], "shuffle_snapshots() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.shuffle_snapshots", false]], "shuffling_seed (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.shuffling_seed", false]], "si_dimension (density property)": [[62, "mala.targets.density.Density.si_dimension", false]], "si_dimension (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_dimension", false]], "si_dimension (dos property)": [[63, "mala.targets.dos.DOS.si_dimension", false]], "si_dimension (ldos property)": [[64, "mala.targets.ldos.LDOS.si_dimension", false]], "si_dimension (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_dimension", false]], "si_dimension (target property)": [[65, "mala.targets.target.Target.si_dimension", false]], "si_unit_conversion (density property)": [[62, "mala.targets.density.Density.si_unit_conversion", false]], "si_unit_conversion (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_unit_conversion", false]], "si_unit_conversion (dos property)": [[63, "mala.targets.dos.DOS.si_unit_conversion", false]], "si_unit_conversion (ldos property)": [[64, "mala.targets.ldos.LDOS.si_unit_conversion", false]], "si_unit_conversion (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_unit_conversion", false]], "si_unit_conversion (target property)": [[65, "mala.targets.target.Target.si_unit_conversion", false]], "snapshot (class in mala.datahandling.snapshot)": [[29, "mala.datahandling.snapshot.Snapshot", false]], "snapshot_correlation_cutoff (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.snapshot_correlation_cutoff", false]], "snapshot_directories_list (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.snapshot_directories_list", false]], "ssf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ssf_parameters", false]], "start_incremental_fitting() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.start_incremental_fitting", false]], "static_structure_factor_from_atoms() (target static method)": [[65, "mala.targets.target.Target.static_structure_factor_from_atoms", false]], "target (class in mala.targets.target)": [[65, "mala.targets.target.Target", false]], "target_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.target_calculator", false]], "target_type (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.target_type", false]], "targets (parameters attribute)": [[12, "mala.common.parameters.Parameters.targets", false]], "te_mutex (density attribute)": [[62, "mala.targets.density.Density.te_mutex", false]], "test_all_snapshots() (tester method)": [[56, "mala.network.tester.Tester.test_all_snapshots", false]], "test_snapshot() (tester method)": [[56, "mala.network.tester.Tester.test_snapshot", false]], "tester (class in mala.network.tester)": [[56, "mala.network.tester.Tester", false]], "three_particle_correlation_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.three_particle_correlation_function_from_atoms", false]], "to_json() (jsonserializable method)": [[10, "mala.common.json_serializable.JSONSerializable.to_json", false]], "to_json() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.to_json", false]], "total_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.total_energy", false]], "total_energy_contributions (density property)": [[62, "mala.targets.density.Density.total_energy_contributions", false]], "tpcf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.tpcf_parameters", false]], "train_network() (trainer method)": [[57, "mala.network.trainer.Trainer.train_network", false]], "trainer (class in mala.network.trainer)": [[57, "mala.network.trainer.Trainer", false]], "training_log_interval (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.training_log_interval", false]], "trajectory (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.trajectory", false]], "trajectory_analysis_below_average_counter (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_below_average_counter", false]], "trajectory_analysis_correlation_metric_cutoff (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_correlation_metric_cutoff", false]], "trajectory_analysis_denoising_width (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_denoising_width", false]], "trajectory_analysis_estimated_equilibrium (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_estimated_equilibrium", false]], "trajectory_analysis_temperature_tolerance_percent (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_temperature_tolerance_percent", false]], "trajectoryanalyzer (class in mala.datageneration.trajectory_analyzer)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer", false]], "transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.transform", false]], "transformernet (class in mala.network.network)": [[51, "mala.network.network.TransformerNet", false]], "trial_ensemble_evaluation (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.trial_ensemble_evaluation", false]], "uncache_properties() (density method)": [[62, "mala.targets.density.Density.uncache_properties", false]], "uncache_properties() (dos method)": [[63, "mala.targets.dos.DOS.uncache_properties", false]], "uncache_properties() (ldos method)": [[64, "mala.targets.ldos.LDOS.uncache_properties", false]], "uncache_properties() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.uncache_properties", false]], "use_atomic_density_formula (parameters property)": [[12, "mala.common.parameters.Parameters.use_atomic_density_formula", false]], "use_ddp (parameters property)": [[12, "mala.common.parameters.Parameters.use_ddp", false]], "use_fast_tensor_data_set (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_fast_tensor_data_set", false]], "use_gpu (parameters property)": [[12, "mala.common.parameters.Parameters.use_gpu", false]], "use_graphs (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.use_graphs", false]], "use_lammps (parameters property)": [[12, "mala.common.parameters.Parameters.use_lammps", false]], "use_lazy_loading (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading", false]], "use_lazy_loading_prefetch (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading_prefetch", false]], "use_mixed_precision (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_mixed_precision", false]], "use_mpi (parameters property)": [[12, "mala.common.parameters.Parameters.use_mpi", false]], "use_shuffling_for_samplers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_shuffling_for_samplers", false]], "use_y_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_y_splitting", false]], "use_z_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_z_splitting", false]], "verbosity (parameters property)": [[12, "mala.common.parameters.Parameters.verbosity", false]], "write_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.write_additional_calculation_data", false]], "write_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_cube", false]], "write_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_imcube", false]], "write_tem_input_file() (target static method)": [[65, "mala.targets.target.Target.write_tem_input_file", false]], "write_to_cube() (density method)": [[62, "mala.targets.density.Density.write_to_cube", false]], "write_to_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_numpy_file", false]], "write_to_numpy_file() (target method)": [[65, "mala.targets.target.Target.write_to_numpy_file", false]], "write_to_openpmd_file() (density method)": [[62, "mala.targets.density.Density.write_to_openpmd_file", false]], "write_to_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_file", false]], "write_to_openpmd_file() (target method)": [[65, "mala.targets.target.Target.write_to_openpmd_file", false]], "write_to_openpmd_iteration() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_iteration", false]]}, "objects": {"": [[7, 0, 0, "-", "mala"]], "mala": [[8, 0, 0, "-", "common"], [14, 0, 0, "-", "datageneration"], [17, 0, 0, "-", "datahandling"], [30, 0, 0, "-", "descriptors"], [36, 0, 0, "-", "interfaces"], [38, 0, 0, "-", "network"], [58, 0, 0, "-", "targets"], [67, 0, 0, "-", "version"]], "mala.common": [[9, 0, 0, "-", "check_modules"], [10, 0, 0, "-", "json_serializable"], [11, 0, 0, "-", "parallelizer"], [12, 0, 0, "-", "parameters"], [13, 0, 0, "-", "physical_data"]], "mala.common.check_modules": [[9, 1, 1, "", "check_modules"]], "mala.common.json_serializable": [[10, 2, 1, "", "JSONSerializable"]], "mala.common.json_serializable.JSONSerializable": [[10, 3, 1, "", "from_json"], [10, 3, 1, "", "to_json"]], "mala.common.parallelizer": [[11, 1, 1, "", "barrier"], [11, 1, 1, "", "finalize"], [11, 1, 1, "", "get_comm"], [11, 1, 1, "", "get_local_rank"], [11, 1, 1, "", "get_rank"], [11, 1, 1, "", "get_size"], [11, 1, 1, "", "parallel_warn"], [11, 1, 1, "", "printout"], [11, 1, 1, "", "set_current_verbosity"], [11, 1, 1, "", "set_ddp_status"], [11, 1, 1, "", "set_lammps_instance"], [11, 1, 1, "", "set_mpi_status"]], "mala.common.parameters": [[12, 2, 1, "", "Parameters"], [12, 2, 1, "", "ParametersBase"], [12, 2, 1, "", "ParametersData"], [12, 2, 1, "", "ParametersDataGeneration"], [12, 2, 1, "", "ParametersDescriptors"], [12, 2, 1, "", "ParametersHyperparameterOptimization"], [12, 2, 1, "", "ParametersNetwork"], [12, 2, 1, "", "ParametersRunning"], [12, 2, 1, "", "ParametersTargets"]], "mala.common.parameters.Parameters": [[12, 4, 1, "", "comment"], [12, 4, 1, "", "data"], [12, 4, 1, "", "descriptors"], [12, 5, 1, "", "device"], [12, 4, 1, "", "hyperparameters"], [12, 3, 1, "", "load_from_file"], [12, 3, 1, "", "load_from_json"], [12, 3, 1, "", "load_from_pickle"], [12, 4, 1, "", "manual_seed"], [12, 4, 1, "", "network"], [12, 5, 1, "", "openpmd_configuration"], [12, 5, 1, "", "openpmd_granularity"], [12, 3, 1, "", "optuna_singlenode_setup"], [12, 4, 1, "", "running"], [12, 3, 1, "", "save"], [12, 3, 1, "", "save_as_json"], [12, 3, 1, "", "save_as_pickle"], [12, 3, 1, "", "show"], [12, 4, 1, "", "targets"], [12, 5, 1, "", "use_atomic_density_formula"], [12, 5, 1, "", "use_ddp"], [12, 5, 1, "", "use_gpu"], [12, 5, 1, "", "use_lammps"], [12, 5, 1, "", "use_mpi"], [12, 5, 1, "", "verbosity"]], "mala.common.parameters.ParametersBase": [[12, 3, 1, "", "from_json"], [12, 3, 1, "", "show"], [12, 3, 1, "", "to_json"]], "mala.common.parameters.ParametersData": [[12, 4, 1, "", "data_splitting_type"], [12, 4, 1, "", "input_rescaling_type"], [12, 4, 1, "", "output_rescaling_type"], [12, 4, 1, "", "shuffling_seed"], [12, 4, 1, "", "snapshot_directories_list"], [12, 4, 1, "", "use_fast_tensor_data_set"], [12, 4, 1, "", "use_lazy_loading"], [12, 4, 1, "", "use_lazy_loading_prefetch"]], "mala.common.parameters.ParametersDataGeneration": [[12, 4, 1, "", "local_psp_name"], [12, 4, 1, "", "local_psp_path"], [12, 4, 1, "", "ofdft_friction"], [12, 4, 1, "", "ofdft_kedf"], [12, 4, 1, "", "ofdft_number_of_timesteps"], [12, 4, 1, "", "ofdft_temperature"], [12, 4, 1, "", "ofdft_timestep"], [12, 4, 1, "", "trajectory_analysis_below_average_counter"], [12, 4, 1, "", "trajectory_analysis_correlation_metric_cutoff"], [12, 4, 1, "", "trajectory_analysis_denoising_width"], [12, 4, 1, "", "trajectory_analysis_estimated_equilibrium"], [12, 4, 1, "", "trajectory_analysis_temperature_tolerance_percent"]], "mala.common.parameters.ParametersDescriptors": [[12, 4, 1, "", "atomic_density_sigma"], [12, 5, 1, "", "bispectrum_cutoff"], [12, 5, 1, "", "bispectrum_switchflag"], [12, 4, 1, "", "bispectrum_twojmax"], [12, 4, 1, "", "descriptor_type"], [12, 4, 1, "", "descriptors_contain_xyz"], [12, 4, 1, "", "lammps_compute_file"], [12, 5, 1, "", "use_y_splitting"], [12, 5, 1, "", "use_z_splitting"]], "mala.common.parameters.ParametersHyperparameterOptimization": [[12, 4, 1, "", "direction"], [12, 4, 1, "", "hlist"], [12, 4, 1, "", "n_trials"], [12, 5, 1, "", "number_training_per_trial"], [12, 5, 1, "", "rdb_storage_heartbeat"], [12, 3, 1, "", "show"], [12, 5, 1, "", "trial_ensemble_evaluation"]], "mala.common.parameters.ParametersNetwork": [[12, 4, 1, "", "bidirection"], [12, 4, 1, "", "layer_activations"], [12, 4, 1, "", "layer_sizes"], [12, 4, 1, "", "loss_function_type"], [12, 4, 1, "", "nn_type"], [12, 4, 1, "", "no_hidden_state"], [12, 4, 1, "", "num_heads"], [12, 4, 1, "", "num_hidden_layers"]], "mala.common.parameters.ParametersRunning": [[12, 5, 1, "", "after_training_metric"], [12, 4, 1, "", "checkpoint_name"], [12, 4, 1, "", "checkpoints_each_epoch"], [12, 5, 1, "", "during_training_metric"], [12, 4, 1, "", "early_stopping_epochs"], [12, 4, 1, "", "early_stopping_threshold"], [12, 4, 1, "", "inference_data_grid"], [12, 4, 1, "", "learning_rate"], [12, 4, 1, "", "learning_rate_decay"], [12, 4, 1, "", "learning_rate_patience"], [12, 4, 1, "", "learning_rate_scheduler"], [12, 4, 1, "", "logging_dir"], [12, 4, 1, "", "logging_dir_append_date"], [12, 4, 1, "", "max_number_epochs"], [12, 4, 1, "", "mini_batch_size"], [12, 4, 1, "", "num_workers"], [12, 4, 1, "", "optimizer"], [12, 4, 1, "", "profiler_range"], [12, 4, 1, "", "training_log_interval"], [12, 5, 1, "", "use_graphs"], [12, 4, 1, "", "use_mixed_precision"], [12, 4, 1, "", "use_shuffling_for_samplers"]], "mala.common.parameters.ParametersTargets": [[12, 4, 1, "", "assume_two_dimensional"], [12, 4, 1, "", "ldos_gridoffset_ev"], [12, 4, 1, "", "ldos_gridsize"], [12, 4, 1, "", "ldos_gridspacing_ev"], [12, 4, 1, "", "pseudopotential_path"], [12, 4, 1, "", "rdf_parameters"], [12, 5, 1, "", "restrict_targets"], [12, 4, 1, "", "ssf_parameters"], [12, 4, 1, "", "target_type"], [12, 4, 1, "", "tpcf_parameters"]], "mala.common.physical_data": [[13, 2, 1, "", "PhysicalData"]], "mala.common.physical_data.PhysicalData": [[13, 2, 1, "", "SkipArrayWriting"], [13, 5, 1, "", "data_name"], [13, 5, 1, "", "feature_size"], [13, 3, 1, "", "read_dimensions_from_numpy_file"], [13, 3, 1, "", "read_dimensions_from_openpmd_file"], [13, 3, 1, "", "read_from_numpy_file"], [13, 3, 1, "", "read_from_openpmd_file"], [13, 5, 1, "", "si_dimension"], [13, 5, 1, "", "si_unit_conversion"], [13, 3, 1, "", "write_to_numpy_file"], [13, 3, 1, "", "write_to_openpmd_file"], [13, 3, 1, "", "write_to_openpmd_iteration"]], "mala.datageneration": [[15, 0, 0, "-", "ofdft_initializer"], [16, 0, 0, "-", "trajectory_analyzer"]], "mala.datageneration.ofdft_initializer": [[15, 2, 1, "", "OFDFTInitializer"]], "mala.datageneration.ofdft_initializer.OFDFTInitializer": [[15, 3, 1, "", "get_equilibrated_configuration"]], "mala.datageneration.trajectory_analyzer": [[16, 2, 1, "", "TrajectoryAnalyzer"]], "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer": [[16, 5, 1, "", "first_snapshot"], [16, 3, 1, "", "get_first_snapshot"], [16, 3, 1, "", "get_snapshot_correlation_cutoff"], [16, 3, 1, "", "get_uncorrelated_snapshots"], [16, 5, 1, "", "snapshot_correlation_cutoff"], [16, 5, 1, "", "trajectory"], [16, 3, 1, "", "uncache_properties"]], "mala.datahandling": [[18, 0, 0, "-", "data_converter"], [19, 0, 0, "-", "data_handler"], [20, 0, 0, "-", "data_handler_base"], [21, 0, 0, "-", "data_repo"], [22, 0, 0, "-", "data_scaler"], [23, 0, 0, "-", "data_shuffler"], [24, 0, 0, "-", "fast_tensor_dataset"], [25, 0, 0, "-", "lazy_load_dataset"], [26, 0, 0, "-", "lazy_load_dataset_single"], [27, 0, 0, "-", "ldos_aligner"], [28, 0, 0, "-", "multi_lazy_load_data_loader"], [29, 0, 0, "-", "snapshot"]], "mala.datahandling.data_converter": [[18, 2, 1, "", "DataConverter"]], "mala.datahandling.data_converter.DataConverter": [[18, 3, 1, "", "add_snapshot"], [18, 3, 1, "", "convert_snapshots"], [18, 4, 1, "", "descriptor_calculator"], [18, 4, 1, "", "target_calculator"]], "mala.datahandling.data_handler": [[19, 2, 1, "", "DataHandler"]], "mala.datahandling.data_handler.DataHandler": [[19, 3, 1, "", "clear_data"], [19, 3, 1, "", "get_snapshot_calculation_output"], [19, 3, 1, "", "get_test_input_gradient"], [19, 3, 1, "", "mix_datasets"], [19, 3, 1, "", "prepare_data"], [19, 3, 1, "", "prepare_for_testing"], [19, 3, 1, "", "raw_numpy_to_converted_scaled_tensor"], [19, 3, 1, "", "resize_snapshots_for_debugging"]], "mala.datahandling.data_handler_base": [[20, 2, 1, "", "DataHandlerBase"]], "mala.datahandling.data_handler_base.DataHandlerBase": [[20, 3, 1, "", "add_snapshot"], [20, 3, 1, "", "clear_data"], [20, 5, 1, "", "input_dimension"], [20, 5, 1, "", "output_dimension"]], "mala.datahandling.data_scaler": [[22, 2, 1, "", "DataScaler"]], "mala.datahandling.data_scaler.DataScaler": [[22, 3, 1, "", "finish_incremental_fitting"], [22, 3, 1, "", "fit"], [22, 3, 1, "", "incremental_fit"], [22, 3, 1, "", "inverse_transform"], [22, 3, 1, "", "load_from_file"], [22, 3, 1, "", "save"], [22, 3, 1, "", "start_incremental_fitting"], [22, 3, 1, "", "transform"]], "mala.datahandling.data_shuffler": [[23, 2, 1, "", "DataShuffler"]], "mala.datahandling.data_shuffler.DataShuffler": [[23, 3, 1, "", "add_snapshot"], [23, 3, 1, "", "shuffle_snapshots"]], "mala.datahandling.fast_tensor_dataset": [[24, 2, 1, "", "FastTensorDataset"]], "mala.datahandling.fast_tensor_dataset.FastTensorDataset": [[24, 3, 1, "", "shuffle"]], "mala.datahandling.lazy_load_dataset": [[25, 2, 1, "", "LazyLoadDataset"]], "mala.datahandling.lazy_load_dataset.LazyLoadDataset": [[25, 3, 1, "", "add_snapshot_to_dataset"], [25, 3, 1, "", "get_new_data"], [25, 3, 1, "", "mix_datasets"], [25, 5, 1, "", "return_outputs_directly"]], "mala.datahandling.lazy_load_dataset_single": [[26, 2, 1, "", "LazyLoadDatasetSingle"]], "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle": [[26, 3, 1, "", "allocate_shared_mem"], [26, 3, 1, "", "deallocate_shared_mem"], [26, 3, 1, "", "delete_data"], [26, 3, 1, "", "mix_datasets"]], "mala.datahandling.ldos_aligner": [[27, 2, 1, "", "LDOSAligner"]], "mala.datahandling.ldos_aligner.LDOSAligner": [[27, 3, 1, "", "add_snapshot"], [27, 3, 1, "", "align_ldos_to_ref"], [27, 3, 1, "", "calc_optimal_ldos_shift"]], "mala.datahandling.multi_lazy_load_data_loader": [[28, 2, 1, "", "MultiLazyLoadDataLoader"]], "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader": [[28, 3, 1, "", "cleanup"], [28, 3, 1, "", "load_snapshot_to_shm"]], "mala.datahandling.snapshot": [[29, 2, 1, "", "Snapshot"]], "mala.datahandling.snapshot.Snapshot": [[29, 3, 1, "", "from_json"]], "mala.descriptors": [[31, 0, 0, "-", "atomic_density"], [32, 0, 0, "-", "bispectrum"], [33, 0, 0, "-", "descriptor"], [34, 0, 0, "-", "lammps_utils"], [35, 0, 0, "-", "minterpy_descriptors"]], "mala.descriptors.atomic_density": [[31, 2, 1, "", "AtomicDensity"]], "mala.descriptors.atomic_density.AtomicDensity": [[31, 3, 1, "", "backconvert_units"], [31, 3, 1, "", "convert_units"], [31, 5, 1, "", "data_name"], [31, 5, 1, "", "feature_size"], [31, 3, 1, "", "get_optimal_sigma"]], "mala.descriptors.bispectrum": [[32, 2, 1, "", "Bispectrum"]], "mala.descriptors.bispectrum.Bispectrum": [[32, 3, 1, "", "backconvert_units"], [32, 3, 1, "", "convert_units"], [32, 5, 1, "", "data_name"], [32, 5, 1, "", "feature_size"]], "mala.descriptors.descriptor": [[33, 2, 1, "", "Descriptor"]], "mala.descriptors.descriptor.Descriptor": [[33, 3, 1, "", "backconvert_units"], [33, 3, 1, "", "calculate_from_atoms"], [33, 3, 1, "", "calculate_from_qe_out"], [33, 3, 1, "", "convert_local_to_3d"], [33, 3, 1, "", "convert_units"], [33, 5, 1, "", "descriptors_contain_xyz"], [33, 3, 1, "", "enforce_pbc"], [33, 3, 1, "", "gather_descriptors"], [33, 3, 1, "", "setup_lammps_tmp_files"], [33, 5, 1, "", "si_dimension"], [33, 5, 1, "", "si_unit_conversion"]], "mala.descriptors.lammps_utils": [[34, 1, 1, "", "extract_compute_np"], [34, 1, 1, "", "set_cmdlinevars"]], "mala.descriptors.minterpy_descriptors": [[35, 2, 1, "", "MinterpyDescriptors"]], "mala.descriptors.minterpy_descriptors.MinterpyDescriptors": [[35, 3, 1, "", "backconvert_units"], [35, 3, 1, "", "convert_units"], [35, 5, 1, "", "data_name"], [35, 5, 1, "", "feature_size"]], "mala.interfaces": [[37, 0, 0, "-", "ase_calculator"]], "mala.interfaces.ase_calculator": [[37, 2, 1, "", "MALA"]], "mala.interfaces.ase_calculator.MALA": [[37, 3, 1, "", "calculate"], [37, 3, 1, "", "calculate_properties"], [37, 4, 1, "", "implemented_properties"], [37, 3, 1, "", "load_model"], [37, 3, 1, "", "load_run"], [37, 3, 1, "", "save_calculator"]], "mala.network": [[39, 0, 0, "-", "acsd_analyzer"], [40, 0, 0, "-", "hyper_opt"], [41, 0, 0, "-", "hyper_opt_naswot"], [42, 0, 0, "-", "hyper_opt_oat"], [43, 0, 0, "-", "hyper_opt_optuna"], [44, 0, 0, "-", "hyperparameter"], [45, 0, 0, "-", "hyperparameter_acsd"], [46, 0, 0, "-", "hyperparameter_naswot"], [47, 0, 0, "-", "hyperparameter_oat"], [48, 0, 0, "-", "hyperparameter_optuna"], [49, 0, 0, "-", "multi_training_pruner"], [50, 0, 0, "-", "naswot_pruner"], [51, 0, 0, "-", "network"], [52, 0, 0, "-", "objective_base"], [53, 0, 0, "-", "objective_naswot"], [54, 0, 0, "-", "predictor"], [55, 0, 0, "-", "runner"], [56, 0, 0, "-", "tester"], [57, 0, 0, "-", "trainer"]], "mala.network.acsd_analyzer": [[39, 2, 1, "", "ACSDAnalyzer"]], "mala.network.acsd_analyzer.ACSDAnalyzer": [[39, 3, 1, "", "add_hyperparameter"], [39, 3, 1, "", "add_snapshot"], [39, 3, 1, "", "perform_study"], [39, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt": [[40, 2, 1, "", "HyperOpt"]], "mala.network.hyper_opt.HyperOpt": [[40, 3, 1, "", "add_hyperparameter"], [40, 3, 1, "", "checkpoint_exists"], [40, 3, 1, "", "clear_hyperparameters"], [40, 3, 1, "", "perform_study"], [40, 3, 1, "", "set_optimal_parameters"], [40, 3, 1, "", "set_parameters"]], "mala.network.hyper_opt_naswot": [[41, 2, 1, "", "HyperOptNASWOT"]], "mala.network.hyper_opt_naswot.HyperOptNASWOT": [[41, 3, 1, "", "get_best_trial_results"], [41, 3, 1, "", "perform_study"], [41, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt_oat": [[42, 2, 1, "", "HyperOptOAT"]], "mala.network.hyper_opt_oat.HyperOptOAT": [[42, 3, 1, "", "add_hyperparameter"], [42, 3, 1, "", "get_best_trial_results"], [42, 3, 1, "", "get_optimal_parameters"], [42, 3, 1, "", "get_orthogonal_array"], [42, 3, 1, "", "load_from_file"], [42, 3, 1, "", "number_of_runs"], [42, 3, 1, "", "perform_study"], [42, 3, 1, "", "resume_checkpoint"], [42, 3, 1, "", "set_optimal_parameters"], [42, 3, 1, "", "show_order_of_importance"]], "mala.network.hyper_opt_optuna": [[43, 2, 1, "", "HyperOptOptuna"]], "mala.network.hyper_opt_optuna.HyperOptOptuna": [[43, 3, 1, "", "get_trials_from_study"], [43, 3, 1, "", "load_from_file"], [43, 3, 1, "", "perform_study"], [43, 3, 1, "", "requeue_zombie_trials"], [43, 3, 1, "", "resume_checkpoint"], [43, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyperparameter": [[44, 2, 1, "", "Hyperparameter"]], "mala.network.hyperparameter_acsd": [[45, 2, 1, "", "HyperparameterACSD"]], "mala.network.hyperparameter_naswot": [[46, 2, 1, "", "HyperparameterNASWOT"]], "mala.network.hyperparameter_oat": [[47, 2, 1, "", "HyperparameterOAT"]], "mala.network.hyperparameter_oat.HyperparameterOAT": [[47, 3, 1, "", "get_categorical"], [47, 3, 1, "", "get_parameter"], [47, 5, 1, "", "num_choices"]], "mala.network.hyperparameter_optuna": [[48, 2, 1, "", "HyperparameterOptuna"]], "mala.network.hyperparameter_optuna.HyperparameterOptuna": [[48, 3, 1, "", "get_categorical"], [48, 3, 1, "", "get_float"], [48, 3, 1, "", "get_int"], [48, 3, 1, "", "get_parameter"]], "mala.network.multi_training_pruner": [[49, 2, 1, "", "MultiTrainingPruner"]], "mala.network.multi_training_pruner.MultiTrainingPruner": [[49, 3, 1, "", "prune"]], "mala.network.naswot_pruner": [[50, 2, 1, "", "NASWOTPruner"]], "mala.network.naswot_pruner.NASWOTPruner": [[50, 3, 1, "", "prune"]], "mala.network.network": [[51, 2, 1, "", "FeedForwardNet"], [51, 2, 1, "", "GRU"], [51, 2, 1, "", "LSTM"], [51, 2, 1, "", "Network"], [51, 2, 1, "", "PositionalEncoding"], [51, 2, 1, "", "TransformerNet"]], "mala.network.network.FeedForwardNet": [[51, 3, 1, "", "forward"]], "mala.network.network.GRU": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.LSTM": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.Network": [[51, 3, 1, "", "calculate_loss"], [51, 3, 1, "", "do_prediction"], [51, 3, 1, "", "forward"], [51, 3, 1, "", "load_from_file"], [51, 3, 1, "", "save_network"]], "mala.network.network.PositionalEncoding": [[51, 3, 1, "", "forward"]], "mala.network.network.TransformerNet": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "generate_square_subsequent_mask"], [51, 3, 1, "", "init_weights"]], "mala.network.objective_base": [[52, 2, 1, "", "ObjectiveBase"]], "mala.network.objective_base.ObjectiveBase": [[52, 3, 1, "", "parse_trial"], [52, 3, 1, "", "parse_trial_oat"], [52, 3, 1, "", "parse_trial_optuna"]], "mala.network.objective_naswot": [[53, 2, 1, "", "ObjectiveNASWOT"]], "mala.network.predictor": [[54, 2, 1, "", "Predictor"]], "mala.network.predictor.Predictor": [[54, 3, 1, "", "predict_for_atoms"], [54, 3, 1, "", "predict_from_qeout"]], "mala.network.runner": [[55, 2, 1, "", "Runner"]], "mala.network.runner.Runner": [[55, 3, 1, "", "load_run"], [55, 3, 1, "", "run_exists"], [55, 3, 1, "", "save_run"]], "mala.network.tester": [[56, 2, 1, "", "Tester"]], "mala.network.tester.Tester": [[56, 3, 1, "", "get_energy_targets_and_predictions"], [56, 3, 1, "", "predict_targets"], [56, 3, 1, "", "test_all_snapshots"], [56, 3, 1, "", "test_snapshot"]], "mala.network.trainer": [[57, 2, 1, "", "Trainer"]], "mala.network.trainer.Trainer": [[57, 3, 1, "", "load_run"], [57, 3, 1, "", "run_exists"], [57, 3, 1, "", "train_network"]], "mala.targets": [[59, 0, 0, "-", "atomic_force"], [60, 0, 0, "-", "calculation_helpers"], [61, 0, 0, "-", "cube_parser"], [62, 0, 0, "-", "density"], [63, 0, 0, "-", "dos"], [64, 0, 0, "-", "ldos"], [65, 0, 0, "-", "target"], [66, 0, 0, "-", "xsf_parser"]], "mala.targets.atomic_force": [[59, 2, 1, "", "AtomicForce"]], "mala.targets.atomic_force.AtomicForce": [[59, 3, 1, "", "convert_units"], [59, 3, 1, "", "get_feature_size"]], "mala.targets.calculation_helpers": [[60, 1, 1, "", "analytical_integration"], [60, 1, 1, "", "entropy_multiplicator"], [60, 1, 1, "", "fermi_function"], [60, 1, 1, "", "gaussians"], [60, 1, 1, "", "get_beta"], [60, 1, 1, "", "get_f0_value"], [60, 1, 1, "", "get_f1_value"], [60, 1, 1, "", "get_f2_value"], [60, 1, 1, "", "get_s0_value"], [60, 1, 1, "", "get_s1_value"], [60, 1, 1, "", "integrate_values_on_spacing"]], "mala.targets.cube_parser": [[61, 2, 1, "", "CubeFile"], [61, 1, 1, "", "read_cube"], [61, 1, 1, "", "read_imcube"], [61, 1, 1, "", "write_cube"], [61, 1, 1, "", "write_imcube"]], "mala.targets.cube_parser.CubeFile": [[61, 3, 1, "", "readline"]], "mala.targets.density": [[62, 2, 1, "", "Density"]], "mala.targets.density.Density": [[62, 3, 1, "", "backconvert_units"], [62, 3, 1, "", "convert_units"], [62, 5, 1, "", "data_name"], [62, 5, 1, "", "density"], [62, 5, 1, "", "feature_size"], [62, 3, 1, "", "from_cube_file"], [62, 3, 1, "", "from_ldos_calculator"], [62, 3, 1, "", "from_numpy_array"], [62, 3, 1, "", "from_numpy_file"], [62, 3, 1, "", "from_openpmd_file"], [62, 3, 1, "", "from_xsf_file"], [62, 3, 1, "", "get_atomic_forces"], [62, 3, 1, "", "get_density"], [62, 3, 1, "", "get_energy_contributions"], [62, 3, 1, "", "get_number_of_electrons"], [62, 3, 1, "", "get_scaled_positions_for_qe"], [62, 3, 1, "", "get_target"], [62, 3, 1, "", "invalidate_target"], [62, 5, 1, "", "number_of_electrons"], [62, 3, 1, "", "read_from_array"], [62, 3, 1, "", "read_from_cube"], [62, 3, 1, "", "read_from_xsf"], [62, 5, 1, "", "si_dimension"], [62, 5, 1, "", "si_unit_conversion"], [62, 4, 1, "", "te_mutex"], [62, 5, 1, "", "total_energy_contributions"], [62, 3, 1, "", "uncache_properties"], [62, 3, 1, "", "write_to_cube"], [62, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.dos": [[63, 2, 1, "", "DOS"]], "mala.targets.dos.DOS": [[63, 3, 1, "", "backconvert_units"], [63, 5, 1, "", "band_energy"], [63, 3, 1, "", "convert_units"], [63, 5, 1, "", "data_name"], [63, 5, 1, "", "density_of_states"], [63, 5, 1, "", "energy_grid"], [63, 5, 1, "", "entropy_contribution"], [63, 5, 1, "", "feature_size"], [63, 5, 1, "", "fermi_energy"], [63, 3, 1, "", "from_ldos_calculator"], [63, 3, 1, "", "from_numpy_array"], [63, 3, 1, "", "from_numpy_file"], [63, 3, 1, "", "from_qe_dos_txt"], [63, 3, 1, "", "from_qe_out"], [63, 3, 1, "", "get_band_energy"], [63, 3, 1, "", "get_density_of_states"], [63, 3, 1, "", "get_energy_grid"], [63, 3, 1, "", "get_entropy_contribution"], [63, 3, 1, "", "get_number_of_electrons"], [63, 3, 1, "", "get_self_consistent_fermi_energy"], [63, 3, 1, "", "get_target"], [63, 3, 1, "", "invalidate_target"], [63, 5, 1, "", "number_of_electrons"], [63, 3, 1, "", "read_from_array"], [63, 3, 1, "", "read_from_numpy_file"], [63, 3, 1, "", "read_from_qe_dos_txt"], [63, 3, 1, "", "read_from_qe_out"], [63, 5, 1, "", "si_dimension"], [63, 5, 1, "", "si_unit_conversion"], [63, 3, 1, "", "uncache_properties"]], "mala.targets.ldos": [[64, 2, 1, "", "LDOS"]], "mala.targets.ldos.LDOS": [[64, 3, 1, "", "backconvert_units"], [64, 5, 1, "", "band_energy"], [64, 3, 1, "", "convert_units"], [64, 5, 1, "", "data_name"], [64, 5, 1, "", "density"], [64, 5, 1, "", "density_of_states"], [64, 5, 1, "", "energy_grid"], [64, 5, 1, "", "entropy_contribution"], [64, 5, 1, "", "feature_size"], [64, 5, 1, "", "fermi_energy"], [64, 3, 1, "", "from_cube_file"], [64, 3, 1, "", "from_numpy_array"], [64, 3, 1, "", "from_numpy_file"], [64, 3, 1, "", "from_openpmd_file"], [64, 3, 1, "", "from_xsf_file"], [64, 3, 1, "", "get_atomic_forces"], [64, 3, 1, "", "get_band_energy"], [64, 3, 1, "", "get_density"], [64, 3, 1, "", "get_density_of_states"], [64, 3, 1, "", "get_energy_grid"], [64, 3, 1, "", "get_entropy_contribution"], [64, 3, 1, "", "get_number_of_electrons"], [64, 3, 1, "", "get_self_consistent_fermi_energy"], [64, 3, 1, "", "get_target"], [64, 3, 1, "", "get_total_energy"], [64, 3, 1, "", "invalidate_target"], [64, 5, 1, "", "local_density_of_states"], [64, 5, 1, "", "number_of_electrons"], [64, 3, 1, "", "read_from_array"], [64, 3, 1, "", "read_from_cube"], [64, 3, 1, "", "read_from_xsf"], [64, 5, 1, "", "si_dimension"], [64, 5, 1, "", "si_unit_conversion"], [64, 5, 1, "", "total_energy"], [64, 3, 1, "", "uncache_properties"]], "mala.targets.target": [[65, 2, 1, "", "Target"]], "mala.targets.target.Target": [[65, 3, 1, "", "backconvert_units"], [65, 3, 1, "", "convert_units"], [65, 5, 1, "", "feature_size"], [65, 3, 1, "", "get_energy_grid"], [65, 3, 1, "", "get_radial_distribution_function"], [65, 3, 1, "", "get_real_space_grid"], [65, 3, 1, "", "get_static_structure_factor"], [65, 3, 1, "", "get_target"], [65, 3, 1, "", "get_three_particle_correlation_function"], [65, 3, 1, "", "invalidate_target"], [65, 5, 1, "", "qe_input_data"], [65, 3, 1, "", "radial_distribution_function_from_atoms"], [65, 3, 1, "", "read_additional_calculation_data"], [65, 3, 1, "", "restrict_data"], [65, 5, 1, "", "si_dimension"], [65, 5, 1, "", "si_unit_conversion"], [65, 3, 1, "", "static_structure_factor_from_atoms"], [65, 3, 1, "", "three_particle_correlation_function_from_atoms"], [65, 3, 1, "", "write_additional_calculation_data"], [65, 3, 1, "", "write_tem_input_file"], [65, 3, 1, "", "write_to_numpy_file"], [65, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.xsf_parser": [[66, 1, 1, "", "read_xsf"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute", "5": "py:property"}, "terms": {"": [0, 12, 40, 42, 61, 63, 65, 73, 74, 75, 78], "0": [2, 5, 6, 11, 12, 13, 18, 22, 27, 33, 34, 37, 40, 44, 45, 46, 47, 48, 54, 60, 62, 64, 65, 70, 73], "000": [2, 75], "00001": 73, "0048450": 65, "005": 70, "01": 70, "01070": 74, "015": 70, "023": 74, "030": 42, "035120": 74, "03610": 65, "045008": 74, "05": [12, 27], "1": [2, 6, 12, 20, 22, 33, 37, 59, 60, 61, 62, 63, 64, 65, 71, 73, 74, 77], "10": [2, 3, 12, 27, 39, 42, 65, 71, 73, 74, 77], "100": [2, 6, 12, 73, 75], "1007": 42, "1038": 74, "104": 74, "1063": 65, "108": 74, "1088": [39, 74], "11": [6, 12, 71, 73], "1103": 74, "115": 74, "12": [3, 5, 74], "1234": 6, "125146": 74, "16": 74, "1606": 65, "1696": 65, "17": [65, 74], "1883": 12, "1_31": 42, "1d": [62, 64], "1e": [27, 71], "2": [2, 5, 6, 12, 34, 60, 63, 65, 71, 73, 78], "20": 70, "200": 5, "2017": 61, "2019": [11, 61], "2021": 74, "2022": 74, "2023": 74, "2153": [39, 74], "224": 5, "25th": 61, "2632": [39, 74], "2685": 12, "27": 74, "29500": 6, "2d": [71, 72], "2mic": 65, "3": [2, 3, 12, 20, 33, 42, 62, 64, 71, 74, 77], "32": [60, 70], "33": 60, "36808": 42, "39m": 78, "3d": [62, 64], "4": [2, 6, 12, 13, 18, 37, 63, 71, 73, 74, 77], "40": 73, "400": 5, "5": [3, 6, 12, 65, 71, 73], "500": 5, "57": 65, "6": [65, 71], "64": [33, 70], "67637": [71, 73], "7": [71, 78], "8": [12, 76, 77], "9": [71, 74], "91": [33, 71], "94": 33, "96": 70, "97": 33, "978": 42, "A": [0, 3, 6, 10, 11, 12, 13, 16, 20, 24, 28, 29, 33, 37, 41, 43, 49, 50, 52, 54, 56, 57, 61, 62, 64, 65, 70, 74, 75], "AND": [11, 43, 51, 61], "AS": [11, 61], "ASE": [5, 13, 31, 33, 37, 54, 62, 63, 64, 65], "As": [0, 2, 3, 4, 5, 63, 73, 77, 79], "At": 78, "BE": [11, 43, 61], "BUT": [11, 61], "Be": [6, 12, 51], "By": [0, 5, 6, 11, 12, 62, 63, 64, 70, 71, 73], "FOR": [11, 61], "For": [2, 3, 4, 5, 12, 16, 19, 26, 33, 37, 43, 55, 57, 64, 65, 70, 71, 72, 73, 75, 76, 79], "IN": [11, 61], "IT": 43, "If": [0, 2, 3, 4, 5, 6, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 33, 34, 39, 40, 42, 43, 49, 50, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 70, 71, 72, 74, 75, 76, 78], "In": [0, 2, 5, 6, 12, 13, 25, 40, 43, 44, 45, 46, 47, 48, 49, 62, 63, 64, 65, 70, 71, 72, 73, 76, 78], "It": [3, 5, 6, 12, 26, 54, 56, 61, 62, 63, 64, 65, 69, 72, 73, 75], "NO": [11, 61], "NOT": [11, 12, 43, 61], "No": [2, 6, 12, 22, 37, 73], "OF": [11, 12, 15, 61, 75], "OR": [11, 61], "Of": [6, 12, 73], "On": 3, "One": [3, 5, 6, 61, 70, 73], "THE": [11, 43, 61], "THEN": 43, "TO": [4, 11, 43, 61], "That": [55, 70], "The": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 18, 19, 29, 31, 33, 34, 39, 40, 41, 42, 43, 51, 53, 55, 57, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "Their": 71, "Then": [2, 5], "There": [2, 63, 70, 73], "These": [2, 3, 6, 18, 43, 63, 70, 71, 75], "To": [2, 4, 5, 6, 12, 26, 33, 51, 73, 74, 75, 76, 78], "WILL": 43, "WITH": [11, 61], "Will": [16, 34, 44, 64], "With": [5, 12, 25, 37, 70], "__getitem__": 24, "_build": 77, "_xxx": 12, "ab": 65, "abc": [13, 20, 40], "abil": 6, "abl": 0, "about": [61, 65], "abov": [2, 11, 12, 16, 50, 61, 73], "absolut": [51, 56], "absolute_valu": 12, "abstract": [13, 40, 51, 65, 74], "ac9956": [39, 74], "acceler": [1, 3, 5, 6, 12, 69, 74, 75], "acces": 62, "access": [3, 5, 6, 9, 16, 21, 22, 26, 37, 70, 71, 72, 73, 75, 78, 79], "accessibli": 65, "accompani": [0, 73, 79], "accord": [2, 62, 65, 70], "accordingli": [71, 75], "account": [27, 65, 75], "accur": [2, 3, 6, 65, 71], "accuraci": [3, 6, 12, 42, 71, 73], "achiev": 12, "acitv": 12, "acquaint": 75, "acquir": 72, "across": [1, 6, 12, 56, 73, 74, 75], "acsd": [2, 39, 71], "acsd_analyz": [7, 38, 68], "acsd_point": 2, "acsdanalyz": [2, 7, 38, 39, 68], "action": [11, 12, 61], "activ": [0, 3, 4, 5, 6, 12, 55, 70, 73, 75], "actual": [0, 6, 13, 16, 25, 42, 43, 51, 56, 70, 73, 79], "actual_output": 56, "ad": [6, 12, 16, 20, 22, 25, 34, 70, 71], "adam": [0, 12, 73], "add": [0, 2, 6, 12, 18, 20, 22, 23, 25, 27, 34, 39, 40, 42, 70, 71, 73, 74, 76, 78], "add_hyperparamet": [2, 7, 38, 39, 40, 42, 68, 70], "add_snapshot": [2, 4, 6, 7, 17, 18, 20, 23, 27, 38, 39, 68, 70, 71, 73], "add_snapshot_a": 20, "add_snapshot_to_dataset": [7, 17, 25, 68], "addit": [0, 5, 6, 12, 13, 18, 27, 37, 55, 62, 65, 74, 77], "addition": [6, 73, 75], "additional_attribut": [13, 62, 65], "additional_calculation_data": [55, 73], "additional_info_input_": 71, "additional_info_input_path": [18, 71], "additional_info_input_typ": [18, 71], "additional_info_save_path": [18, 23, 71], "additional_metadata": 13, "additon": 37, "aditya95sriram": 61, "adjust": [5, 12, 65, 70, 72], "adress": [12, 43], "advanc": [2, 5, 69, 70, 71, 72, 73, 74, 75, 77], "advantag": 18, "advers": 6, "advis": [2, 5, 12, 55, 71], "affect": [6, 18], "aforement": 3, "after": [0, 3, 6, 12, 37, 71, 73, 76, 77], "after_training_metr": [3, 6, 7, 8, 12, 68], "afterward": [2, 6, 25, 63, 72, 73], "again": [0, 22, 77], "against": [49, 50], "aggres": 12, "agre": [0, 73], "aidan": [0, 74], "aim": [5, 6], "akin": 6, "al": 43, "algorihm": 12, "algorithm": [5, 6, 12, 70, 75], "align": 27, "align_ldos_to_ref": [7, 17, 27, 68], "all": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 33, 37, 40, 43, 44, 52, 54, 55, 56, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 77, 78, 79], "all_chang": 37, "allevi": 5, "alloc": [2, 12, 26], "allocate_shared_mem": [7, 17, 26, 68], "allow": [0, 4, 5, 6, 12, 73, 75, 77], "almost": 6, "along": [5, 60, 74, 75], "alongsid": [4, 13, 62, 64, 77], "alphabet": 0, "alreadi": [6, 13, 55, 72, 73, 77], "also": [1, 2, 4, 5, 6, 10, 12, 19, 42, 51, 55, 69, 71, 72, 73, 74, 77, 79], "alter": [3, 72], "altern": [12, 13, 43], "alternative_storage_path": 43, "although": [41, 62, 75], "aluminium": 75, "alwai": [6, 11, 27, 39, 40, 44, 45, 46, 47, 48, 64, 69, 70, 71, 76], "am": 33, "american": 74, "among": 70, "amount": [2, 6, 23, 27, 73], "amp": 12, "an": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 19, 25, 26, 29, 31, 33, 34, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 54, 55, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 75, 76, 77, 78], "analys": 41, "analysi": [2, 4, 5, 12, 16, 39, 42, 43], "analyt": [60, 63, 64], "analytical_integr": [7, 58, 60, 68], "analyz": [16, 39], "ang": [59, 62], "angstrom": 33, "ani": [0, 5, 6, 11, 12, 13, 16, 18, 24, 25, 26, 37, 49, 50, 51, 61, 62, 65, 70, 71, 72, 73, 74, 75], "anoth": [3, 6, 12, 26], "anyth": [12, 62], "anywai": 18, "ap": 74, "apart": [6, 71], "api": [4, 72, 73, 75], "apidoc": 77, "appli": [12, 19, 22, 43, 65, 73, 74], "applic": [43, 53], "approach": [18, 25, 26, 29, 40, 44, 45, 46, 47, 48, 74], "appropri": [0, 6, 64, 71], "approxim": 60, "apt": 78, "ar": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 20, 25, 26, 27, 29, 33, 40, 41, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 77, 79], "arbitrari": 65, "arbitrarili": 6, "architectur": [3, 38, 40, 41, 43, 51, 52, 70, 76, 77], "archiv": [16, 73], "arg": [24, 25, 26, 37, 49, 50, 51, 61], "argdict": 34, "argument": [6, 12, 18, 33, 34, 60, 71], "aris": [11, 61, 78], "around": 2, "arrai": [3, 12, 13, 18, 19, 20, 22, 23, 27, 28, 29, 31, 32, 33, 34, 35, 42, 47, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 77], "array_lik": 27, "array_shap": 34, "articl": [74, 75], "arxiv": 65, "as_numpi": 22, "asap": 65, "asap3": 65, "ase": [15, 16, 31, 33, 37, 54, 62, 64, 65, 72], "ase_calcul": [7, 36, 68], "aspect": 73, "assert": 75, "assign": [6, 12, 51], "associ": [11, 61, 62, 63], "assum": [12, 13, 16, 25, 26, 34, 51, 60, 62, 65, 69, 70, 73, 78], "assume_two_dimension": [7, 8, 12, 68, 72], "assumpt": 12, "asterisk": 64, "atom": [2, 5, 6, 12, 15, 16, 29, 33, 37, 54, 59, 61, 62, 64, 65, 71, 72, 73, 75, 79], "atomic_dens": [7, 30, 68], "atomic_density_sigma": [7, 8, 12, 68], "atomic_forc": [7, 58, 62, 68], "atomicdens": [7, 30, 31, 68], "atomicforc": [7, 58, 59, 68], "atomist": 72, "atoms_angstrom": [62, 64, 65], "attach": 6, "attempt": [4, 23, 55, 57, 62, 64, 65], "attent": [12, 74], "attila": [0, 74, 75], "attribut": [10, 12, 13, 16, 21, 29, 52, 62, 65], "austin": [0, 74], "author": [11, 61, 74], "automat": [0, 3, 5, 6, 12, 16, 27, 42, 51, 55, 65, 77], "avail": [0, 2, 5, 6, 9, 12, 18, 27, 33, 40, 44, 45, 46, 47, 48, 60, 70, 71, 73, 76, 77], "availab": 6, "averag": [2, 3, 12, 65, 73], "avoid": [0, 3, 12, 26], "awar": [5, 51, 65, 71, 76, 78], "axi": [12, 60], "b": [60, 74, 75], "back": [12, 26, 43], "backbon": 73, "backconvert_unit": [7, 30, 31, 32, 33, 35, 58, 62, 63, 64, 65, 68], "backend": [5, 12], "background": 3, "bad": 6, "band": [6, 12, 49, 56, 63, 64, 73], "band_energi": [3, 6, 7, 12, 49, 56, 58, 63, 64, 68, 73], "band_energy_ful": 56, "barrier": [7, 8, 11, 68], "bartosz": 0, "base": [0, 2, 3, 4, 5, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 73, 75], "baselin": 11, "baseprun": [49, 50], "bash": 6, "basi": [12, 61], "basic": [2, 5, 6, 69, 71, 73, 75], "bat": 77, "batch": [12, 53, 70], "batch_siz": 53, "be_dens": 5, "be_ldo": 71, "be_model": [72, 73], "be_shuffl": [4, 6], "be_snapshot": [4, 71], "be_snapshot0": [4, 6, 71, 73], "be_snapshot1": [2, 6, 72, 73], "be_snapshot2": 2, "becaus": [3, 12, 37, 73], "becom": [5, 27], "been": [0, 2, 3, 6, 22, 33, 63, 71, 73, 74, 75, 77, 78, 79], "befor": [0, 6, 12, 49, 50, 64, 65, 72, 73, 77], "behavior": 12, "being": [6, 11, 25, 26, 37, 55, 56, 57, 62, 63, 64, 73], "believ": 12, "below": [0, 5, 12, 16, 61], "benchmark": 55, "benefici": 12, "benefit": 12, "best": [12, 41, 42, 62, 70], "beta": [60, 63], "better": 6, "between": [2, 3, 6, 11, 12, 16, 23, 25, 43, 70], "bgrid": 33, "bias": 6, "bidirect": [7, 8, 12, 68], "big": [0, 65], "bigger": 12, "bin": [12, 65, 76, 78], "binari": 71, "bind": 78, "bispectrum": [2, 5, 7, 12, 30, 33, 68, 71, 72, 73, 76], "bispectrum_cutoff": [2, 7, 8, 12, 68, 71, 73], "bispectrum_switchflag": [7, 8, 12, 68], "bispectrum_twojmax": [2, 7, 8, 12, 68, 71, 73], "bit": [12, 24, 62], "black": 0, "blob": [11, 65], "bohr": [2, 62, 64, 71], "boldsymbol": 64, "bool": [11, 12, 13, 18, 19, 22, 25, 26, 27, 33, 34, 40, 42, 43, 49, 50, 54, 55, 57, 60, 62, 63, 64, 65], "boolean": [49, 50], "both": [2, 3, 12, 56, 61, 75], "bottleneck": 6, "bound": [40, 44, 45, 46, 48, 70], "boundari": 12, "bp": 4, "branch": 76, "break": 33, "briefli": 6, "brillouin": 60, "broadcast_band_energi": 63, "broadcast_entropi": 63, "broadcast_fermi_energi": 63, "brown": 11, "brzoza": 0, "buffer": [26, 28], "bug": 0, "bugfix": 0, "build": [0, 4, 12, 19, 69, 75], "build_fold": 76, "build_mpi": 76, "build_shared_lib": 76, "build_total_energy_modul": 78, "built": [0, 11, 76], "bump2vers": 77, "bumpvers": 0, "busi": 6, "by_snapshot": 12, "c": [6, 11, 61, 65], "cach": [16, 25, 26, 62, 63, 64, 65], "calc_optimal_ldos_shift": [7, 17, 27, 68], "calcul": [0, 2, 5, 6, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 51, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 73, 74, 75, 76, 79], "calculate_from_atom": [7, 30, 33, 68], "calculate_from_qe_out": [7, 30, 33, 68], "calculate_loss": [7, 38, 51, 68], "calculate_properti": [7, 36, 37, 68], "calculation_help": [7, 58, 68], "calculation_output": [19, 29], "calculation_output_fil": 20, "calculation_typ": 65, "calibr": [49, 50], "call": [2, 3, 6, 11, 12, 13, 16, 18, 24, 42, 43, 50, 51, 63, 65, 71, 72, 73, 74, 75, 79], "callow": 0, "can": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 18, 19, 22, 25, 26, 33, 37, 42, 43, 51, 52, 54, 55, 56, 57, 65, 70, 71, 72, 73, 75, 76, 78, 79], "cancel": 71, "candid": [49, 50, 70], "cangi": [0, 74, 75], "cannot": [6, 33, 62, 64], "capabilit": 2, "capabl": [1, 3, 4, 75], "care": [6, 26, 43], "case": [6, 11, 12, 13, 25, 26, 42, 43, 49, 54, 55, 64, 65, 70, 76, 78], "categor": [3, 12, 40, 42, 44, 45, 46, 47, 48, 70], "categori": 11, "caus": 74, "cd": 77, "cell": [5, 12, 31, 33, 37, 51, 62, 64, 65], "center": [60, 75], "cento": 79, "central": [3, 51, 73], "certain": [12, 18, 40, 41, 43, 63], "cff": 0, "cflag": 78, "challeng": [74, 75], "chanc": [3, 12], "chang": [0, 3, 4, 12, 37, 63, 65, 76, 77, 78], "changelog": 0, "chapter": 42, "character": [12, 31], "charg": [11, 37, 61], "check": [0, 4, 6, 9, 19, 22, 37, 40, 49, 55, 57, 76, 77], "check_modul": [7, 8, 68], "checkout": [21, 76, 77], "checkpoint": [12, 37, 40, 42, 43, 55, 57], "checkpoint_exist": [7, 38, 40, 57, 68], "checkpoint_nam": [3, 6, 7, 8, 12, 40, 42, 43, 68], "checkpoints_each_epoch": [6, 7, 8, 12, 68], "checkpoints_each_tri": [3, 12], "chemistri": 74, "choic": [39, 40, 42, 44, 45, 46, 47, 48, 53, 70, 73], "choos": [0, 2, 12], "chosen": [2, 6, 12, 71], "ci": 0, "circumv": [6, 74], "citat": [0, 74], "cite": 75, "citeseerx": 65, "cl": 55, "claim": [11, 61], "class": [0, 2, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "classic": 37, "classmethod": [10, 12, 22, 29, 37, 40, 42, 43, 51, 55, 57, 62, 63, 64], "clean": [43, 77], "cleanup": [7, 17, 28, 68], "clear": [0, 19, 40], "clear_data": [7, 17, 19, 20, 68], "clear_hyperparamet": [7, 38, 40, 68], "clone": 77, "cloud": 2, "cluster": [3, 6, 43, 78], "cmake": [76, 78], "cmake_cxx_compil": 76, "cmdarg": 34, "coars": [2, 73], "code": [3, 12, 33, 36, 65, 69, 72, 74, 75, 76, 77, 79], "coeffici": 73, "collabor": 0, "collect": [3, 12, 33, 34], "collector": 37, "com": [0, 11, 12, 21, 42, 61, 65, 76, 77, 78], "combin": [2, 33, 37, 70], "come": [12, 33], "comm": [11, 13], "comm_world": [11, 65], "command": [3, 12, 34, 55, 70], "comment": [7, 8, 12, 68], "comminuc": 65, "commit": 0, "common": [7, 11, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68], "commonli": 33, "commun": [3, 6, 11, 12, 33], "compar": [2, 12, 16, 73, 75], "comparison": 65, "compat": [3, 4, 12, 21, 42, 43, 51, 52, 66, 72, 76], "compil": [76, 78], "complei": 61, "complet": [6, 71], "complete_save_path": [6, 18, 23, 71], "complex": 61, "complianc": 0, "compliant": 4, "complic": [2, 6], "compon": [33, 71], "comprehens": 75, "compress": 4, "compuat": 65, "comput": [1, 2, 5, 6, 12, 22, 27, 34, 69, 74, 75], "computation": [3, 5], "compute_typ": 34, "concept": [3, 75], "concern": 38, "concert": 55, "conda": 0, "condens": 71, "condit": [3, 11, 12, 61], "conduct": 75, "config": 0, "configur": [0, 4, 12, 15, 16, 33, 54, 72, 73, 76, 78], "confirm": 6, "conjunct": [3, 12], "connect": [11, 61], "consecut": 12, "conserve_dimens": 64, "consid": [0, 12, 19, 27], "consist": [18, 19, 29, 61, 63, 64, 70, 73, 79], "consquenc": 16, "const": 61, "constant": 61, "constitut": 0, "construct": [3, 12, 18, 60, 65, 73, 74, 75], "constructor": 61, "consult": [0, 4], "contain": [2, 4, 10, 12, 13, 20, 23, 27, 29, 30, 33, 37, 41, 56, 61, 62, 63, 64, 65, 73], "continu": [55, 57, 77], "contract": [11, 61], "contribut": [12, 62, 63, 64, 75], "control": [12, 25, 33, 65, 73], "convent": [27, 40, 42, 65], "convers": [1, 13, 19, 20, 23, 25, 26, 27, 28, 33, 34, 59, 62, 63, 64, 65, 69], "convert": [4, 10, 12, 18, 19, 31, 32, 33, 34, 35, 39, 59, 62, 63, 64, 65, 71], "convert3dto1d": 19, "convert_local_to_3d": [7, 30, 33, 68], "convert_snapshot": [4, 7, 17, 18, 68, 71], "convert_to_threedimension": 62, "convert_unit": [7, 30, 31, 32, 33, 35, 58, 59, 62, 63, 64, 65, 68], "converted_arrai": [31, 32, 33, 35, 59, 62, 63, 64, 65], "converted_tensor": 19, "convet": [44, 45, 46, 47, 48], "cooper": 6, "coordin": [12, 33], "copi": [11, 49, 50, 55, 61, 62, 63], "copyright": [11, 61], "core": [0, 78], "correct": [2, 5, 6, 37, 44, 51, 61, 62, 70, 73, 77], "correctli": [0, 62, 77], "correl": [3, 12, 16, 65], "correspond": [6, 12, 65, 70, 71], "cosin": [2, 16], "cost": 12, "costli": 75, "could": [5, 12], "count": 12, "counter": 12, "cours": [6, 12, 73], "cover": [69, 72], "covers": [62, 64], "cpp": 65, "cppflag": 78, "cpu": [1, 2, 3, 5, 6, 54, 55, 64, 69, 76], "cpython": 78, "creat": [5, 6, 12, 13, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77], "create_fil": 62, "create_qe_fil": 64, "creation": [19, 71], "critic": 73, "crucial": 4, "csv": 73, "cube": [5, 61, 62, 64, 71], "cube_pars": [7, 58, 68], "cubefil": [7, 58, 61, 68], "cubetool": 61, "cubic": [62, 64, 65, 75], "cuda": [6, 12, 76], "current": [0, 3, 4, 5, 6, 11, 12, 14, 25, 26, 27, 39, 40, 41, 42, 44, 47, 48, 51, 52, 55, 59, 60, 61, 62, 63, 64, 65, 71], "curv": 12, "custom": [64, 70], "cut": [12, 27], "cutoff": [2, 12, 16, 71], "d": [60, 63, 64, 74, 75, 76], "d_model": 51, "dai": 74, "damag": [11, 61], "daniel": [0, 11], "data": [0, 1, 3, 5, 6, 7, 8, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 79], "data_": 4, "data_convert": [4, 7, 17, 39, 68, 71], "data_handl": [4, 5, 7, 17, 37, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 64, 68, 70, 72, 73], "data_handler_bas": [7, 17, 68], "data_nam": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 68], "data_path": [2, 4, 6, 71, 72, 73], "data_repo": [7, 17, 68], "data_repo_path": 21, "data_scal": [7, 17, 19, 25, 26, 68], "data_shuffl": [4, 6, 7, 17, 68], "data_splitting_typ": [7, 8, 12, 68], "data_typ": [19, 56, 65], "databas": 3, "databasenam": 3, "dataconvert": [2, 4, 6, 7, 17, 18, 19, 68, 71], "dataformat": 61, "datagener": [7, 68], "datahandl": [2, 3, 4, 6, 7, 18, 19, 25, 26, 28, 37, 39, 40, 41, 42, 43, 50, 53, 54, 55, 56, 57, 64, 68, 70, 73], "datahandlerbas": [7, 17, 19, 20, 23, 27, 68], "dataload": [25, 26], "datasampl": [25, 26], "datascal": [7, 17, 19, 22, 25, 26, 68], "dataset": [13, 19, 24, 25, 26, 28], "datashuffl": [4, 6, 7, 12, 17, 23, 68], "datashufl": 6, "datatyp": [40, 42, 44, 45, 46, 47, 48], "date": [0, 12, 61], "dayton": 74, "db": 64, "dd": 64, "dd_db": 64, "ddp": [6, 11, 12, 22, 25, 26, 55], "de": 64, "de_dd": 64, "deactivt": 70, "dead": 43, "deadlin": 0, "deal": [11, 13, 61, 73], "dealloc": [26, 28], "deallocate_shared_mem": [7, 17, 26, 68], "debian": 78, "debug": [3, 33, 73, 77], "decad": 74, "decai": 12, "decid": [0, 12, 70, 73], "declar": 4, "decreas": [12, 70], "deep": [74, 75], "default": [4, 5, 6, 11, 12, 18, 19, 27, 29, 33, 34, 39, 53, 54, 55, 57, 63, 64, 70, 71, 78], "defin": [12, 49, 50, 60, 63, 64, 72], "degre": 16, "delet": 33, "delete_data": [7, 17, 26, 68], "delta": [60, 63], "demand": [2, 3, 12, 51], "demonstr": [74, 75], "denois": 12, "dens_object": 62, "denser": 71, "densiti": [2, 5, 7, 12, 56, 58, 59, 63, 64, 68, 71, 72, 74, 75], "density_calcul": [5, 62], "density_data": [62, 64], "density_of_st": [5, 7, 58, 63, 64, 68, 72], "depend": [12, 13, 19, 55, 57, 61, 62, 64, 71, 77], "deprec": 37, "depth": [1, 70], "deriv": [25, 26, 28, 51, 64], "descent": 12, "desciptor": 33, "describ": [5, 13, 31, 32, 35, 62, 63, 64, 70], "descript": [0, 61, 70], "descriptor": [0, 5, 7, 8, 11, 12, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 39, 54, 64, 68, 71, 72, 73, 75, 76], "descriptor_calcul": [7, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68], "descriptor_calculation_kwarg": [18, 71], "descriptor_dimens": 33, "descriptor_input_path": [18, 39, 71], "descriptor_input_typ": [18, 39, 71], "descriptor_save_path": [18, 23, 71], "descriptor_typ": [7, 8, 12, 68, 71, 73], "descriptor_unit": [18, 39], "descriptors_contain_xyz": [7, 8, 12, 30, 33, 68], "descriptors_np": 33, "deseri": 10, "deserialized_object": [10, 12, 29], "design": 3, "desir": [12, 16, 19, 31, 32, 33, 35, 44, 51, 62, 63, 64, 65, 75], "despit": 74, "detail": [2, 3, 5, 12, 18, 39, 75, 76], "determin": [2, 3, 5, 12, 16, 56, 70, 71, 73], "determinist": 12, "detriment": 12, "dev": 77, "develop": [6, 33, 71, 75, 77, 79], "deviat": [3, 12, 22, 73], "devic": [7, 8, 12, 68], "devis": 2, "dft": [3, 5, 6, 7, 12, 15, 18, 22, 29, 33, 62, 63, 64, 69, 71, 75], "diagnost": 12, "dicitionari": 34, "dict": [10, 12, 13, 18, 29, 33, 34, 56, 61, 62, 64, 65, 66], "dictionari": [10, 12, 13, 18, 29, 33, 34, 56, 62, 63, 64, 65, 73], "dictionati": [62, 64, 65], "diff": 0, "differ": [2, 5, 6, 33, 39, 43, 53, 60, 62, 70], "differenti": 12, "dim": 19, "dimens": [5, 12, 13, 20, 25, 26, 31, 32, 33, 35, 51, 59, 62, 63, 64, 65, 73], "dimension": [2, 13, 63, 71], "dipol": 37, "direct": [0, 5, 7, 8, 12, 18, 65, 68, 72], "directli": [0, 2, 6, 11, 12, 33, 51, 54, 55, 62, 63, 64, 65, 73], "directori": [0, 6, 12, 18, 19, 20, 23, 27, 29, 33, 64, 77, 78], "dirti": 0, "disabl": [6, 12, 25, 26, 55], "discontinu": 12, "discourag": [25, 26], "discret": [5, 62, 63, 64, 71], "discuss": [1, 2, 3, 6, 71, 73, 75], "disentangl": 3, "disk": [6, 23, 64, 73], "displac": 16, "distanc": [2, 12, 16], "distance_threshold": 16, "distinct": [2, 40, 44, 45, 46, 47, 48], "distinguish": 3, "distribut": [3, 5, 11, 12, 51, 55, 61, 63, 65], "distributeddataparallel": 6, "divid": [5, 62], "divisor": [12, 60], "do": [0, 2, 3, 4, 5, 7, 11, 12, 19, 20, 23, 25, 26, 27, 28, 31, 32, 33, 35, 42, 43, 51, 56, 58, 60, 61, 62, 64, 68, 70, 71, 72, 73, 76, 79], "do_predict": [7, 38, 51, 68], "doc": 77, "dockerfil": 0, "docstr": 0, "document": [0, 4, 6, 11, 12, 61, 72, 79], "documentari": 77, "doe": [6, 11, 12, 19, 31, 32, 35, 40, 41, 57, 61, 62, 63, 64, 70, 77], "doesn": [61, 63, 78], "doi": [39, 65, 74], "don": [12, 65], "done": [0, 2, 3, 5, 11, 12, 33, 39, 40, 41, 42, 43, 54, 56, 61, 62, 65, 70, 71, 73], "dornheim": 75, "dos_calcul": 63, "dos_data": [63, 64], "dos_object": 63, "dos_valu": 64, "dot": 61, "doubl": [18, 34], "doubt": 33, "down": 11, "download": 78, "draft": 0, "drastic": [6, 18], "drawback": 6, "dresden": 75, "drive": 29, "driven": [4, 73], "dropout": 51, "dtype": [13, 61], "due": [62, 63, 64, 71], "dummi": 61, "dure": [0, 2, 5, 6, 11, 12, 33, 50, 53, 55, 64, 65, 70, 72, 73, 74, 77], "during_training_metr": [7, 8, 12, 68], "dx": 74, "dynam": [12, 56, 72, 75], "e": [1, 3, 4, 5, 6, 12, 13, 16, 18, 19, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 60, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "e_": 62, "e_ewald": 62, "e_grid": [27, 63, 64], "e_hartre": 62, "e_rho_times_v_hxc": 62, "e_xc": 62, "eac": 12, "each": [0, 2, 3, 5, 12, 16, 43, 49, 50, 70, 71, 73, 75], "earli": 12, "earlier": 65, "early_stopping_epoch": [7, 8, 12, 68, 70], "early_stopping_threshold": [7, 8, 12, 68], "easi": [3, 6, 56], "easier": [19, 72, 73], "easili": [0, 2, 3, 6, 70, 73], "echo": 6, "edu": 65, "effect": [3, 6, 12, 34, 55, 64, 75], "effici": [4, 5, 65, 75, 79], "effort": [0, 75], "effortlessli": 75, "egrid": 27, "egrid_offset_ev": 27, "egrid_spacing_ev": 27, "eigenvalu": 63, "either": [0, 5, 12, 13, 19, 20, 23, 41, 56, 60, 62, 64, 65, 70, 71, 73], "electron": [5, 7, 37, 56, 59, 62, 63, 64, 65, 71, 72, 73, 74, 75], "elem_snapshot": 18, "elimin": 3, "elli": [0, 74, 75], "els": [3, 6], "elsewis": [13, 16, 63], "emploi": [1, 6, 12, 73, 75], "empti": [12, 66], "emul": 22, "en": 42, "enabl": [2, 3, 5, 6, 54, 55, 56, 65, 71, 73, 76], "encapsul": 6, "encod": [2, 33, 52, 71, 73, 79], "encourag": 4, "end": [3, 4, 11, 12, 13, 16, 43, 62, 63, 64, 65, 70, 73], "energi": [0, 5, 6, 7, 12, 27, 37, 49, 56, 60, 62, 63, 64, 65, 71, 72, 73, 75, 79], "energy_grid": [5, 7, 58, 60, 63, 64, 68], "energy_integration_method": 64, "energy_unit": 60, "energygrid": [63, 64], "enforc": [33, 51, 65], "enforce_pbc": [7, 30, 33, 68], "enhanc": [0, 75], "enough": [2, 6, 12, 49, 50, 71, 79], "ensur": [0, 6, 11, 12, 18, 19, 62, 64, 75], "enter": 64, "entir": [5, 6, 13, 19, 20, 29, 33, 51, 55, 71, 73], "entri": [0, 5, 12, 62, 73], "entropi": [60, 63, 64], "entropy_contribut": [7, 58, 63, 64, 68], "entropy_multipl": [7, 58, 60, 68], "enviro": 71, "environ": [0, 2, 6], "epoch": [6, 12, 70], "epsilon": [60, 63], "epsilon_": 63, "epsilon_f": [60, 63, 64], "eq": [60, 65], "equal": 34, "equat": [63, 65], "equilibr": [12, 15, 16, 75], "equilibrated_snapshot": 16, "equival": 63, "erro": 77, "erron": 26, "error": [5, 6, 11, 12, 25, 27, 56, 62, 63, 64, 71, 77], "especi": [3, 12, 49, 79], "espresso": [2, 5, 18, 33, 62, 63, 64, 65, 71, 72, 79], "essenti": [6, 12, 18, 70], "establish": 6, "estim": [12, 16], "etc": [0, 3, 10, 12, 20, 29, 37, 40, 44, 45, 46, 47, 48, 55, 70, 71, 72, 73], "euclidean": 12, "ev": [12, 20, 33, 59, 60, 62, 63, 64, 65], "evalu": [3, 5, 12, 19, 64], "even": [1, 5, 6, 65, 72], "evenli": 5, "event": [11, 61], "eventu": [37, 64], "everi": [0, 15, 64], "everyth": [12, 38], "evid": 12, "ewald": [12, 62], "ex01_checkpoint": 6, "ex01_checkpoint_train": 6, "ex01_train_network": 73, "ex02_shuffle_data": 6, "ex02_test_network": 73, "ex03_preprocess_data": 71, "ex03_tensor_board": 6, "ex04_acsd": 2, "ex04_hyperparameter_optim": 70, "ex05_checkpoint": 3, "ex05_checkpoint_hyperparameter_optim": 3, "ex05_run_predict": 72, "ex06_ase_calcul": 72, "ex06_distributed_hyperparameter_optim": 3, "ex07_advanced_hyperparameter_optim": 3, "ex08_visualize_observ": 5, "exact": [63, 64], "exactli": [62, 63, 64], "exampl": [0, 2, 3, 4, 5, 6, 21, 42, 69, 70, 71, 72, 73, 75, 76], "example_minimal_number_of_runs_oa": 42, "except": [3, 5, 12, 62, 65], "excess": 74, "exchang": 12, "exclud": 12, "exclus": 70, "execut": [0, 3, 22, 43, 69, 76], "exhibit": 75, "exist": [3, 6, 26, 40, 55, 57, 61, 63, 72], "expans": 2, "expect": [6, 12], "expens": 0, "experi": 12, "experiment": [12, 14, 70], "experiment_ddmmyi": 12, "explain": 70, "explan": 70, "explicitli": [12, 33, 72], "explictli": 33, "explor": 75, "exploratori": [2, 4], "expon": 60, "export": [6, 10, 12, 77, 78], "express": [11, 61, 63, 64], "extend": [5, 18, 70, 72, 75], "extens": [4, 6], "extent": 13, "external_modul": 78, "extra": [0, 33], "extract": [3, 13, 34, 47, 48, 62, 66], "extract_compute_np": [7, 30, 34, 68], "f": 60, "f0": 60, "f1": 60, "f2": 60, "f2py": 62, "f90": 78, "f90exec": 78, "facilit": 75, "factor": [2, 5, 6, 12, 42, 60, 63, 65, 70], "fail": [0, 12], "fairli": [33, 72], "falkner18a": 12, "fals": [2, 6, 12, 13, 16, 18, 19, 22, 25, 27, 33, 34, 39, 40, 41, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65], "familiar": [3, 69, 73], "far": [12, 71], "faruk": 0, "fashion": [5, 70], "fast": 12, "fast_tensor_dataset": [7, 17, 68], "faster": [5, 6, 18, 24, 33, 72, 76, 78], "fasttensordataset": [7, 17, 24, 26, 68], "featur": [0, 3, 6, 12, 13, 20, 22, 31, 32, 35, 59, 62, 63, 64, 65, 69, 70, 73, 75, 79], "feature_from": 13, "feature_s": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 65, 68], "feature_to": 13, "fed": 75, "feed": [12, 51], "feed_forward": 12, "feedforwardnet": [7, 38, 51, 68], "fermi": [56, 60, 63, 64, 65], "fermi_energi": [7, 58, 60, 63, 64, 68], "fermi_energy_self_consist": [63, 64], "fermi_funct": [7, 58, 60, 68], "fermi_v": 60, "fetch": 28, "few": [3, 5, 73], "feynman": 62, "ff": 0, "ff_multiple_layers_count": 70, "ff_multiple_layers_neuron": 70, "ff_neurons_lay": 70, "ff_neurons_layer_00": 70, "ff_neurons_layer_001": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_002": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_01": 70, "ff_neurons_layer_xx": 70, "ff_neurons_layer_xxx": 12, "fflag": 78, "fiedler": [0, 74, 75], "field": 71, "file": [0, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 37, 42, 43, 51, 54, 55, 57, 61, 62, 63, 64, 65, 66, 70, 71, 73, 75, 78], "file_based_commun": [18, 39], "file_index": 25, "file_nam": 62, "file_path": [42, 43], "filenam": [4, 12, 22, 37, 61, 66], "filename_uncorrelated_snapshot": 16, "filepath": 65, "fill": [12, 15, 70, 71], "final": [6, 7, 8, 11, 68, 73], "find": [0, 6, 42, 74, 78], "fine": [6, 12, 71], "fingerprint": [12, 18, 33, 39], "finish": [6, 43], "finish_incremental_fit": [7, 17, 22, 68], "finit": [74, 75], "first": [2, 5, 12, 16, 18, 27, 49, 50, 62, 70, 71, 72, 73, 75, 77, 79], "first_snapshot": [7, 14, 16, 68], "firstli": [2, 70, 73], "fit": [7, 11, 17, 22, 61, 68], "fix": [0, 77], "flag": 73, "flexibl": 65, "float": [12, 16, 27, 31, 33, 34, 40, 44, 45, 46, 47, 48, 51, 54, 60, 61, 63, 64, 65, 70], "fname": 61, "focu": 75, "folder": [0, 12, 76, 77], "follow": [0, 1, 6, 11, 12, 40, 42, 44, 45, 46, 47, 48, 60, 61, 62, 69, 70, 72, 73, 75, 77], "footprint": [12, 64], "forc": [7, 37, 59, 62, 64], "force_no_ddp": 12, "forgiv": 12, "fork": 0, "form": [0, 12, 61, 62, 72], "formal": [4, 6], "format": [5, 12, 13, 22, 33, 44, 53, 57, 61, 62, 63, 64, 65, 66, 71, 72, 73], "former": 1, "formerli": 12, "formula": [12, 60], "fortran": 62, "forward": [7, 12, 38, 51, 53, 68], "found": [3, 6, 12, 39, 40, 41, 42, 43], "fourier": [12, 65], "fourier_transform": 65, "fox": 0, "fp32": 18, "fpic": 78, "frac": [60, 64], "fraction": 12, "framework": [3, 7, 13, 51, 73], "franz": 0, "free": [3, 11, 26, 61, 71, 74, 75, 79], "freedom": 22, "friction": 12, "from": [0, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 22, 25, 26, 27, 29, 33, 34, 37, 41, 42, 43, 47, 48, 51, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 77], "from_cube_fil": [7, 58, 62, 64, 68], "from_json": [7, 8, 10, 12, 17, 29, 68], "from_ldos_calcul": [5, 7, 58, 62, 63, 68], "from_numpy_arrai": [7, 58, 62, 63, 64, 68], "from_numpy_fil": [7, 58, 62, 63, 64, 68], "from_openpmd_fil": [7, 58, 62, 64, 68], "from_qe_dos_txt": [7, 58, 63, 68], "from_qe_out": [7, 58, 63, 68], "from_xsf_fil": [7, 58, 62, 64, 68], "front": 12, "frozentri": [43, 49, 50], "full": [4, 6, 27, 39, 73, 76, 78], "full_logging_path": 6, "fulli": [3, 4, 19], "function": [0, 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 22, 29, 31, 32, 33, 34, 35, 37, 42, 43, 44, 50, 51, 52, 53, 59, 60, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 77, 79], "function_valu": 60, "fundament": 0, "furnish": [11, 61], "further": [0, 3, 4, 5, 6, 12, 55, 57, 70, 71, 72, 73, 74, 75, 76], "furthermor": [4, 79], "futur": [63, 73], "g": [3, 4, 5, 6, 12, 13, 16, 18, 31, 32, 33, 35, 36, 37, 40, 44, 45, 46, 47, 48, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "gabriel": [0, 74], "gain": 74, "gather": [18, 24, 33, 54, 64, 73], "gather_dens": 64, "gather_descriptor": [7, 30, 33, 68], "gather_do": 64, "gather_ldo": 54, "gaussian": [5, 7, 12, 31, 35, 58, 60, 61, 68], "gcc": [76, 78], "gener": [0, 2, 5, 6, 8, 11, 12, 13, 14, 16, 18, 42, 51, 62, 63, 64, 65, 69, 72, 73, 74, 78], "generate_square_subsequent_mask": [7, 38, 51, 68], "get": [5, 11, 12, 13, 19, 31, 32, 33, 35, 41, 42, 44, 47, 54, 56, 59, 60, 62, 63, 64, 65, 72, 73, 75], "get_atomic_forc": [7, 58, 62, 64, 68], "get_band_energi": [7, 58, 63, 64, 68], "get_best_trial_result": [7, 38, 41, 42, 68], "get_beta": [7, 58, 60, 68], "get_categor": [7, 38, 47, 48, 68], "get_comm": [7, 8, 11, 68], "get_dens": [7, 58, 62, 64, 68], "get_density_of_st": [7, 58, 63, 64, 68], "get_energy_contribut": [7, 58, 62, 68], "get_energy_grid": [7, 58, 63, 64, 65, 68], "get_energy_targets_and_predict": [7, 38, 56, 68], "get_entropy_contribut": [7, 58, 63, 64, 68], "get_equilibrated_configur": [7, 14, 15, 68], "get_f0_valu": [7, 58, 60, 68], "get_f1_valu": [7, 58, 60, 68], "get_f2_valu": [7, 58, 60, 68], "get_feature_s": [7, 58, 59, 68], "get_first_snapshot": [7, 14, 16, 68], "get_float": [7, 38, 48, 68], "get_int": [7, 38, 48, 68], "get_local_rank": [7, 8, 11, 68], "get_new_data": [7, 17, 25, 68], "get_number_of_electron": [7, 58, 62, 63, 64, 68], "get_optimal_paramet": [7, 38, 42, 68], "get_optimal_sigma": [7, 30, 31, 68], "get_orthogonal_arrai": [7, 38, 42, 68], "get_paramet": [7, 38, 47, 48, 68], "get_potential_energi": 72, "get_radial_distribution_funct": [7, 58, 65, 68], "get_rank": [7, 8, 11, 68], "get_real_space_grid": [7, 58, 65, 68], "get_s0_valu": [7, 58, 60, 68], "get_s1_valu": [7, 58, 60, 68], "get_scaled_positions_for_q": [7, 58, 62, 68], "get_self_consistent_fermi_energi": [7, 58, 63, 64, 68], "get_siz": [7, 8, 11, 68], "get_snapshot_calculation_output": [7, 17, 19, 68], "get_snapshot_correlation_cutoff": [7, 14, 16, 68], "get_static_structure_factor": [7, 58, 65, 68], "get_target": [7, 58, 62, 63, 64, 65, 68], "get_test_input_gradi": [7, 17, 19, 68], "get_three_particle_correlation_funct": [7, 58, 65, 68], "get_total_energi": [7, 58, 64, 68], "get_trials_from_studi": [7, 38, 43, 68], "get_uncorrelated_snapshot": [7, 14, 16, 68], "git": [0, 76, 77], "github": [0, 11, 12, 21, 74, 76, 77], "gitlab": [65, 78], "give": [1, 3, 6, 12, 16, 64, 69, 70, 71, 73, 76], "given": [0, 6, 13, 18, 33, 54, 57, 60, 61, 62, 63, 64, 65, 70, 71, 75, 79], "glimps": 73, "global": 12, "gmail": 61, "gnn": 0, "gnu": 78, "go": 12, "goal": 66, "goe": 12, "goo": 11, "good": [2, 3, 6, 12, 49, 50], "got": 0, "govern": [70, 71], "gpaw": 72, "gpu": [0, 3, 11, 12, 55, 69, 76], "gradient": [12, 19, 25, 26, 70], "grand": 74, "grant": [11, 61], "granular": 71, "graph": [6, 12], "grate": 0, "gre": 6, "greater": 12, "greatli": [12, 73], "grid": [0, 5, 12, 27, 31, 33, 60, 62, 63, 64, 65, 71, 73, 75, 79], "grid_dimens": [33, 62, 65], "grid_integration_method": 64, "gridi": [62, 64], "gridpoint": 62, "gridsiz": [12, 62, 64], "gridspac": 12, "gridx": [62, 64], "gridz": [62, 64], "ground": 73, "grow": 74, "gru": [7, 12, 38, 51, 68], "guarante": 6, "guess": 65, "gui": 4, "guid": [1, 2, 5, 69, 70, 71, 72, 73, 75], "guidelin": 0, "h": [62, 76], "h5": [4, 13, 62, 65], "ha": [0, 2, 4, 5, 6, 11, 12, 13, 22, 25, 34, 37, 42, 43, 49, 50, 51, 54, 55, 62, 63, 64, 70, 71, 73, 74, 75, 77, 78, 79], "hacki": 12, "had": [6, 71], "hand": [5, 12, 13, 27], "handl": [3, 4, 6, 17, 19, 20, 23, 27, 65], "handler": [42, 43, 55, 57, 64], "happen": 63, "har": 75, "hard": 29, "hardwar": [1, 5, 69], "haswel": 76, "have": [0, 2, 3, 5, 6, 10, 12, 13, 22, 25, 26, 29, 31, 32, 33, 35, 39, 40, 43, 44, 45, 46, 47, 48, 60, 63, 64, 65, 70, 71, 72, 73, 74, 76, 78, 79], "haven": 77, "head": [0, 6, 12], "heartbeat": 12, "heavi": [5, 65], "hellman": 62, "helmholtz": 75, "help": [3, 12, 54, 64, 69, 73], "helper": [4, 60], "here": [3, 5, 6, 12, 16, 18, 25, 26, 39, 42, 51, 55, 63, 70, 71, 72, 73, 76], "herebi": [11, 61], "hidden": [12, 51, 70], "hierarchi": 13, "high": [11, 12, 40, 44, 45, 46, 47, 48, 74], "higher": [12, 40, 44, 45, 46, 48], "highli": [2, 4, 5, 6, 14, 77, 79], "hint": 6, "histogram": [12, 65], "hiwonjoon": 11, "hlist": [7, 8, 12, 68], "hoc": 16, "hoffmann": [0, 74, 75], "hold": [6, 12, 19, 33, 40, 41, 42, 43, 54, 55, 56, 57, 64], "holder": [11, 61], "horovod": 0, "hossein": 0, "host": 6, "hostnam": 6, "hotyp": [44, 45, 46, 47, 48], "how": [2, 3, 12, 22, 27, 63, 64, 65, 69, 70, 71, 73, 76], "howev": [2, 4, 6, 12, 26, 33, 53, 64, 73, 74], "hpc": [3, 6, 12, 43, 78], "html": [12, 42, 77], "http": [0, 11, 12, 21, 42, 61, 65, 74, 76, 77, 78], "huge": 6, "hundr": 75, "hyper_opt": [7, 38, 68], "hyper_opt_method": [3, 12], "hyper_opt_naswot": [7, 38, 68], "hyper_opt_oat": [7, 38, 68], "hyper_opt_optuna": [7, 38, 68], "hyperopt": [3, 7, 38, 39, 40, 41, 42, 43, 68, 70], "hyperoptim": [2, 70], "hyperoptnaswot": [7, 38, 41, 44, 68], "hyperoptoat": [7, 38, 41, 42, 44, 68], "hyperoptoptuna": [7, 38, 41, 43, 44, 68], "hyperparam": 12, "hyperparamet": [0, 1, 2, 7, 8, 12, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 57, 68, 69, 73, 74, 75, 77], "hyperparameter_acsd": [7, 38, 68], "hyperparameter_naswot": [7, 38, 68], "hyperparameter_oat": [7, 38, 68], "hyperparameter_optuna": [7, 38, 68], "hyperparameteracsd": [7, 38, 44, 45, 68], "hyperparameternaswot": [7, 38, 44, 46, 68], "hyperparameteroat": [7, 38, 44, 47, 68], "hyperparameteroptuna": [7, 38, 44, 46, 48, 68], "hyperparemet": 12, "i": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 74, 76, 77, 78, 79], "i0": 60, "i1": 60, "i_0": 60, "i_1": 60, "ibrav": 62, "icml2019": 11, "idea": 6, "ideal": [2, 13, 62, 65], "identif": 75, "identifi": 70, "idx": 47, "ifnam": 61, "ignor": [3, 12, 18, 62, 65, 69, 76], "ik": 63, "imag": [61, 65], "imaginari": 61, "immens": 0, "impact": [6, 64], "imped": 12, "implement": [0, 3, 6, 10, 12, 13, 22, 33, 37, 49, 50, 51, 62, 63, 64, 65, 75, 79], "implemented_properti": [7, 36, 37, 68], "impli": [11, 13, 61, 65], "import": [1, 2, 3, 37, 42, 54, 64, 65, 72, 78, 79], "improv": [0, 1, 12, 23, 24, 73], "in_unit": [31, 32, 33, 35, 59, 62, 63, 64, 65], "includ": [0, 4, 11, 12, 19, 29, 33, 41, 42, 55, 61, 64, 70, 71, 75], "incopor": 71, "incorpor": 65, "increas": [3, 12], "increment": [6, 22, 73, 77], "incremental_fit": [7, 17, 22, 68], "indent": 12, "index": [27, 47, 77], "indic": [22, 26, 49, 50, 56], "indisput": 12, "individu": [3, 6, 71, 73, 75, 79], "industri": 6, "inf": 12, "infer": [0, 5, 12, 54, 55, 56, 61, 64, 72, 73, 75], "inference_data_grid": [5, 7, 8, 12, 68], "infinit": 49, "infint": 49, "info": [12, 18, 73], "inform": [2, 3, 4, 6, 12, 13, 15, 51, 63, 65, 66, 71, 72, 73], "infrastructur": [0, 6, 43], "inher": 4, "inherit": 10, "init_hidden": [7, 38, 51, 68], "init_weight": [7, 38, 51, 68], "initi": [3, 13, 15, 51, 71, 75], "initial_charg": 37, "initial_magmom": 37, "initial_setup": [3, 6], "initialis": 51, "initil": 12, "initrang": 51, "inject": 51, "input": [12, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 51, 62, 63, 64, 65, 71, 73, 79], "input_data_scal": [19, 25, 26], "input_dimens": [7, 17, 20, 25, 26, 68, 73], "input_directori": [20, 23], "input_fil": [20, 23], "input_npy_directori": [20, 23, 29], "input_npy_fil": 29, "input_requires_grad": [25, 26], "input_rescaling_typ": [7, 8, 12, 68, 70, 73], "input_shm_nam": 28, "input_unit": [20, 29], "inputpp": 71, "insid": [76, 77], "instal": [0, 2, 5, 6, 75], "instanc": [2, 3, 4, 5, 11, 12, 13, 15, 16, 18, 33], "instanti": [12, 51, 55, 57, 73], "instead": [2, 3, 5, 25, 26, 37, 42, 50, 61, 65, 69, 71], "institut": 75, "instruct": [0, 2, 5, 75, 76, 78], "int": [11, 12, 13, 15, 16, 18, 19, 23, 25, 26, 27, 40, 44, 45, 46, 47, 48, 51, 53, 56, 60, 61, 62, 63, 65, 70], "integ": [5, 12, 18, 48, 70], "integr": [54, 60, 62, 63, 64, 72], "integral_valu": 60, "integrate_values_on_spac": [7, 58, 60, 68], "integration_method": [62, 63, 64], "integration_valu": 60, "intel": 76, "intend": 4, "inter": 6, "interact": 4, "interest": [4, 5, 66, 70, 72, 73], "interfac": [0, 2, 3, 7, 11, 12, 13, 33, 37, 44, 50, 51, 54, 62, 63, 64, 65, 68, 70, 71, 72], "interfer": 55, "interg": [62, 64], "intern": [13, 18, 33, 54, 55, 62, 65], "internal_iteration_numb": [13, 62, 65], "interpret": 6, "interv": [3, 6, 12], "intra": 6, "introduc": [12, 75], "introduct": 69, "introductori": 71, "intuit": [2, 6], "invalid": [62, 63, 64, 65], "invalidate_target": [7, 58, 62, 63, 64, 65, 68], "inverse_transform": [7, 17, 22, 68], "investig": [5, 19, 20, 39, 40, 43, 44, 45, 46, 47, 48, 70], "invok": 5, "involv": [2, 5, 6, 73], "io": [16, 42, 72], "ion": 12, "ionic": [12, 75], "iop": 74, "ish": 78, "issu": [5, 12, 74], "ist": 65, "iter": [12, 13, 62, 65], "its": [4, 12, 19, 70, 73, 75], "itself": [3, 5, 6, 12, 16, 60, 65, 71, 72, 73, 74, 77], "j": [61, 74, 75, 78], "jacobian": [12, 41, 53], "jame": 0, "jiang": 75, "jmax": 12, "job": [3, 12, 43], "join": [2, 71, 72, 73], "jointli": 75, "jon": [0, 75], "josh": [0, 12], "journal": 74, "json": [10, 12, 29, 37, 55, 57, 65, 70, 71], "json_dict": [10, 12, 29], "json_serializ": [7, 8, 68], "jsonserializ": [7, 8, 10, 12, 29, 44, 68], "judg": [6, 49, 50], "jul": 74, "jun": 74, "june": 61, "jupyt": 4, "just": [0, 2, 3, 4, 5, 12, 26, 55, 57, 72, 73, 79], "justifi": 60, "k": [5, 54, 60, 62, 63, 64, 65, 71, 75], "k_": 60, "keep": [0, 12, 25, 26], "keep_log": 33, "kei": 61, "kept": [12, 33, 61], "keyword": [6, 12, 18, 33, 72], "kind": [11, 13, 20, 23, 61], "kindli": [0, 74], "kinet": 12, "kmax": [5, 12, 65], "known": [6, 37], "kohn": [74, 75], "kokko": [5, 11, 76], "kokkos_arch_gpuarch": 76, "kokkos_arch_hostarch": 76, "kokkos_arch_hsw": 76, "kokkos_arch_volta70": 76, "kokkos_enable_cuda": 76, "kotik": 0, "kpoint": [5, 65], "kulkarni": 0, "kwarg": [24, 25, 26, 28, 33, 37, 42, 49, 50, 51, 62, 64], "kyle": [0, 74], "l": [12, 74, 75, 76], "label": 12, "laboratori": 75, "lammp": [2, 5, 11, 12, 33, 34, 79], "lammps_compute_fil": [7, 8, 12, 68], "lammps_typ": 33, "lammps_util": [7, 30, 68], "langevin": 12, "larg": [2, 4, 5, 6, 33, 65, 73, 74, 75, 77], "larger": [5, 12, 13, 62, 65, 74], "last": [12, 25, 26, 37, 43, 62, 70, 73], "last_trial": 43, "lastli": 71, "latenc": 6, "later": [3, 6, 22, 41, 64, 70], "latest": 42, "latter": [3, 13, 65, 71], "lattic": 61, "launch": [3, 6, 12], "layer": [3, 12, 21, 40, 44, 45, 46, 47, 48, 70, 73], "layer_activ": [7, 8, 12, 68, 70, 73], "layer_activation_00": 70, "layer_activation_xxx": 12, "layer_s": [7, 8, 12, 68, 70, 73], "lazi": [12, 22, 23, 25, 26, 73], "lazili": [12, 19], "lazy_load_dataset": [7, 17, 68], "lazy_load_dataset_singl": [7, 17, 68], "lazyloaddataset": [7, 17, 25, 26, 68], "lazyloaddatasetsingl": [7, 17, 26, 68], "lbla": 78, "ldo": [2, 5, 6, 7, 12, 18, 27, 54, 56, 58, 59, 60, 62, 63, 65, 68, 71, 72, 73, 75, 79], "ldos_align": [7, 17, 68], "ldos_calcul": [5, 64, 72], "ldos_data": 64, "ldos_gridoffset_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_grids": [6, 7, 8, 12, 68, 71, 73], "ldos_gridspacing_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_mean": 27, "ldos_mean_ref": 27, "ldos_object": [62, 63], "ldosalign": [7, 17, 27, 68], "ldosfil": 71, "lead": [2, 5, 12, 65, 75], "leaf": 19, "leakyrelu": [12, 70], "learn": [5, 6, 7, 12, 22, 65, 70, 73, 74, 75], "learner": 11, "learning_r": [7, 8, 12, 68, 70, 73], "learning_rate_decai": [7, 8, 12, 68, 70], "learning_rate_pati": [7, 8, 12, 68, 70], "learning_rate_schedul": [7, 8, 12, 68], "least": 65, "leastearly_stopping_threshold": 12, "leav": 26, "left": [4, 27, 28], "left_index": 27, "left_index_ref": 27, "left_trunc": 27, "legaci": [12, 37, 65], "length": [5, 27, 51, 74, 75], "lenz": [0, 74, 75], "less": [12, 18, 65], "let": [12, 71, 73], "level": [11, 12, 21, 25, 26, 42, 54, 60, 63, 64, 73, 74, 75], "lfftw3": 78, "lh": 27, "liabil": [11, 61], "liabl": [11, 61], "lib": [76, 78], "liblammp": 76, "librari": [3, 4, 5, 6, 22, 50, 70, 72, 73, 76, 78, 79], "licens": [11, 61], "lie": 33, "like": [3, 5, 6, 11, 26, 73, 78], "likewis": [2, 5, 6], "limit": [3, 6, 11, 12, 28, 50, 61, 75], "line": [4, 34, 61, 73, 74], "linger": 11, "link": [11, 42, 70, 74, 76], "linux": [77, 78, 79], "list": [0, 2, 4, 5, 12, 13, 18, 19, 20, 27, 28, 29, 33, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 56, 61, 62, 65, 73], "littl": 62, "llapack": 78, "lmkl_core": 78, "lmkl_intel_lp64": 78, "lmkl_sequenti": 78, "lmp": 34, "load": [12, 19, 20, 22, 23, 25, 26, 28, 37, 40, 42, 43, 51, 54, 55, 57, 63, 70, 72, 73, 76, 78], "load_from_fil": [7, 8, 12, 17, 22, 38, 42, 43, 51, 68, 70], "load_from_json": [7, 8, 12, 68], "load_from_pickl": [7, 8, 12, 68], "load_model": [7, 36, 37, 68, 72], "load_run": [3, 6, 7, 36, 37, 38, 55, 57, 68, 72, 73], "load_runn": [55, 57], "load_snapshot_to_shm": [7, 17, 28, 68], "load_with_ddp": 55, "load_with_gpu": 55, "load_with_mpi": 55, "loaded_hyperopt": 42, "loaded_network": [51, 55, 57], "loaded_param": [42, 43, 55, 57], "loaded_paramet": 12, "loaded_train": 43, "local": [0, 3, 11, 12, 33, 62, 64, 75, 76], "local_density_of_st": [7, 58, 63, 64, 68], "local_offset": 13, "local_psp_nam": [7, 8, 12, 68], "local_psp_path": [7, 8, 12, 68], "local_rank": 6, "local_reach": 13, "locat": [0, 12, 64], "log": [0, 6, 12, 15, 33, 60], "logdir": 6, "logging_dir": [6, 7, 8, 12, 68], "logging_dir_append_d": [7, 8, 12, 68], "logging_period": 15, "long": [6, 12], "longer": [0, 2, 12, 19], "look": 55, "loos": 65, "loss": [6, 12, 42, 49, 51, 56, 70], "loss_function_typ": [7, 8, 12, 68], "loss_val": 51, "lot": [66, 73, 79], "low": [12, 40, 44, 45, 46, 47, 48, 73], "lower": [16, 40, 44, 45, 46, 48, 70], "lowest": [12, 71], "lstm": [7, 12, 38, 51, 68], "m": 75, "mach": 75, "machin": [5, 6, 73, 74, 75, 76, 78], "maco": [77, 79], "made": [0, 5, 72], "mae": [56, 73], "magmom": 37, "magnitud": [71, 74], "mai": [2, 3, 5, 6, 12, 16, 18, 33, 60, 63, 64, 70, 71, 73, 76, 77, 78], "main": 78, "mainli": [4, 33], "maintain": [0, 6], "mainten": [0, 75], "major": 0, "make": [0, 3, 4, 5, 6, 12, 53, 64, 71, 72, 73, 75, 76, 77, 78], "mala": [1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 73, 76, 78, 79], "mala_data_repo": [21, 77], "mala_foundational_pap": 74, "mala_hyperparamet": 74, "mala_paramet": [5, 72], "mala_shuffled_snapshot": 23, "mala_sizetransf": 74, "mala_temperaturetransf": 74, "mala_vi": 6, "malada_compat": 16, "manag": [12, 24, 73], "mandatori": 41, "mani": [0, 2, 3, 12, 27, 71, 72], "manual": [0, 5, 12, 70, 78], "manual_se": [7, 8, 12, 68], "map": 64, "mape": 56, "mark": [0, 43], "mask": 51, "mass": 61, "massiv": [3, 74], "master": [0, 11, 65], "master_addr": 6, "master_port": 6, "match": [2, 13, 61, 62, 63, 64, 65], "mater": 75, "materi": [72, 74, 75], "mathemat": [3, 39, 60], "mathrm": [60, 62], "matplotlib": 5, "matrix": 62, "matter": [5, 19, 74, 75], "max": [12, 22, 73], "max_len": 51, "max_number_epoch": [7, 8, 12, 68, 73], "maxim": 12, "maximum": [2, 3, 5, 12, 51, 65], "mc": [12, 36, 37], "md": [12, 15, 16, 36, 37, 65, 75], "mean": [6, 12, 13, 22, 27, 33, 49, 50, 53, 59, 62, 63, 64, 70, 71, 73], "mean_std": 12, "meaning": [12, 65], "measur": 73, "mechan": [18, 50, 75], "medium": 12, "melt": 75, "member": [16, 65], "memori": [6, 11, 12, 18, 25, 26, 28, 34, 55, 57, 62, 63, 64, 73], "mention": [2, 5, 6], "merchant": [11, 61], "merg": [0, 11, 61], "merit": 72, "mess": 43, "messag": [1, 11], "meta": [13, 61, 66], "metadata": [4, 13, 18, 26, 31, 32, 35, 61, 62, 63, 64, 66], "metadata_input_path": 18, "metadata_input_typ": 18, "metal": 71, "method": [0, 2, 3, 5, 6, 10, 12, 49, 50, 51, 60, 61, 62, 63, 64, 65, 71, 74, 75, 77], "metric": [3, 12, 16, 49, 75], "mev": 6, "mic": 65, "might": [12, 26, 37, 43, 51, 53], "miller": [0, 74, 75], "mimic": 61, "min": [12, 22, 73], "min_verbos": 11, "mini": [12, 53, 70], "mini_batch_s": [7, 8, 12, 68, 70, 73], "minim": [12, 27], "minimum": [11, 12, 42, 65], "minor": 0, "minterpi": 0, "minterpy_descriptor": [7, 30, 68], "minterpydescriptor": [7, 30, 35, 68], "mit": [11, 61], "mitig": 6, "mix": [6, 12, 19, 23, 25, 26], "mix_dataset": [7, 17, 19, 25, 26, 68], "mkl": 78, "ml": [2, 3, 5, 6, 15, 59, 62, 63, 64, 65, 69, 71, 75], "mlr": 12, "mode": [11, 33, 55, 64, 65], "model": [0, 2, 3, 5, 6, 18, 37, 51, 54, 55, 57, 69, 70, 71, 74, 75, 79], "moder": 5, "modern": 74, "modif": [6, 65], "modifi": [0, 11, 43, 49, 50, 61, 71, 78], "modin": [0, 74, 75], "modul": [0, 6, 9, 21, 51, 61, 62, 65, 79], "modular": 0, "moham": [0, 74, 75], "moldabekov": 75, "molecular": [72, 75], "moment": [12, 19, 40, 44, 45, 46, 47, 48, 78], "monitor": 6, "month": 74, "more": [1, 2, 3, 5, 6, 12, 22, 24, 37, 60, 65, 71, 72, 75], "moreov": 75, "most": [2, 5, 6, 12, 55, 74, 75, 76, 77, 78, 79], "move": [12, 74], "mpi": [2, 3, 5, 11, 12, 18, 54, 55, 64, 65, 76, 78], "mpi4pi": 33, "mpi_commun": 65, "mpi_rank": 65, "mpi_util": 11, "mpif90": 78, "mpirun": [3, 5], "mse": [12, 27, 56], "much": [6, 26, 63], "mujoco": 11, "multi": 12, "multi_lazy_load_data_load": [7, 17, 68], "multi_train": 12, "multi_training_prun": [7, 38, 68], "multilazyloaddataload": [7, 17, 28, 68], "multipl": [0, 1, 2, 3, 5, 6, 11, 12, 16, 19, 20, 28, 29, 33, 40, 44, 45, 46, 47, 48, 49, 54, 60, 64, 70, 71, 73], "multiple_gaussian": 60, "multipli": 12, "multiplicator_v": 60, "multitrainingprun": [7, 38, 49, 68], "multivari": 12, "must": [12, 20, 27, 64], "mutat": 34, "mutual": 70, "my": 33, "my_modified_fil": 0, "my_studi": 3, "myriad": 74, "mysql": 3, "n": [3, 6, 12, 62, 74, 75], "n_shift_ms": 27, "n_trial": [7, 8, 12, 68, 70], "na": 12, "naiv": 6, "name": [0, 3, 6, 12, 13, 16, 18, 19, 23, 27, 28, 33, 34, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 55, 57, 62, 64, 65, 70, 71, 73, 76, 78], "naming_schem": [4, 18, 71], "naming_scheme_input": 19, "naming_scheme_output": 19, "naswot": [0, 3, 12, 44, 46, 49, 50], "naswot_prun": [7, 38, 68], "naswot_pruner_batch_s": 12, "naswot_pruner_cutoff": 12, "naswotprun": [7, 38, 50, 68], "nation": 75, "natom": 62, "natur": [0, 12], "nccl": 6, "ndarrai": [13, 56, 62, 63, 64, 65], "ndarri": 13, "necessari": [0, 3, 4, 6, 10, 12, 18, 22, 43, 65, 69, 70, 71, 72, 73, 76], "necessarili": [62, 63, 64, 65], "need": [2, 5, 6, 10, 12, 13, 19, 20, 25, 29, 33, 37, 51, 55, 57, 60, 62, 63, 64, 65, 71, 73, 76, 77, 78, 79], "neg": [6, 12, 65], "neglect": 12, "neighbor": 65, "neighborhood": 16, "neither": 64, "net": [12, 51, 61], "netwok": 12, "network": [3, 6, 7, 8, 12, 19, 22, 37, 40, 41, 43, 49, 50, 52, 54, 55, 56, 57, 64, 68, 70, 72, 73, 74, 75], "neural": [3, 12, 37, 51, 54, 56, 57, 73, 74, 75], "neuron": [12, 70, 73], "new": [0, 3, 6, 11, 12, 23, 25, 26, 34, 70, 73], "new_atom": 33, "new_datahandl": [42, 43, 55, 57], "new_hyperopt": [42, 43], "new_inst": 11, "new_runn": 55, "new_train": 57, "new_valu": 11, "newer": 78, "newli": [55, 57, 71], "next": [6, 43, 61], "nil": [0, 74], "nlogn": 12, "nn": [3, 5, 6, 51, 53, 65, 70, 73], "nn_type": [7, 8, 12, 68], "no_data": [42, 43], "no_hidden_st": [7, 8, 12, 68], "no_snapshot": 12, "node": [6, 11, 12, 43], "nodelist": 6, "nois": 12, "nomenclatur": 70, "non": [2, 4, 27, 62, 65, 71], "none": [12, 13, 15, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 62, 63, 64, 65, 73], "noninfring": [11, 61], "nor": 64, "norm": 27, "normal": [12, 13, 22, 73], "normand": [0, 74], "note": [0, 5, 6, 12, 26, 34, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 60, 72, 76], "notebook": [4, 42], "noteworthi": 70, "noth": [31, 32, 35], "notic": [11, 61], "now": [4, 6, 28, 64, 66, 70, 71, 72, 73, 78], "np": [3, 13, 19, 60, 61, 63, 64], "npj": [74, 75], "npy": [2, 4, 6, 18, 71, 73], "nsy": 12, "ntask": 6, "num_choic": [7, 38, 47, 68], "num_head": [7, 8, 12, 68], "num_hidden_lay": [7, 8, 12, 68], "num_work": [6, 7, 8, 12, 68], "number": [0, 3, 5, 6, 11, 12, 13, 16, 18, 19, 23, 27, 34, 37, 42, 47, 56, 61, 62, 63, 64, 65, 67, 70, 71, 73, 74, 75, 78], "number_bad_trials_befor": 12, "number_bad_trials_before_stop": 12, "number_of_bin": [5, 12, 65], "number_of_electron": [7, 27, 56, 58, 62, 63, 64, 68, 73], "number_of_nod": 6, "number_of_run": [7, 38, 42, 68], "number_of_shuffled_snapshot": [6, 23], "number_of_tasks_per_nod": 6, "number_training_per_tri": [3, 7, 8, 12, 68], "numer": [12, 13, 16, 25, 33, 40, 44, 45, 46, 48, 61, 62, 63, 64, 65], "numpag": 74, "numpi": [0, 2, 4, 13, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 47, 52, 54, 56, 59, 60, 61, 62, 63, 64, 65, 66, 71], "numpy_arrai": 19, "nvcc_wrapper": 76, "nvidia": [6, 76], "o": [2, 12, 19, 71, 72, 73], "oa": [40, 42, 44, 45, 46, 47, 48, 52], "oapackag": [42, 77], "oat": [0, 3, 12, 44, 47, 52, 53], "object": [0, 3, 4, 5, 6, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "objective_bas": [7, 38, 68], "objective_naswot": [7, 38, 68], "objectivebas": [7, 38, 52, 53, 68], "objectivenaswot": [7, 38, 53, 68], "observ": [56, 72, 73, 75], "observables_to_test": [56, 73], "obtain": [5, 11, 19, 61, 77], "occur": [43, 60, 73, 77], "oct": 74, "ofdft_frict": [7, 8, 12, 68], "ofdft_initi": [7, 14, 68], "ofdft_kedf": [7, 8, 12, 68], "ofdft_number_of_timestep": [7, 8, 12, 68], "ofdft_temperatur": [7, 8, 12, 68], "ofdft_timestep": [7, 8, 12, 68], "ofdftiniti": [7, 14, 15, 68], "off": [0, 12, 27], "offer": [4, 6, 12, 66, 75], "offici": [4, 6, 12, 69, 72, 76, 77], "offload": [5, 6, 12], "offset": 27, "often": [6, 12], "ol": [0, 74, 75], "old": [12, 29], "omar": 0, "onc": [0, 1, 2, 3, 5, 6, 43, 61, 70, 71, 73], "one": [0, 2, 3, 4, 6, 11, 12, 16, 19, 20, 23, 27, 33, 49, 54, 61, 62, 63, 64, 65, 70, 71, 73, 75, 79], "ones": [5, 25, 26, 33, 70], "ongo": 77, "onli": [0, 1, 2, 3, 5, 6, 11, 12, 13, 16, 18, 19, 20, 22, 25, 26, 29, 34, 37, 42, 43, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 70, 71], "onto": 0, "onward": 6, "open": [0, 4, 13, 61, 77], "openmpi": 78, "openpmd": [0, 1, 12, 13, 18, 20, 23, 27, 29, 33, 62, 63, 64, 65], "openpmd_configur": [7, 8, 12, 68], "openpmd_granular": [7, 8, 12, 68], "oper": [5, 6, 11, 12, 19, 20, 23, 65, 71, 73, 75], "opt": 77, "optim": [0, 1, 2, 5, 6, 7, 8, 12, 27, 31, 33, 39, 40, 41, 42, 43, 50, 52, 53, 57, 65, 68, 69, 73, 74, 75, 77], "optimal_shift": 27, "optimal_sigma": 31, "optimizer_dict": 57, "option": [3, 4, 5, 6, 9, 11, 12, 13, 18, 22, 26, 27, 29, 39, 41, 55, 57, 61, 65, 70, 71, 73, 74, 75, 76, 79], "option1": 76, "option2": 76, "opttyp": [40, 42, 44, 45, 46, 47, 48], "optuna": [3, 12, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 70], "optuna_singlenode_setup": [3, 7, 8, 12, 68], "orbit": 75, "order": [0, 3, 6, 11, 12, 13, 19, 25, 26, 42, 70, 71, 72, 74, 77], "org": [39, 61, 65, 74], "orient": 0, "origin": [3, 11, 20, 27, 29, 34, 61, 74], "orthogon": [3, 12, 42, 47, 52, 77], "oscil": 16, "ot": [25, 26], "other": [3, 6, 10, 11, 16, 27, 33, 36, 61, 62, 63, 65, 70, 72, 75], "otherwis": [11, 40, 57, 61], "otherwsi": 22, "our": [4, 74], "ourselv": 22, "out": [0, 2, 4, 6, 11, 19, 41, 42, 54, 61, 63, 65, 71, 72, 73, 76, 77], "out_unit": [31, 32, 33, 35, 62, 63, 64, 65], "outdir": 33, "outfil": [33, 71], "outlin": [6, 60], "output": [1, 2, 6, 11, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 51, 56, 58, 61, 62, 63, 64, 65, 71, 73, 77, 79], "output_data_scal": [19, 25, 26], "output_dimens": [7, 17, 20, 25, 26, 68, 73], "output_directori": [20, 23, 27], "output_fil": [20, 23, 27], "output_format": [56, 73], "output_npy_directori": 29, "output_npy_fil": [20, 23, 27, 29], "output_rescaling_typ": [7, 8, 12, 68, 73], "output_shm_nam": 28, "output_unit": [20, 29], "outsid": [33, 64], "over": [1, 2, 65], "overal": 0, "overfit": 73, "overflow": 60, "overhead": [3, 5, 12, 74], "overview": [1, 6, 76], "overwrit": [18, 23, 26], "overwritten": [55, 61], "own": [4, 12, 51, 73], "p": [61, 74, 75, 76], "packag": [75, 76, 79], "page": 74, "pairs": 61, "paper": [42, 49, 50, 74], "paral": 12, "parallel": [0, 1, 4, 7, 8, 12, 22, 33, 55, 64, 68, 69, 75, 76], "parallel_warn": [7, 8, 11, 68], "param": [31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 51, 52, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70], "paramet": [2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 75, 76], "parametersbas": [7, 8, 12, 68], "parametersdata": [7, 8, 12, 68], "parametersdatagener": [7, 8, 12, 68], "parametersdescriptor": [7, 8, 12, 39, 68], "parametershyperparameteroptim": [7, 8, 12, 68], "parametersnetwork": [7, 8, 12, 68], "parametersrun": [7, 8, 12, 53, 68], "parameterstarget": [7, 8, 12, 65, 68], "parametr": 19, "params_format": [55, 57], "paraview": 4, "parent": 55, "pars": [2, 12, 18, 30, 31, 32, 35, 39, 52, 59, 62, 63, 64, 66], "parse_tri": [7, 38, 52, 68], "parse_trial_oat": [7, 38, 52, 68], "parse_trial_optuna": [7, 38, 52, 68], "parser": [61, 65], "part": [5, 12, 13, 61, 62, 65, 73, 79], "particl": [12, 65], "particular": [11, 49, 50, 61], "partit": 56, "parvez": [0, 74], "pass": [0, 12, 51, 54, 64], "path": [2, 6, 12, 13, 16, 18, 19, 21, 27, 37, 39, 42, 43, 51, 54, 55, 57, 62, 63, 64, 65, 71, 72, 73, 76, 77, 78], "path_name_schem": 64, "path_schem": 64, "path_to_fil": [51, 54], "path_to_log_directori": 6, "patienc": 12, "paulbourk": 61, "pavanello": 75, "pbc": [33, 37], "peform": 12, "penalti": 12, "peopl": 0, "pep8": 0, "per": [6, 12, 33, 37, 70, 73], "percent": 12, "perform": [1, 3, 5, 12, 18, 19, 22, 24, 26, 37, 39, 40, 41, 42, 43, 51, 54, 60, 63, 64, 65, 69, 71, 72, 73, 74, 75, 76, 79], "perform_studi": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "period": 12, "permiss": [11, 61], "permit": [11, 61], "permut": 26, "person": [11, 61, 71], "phase": 74, "phenomena": 74, "phy": [74, 75], "phyiscal": 6, "physic": [2, 3, 6, 12, 13, 58, 65, 74], "physical_data": [7, 8, 68], "physicaldata": [7, 8, 13, 33, 65, 68], "physrevb": 74, "pickl": [12, 22, 33], "pip": 77, "pipelin": [0, 19, 20, 23, 27], "pkg_kokko": 76, "pkg_ml": 76, "pkl": [40, 42, 43, 55, 57], "place": [22, 73], "plan": 76, "plane": 5, "plateau": [12, 70], "plea": 65, "pleas": [0, 2, 3, 4, 5, 6, 12, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 64, 70, 72, 73, 74, 75, 76, 77, 78], "plot": [2, 5, 65], "plu": [3, 12], "plugin": 4, "pmd": 4, "point": [2, 3, 5, 6, 12, 21, 25, 26, 27, 33, 34, 55, 63, 65, 71, 73, 75], "popoola": [0, 74, 75], "popular": 74, "port": 6, "portion": [11, 12, 18, 61], "pose": 75, "posit": [5, 7, 33, 37, 51, 54, 61, 62, 71, 72], "positionalencod": [7, 38, 51, 68], "possibl": [6, 12, 39, 40, 44, 45, 46, 47, 48, 51, 63, 70], "possibli": 51, "post": [4, 29, 65, 75, 79], "postgresql": 3, "postprocess": [7, 59, 62, 63, 64, 65], "potenti": [0, 33, 70, 75], "power": [4, 6, 72], "pp": 71, "pr": 0, "practic": 6, "pre": [0, 28], "precalcul": 79, "preced": 71, "precict": [54, 56], "precis": [6, 12, 18, 33, 34], "predict": [6, 7, 37, 51, 54, 56, 64, 65, 69, 73, 74, 75, 76], "predict_for_atom": [5, 7, 38, 54, 68, 72], "predict_from_qeout": [7, 38, 54, 68], "predict_target": [7, 38, 56, 68], "predicted_arrai": 51, "predicted_ldo": 54, "predicted_output": 56, "predictor": [5, 7, 38, 55, 57, 68, 72], "prefer": [37, 71], "prefetch": [6, 12, 26], "prepar": [6, 13, 19, 42, 43], "prepare_data": [7, 17, 19, 55, 57, 68, 70, 73], "prepare_for_test": [7, 17, 19, 68], "preprocess": [2, 7, 12, 33, 65, 71], "present": [13, 39, 40, 41, 42, 43, 55, 62, 65], "press": [12, 74], "previou": [51, 72], "primari": 70, "principl": [2, 5, 40, 44, 45, 46, 47, 48, 73, 75], "print": [1, 3, 6, 11, 12, 42], "printout": [1, 3, 7, 8, 11, 68], "prior": [0, 2, 5, 6, 12], "priorli": 16, "problem": [0, 5, 6, 78], "problemat": 12, "proceed": 12, "process": [0, 2, 3, 4, 5, 6, 11, 12, 18, 19, 22, 25, 26, 29, 33, 34, 39, 52, 65, 71, 72, 73, 74, 75, 76, 78, 79], "product": [1, 4, 6, 54, 73, 76], "profil": 12, "profiler_rang": [7, 8, 12, 68], "progress": [6, 64], "project": [0, 4, 21, 76, 77], "proof": 75, "proper": [62, 63, 64, 74], "properli": [0, 11, 12], "properti": [6, 10, 12, 13, 16, 20, 25, 29, 31, 32, 33, 35, 37, 47, 62, 63, 64, 65, 70, 72, 75], "provid": [2, 3, 5, 6, 11, 12, 13, 16, 18, 21, 23, 39, 41, 50, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 76, 77], "prudent": [3, 73], "prune": [7, 38, 49, 50, 68], "pruner": [12, 49, 50], "pseudopotenti": [12, 62, 64, 65, 72], "pseudopotential_path": [7, 8, 12, 68, 72], "psu": 65, "public": [2, 3, 5, 6, 70, 71, 74], "publish": [0, 11, 61, 74], "pure": [6, 46, 63], "purpos": [2, 11, 42, 43, 61], "push": 0, "put": [12, 19, 43, 51], "pw": [62, 71], "py": [0, 2, 3, 6, 11, 72, 73, 76], "pypi": 0, "pyproject": 0, "pytest": 77, "python": [2, 3, 4, 5, 6, 19, 20, 33, 34, 62, 65, 72, 79], "python3": [3, 6, 76], "pythonpath": 78, "pytorch": [12, 19, 51, 55], "p\u00f6schel": 0, "q": 78, "qe": [12, 27, 33, 54, 62, 63, 64, 65, 78, 79], "qe_input_data": [7, 58, 62, 64, 65, 68], "qe_out_fil": 33, "qe_pseudopotenti": [62, 64, 65], "qef": 78, "qualiti": 0, "quantif": 0, "quantit": 12, "quantiti": [12, 16, 18, 22, 56, 58, 62, 63, 64, 65], "quantum": [5, 18, 33, 62, 63, 64, 65, 71, 72, 74, 75, 79], "quantumespresso": 65, "question": 6, "queue": 43, "quick": 33, "r": [42, 61, 64, 77], "race": 3, "radial": [5, 12, 65], "radial_distribution_funct": 65, "radial_distribution_function_from_atom": [5, 7, 58, 65, 68], "radii": [2, 5, 12, 65], "radiu": [2, 12, 65, 71], "rais": 62, "rajamanickam": [0, 74, 75], "ram": [6, 25, 42, 43, 51, 64], "random": [6, 51], "randomli": 3, "rang": [2, 12, 22, 42, 51, 73, 74, 75], "rank": [3, 5, 6, 11, 12, 33, 54, 63, 64, 65], "rapid": 75, "rate": [6, 12, 51, 70], "rather": [3, 19, 55, 62, 63, 64], "raw": [2, 18, 19, 33, 71], "raw_numpy_to_converted_scaled_tensor": [7, 17, 19, 68], "rawradialdistribut": 65, "rdb": [12, 43], "rdb_storag": [3, 12, 43], "rdb_storage_heartbeat": [7, 8, 12, 68], "rdf": [5, 12, 16, 37, 65], "rdf_paramet": [7, 8, 12, 68], "re": [0, 2, 19], "read": [4, 10, 12, 13, 16, 22, 25, 26, 29, 54, 60, 61, 62, 63, 64, 65, 66, 72], "read_additional_calculation_data": [7, 58, 63, 65, 68], "read_additional_read_additional_calculation_data": 62, "read_cub": [7, 58, 61, 68], "read_dimensions_from_numpy_fil": [7, 8, 13, 68], "read_dimensions_from_openpmd_fil": [7, 8, 13, 68], "read_dtyp": 13, "read_from_arrai": [7, 58, 62, 63, 64, 68, 72], "read_from_cub": [7, 58, 62, 64, 68], "read_from_numpy_fil": [7, 8, 13, 58, 63, 68], "read_from_openpmd_fil": [7, 8, 13, 68], "read_from_qe_dos_txt": [7, 58, 63, 68], "read_from_qe_out": [7, 58, 63, 68], "read_from_xsf": [7, 58, 62, 64, 68], "read_imcub": [7, 58, 61, 68], "read_xsf": [7, 58, 66, 68], "readi": [0, 71, 73], "readlin": [7, 58, 61, 68], "readthedoc": 42, "real": [22, 61, 65, 70, 73, 75, 79], "realist": 79, "realiz": 5, "realli": [31, 32, 35, 37], "realspac": [5, 16], "reason": [6, 12, 19, 63, 66, 73], "rebas": 0, "recap": 6, "recent": [74, 75, 76, 77, 78], "recogn": 12, "recommend": [6, 12, 16, 62, 63, 64, 65, 76, 79], "reconstruct": [42, 43, 55, 57], "record": 12, "recv": 33, "redistribut": 23, "reduc": [12, 26, 64, 71], "reducelronplateau": 12, "reduct": 12, "redund": 27, "refer": [2, 3, 27, 62, 69, 70, 71, 73, 75, 76], "reference_data": 37, "reference_index": 27, "reflect": [5, 62, 64], "reformat": 0, "regain": 26, "regard": 74, "region": 71, "regular": [2, 3, 5, 12, 53, 71], "regularli": 0, "reimplement": 10, "rel": [26, 27, 51, 63], "relat": [3, 12, 76], "releas": 78, "relev": [2, 4, 6, 12], "reli": 74, "relu": [12, 70, 73], "remark": [2, 5], "remind": [2, 5], "remov": [27, 33], "renam": 78, "reorder": [12, 63], "reparametrize_scal": 19, "repeat": 0, "replac": [4, 13, 18, 29, 61, 64, 75], "repo": [0, 77], "report": [3, 12, 49, 50], "repositori": [0, 12, 69, 73, 74, 75, 77, 78], "repres": [2, 12, 29, 45, 46, 47, 48, 52, 53, 71, 73], "represent": [5, 12, 46, 71, 75], "reproduc": [0, 6, 63, 64, 65], "request": [12, 42, 74], "requeue_zombie_tri": [7, 38, 43, 68], "requir": [0, 3, 5, 6, 12, 13, 26, 41, 42, 61, 71, 73, 76, 77, 79], "research": [74, 75], "reset": [19, 20], "reshap": [13, 62, 63], "resiz": 19, "resize_snapshots_for_debug": [7, 17, 19, 68], "resp": [5, 12], "respect": [3, 10, 12, 20, 71, 73, 74], "respres": [47, 52], "restart": 3, "restrict": [11, 12, 61, 65], "restrict_data": [7, 58, 65, 68], "restrict_target": [7, 8, 12, 68], "resubmit": 43, "result": [3, 6, 12, 18, 19, 34, 52, 56, 65, 71, 72, 73, 75], "result_typ": 34, "resultsfor": 75, "resum": [3, 6, 42, 43], "resume_checkpoint": [7, 38, 42, 43, 68], "resumpt": [6, 42, 43], "retain": [33, 61], "return": [0, 2, 10, 11, 12, 13, 16, 19, 22, 27, 29, 31, 32, 33, 34, 35, 40, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "return_energy_contribut": 64, "return_outputs_directli": [7, 17, 25, 68], "return_plot": [2, 39], "return_str": 65, "return_valu": [47, 48], "retval": 61, "reusabl": 0, "rev": [74, 75], "review": 0, "rewrit": 26, "rfname": 61, "right": [11, 19, 27, 51, 61], "right_truncate_valu": 27, "rmax": [12, 65], "robust": 3, "romero": [0, 12], "room": 75, "root": [0, 22], "rossendorf": 75, "roughli": [71, 74], "rout": 33, "routin": [2, 4, 5, 6, 12, 73], "row": [12, 22, 47, 52, 73], "rst": 77, "run": [0, 3, 5, 7, 8, 11, 12, 25, 33, 37, 42, 43, 54, 55, 57, 64, 68, 70, 73, 77, 78], "run_exist": [3, 6, 7, 38, 55, 57, 68], "run_nam": [37, 55, 57], "runner": [7, 38, 54, 56, 57, 68], "runner_dict": 55, "runtim": 4, "ry": [2, 59, 63, 64, 71], "s0": 60, "s1": 60, "s41524": 74, "safe": 1, "sai": 78, "same": [3, 5, 6, 12, 18, 19, 20, 23, 33, 39, 43, 51, 60, 61, 64, 65, 70, 78], "samefileerror": 76, "sampl": [12, 16, 39, 40, 41, 42, 43, 71, 73], "sampler": [12, 42], "sandia": 75, "save": [3, 4, 5, 6, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 27, 29, 37, 42, 43, 51, 55, 57, 62, 63, 64, 65, 68, 70, 71, 72, 73], "save_as_json": [7, 8, 12, 68], "save_as_pickl": [7, 8, 12, 68], "save_calcul": [7, 36, 37, 68], "save_format": [12, 22], "save_nam": [4, 6, 23, 27], "save_network": [7, 38, 51, 68], "save_path": 27, "save_path_ext": 27, "save_run": [7, 38, 55, 68, 73], "save_runn": 55, "sbatch": 6, "scalabl": 75, "scalar": 34, "scale": [3, 4, 5, 6, 12, 19, 22, 25, 26, 27, 42, 43, 51, 62, 64, 70, 73, 74, 75, 77], "scaled_posit": 62, "scaler": 22, "scarc": 18, "scf": [62, 71], "schedul": [6, 12, 43], "scheme": [18, 19, 64], "schmerler": [0, 74, 75], "sci": 75, "scienc": 74, "scientif": [0, 4, 75], "scikit": 22, "scontrol": 6, "score": [49, 50], "script": [3, 5, 6, 11, 12, 70, 78], "se": 37, "search": [1, 2, 70], "search_paramet": [49, 50, 53], "second": 12, "secondli": [2, 73], "section": [6, 69, 70, 71, 72, 73], "see": [0, 2, 5, 12, 18, 20, 29, 39, 42, 61, 65, 71, 72, 73, 76, 78], "seed": [6, 12], "seem": [5, 26], "select": [2, 6, 12, 13, 56, 71, 73, 78], "self": [63, 64], "sell": [11, 61], "sendv": 33, "sens": [12, 37, 53, 55, 63, 64, 73], "sep": [11, 74], "separ": [11, 18, 29, 37, 55, 57, 71, 73, 79], "sequenc": 51, "seri": [4, 13], "serial": [10, 11], "serializ": 10, "serv": [51, 54, 75], "server": 43, "servernam": 3, "set": [0, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 23, 24, 25, 26, 28, 33, 39, 40, 41, 42, 43, 52, 54, 55, 56, 62, 63, 64, 65, 70, 71, 72, 75, 76], "set_calcul": 72, "set_cmdlinevar": [7, 30, 34, 68], "set_current_verbos": [7, 8, 11, 68], "set_ddp_statu": [7, 8, 11, 68], "set_lammps_inst": [7, 8, 11, 68], "set_mpi_statu": [7, 8, 11, 68], "set_optimal_paramet": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "set_paramet": [7, 38, 40, 68], "setup": [0, 3, 6, 36, 77], "setup_lammps_tmp_fil": [7, 30, 33, 68], "sever": [3, 5, 60, 70, 73], "sgd": 12, "sh": 78, "shall": [11, 61], "sham": [74, 75], "shao": 75, "shape": [34, 62, 65], "share": [26, 28], "shift": [27, 33], "ship": 76, "shorter": 6, "should": [0, 2, 3, 5, 6, 11, 12, 13, 19, 21, 22, 31, 32, 33, 35, 37, 42, 43, 48, 49, 50, 51, 54, 55, 59, 60, 62, 63, 64, 65, 70, 71, 73, 76, 78], "should_prun": [49, 50], "show": [0, 6, 7, 8, 12, 68, 75], "show_order_of_import": [7, 38, 42, 68], "showcas": [2, 75], "shown": [2, 3, 5, 6, 71, 73], "shuffl": [0, 4, 6, 7, 12, 17, 20, 23, 24, 25, 26, 68], "shuffle_snapshot": [4, 6, 7, 17, 23, 68], "shuffling_se": [6, 7, 8, 12, 68], "shut": 11, "shutil": 76, "si": [13, 33, 62, 63, 64, 65], "si_dimens": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "si_unit_convers": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "side": 27, "sigma": [12, 31, 60], "sigmoid": [12, 70], "sign": 0, "signal": 73, "signific": [12, 75], "significantli": [64, 65], "silver": 74, "similar": [2, 3, 16, 75], "simpl": [71, 72, 73], "simplest": 6, "simpli": [5, 6, 12, 16, 19, 37, 52, 62, 65], "simpson": [60, 62, 63, 64], "simul": [5, 12, 37, 61, 62, 64, 71, 72, 73, 74, 75, 79], "sinc": [2, 3, 5, 6, 12, 18, 31, 32, 33, 35, 37, 43, 72, 73, 77], "singl": [3, 6, 18, 24, 26, 34, 56, 69], "site": 13, "siva": 0, "sivasankaran": [74, 75], "six": 37, "size": [0, 3, 5, 11, 12, 13, 26, 40, 44, 45, 46, 47, 48, 51, 53, 70, 73, 75], "skip": 34, "skiparraywrit": [7, 8, 13, 68], "slice": [5, 19], "slightli": 43, "slow": 6, "slowest": 12, "slurm": 6, "slurm_job_nodelist": 6, "slurm_localid": 6, "slurm_nodelist": 6, "slurm_ntask": 6, "slurm_procid": 6, "small": [2, 6, 65, 71, 79], "smaller": [5, 12, 25, 70], "smallest": [12, 16], "smear": 63, "smearing_factor": 63, "smith": 65, "smoothli": 12, "snap": [12, 76], "snapshot": [6, 7, 12, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 33, 39, 56, 64, 68, 71, 73], "snapshot4": 18, "snapshot_correlation_cutoff": [7, 14, 16, 68], "snapshot_directories_list": [7, 8, 12, 68], "snapshot_funct": 29, "snapshot_numb": [19, 56, 64], "snapshot_typ": [4, 20, 23, 27, 29], "sneha": 0, "so": [2, 3, 4, 5, 6, 11, 12, 22, 51, 55, 61, 62, 63, 71, 73, 75, 76, 77, 78, 79], "societi": 74, "softwar": [0, 5, 11, 61, 71, 72, 74, 75, 79], "sole": 76, "solv": 60, "somashekhar": 0, "some": [2, 6, 12, 25, 26, 51, 53, 55, 65, 73], "someth": [53, 78], "sometim": 77, "somewhat": 12, "soon": [0, 7], "sort": [22, 25, 26, 33, 42], "sourc": [0, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 72], "space": [2, 6, 27, 60, 63, 65, 70, 71, 73, 75, 79], "special": [2, 24], "specif": [3, 4, 6, 12, 19, 40, 51, 60, 65, 72, 77], "specifi": [0, 2, 3, 4, 5, 6, 12, 13, 22, 33, 53, 63, 65, 70, 71, 72, 73], "speed": [6, 12, 75], "speedup": 6, "sphere": 71, "sphinxopt": 77, "split": [5, 12], "springer": 42, "sql": [3, 43], "sqlite": [3, 12], "sqlite_timeout": 12, "sqrt": 60, "squar": [6, 12, 27], "src": 76, "srcname": 61, "srun": [5, 6], "ssf": [12, 65], "ssf_paramet": [7, 8, 12, 68], "stabl": 12, "standard": [3, 4, 5, 12, 22, 70, 73], "start": [2, 3, 5, 12, 22, 71], "start_incremental_fit": [7, 17, 22, 68], "starts_at": 18, "state": [12, 51, 63, 64, 72, 75], "statement": [5, 11], "static": [5, 12, 27, 28, 31, 32, 33, 35, 43, 51, 59, 61, 62, 63, 64, 65], "static_structur": 5, "static_structure_factor_from_atom": [5, 7, 58, 65, 68], "statu": 11, "stem": [63, 64], "step": [0, 2, 5, 12, 15, 16, 69, 70, 79], "stephen": [0, 74, 75], "steve": [0, 74], "still": [6, 11, 13, 24, 28, 42, 43, 74, 75], "stochast": 12, "stop": [12, 19, 70, 77], "storag": [4, 12, 43], "store": [1, 3, 12, 25, 26, 37, 62, 65, 71, 73], "str": [28, 33, 37, 55, 56, 57, 62, 64], "straightforward": [0, 2, 75], "strategi": [3, 70], "strength": 42, "stress": 37, "stretch": 5, "string": [11, 12, 13, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "strongli": 71, "structur": [5, 7, 12, 13, 65, 71, 72, 73, 74, 75, 79], "studi": [3, 12, 39, 40, 41, 42, 43, 49, 50, 70, 74], "study_nam": [3, 12, 43], "style": [0, 52, 65], "sub": 73, "subclass": [44, 51], "subfold": 12, "subject": [11, 61, 77], "sublicens": [11, 61], "submit": 0, "subobject": 73, "subroutin": 64, "subsequ": [12, 54, 75], "subset": [40, 41, 43], "substanti": [11, 61], "success": [76, 78], "successfulli": [76, 77], "suffic": 33, "suffici": [0, 71], "suggest": [0, 12, 16, 65], "suit": [0, 78], "suitabl": [5, 12, 74, 75, 76, 77], "sum_i": 63, "sum_k": 63, "summari": 65, "summat": [62, 64, 65], "supervis": 0, "supervisor": 75, "support": [0, 3, 4, 5, 6, 12, 20, 29, 33, 37, 40, 42, 44, 45, 46, 47, 48, 53, 56, 59, 60, 62, 63, 64, 65, 76], "suppos": [0, 34, 50, 60, 64], "suppress": 60, "suppress_overflow": 60, "sure": [0, 3, 4, 6, 33, 64, 71, 72, 73, 75, 76, 77, 78], "surrog": [12, 49, 50, 75], "switch": [2, 5, 12], "switchflag": 12, "symbol": 18, "symmetri": [62, 64], "syntax": [2, 3, 6, 73, 77], "system": [0, 2, 3, 5, 6, 12, 43, 62, 63, 64, 65, 71, 72, 73, 75, 78], "system_chang": 37, "t": [4, 12, 42, 43, 60, 61, 63, 64, 65, 75, 77, 78], "tag": [0, 77], "tahmasbi": 0, "take": [2, 6, 12, 43, 49, 50, 65], "taken": [42, 61], "tamar": 74, "target": [2, 6, 7, 8, 11, 12, 16, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 49, 50, 51, 54, 56, 59, 62, 63, 64, 68, 71, 72, 73], "target_calcul": [5, 7, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68, 72], "target_calculation_kwarg": 71, "target_calculator_kwarg": 18, "target_data": 65, "target_input_path": [18, 39, 71], "target_input_typ": [18, 39, 71], "target_save_path": [18, 23, 71], "target_temperatur": 16, "target_typ": [7, 8, 12, 68, 71, 73], "target_unit": [2, 18, 39, 71], "targetbas": [59, 63], "task": [12, 60, 73, 79], "te": [20, 29, 56, 73], "te_mutex": [7, 58, 62, 68], "team": [0, 4, 6, 71, 76, 77], "technic": [33, 65], "techniqu": [3, 71, 75], "technol": 75, "technologi": 74, "tell": [3, 73, 76], "tem": [12, 65], "temperatur": [5, 6, 12, 16, 37, 54, 60, 63, 64, 65, 73, 74, 75], "tempor": 16, "temporari": 33, "tend": 65, "tensor": [19, 22, 24, 51, 64], "tensorboard": 0, "tensordataset": [6, 12, 24], "term": [51, 63, 64], "termin": 12, "test": [0, 4, 6, 12, 19, 20, 21, 25, 29, 49, 50, 56, 70, 71, 77, 78, 79], "test_al_debug_2k_nr": 19, "test_all_snapshot": [7, 38, 56, 68, 73], "test_exampl": 0, "test_snapshot": [7, 38, 56, 68], "tester": [6, 7, 19, 38, 55, 57, 68, 73], "text": 4, "than": [12, 55, 70], "thei": [0, 3, 4, 5, 6, 12, 27, 43, 65, 72], "them": [0, 6, 23, 33, 63, 71], "themselv": [4, 16, 19], "theorem": 62, "theori": [3, 74, 75], "thereaft": [63, 65], "therefor": [4, 5, 25, 26, 33, 62, 79], "therein": [12, 74], "thermodynam": 60, "thi": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "thing": [70, 71], "third": 73, "thompson": [0, 74, 75], "those": [12, 73, 78], "though": [12, 65], "thread": 11, "three": [5, 12, 65, 71, 73, 79], "three_particle_correlation_function_from_atom": [7, 58, 65, 68], "threshold": [16, 71], "through": [0, 3, 5, 11, 51, 62, 73], "throughout": 56, "thrown": 11, "thu": [0, 6, 12, 19, 77], "time": [0, 3, 5, 6, 12, 43, 71, 73, 74, 78], "timeout": 12, "timestep": [12, 16], "timothi": 0, "titl": 74, "tmp": 71, "to_json": [7, 8, 10, 12, 68], "togeth": [6, 70, 78], "token": 51, "toml": [0, 12], "too": [2, 33], "tool": [4, 14, 15, 16, 65], "topic": [71, 72], "torch": [6, 18, 19, 22, 51, 64, 77], "torchrun": 6, "tort": [11, 61], "total": [0, 5, 12, 56, 62, 63, 64, 65, 71, 72, 73, 75, 79], "total_energi": [7, 12, 56, 58, 64, 68, 72, 78], "total_energy_contribut": [7, 58, 62, 68], "total_energy_ful": 56, "total_energy_modul": 78, "tpcf": [12, 65], "tpcf_paramet": [7, 8, 12, 68], "tpe": 42, "tr": [4, 20, 29, 56, 73], "track": 19, "train": [0, 1, 2, 3, 5, 7, 12, 19, 20, 23, 25, 29, 37, 41, 42, 43, 49, 50, 52, 53, 55, 57, 65, 69, 70, 72, 74, 75, 79], "train_network": [7, 38, 57, 68, 73], "trainer": [3, 6, 7, 12, 38, 55, 68, 73], "training_log_interv": [7, 8, 12, 68], "traj": 15, "trajectori": [7, 12, 14, 15, 16, 65, 68], "trajectory_analysis_below_average_count": [7, 8, 12, 68], "trajectory_analysis_correlation_metric_cutoff": [7, 8, 12, 68], "trajectory_analysis_denoising_width": [7, 8, 12, 68], "trajectory_analysis_estimated_equilibrium": [7, 8, 12, 68], "trajectory_analysis_temperature_tolerance_perc": [7, 8, 12, 68], "trajectory_analyz": [7, 14, 68], "trajectoryanalyz": [7, 14, 16, 68], "transfer": [0, 6, 74, 75], "transform": [7, 12, 17, 19, 22, 25, 51, 62, 65, 68, 71], "transformernet": [7, 38, 51, 68], "trapezoid": [60, 62, 63, 64], "trapz": 64, "treat": [11, 77], "tree": [0, 76], "trex": 11, "trial": [3, 12, 40, 41, 42, 43, 47, 48, 49, 50, 52, 70], "trial_ensemble_evalu": [7, 8, 12, 68], "trial_list": 41, "trial_typ": 53, "tricki": 24, "trigger": 0, "trivial": [2, 5, 6], "true": [2, 3, 5, 6, 12, 13, 18, 19, 22, 25, 26, 33, 34, 40, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65, 71, 72, 73, 76], "truncat": [12, 27], "truth": 73, "try": 26, "tune": [0, 3, 6, 12, 42, 70, 73], "turn": 6, "tutori": [4, 6, 73], "tweak": [69, 72], "twice": [5, 65], "two": [2, 12, 13, 16, 61, 70, 73, 74], "twojmax": 12, "txt": [0, 63, 77], "type": [10, 11, 12, 13, 16, 18, 19, 22, 24, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 71], "typestr": 22, "typic": [27, 76], "u": [3, 6, 12, 33], "ubuntu": 79, "uncach": [16, 62, 63, 64], "uncache_properti": [7, 14, 16, 58, 62, 63, 64, 68], "uncertainti": 0, "unchang": [26, 62], "uncorrel": [12, 16], "under": [0, 37, 55, 57], "underlin": 64, "understand": 75, "uniform": [51, 60], "unit": [5, 13, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 39, 51, 59, 62, 63, 64, 65], "unless": 62, "unload": 6, "unnecessari": [19, 55], "unproblemat": 5, "unscal": 22, "unseen": 73, "untest": 78, "until": [12, 25, 26, 70, 71], "untouch": 4, "up": [0, 2, 6, 12, 27, 33, 43, 62, 63, 64, 65, 70, 71, 75], "updat": 0, "upon": [0, 3, 12, 19, 43, 46, 51, 71], "upper": 70, "upward": 12, "url": 74, "us": [0, 1, 2, 3, 4, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79], "usag": [0, 5, 6, 19, 55, 64, 69, 72, 73, 75, 76], "use_atomic_density_formula": [5, 7, 8, 12, 68], "use_ddp": [6, 7, 8, 12, 22, 25, 26, 68], "use_fast_tensor_data_set": [6, 7, 8, 12, 68], "use_fp64": [18, 33, 34], "use_gauss_ldo": 71, "use_gpu": [5, 6, 7, 8, 12, 68, 76], "use_graph": [6, 7, 8, 12, 68], "use_lammp": [7, 8, 12, 68], "use_lazy_load": [6, 7, 8, 12, 68, 73], "use_lazy_loading_prefetch": [6, 7, 8, 12, 68], "use_memmap": 64, "use_mixed_precis": [6, 7, 8, 12, 68], "use_mpi": [2, 3, 5, 7, 8, 12, 68], "use_multivari": 12, "use_pickled_comm": 33, "use_pkl_checkpoint": [39, 40, 41, 42, 43, 57], "use_shuffling_for_sampl": [7, 8, 12, 68], "use_y_split": [5, 7, 8, 12, 68], "use_z_split": [7, 8, 12, 68], "useabl": 71, "used_data_handl": 64, "user": [4, 11, 12, 16, 49, 50, 60, 64, 73, 77], "userwarn": 11, "usual": [6, 12, 16, 33, 51, 52, 62, 63, 65, 71], "util": [5, 6], "v": [75, 76], "v1": [37, 77], "v2": 12, "v80": 12, "v_": 62, "va": [20, 29, 56, 73], "vaidyanathan": 61, "valid": [3, 6, 12, 19, 20, 29, 70, 73], "validation_loss": 12, "validation_loss_old": 12, "valu": [2, 5, 6, 11, 12, 13, 16, 25, 26, 27, 31, 33, 41, 42, 47, 48, 49, 50, 51, 53, 54, 56, 60, 61, 62, 63, 64, 65, 70, 71, 73], "valuabl": 0, "var": 21, "vari": 78, "variabl": [6, 12, 16, 19, 55, 65], "varianc": 25, "varieti": 75, "variou": [12, 72, 73, 75], "vector": [2, 12, 25, 26, 27, 33, 61, 65, 71, 73], "verbos": [7, 8, 11, 12, 63, 68, 71, 73], "veri": [0, 3, 6, 12, 51, 63], "verif": 73, "verifi": 73, "verma": 0, "versatil": 75, "version": [7, 12, 18, 24, 49, 50, 68, 71, 76, 77, 78], "via": [0, 2, 3, 5, 6, 11, 12, 16, 21, 26, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "viabl": 49, "view": [2, 6, 34], "viewdoc": 65, "viewer": 4, "virtu": 6, "visibl": 51, "visit": [3, 4], "visual": [4, 6, 75], "visualizatuon": 6, "vladyslav": [0, 74], "vogel": [0, 74, 75], "volta": 76, "volum": 74, "volumetr": [4, 61, 66, 71, 73], "voxel": [31, 62, 64], "w": [42, 64, 77], "w_k": 63, "wa": [5, 6, 22, 25, 26, 39, 40, 41, 42, 43, 51, 55, 57, 62, 63, 64, 65, 72], "wai": [0, 3, 6, 12, 65], "wait": [12, 43], "wait_tim": [3, 12], "want": [2, 5, 6, 20, 23, 40, 44, 45, 46, 47, 48, 65, 70, 73, 76, 77], "warmli": 0, "warn": [3, 11, 77], "warranti": [11, 61], "wave": [12, 65], "wavefunct": 62, "we": [0, 2, 3, 5, 12, 22, 25, 26, 33, 37, 65, 66, 70, 71, 73, 74, 76, 78], "websit": [3, 77], "weight": [6, 51, 60, 73], "welcom": 0, "well": [2, 3, 6, 12, 62, 69, 70, 77], "were": [5, 73], "what": [0, 20, 23, 33, 37, 55, 57, 61, 73], "whatev": 76, "when": [0, 1, 3, 4, 6, 11, 12, 18, 19, 20, 27, 29, 33, 43, 49, 50, 51, 55, 57, 61, 64, 65, 70, 71, 73, 76, 78, 79], "whenev": 73, "where": [4, 6, 12, 26, 33, 37, 42, 43, 55, 57, 73, 76], "wherea": 71, "whether": [9, 11, 12, 25, 27, 33, 49, 50, 61], "which": [0, 2, 3, 4, 5, 6, 9, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "whichev": 5, "while": [2, 6, 12, 62, 64, 65, 74], "whom": [11, 61], "wide": 75, "width": [12, 31], "window": [77, 79], "wip": 64, "wise": [6, 12, 22, 70, 73], "wish": [5, 78], "within": [2, 11, 12, 13, 19, 24, 64, 65, 73], "without": [0, 3, 6, 11, 12, 13, 41, 53, 60, 61, 65, 76], "won": [42, 43], "wonjoon": 11, "work": [0, 3, 5, 6, 11, 12, 34, 41, 56, 61, 62, 63, 64, 65, 70, 71, 72, 78, 79], "worker": [6, 12], "workflow": [0, 2, 3, 4, 5, 6, 29, 36, 72, 73, 74, 75, 78], "working_directori": [33, 71], "world": 22, "world_siz": 6, "worldwid": 75, "would": [2, 13, 62], "wrap": 0, "wrapper": 5, "write": [4, 13, 33, 61, 62, 65], "write_additional_calculation_data": [7, 58, 65, 68], "write_cub": [7, 58, 61, 68], "write_imcub": [7, 58, 61, 68], "write_tem_input_fil": [7, 58, 65, 68], "write_to_cub": [5, 7, 58, 62, 68], "write_to_numpy_fil": [7, 8, 13, 58, 65, 68], "write_to_openpmd_fil": [7, 8, 13, 58, 62, 65, 68], "write_to_openpmd_iter": [7, 8, 13, 68], "written": [39, 40, 41, 42, 43, 62, 65], "wuantiti": [62, 63, 64], "x": [5, 12, 19, 33, 51, 60, 65, 71, 75], "x86_64": 78, "xarg": 0, "xc": 62, "xcrysden": 64, "xsf": [62, 64, 66], "xsf_parser": [7, 58, 68], "xvec": 61, "xyz": [12, 33], "y": [5, 12, 19, 33, 65], "yaml": 0, "ye": 76, "year": 74, "yet": [4, 6, 13, 27, 31, 32, 35, 65], "yield": [2, 6], "you": [0, 2, 3, 4, 5, 6, 12, 20, 23, 40, 44, 45, 46, 47, 48, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79], "your": [0, 2, 4, 5, 6, 12, 71, 73, 74, 75, 76, 78], "yourself": 69, "yovel": [74, 75], "ysplit": 5, "yt": 4, "yvec": 61, "z": [5, 12, 19, 33, 65, 74, 75], "zentrum": 75, "zero": [5, 12, 27, 51, 70], "zero_out_neg": 12, "zero_tol": 27, "zip": [37, 55, 57, 73], "zip_run": [55, 57], "zipextfil": [12, 22, 51], "zombi": 43, "zone": 60, "zvec": 61}, "titles": ["Contributions", "Advanced options", "Improved data conversion", "Improved hyperparameter optimization", "Storing data with OpenPMD", "Using MALA in production", "Improved training performance", "mala", "common", "check_modules", "json_serializable", "parallelizer", "parameters", "physical_data", "datageneration", "ofdft_initializer", "trajectory_analyzer", "datahandling", "data_converter", "data_handler", "data_handler_base", "data_repo", "data_scaler", "data_shuffler", "fast_tensor_dataset", "lazy_load_dataset", "lazy_load_dataset_single", "ldos_aligner", "multi_lazy_load_data_loader", "snapshot", "descriptors", "atomic_density", "bispectrum", "descriptor", "lammps_utils", "minterpy_descriptors", "interfaces", "ase_calculator", "network", "acsd_analyzer", "hyper_opt", "hyper_opt_naswot", "hyper_opt_oat", "hyper_opt_optuna", "hyperparameter", "hyperparameter_acsd", "hyperparameter_naswot", "hyperparameter_oat", "hyperparameter_optuna", "multi_training_pruner", "naswot_pruner", "network", "objective_base", "objective_naswot", "predictor", "runner", "tester", "trainer", "targets", "atomic_force", "calculation_helpers", "cube_parser", "density", "dos", "ldos", "target", "xsf_parser", "version", "API reference", "Getting started with MALA", "Basic hyperparameter optimization", "Data generation and conversion", "Using ML-DFT models for predictions", "Training an ML-DFT model", "Citing MALA", "Welcome to MALA!", "Installing LAMMPS", "Installing MALA", "Installing Quantum ESPRESSO (total energy module)", "Installation"], "titleterms": {"ASE": 72, "acsd_analyz": 39, "ad": [0, 73, 77], "advanc": [1, 3, 6], "algorithm": 3, "an": 73, "api": 68, "ase_calcul": 37, "atomic_dens": 31, "atomic_forc": 59, "basic": 70, "behind": 75, "bispectrum": 32, "branch": 0, "build": [73, 76, 77, 78], "calcul": 72, "calculation_help": 60, "check_modul": 9, "checkpoint": [3, 6], "cite": 74, "code": 0, "common": 8, "content": 75, "contribut": 0, "contributor": 0, "convers": [2, 71], "creat": 0, "cube_pars": 61, "data": [2, 4, 71, 73, 77], "data_convert": 18, "data_handl": 19, "data_handler_bas": 20, "data_repo": 21, "data_scal": 22, "data_shuffl": 23, "datagener": 14, "datahandl": 17, "densiti": 62, "depend": 0, "descriptor": [2, 30, 33], "develop": 0, "dft": [72, 73], "do": 63, "document": 77, "doe": 75, "download": 77, "energi": 78, "espresso": 78, "exampl": 77, "extens": [76, 78], "fast_tensor_dataset": 24, "format": 0, "gener": 71, "get": 69, "gpu": [5, 6], "how": 75, "hyper_opt": 40, "hyper_opt_naswot": 41, "hyper_opt_oat": 42, "hyper_opt_optuna": 43, "hyperparamet": [3, 44, 70], "hyperparameter_acsd": 45, "hyperparameter_naswot": 46, "hyperparameter_oat": 47, "hyperparameter_optuna": 48, "i": 75, "improv": [2, 3, 6], "instal": [76, 77, 78, 79], "interfac": 36, "issu": 0, "json_serializ": 10, "lammp": 76, "lammps_util": 34, "lazi": 6, "lazy_load_dataset": 25, "lazy_load_dataset_singl": 26, "ldo": 64, "ldos_align": 27, "librari": 77, "licens": 0, "list": 70, "load": 6, "local": 77, "mala": [0, 5, 7, 69, 72, 74, 75, 77], "metric": 6, "minterpy_descriptor": 35, "ml": [72, 73], "model": [72, 73], "modul": 78, "multi_lazy_load_data_load": 28, "multi_training_prun": 49, "naswot_prun": 50, "network": [38, 51], "objective_bas": 52, "objective_naswot": 53, "observ": 5, "ofdft_initi": 15, "openpmd": 4, "optim": [3, 70], "option": [1, 77], "parallel": [2, 3, 5, 6, 11], "paramet": [12, 73], "perform": 6, "physical_data": 13, "predict": [5, 72], "predictor": 54, "prerequisit": [76, 77, 78], "product": 5, "public": 75, "pull": 0, "python": [76, 77, 78], "quantum": 78, "recommend": 77, "refer": 68, "releas": 0, "request": 0, "run": 6, "runner": 55, "search": 3, "set": 73, "snapshot": 29, "start": [69, 75], "store": 4, "strategi": 0, "target": [58, 65], "tensorboard": 6, "test": 73, "tester": 56, "total": 78, "train": [6, 73], "trainer": 57, "trajectory_analyz": 16, "tune": 2, "us": [5, 6, 72], "version": [0, 67], "visual": 5, "welcom": 75, "what": 75, "where": 75, "who": 75, "work": 75, "xsf_parser": 66}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API reference": [[68, "api-reference"]], "Adding dependencies": [[0, "adding-dependencies"]], "Adding training data": [[73, "adding-training-data"]], "Advanced optimization algorithms": [[3, "advanced-optimization-algorithms"]], "Advanced options": [[1, "advanced-options"]], "Advanced training metrics": [[6, "advanced-training-metrics"]], "Basic hyperparameter optimization": [[70, "basic-hyperparameter-optimization"]], "Branching strategy": [[0, "branching-strategy"]], "Build LAMMPS": [[76, "build-lammps"]], "Build Quantum ESPRESSO": [[78, "build-quantum-espresso"]], "Build documentation locally (Optional)": [[77, "build-documentation-locally-optional"]], "Building and training a model": [[73, "building-and-training-a-model"]], "Checkpointing a hyperparameter search": [[3, "checkpointing-a-hyperparameter-search"]], "Checkpointing a training run": [[6, "checkpointing-a-training-run"]], "Citing MALA": [[74, "citing-mala"]], "Contents": [[75, "contents"]], "Contributions": [[0, "contributions"]], "Creating a release": [[0, "creating-a-release"]], "Data conversion": [[71, "data-conversion"]], "Data generation": [[71, "data-generation"]], "Data generation and conversion": [[71, "data-generation-and-conversion"]], "Developing code": [[0, "developing-code"]], "Downloading and adding example data (Recommended)": [[77, "downloading-and-adding-example-data-recommended"]], "Formatting code": [[0, "formatting-code"]], "Getting started with MALA": [[69, "getting-started-with-mala"]], "How does MALA work?": [[75, "how-does-mala-work"]], "Improved data conversion": [[2, "improved-data-conversion"]], "Improved hyperparameter optimization": [[3, "improved-hyperparameter-optimization"]], "Improved training performance": [[6, "improved-training-performance"]], "Installation": [[79, "installation"]], "Installing LAMMPS": [[76, "installing-lammps"]], "Installing MALA": [[77, "installing-mala"]], "Installing Quantum ESPRESSO (total energy module)": [[78, "installing-quantum-espresso-total-energy-module"]], "Installing the Python extension": [[76, "installing-the-python-extension"], [78, "installing-the-python-extension"]], "Installing the Python library": [[77, "installing-the-python-library"]], "Issues": [[0, "issues"]], "License": [[0, "license"]], "List of hyperparameters": [[70, "list-of-hyperparameters"], [70, "id1"]], "MALA contributors": [[0, "mala-contributors"]], "MALA publications": [[75, "mala-publications"]], "Parallel data conversion": [[2, "parallel-data-conversion"]], "Parallel predictions": [[5, "parallel-predictions"]], "Parallelizing a hyperparameter search": [[3, "parallelizing-a-hyperparameter-search"]], "Predictions on GPUs": [[5, "predictions-on-gpus"]], "Prerequisites": [[76, "prerequisites"], [77, "prerequisites"], [78, "prerequisites"]], "Pull Requests": [[0, "pull-requests"]], "Setting parameters": [[73, "setting-parameters"]], "Storing data with OpenPMD": [[4, "storing-data-with-openpmd"]], "Testing a model": [[73, "testing-a-model"]], "Training an ML-DFT model": [[73, "training-an-ml-dft-model"]], "Training in parallel": [[6, "training-in-parallel"]], "Tuning descriptors": [[2, "id1"]], "Using MALA in production": [[5, "using-mala-in-production"]], "Using ML-DFT models for predictions": [[72, "using-ml-dft-models-for-predictions"]], "Using a GPU": [[6, "using-a-gpu"]], "Using lazy loading": [[6, "using-lazy-loading"]], "Using tensorboard": [[6, "using-tensorboard"]], "Using the MALA ASE calculator": [[72, "using-the-mala-ase-calculator"]], "Versioning and releases": [[0, "versioning-and-releases"]], "Visualizing observables": [[5, "visualizing-observables"]], "Welcome to MALA!": [[75, "welcome-to-mala"]], "What is MALA?": [[75, "what-is-mala"]], "Where to start?": [[75, "where-to-start"]], "Who is behind MALA?": [[75, "who-is-behind-mala"]], "acsd_analyzer": [[39, "module-mala.network.acsd_analyzer"]], "ase_calculator": [[37, "module-mala.interfaces.ase_calculator"]], "atomic_density": [[31, "module-mala.descriptors.atomic_density"]], "atomic_force": [[59, "module-mala.targets.atomic_force"]], "bispectrum": [[32, "module-mala.descriptors.bispectrum"]], "calculation_helpers": [[60, "module-mala.targets.calculation_helpers"]], "check_modules": [[9, "module-mala.common.check_modules"]], "common": [[8, "common"]], "cube_parser": [[61, "module-mala.targets.cube_parser"]], "data_converter": [[18, "module-mala.datahandling.data_converter"]], "data_handler": [[19, "module-mala.datahandling.data_handler"]], "data_handler_base": [[20, "module-mala.datahandling.data_handler_base"]], "data_repo": [[21, "module-mala.datahandling.data_repo"]], "data_scaler": [[22, "module-mala.datahandling.data_scaler"]], "data_shuffler": [[23, "module-mala.datahandling.data_shuffler"]], "datageneration": [[14, "datageneration"]], "datahandling": [[17, "datahandling"]], "density": [[62, "module-mala.targets.density"]], "descriptor": [[33, "module-mala.descriptors.descriptor"]], "descriptors": [[30, "descriptors"]], "dos": [[63, "module-mala.targets.dos"]], "fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset"]], "hyper_opt": [[40, "module-mala.network.hyper_opt"]], "hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot"]], "hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat"]], "hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna"]], "hyperparameter": [[44, "module-mala.network.hyperparameter"]], "hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd"]], "hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot"]], "hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat"]], "hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna"]], "interfaces": [[36, "interfaces"]], "json_serializable": [[10, "module-mala.common.json_serializable"]], "lammps_utils": [[34, "module-mala.descriptors.lammps_utils"]], "lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset"]], "lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single"]], "ldos": [[64, "module-mala.targets.ldos"]], "ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner"]], "mala": [[7, "mala"]], "minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors"]], "multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader"]], "multi_training_pruner": [[49, "module-mala.network.multi_training_pruner"]], "naswot_pruner": [[50, "module-mala.network.naswot_pruner"]], "network": [[38, "network"], [51, "module-mala.network.network"]], "objective_base": [[52, "module-mala.network.objective_base"]], "objective_naswot": [[53, "module-mala.network.objective_naswot"]], "ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer"]], "parallelizer": [[11, "module-mala.common.parallelizer"]], "parameters": [[12, "module-mala.common.parameters"]], "physical_data": [[13, "module-mala.common.physical_data"]], "predictor": [[54, "module-mala.network.predictor"]], "runner": [[55, "module-mala.network.runner"]], "snapshot": [[29, "module-mala.datahandling.snapshot"]], "target": [[65, "module-mala.targets.target"]], "targets": [[58, "targets"]], "tester": [[56, "module-mala.network.tester"]], "trainer": [[57, "module-mala.network.trainer"]], "trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer"]], "version": [[67, "module-mala.version"]], "xsf_parser": [[66, "module-mala.targets.xsf_parser"]]}, "docnames": ["CONTRIBUTE", "advanced_usage", "advanced_usage/descriptors", "advanced_usage/hyperparameters", "advanced_usage/openpmd", "advanced_usage/predictions", "advanced_usage/trainingmodel", "api/mala", "api/mala.common", "api/mala.common.check_modules", "api/mala.common.json_serializable", "api/mala.common.parallelizer", "api/mala.common.parameters", "api/mala.common.physical_data", "api/mala.datageneration", "api/mala.datageneration.ofdft_initializer", "api/mala.datageneration.trajectory_analyzer", "api/mala.datahandling", "api/mala.datahandling.data_converter", "api/mala.datahandling.data_handler", "api/mala.datahandling.data_handler_base", "api/mala.datahandling.data_repo", "api/mala.datahandling.data_scaler", "api/mala.datahandling.data_shuffler", "api/mala.datahandling.fast_tensor_dataset", "api/mala.datahandling.lazy_load_dataset", "api/mala.datahandling.lazy_load_dataset_single", "api/mala.datahandling.ldos_aligner", "api/mala.datahandling.multi_lazy_load_data_loader", "api/mala.datahandling.snapshot", "api/mala.descriptors", "api/mala.descriptors.atomic_density", "api/mala.descriptors.bispectrum", "api/mala.descriptors.descriptor", "api/mala.descriptors.lammps_utils", "api/mala.descriptors.minterpy_descriptors", "api/mala.interfaces", "api/mala.interfaces.ase_calculator", "api/mala.network", "api/mala.network.acsd_analyzer", "api/mala.network.hyper_opt", "api/mala.network.hyper_opt_naswot", "api/mala.network.hyper_opt_oat", "api/mala.network.hyper_opt_optuna", "api/mala.network.hyperparameter", "api/mala.network.hyperparameter_acsd", "api/mala.network.hyperparameter_naswot", "api/mala.network.hyperparameter_oat", "api/mala.network.hyperparameter_optuna", "api/mala.network.multi_training_pruner", "api/mala.network.naswot_pruner", "api/mala.network.network", "api/mala.network.objective_base", "api/mala.network.objective_naswot", "api/mala.network.predictor", "api/mala.network.runner", "api/mala.network.tester", "api/mala.network.trainer", "api/mala.targets", "api/mala.targets.atomic_force", "api/mala.targets.calculation_helpers", "api/mala.targets.cube_parser", "api/mala.targets.density", "api/mala.targets.dos", "api/mala.targets.ldos", "api/mala.targets.target", "api/mala.targets.xsf_parser", "api/mala.version", "api/modules", "basic_usage", "basic_usage/hyperparameters", "basic_usage/more_data", "basic_usage/predictions", "basic_usage/trainingmodel", "citing", "index", "install/installing_lammps", "install/installing_mala", "install/installing_qe", "installation"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1}, "filenames": ["CONTRIBUTE.md", "advanced_usage.rst", "advanced_usage/descriptors.rst", "advanced_usage/hyperparameters.rst", "advanced_usage/openpmd.rst", "advanced_usage/predictions.rst", "advanced_usage/trainingmodel.rst", "api/mala.rst", "api/mala.common.rst", "api/mala.common.check_modules.rst", "api/mala.common.json_serializable.rst", "api/mala.common.parallelizer.rst", "api/mala.common.parameters.rst", "api/mala.common.physical_data.rst", "api/mala.datageneration.rst", "api/mala.datageneration.ofdft_initializer.rst", "api/mala.datageneration.trajectory_analyzer.rst", "api/mala.datahandling.rst", "api/mala.datahandling.data_converter.rst", "api/mala.datahandling.data_handler.rst", "api/mala.datahandling.data_handler_base.rst", "api/mala.datahandling.data_repo.rst", "api/mala.datahandling.data_scaler.rst", "api/mala.datahandling.data_shuffler.rst", "api/mala.datahandling.fast_tensor_dataset.rst", "api/mala.datahandling.lazy_load_dataset.rst", "api/mala.datahandling.lazy_load_dataset_single.rst", "api/mala.datahandling.ldos_aligner.rst", "api/mala.datahandling.multi_lazy_load_data_loader.rst", "api/mala.datahandling.snapshot.rst", "api/mala.descriptors.rst", "api/mala.descriptors.atomic_density.rst", "api/mala.descriptors.bispectrum.rst", "api/mala.descriptors.descriptor.rst", "api/mala.descriptors.lammps_utils.rst", "api/mala.descriptors.minterpy_descriptors.rst", "api/mala.interfaces.rst", "api/mala.interfaces.ase_calculator.rst", "api/mala.network.rst", "api/mala.network.acsd_analyzer.rst", "api/mala.network.hyper_opt.rst", "api/mala.network.hyper_opt_naswot.rst", "api/mala.network.hyper_opt_oat.rst", "api/mala.network.hyper_opt_optuna.rst", "api/mala.network.hyperparameter.rst", "api/mala.network.hyperparameter_acsd.rst", "api/mala.network.hyperparameter_naswot.rst", "api/mala.network.hyperparameter_oat.rst", "api/mala.network.hyperparameter_optuna.rst", "api/mala.network.multi_training_pruner.rst", "api/mala.network.naswot_pruner.rst", "api/mala.network.network.rst", "api/mala.network.objective_base.rst", "api/mala.network.objective_naswot.rst", "api/mala.network.predictor.rst", "api/mala.network.runner.rst", "api/mala.network.tester.rst", "api/mala.network.trainer.rst", "api/mala.targets.rst", "api/mala.targets.atomic_force.rst", "api/mala.targets.calculation_helpers.rst", "api/mala.targets.cube_parser.rst", "api/mala.targets.density.rst", "api/mala.targets.dos.rst", "api/mala.targets.ldos.rst", "api/mala.targets.target.rst", "api/mala.targets.xsf_parser.rst", "api/mala.version.rst", "api/modules.rst", "basic_usage.rst", "basic_usage/hyperparameters.rst", "basic_usage/more_data.rst", "basic_usage/predictions.rst", "basic_usage/trainingmodel.rst", "citing.rst", "index.md", "install/installing_lammps.rst", "install/installing_mala.rst", "install/installing_qe.rst", "installation.rst"], "indexentries": {"acsdanalyzer (class in mala.network.acsd_analyzer)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer", false]], "add_hyperparameter() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_hyperparameter", false]], "add_hyperparameter() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.add_hyperparameter", false]], "add_hyperparameter() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.add_hyperparameter", false]], "add_snapshot() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.add_snapshot", false]], "add_snapshot() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.add_snapshot", false]], "add_snapshot() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.add_snapshot", false]], "add_snapshot() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.add_snapshot", false]], "add_snapshot() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.add_snapshot", false]], "add_snapshot_to_dataset() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.add_snapshot_to_dataset", false]], "after_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.after_training_metric", false]], "align_ldos_to_ref() (ldosaligner method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.align_ldos_to_ref", false]], "allocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.allocate_shared_mem", false]], "analytical_integration() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.analytical_integration", false]], "assume_two_dimensional (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.assume_two_dimensional", false]], "atomic_density_sigma (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.atomic_density_sigma", false]], "atomicdensity (class in mala.descriptors.atomic_density)": [[31, "mala.descriptors.atomic_density.AtomicDensity", false]], "atomicforce (class in mala.targets.atomic_force)": [[59, "mala.targets.atomic_force.AtomicForce", false]], "backconvert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.backconvert_units", false]], "backconvert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.backconvert_units", false]], "backconvert_units() (density static method)": [[62, "mala.targets.density.Density.backconvert_units", false]], "backconvert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.backconvert_units", false]], "backconvert_units() (dos static method)": [[63, "mala.targets.dos.DOS.backconvert_units", false]], "backconvert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.backconvert_units", false]], "backconvert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.backconvert_units", false]], "backconvert_units() (target static method)": [[65, "mala.targets.target.Target.backconvert_units", false]], "band_energy (dos property)": [[63, "mala.targets.dos.DOS.band_energy", false]], "band_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.band_energy", false]], "barrier() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.barrier", false]], "bidirection (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.bidirection", false]], "bispectrum (class in mala.descriptors.bispectrum)": [[32, "mala.descriptors.bispectrum.Bispectrum", false]], "bispectrum_cutoff (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_cutoff", false]], "bispectrum_switchflag (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_switchflag", false]], "bispectrum_twojmax (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.bispectrum_twojmax", false]], "calc_optimal_ldos_shift() (ldosaligner static method)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner.calc_optimal_ldos_shift", false]], "calculate() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate", false]], "calculate_from_atoms() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_atoms", false]], "calculate_from_qe_out() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.calculate_from_qe_out", false]], "calculate_loss() (network method)": [[51, "mala.network.network.Network.calculate_loss", false]], "calculate_properties() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.calculate_properties", false]], "check_modules() (in module mala.common.check_modules)": [[9, "mala.common.check_modules.check_modules", false]], "checkpoint_exists() (hyperopt class method)": [[40, "mala.network.hyper_opt.HyperOpt.checkpoint_exists", false]], "checkpoint_name (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoint_name", false]], "checkpoints_each_epoch (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.checkpoints_each_epoch", false]], "cleanup() (multilazyloaddataloader method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.cleanup", false]], "clear_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.clear_data", false]], "clear_data() (datahandlerbase method)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.clear_data", false]], "clear_hyperparameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.clear_hyperparameters", false]], "comment (parameters attribute)": [[12, "mala.common.parameters.Parameters.comment", false]], "convert_local_to_3d() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_local_to_3d", false]], "convert_snapshots() (dataconverter method)": [[18, "mala.datahandling.data_converter.DataConverter.convert_snapshots", false]], "convert_units() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.convert_units", false]], "convert_units() (atomicforce static method)": [[59, "mala.targets.atomic_force.AtomicForce.convert_units", false]], "convert_units() (bispectrum static method)": [[32, "mala.descriptors.bispectrum.Bispectrum.convert_units", false]], "convert_units() (density static method)": [[62, "mala.targets.density.Density.convert_units", false]], "convert_units() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.convert_units", false]], "convert_units() (dos static method)": [[63, "mala.targets.dos.DOS.convert_units", false]], "convert_units() (ldos static method)": [[64, "mala.targets.ldos.LDOS.convert_units", false]], "convert_units() (minterpydescriptors static method)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.convert_units", false]], "convert_units() (target static method)": [[65, "mala.targets.target.Target.convert_units", false]], "cubefile (class in mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.CubeFile", false]], "data (parameters attribute)": [[12, "mala.common.parameters.Parameters.data", false]], "data_name (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.data_name", false]], "data_name (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.data_name", false]], "data_name (density property)": [[62, "mala.targets.density.Density.data_name", false]], "data_name (dos property)": [[63, "mala.targets.dos.DOS.data_name", false]], "data_name (ldos property)": [[64, "mala.targets.ldos.LDOS.data_name", false]], "data_name (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.data_name", false]], "data_name (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.data_name", false]], "data_splitting_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.data_splitting_type", false]], "dataconverter (class in mala.datahandling.data_converter)": [[18, "mala.datahandling.data_converter.DataConverter", false]], "datahandler (class in mala.datahandling.data_handler)": [[19, "mala.datahandling.data_handler.DataHandler", false]], "datahandlerbase (class in mala.datahandling.data_handler_base)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase", false]], "datascaler (class in mala.datahandling.data_scaler)": [[22, "mala.datahandling.data_scaler.DataScaler", false]], "datashuffler (class in mala.datahandling.data_shuffler)": [[23, "mala.datahandling.data_shuffler.DataShuffler", false]], "deallocate_shared_mem() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.deallocate_shared_mem", false]], "delete_data() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.delete_data", false]], "density (class in mala.targets.density)": [[62, "mala.targets.density.Density", false]], "density (density property)": [[62, "mala.targets.density.Density.density", false]], "density (ldos property)": [[64, "mala.targets.ldos.LDOS.density", false]], "density_of_states (dos property)": [[63, "mala.targets.dos.DOS.density_of_states", false]], "density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.density_of_states", false]], "descriptor (class in mala.descriptors.descriptor)": [[33, "mala.descriptors.descriptor.Descriptor", false]], "descriptor_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.descriptor_calculator", false]], "descriptor_type (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptor_type", false]], "descriptors (parameters attribute)": [[12, "mala.common.parameters.Parameters.descriptors", false]], "descriptors_contain_xyz (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.descriptors_contain_xyz", false]], "descriptors_contain_xyz (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.descriptors_contain_xyz", false]], "device (parameters property)": [[12, "mala.common.parameters.Parameters.device", false]], "direction (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.direction", false]], "do_prediction() (network method)": [[51, "mala.network.network.Network.do_prediction", false]], "dos (class in mala.targets.dos)": [[63, "mala.targets.dos.DOS", false]], "during_training_metric (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.during_training_metric", false]], "early_stopping_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_epochs", false]], "early_stopping_threshold (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.early_stopping_threshold", false]], "energy_grid (dos property)": [[63, "mala.targets.dos.DOS.energy_grid", false]], "energy_grid (ldos property)": [[64, "mala.targets.ldos.LDOS.energy_grid", false]], "enforce_pbc() (descriptor static method)": [[33, "mala.descriptors.descriptor.Descriptor.enforce_pbc", false]], "entropy_contribution (dos property)": [[63, "mala.targets.dos.DOS.entropy_contribution", false]], "entropy_contribution (ldos property)": [[64, "mala.targets.ldos.LDOS.entropy_contribution", false]], "entropy_multiplicator() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.entropy_multiplicator", false]], "extract_compute_np() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.extract_compute_np", false]], "fasttensordataset (class in mala.datahandling.fast_tensor_dataset)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset", false]], "feature_size (atomicdensity property)": [[31, "mala.descriptors.atomic_density.AtomicDensity.feature_size", false]], "feature_size (bispectrum property)": [[32, "mala.descriptors.bispectrum.Bispectrum.feature_size", false]], "feature_size (density property)": [[62, "mala.targets.density.Density.feature_size", false]], "feature_size (dos property)": [[63, "mala.targets.dos.DOS.feature_size", false]], "feature_size (ldos property)": [[64, "mala.targets.ldos.LDOS.feature_size", false]], "feature_size (minterpydescriptors property)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors.feature_size", false]], "feature_size (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.feature_size", false]], "feature_size (target property)": [[65, "mala.targets.target.Target.feature_size", false]], "feedforwardnet (class in mala.network.network)": [[51, "mala.network.network.FeedForwardNet", false]], "fermi_energy (dos property)": [[63, "mala.targets.dos.DOS.fermi_energy", false]], "fermi_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.fermi_energy", false]], "fermi_function() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.fermi_function", false]], "finalize() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.finalize", false]], "first_snapshot (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.first_snapshot", false]], "fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.fit", false]], "forward() (feedforwardnet method)": [[51, "mala.network.network.FeedForwardNet.forward", false]], "forward() (gru method)": [[51, "mala.network.network.GRU.forward", false]], "forward() (lstm method)": [[51, "mala.network.network.LSTM.forward", false]], "forward() (network method)": [[51, "mala.network.network.Network.forward", false]], "forward() (positionalencoding method)": [[51, "mala.network.network.PositionalEncoding.forward", false]], "forward() (transformernet method)": [[51, "mala.network.network.TransformerNet.forward", false]], "from_cube_file() (density class method)": [[62, "mala.targets.density.Density.from_cube_file", false]], "from_cube_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_cube_file", false]], "from_json() (jsonserializable class method)": [[10, "mala.common.json_serializable.JSONSerializable.from_json", false]], "from_json() (parametersbase class method)": [[12, "mala.common.parameters.ParametersBase.from_json", false]], "from_json() (snapshot class method)": [[29, "mala.datahandling.snapshot.Snapshot.from_json", false]], "from_ldos_calculator() (density class method)": [[62, "mala.targets.density.Density.from_ldos_calculator", false]], "from_ldos_calculator() (dos class method)": [[63, "mala.targets.dos.DOS.from_ldos_calculator", false]], "from_numpy_array() (density class method)": [[62, "mala.targets.density.Density.from_numpy_array", false]], "from_numpy_array() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_array", false]], "from_numpy_array() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_array", false]], "from_numpy_file() (density class method)": [[62, "mala.targets.density.Density.from_numpy_file", false]], "from_numpy_file() (dos class method)": [[63, "mala.targets.dos.DOS.from_numpy_file", false]], "from_numpy_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_numpy_file", false]], "from_openpmd_file() (density class method)": [[62, "mala.targets.density.Density.from_openpmd_file", false]], "from_openpmd_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_openpmd_file", false]], "from_qe_dos_txt() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_dos_txt", false]], "from_qe_out() (dos class method)": [[63, "mala.targets.dos.DOS.from_qe_out", false]], "from_xsf_file() (density class method)": [[62, "mala.targets.density.Density.from_xsf_file", false]], "from_xsf_file() (ldos class method)": [[64, "mala.targets.ldos.LDOS.from_xsf_file", false]], "gather_descriptors() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.gather_descriptors", false]], "gaussians() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.gaussians", false]], "generate_square_subsequent_mask() (transformernet static method)": [[51, "mala.network.network.TransformerNet.generate_square_subsequent_mask", false]], "get_atomic_forces() (density method)": [[62, "mala.targets.density.Density.get_atomic_forces", false]], "get_atomic_forces() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_atomic_forces", false]], "get_band_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_band_energy", false]], "get_band_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_band_energy", false]], "get_best_trial_results() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.get_best_trial_results", false]], "get_best_trial_results() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_best_trial_results", false]], "get_beta() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_beta", false]], "get_categorical() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_categorical", false]], "get_categorical() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_categorical", false]], "get_comm() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_comm", false]], "get_density() (density method)": [[62, "mala.targets.density.Density.get_density", false]], "get_density() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density", false]], "get_density_of_states() (dos method)": [[63, "mala.targets.dos.DOS.get_density_of_states", false]], "get_density_of_states() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_density_of_states", false]], "get_energy_contributions() (density method)": [[62, "mala.targets.density.Density.get_energy_contributions", false]], "get_energy_grid() (dos method)": [[63, "mala.targets.dos.DOS.get_energy_grid", false]], "get_energy_grid() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_energy_grid", false]], "get_energy_grid() (target method)": [[65, "mala.targets.target.Target.get_energy_grid", false]], "get_energy_targets_and_predictions() (tester method)": [[56, "mala.network.tester.Tester.get_energy_targets_and_predictions", false]], "get_entropy_contribution() (dos method)": [[63, "mala.targets.dos.DOS.get_entropy_contribution", false]], "get_entropy_contribution() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_entropy_contribution", false]], "get_equilibrated_configuration() (ofdftinitializer method)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer.get_equilibrated_configuration", false]], "get_f0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f0_value", false]], "get_f1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f1_value", false]], "get_f2_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_f2_value", false]], "get_feature_size() (atomicforce method)": [[59, "mala.targets.atomic_force.AtomicForce.get_feature_size", false]], "get_first_snapshot() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_first_snapshot", false]], "get_float() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_float", false]], "get_int() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_int", false]], "get_local_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_local_rank", false]], "get_new_data() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.get_new_data", false]], "get_number_of_electrons() (density method)": [[62, "mala.targets.density.Density.get_number_of_electrons", false]], "get_number_of_electrons() (dos method)": [[63, "mala.targets.dos.DOS.get_number_of_electrons", false]], "get_number_of_electrons() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_number_of_electrons", false]], "get_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_optimal_parameters", false]], "get_optimal_sigma() (atomicdensity static method)": [[31, "mala.descriptors.atomic_density.AtomicDensity.get_optimal_sigma", false]], "get_orthogonal_array() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.get_orthogonal_array", false]], "get_parameter() (hyperparameteroat method)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.get_parameter", false]], "get_parameter() (hyperparameteroptuna method)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna.get_parameter", false]], "get_radial_distribution_function() (target method)": [[65, "mala.targets.target.Target.get_radial_distribution_function", false]], "get_rank() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_rank", false]], "get_real_space_grid() (target method)": [[65, "mala.targets.target.Target.get_real_space_grid", false]], "get_s0_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s0_value", false]], "get_s1_value() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.get_s1_value", false]], "get_scaled_positions_for_qe() (density static method)": [[62, "mala.targets.density.Density.get_scaled_positions_for_qe", false]], "get_self_consistent_fermi_energy() (dos method)": [[63, "mala.targets.dos.DOS.get_self_consistent_fermi_energy", false]], "get_self_consistent_fermi_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_self_consistent_fermi_energy", false]], "get_size() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.get_size", false]], "get_snapshot_calculation_output() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_snapshot_calculation_output", false]], "get_snapshot_correlation_cutoff() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_snapshot_correlation_cutoff", false]], "get_static_structure_factor() (target method)": [[65, "mala.targets.target.Target.get_static_structure_factor", false]], "get_target() (density method)": [[62, "mala.targets.density.Density.get_target", false]], "get_target() (dos method)": [[63, "mala.targets.dos.DOS.get_target", false]], "get_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_target", false]], "get_target() (target method)": [[65, "mala.targets.target.Target.get_target", false]], "get_test_input_gradient() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.get_test_input_gradient", false]], "get_three_particle_correlation_function() (target method)": [[65, "mala.targets.target.Target.get_three_particle_correlation_function", false]], "get_total_energy() (ldos method)": [[64, "mala.targets.ldos.LDOS.get_total_energy", false]], "get_trials_from_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.get_trials_from_study", false]], "get_uncorrelated_snapshots() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.get_uncorrelated_snapshots", false]], "gru (class in mala.network.network)": [[51, "mala.network.network.GRU", false]], "hlist (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.hlist", false]], "hyperopt (class in mala.network.hyper_opt)": [[40, "mala.network.hyper_opt.HyperOpt", false]], "hyperoptnaswot (class in mala.network.hyper_opt_naswot)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT", false]], "hyperoptoat (class in mala.network.hyper_opt_oat)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT", false]], "hyperoptoptuna (class in mala.network.hyper_opt_optuna)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna", false]], "hyperparameter (class in mala.network.hyperparameter)": [[44, "mala.network.hyperparameter.Hyperparameter", false]], "hyperparameteracsd (class in mala.network.hyperparameter_acsd)": [[45, "mala.network.hyperparameter_acsd.HyperparameterACSD", false]], "hyperparameternaswot (class in mala.network.hyperparameter_naswot)": [[46, "mala.network.hyperparameter_naswot.HyperparameterNASWOT", false]], "hyperparameteroat (class in mala.network.hyperparameter_oat)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT", false]], "hyperparameteroptuna (class in mala.network.hyperparameter_optuna)": [[48, "mala.network.hyperparameter_optuna.HyperparameterOptuna", false]], "hyperparameters (parameters attribute)": [[12, "mala.common.parameters.Parameters.hyperparameters", false]], "implemented_properties (mala attribute)": [[37, "mala.interfaces.ase_calculator.MALA.implemented_properties", false]], "inference_data_grid (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.inference_data_grid", false]], "init_hidden() (gru method)": [[51, "mala.network.network.GRU.init_hidden", false]], "init_hidden() (lstm method)": [[51, "mala.network.network.LSTM.init_hidden", false]], "init_weights() (transformernet method)": [[51, "mala.network.network.TransformerNet.init_weights", false]], "input_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.input_dimension", false]], "input_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.input_rescaling_type", false]], "integrate_values_on_spacing() (in module mala.targets.calculation_helpers)": [[60, "mala.targets.calculation_helpers.integrate_values_on_spacing", false]], "invalidate_target() (density method)": [[62, "mala.targets.density.Density.invalidate_target", false]], "invalidate_target() (dos method)": [[63, "mala.targets.dos.DOS.invalidate_target", false]], "invalidate_target() (ldos method)": [[64, "mala.targets.ldos.LDOS.invalidate_target", false]], "invalidate_target() (target method)": [[65, "mala.targets.target.Target.invalidate_target", false]], "inverse_transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.inverse_transform", false]], "jsonserializable (class in mala.common.json_serializable)": [[10, "mala.common.json_serializable.JSONSerializable", false]], "lammps_compute_file (parametersdescriptors attribute)": [[12, "mala.common.parameters.ParametersDescriptors.lammps_compute_file", false]], "layer_activations (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_activations", false]], "layer_sizes (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.layer_sizes", false]], "lazyloaddataset (class in mala.datahandling.lazy_load_dataset)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset", false]], "lazyloaddatasetsingle (class in mala.datahandling.lazy_load_dataset_single)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle", false]], "ldos (class in mala.targets.ldos)": [[64, "mala.targets.ldos.LDOS", false]], "ldos_gridoffset_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridoffset_ev", false]], "ldos_gridsize (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridsize", false]], "ldos_gridspacing_ev (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ldos_gridspacing_ev", false]], "ldosaligner (class in mala.datahandling.ldos_aligner)": [[27, "mala.datahandling.ldos_aligner.LDOSAligner", false]], "learning_rate (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate", false]], "learning_rate_decay (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_decay", false]], "learning_rate_patience (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_patience", false]], "learning_rate_scheduler (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.learning_rate_scheduler", false]], "load_from_file() (datascaler class method)": [[22, "mala.datahandling.data_scaler.DataScaler.load_from_file", false]], "load_from_file() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.load_from_file", false]], "load_from_file() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.load_from_file", false]], "load_from_file() (network class method)": [[51, "mala.network.network.Network.load_from_file", false]], "load_from_file() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_file", false]], "load_from_json() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_json", false]], "load_from_pickle() (parameters class method)": [[12, "mala.common.parameters.Parameters.load_from_pickle", false]], "load_model() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_model", false]], "load_run() (mala class method)": [[37, "mala.interfaces.ase_calculator.MALA.load_run", false]], "load_run() (runner class method)": [[55, "mala.network.runner.Runner.load_run", false]], "load_run() (trainer class method)": [[57, "mala.network.trainer.Trainer.load_run", false]], "load_snapshot_to_shm() (multilazyloaddataloader static method)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader.load_snapshot_to_shm", false]], "local_density_of_states (ldos property)": [[64, "mala.targets.ldos.LDOS.local_density_of_states", false]], "local_psp_name (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_name", false]], "local_psp_path (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.local_psp_path", false]], "logging_dir (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir", false]], "logging_dir_append_date (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.logging_dir_append_date", false]], "loss_function_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.loss_function_type", false]], "lstm (class in mala.network.network)": [[51, "mala.network.network.LSTM", false]], "mala": [[7, "module-mala", false]], "mala (class in mala.interfaces.ase_calculator)": [[37, "mala.interfaces.ase_calculator.MALA", false]], "mala.common": [[8, "module-mala.common", false]], "mala.common.check_modules": [[9, "module-mala.common.check_modules", false]], "mala.common.json_serializable": [[10, "module-mala.common.json_serializable", false]], "mala.common.parallelizer": [[11, "module-mala.common.parallelizer", false]], "mala.common.parameters": [[12, "module-mala.common.parameters", false]], "mala.common.physical_data": [[13, "module-mala.common.physical_data", false]], "mala.datageneration": [[14, "module-mala.datageneration", false]], "mala.datageneration.ofdft_initializer": [[15, "module-mala.datageneration.ofdft_initializer", false]], "mala.datageneration.trajectory_analyzer": [[16, "module-mala.datageneration.trajectory_analyzer", false]], "mala.datahandling": [[17, "module-mala.datahandling", false]], "mala.datahandling.data_converter": [[18, "module-mala.datahandling.data_converter", false]], "mala.datahandling.data_handler": [[19, "module-mala.datahandling.data_handler", false]], "mala.datahandling.data_handler_base": [[20, "module-mala.datahandling.data_handler_base", false]], "mala.datahandling.data_repo": [[21, "module-mala.datahandling.data_repo", false]], "mala.datahandling.data_scaler": [[22, "module-mala.datahandling.data_scaler", false]], "mala.datahandling.data_shuffler": [[23, "module-mala.datahandling.data_shuffler", false]], "mala.datahandling.fast_tensor_dataset": [[24, "module-mala.datahandling.fast_tensor_dataset", false]], "mala.datahandling.lazy_load_dataset": [[25, "module-mala.datahandling.lazy_load_dataset", false]], "mala.datahandling.lazy_load_dataset_single": [[26, "module-mala.datahandling.lazy_load_dataset_single", false]], "mala.datahandling.ldos_aligner": [[27, "module-mala.datahandling.ldos_aligner", false]], "mala.datahandling.multi_lazy_load_data_loader": [[28, "module-mala.datahandling.multi_lazy_load_data_loader", false]], "mala.datahandling.snapshot": [[29, "module-mala.datahandling.snapshot", false]], "mala.descriptors": [[30, "module-mala.descriptors", false]], "mala.descriptors.atomic_density": [[31, "module-mala.descriptors.atomic_density", false]], "mala.descriptors.bispectrum": [[32, "module-mala.descriptors.bispectrum", false]], "mala.descriptors.descriptor": [[33, "module-mala.descriptors.descriptor", false]], "mala.descriptors.lammps_utils": [[34, "module-mala.descriptors.lammps_utils", false]], "mala.descriptors.minterpy_descriptors": [[35, "module-mala.descriptors.minterpy_descriptors", false]], "mala.interfaces": [[36, "module-mala.interfaces", false]], "mala.interfaces.ase_calculator": [[37, "module-mala.interfaces.ase_calculator", false]], "mala.network": [[38, "module-mala.network", false]], "mala.network.acsd_analyzer": [[39, "module-mala.network.acsd_analyzer", false]], "mala.network.hyper_opt": [[40, "module-mala.network.hyper_opt", false]], "mala.network.hyper_opt_naswot": [[41, "module-mala.network.hyper_opt_naswot", false]], "mala.network.hyper_opt_oat": [[42, "module-mala.network.hyper_opt_oat", false]], "mala.network.hyper_opt_optuna": [[43, "module-mala.network.hyper_opt_optuna", false]], "mala.network.hyperparameter": [[44, "module-mala.network.hyperparameter", false]], "mala.network.hyperparameter_acsd": [[45, "module-mala.network.hyperparameter_acsd", false]], "mala.network.hyperparameter_naswot": [[46, "module-mala.network.hyperparameter_naswot", false]], "mala.network.hyperparameter_oat": [[47, "module-mala.network.hyperparameter_oat", false]], "mala.network.hyperparameter_optuna": [[48, "module-mala.network.hyperparameter_optuna", false]], "mala.network.multi_training_pruner": [[49, "module-mala.network.multi_training_pruner", false]], "mala.network.naswot_pruner": [[50, "module-mala.network.naswot_pruner", false]], "mala.network.network": [[51, "module-mala.network.network", false]], "mala.network.objective_base": [[52, "module-mala.network.objective_base", false]], "mala.network.objective_naswot": [[53, "module-mala.network.objective_naswot", false]], "mala.network.predictor": [[54, "module-mala.network.predictor", false]], "mala.network.runner": [[55, "module-mala.network.runner", false]], "mala.network.tester": [[56, "module-mala.network.tester", false]], "mala.network.trainer": [[57, "module-mala.network.trainer", false]], "mala.targets": [[58, "module-mala.targets", false]], "mala.targets.atomic_force": [[59, "module-mala.targets.atomic_force", false]], "mala.targets.calculation_helpers": [[60, "module-mala.targets.calculation_helpers", false]], "mala.targets.cube_parser": [[61, "module-mala.targets.cube_parser", false]], "mala.targets.density": [[62, "module-mala.targets.density", false]], "mala.targets.dos": [[63, "module-mala.targets.dos", false]], "mala.targets.ldos": [[64, "module-mala.targets.ldos", false]], "mala.targets.target": [[65, "module-mala.targets.target", false]], "mala.targets.xsf_parser": [[66, "module-mala.targets.xsf_parser", false]], "mala.version": [[67, "module-mala.version", false]], "manual_seed (parameters attribute)": [[12, "mala.common.parameters.Parameters.manual_seed", false]], "max_number_epochs (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.max_number_epochs", false]], "mini_batch_size (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.mini_batch_size", false]], "minterpydescriptors (class in mala.descriptors.minterpy_descriptors)": [[35, "mala.descriptors.minterpy_descriptors.MinterpyDescriptors", false]], "mix_datasets() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.mix_datasets", false]], "mix_datasets() (lazyloaddataset method)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.mix_datasets", false]], "mix_datasets() (lazyloaddatasetsingle method)": [[26, "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle.mix_datasets", false]], "module": [[7, "module-mala", false], [8, "module-mala.common", false], [9, "module-mala.common.check_modules", false], [10, "module-mala.common.json_serializable", false], [11, "module-mala.common.parallelizer", false], [12, "module-mala.common.parameters", false], [13, "module-mala.common.physical_data", false], [14, "module-mala.datageneration", false], [15, "module-mala.datageneration.ofdft_initializer", false], [16, "module-mala.datageneration.trajectory_analyzer", false], [17, "module-mala.datahandling", false], [18, "module-mala.datahandling.data_converter", false], [19, "module-mala.datahandling.data_handler", false], [20, "module-mala.datahandling.data_handler_base", false], [21, "module-mala.datahandling.data_repo", false], [22, "module-mala.datahandling.data_scaler", false], [23, "module-mala.datahandling.data_shuffler", false], [24, "module-mala.datahandling.fast_tensor_dataset", false], [25, "module-mala.datahandling.lazy_load_dataset", false], [26, "module-mala.datahandling.lazy_load_dataset_single", false], [27, "module-mala.datahandling.ldos_aligner", false], [28, "module-mala.datahandling.multi_lazy_load_data_loader", false], [29, "module-mala.datahandling.snapshot", false], [30, "module-mala.descriptors", false], [31, "module-mala.descriptors.atomic_density", false], [32, "module-mala.descriptors.bispectrum", false], [33, "module-mala.descriptors.descriptor", false], [34, "module-mala.descriptors.lammps_utils", false], [35, "module-mala.descriptors.minterpy_descriptors", false], [36, "module-mala.interfaces", false], [37, "module-mala.interfaces.ase_calculator", false], [38, "module-mala.network", false], [39, "module-mala.network.acsd_analyzer", false], [40, "module-mala.network.hyper_opt", false], [41, "module-mala.network.hyper_opt_naswot", false], [42, "module-mala.network.hyper_opt_oat", false], [43, "module-mala.network.hyper_opt_optuna", false], [44, "module-mala.network.hyperparameter", false], [45, "module-mala.network.hyperparameter_acsd", false], [46, "module-mala.network.hyperparameter_naswot", false], [47, "module-mala.network.hyperparameter_oat", false], [48, "module-mala.network.hyperparameter_optuna", false], [49, "module-mala.network.multi_training_pruner", false], [50, "module-mala.network.naswot_pruner", false], [51, "module-mala.network.network", false], [52, "module-mala.network.objective_base", false], [53, "module-mala.network.objective_naswot", false], [54, "module-mala.network.predictor", false], [55, "module-mala.network.runner", false], [56, "module-mala.network.tester", false], [57, "module-mala.network.trainer", false], [58, "module-mala.targets", false], [59, "module-mala.targets.atomic_force", false], [60, "module-mala.targets.calculation_helpers", false], [61, "module-mala.targets.cube_parser", false], [62, "module-mala.targets.density", false], [63, "module-mala.targets.dos", false], [64, "module-mala.targets.ldos", false], [65, "module-mala.targets.target", false], [66, "module-mala.targets.xsf_parser", false], [67, "module-mala.version", false]], "multilazyloaddataloader (class in mala.datahandling.multi_lazy_load_data_loader)": [[28, "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader", false]], "multitrainingpruner (class in mala.network.multi_training_pruner)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner", false]], "n_trials (parametershyperparameteroptimization attribute)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.n_trials", false]], "naswotpruner (class in mala.network.naswot_pruner)": [[50, "mala.network.naswot_pruner.NASWOTPruner", false]], "network (class in mala.network.network)": [[51, "mala.network.network.Network", false]], "network (parameters attribute)": [[12, "mala.common.parameters.Parameters.network", false]], "nn_type (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.nn_type", false]], "no_hidden_state (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.no_hidden_state", false]], "num_choices (hyperparameteroat property)": [[47, "mala.network.hyperparameter_oat.HyperparameterOAT.num_choices", false]], "num_heads (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_heads", false]], "num_hidden_layers (parametersnetwork attribute)": [[12, "mala.common.parameters.ParametersNetwork.num_hidden_layers", false]], "num_workers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.num_workers", false]], "number_of_electrons (density property)": [[62, "mala.targets.density.Density.number_of_electrons", false]], "number_of_electrons (dos property)": [[63, "mala.targets.dos.DOS.number_of_electrons", false]], "number_of_electrons (ldos property)": [[64, "mala.targets.ldos.LDOS.number_of_electrons", false]], "number_of_runs() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.number_of_runs", false]], "number_training_per_trial (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.number_training_per_trial", false]], "objectivebase (class in mala.network.objective_base)": [[52, "mala.network.objective_base.ObjectiveBase", false]], "objectivenaswot (class in mala.network.objective_naswot)": [[53, "mala.network.objective_naswot.ObjectiveNASWOT", false]], "ofdft_friction (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_friction", false]], "ofdft_kedf (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_kedf", false]], "ofdft_number_of_timesteps (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_number_of_timesteps", false]], "ofdft_temperature (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_temperature", false]], "ofdft_timestep (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.ofdft_timestep", false]], "ofdftinitializer (class in mala.datageneration.ofdft_initializer)": [[15, "mala.datageneration.ofdft_initializer.OFDFTInitializer", false]], "openpmd_configuration (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_configuration", false]], "openpmd_granularity (parameters property)": [[12, "mala.common.parameters.Parameters.openpmd_granularity", false]], "optimizer (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.optimizer", false]], "optuna_singlenode_setup() (parameters method)": [[12, "mala.common.parameters.Parameters.optuna_singlenode_setup", false]], "output_dimension (datahandlerbase property)": [[20, "mala.datahandling.data_handler_base.DataHandlerBase.output_dimension", false]], "output_rescaling_type (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.output_rescaling_type", false]], "parallel_warn() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.parallel_warn", false]], "parameters (class in mala.common.parameters)": [[12, "mala.common.parameters.Parameters", false]], "parametersbase (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersBase", false]], "parametersdata (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersData", false]], "parametersdatageneration (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDataGeneration", false]], "parametersdescriptors (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersDescriptors", false]], "parametershyperparameteroptimization (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization", false]], "parametersnetwork (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersNetwork", false]], "parametersrunning (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersRunning", false]], "parameterstargets (class in mala.common.parameters)": [[12, "mala.common.parameters.ParametersTargets", false]], "parse_trial() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial", false]], "parse_trial_oat() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_oat", false]], "parse_trial_optuna() (objectivebase method)": [[52, "mala.network.objective_base.ObjectiveBase.parse_trial_optuna", false]], "partial_fit() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.partial_fit", false]], "perform_study() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.perform_study", false]], "perform_study() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.perform_study", false]], "perform_study() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.perform_study", false]], "perform_study() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.perform_study", false]], "perform_study() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.perform_study", false]], "physicaldata (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData", false]], "physicaldata.skiparraywriting (class in mala.common.physical_data)": [[13, "mala.common.physical_data.PhysicalData.SkipArrayWriting", false]], "positionalencoding (class in mala.network.network)": [[51, "mala.network.network.PositionalEncoding", false]], "predict_for_atoms() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_for_atoms", false]], "predict_from_qeout() (predictor method)": [[54, "mala.network.predictor.Predictor.predict_from_qeout", false]], "predict_targets() (tester method)": [[56, "mala.network.tester.Tester.predict_targets", false]], "predictor (class in mala.network.predictor)": [[54, "mala.network.predictor.Predictor", false]], "prepare_data() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_data", false]], "prepare_for_testing() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.prepare_for_testing", false]], "printout() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.printout", false]], "profiler_range (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.profiler_range", false]], "prune() (multitrainingpruner method)": [[49, "mala.network.multi_training_pruner.MultiTrainingPruner.prune", false]], "prune() (naswotpruner method)": [[50, "mala.network.naswot_pruner.NASWOTPruner.prune", false]], "pseudopotential_path (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.pseudopotential_path", false]], "qe_input_data (target property)": [[65, "mala.targets.target.Target.qe_input_data", false]], "radial_distribution_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.radial_distribution_function_from_atoms", false]], "raw_numpy_to_converted_scaled_tensor() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.raw_numpy_to_converted_scaled_tensor", false]], "rdb_storage_heartbeat (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.rdb_storage_heartbeat", false]], "rdf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.rdf_parameters", false]], "read_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.read_additional_calculation_data", false]], "read_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_cube", false]], "read_dimensions_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_numpy_file", false]], "read_dimensions_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_dimensions_from_openpmd_file", false]], "read_from_array() (density method)": [[62, "mala.targets.density.Density.read_from_array", false]], "read_from_array() (dos method)": [[63, "mala.targets.dos.DOS.read_from_array", false]], "read_from_array() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_array", false]], "read_from_cube() (density method)": [[62, "mala.targets.density.Density.read_from_cube", false]], "read_from_cube() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_cube", false]], "read_from_numpy_file() (dos method)": [[63, "mala.targets.dos.DOS.read_from_numpy_file", false]], "read_from_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_numpy_file", false]], "read_from_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.read_from_openpmd_file", false]], "read_from_qe_dos_txt() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_dos_txt", false]], "read_from_qe_out() (dos method)": [[63, "mala.targets.dos.DOS.read_from_qe_out", false]], "read_from_xsf() (density method)": [[62, "mala.targets.density.Density.read_from_xsf", false]], "read_from_xsf() (ldos method)": [[64, "mala.targets.ldos.LDOS.read_from_xsf", false]], "read_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.read_imcube", false]], "read_xsf() (in module mala.targets.xsf_parser)": [[66, "mala.targets.xsf_parser.read_xsf", false]], "readline() (cubefile method)": [[61, "mala.targets.cube_parser.CubeFile.readline", false]], "requeue_zombie_trials() (hyperoptoptuna static method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.requeue_zombie_trials", false]], "reset() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.reset", false]], "resize_snapshots_for_debugging() (datahandler method)": [[19, "mala.datahandling.data_handler.DataHandler.resize_snapshots_for_debugging", false]], "restrict_data() (target method)": [[65, "mala.targets.target.Target.restrict_data", false]], "restrict_targets (parameterstargets property)": [[12, "mala.common.parameters.ParametersTargets.restrict_targets", false]], "resume_checkpoint() (hyperoptoat class method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.resume_checkpoint", false]], "resume_checkpoint() (hyperoptoptuna class method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.resume_checkpoint", false]], "return_outputs_directly (lazyloaddataset property)": [[25, "mala.datahandling.lazy_load_dataset.LazyLoadDataset.return_outputs_directly", false]], "run_exists() (runner class method)": [[55, "mala.network.runner.Runner.run_exists", false]], "run_exists() (trainer class method)": [[57, "mala.network.trainer.Trainer.run_exists", false]], "runner (class in mala.network.runner)": [[55, "mala.network.runner.Runner", false]], "running (parameters attribute)": [[12, "mala.common.parameters.Parameters.running", false]], "save() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.save", false]], "save() (parameters method)": [[12, "mala.common.parameters.Parameters.save", false]], "save_as_json() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_json", false]], "save_as_pickle() (parameters method)": [[12, "mala.common.parameters.Parameters.save_as_pickle", false]], "save_calculator() (mala method)": [[37, "mala.interfaces.ase_calculator.MALA.save_calculator", false]], "save_network() (network method)": [[51, "mala.network.network.Network.save_network", false]], "save_run() (runner method)": [[55, "mala.network.runner.Runner.save_run", false]], "set_cmdlinevars() (in module mala.descriptors.lammps_utils)": [[34, "mala.descriptors.lammps_utils.set_cmdlinevars", false]], "set_current_verbosity() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_current_verbosity", false]], "set_ddp_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_ddp_status", false]], "set_lammps_instance() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_lammps_instance", false]], "set_mpi_status() (in module mala.common.parallelizer)": [[11, "mala.common.parallelizer.set_mpi_status", false]], "set_optimal_parameters() (acsdanalyzer method)": [[39, "mala.network.acsd_analyzer.ACSDAnalyzer.set_optimal_parameters", false]], "set_optimal_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptnaswot method)": [[41, "mala.network.hyper_opt_naswot.HyperOptNASWOT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.set_optimal_parameters", false]], "set_optimal_parameters() (hyperoptoptuna method)": [[43, "mala.network.hyper_opt_optuna.HyperOptOptuna.set_optimal_parameters", false]], "set_parameters() (hyperopt method)": [[40, "mala.network.hyper_opt.HyperOpt.set_parameters", false]], "setup_lammps_tmp_files() (descriptor method)": [[33, "mala.descriptors.descriptor.Descriptor.setup_lammps_tmp_files", false]], "show() (parameters method)": [[12, "mala.common.parameters.Parameters.show", false]], "show() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.show", false]], "show() (parametershyperparameteroptimization method)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.show", false]], "show_order_of_importance() (hyperoptoat method)": [[42, "mala.network.hyper_opt_oat.HyperOptOAT.show_order_of_importance", false]], "shuffle() (fasttensordataset method)": [[24, "mala.datahandling.fast_tensor_dataset.FastTensorDataset.shuffle", false]], "shuffle_snapshots() (datashuffler method)": [[23, "mala.datahandling.data_shuffler.DataShuffler.shuffle_snapshots", false]], "shuffling_seed (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.shuffling_seed", false]], "si_dimension (density property)": [[62, "mala.targets.density.Density.si_dimension", false]], "si_dimension (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_dimension", false]], "si_dimension (dos property)": [[63, "mala.targets.dos.DOS.si_dimension", false]], "si_dimension (ldos property)": [[64, "mala.targets.ldos.LDOS.si_dimension", false]], "si_dimension (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_dimension", false]], "si_dimension (target property)": [[65, "mala.targets.target.Target.si_dimension", false]], "si_unit_conversion (density property)": [[62, "mala.targets.density.Density.si_unit_conversion", false]], "si_unit_conversion (descriptor property)": [[33, "mala.descriptors.descriptor.Descriptor.si_unit_conversion", false]], "si_unit_conversion (dos property)": [[63, "mala.targets.dos.DOS.si_unit_conversion", false]], "si_unit_conversion (ldos property)": [[64, "mala.targets.ldos.LDOS.si_unit_conversion", false]], "si_unit_conversion (physicaldata property)": [[13, "mala.common.physical_data.PhysicalData.si_unit_conversion", false]], "si_unit_conversion (target property)": [[65, "mala.targets.target.Target.si_unit_conversion", false]], "snapshot (class in mala.datahandling.snapshot)": [[29, "mala.datahandling.snapshot.Snapshot", false]], "snapshot_correlation_cutoff (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.snapshot_correlation_cutoff", false]], "snapshot_directories_list (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.snapshot_directories_list", false]], "ssf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.ssf_parameters", false]], "static_structure_factor_from_atoms() (target static method)": [[65, "mala.targets.target.Target.static_structure_factor_from_atoms", false]], "target (class in mala.targets.target)": [[65, "mala.targets.target.Target", false]], "target_calculator (dataconverter attribute)": [[18, "mala.datahandling.data_converter.DataConverter.target_calculator", false]], "target_type (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.target_type", false]], "targets (parameters attribute)": [[12, "mala.common.parameters.Parameters.targets", false]], "te_mutex (density attribute)": [[62, "mala.targets.density.Density.te_mutex", false]], "test_all_snapshots() (tester method)": [[56, "mala.network.tester.Tester.test_all_snapshots", false]], "test_snapshot() (tester method)": [[56, "mala.network.tester.Tester.test_snapshot", false]], "tester (class in mala.network.tester)": [[56, "mala.network.tester.Tester", false]], "three_particle_correlation_function_from_atoms() (target static method)": [[65, "mala.targets.target.Target.three_particle_correlation_function_from_atoms", false]], "to_json() (jsonserializable method)": [[10, "mala.common.json_serializable.JSONSerializable.to_json", false]], "to_json() (parametersbase method)": [[12, "mala.common.parameters.ParametersBase.to_json", false]], "total_energy (ldos property)": [[64, "mala.targets.ldos.LDOS.total_energy", false]], "total_energy_contributions (density property)": [[62, "mala.targets.density.Density.total_energy_contributions", false]], "tpcf_parameters (parameterstargets attribute)": [[12, "mala.common.parameters.ParametersTargets.tpcf_parameters", false]], "train_network() (trainer method)": [[57, "mala.network.trainer.Trainer.train_network", false]], "trainer (class in mala.network.trainer)": [[57, "mala.network.trainer.Trainer", false]], "training_log_interval (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.training_log_interval", false]], "trajectory (trajectoryanalyzer property)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.trajectory", false]], "trajectory_analysis_below_average_counter (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_below_average_counter", false]], "trajectory_analysis_correlation_metric_cutoff (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_correlation_metric_cutoff", false]], "trajectory_analysis_denoising_width (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_denoising_width", false]], "trajectory_analysis_estimated_equilibrium (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_estimated_equilibrium", false]], "trajectory_analysis_temperature_tolerance_percent (parametersdatageneration attribute)": [[12, "mala.common.parameters.ParametersDataGeneration.trajectory_analysis_temperature_tolerance_percent", false]], "trajectoryanalyzer (class in mala.datageneration.trajectory_analyzer)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer", false]], "transform() (datascaler method)": [[22, "mala.datahandling.data_scaler.DataScaler.transform", false]], "transformernet (class in mala.network.network)": [[51, "mala.network.network.TransformerNet", false]], "trial_ensemble_evaluation (parametershyperparameteroptimization property)": [[12, "mala.common.parameters.ParametersHyperparameterOptimization.trial_ensemble_evaluation", false]], "uncache_properties() (density method)": [[62, "mala.targets.density.Density.uncache_properties", false]], "uncache_properties() (dos method)": [[63, "mala.targets.dos.DOS.uncache_properties", false]], "uncache_properties() (ldos method)": [[64, "mala.targets.ldos.LDOS.uncache_properties", false]], "uncache_properties() (trajectoryanalyzer method)": [[16, "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer.uncache_properties", false]], "use_atomic_density_formula (parameters property)": [[12, "mala.common.parameters.Parameters.use_atomic_density_formula", false]], "use_ddp (parameters property)": [[12, "mala.common.parameters.Parameters.use_ddp", false]], "use_fast_tensor_data_set (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_fast_tensor_data_set", false]], "use_gpu (parameters property)": [[12, "mala.common.parameters.Parameters.use_gpu", false]], "use_graphs (parametersrunning property)": [[12, "mala.common.parameters.ParametersRunning.use_graphs", false]], "use_lammps (parameters property)": [[12, "mala.common.parameters.Parameters.use_lammps", false]], "use_lazy_loading (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading", false]], "use_lazy_loading_prefetch (parametersdata attribute)": [[12, "mala.common.parameters.ParametersData.use_lazy_loading_prefetch", false]], "use_mixed_precision (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_mixed_precision", false]], "use_mpi (parameters property)": [[12, "mala.common.parameters.Parameters.use_mpi", false]], "use_shuffling_for_samplers (parametersrunning attribute)": [[12, "mala.common.parameters.ParametersRunning.use_shuffling_for_samplers", false]], "use_y_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_y_splitting", false]], "use_z_splitting (parametersdescriptors property)": [[12, "mala.common.parameters.ParametersDescriptors.use_z_splitting", false]], "verbosity (parameters property)": [[12, "mala.common.parameters.Parameters.verbosity", false]], "write_additional_calculation_data() (target method)": [[65, "mala.targets.target.Target.write_additional_calculation_data", false]], "write_cube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_cube", false]], "write_imcube() (in module mala.targets.cube_parser)": [[61, "mala.targets.cube_parser.write_imcube", false]], "write_tem_input_file() (target static method)": [[65, "mala.targets.target.Target.write_tem_input_file", false]], "write_to_cube() (density method)": [[62, "mala.targets.density.Density.write_to_cube", false]], "write_to_numpy_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_numpy_file", false]], "write_to_numpy_file() (target method)": [[65, "mala.targets.target.Target.write_to_numpy_file", false]], "write_to_openpmd_file() (density method)": [[62, "mala.targets.density.Density.write_to_openpmd_file", false]], "write_to_openpmd_file() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_file", false]], "write_to_openpmd_file() (target method)": [[65, "mala.targets.target.Target.write_to_openpmd_file", false]], "write_to_openpmd_iteration() (physicaldata method)": [[13, "mala.common.physical_data.PhysicalData.write_to_openpmd_iteration", false]]}, "objects": {"": [[7, 0, 0, "-", "mala"]], "mala": [[8, 0, 0, "-", "common"], [14, 0, 0, "-", "datageneration"], [17, 0, 0, "-", "datahandling"], [30, 0, 0, "-", "descriptors"], [36, 0, 0, "-", "interfaces"], [38, 0, 0, "-", "network"], [58, 0, 0, "-", "targets"], [67, 0, 0, "-", "version"]], "mala.common": [[9, 0, 0, "-", "check_modules"], [10, 0, 0, "-", "json_serializable"], [11, 0, 0, "-", "parallelizer"], [12, 0, 0, "-", "parameters"], [13, 0, 0, "-", "physical_data"]], "mala.common.check_modules": [[9, 1, 1, "", "check_modules"]], "mala.common.json_serializable": [[10, 2, 1, "", "JSONSerializable"]], "mala.common.json_serializable.JSONSerializable": [[10, 3, 1, "", "from_json"], [10, 3, 1, "", "to_json"]], "mala.common.parallelizer": [[11, 1, 1, "", "barrier"], [11, 1, 1, "", "finalize"], [11, 1, 1, "", "get_comm"], [11, 1, 1, "", "get_local_rank"], [11, 1, 1, "", "get_rank"], [11, 1, 1, "", "get_size"], [11, 1, 1, "", "parallel_warn"], [11, 1, 1, "", "printout"], [11, 1, 1, "", "set_current_verbosity"], [11, 1, 1, "", "set_ddp_status"], [11, 1, 1, "", "set_lammps_instance"], [11, 1, 1, "", "set_mpi_status"]], "mala.common.parameters": [[12, 2, 1, "", "Parameters"], [12, 2, 1, "", "ParametersBase"], [12, 2, 1, "", "ParametersData"], [12, 2, 1, "", "ParametersDataGeneration"], [12, 2, 1, "", "ParametersDescriptors"], [12, 2, 1, "", "ParametersHyperparameterOptimization"], [12, 2, 1, "", "ParametersNetwork"], [12, 2, 1, "", "ParametersRunning"], [12, 2, 1, "", "ParametersTargets"]], "mala.common.parameters.Parameters": [[12, 4, 1, "", "comment"], [12, 4, 1, "", "data"], [12, 4, 1, "", "descriptors"], [12, 5, 1, "", "device"], [12, 4, 1, "", "hyperparameters"], [12, 3, 1, "", "load_from_file"], [12, 3, 1, "", "load_from_json"], [12, 3, 1, "", "load_from_pickle"], [12, 4, 1, "", "manual_seed"], [12, 4, 1, "", "network"], [12, 5, 1, "", "openpmd_configuration"], [12, 5, 1, "", "openpmd_granularity"], [12, 3, 1, "", "optuna_singlenode_setup"], [12, 4, 1, "", "running"], [12, 3, 1, "", "save"], [12, 3, 1, "", "save_as_json"], [12, 3, 1, "", "save_as_pickle"], [12, 3, 1, "", "show"], [12, 4, 1, "", "targets"], [12, 5, 1, "", "use_atomic_density_formula"], [12, 5, 1, "", "use_ddp"], [12, 5, 1, "", "use_gpu"], [12, 5, 1, "", "use_lammps"], [12, 5, 1, "", "use_mpi"], [12, 5, 1, "", "verbosity"]], "mala.common.parameters.ParametersBase": [[12, 3, 1, "", "from_json"], [12, 3, 1, "", "show"], [12, 3, 1, "", "to_json"]], "mala.common.parameters.ParametersData": [[12, 4, 1, "", "data_splitting_type"], [12, 4, 1, "", "input_rescaling_type"], [12, 4, 1, "", "output_rescaling_type"], [12, 4, 1, "", "shuffling_seed"], [12, 4, 1, "", "snapshot_directories_list"], [12, 4, 1, "", "use_fast_tensor_data_set"], [12, 4, 1, "", "use_lazy_loading"], [12, 4, 1, "", "use_lazy_loading_prefetch"]], "mala.common.parameters.ParametersDataGeneration": [[12, 4, 1, "", "local_psp_name"], [12, 4, 1, "", "local_psp_path"], [12, 4, 1, "", "ofdft_friction"], [12, 4, 1, "", "ofdft_kedf"], [12, 4, 1, "", "ofdft_number_of_timesteps"], [12, 4, 1, "", "ofdft_temperature"], [12, 4, 1, "", "ofdft_timestep"], [12, 4, 1, "", "trajectory_analysis_below_average_counter"], [12, 4, 1, "", "trajectory_analysis_correlation_metric_cutoff"], [12, 4, 1, "", "trajectory_analysis_denoising_width"], [12, 4, 1, "", "trajectory_analysis_estimated_equilibrium"], [12, 4, 1, "", "trajectory_analysis_temperature_tolerance_percent"]], "mala.common.parameters.ParametersDescriptors": [[12, 4, 1, "", "atomic_density_sigma"], [12, 5, 1, "", "bispectrum_cutoff"], [12, 5, 1, "", "bispectrum_switchflag"], [12, 4, 1, "", "bispectrum_twojmax"], [12, 4, 1, "", "descriptor_type"], [12, 4, 1, "", "descriptors_contain_xyz"], [12, 4, 1, "", "lammps_compute_file"], [12, 5, 1, "", "use_y_splitting"], [12, 5, 1, "", "use_z_splitting"]], "mala.common.parameters.ParametersHyperparameterOptimization": [[12, 4, 1, "", "direction"], [12, 4, 1, "", "hlist"], [12, 4, 1, "", "n_trials"], [12, 5, 1, "", "number_training_per_trial"], [12, 5, 1, "", "rdb_storage_heartbeat"], [12, 3, 1, "", "show"], [12, 5, 1, "", "trial_ensemble_evaluation"]], "mala.common.parameters.ParametersNetwork": [[12, 4, 1, "", "bidirection"], [12, 4, 1, "", "layer_activations"], [12, 4, 1, "", "layer_sizes"], [12, 4, 1, "", "loss_function_type"], [12, 4, 1, "", "nn_type"], [12, 4, 1, "", "no_hidden_state"], [12, 4, 1, "", "num_heads"], [12, 4, 1, "", "num_hidden_layers"]], "mala.common.parameters.ParametersRunning": [[12, 5, 1, "", "after_training_metric"], [12, 4, 1, "", "checkpoint_name"], [12, 4, 1, "", "checkpoints_each_epoch"], [12, 5, 1, "", "during_training_metric"], [12, 4, 1, "", "early_stopping_epochs"], [12, 4, 1, "", "early_stopping_threshold"], [12, 4, 1, "", "inference_data_grid"], [12, 4, 1, "", "learning_rate"], [12, 4, 1, "", "learning_rate_decay"], [12, 4, 1, "", "learning_rate_patience"], [12, 4, 1, "", "learning_rate_scheduler"], [12, 4, 1, "", "logging_dir"], [12, 4, 1, "", "logging_dir_append_date"], [12, 4, 1, "", "max_number_epochs"], [12, 4, 1, "", "mini_batch_size"], [12, 4, 1, "", "num_workers"], [12, 4, 1, "", "optimizer"], [12, 4, 1, "", "profiler_range"], [12, 4, 1, "", "training_log_interval"], [12, 5, 1, "", "use_graphs"], [12, 4, 1, "", "use_mixed_precision"], [12, 4, 1, "", "use_shuffling_for_samplers"]], "mala.common.parameters.ParametersTargets": [[12, 4, 1, "", "assume_two_dimensional"], [12, 4, 1, "", "ldos_gridoffset_ev"], [12, 4, 1, "", "ldos_gridsize"], [12, 4, 1, "", "ldos_gridspacing_ev"], [12, 4, 1, "", "pseudopotential_path"], [12, 4, 1, "", "rdf_parameters"], [12, 5, 1, "", "restrict_targets"], [12, 4, 1, "", "ssf_parameters"], [12, 4, 1, "", "target_type"], [12, 4, 1, "", "tpcf_parameters"]], "mala.common.physical_data": [[13, 2, 1, "", "PhysicalData"]], "mala.common.physical_data.PhysicalData": [[13, 2, 1, "", "SkipArrayWriting"], [13, 5, 1, "", "data_name"], [13, 5, 1, "", "feature_size"], [13, 3, 1, "", "read_dimensions_from_numpy_file"], [13, 3, 1, "", "read_dimensions_from_openpmd_file"], [13, 3, 1, "", "read_from_numpy_file"], [13, 3, 1, "", "read_from_openpmd_file"], [13, 5, 1, "", "si_dimension"], [13, 5, 1, "", "si_unit_conversion"], [13, 3, 1, "", "write_to_numpy_file"], [13, 3, 1, "", "write_to_openpmd_file"], [13, 3, 1, "", "write_to_openpmd_iteration"]], "mala.datageneration": [[15, 0, 0, "-", "ofdft_initializer"], [16, 0, 0, "-", "trajectory_analyzer"]], "mala.datageneration.ofdft_initializer": [[15, 2, 1, "", "OFDFTInitializer"]], "mala.datageneration.ofdft_initializer.OFDFTInitializer": [[15, 3, 1, "", "get_equilibrated_configuration"]], "mala.datageneration.trajectory_analyzer": [[16, 2, 1, "", "TrajectoryAnalyzer"]], "mala.datageneration.trajectory_analyzer.TrajectoryAnalyzer": [[16, 5, 1, "", "first_snapshot"], [16, 3, 1, "", "get_first_snapshot"], [16, 3, 1, "", "get_snapshot_correlation_cutoff"], [16, 3, 1, "", "get_uncorrelated_snapshots"], [16, 5, 1, "", "snapshot_correlation_cutoff"], [16, 5, 1, "", "trajectory"], [16, 3, 1, "", "uncache_properties"]], "mala.datahandling": [[18, 0, 0, "-", "data_converter"], [19, 0, 0, "-", "data_handler"], [20, 0, 0, "-", "data_handler_base"], [21, 0, 0, "-", "data_repo"], [22, 0, 0, "-", "data_scaler"], [23, 0, 0, "-", "data_shuffler"], [24, 0, 0, "-", "fast_tensor_dataset"], [25, 0, 0, "-", "lazy_load_dataset"], [26, 0, 0, "-", "lazy_load_dataset_single"], [27, 0, 0, "-", "ldos_aligner"], [28, 0, 0, "-", "multi_lazy_load_data_loader"], [29, 0, 0, "-", "snapshot"]], "mala.datahandling.data_converter": [[18, 2, 1, "", "DataConverter"]], "mala.datahandling.data_converter.DataConverter": [[18, 3, 1, "", "add_snapshot"], [18, 3, 1, "", "convert_snapshots"], [18, 4, 1, "", "descriptor_calculator"], [18, 4, 1, "", "target_calculator"]], "mala.datahandling.data_handler": [[19, 2, 1, "", "DataHandler"]], "mala.datahandling.data_handler.DataHandler": [[19, 3, 1, "", "clear_data"], [19, 3, 1, "", "get_snapshot_calculation_output"], [19, 3, 1, "", "get_test_input_gradient"], [19, 3, 1, "", "mix_datasets"], [19, 3, 1, "", "prepare_data"], [19, 3, 1, "", "prepare_for_testing"], [19, 3, 1, "", "raw_numpy_to_converted_scaled_tensor"], [19, 3, 1, "", "resize_snapshots_for_debugging"]], "mala.datahandling.data_handler_base": [[20, 2, 1, "", "DataHandlerBase"]], "mala.datahandling.data_handler_base.DataHandlerBase": [[20, 3, 1, "", "add_snapshot"], [20, 3, 1, "", "clear_data"], [20, 5, 1, "", "input_dimension"], [20, 5, 1, "", "output_dimension"]], "mala.datahandling.data_scaler": [[22, 2, 1, "", "DataScaler"]], "mala.datahandling.data_scaler.DataScaler": [[22, 3, 1, "", "fit"], [22, 3, 1, "", "inverse_transform"], [22, 3, 1, "", "load_from_file"], [22, 3, 1, "", "partial_fit"], [22, 3, 1, "", "reset"], [22, 3, 1, "", "save"], [22, 3, 1, "", "transform"]], "mala.datahandling.data_shuffler": [[23, 2, 1, "", "DataShuffler"]], "mala.datahandling.data_shuffler.DataShuffler": [[23, 3, 1, "", "add_snapshot"], [23, 3, 1, "", "shuffle_snapshots"]], "mala.datahandling.fast_tensor_dataset": [[24, 2, 1, "", "FastTensorDataset"]], "mala.datahandling.fast_tensor_dataset.FastTensorDataset": [[24, 3, 1, "", "shuffle"]], "mala.datahandling.lazy_load_dataset": [[25, 2, 1, "", "LazyLoadDataset"]], "mala.datahandling.lazy_load_dataset.LazyLoadDataset": [[25, 3, 1, "", "add_snapshot_to_dataset"], [25, 3, 1, "", "get_new_data"], [25, 3, 1, "", "mix_datasets"], [25, 5, 1, "", "return_outputs_directly"]], "mala.datahandling.lazy_load_dataset_single": [[26, 2, 1, "", "LazyLoadDatasetSingle"]], "mala.datahandling.lazy_load_dataset_single.LazyLoadDatasetSingle": [[26, 3, 1, "", "allocate_shared_mem"], [26, 3, 1, "", "deallocate_shared_mem"], [26, 3, 1, "", "delete_data"], [26, 3, 1, "", "mix_datasets"]], "mala.datahandling.ldos_aligner": [[27, 2, 1, "", "LDOSAligner"]], "mala.datahandling.ldos_aligner.LDOSAligner": [[27, 3, 1, "", "add_snapshot"], [27, 3, 1, "", "align_ldos_to_ref"], [27, 3, 1, "", "calc_optimal_ldos_shift"]], "mala.datahandling.multi_lazy_load_data_loader": [[28, 2, 1, "", "MultiLazyLoadDataLoader"]], "mala.datahandling.multi_lazy_load_data_loader.MultiLazyLoadDataLoader": [[28, 3, 1, "", "cleanup"], [28, 3, 1, "", "load_snapshot_to_shm"]], "mala.datahandling.snapshot": [[29, 2, 1, "", "Snapshot"]], "mala.datahandling.snapshot.Snapshot": [[29, 3, 1, "", "from_json"]], "mala.descriptors": [[31, 0, 0, "-", "atomic_density"], [32, 0, 0, "-", "bispectrum"], [33, 0, 0, "-", "descriptor"], [34, 0, 0, "-", "lammps_utils"], [35, 0, 0, "-", "minterpy_descriptors"]], "mala.descriptors.atomic_density": [[31, 2, 1, "", "AtomicDensity"]], "mala.descriptors.atomic_density.AtomicDensity": [[31, 3, 1, "", "backconvert_units"], [31, 3, 1, "", "convert_units"], [31, 5, 1, "", "data_name"], [31, 5, 1, "", "feature_size"], [31, 3, 1, "", "get_optimal_sigma"]], "mala.descriptors.bispectrum": [[32, 2, 1, "", "Bispectrum"]], "mala.descriptors.bispectrum.Bispectrum": [[32, 3, 1, "", "backconvert_units"], [32, 3, 1, "", "convert_units"], [32, 5, 1, "", "data_name"], [32, 5, 1, "", "feature_size"]], "mala.descriptors.descriptor": [[33, 2, 1, "", "Descriptor"]], "mala.descriptors.descriptor.Descriptor": [[33, 3, 1, "", "backconvert_units"], [33, 3, 1, "", "calculate_from_atoms"], [33, 3, 1, "", "calculate_from_qe_out"], [33, 3, 1, "", "convert_local_to_3d"], [33, 3, 1, "", "convert_units"], [33, 5, 1, "", "descriptors_contain_xyz"], [33, 3, 1, "", "enforce_pbc"], [33, 3, 1, "", "gather_descriptors"], [33, 3, 1, "", "setup_lammps_tmp_files"], [33, 5, 1, "", "si_dimension"], [33, 5, 1, "", "si_unit_conversion"]], "mala.descriptors.lammps_utils": [[34, 1, 1, "", "extract_compute_np"], [34, 1, 1, "", "set_cmdlinevars"]], "mala.descriptors.minterpy_descriptors": [[35, 2, 1, "", "MinterpyDescriptors"]], "mala.descriptors.minterpy_descriptors.MinterpyDescriptors": [[35, 3, 1, "", "backconvert_units"], [35, 3, 1, "", "convert_units"], [35, 5, 1, "", "data_name"], [35, 5, 1, "", "feature_size"]], "mala.interfaces": [[37, 0, 0, "-", "ase_calculator"]], "mala.interfaces.ase_calculator": [[37, 2, 1, "", "MALA"]], "mala.interfaces.ase_calculator.MALA": [[37, 3, 1, "", "calculate"], [37, 3, 1, "", "calculate_properties"], [37, 4, 1, "", "implemented_properties"], [37, 3, 1, "", "load_model"], [37, 3, 1, "", "load_run"], [37, 3, 1, "", "save_calculator"]], "mala.network": [[39, 0, 0, "-", "acsd_analyzer"], [40, 0, 0, "-", "hyper_opt"], [41, 0, 0, "-", "hyper_opt_naswot"], [42, 0, 0, "-", "hyper_opt_oat"], [43, 0, 0, "-", "hyper_opt_optuna"], [44, 0, 0, "-", "hyperparameter"], [45, 0, 0, "-", "hyperparameter_acsd"], [46, 0, 0, "-", "hyperparameter_naswot"], [47, 0, 0, "-", "hyperparameter_oat"], [48, 0, 0, "-", "hyperparameter_optuna"], [49, 0, 0, "-", "multi_training_pruner"], [50, 0, 0, "-", "naswot_pruner"], [51, 0, 0, "-", "network"], [52, 0, 0, "-", "objective_base"], [53, 0, 0, "-", "objective_naswot"], [54, 0, 0, "-", "predictor"], [55, 0, 0, "-", "runner"], [56, 0, 0, "-", "tester"], [57, 0, 0, "-", "trainer"]], "mala.network.acsd_analyzer": [[39, 2, 1, "", "ACSDAnalyzer"]], "mala.network.acsd_analyzer.ACSDAnalyzer": [[39, 3, 1, "", "add_hyperparameter"], [39, 3, 1, "", "add_snapshot"], [39, 3, 1, "", "perform_study"], [39, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt": [[40, 2, 1, "", "HyperOpt"]], "mala.network.hyper_opt.HyperOpt": [[40, 3, 1, "", "add_hyperparameter"], [40, 3, 1, "", "checkpoint_exists"], [40, 3, 1, "", "clear_hyperparameters"], [40, 3, 1, "", "perform_study"], [40, 3, 1, "", "set_optimal_parameters"], [40, 3, 1, "", "set_parameters"]], "mala.network.hyper_opt_naswot": [[41, 2, 1, "", "HyperOptNASWOT"]], "mala.network.hyper_opt_naswot.HyperOptNASWOT": [[41, 3, 1, "", "get_best_trial_results"], [41, 3, 1, "", "perform_study"], [41, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyper_opt_oat": [[42, 2, 1, "", "HyperOptOAT"]], "mala.network.hyper_opt_oat.HyperOptOAT": [[42, 3, 1, "", "add_hyperparameter"], [42, 3, 1, "", "get_best_trial_results"], [42, 3, 1, "", "get_optimal_parameters"], [42, 3, 1, "", "get_orthogonal_array"], [42, 3, 1, "", "load_from_file"], [42, 3, 1, "", "number_of_runs"], [42, 3, 1, "", "perform_study"], [42, 3, 1, "", "resume_checkpoint"], [42, 3, 1, "", "set_optimal_parameters"], [42, 3, 1, "", "show_order_of_importance"]], "mala.network.hyper_opt_optuna": [[43, 2, 1, "", "HyperOptOptuna"]], "mala.network.hyper_opt_optuna.HyperOptOptuna": [[43, 3, 1, "", "get_trials_from_study"], [43, 3, 1, "", "load_from_file"], [43, 3, 1, "", "perform_study"], [43, 3, 1, "", "requeue_zombie_trials"], [43, 3, 1, "", "resume_checkpoint"], [43, 3, 1, "", "set_optimal_parameters"]], "mala.network.hyperparameter": [[44, 2, 1, "", "Hyperparameter"]], "mala.network.hyperparameter_acsd": [[45, 2, 1, "", "HyperparameterACSD"]], "mala.network.hyperparameter_naswot": [[46, 2, 1, "", "HyperparameterNASWOT"]], "mala.network.hyperparameter_oat": [[47, 2, 1, "", "HyperparameterOAT"]], "mala.network.hyperparameter_oat.HyperparameterOAT": [[47, 3, 1, "", "get_categorical"], [47, 3, 1, "", "get_parameter"], [47, 5, 1, "", "num_choices"]], "mala.network.hyperparameter_optuna": [[48, 2, 1, "", "HyperparameterOptuna"]], "mala.network.hyperparameter_optuna.HyperparameterOptuna": [[48, 3, 1, "", "get_categorical"], [48, 3, 1, "", "get_float"], [48, 3, 1, "", "get_int"], [48, 3, 1, "", "get_parameter"]], "mala.network.multi_training_pruner": [[49, 2, 1, "", "MultiTrainingPruner"]], "mala.network.multi_training_pruner.MultiTrainingPruner": [[49, 3, 1, "", "prune"]], "mala.network.naswot_pruner": [[50, 2, 1, "", "NASWOTPruner"]], "mala.network.naswot_pruner.NASWOTPruner": [[50, 3, 1, "", "prune"]], "mala.network.network": [[51, 2, 1, "", "FeedForwardNet"], [51, 2, 1, "", "GRU"], [51, 2, 1, "", "LSTM"], [51, 2, 1, "", "Network"], [51, 2, 1, "", "PositionalEncoding"], [51, 2, 1, "", "TransformerNet"]], "mala.network.network.FeedForwardNet": [[51, 3, 1, "", "forward"]], "mala.network.network.GRU": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.LSTM": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "init_hidden"]], "mala.network.network.Network": [[51, 3, 1, "", "calculate_loss"], [51, 3, 1, "", "do_prediction"], [51, 3, 1, "", "forward"], [51, 3, 1, "", "load_from_file"], [51, 3, 1, "", "save_network"]], "mala.network.network.PositionalEncoding": [[51, 3, 1, "", "forward"]], "mala.network.network.TransformerNet": [[51, 3, 1, "", "forward"], [51, 3, 1, "", "generate_square_subsequent_mask"], [51, 3, 1, "", "init_weights"]], "mala.network.objective_base": [[52, 2, 1, "", "ObjectiveBase"]], "mala.network.objective_base.ObjectiveBase": [[52, 3, 1, "", "parse_trial"], [52, 3, 1, "", "parse_trial_oat"], [52, 3, 1, "", "parse_trial_optuna"]], "mala.network.objective_naswot": [[53, 2, 1, "", "ObjectiveNASWOT"]], "mala.network.predictor": [[54, 2, 1, "", "Predictor"]], "mala.network.predictor.Predictor": [[54, 3, 1, "", "predict_for_atoms"], [54, 3, 1, "", "predict_from_qeout"]], "mala.network.runner": [[55, 2, 1, "", "Runner"]], "mala.network.runner.Runner": [[55, 3, 1, "", "load_run"], [55, 3, 1, "", "run_exists"], [55, 3, 1, "", "save_run"]], "mala.network.tester": [[56, 2, 1, "", "Tester"]], "mala.network.tester.Tester": [[56, 3, 1, "", "get_energy_targets_and_predictions"], [56, 3, 1, "", "predict_targets"], [56, 3, 1, "", "test_all_snapshots"], [56, 3, 1, "", "test_snapshot"]], "mala.network.trainer": [[57, 2, 1, "", "Trainer"]], "mala.network.trainer.Trainer": [[57, 3, 1, "", "load_run"], [57, 3, 1, "", "run_exists"], [57, 3, 1, "", "train_network"]], "mala.targets": [[59, 0, 0, "-", "atomic_force"], [60, 0, 0, "-", "calculation_helpers"], [61, 0, 0, "-", "cube_parser"], [62, 0, 0, "-", "density"], [63, 0, 0, "-", "dos"], [64, 0, 0, "-", "ldos"], [65, 0, 0, "-", "target"], [66, 0, 0, "-", "xsf_parser"]], "mala.targets.atomic_force": [[59, 2, 1, "", "AtomicForce"]], "mala.targets.atomic_force.AtomicForce": [[59, 3, 1, "", "convert_units"], [59, 3, 1, "", "get_feature_size"]], "mala.targets.calculation_helpers": [[60, 1, 1, "", "analytical_integration"], [60, 1, 1, "", "entropy_multiplicator"], [60, 1, 1, "", "fermi_function"], [60, 1, 1, "", "gaussians"], [60, 1, 1, "", "get_beta"], [60, 1, 1, "", "get_f0_value"], [60, 1, 1, "", "get_f1_value"], [60, 1, 1, "", "get_f2_value"], [60, 1, 1, "", "get_s0_value"], [60, 1, 1, "", "get_s1_value"], [60, 1, 1, "", "integrate_values_on_spacing"]], "mala.targets.cube_parser": [[61, 2, 1, "", "CubeFile"], [61, 1, 1, "", "read_cube"], [61, 1, 1, "", "read_imcube"], [61, 1, 1, "", "write_cube"], [61, 1, 1, "", "write_imcube"]], "mala.targets.cube_parser.CubeFile": [[61, 3, 1, "", "readline"]], "mala.targets.density": [[62, 2, 1, "", "Density"]], "mala.targets.density.Density": [[62, 3, 1, "", "backconvert_units"], [62, 3, 1, "", "convert_units"], [62, 5, 1, "", "data_name"], [62, 5, 1, "", "density"], [62, 5, 1, "", "feature_size"], [62, 3, 1, "", "from_cube_file"], [62, 3, 1, "", "from_ldos_calculator"], [62, 3, 1, "", "from_numpy_array"], [62, 3, 1, "", "from_numpy_file"], [62, 3, 1, "", "from_openpmd_file"], [62, 3, 1, "", "from_xsf_file"], [62, 3, 1, "", "get_atomic_forces"], [62, 3, 1, "", "get_density"], [62, 3, 1, "", "get_energy_contributions"], [62, 3, 1, "", "get_number_of_electrons"], [62, 3, 1, "", "get_scaled_positions_for_qe"], [62, 3, 1, "", "get_target"], [62, 3, 1, "", "invalidate_target"], [62, 5, 1, "", "number_of_electrons"], [62, 3, 1, "", "read_from_array"], [62, 3, 1, "", "read_from_cube"], [62, 3, 1, "", "read_from_xsf"], [62, 5, 1, "", "si_dimension"], [62, 5, 1, "", "si_unit_conversion"], [62, 4, 1, "", "te_mutex"], [62, 5, 1, "", "total_energy_contributions"], [62, 3, 1, "", "uncache_properties"], [62, 3, 1, "", "write_to_cube"], [62, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.dos": [[63, 2, 1, "", "DOS"]], "mala.targets.dos.DOS": [[63, 3, 1, "", "backconvert_units"], [63, 5, 1, "", "band_energy"], [63, 3, 1, "", "convert_units"], [63, 5, 1, "", "data_name"], [63, 5, 1, "", "density_of_states"], [63, 5, 1, "", "energy_grid"], [63, 5, 1, "", "entropy_contribution"], [63, 5, 1, "", "feature_size"], [63, 5, 1, "", "fermi_energy"], [63, 3, 1, "", "from_ldos_calculator"], [63, 3, 1, "", "from_numpy_array"], [63, 3, 1, "", "from_numpy_file"], [63, 3, 1, "", "from_qe_dos_txt"], [63, 3, 1, "", "from_qe_out"], [63, 3, 1, "", "get_band_energy"], [63, 3, 1, "", "get_density_of_states"], [63, 3, 1, "", "get_energy_grid"], [63, 3, 1, "", "get_entropy_contribution"], [63, 3, 1, "", "get_number_of_electrons"], [63, 3, 1, "", "get_self_consistent_fermi_energy"], [63, 3, 1, "", "get_target"], [63, 3, 1, "", "invalidate_target"], [63, 5, 1, "", "number_of_electrons"], [63, 3, 1, "", "read_from_array"], [63, 3, 1, "", "read_from_numpy_file"], [63, 3, 1, "", "read_from_qe_dos_txt"], [63, 3, 1, "", "read_from_qe_out"], [63, 5, 1, "", "si_dimension"], [63, 5, 1, "", "si_unit_conversion"], [63, 3, 1, "", "uncache_properties"]], "mala.targets.ldos": [[64, 2, 1, "", "LDOS"]], "mala.targets.ldos.LDOS": [[64, 3, 1, "", "backconvert_units"], [64, 5, 1, "", "band_energy"], [64, 3, 1, "", "convert_units"], [64, 5, 1, "", "data_name"], [64, 5, 1, "", "density"], [64, 5, 1, "", "density_of_states"], [64, 5, 1, "", "energy_grid"], [64, 5, 1, "", "entropy_contribution"], [64, 5, 1, "", "feature_size"], [64, 5, 1, "", "fermi_energy"], [64, 3, 1, "", "from_cube_file"], [64, 3, 1, "", "from_numpy_array"], [64, 3, 1, "", "from_numpy_file"], [64, 3, 1, "", "from_openpmd_file"], [64, 3, 1, "", "from_xsf_file"], [64, 3, 1, "", "get_atomic_forces"], [64, 3, 1, "", "get_band_energy"], [64, 3, 1, "", "get_density"], [64, 3, 1, "", "get_density_of_states"], [64, 3, 1, "", "get_energy_grid"], [64, 3, 1, "", "get_entropy_contribution"], [64, 3, 1, "", "get_number_of_electrons"], [64, 3, 1, "", "get_self_consistent_fermi_energy"], [64, 3, 1, "", "get_target"], [64, 3, 1, "", "get_total_energy"], [64, 3, 1, "", "invalidate_target"], [64, 5, 1, "", "local_density_of_states"], [64, 5, 1, "", "number_of_electrons"], [64, 3, 1, "", "read_from_array"], [64, 3, 1, "", "read_from_cube"], [64, 3, 1, "", "read_from_xsf"], [64, 5, 1, "", "si_dimension"], [64, 5, 1, "", "si_unit_conversion"], [64, 5, 1, "", "total_energy"], [64, 3, 1, "", "uncache_properties"]], "mala.targets.target": [[65, 2, 1, "", "Target"]], "mala.targets.target.Target": [[65, 3, 1, "", "backconvert_units"], [65, 3, 1, "", "convert_units"], [65, 5, 1, "", "feature_size"], [65, 3, 1, "", "get_energy_grid"], [65, 3, 1, "", "get_radial_distribution_function"], [65, 3, 1, "", "get_real_space_grid"], [65, 3, 1, "", "get_static_structure_factor"], [65, 3, 1, "", "get_target"], [65, 3, 1, "", "get_three_particle_correlation_function"], [65, 3, 1, "", "invalidate_target"], [65, 5, 1, "", "qe_input_data"], [65, 3, 1, "", "radial_distribution_function_from_atoms"], [65, 3, 1, "", "read_additional_calculation_data"], [65, 3, 1, "", "restrict_data"], [65, 5, 1, "", "si_dimension"], [65, 5, 1, "", "si_unit_conversion"], [65, 3, 1, "", "static_structure_factor_from_atoms"], [65, 3, 1, "", "three_particle_correlation_function_from_atoms"], [65, 3, 1, "", "write_additional_calculation_data"], [65, 3, 1, "", "write_tem_input_file"], [65, 3, 1, "", "write_to_numpy_file"], [65, 3, 1, "", "write_to_openpmd_file"]], "mala.targets.xsf_parser": [[66, 1, 1, "", "read_xsf"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute", "5": "py:property"}, "terms": {"": [0, 12, 40, 42, 61, 63, 65, 73, 74, 75, 78], "0": [2, 5, 6, 11, 12, 13, 18, 22, 27, 33, 34, 37, 40, 44, 45, 46, 47, 48, 54, 60, 62, 64, 65, 70, 73], "000": [2, 75], "00001": 73, "0048450": 65, "005": 70, "01": 70, "01070": 74, "015": 70, "023": 74, "030": 42, "035120": 74, "03610": 65, "045008": 74, "05": [12, 27], "1": [2, 6, 12, 20, 22, 33, 37, 59, 60, 61, 62, 63, 64, 65, 71, 73, 74, 77], "10": [2, 3, 12, 27, 39, 42, 65, 71, 73, 74, 77], "100": [2, 6, 12, 73, 75], "1007": 42, "1038": 74, "104": 74, "1063": 65, "108": 74, "1088": [39, 74], "11": [6, 12, 71, 73], "1103": 74, "115": 74, "12": [3, 5, 74], "1234": 6, "125146": 74, "16": 74, "1606": 65, "1696": 65, "17": [65, 74], "1883": 12, "1_31": 42, "1d": [62, 64], "1e": [27, 71], "2": [2, 5, 6, 12, 34, 60, 63, 65, 71, 73, 78], "20": 70, "200": 5, "2017": 61, "2019": [11, 61], "2021": 74, "2022": 74, "2023": 74, "2153": [39, 74], "224": 5, "25th": 61, "2632": [39, 74], "2685": 12, "27": 74, "29500": 6, "2d": [71, 72], "2mic": 65, "3": [2, 3, 12, 20, 33, 42, 62, 64, 71, 74, 77], "32": [60, 70], "33": 60, "36808": 42, "39m": 78, "3d": [62, 64], "4": [2, 6, 12, 13, 18, 37, 63, 71, 73, 74, 77], "40": 73, "400": 5, "5": [3, 6, 12, 65, 71, 73], "500": 5, "57": 65, "6": [65, 71], "64": [33, 70], "67637": [71, 73], "7": [71, 78], "8": [12, 76, 77], "9": [71, 74], "91": [33, 71], "94": 33, "96": 70, "97": 33, "978": 42, "A": [0, 3, 6, 10, 11, 12, 13, 16, 20, 24, 28, 29, 33, 37, 41, 43, 49, 50, 52, 54, 56, 57, 61, 62, 64, 65, 70, 74, 75], "AND": [11, 43, 51, 61], "AS": [11, 61], "ASE": [5, 13, 31, 33, 37, 54, 62, 63, 64, 65], "As": [0, 2, 3, 4, 5, 63, 73, 77, 79], "At": 78, "BE": [11, 43, 61], "BUT": [11, 61], "Be": [6, 12, 51], "By": [0, 5, 6, 11, 12, 62, 63, 64, 70, 71, 73], "FOR": [11, 61], "For": [2, 3, 4, 5, 12, 16, 19, 26, 33, 37, 43, 55, 57, 64, 65, 70, 71, 72, 73, 75, 76, 79], "IN": [11, 61], "IT": 43, "If": [0, 2, 3, 4, 5, 6, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 33, 34, 39, 40, 42, 43, 49, 50, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 70, 71, 72, 74, 75, 76, 78], "In": [0, 2, 5, 6, 12, 13, 25, 40, 43, 44, 45, 46, 47, 48, 49, 62, 63, 64, 65, 70, 71, 72, 73, 76, 78], "It": [3, 5, 6, 12, 26, 54, 56, 61, 62, 63, 64, 65, 69, 72, 73, 75], "NO": [11, 61], "NOT": [11, 12, 43, 61], "No": [2, 6, 12, 22, 37, 73], "OF": [11, 12, 15, 61, 75], "OR": [11, 61], "Of": [6, 12, 73], "On": 3, "One": [3, 5, 6, 61, 70, 73], "THE": [11, 43, 61], "THEN": 43, "TO": [4, 11, 43, 61], "That": [55, 70], "The": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 18, 19, 29, 31, 33, 34, 39, 40, 41, 42, 43, 51, 53, 55, 57, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "Their": 71, "Then": [2, 5], "There": [2, 63, 70, 73], "These": [2, 3, 6, 18, 43, 63, 70, 71, 75], "To": [2, 4, 5, 6, 12, 26, 33, 51, 73, 74, 75, 76, 78], "WILL": 43, "WITH": [11, 61], "Will": [16, 34, 44, 64], "With": [5, 12, 25, 37, 70], "__getitem__": 24, "_build": 77, "_xxx": 12, "ab": 65, "abc": [13, 20, 40], "abil": 6, "abl": 0, "about": [61, 65], "abov": [2, 11, 12, 16, 50, 61, 73], "absolut": [51, 56], "absolute_valu": 12, "abstract": [13, 40, 51, 65, 74], "ac9956": [39, 74], "acceler": [1, 3, 5, 6, 12, 69, 74, 75], "acces": 62, "access": [3, 5, 6, 9, 16, 21, 22, 26, 37, 70, 71, 72, 73, 75, 78, 79], "accessibli": 65, "accompani": [0, 73, 79], "accord": [2, 62, 65, 70], "accordingli": [71, 75], "account": [27, 65, 75], "accur": [2, 3, 6, 65, 71], "accuraci": [3, 6, 12, 42, 71, 73], "achiev": 12, "acitv": 12, "acquaint": 75, "acquir": 72, "across": [1, 6, 12, 56, 73, 74, 75], "acsd": [2, 39, 71], "acsd_analyz": [7, 38, 68], "acsd_point": 2, "acsdanalyz": [2, 7, 38, 39, 68], "action": [11, 12, 61], "activ": [0, 3, 4, 5, 6, 12, 55, 70, 73, 75], "actual": [0, 6, 13, 16, 25, 42, 43, 51, 56, 70, 73, 79], "actual_output": 56, "ad": [6, 12, 16, 20, 22, 25, 34, 70, 71], "adam": [0, 12, 73], "add": [0, 2, 6, 12, 18, 20, 22, 23, 25, 27, 34, 39, 40, 42, 70, 71, 73, 74, 76, 78], "add_hyperparamet": [2, 7, 38, 39, 40, 42, 68, 70], "add_snapshot": [2, 4, 6, 7, 17, 18, 20, 23, 27, 38, 39, 68, 70, 71, 73], "add_snapshot_a": 20, "add_snapshot_to_dataset": [7, 17, 25, 68], "addit": [0, 5, 6, 12, 13, 18, 27, 37, 55, 62, 65, 74, 77], "addition": [6, 73, 75], "additional_attribut": [13, 62, 65], "additional_calculation_data": [55, 73], "additional_info_input_": 71, "additional_info_input_path": [18, 71], "additional_info_input_typ": [18, 71], "additional_info_save_path": [18, 23, 71], "additional_metadata": 13, "additon": 37, "aditya95sriram": 61, "adjust": [5, 12, 65, 70, 72], "adress": [12, 43], "advanc": [2, 5, 69, 70, 71, 72, 73, 74, 75, 77], "advantag": 18, "advers": 6, "advis": [2, 5, 12, 55, 71], "affect": [6, 18], "aforement": 3, "after": [0, 3, 6, 12, 37, 71, 73, 76, 77], "after_training_metr": [3, 6, 7, 8, 12, 68], "afterward": [2, 6, 25, 63, 72, 73], "again": [0, 22, 77], "against": [49, 50], "aggres": 12, "agre": [0, 73], "aidan": [0, 74], "aim": [5, 6], "akin": 6, "al": 43, "algorihm": 12, "algorithm": [5, 6, 12, 70, 75], "align": 27, "align_ldos_to_ref": [7, 17, 27, 68], "all": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 26, 27, 29, 33, 37, 40, 43, 44, 52, 54, 55, 56, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 77, 78, 79], "all_chang": 37, "allevi": 5, "alloc": [2, 12, 26], "allocate_shared_mem": [7, 17, 26, 68], "allow": [0, 4, 5, 6, 12, 73, 75, 77], "almost": 6, "along": [5, 60, 74, 75], "alongsid": [4, 13, 62, 64, 77], "alphabet": 0, "alreadi": [6, 13, 55, 72, 73, 77], "also": [1, 2, 4, 5, 6, 10, 12, 19, 42, 51, 55, 69, 71, 72, 73, 74, 77, 79], "alter": [3, 72], "altern": [12, 13, 43], "alternative_storage_path": 43, "although": [41, 62, 75], "aluminium": 75, "alwai": [6, 11, 27, 39, 40, 44, 45, 46, 47, 48, 64, 69, 70, 71, 76], "am": 33, "american": 74, "among": 70, "amount": [2, 6, 23, 27, 73], "amp": 12, "an": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 19, 25, 26, 29, 31, 33, 34, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 54, 55, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 75, 76, 77, 78], "analys": 41, "analysi": [2, 4, 5, 12, 16, 39, 42, 43], "analyt": [60, 63, 64], "analytical_integr": [7, 58, 60, 68], "analyz": [16, 39], "ang": [59, 62], "angstrom": 33, "ani": [0, 5, 6, 11, 12, 13, 16, 18, 24, 25, 26, 37, 49, 50, 51, 61, 62, 65, 70, 71, 72, 73, 74, 75], "anoth": [3, 6, 12, 26], "anyth": [12, 62], "anywai": 18, "ap": 74, "apart": [6, 71], "api": [4, 72, 73, 75], "apidoc": 77, "appli": [12, 19, 22, 43, 65, 73, 74], "applic": [43, 53], "approach": [18, 25, 26, 29, 40, 44, 45, 46, 47, 48, 74], "appropri": [0, 6, 64, 71], "approxim": 60, "apt": 78, "ar": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 20, 25, 26, 27, 29, 33, 40, 41, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 77, 79], "arbitrari": 65, "arbitrarili": 6, "architectur": [3, 38, 40, 41, 43, 51, 52, 70, 76, 77], "archiv": [16, 73], "arg": [24, 25, 26, 37, 49, 50, 51, 61], "argdict": 34, "argument": [6, 12, 18, 33, 34, 60, 71], "aris": [11, 61, 78], "around": 2, "arrai": [3, 12, 13, 18, 19, 20, 22, 23, 27, 28, 29, 31, 32, 33, 34, 35, 42, 47, 51, 52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 73, 77], "array_lik": 27, "array_shap": 34, "articl": [74, 75], "arxiv": 65, "as_numpi": 22, "asap": 65, "asap3": 65, "ase": [15, 16, 31, 33, 37, 54, 62, 64, 65, 72], "ase_calcul": [7, 36, 68], "aspect": 73, "assert": 75, "assign": [6, 12, 51], "associ": [11, 61, 62, 63], "assum": [12, 13, 16, 22, 25, 26, 34, 51, 60, 62, 65, 69, 70, 73, 78], "assume_two_dimension": [7, 8, 12, 68, 72], "assumpt": 12, "asterisk": 64, "atom": [2, 5, 6, 12, 15, 16, 29, 33, 37, 54, 59, 61, 62, 64, 65, 71, 72, 73, 75, 79], "atomic_dens": [7, 30, 68], "atomic_density_sigma": [7, 8, 12, 68], "atomic_forc": [7, 58, 62, 68], "atomicdens": [7, 30, 31, 68], "atomicforc": [7, 58, 59, 68], "atomist": 72, "atoms_angstrom": [62, 64, 65], "attach": 6, "attempt": [4, 23, 55, 57, 62, 64, 65], "attent": [12, 74], "attila": [0, 74, 75], "attribut": [10, 12, 13, 16, 21, 29, 52, 62, 65], "austin": [0, 74], "author": [11, 61, 74], "automat": [0, 3, 5, 6, 12, 16, 27, 42, 51, 55, 65, 77], "avail": [0, 2, 5, 6, 9, 12, 18, 27, 33, 40, 44, 45, 46, 47, 48, 60, 70, 71, 73, 76, 77], "availab": 6, "averag": [2, 3, 12, 65, 73], "avoid": [0, 3, 12, 26], "awar": [5, 51, 65, 71, 76, 78], "axi": [12, 60], "b": [60, 74, 75], "back": [12, 26, 43], "backbon": 73, "backconvert_unit": [7, 30, 31, 32, 33, 35, 58, 62, 63, 64, 65, 68], "backend": [5, 12], "background": 3, "bad": 6, "band": [6, 12, 49, 56, 63, 64, 73], "band_energi": [3, 6, 7, 12, 49, 56, 58, 63, 64, 68, 73], "band_energy_ful": 56, "barrier": [7, 8, 11, 68], "bartosz": 0, "base": [0, 2, 3, 4, 5, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 73, 75], "baselin": 11, "baseprun": [49, 50], "bash": 6, "basi": [12, 61], "basic": [2, 5, 6, 69, 71, 73, 75], "bat": 77, "batch": [12, 53, 70], "batch_siz": 53, "be_dens": 5, "be_ldo": 71, "be_model": [72, 73], "be_shuffl": [4, 6], "be_snapshot": [4, 71], "be_snapshot0": [4, 6, 71, 73], "be_snapshot1": [2, 6, 72, 73], "be_snapshot2": 2, "becaus": [3, 12, 37, 73], "becom": [5, 27], "been": [0, 2, 3, 6, 33, 63, 71, 73, 74, 75, 77, 78, 79], "befor": [0, 6, 12, 49, 50, 64, 65, 72, 73, 77], "behavior": 12, "being": [6, 11, 25, 26, 37, 55, 56, 57, 62, 63, 64, 73], "believ": 12, "below": [0, 5, 12, 16, 61], "benchmark": 55, "benefici": 12, "benefit": 12, "best": [12, 41, 42, 62, 70], "beta": [60, 63], "better": 6, "between": [2, 3, 6, 11, 12, 16, 23, 25, 43, 70], "bgrid": 33, "bias": 6, "bidirect": [7, 8, 12, 68], "big": [0, 65], "bigger": 12, "bin": [12, 65, 76, 78], "binari": 71, "bind": 78, "bispectrum": [2, 5, 7, 12, 30, 33, 68, 71, 72, 73, 76], "bispectrum_cutoff": [2, 7, 8, 12, 68, 71, 73], "bispectrum_switchflag": [7, 8, 12, 68], "bispectrum_twojmax": [2, 7, 8, 12, 68, 71, 73], "bit": [12, 24, 62], "black": 0, "blob": [11, 65], "bohr": [2, 62, 64, 71], "boldsymbol": 64, "bool": [11, 12, 13, 18, 19, 22, 25, 26, 27, 33, 34, 40, 42, 43, 49, 50, 54, 55, 57, 60, 62, 63, 64, 65], "boolean": [49, 50], "both": [2, 3, 12, 56, 61, 75], "bottleneck": 6, "bound": [40, 44, 45, 46, 48, 70], "boundari": 12, "bp": 4, "branch": 76, "break": 33, "briefli": 6, "brillouin": 60, "broadcast_band_energi": 63, "broadcast_entropi": 63, "broadcast_fermi_energi": 63, "brown": 11, "brzoza": 0, "buffer": [26, 28], "bug": 0, "bugfix": 0, "build": [0, 4, 12, 19, 69, 75], "build_fold": 76, "build_mpi": 76, "build_shared_lib": 76, "build_total_energy_modul": 78, "built": [0, 11, 76], "bump2vers": 77, "bumpvers": 0, "busi": 6, "by_snapshot": 12, "c": [6, 11, 61, 65], "cach": [16, 25, 26, 62, 63, 64, 65], "calc_optimal_ldos_shift": [7, 17, 27, 68], "calcul": [0, 2, 5, 6, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 51, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 73, 74, 75, 76, 79], "calculate_from_atom": [7, 30, 33, 68], "calculate_from_qe_out": [7, 30, 33, 68], "calculate_loss": [7, 38, 51, 68], "calculate_properti": [7, 36, 37, 68], "calculation_help": [7, 58, 68], "calculation_output": [19, 29], "calculation_output_fil": 20, "calculation_typ": 65, "calibr": [49, 50], "call": [2, 3, 6, 11, 12, 13, 16, 18, 24, 42, 43, 50, 51, 63, 65, 71, 72, 73, 74, 75, 79], "callow": 0, "can": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 18, 19, 22, 25, 26, 33, 37, 42, 43, 51, 52, 54, 55, 56, 57, 65, 70, 71, 72, 73, 75, 76, 78, 79], "cancel": 71, "candid": [49, 50, 70], "cangi": [0, 74, 75], "cannot": [6, 33, 62, 64], "capabilit": 2, "capabl": [1, 3, 4, 75], "care": [6, 26, 43], "case": [6, 11, 12, 13, 25, 26, 42, 43, 49, 54, 55, 64, 65, 70, 76, 78], "categor": [3, 12, 40, 42, 44, 45, 46, 47, 48, 70], "categori": 11, "caus": 74, "cd": 77, "cell": [5, 12, 31, 33, 37, 51, 62, 64, 65], "center": [60, 75], "cento": 79, "central": [3, 51, 73], "certain": [12, 18, 40, 41, 43, 63], "cff": 0, "cflag": 78, "challeng": [74, 75], "chanc": [3, 12], "chang": [0, 3, 4, 12, 37, 63, 65, 76, 77, 78], "changelog": 0, "chapter": 42, "character": [12, 31], "charg": [11, 37, 61], "check": [0, 4, 6, 9, 19, 22, 37, 40, 49, 55, 57, 76, 77], "check_modul": [7, 8, 68], "checkout": [21, 76, 77], "checkpoint": [12, 37, 40, 42, 43, 55, 57], "checkpoint_exist": [7, 38, 40, 57, 68], "checkpoint_nam": [3, 6, 7, 8, 12, 40, 42, 43, 68], "checkpoints_each_epoch": [6, 7, 8, 12, 68], "checkpoints_each_tri": [3, 12], "chemistri": 74, "choic": [39, 40, 42, 44, 45, 46, 47, 48, 53, 70, 73], "choos": [0, 2, 12], "chosen": [2, 6, 12, 71], "ci": 0, "circumv": [6, 74], "citat": [0, 74], "cite": 75, "citeseerx": 65, "cl": 55, "claim": [11, 61], "class": [0, 2, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "classic": 37, "classmethod": [10, 12, 22, 29, 37, 40, 42, 43, 51, 55, 57, 62, 63, 64], "clean": [43, 77], "cleanup": [7, 17, 28, 68], "clear": [0, 19, 40], "clear_data": [7, 17, 19, 20, 68], "clear_hyperparamet": [7, 38, 40, 68], "clone": 77, "cloud": 2, "cluster": [3, 6, 43, 78], "cmake": [76, 78], "cmake_cxx_compil": 76, "cmdarg": 34, "coars": [2, 73], "code": [3, 12, 33, 36, 65, 69, 72, 74, 75, 76, 77, 79], "coeffici": 73, "collabor": 0, "collect": [3, 12, 33, 34], "collector": 37, "column": [12, 22], "com": [0, 11, 12, 21, 42, 61, 65, 76, 77, 78], "combin": [2, 33, 37, 70], "come": [12, 33], "comm": [11, 13], "comm_world": [11, 65], "command": [3, 12, 34, 55, 70], "comment": [7, 8, 12, 68], "comminuc": 65, "commit": 0, "common": [7, 11, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68], "commonli": 33, "commun": [3, 6, 11, 12, 33], "compar": [2, 12, 16, 73, 75], "comparison": 65, "compat": [3, 4, 12, 21, 42, 43, 51, 52, 66, 72, 76], "compil": [76, 78], "complei": 61, "complet": [6, 71], "complete_save_path": [6, 18, 23, 71], "complex": 61, "complianc": 0, "compliant": 4, "complic": [2, 6], "compon": [33, 71], "comprehens": 75, "compress": 4, "compuat": 65, "comput": [1, 2, 5, 6, 12, 22, 27, 34, 69, 74, 75], "computation": [3, 5], "compute_typ": 34, "concept": [3, 75], "concern": 38, "concert": 55, "conda": 0, "condens": 71, "condit": [3, 11, 12, 61], "conduct": 75, "config": 0, "configur": [0, 4, 12, 15, 16, 33, 54, 72, 73, 76, 78], "confirm": 6, "conjunct": [3, 12], "connect": [11, 61], "consecut": 12, "conserve_dimens": 64, "consid": [0, 12, 19, 27], "consist": [18, 19, 29, 61, 63, 64, 70, 73, 79], "consquenc": 16, "const": 61, "constant": 61, "constitut": 0, "construct": [3, 12, 18, 60, 65, 73, 74, 75], "constructor": 61, "consult": [0, 4], "contain": [2, 4, 10, 12, 13, 20, 23, 27, 29, 30, 33, 37, 41, 56, 61, 62, 63, 64, 65, 73], "continu": [55, 57, 77], "contract": [11, 61], "contribut": [12, 62, 63, 64, 75], "control": [12, 25, 33, 65, 73], "convent": [27, 40, 42, 65], "convers": [1, 13, 19, 20, 23, 25, 26, 27, 28, 33, 34, 59, 62, 63, 64, 65, 69], "convert": [4, 10, 12, 18, 19, 31, 32, 33, 34, 35, 39, 59, 62, 63, 64, 65, 71], "convert_local_to_3d": [7, 30, 33, 68], "convert_snapshot": [4, 7, 17, 18, 68, 71], "convert_to_threedimension": 62, "convert_unit": [7, 30, 31, 32, 33, 35, 58, 59, 62, 63, 64, 65, 68], "converted_arrai": [31, 32, 33, 35, 59, 62, 63, 64, 65], "converted_tensor": 19, "convet": [44, 45, 46, 47, 48], "cooper": 6, "coordin": [12, 33], "copi": [11, 22, 49, 50, 55, 61, 62, 63], "copyright": [11, 61], "core": [0, 78], "correct": [2, 5, 6, 37, 44, 51, 61, 62, 70, 73, 77], "correctli": [0, 62, 77], "correl": [3, 12, 16, 65], "correspond": [6, 12, 65, 70, 71], "cosin": [2, 16], "cost": 12, "costli": 75, "could": [5, 12], "count": 12, "counter": 12, "cours": [6, 12, 73], "cover": [69, 72], "covers": [62, 64], "cpp": 65, "cppflag": 78, "cpu": [1, 2, 3, 5, 6, 54, 55, 64, 69, 76], "cpython": 78, "creat": [5, 6, 12, 13, 15, 16, 18, 19, 20, 23, 27, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77], "create_fil": 62, "create_qe_fil": 64, "creation": [19, 71], "critic": 73, "crucial": 4, "csv": 73, "cube": [5, 61, 62, 64, 71], "cube_pars": [7, 58, 68], "cubefil": [7, 58, 61, 68], "cubetool": 61, "cubic": [62, 64, 65, 75], "cuda": [6, 12, 76], "current": [0, 3, 4, 5, 6, 11, 12, 14, 25, 26, 27, 39, 40, 41, 42, 44, 47, 48, 51, 52, 55, 59, 60, 61, 62, 63, 64, 65, 71], "curv": 12, "custom": [64, 70], "cut": [12, 27], "cutoff": [2, 12, 16, 71], "d": [12, 22, 60, 63, 64, 74, 75, 76], "d_model": 51, "dai": 74, "damag": [11, 61], "daniel": [0, 11], "data": [0, 1, 3, 5, 6, 7, 8, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 79], "data_": 4, "data_convert": [4, 7, 17, 39, 68, 71], "data_handl": [4, 5, 7, 17, 37, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 64, 68, 70, 72, 73], "data_handler_bas": [7, 17, 68], "data_nam": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 68], "data_path": [2, 4, 6, 71, 72, 73], "data_repo": [7, 17, 68], "data_repo_path": 21, "data_scal": [7, 17, 19, 25, 26, 68], "data_shuffl": [4, 6, 7, 17, 68], "data_splitting_typ": [7, 8, 12, 68], "data_typ": [19, 56, 65], "databas": 3, "databasenam": 3, "dataconvert": [2, 4, 6, 7, 17, 18, 19, 68, 71], "dataformat": 61, "datagener": [7, 68], "datahandl": [2, 3, 4, 6, 7, 18, 19, 25, 26, 28, 37, 39, 40, 41, 42, 43, 50, 53, 54, 55, 56, 57, 64, 68, 70, 73], "datahandlerbas": [7, 17, 19, 20, 23, 27, 68], "dataload": [25, 26], "datasampl": [25, 26], "datascal": [7, 17, 19, 22, 25, 26, 68], "dataset": [13, 19, 24, 25, 26, 28], "datashuffl": [4, 6, 7, 12, 17, 23, 68], "datashufl": 6, "datatyp": [40, 42, 44, 45, 46, 47, 48], "date": [0, 12, 61], "dayton": 74, "db": 64, "dd": 64, "dd_db": 64, "ddp": [6, 11, 12, 22, 25, 26, 55], "de": 64, "de_dd": 64, "deactivt": 70, "dead": 43, "deadlin": 0, "deal": [11, 13, 61, 73], "dealloc": [26, 28], "deallocate_shared_mem": [7, 17, 26, 68], "debian": 78, "debug": [3, 33, 73, 77], "decad": 74, "decai": 12, "decid": [0, 12, 70, 73], "declar": 4, "decreas": [12, 70], "deep": [74, 75], "default": [4, 5, 6, 11, 12, 18, 19, 22, 27, 29, 33, 34, 39, 53, 54, 55, 57, 63, 64, 70, 71, 78], "defin": [12, 49, 50, 60, 63, 64, 72], "degre": 16, "delet": 33, "delete_data": [7, 17, 26, 68], "delta": [60, 63], "demand": [2, 3, 12, 51], "demonstr": [74, 75], "denois": 12, "dens_object": 62, "denser": 71, "densiti": [2, 5, 7, 12, 56, 58, 59, 63, 64, 68, 71, 72, 74, 75], "density_calcul": [5, 62], "density_data": [62, 64], "density_of_st": [5, 7, 58, 63, 64, 68, 72], "depend": [12, 13, 19, 55, 57, 61, 62, 64, 71, 77], "deprec": [12, 22, 37], "depth": [1, 70], "deriv": [25, 26, 28, 51, 64], "descent": 12, "desciptor": 33, "describ": [5, 13, 31, 32, 35, 62, 63, 64, 70], "descript": [0, 61, 70], "descriptor": [0, 5, 7, 8, 11, 12, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 39, 54, 64, 68, 71, 72, 73, 75, 76], "descriptor_calcul": [7, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68], "descriptor_calculation_kwarg": [18, 71], "descriptor_dimens": 33, "descriptor_input_path": [18, 39, 71], "descriptor_input_typ": [18, 39, 71], "descriptor_save_path": [18, 23, 71], "descriptor_typ": [7, 8, 12, 68, 71, 73], "descriptor_unit": [18, 39], "descriptors_contain_xyz": [7, 8, 12, 30, 33, 68], "descriptors_np": 33, "deseri": 10, "deserialized_object": [10, 12, 29], "design": 3, "desir": [12, 16, 19, 31, 32, 33, 35, 44, 51, 62, 63, 64, 65, 75], "despit": 74, "detail": [2, 3, 5, 12, 18, 39, 75, 76], "determin": [2, 3, 5, 12, 16, 56, 70, 71, 73], "determinist": 12, "detriment": 12, "dev": 77, "develop": [6, 33, 71, 75, 77, 79], "deviat": [3, 12, 22, 73], "devic": [7, 8, 12, 68], "devis": 2, "dft": [3, 5, 6, 7, 12, 15, 18, 22, 29, 33, 62, 63, 64, 69, 71, 75], "diagnost": 12, "dicitionari": 34, "dict": [10, 12, 13, 18, 29, 33, 34, 56, 61, 62, 64, 65, 66], "dictionari": [10, 12, 13, 18, 29, 33, 34, 56, 62, 63, 64, 65, 73], "dictionati": [62, 64, 65], "diff": 0, "differ": [2, 5, 6, 33, 39, 43, 53, 60, 62, 70], "differenti": 12, "dimens": [5, 12, 13, 20, 22, 25, 26, 31, 32, 33, 35, 51, 59, 62, 63, 64, 65, 73], "dimension": [2, 13, 63, 71], "dipol": 37, "direct": [0, 5, 7, 8, 12, 18, 65, 68, 72], "directli": [0, 2, 6, 11, 12, 33, 51, 54, 55, 62, 63, 64, 65, 73], "directori": [0, 6, 12, 18, 19, 20, 23, 27, 29, 33, 64, 77, 78], "dirti": 0, "disabl": [6, 12, 25, 26, 55], "discontinu": 12, "discourag": [25, 26], "discret": [5, 62, 63, 64, 71], "discuss": [1, 2, 3, 6, 71, 73, 75], "disentangl": 3, "disk": [6, 23, 64, 73], "displac": 16, "distanc": [2, 12, 16], "distance_threshold": 16, "distinct": [2, 40, 44, 45, 46, 47, 48], "distinguish": 3, "distribut": [3, 5, 11, 12, 51, 55, 61, 63, 65], "distributeddataparallel": 6, "divid": [5, 62], "divisor": [12, 60], "do": [0, 2, 3, 4, 5, 7, 11, 12, 19, 20, 23, 25, 26, 27, 28, 31, 32, 33, 35, 42, 43, 51, 56, 58, 60, 61, 62, 64, 68, 70, 71, 72, 73, 76, 79], "do_predict": [7, 38, 51, 68], "doc": 77, "dockerfil": 0, "docstr": 0, "document": [0, 4, 6, 11, 12, 61, 72, 79], "documentari": 77, "doe": [6, 11, 12, 19, 31, 32, 35, 40, 41, 57, 61, 62, 63, 64, 70, 77], "doesn": [61, 63, 78], "doi": [39, 65, 74], "don": [12, 65], "done": [0, 2, 3, 5, 11, 12, 33, 39, 40, 41, 42, 43, 54, 56, 61, 62, 65, 70, 71, 73], "dornheim": 75, "dos_calcul": 63, "dos_data": [63, 64], "dos_object": 63, "dos_valu": 64, "dot": 61, "doubl": [18, 34], "doubt": 33, "down": 11, "download": 78, "draft": 0, "drastic": [6, 18], "drawback": 6, "dresden": 75, "drive": 29, "driven": [4, 73], "dropout": 51, "dtype": [13, 61], "due": [62, 63, 64, 71], "dummi": 61, "dure": [0, 2, 5, 6, 11, 12, 33, 50, 53, 55, 64, 65, 70, 72, 73, 74, 77], "during_training_metr": [7, 8, 12, 68], "dx": 74, "dynam": [12, 56, 72, 75], "e": [1, 3, 4, 5, 6, 12, 13, 16, 18, 19, 22, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 60, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "e_": 62, "e_ewald": 62, "e_grid": [27, 63, 64], "e_hartre": 62, "e_rho_times_v_hxc": 62, "e_xc": 62, "eac": 12, "each": [0, 2, 3, 5, 12, 16, 22, 43, 49, 50, 70, 71, 73, 75], "earli": 12, "earlier": 65, "early_stopping_epoch": [7, 8, 12, 68, 70], "early_stopping_threshold": [7, 8, 12, 68], "easi": [3, 6, 56], "easier": [19, 72, 73], "easili": [0, 2, 3, 6, 70, 73], "echo": 6, "edu": 65, "effect": [3, 6, 12, 34, 55, 64, 75], "effici": [4, 5, 65, 75, 79], "effort": [0, 75], "effortlessli": 75, "egrid": 27, "egrid_offset_ev": 27, "egrid_spacing_ev": 27, "eigenvalu": 63, "either": [0, 5, 12, 13, 19, 20, 23, 41, 56, 60, 62, 64, 65, 70, 71, 73], "electron": [5, 7, 37, 56, 59, 62, 63, 64, 65, 71, 72, 73, 74, 75], "elem_snapshot": 18, "elimin": 3, "elli": [0, 74, 75], "els": [3, 6], "elsewis": [13, 16, 63], "emploi": [1, 6, 12, 73, 75], "empti": [12, 66], "emul": 22, "en": 42, "enabl": [2, 3, 5, 6, 54, 55, 56, 65, 71, 73, 76], "encapsul": 6, "encod": [2, 33, 52, 71, 73, 79], "encourag": 4, "end": [3, 4, 11, 12, 13, 16, 43, 62, 63, 64, 65, 70, 73], "energi": [0, 5, 6, 7, 12, 27, 37, 49, 56, 60, 62, 63, 64, 65, 71, 72, 73, 75, 79], "energy_grid": [5, 7, 58, 60, 63, 64, 68], "energy_integration_method": 64, "energy_unit": 60, "energygrid": [63, 64], "enforc": [33, 51, 65], "enforce_pbc": [7, 30, 33, 68], "enhanc": [0, 75], "enough": [2, 6, 12, 49, 50, 71, 79], "ensur": [0, 6, 11, 12, 18, 19, 62, 64, 75], "enter": 64, "entir": [5, 6, 12, 13, 19, 20, 22, 29, 33, 51, 55, 71, 73], "entri": [0, 5, 12, 22, 62, 73], "entropi": [60, 63, 64], "entropy_contribut": [7, 58, 63, 64, 68], "entropy_multipl": [7, 58, 60, 68], "enviro": 71, "environ": [0, 2, 6], "epoch": [6, 12, 70], "epsilon": [60, 63], "epsilon_": 63, "epsilon_f": [60, 63, 64], "eq": [60, 65], "equal": 34, "equat": [63, 65], "equilibr": [12, 15, 16, 75], "equilibrated_snapshot": 16, "equival": 63, "erro": 77, "erron": 26, "error": [5, 6, 11, 12, 25, 27, 56, 62, 63, 64, 71, 77], "especi": [3, 12, 49, 79], "espresso": [2, 5, 18, 33, 62, 63, 64, 65, 71, 72, 79], "essenti": [6, 12, 18, 70], "establish": 6, "estim": [12, 16], "etc": [0, 3, 10, 12, 20, 29, 37, 40, 44, 45, 46, 47, 48, 55, 70, 71, 72, 73], "euclidean": 12, "ev": [12, 20, 33, 59, 60, 62, 63, 64, 65], "evalu": [3, 5, 12, 19, 64], "even": [1, 5, 6, 65, 72], "evenli": 5, "event": [11, 61], "eventu": [37, 64], "everi": [0, 15, 64], "everyth": [12, 38], "evid": 12, "ewald": [12, 62], "ex01_checkpoint": 6, "ex01_checkpoint_train": 6, "ex01_train_network": 73, "ex02_shuffle_data": 6, "ex02_test_network": 73, "ex03_preprocess_data": 71, "ex03_tensor_board": 6, "ex04_acsd": 2, "ex04_hyperparameter_optim": 70, "ex05_checkpoint": 3, "ex05_checkpoint_hyperparameter_optim": 3, "ex05_run_predict": 72, "ex06_ase_calcul": 72, "ex06_distributed_hyperparameter_optim": 3, "ex07_advanced_hyperparameter_optim": 3, "ex08_visualize_observ": 5, "exact": [63, 64], "exactli": [62, 63, 64], "exampl": [0, 2, 3, 4, 5, 6, 21, 42, 69, 70, 71, 72, 73, 75, 76], "example_minimal_number_of_runs_oa": 42, "except": [3, 5, 12, 62, 65], "excess": 74, "exchang": 12, "exclud": 12, "exclus": 70, "execut": [0, 3, 22, 43, 69, 76], "exhibit": 75, "exist": [3, 6, 26, 40, 55, 57, 61, 63, 72], "expans": 2, "expect": [6, 12], "expens": 0, "experi": 12, "experiment": [12, 14, 70], "experiment_ddmmyi": 12, "explain": 70, "explan": 70, "explicitli": [12, 33, 72], "explictli": 33, "explor": 75, "exploratori": [2, 4], "expon": 60, "export": [6, 10, 12, 77, 78], "express": [11, 61, 63, 64], "extend": [5, 18, 70, 72, 75], "extens": [4, 6], "extent": 13, "external_modul": 78, "extra": [0, 33], "extract": [3, 13, 34, 47, 48, 62, 66], "extract_compute_np": [7, 30, 34, 68], "f": [12, 22, 60], "f0": 60, "f1": 60, "f2": 60, "f2py": 62, "f90": 78, "f90exec": 78, "facilit": 75, "factor": [2, 5, 6, 12, 42, 60, 63, 65, 70], "fail": [0, 12], "fairli": [33, 72], "falkner18a": 12, "fals": [2, 6, 12, 13, 16, 18, 22, 25, 27, 33, 34, 39, 40, 41, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65], "familiar": [3, 69, 73], "far": [12, 71], "faruk": 0, "fashion": [5, 70], "fast": 12, "fast_tensor_dataset": [7, 17, 68], "faster": [5, 6, 18, 24, 33, 72, 76, 78], "fasttensordataset": [7, 17, 24, 26, 68], "featur": [0, 3, 6, 12, 13, 20, 22, 31, 32, 35, 59, 62, 63, 64, 65, 69, 70, 73, 75, 79], "feature_from": 13, "feature_s": [7, 8, 13, 30, 31, 32, 35, 58, 62, 63, 64, 65, 68], "feature_to": 13, "fed": 75, "feed": [12, 51], "feed_forward": 12, "feedforwardnet": [7, 38, 51, 68], "fermi": [56, 60, 63, 64, 65], "fermi_energi": [7, 58, 60, 63, 64, 68], "fermi_energy_self_consist": [63, 64], "fermi_funct": [7, 58, 60, 68], "fermi_v": 60, "fetch": 28, "few": [3, 5, 73], "feynman": 62, "ff": 0, "ff_multiple_layers_count": 70, "ff_multiple_layers_neuron": 70, "ff_neurons_lay": 70, "ff_neurons_layer_00": 70, "ff_neurons_layer_001": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_002": [40, 44, 45, 46, 47, 48], "ff_neurons_layer_01": 70, "ff_neurons_layer_xx": 70, "ff_neurons_layer_xxx": 12, "fflag": 78, "fiedler": [0, 74, 75], "field": 71, "file": [0, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 37, 42, 43, 51, 54, 55, 57, 61, 62, 63, 64, 65, 66, 70, 71, 73, 75, 78], "file_based_commun": [18, 39], "file_index": 25, "file_nam": 62, "file_path": [42, 43], "filenam": [4, 12, 22, 37, 61, 66], "filename_uncorrelated_snapshot": 16, "filepath": 65, "fill": [12, 15, 70, 71], "final": [6, 7, 8, 11, 68, 73], "find": [0, 6, 42, 74, 78], "fine": [6, 12, 71], "fingerprint": [12, 18, 33, 39], "finish": [6, 43], "finit": [74, 75], "first": [2, 5, 12, 16, 18, 27, 49, 50, 62, 70, 71, 72, 73, 75, 77, 79], "first_snapshot": [7, 14, 16, 68], "firstli": [2, 70, 73], "fit": [7, 11, 17, 22, 61, 68], "fix": [0, 77], "flag": 73, "flexibl": 65, "float": [12, 16, 27, 31, 33, 34, 40, 44, 45, 46, 47, 48, 51, 54, 60, 61, 63, 64, 65, 70], "fname": 61, "focu": 75, "folder": [0, 12, 76, 77], "follow": [0, 1, 6, 11, 12, 40, 42, 44, 45, 46, 47, 48, 60, 61, 62, 69, 70, 72, 73, 75, 77], "footprint": [12, 64], "forc": [7, 37, 59, 62, 64], "force_no_ddp": 12, "forgiv": 12, "fork": 0, "form": [0, 12, 22, 61, 62, 72], "formal": [4, 6], "format": [5, 12, 13, 22, 33, 44, 53, 57, 61, 62, 63, 64, 65, 66, 71, 72, 73], "former": 1, "formerli": 12, "formula": [12, 60], "fortran": 62, "forward": [7, 12, 38, 51, 53, 68], "found": [3, 6, 12, 39, 40, 41, 42, 43], "fourier": [12, 65], "fourier_transform": 65, "fox": 0, "fp32": 18, "fpic": 78, "frac": [60, 64], "fraction": 12, "framework": [3, 7, 13, 51, 73], "franz": 0, "free": [3, 11, 26, 61, 71, 74, 75, 79], "freedom": 22, "friction": 12, "from": [0, 2, 3, 4, 5, 6, 10, 11, 12, 13, 16, 22, 25, 26, 27, 29, 33, 34, 37, 41, 42, 43, 47, 48, 51, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 77], "from_cube_fil": [7, 58, 62, 64, 68], "from_json": [7, 8, 10, 12, 17, 29, 68], "from_ldos_calcul": [5, 7, 58, 62, 63, 68], "from_numpy_arrai": [7, 58, 62, 63, 64, 68], "from_numpy_fil": [7, 58, 62, 63, 64, 68], "from_openpmd_fil": [7, 58, 62, 64, 68], "from_qe_dos_txt": [7, 58, 63, 68], "from_qe_out": [7, 58, 63, 68], "from_xsf_fil": [7, 58, 62, 64, 68], "front": 12, "frozentri": [43, 49, 50], "full": [4, 6, 27, 39, 73, 76, 78], "full_logging_path": 6, "fulli": [3, 4, 19], "function": [0, 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 22, 29, 31, 32, 33, 34, 35, 37, 42, 43, 44, 50, 51, 52, 53, 59, 60, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 77, 79], "function_valu": 60, "fundament": 0, "furnish": [11, 61], "further": [0, 3, 4, 5, 6, 12, 55, 57, 70, 71, 72, 73, 74, 75, 76], "furthermor": [4, 79], "futur": [63, 73], "g": [3, 4, 5, 6, 12, 13, 16, 18, 31, 32, 33, 35, 36, 37, 40, 44, 45, 46, 47, 48, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "gabriel": [0, 74], "gain": 74, "gather": [18, 24, 33, 54, 64, 73], "gather_dens": 64, "gather_descriptor": [7, 30, 33, 68], "gather_do": 64, "gather_ldo": 54, "gaussian": [5, 7, 12, 31, 35, 58, 60, 61, 68], "gcc": [76, 78], "gener": [0, 2, 5, 6, 8, 11, 12, 13, 14, 16, 18, 42, 51, 62, 63, 64, 65, 69, 72, 73, 74, 78], "generate_square_subsequent_mask": [7, 38, 51, 68], "get": [5, 11, 12, 13, 19, 31, 32, 33, 35, 41, 42, 44, 47, 54, 56, 59, 60, 62, 63, 64, 65, 72, 73, 75], "get_atomic_forc": [7, 58, 62, 64, 68], "get_band_energi": [7, 58, 63, 64, 68], "get_best_trial_result": [7, 38, 41, 42, 68], "get_beta": [7, 58, 60, 68], "get_categor": [7, 38, 47, 48, 68], "get_comm": [7, 8, 11, 68], "get_dens": [7, 58, 62, 64, 68], "get_density_of_st": [7, 58, 63, 64, 68], "get_energy_contribut": [7, 58, 62, 68], "get_energy_grid": [7, 58, 63, 64, 65, 68], "get_energy_targets_and_predict": [7, 38, 56, 68], "get_entropy_contribut": [7, 58, 63, 64, 68], "get_equilibrated_configur": [7, 14, 15, 68], "get_f0_valu": [7, 58, 60, 68], "get_f1_valu": [7, 58, 60, 68], "get_f2_valu": [7, 58, 60, 68], "get_feature_s": [7, 58, 59, 68], "get_first_snapshot": [7, 14, 16, 68], "get_float": [7, 38, 48, 68], "get_int": [7, 38, 48, 68], "get_local_rank": [7, 8, 11, 68], "get_new_data": [7, 17, 25, 68], "get_number_of_electron": [7, 58, 62, 63, 64, 68], "get_optimal_paramet": [7, 38, 42, 68], "get_optimal_sigma": [7, 30, 31, 68], "get_orthogonal_arrai": [7, 38, 42, 68], "get_paramet": [7, 38, 47, 48, 68], "get_potential_energi": 72, "get_radial_distribution_funct": [7, 58, 65, 68], "get_rank": [7, 8, 11, 68], "get_real_space_grid": [7, 58, 65, 68], "get_s0_valu": [7, 58, 60, 68], "get_s1_valu": [7, 58, 60, 68], "get_scaled_positions_for_q": [7, 58, 62, 68], "get_self_consistent_fermi_energi": [7, 58, 63, 64, 68], "get_siz": [7, 8, 11, 68], "get_snapshot_calculation_output": [7, 17, 19, 68], "get_snapshot_correlation_cutoff": [7, 14, 16, 68], "get_static_structure_factor": [7, 58, 65, 68], "get_target": [7, 58, 62, 63, 64, 65, 68], "get_test_input_gradi": [7, 17, 19, 68], "get_three_particle_correlation_funct": [7, 58, 65, 68], "get_total_energi": [7, 58, 64, 68], "get_trials_from_studi": [7, 38, 43, 68], "get_uncorrelated_snapshot": [7, 14, 16, 68], "git": [0, 76, 77], "github": [0, 11, 12, 21, 74, 76, 77], "gitlab": [65, 78], "give": [1, 3, 6, 12, 16, 64, 69, 70, 71, 73, 76], "given": [0, 6, 13, 18, 33, 54, 57, 60, 61, 62, 63, 64, 65, 70, 71, 75, 79], "glimps": 73, "global": 12, "gmail": 61, "gnn": 0, "gnu": 78, "go": 12, "goal": 66, "goe": 12, "goo": 11, "good": [2, 3, 6, 12, 49, 50], "got": 0, "govern": [70, 71], "gpaw": 72, "gpu": [0, 3, 11, 12, 55, 69, 76], "gradient": [12, 19, 25, 26, 70], "grand": 74, "grant": [11, 61], "granular": 71, "graph": [6, 12], "grate": 0, "gre": 6, "greater": 12, "greatli": [12, 73], "grid": [0, 5, 12, 27, 31, 33, 60, 62, 63, 64, 65, 71, 73, 75, 79], "grid_dimens": [33, 62, 65], "grid_integration_method": 64, "gridi": [62, 64], "gridpoint": 62, "gridsiz": [12, 62, 64], "gridspac": 12, "gridx": [62, 64], "gridz": [62, 64], "ground": 73, "grow": 74, "gru": [7, 12, 38, 51, 68], "guarante": 6, "guess": 65, "gui": 4, "guid": [1, 2, 5, 69, 70, 71, 72, 73, 75], "guidelin": 0, "h": [62, 76], "h5": [4, 13, 62, 65], "ha": [0, 2, 4, 5, 6, 11, 12, 13, 22, 25, 34, 37, 42, 43, 49, 50, 51, 54, 55, 62, 63, 64, 70, 71, 73, 74, 75, 77, 78, 79], "hacki": 12, "had": [6, 71], "hand": [5, 12, 13, 27], "handl": [3, 4, 6, 17, 19, 20, 23, 27, 65], "handler": [42, 43, 55, 57, 64], "happen": 63, "har": 75, "hard": 29, "hardwar": [1, 5, 69], "haswel": 76, "have": [0, 2, 3, 5, 6, 10, 12, 13, 22, 25, 26, 29, 31, 32, 33, 35, 39, 40, 43, 44, 45, 46, 47, 48, 60, 63, 64, 65, 70, 71, 72, 73, 74, 76, 78, 79], "haven": 77, "head": [0, 6, 12], "heartbeat": 12, "heavi": [5, 65], "hellman": 62, "helmholtz": 75, "help": [3, 12, 54, 64, 69, 73], "helper": [4, 60], "here": [3, 5, 6, 12, 16, 18, 25, 26, 39, 42, 51, 55, 63, 70, 71, 72, 73, 76], "herebi": [11, 61], "hidden": [12, 51, 70], "hierarchi": 13, "high": [11, 12, 40, 44, 45, 46, 47, 48, 74], "higher": [12, 40, 44, 45, 46, 48], "highli": [2, 4, 5, 6, 14, 77, 79], "hint": 6, "histogram": [12, 65], "hiwonjoon": 11, "hlist": [7, 8, 12, 68], "hoc": 16, "hoffmann": [0, 74, 75], "hold": [6, 12, 19, 33, 40, 41, 42, 43, 54, 55, 56, 57, 64], "holder": [11, 61], "horovod": 0, "hossein": 0, "host": 6, "hostnam": 6, "hotyp": [44, 45, 46, 47, 48], "how": [2, 3, 12, 22, 27, 63, 64, 65, 69, 70, 71, 73, 76], "howev": [2, 4, 6, 12, 26, 33, 53, 64, 73, 74], "hpc": [3, 6, 12, 43, 78], "html": [12, 42, 77], "http": [0, 11, 12, 21, 42, 61, 65, 74, 76, 77, 78], "huge": 6, "hundr": 75, "hyper_opt": [7, 38, 68], "hyper_opt_method": [3, 12], "hyper_opt_naswot": [7, 38, 68], "hyper_opt_oat": [7, 38, 68], "hyper_opt_optuna": [7, 38, 68], "hyperopt": [3, 7, 38, 39, 40, 41, 42, 43, 68, 70], "hyperoptim": [2, 70], "hyperoptnaswot": [7, 38, 41, 44, 68], "hyperoptoat": [7, 38, 41, 42, 44, 68], "hyperoptoptuna": [7, 38, 41, 43, 44, 68], "hyperparam": 12, "hyperparamet": [0, 1, 2, 7, 8, 12, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 57, 68, 69, 73, 74, 75, 77], "hyperparameter_acsd": [7, 38, 68], "hyperparameter_naswot": [7, 38, 68], "hyperparameter_oat": [7, 38, 68], "hyperparameter_optuna": [7, 38, 68], "hyperparameteracsd": [7, 38, 44, 45, 68], "hyperparameternaswot": [7, 38, 44, 46, 68], "hyperparameteroat": [7, 38, 44, 47, 68], "hyperparameteroptuna": [7, 38, 44, 46, 48, 68], "hyperparemet": 12, "i": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 74, 76, 77, 78, 79], "i0": 60, "i1": 60, "i_0": 60, "i_1": 60, "ibrav": 62, "icml2019": 11, "idea": 6, "ideal": [2, 13, 62, 65], "identif": 75, "identifi": 70, "idx": 47, "ifnam": 61, "ignor": [3, 12, 18, 62, 65, 69, 76], "ik": 63, "imag": [61, 65], "imaginari": 61, "immens": 0, "impact": [6, 64], "imped": 12, "implement": [0, 3, 6, 10, 12, 13, 22, 33, 37, 49, 50, 51, 62, 63, 64, 65, 75, 79], "implemented_properti": [7, 36, 37, 68], "impli": [11, 13, 61, 65], "import": [1, 2, 3, 37, 42, 54, 64, 65, 72, 78, 79], "improv": [0, 1, 12, 23, 24, 73], "in_unit": [31, 32, 33, 35, 59, 62, 63, 64, 65], "includ": [0, 4, 11, 12, 19, 29, 33, 41, 42, 55, 61, 64, 70, 71, 75], "incopor": 71, "incorpor": 65, "increas": [3, 12], "increment": [6, 22, 73, 77], "indent": 12, "index": [27, 47, 77], "indic": [26, 49, 50, 56], "indisput": 12, "individu": [3, 6, 12, 22, 71, 73, 75, 79], "indiviu": [12, 22], "industri": 6, "inf": 12, "infer": [0, 5, 12, 54, 55, 56, 61, 64, 72, 73, 75], "inference_data_grid": [5, 7, 8, 12, 68], "infinit": 49, "infint": 49, "info": [12, 18, 73], "inform": [2, 3, 4, 6, 12, 13, 15, 51, 63, 65, 66, 71, 72, 73], "infrastructur": [0, 6, 43], "inher": 4, "inherit": 10, "init_hidden": [7, 38, 51, 68], "init_weight": [7, 38, 51, 68], "initi": [3, 13, 15, 51, 71, 75], "initial_charg": 37, "initial_magmom": 37, "initial_setup": [3, 6], "initialis": 51, "initil": 12, "initrang": 51, "inject": 51, "input": [12, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 51, 62, 63, 64, 65, 71, 73, 79], "input_data_scal": [19, 25, 26], "input_dimens": [7, 17, 20, 25, 26, 68, 73], "input_directori": [20, 23], "input_fil": [20, 23], "input_npy_directori": [20, 23, 29], "input_npy_fil": 29, "input_requires_grad": [25, 26], "input_rescaling_typ": [7, 8, 12, 68, 70, 73], "input_shm_nam": 28, "input_unit": [20, 29], "inputpp": 71, "insid": [76, 77], "instal": [0, 2, 5, 6, 75], "instanc": [2, 3, 4, 5, 11, 12, 13, 15, 16, 18, 33], "instanti": [12, 51, 55, 57, 73], "instead": [2, 3, 5, 25, 26, 37, 42, 50, 61, 65, 69, 71], "institut": 75, "instruct": [0, 2, 5, 75, 76, 78], "int": [11, 12, 13, 15, 16, 18, 19, 23, 25, 26, 27, 40, 44, 45, 46, 47, 48, 51, 53, 56, 60, 61, 62, 63, 65, 70], "integ": [5, 12, 18, 48, 70], "integr": [54, 60, 62, 63, 64, 72], "integral_valu": 60, "integrate_values_on_spac": [7, 58, 60, 68], "integration_method": [62, 63, 64], "integration_valu": 60, "intel": 76, "intend": 4, "inter": 6, "interact": 4, "interest": [4, 5, 66, 70, 72, 73], "interfac": [0, 2, 3, 7, 11, 12, 13, 33, 37, 44, 50, 51, 54, 62, 63, 64, 65, 68, 70, 71, 72], "interfer": 55, "interg": [62, 64], "intern": [13, 18, 33, 54, 55, 62, 65], "internal_iteration_numb": [13, 62, 65], "interpret": 6, "interv": [3, 6, 12], "intra": 6, "introduc": [12, 75], "introduct": 69, "introductori": 71, "intuit": [2, 6], "invalid": [62, 63, 64, 65], "invalidate_target": [7, 58, 62, 63, 64, 65, 68], "inverse_transform": [7, 17, 22, 68], "investig": [5, 19, 20, 39, 40, 43, 44, 45, 46, 47, 48, 70], "invok": 5, "involv": [2, 5, 6, 73], "io": [16, 42, 72], "ion": 12, "ionic": [12, 75], "iop": 74, "ish": 78, "issu": [5, 12, 74], "ist": 65, "iter": [12, 13, 62, 65], "its": [4, 12, 19, 70, 73, 75], "itself": [3, 5, 6, 12, 16, 60, 65, 71, 72, 73, 74, 77], "j": [61, 74, 75, 78], "jacobian": [12, 41, 53], "jame": 0, "jiang": 75, "jmax": 12, "job": [3, 12, 43], "join": [2, 71, 72, 73], "jointli": 75, "jon": [0, 75], "josh": [0, 12], "journal": 74, "json": [10, 12, 29, 37, 55, 57, 65, 70, 71], "json_dict": [10, 12, 29], "json_serializ": [7, 8, 68], "jsonserializ": [7, 8, 10, 12, 29, 44, 68], "judg": [6, 49, 50], "jul": 74, "jun": 74, "june": 61, "jupyt": 4, "just": [0, 2, 3, 4, 5, 12, 26, 55, 57, 72, 73, 79], "justifi": 60, "k": [5, 54, 60, 62, 63, 64, 65, 71, 75], "k_": 60, "keep": [0, 12, 25, 26], "keep_log": 33, "kei": 61, "kept": [12, 33, 61], "keyword": [6, 12, 18, 33, 72], "kind": [11, 13, 20, 23, 61], "kindli": [0, 74], "kinet": 12, "kmax": [5, 12, 65], "known": [6, 37], "kohn": [74, 75], "kokko": [5, 11, 76], "kokkos_arch_gpuarch": 76, "kokkos_arch_hostarch": 76, "kokkos_arch_hsw": 76, "kokkos_arch_volta70": 76, "kokkos_enable_cuda": 76, "kotik": 0, "kpoint": [5, 65], "kulkarni": 0, "kwarg": [24, 25, 26, 28, 33, 37, 42, 49, 50, 51, 62, 64], "kyle": [0, 74], "l": [12, 74, 75, 76], "label": 12, "laboratori": 75, "lammp": [2, 5, 11, 12, 33, 34, 79], "lammps_compute_fil": [7, 8, 12, 68], "lammps_typ": 33, "lammps_util": [7, 30, 68], "langevin": 12, "larg": [2, 4, 5, 6, 33, 65, 73, 74, 75, 77], "larger": [5, 12, 13, 62, 65, 74], "last": [12, 25, 26, 37, 43, 62, 70, 73], "last_trial": 43, "lastli": 71, "latenc": 6, "later": [3, 6, 22, 41, 64, 70], "latest": 42, "latter": [3, 13, 65, 71], "lattic": 61, "launch": [3, 6, 12], "layer": [3, 12, 21, 40, 44, 45, 46, 47, 48, 70, 73], "layer_activ": [7, 8, 12, 68, 70, 73], "layer_activation_00": 70, "layer_activation_xxx": 12, "layer_s": [7, 8, 12, 68, 70, 73], "lazi": [12, 22, 23, 25, 26, 73], "lazili": [12, 19], "lazy_load_dataset": [7, 17, 68], "lazy_load_dataset_singl": [7, 17, 68], "lazyloaddataset": [7, 17, 25, 26, 68], "lazyloaddatasetsingl": [7, 17, 26, 68], "lbla": 78, "ldo": [2, 5, 6, 7, 12, 18, 27, 54, 56, 58, 59, 60, 62, 63, 65, 68, 71, 72, 73, 75, 79], "ldos_align": [7, 17, 68], "ldos_calcul": [5, 64, 72], "ldos_data": 64, "ldos_gridoffset_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_grids": [6, 7, 8, 12, 68, 71, 73], "ldos_gridspacing_ev": [6, 7, 8, 12, 68, 71, 73], "ldos_mean": 27, "ldos_mean_ref": 27, "ldos_object": [62, 63], "ldosalign": [7, 17, 27, 68], "ldosfil": 71, "lead": [2, 5, 12, 65, 75], "leaf": 19, "leakyrelu": [12, 70], "learn": [5, 6, 7, 12, 22, 65, 70, 73, 74, 75], "learner": 11, "learning_r": [7, 8, 12, 68, 70, 73], "learning_rate_decai": [7, 8, 12, 68, 70], "learning_rate_pati": [7, 8, 12, 68, 70], "learning_rate_schedul": [7, 8, 12, 68], "least": 65, "leastearly_stopping_threshold": 12, "leav": 26, "left": [4, 27, 28], "left_index": 27, "left_index_ref": 27, "left_trunc": 27, "legaci": [12, 37, 65], "length": [5, 27, 51, 74, 75], "lenz": [0, 74, 75], "less": [12, 18, 65], "let": [12, 71, 73], "level": [11, 12, 21, 25, 26, 42, 54, 60, 63, 64, 73, 74, 75], "lfftw3": 78, "lh": 27, "liabil": [11, 61], "liabl": [11, 61], "lib": [76, 78], "liblammp": 76, "librari": [3, 4, 5, 6, 22, 50, 70, 72, 73, 76, 78, 79], "licens": [11, 61], "lie": 33, "like": [3, 5, 6, 11, 26, 73, 78], "likewis": [2, 5, 6], "limit": [3, 6, 11, 12, 28, 50, 61, 75], "line": [4, 34, 61, 73, 74], "linger": 11, "link": [11, 42, 70, 74, 76], "linux": [77, 78, 79], "list": [0, 2, 4, 5, 12, 13, 18, 19, 20, 27, 28, 29, 33, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 56, 61, 62, 65, 73], "littl": 62, "llapack": 78, "lmkl_core": 78, "lmkl_intel_lp64": 78, "lmkl_sequenti": 78, "lmp": 34, "load": [12, 19, 20, 22, 23, 25, 26, 28, 37, 40, 42, 43, 51, 54, 55, 57, 63, 70, 72, 73, 76, 78], "load_from_fil": [7, 8, 12, 17, 22, 38, 42, 43, 51, 68, 70], "load_from_json": [7, 8, 12, 68], "load_from_pickl": [7, 8, 12, 68], "load_model": [7, 36, 37, 68, 72], "load_run": [3, 6, 7, 36, 37, 38, 55, 57, 68, 72, 73], "load_runn": [55, 57], "load_snapshot_to_shm": [7, 17, 28, 68], "load_with_ddp": 55, "load_with_gpu": 55, "load_with_mpi": 55, "loaded_hyperopt": 42, "loaded_network": [51, 55, 57], "loaded_param": [42, 43, 55, 57], "loaded_paramet": 12, "loaded_train": 43, "local": [0, 3, 11, 12, 33, 62, 64, 75, 76], "local_density_of_st": [7, 58, 63, 64, 68], "local_offset": 13, "local_psp_nam": [7, 8, 12, 68], "local_psp_path": [7, 8, 12, 68], "local_rank": 6, "local_reach": 13, "locat": [0, 12, 64], "log": [0, 6, 12, 15, 33, 60], "logdir": 6, "logging_dir": [6, 7, 8, 12, 68], "logging_dir_append_d": [7, 8, 12, 68], "logging_period": 15, "long": [6, 12], "longer": [0, 2, 12, 19], "look": 55, "loos": 65, "loss": [6, 12, 42, 49, 51, 56, 70], "loss_function_typ": [7, 8, 12, 68], "loss_val": 51, "lot": [66, 73, 79], "low": [12, 40, 44, 45, 46, 47, 48, 73], "lower": [16, 40, 44, 45, 46, 48, 70], "lowest": [12, 71], "lstm": [7, 12, 38, 51, 68], "m": 75, "mach": 75, "machin": [5, 6, 73, 74, 75, 76, 78], "maco": [77, 79], "made": [0, 5, 72], "mae": [56, 73], "magmom": 37, "magnitud": [71, 74], "mai": [2, 3, 5, 6, 12, 16, 18, 33, 60, 63, 64, 70, 71, 73, 76, 77, 78], "main": 78, "mainli": [4, 33], "maintain": [0, 6], "mainten": [0, 75], "major": 0, "make": [0, 3, 4, 5, 6, 12, 53, 64, 71, 72, 73, 75, 76, 77, 78], "mala": [1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 49, 50, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 73, 76, 78, 79], "mala_data_repo": [21, 77], "mala_foundational_pap": 74, "mala_hyperparamet": 74, "mala_paramet": [5, 72], "mala_shuffled_snapshot": 23, "mala_sizetransf": 74, "mala_temperaturetransf": 74, "mala_vi": 6, "malada_compat": 16, "manag": [12, 24, 73], "mandatori": 41, "mani": [0, 2, 3, 12, 27, 71, 72], "manual": [0, 5, 12, 70, 78], "manual_se": [7, 8, 12, 68], "map": 64, "mape": 56, "mark": [0, 43], "mask": 51, "mass": 61, "massiv": [3, 74], "master": [0, 11, 65], "master_addr": 6, "master_port": 6, "match": [2, 13, 61, 62, 63, 64, 65], "mater": 75, "materi": [72, 74, 75], "mathemat": [3, 39, 60], "mathrm": [60, 62], "matplotlib": 5, "matrix": 62, "matter": [5, 19, 74, 75], "max": [12, 22, 73], "max_len": 51, "max_number_epoch": [7, 8, 12, 68, 73], "maxim": 12, "maximum": [2, 3, 5, 12, 51, 65], "mc": [12, 36, 37], "md": [12, 15, 16, 36, 37, 65, 75], "mean": [6, 12, 13, 22, 27, 33, 49, 50, 53, 59, 62, 63, 64, 70, 71, 73], "mean_std": 12, "meaning": [12, 65], "measur": 73, "mechan": [18, 50, 75], "medium": 12, "melt": 75, "member": [16, 65], "memori": [6, 11, 12, 18, 25, 26, 28, 34, 55, 57, 62, 63, 64, 73], "mention": [2, 5, 6], "merchant": [11, 61], "merg": [0, 11, 61], "merit": 72, "mess": 43, "messag": [1, 11], "meta": [13, 61, 66], "metadata": [4, 13, 18, 26, 31, 32, 35, 61, 62, 63, 64, 66], "metadata_input_path": 18, "metadata_input_typ": 18, "metal": 71, "method": [0, 2, 3, 5, 6, 10, 12, 49, 50, 51, 60, 61, 62, 63, 64, 65, 71, 74, 75, 77], "metric": [3, 12, 16, 49, 75], "mev": 6, "mic": 65, "might": [12, 26, 37, 43, 51, 53], "miller": [0, 74, 75], "mimic": 61, "min": [12, 22, 73], "min_verbos": 11, "mini": [12, 53, 70], "mini_batch_s": [7, 8, 12, 68, 70, 73], "minim": [12, 27], "minimum": [11, 12, 42, 65], "minmax": [12, 22, 73], "minor": 0, "minterpi": 0, "minterpy_descriptor": [7, 30, 68], "minterpydescriptor": [7, 30, 35, 68], "mit": [11, 61], "mitig": 6, "mix": [6, 12, 19, 23, 25, 26], "mix_dataset": [7, 17, 19, 25, 26, 68], "mkl": 78, "ml": [2, 3, 5, 6, 15, 59, 62, 63, 64, 65, 69, 71, 75], "mlr": 12, "mode": [11, 33, 55, 64, 65], "model": [0, 2, 3, 5, 6, 18, 37, 51, 54, 55, 57, 69, 70, 71, 74, 75, 79], "moder": 5, "modern": 74, "modif": [6, 65], "modifi": [0, 11, 22, 43, 49, 50, 61, 71, 78], "modin": [0, 74, 75], "modul": [0, 6, 9, 21, 51, 61, 62, 65, 79], "modular": 0, "moham": [0, 74, 75], "moldabekov": 75, "molecular": [72, 75], "moment": [12, 19, 40, 44, 45, 46, 47, 48, 78], "monitor": 6, "month": 74, "more": [1, 2, 3, 5, 6, 12, 22, 24, 37, 60, 65, 71, 72, 75], "moreov": 75, "most": [2, 5, 6, 12, 55, 74, 75, 76, 77, 78, 79], "move": [12, 74], "mpi": [2, 3, 5, 11, 12, 18, 54, 55, 64, 65, 76, 78], "mpi4pi": 33, "mpi_commun": 65, "mpi_rank": 65, "mpi_util": 11, "mpif90": 78, "mpirun": [3, 5], "mse": [12, 27, 56], "much": [6, 26, 63], "mujoco": 11, "multi": 12, "multi_lazy_load_data_load": [7, 17, 68], "multi_train": 12, "multi_training_prun": [7, 38, 68], "multilazyloaddataload": [7, 17, 28, 68], "multipl": [0, 1, 2, 3, 5, 6, 11, 12, 16, 19, 20, 28, 29, 33, 40, 44, 45, 46, 47, 48, 49, 54, 60, 64, 70, 71, 73], "multiple_gaussian": 60, "multipli": 12, "multiplicator_v": 60, "multitrainingprun": [7, 38, 49, 68], "multivari": 12, "must": [12, 20, 27, 64], "mutat": 34, "mutual": 70, "my": 33, "my_modified_fil": 0, "my_studi": 3, "myriad": 74, "mysql": 3, "n": [3, 6, 12, 62, 74, 75], "n_shift_ms": 27, "n_trial": [7, 8, 12, 68, 70], "na": 12, "naiv": 6, "name": [0, 3, 6, 12, 13, 16, 18, 19, 22, 23, 27, 28, 33, 34, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 55, 57, 62, 64, 65, 70, 71, 73, 76, 78], "naming_schem": [4, 18, 71], "naming_scheme_input": 19, "naming_scheme_output": 19, "naswot": [0, 3, 12, 44, 46, 49, 50], "naswot_prun": [7, 38, 68], "naswot_pruner_batch_s": 12, "naswot_pruner_cutoff": 12, "naswotprun": [7, 38, 50, 68], "nation": 75, "natom": 62, "natur": [0, 12], "nccl": 6, "ndarrai": [13, 56, 62, 63, 64, 65], "ndarri": 13, "necessari": [0, 3, 4, 6, 10, 12, 18, 22, 43, 65, 69, 70, 71, 72, 73, 76], "necessarili": [62, 63, 64, 65], "need": [2, 5, 6, 10, 12, 13, 19, 20, 25, 29, 33, 37, 51, 55, 57, 60, 62, 63, 64, 65, 71, 73, 76, 77, 78, 79], "neg": [6, 12, 65], "neglect": 12, "neighbor": 65, "neighborhood": 16, "neither": 64, "net": [12, 51, 61], "netwok": 12, "network": [3, 6, 7, 8, 12, 19, 22, 37, 40, 41, 43, 49, 50, 52, 54, 55, 56, 57, 64, 68, 70, 72, 73, 74, 75], "neural": [3, 12, 37, 51, 54, 56, 57, 73, 74, 75], "neuron": [12, 70, 73], "new": [0, 3, 6, 11, 12, 23, 25, 26, 34, 70, 73], "new_atom": 33, "new_datahandl": [42, 43, 55, 57], "new_hyperopt": [42, 43], "new_inst": 11, "new_runn": 55, "new_train": 57, "new_valu": 11, "newer": 78, "newli": [55, 57, 71], "next": [6, 43, 61], "nil": [0, 74], "nlogn": 12, "nn": [3, 5, 6, 51, 53, 65, 70, 73], "nn_type": [7, 8, 12, 68], "no_data": [42, 43], "no_hidden_st": [7, 8, 12, 68], "no_snapshot": 12, "node": [6, 11, 12, 43], "nodelist": 6, "nois": 12, "nomenclatur": 70, "non": [2, 4, 27, 62, 65, 71], "none": [12, 13, 15, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 62, 63, 64, 65, 73], "noninfring": [11, 61], "nor": 64, "norm": 27, "normal": [12, 13, 22, 73], "normand": [0, 74], "note": [0, 5, 6, 12, 26, 34, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 60, 72, 76], "notebook": [4, 42], "noteworthi": 70, "noth": [31, 32, 35], "notic": [11, 61], "now": [4, 6, 28, 64, 66, 70, 71, 72, 73, 78], "np": [3, 13, 19, 60, 61, 63, 64], "npj": [74, 75], "npy": [2, 4, 6, 18, 71, 73], "nsy": 12, "ntask": 6, "num_choic": [7, 38, 47, 68], "num_head": [7, 8, 12, 68], "num_hidden_lay": [7, 8, 12, 68], "num_work": [6, 7, 8, 12, 68], "number": [0, 3, 5, 6, 11, 12, 13, 16, 18, 19, 23, 27, 34, 37, 42, 47, 56, 61, 62, 63, 64, 65, 67, 70, 71, 73, 74, 75, 78], "number_bad_trials_befor": 12, "number_bad_trials_before_stop": 12, "number_of_bin": [5, 12, 65], "number_of_electron": [7, 27, 56, 58, 62, 63, 64, 68, 73], "number_of_nod": 6, "number_of_run": [7, 38, 42, 68], "number_of_shuffled_snapshot": [6, 23], "number_of_tasks_per_nod": 6, "number_training_per_tri": [3, 7, 8, 12, 68], "numer": [12, 13, 16, 25, 33, 40, 44, 45, 46, 48, 61, 62, 63, 64, 65], "numpag": 74, "numpi": [0, 2, 4, 13, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 47, 52, 54, 56, 59, 60, 61, 62, 63, 64, 65, 66, 71], "numpy_arrai": 19, "nvcc_wrapper": 76, "nvidia": [6, 76], "o": [2, 12, 19, 71, 72, 73], "oa": [40, 42, 44, 45, 46, 47, 48, 52], "oapackag": [42, 77], "oat": [0, 3, 12, 44, 47, 52, 53], "object": [0, 3, 4, 5, 6, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70, 71, 72, 73], "objective_bas": [7, 38, 68], "objective_naswot": [7, 38, 68], "objectivebas": [7, 38, 52, 53, 68], "objectivenaswot": [7, 38, 53, 68], "observ": [56, 72, 73, 75], "observables_to_test": [56, 73], "obtain": [5, 11, 19, 61, 77], "occur": [43, 60, 73, 77], "oct": 74, "ofdft_frict": [7, 8, 12, 68], "ofdft_initi": [7, 14, 68], "ofdft_kedf": [7, 8, 12, 68], "ofdft_number_of_timestep": [7, 8, 12, 68], "ofdft_temperatur": [7, 8, 12, 68], "ofdft_timestep": [7, 8, 12, 68], "ofdftiniti": [7, 14, 15, 68], "off": [0, 12, 27], "offer": [4, 6, 12, 66, 75], "offici": [4, 6, 12, 69, 72, 76, 77], "offload": [5, 6, 12], "offset": 27, "often": [6, 12], "ol": [0, 74, 75], "old": [12, 22, 29], "omar": 0, "onc": [0, 1, 2, 3, 5, 6, 43, 61, 70, 71, 73], "one": [0, 2, 3, 4, 6, 11, 12, 16, 19, 20, 23, 27, 33, 49, 54, 61, 62, 63, 64, 65, 70, 71, 73, 75, 79], "ones": [5, 25, 26, 33, 70], "ongo": 77, "onli": [0, 1, 2, 3, 5, 6, 11, 12, 13, 16, 18, 19, 20, 22, 25, 26, 29, 34, 37, 42, 43, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 70, 71], "onto": 0, "onward": 6, "open": [0, 4, 13, 61, 77], "openmpi": 78, "openpmd": [0, 1, 12, 13, 18, 20, 23, 27, 29, 33, 62, 63, 64, 65], "openpmd_configur": [7, 8, 12, 68], "openpmd_granular": [7, 8, 12, 68], "oper": [5, 6, 11, 12, 19, 20, 23, 65, 71, 73, 75], "opt": 77, "optim": [0, 1, 2, 5, 6, 7, 8, 12, 27, 31, 33, 39, 40, 41, 42, 43, 50, 52, 53, 57, 65, 68, 69, 73, 74, 75, 77], "optimal_shift": 27, "optimal_sigma": 31, "optimizer_dict": 57, "option": [3, 4, 5, 6, 9, 11, 12, 13, 18, 22, 26, 27, 29, 39, 41, 55, 57, 61, 65, 70, 71, 73, 74, 75, 76, 79], "option1": 76, "option2": 76, "opttyp": [40, 42, 44, 45, 46, 47, 48], "optuna": [3, 12, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 70], "optuna_singlenode_setup": [3, 7, 8, 12, 68], "orbit": 75, "order": [0, 3, 6, 11, 12, 13, 19, 25, 26, 42, 70, 71, 72, 74, 77], "org": [39, 61, 65, 74], "orient": 0, "origin": [3, 11, 20, 27, 29, 34, 61, 74], "orthogon": [3, 12, 42, 47, 52, 77], "oscil": 16, "ot": [25, 26], "other": [3, 6, 10, 11, 16, 27, 33, 36, 61, 62, 63, 65, 70, 72, 75], "otherwis": [11, 22, 40, 57, 61], "our": [4, 74], "ourselv": 22, "out": [0, 2, 4, 6, 11, 19, 41, 42, 54, 61, 63, 65, 71, 72, 73, 76, 77], "out_unit": [31, 32, 33, 35, 62, 63, 64, 65], "outdir": 33, "outfil": [33, 71], "outlin": [6, 60], "output": [1, 2, 6, 11, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 51, 56, 58, 61, 62, 63, 64, 65, 71, 73, 77, 79], "output_data_scal": [19, 25, 26], "output_dimens": [7, 17, 20, 25, 26, 68, 73], "output_directori": [20, 23, 27], "output_fil": [20, 23, 27], "output_format": [56, 73], "output_npy_directori": 29, "output_npy_fil": [20, 23, 27, 29], "output_rescaling_typ": [7, 8, 12, 68, 73], "output_shm_nam": 28, "output_unit": [20, 29], "outsid": [33, 64], "over": [1, 2, 65], "overal": 0, "overfit": 73, "overflow": 60, "overhead": [3, 5, 12, 74], "overview": [1, 6, 76], "overwrit": [18, 23, 26], "overwritten": [55, 61], "own": [4, 12, 51, 73], "p": [61, 74, 75, 76], "packag": [75, 76, 79], "page": 74, "pairs": 61, "paper": [42, 49, 50, 74], "paral": 12, "parallel": [0, 1, 4, 7, 8, 12, 22, 33, 55, 64, 68, 69, 75, 76], "parallel_warn": [7, 8, 11, 68], "param": [31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 51, 52, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 70], "paramet": [2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 75, 76], "parametersbas": [7, 8, 12, 68], "parametersdata": [7, 8, 12, 68], "parametersdatagener": [7, 8, 12, 68], "parametersdescriptor": [7, 8, 12, 39, 68], "parametershyperparameteroptim": [7, 8, 12, 68], "parametersnetwork": [7, 8, 12, 68], "parametersrun": [7, 8, 12, 53, 68], "parameterstarget": [7, 8, 12, 65, 68], "parametr": 19, "params_format": [55, 57], "paraview": 4, "parent": 55, "pars": [2, 12, 18, 30, 31, 32, 35, 39, 52, 59, 62, 63, 64, 66], "parse_tri": [7, 38, 52, 68], "parse_trial_oat": [7, 38, 52, 68], "parse_trial_optuna": [7, 38, 52, 68], "parser": [61, 65], "part": [5, 12, 13, 61, 62, 65, 73, 79], "partial_fit": [7, 17, 22, 68], "particl": [12, 65], "particular": [11, 49, 50, 61], "partit": 56, "parvez": [0, 74], "pass": [0, 12, 51, 54, 64], "path": [2, 6, 12, 13, 16, 18, 19, 21, 27, 37, 39, 42, 43, 51, 54, 55, 57, 62, 63, 64, 65, 71, 72, 73, 76, 77, 78], "path_name_schem": 64, "path_schem": 64, "path_to_fil": [51, 54], "path_to_log_directori": 6, "patienc": 12, "paulbourk": 61, "pavanello": 75, "pbc": [33, 37], "peform": 12, "penalti": 12, "peopl": 0, "pep8": 0, "per": [6, 12, 33, 37, 70, 73], "percent": 12, "perform": [1, 3, 5, 12, 18, 19, 22, 24, 26, 37, 39, 40, 41, 42, 43, 51, 54, 60, 63, 64, 65, 69, 71, 72, 73, 74, 75, 76, 79], "perform_studi": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "period": 12, "permiss": [11, 61], "permit": [11, 61], "permut": 26, "person": [11, 61, 71], "phase": 74, "phenomena": 74, "phy": [74, 75], "phyiscal": 6, "physic": [2, 3, 6, 12, 13, 58, 65, 74], "physical_data": [7, 8, 68], "physicaldata": [7, 8, 13, 33, 65, 68], "physrevb": 74, "pickl": [12, 22, 33], "pip": 77, "pipelin": [0, 19, 20, 23, 27], "pkg_kokko": 76, "pkg_ml": 76, "pkl": [40, 42, 43, 55, 57], "place": [22, 73], "plan": 76, "plane": 5, "plateau": [12, 70], "plea": 65, "pleas": [0, 2, 3, 4, 5, 6, 12, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 64, 70, 72, 73, 74, 75, 76, 77, 78], "plot": [2, 5, 65], "plu": [3, 12], "plugin": 4, "pmd": 4, "point": [2, 3, 5, 6, 12, 21, 25, 26, 27, 33, 34, 55, 63, 65, 71, 73, 75], "popoola": [0, 74, 75], "popular": 74, "port": 6, "portion": [11, 12, 18, 61], "pose": 75, "posit": [5, 7, 33, 37, 51, 54, 61, 62, 71, 72], "positionalencod": [7, 38, 51, 68], "possibl": [6, 12, 39, 40, 44, 45, 46, 47, 48, 51, 63, 70], "possibli": 51, "post": [4, 29, 65, 75, 79], "postgresql": 3, "postprocess": [7, 59, 62, 63, 64, 65], "potenti": [0, 33, 70, 75], "power": [4, 6, 72], "pp": 71, "pr": 0, "practic": 6, "pre": [0, 28], "precalcul": 79, "preced": 71, "precict": [54, 56], "precis": [6, 12, 18, 33, 34], "predict": [6, 7, 37, 51, 54, 56, 64, 65, 69, 73, 74, 75, 76], "predict_for_atom": [5, 7, 38, 54, 68, 72], "predict_from_qeout": [7, 38, 54, 68], "predict_target": [7, 38, 56, 68], "predicted_arrai": 51, "predicted_ldo": 54, "predicted_output": 56, "predictor": [5, 7, 38, 55, 57, 68, 72], "prefer": [37, 71], "prefetch": [6, 12, 26], "prepar": [6, 13, 19, 42, 43], "prepare_data": [7, 17, 19, 55, 57, 68, 70, 73], "prepare_for_test": [7, 17, 19, 68], "preprocess": [2, 7, 12, 33, 65, 71], "present": [13, 39, 40, 41, 42, 43, 55, 62, 65], "press": [12, 74], "previou": [51, 72], "primari": 70, "principl": [2, 5, 40, 44, 45, 46, 47, 48, 73, 75], "print": [1, 3, 6, 11, 12, 42], "printout": [1, 3, 7, 8, 11, 68], "prior": [0, 2, 5, 6, 12], "priorli": 16, "problem": [0, 5, 6, 78], "problemat": 12, "proceed": 12, "process": [0, 2, 3, 4, 5, 6, 11, 12, 18, 19, 22, 25, 26, 29, 33, 34, 39, 52, 65, 71, 72, 73, 74, 75, 76, 78, 79], "product": [1, 4, 6, 22, 54, 73, 76], "profil": 12, "profiler_rang": [7, 8, 12, 68], "progress": [6, 64], "project": [0, 4, 21, 76, 77], "proof": 75, "proper": [62, 63, 64, 74], "properli": [0, 11, 12], "properti": [6, 10, 12, 13, 16, 20, 25, 29, 31, 32, 33, 35, 37, 47, 62, 63, 64, 65, 70, 72, 75], "provid": [2, 3, 5, 6, 11, 12, 13, 16, 18, 21, 23, 39, 41, 50, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 76, 77], "prudent": [3, 73], "prune": [7, 38, 49, 50, 68], "pruner": [12, 49, 50], "pseudopotenti": [12, 62, 64, 65, 72], "pseudopotential_path": [7, 8, 12, 68, 72], "psu": 65, "public": [2, 3, 5, 6, 70, 71, 74], "publish": [0, 11, 61, 74], "pure": [6, 46, 63], "purpos": [2, 11, 42, 43, 61], "push": 0, "put": [12, 19, 43, 51], "pw": [62, 71], "py": [0, 2, 3, 6, 11, 72, 73, 76], "pypi": 0, "pyproject": 0, "pytest": 77, "python": [2, 3, 4, 5, 6, 19, 20, 33, 34, 62, 65, 72, 79], "python3": [3, 6, 76], "pythonpath": 78, "pytorch": [12, 19, 51, 55], "p\u00f6schel": 0, "q": 78, "qe": [12, 27, 33, 54, 62, 63, 64, 65, 78, 79], "qe_input_data": [7, 58, 62, 64, 65, 68], "qe_out_fil": 33, "qe_pseudopotenti": [62, 64, 65], "qef": 78, "qualiti": 0, "quantif": 0, "quantit": 12, "quantiti": [12, 16, 18, 22, 56, 58, 62, 63, 64, 65], "quantum": [5, 18, 33, 62, 63, 64, 65, 71, 72, 74, 75, 79], "quantumespresso": 65, "question": 6, "queue": 43, "quick": 33, "r": [42, 61, 64, 77], "race": 3, "radial": [5, 12, 65], "radial_distribution_funct": 65, "radial_distribution_function_from_atom": [5, 7, 58, 65, 68], "radii": [2, 5, 12, 65], "radiu": [2, 12, 65, 71], "rais": 62, "rajamanickam": [0, 74, 75], "ram": [6, 25, 42, 43, 51, 64], "random": [6, 51], "randomli": 3, "rang": [2, 12, 22, 42, 51, 73, 74, 75], "rank": [3, 5, 6, 11, 12, 33, 54, 63, 64, 65], "rapid": 75, "rate": [6, 12, 51, 70], "rather": [3, 19, 55, 62, 63, 64], "raw": [2, 18, 19, 33, 71], "raw_numpy_to_converted_scaled_tensor": [7, 17, 19, 68], "rawradialdistribut": 65, "rdb": [12, 43], "rdb_storag": [3, 12, 43], "rdb_storage_heartbeat": [7, 8, 12, 68], "rdf": [5, 12, 16, 37, 65], "rdf_paramet": [7, 8, 12, 68], "re": [0, 2, 19], "read": [4, 10, 12, 13, 16, 22, 25, 26, 29, 54, 60, 61, 62, 63, 64, 65, 66, 72], "read_additional_calculation_data": [7, 58, 63, 65, 68], "read_additional_read_additional_calculation_data": 62, "read_cub": [7, 58, 61, 68], "read_dimensions_from_numpy_fil": [7, 8, 13, 68], "read_dimensions_from_openpmd_fil": [7, 8, 13, 68], "read_dtyp": 13, "read_from_arrai": [7, 58, 62, 63, 64, 68, 72], "read_from_cub": [7, 58, 62, 64, 68], "read_from_numpy_fil": [7, 8, 13, 58, 63, 68], "read_from_openpmd_fil": [7, 8, 13, 68], "read_from_qe_dos_txt": [7, 58, 63, 68], "read_from_qe_out": [7, 58, 63, 68], "read_from_xsf": [7, 58, 62, 64, 68], "read_imcub": [7, 58, 61, 68], "read_xsf": [7, 58, 66, 68], "readi": [0, 71, 73], "readlin": [7, 58, 61, 68], "readthedoc": 42, "real": [22, 61, 65, 70, 73, 75, 79], "realist": 79, "realiz": 5, "realli": [31, 32, 35, 37], "realspac": [5, 16], "reason": [6, 12, 19, 63, 66, 73], "rebas": 0, "recap": 6, "recent": [74, 75, 76, 77, 78], "recogn": 12, "recommend": [6, 12, 16, 62, 63, 64, 65, 76, 79], "reconstruct": [42, 43, 55, 57], "record": 12, "recv": 33, "redistribut": 23, "reduc": [12, 26, 64, 71], "reducelronplateau": 12, "reduct": 12, "redund": 27, "refer": [2, 3, 27, 62, 69, 70, 71, 73, 75, 76], "reference_data": 37, "reference_index": 27, "reflect": [5, 62, 64], "reformat": 0, "regain": 26, "regard": 74, "region": 71, "regular": [2, 3, 5, 12, 53, 71], "regularli": 0, "reimplement": 10, "rel": [26, 27, 51, 63], "relat": [3, 12, 76], "releas": 78, "relev": [2, 4, 6, 12], "reli": 74, "relu": [12, 70, 73], "remark": [2, 5], "remind": [2, 5], "remov": [27, 33], "renam": 78, "reorder": [12, 63], "reparametrize_scal": 19, "repeat": 0, "replac": [4, 13, 18, 29, 61, 64, 75], "repo": [0, 77], "report": [3, 12, 49, 50], "repositori": [0, 12, 69, 73, 74, 75, 77, 78], "repres": [2, 12, 29, 45, 46, 47, 48, 52, 53, 71, 73], "represent": [5, 12, 46, 71, 75], "reproduc": [0, 6, 63, 64, 65], "request": [12, 42, 74], "requeue_zombie_tri": [7, 38, 43, 68], "requir": [0, 3, 5, 6, 12, 13, 26, 41, 42, 61, 71, 73, 76, 77, 79], "research": [74, 75], "reset": [7, 17, 19, 20, 22, 68], "reshap": [13, 62, 63], "resiz": 19, "resize_snapshots_for_debug": [7, 17, 19, 68], "resp": [5, 12], "respect": [3, 10, 12, 20, 71, 73, 74], "respres": [47, 52], "restart": 3, "restrict": [11, 12, 61, 65], "restrict_data": [7, 58, 65, 68], "restrict_target": [7, 8, 12, 68], "resubmit": 43, "result": [3, 6, 12, 18, 19, 34, 52, 56, 65, 71, 72, 73, 75], "result_typ": 34, "resultsfor": 75, "resum": [3, 6, 42, 43], "resume_checkpoint": [7, 38, 42, 43, 68], "resumpt": [6, 42, 43], "retain": [33, 61], "return": [0, 2, 10, 11, 12, 13, 16, 19, 22, 27, 29, 31, 32, 33, 34, 35, 40, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "return_energy_contribut": 64, "return_outputs_directli": [7, 17, 25, 68], "return_plot": [2, 39], "return_str": 65, "return_valu": [47, 48], "retval": 61, "reusabl": 0, "rev": [74, 75], "review": 0, "rewrit": 26, "rfname": 61, "right": [11, 19, 27, 51, 61], "right_truncate_valu": 27, "rmax": [12, 65], "robust": 3, "romero": [0, 12], "room": 75, "root": [0, 22], "rossendorf": 75, "roughli": [71, 74], "rout": 33, "routin": [2, 4, 5, 6, 12, 73], "row": [47, 52], "rst": 77, "run": [0, 3, 5, 7, 8, 11, 12, 25, 33, 37, 42, 43, 54, 55, 57, 64, 68, 70, 73, 77, 78], "run_exist": [3, 6, 7, 38, 55, 57, 68], "run_nam": [37, 55, 57], "runner": [7, 38, 54, 56, 57, 68], "runner_dict": 55, "runtim": 4, "ry": [2, 59, 63, 64, 71], "s0": 60, "s1": 60, "s41524": 74, "safe": 1, "sai": 78, "same": [3, 5, 6, 12, 18, 19, 20, 23, 33, 39, 43, 51, 60, 61, 64, 65, 70, 78], "samefileerror": 76, "sampl": [12, 16, 39, 40, 41, 42, 43, 71, 73], "sampler": [12, 42], "sandia": 75, "save": [3, 4, 5, 6, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 27, 29, 37, 42, 43, 51, 55, 57, 62, 63, 64, 65, 68, 70, 71, 72, 73], "save_as_json": [7, 8, 12, 68], "save_as_pickl": [7, 8, 12, 68], "save_calcul": [7, 36, 37, 68], "save_format": [12, 22], "save_nam": [4, 6, 23, 27], "save_network": [7, 38, 51, 68], "save_path": 27, "save_path_ext": 27, "save_run": [7, 38, 55, 68, 73], "save_runn": 55, "sbatch": 6, "scalabl": 75, "scalar": 34, "scale": [3, 4, 5, 6, 12, 19, 22, 25, 26, 27, 42, 43, 51, 62, 64, 70, 73, 74, 75, 77], "scaled_posit": 62, "scaler": 22, "scarc": 18, "scf": [62, 71], "schedul": [6, 12, 43], "scheme": [18, 19, 64], "schmerler": [0, 74, 75], "sci": 75, "scienc": 74, "scientif": [0, 4, 75], "scikit": 22, "scontrol": 6, "score": [49, 50], "script": [3, 5, 6, 11, 12, 70, 78], "se": 37, "search": [1, 2, 70], "search_paramet": [49, 50, 53], "second": 12, "secondli": [2, 73], "section": [6, 69, 70, 71, 72, 73], "see": [0, 2, 5, 12, 18, 20, 29, 39, 42, 61, 65, 71, 72, 73, 76, 78], "seed": [6, 12], "seem": [5, 26], "select": [2, 6, 12, 13, 56, 71, 73, 78], "self": [63, 64], "sell": [11, 61], "sendv": 33, "sens": [12, 37, 53, 55, 63, 64, 73], "sep": [11, 74], "separ": [11, 18, 29, 37, 55, 57, 71, 73, 79], "sequenc": 51, "seri": [4, 13], "serial": [10, 11], "serializ": 10, "serv": [51, 54, 75], "server": 43, "servernam": 3, "set": [0, 2, 3, 4, 5, 6, 11, 12, 13, 16, 18, 19, 23, 24, 25, 26, 28, 33, 39, 40, 41, 42, 43, 52, 54, 55, 56, 62, 63, 64, 65, 70, 71, 72, 75, 76], "set_calcul": 72, "set_cmdlinevar": [7, 30, 34, 68], "set_current_verbos": [7, 8, 11, 68], "set_ddp_statu": [7, 8, 11, 68], "set_lammps_inst": [7, 8, 11, 68], "set_mpi_statu": [7, 8, 11, 68], "set_optimal_paramet": [2, 7, 38, 39, 40, 41, 42, 43, 68, 70], "set_paramet": [7, 38, 40, 68], "setup": [0, 3, 6, 36, 77], "setup_lammps_tmp_fil": [7, 30, 33, 68], "sever": [3, 5, 60, 70, 73], "sgd": 12, "sh": 78, "shall": [11, 61], "sham": [74, 75], "shao": 75, "shape": [34, 62, 65], "share": [26, 28], "shift": [27, 33], "ship": 76, "shorter": 6, "should": [0, 2, 3, 5, 6, 11, 12, 13, 19, 21, 22, 31, 32, 33, 35, 37, 42, 43, 48, 49, 50, 51, 54, 55, 59, 60, 62, 63, 64, 65, 70, 71, 73, 76, 78], "should_prun": [49, 50], "show": [0, 6, 7, 8, 12, 68, 75], "show_order_of_import": [7, 38, 42, 68], "showcas": [2, 75], "shown": [2, 3, 5, 6, 71, 73], "shuffl": [0, 4, 6, 7, 12, 17, 20, 23, 24, 25, 26, 68], "shuffle_snapshot": [4, 6, 7, 17, 23, 68], "shuffling_se": [6, 7, 8, 12, 68], "shut": 11, "shutil": 76, "si": [13, 33, 62, 63, 64, 65], "si_dimens": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "si_unit_convers": [7, 8, 13, 30, 33, 58, 62, 63, 64, 65, 68], "side": 27, "sigma": [12, 31, 60], "sigmoid": [12, 70], "sign": 0, "signal": 73, "signific": [12, 75], "significantli": [64, 65], "silver": 74, "similar": [2, 3, 16, 75], "simpl": [71, 72, 73], "simplest": 6, "simpli": [5, 6, 12, 16, 19, 37, 52, 62, 65], "simpson": [60, 62, 63, 64], "simul": [5, 12, 37, 61, 62, 64, 71, 72, 73, 74, 75, 79], "sinc": [2, 3, 5, 6, 12, 18, 31, 32, 33, 35, 37, 43, 72, 73, 77], "singl": [3, 6, 18, 24, 26, 34, 56, 69], "site": 13, "siva": 0, "sivasankaran": [74, 75], "six": 37, "size": [0, 3, 5, 11, 12, 13, 26, 40, 44, 45, 46, 47, 48, 51, 53, 70, 73, 75], "skip": 34, "skiparraywrit": [7, 8, 13, 68], "slice": [5, 19], "slightli": 43, "slow": 6, "slowest": 12, "slurm": 6, "slurm_job_nodelist": 6, "slurm_localid": 6, "slurm_nodelist": 6, "slurm_ntask": 6, "slurm_procid": 6, "small": [2, 6, 65, 71, 79], "smaller": [5, 12, 25, 70], "smallest": [12, 16], "smear": 63, "smearing_factor": 63, "smith": 65, "smoothli": 12, "snap": [12, 76], "snapshot": [6, 7, 12, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 33, 39, 56, 64, 68, 71, 73], "snapshot4": 18, "snapshot_correlation_cutoff": [7, 14, 16, 68], "snapshot_directories_list": [7, 8, 12, 68], "snapshot_funct": 29, "snapshot_numb": [19, 56, 64], "snapshot_typ": [4, 20, 23, 27, 29], "sneha": 0, "so": [2, 3, 4, 5, 6, 11, 12, 22, 51, 55, 61, 62, 63, 71, 73, 75, 76, 77, 78, 79], "societi": 74, "softwar": [0, 5, 11, 61, 71, 72, 74, 75, 79], "sole": 76, "solv": 60, "somashekhar": 0, "some": [2, 6, 12, 25, 26, 51, 53, 55, 65, 73], "someth": [53, 78], "sometim": 77, "somewhat": 12, "soon": [0, 7], "sort": [22, 25, 26, 33, 42], "sourc": [0, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 72], "space": [2, 6, 27, 60, 63, 65, 70, 71, 73, 75, 79], "spatial": 22, "special": [2, 24], "specif": [3, 4, 6, 12, 19, 22, 40, 51, 60, 65, 72, 77], "specifi": [0, 2, 3, 4, 5, 6, 12, 13, 22, 33, 53, 63, 65, 70, 71, 72, 73], "speed": [6, 12, 75], "speedup": 6, "sphere": 71, "sphinxopt": 77, "split": [5, 12], "springer": 42, "sql": [3, 43], "sqlite": [3, 12], "sqlite_timeout": 12, "sqrt": 60, "squar": [6, 12, 27], "src": 76, "srcname": 61, "srun": [5, 6], "ssf": [12, 65], "ssf_paramet": [7, 8, 12, 68], "stabl": 12, "standard": [3, 4, 5, 12, 22, 70, 73], "start": [2, 3, 5, 12, 22, 71], "starts_at": 18, "state": [12, 51, 63, 64, 72, 75], "statement": [5, 11], "static": [5, 12, 27, 28, 31, 32, 33, 35, 43, 51, 59, 61, 62, 63, 64, 65], "static_structur": 5, "static_structure_factor_from_atom": [5, 7, 58, 65, 68], "statu": 11, "stem": [63, 64], "step": [0, 2, 5, 12, 15, 16, 69, 70, 79], "stephen": [0, 74, 75], "steve": [0, 74], "still": [6, 11, 13, 24, 28, 42, 43, 74, 75], "stochast": 12, "stop": [12, 19, 70, 77], "storag": [4, 12, 43], "store": [1, 3, 12, 25, 26, 37, 62, 65, 71, 73], "str": [28, 33, 37, 55, 56, 57, 62, 64], "straightforward": [0, 2, 75], "strategi": [3, 70], "strength": 42, "stress": 37, "stretch": 5, "string": [11, 12, 13, 16, 18, 19, 20, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66], "strongli": 71, "structur": [5, 7, 12, 13, 65, 71, 72, 73, 74, 75, 79], "studi": [3, 12, 39, 40, 41, 42, 43, 49, 50, 70, 74], "study_nam": [3, 12, 43], "style": [0, 52, 65], "sub": 73, "subclass": [44, 51], "subfold": 12, "subject": [11, 61, 77], "sublicens": [11, 61], "submit": 0, "subobject": 73, "subroutin": 64, "subsequ": [12, 54, 75], "subset": [40, 41, 43], "substanti": [11, 61], "success": [76, 78], "successfulli": [76, 77], "suffic": 33, "suffici": [0, 71], "suggest": [0, 12, 16, 65], "suit": [0, 78], "suitabl": [5, 12, 74, 75, 76, 77], "sum_i": 63, "sum_k": 63, "summari": 65, "summat": [62, 64, 65], "supervis": 0, "supervisor": 75, "support": [0, 3, 4, 5, 6, 12, 20, 29, 33, 37, 40, 42, 44, 45, 46, 47, 48, 53, 56, 59, 60, 62, 63, 64, 65, 76], "suppos": [0, 34, 50, 60, 64], "suppress": 60, "suppress_overflow": 60, "sure": [0, 3, 4, 6, 33, 64, 71, 72, 73, 75, 76, 77, 78], "surrog": [12, 49, 50, 75], "switch": [2, 5, 12], "switchflag": 12, "symbol": 18, "symmetri": [62, 64], "syntax": [2, 3, 6, 73, 77], "system": [0, 2, 3, 5, 6, 12, 43, 62, 63, 64, 65, 71, 72, 73, 75, 78], "system_chang": 37, "t": [4, 12, 42, 43, 60, 61, 63, 64, 65, 75, 77, 78], "tag": [0, 77], "tahmasbi": 0, "take": [2, 6, 12, 43, 49, 50, 65], "taken": [42, 61], "tamar": 74, "target": [2, 6, 7, 8, 11, 12, 16, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 35, 37, 39, 49, 50, 51, 54, 56, 59, 62, 63, 64, 68, 71, 72, 73], "target_calcul": [5, 7, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 39, 68, 72], "target_calculation_kwarg": 71, "target_calculator_kwarg": 18, "target_data": 65, "target_input_path": [18, 39, 71], "target_input_typ": [18, 39, 71], "target_save_path": [18, 23, 71], "target_temperatur": 16, "target_typ": [7, 8, 12, 68, 71, 73], "target_unit": [2, 18, 39, 71], "targetbas": [59, 63], "task": [12, 60, 73, 79], "te": [20, 29, 56, 73], "te_mutex": [7, 58, 62, 68], "team": [0, 4, 6, 71, 76, 77], "technic": [33, 65], "techniqu": [3, 71, 75], "technol": 75, "technologi": 74, "tell": [3, 73, 76], "tem": [12, 65], "temperatur": [5, 6, 12, 16, 37, 54, 60, 63, 64, 65, 73, 74, 75], "tempor": 16, "temporari": 33, "tend": 65, "tensor": [19, 22, 24, 51, 64], "tensorboard": 0, "tensordataset": [6, 12, 24], "term": [51, 63, 64], "termin": 12, "test": [0, 4, 6, 12, 19, 20, 21, 25, 29, 49, 50, 56, 70, 71, 77, 78, 79], "test_al_debug_2k_nr": 19, "test_all_snapshot": [7, 38, 56, 68, 73], "test_exampl": 0, "test_snapshot": [7, 38, 56, 68], "tester": [6, 7, 19, 38, 55, 57, 68, 73], "text": 4, "than": [12, 55, 70], "thei": [0, 3, 4, 5, 6, 12, 27, 43, 65, 72], "them": [0, 6, 23, 33, 63, 71], "themselv": [4, 16, 19], "theorem": 62, "theori": [3, 74, 75], "thereaft": [63, 65], "therefor": [4, 5, 25, 26, 33, 62, 79], "therein": [12, 74], "thermodynam": 60, "thi": [0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], "thing": [70, 71], "third": 73, "thompson": [0, 74, 75], "those": [12, 73, 78], "though": [12, 65], "thread": 11, "three": [5, 12, 65, 71, 73, 79], "three_particle_correlation_function_from_atom": [7, 58, 65, 68], "threshold": [16, 71], "through": [0, 3, 5, 11, 51, 62, 73], "throughout": 56, "thrown": 11, "thu": [0, 6, 12, 19, 77], "time": [0, 3, 5, 6, 12, 43, 71, 73, 74, 78], "timeout": 12, "timestep": [12, 16], "timothi": 0, "titl": 74, "tmp": 71, "to_json": [7, 8, 10, 12, 68], "togeth": [6, 70, 78], "token": 51, "toml": [0, 12], "too": [2, 33], "tool": [4, 14, 15, 16, 65], "topic": [71, 72], "torch": [6, 18, 19, 22, 51, 64, 77], "torchrun": 6, "tort": [11, 61], "total": [0, 5, 12, 56, 62, 63, 64, 65, 71, 72, 73, 75, 79], "total_energi": [7, 12, 56, 58, 64, 68, 72, 78], "total_energy_contribut": [7, 58, 62, 68], "total_energy_ful": 56, "total_energy_modul": 78, "tpcf": [12, 65], "tpcf_paramet": [7, 8, 12, 68], "tpe": 42, "tr": [4, 20, 29, 56, 73], "track": 19, "train": [0, 1, 2, 3, 5, 7, 12, 19, 20, 22, 23, 25, 29, 37, 41, 42, 43, 49, 50, 52, 53, 55, 57, 65, 69, 70, 72, 74, 75, 79], "train_network": [7, 38, 57, 68, 73], "trainer": [3, 6, 7, 12, 38, 55, 68, 73], "training_log_interv": [7, 8, 12, 68], "traj": 15, "trajectori": [7, 12, 14, 15, 16, 65, 68], "trajectory_analysis_below_average_count": [7, 8, 12, 68], "trajectory_analysis_correlation_metric_cutoff": [7, 8, 12, 68], "trajectory_analysis_denoising_width": [7, 8, 12, 68], "trajectory_analysis_estimated_equilibrium": [7, 8, 12, 68], "trajectory_analysis_temperature_tolerance_perc": [7, 8, 12, 68], "trajectory_analyz": [7, 14, 68], "trajectoryanalyz": [7, 14, 16, 68], "transfer": [0, 6, 74, 75], "transform": [7, 12, 17, 19, 22, 25, 51, 62, 65, 68, 71], "transformernet": [7, 38, 51, 68], "trapezoid": [60, 62, 63, 64], "trapz": 64, "treat": [11, 77], "tree": [0, 76], "trex": 11, "trial": [3, 12, 40, 41, 42, 43, 47, 48, 49, 50, 52, 70], "trial_ensemble_evalu": [7, 8, 12, 68], "trial_list": 41, "trial_typ": 53, "tricki": 24, "trigger": 0, "trivial": [2, 5, 6], "true": [2, 3, 5, 6, 12, 13, 18, 19, 22, 25, 26, 33, 34, 40, 42, 43, 54, 55, 57, 60, 62, 63, 64, 65, 71, 72, 73, 76], "truncat": [12, 27], "truth": 73, "try": 26, "tune": [0, 3, 6, 12, 42, 70, 73], "turn": 6, "tutori": [4, 6, 73], "tweak": [69, 72], "twice": [5, 65], "two": [2, 12, 13, 16, 61, 70, 73, 74], "twojmax": 12, "txt": [0, 63, 77], "type": [10, 11, 12, 13, 16, 18, 19, 22, 24, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 47, 48, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 71], "typestr": 22, "typic": [27, 76], "u": [3, 6, 12, 33], "ubuntu": 79, "uncach": [16, 62, 63, 64], "uncache_properti": [7, 14, 16, 58, 62, 63, 64, 68], "uncertainti": 0, "unchang": [26, 62], "uncorrel": [12, 16], "under": [0, 37, 55, 57], "underlin": 64, "understand": 75, "uniform": [51, 60], "unit": [5, 13, 18, 19, 20, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 39, 51, 59, 62, 63, 64, 65], "unless": 62, "unload": 6, "unnecessari": [19, 55], "unproblemat": 5, "unscal": 22, "unseen": 73, "untest": 78, "until": [12, 25, 26, 70, 71], "untouch": 4, "up": [0, 2, 6, 12, 27, 33, 43, 62, 63, 64, 65, 70, 71, 75], "updat": 0, "upon": [0, 3, 12, 19, 43, 46, 51, 71], "upper": 70, "upward": 12, "url": 74, "us": [0, 1, 2, 3, 4, 7, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79], "usag": [0, 5, 6, 19, 55, 64, 69, 72, 73, 75, 76], "use_atomic_density_formula": [5, 7, 8, 12, 68], "use_ddp": [6, 7, 8, 12, 22, 25, 26, 68], "use_fast_tensor_data_set": [6, 7, 8, 12, 68], "use_fp64": [18, 33, 34], "use_gauss_ldo": 71, "use_gpu": [5, 6, 7, 8, 12, 68, 76], "use_graph": [6, 7, 8, 12, 68], "use_lammp": [7, 8, 12, 68], "use_lazy_load": [6, 7, 8, 12, 68, 73], "use_lazy_loading_prefetch": [6, 7, 8, 12, 68], "use_memmap": 64, "use_mixed_precis": [6, 7, 8, 12, 68], "use_mpi": [2, 3, 5, 7, 8, 12, 68], "use_multivari": 12, "use_pickled_comm": 33, "use_pkl_checkpoint": [39, 40, 41, 42, 43, 57], "use_shuffling_for_sampl": [7, 8, 12, 68], "use_y_split": [5, 7, 8, 12, 68], "use_z_split": [7, 8, 12, 68], "useabl": 71, "used_data_handl": 64, "user": [4, 11, 12, 16, 49, 50, 60, 64, 73, 77], "userwarn": 11, "usual": [6, 12, 16, 33, 51, 52, 62, 63, 65, 71], "util": [5, 6], "v": [75, 76], "v1": [37, 77], "v2": 12, "v80": 12, "v_": 62, "va": [20, 29, 56, 73], "vaidyanathan": 61, "valid": [3, 6, 12, 19, 20, 29, 70, 73], "validation_loss": 12, "validation_loss_old": 12, "valu": [2, 5, 6, 11, 12, 13, 16, 25, 26, 27, 31, 33, 41, 42, 47, 48, 49, 50, 51, 53, 54, 56, 60, 61, 62, 63, 64, 65, 70, 71, 73], "valuabl": 0, "var": 21, "vari": 78, "variabl": [6, 12, 16, 19, 55, 65], "varianc": 25, "varieti": 75, "variou": [12, 72, 73, 75], "vector": [2, 12, 25, 26, 27, 33, 61, 65, 71, 73], "verbos": [7, 8, 11, 12, 63, 68, 71, 73], "veri": [0, 3, 6, 12, 51, 63], "verif": 73, "verifi": 73, "verma": 0, "versatil": 75, "version": [7, 12, 18, 24, 49, 50, 68, 71, 76, 77, 78], "via": [0, 2, 3, 5, 6, 11, 12, 16, 21, 26, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "viabl": 49, "view": [2, 6, 34], "viewdoc": 65, "viewer": 4, "virtu": 6, "visibl": 51, "visit": [3, 4], "visual": [4, 6, 75], "visualizatuon": 6, "vladyslav": [0, 74], "vogel": [0, 74, 75], "volta": 76, "volum": 74, "volumetr": [4, 61, 66, 71, 73], "voxel": [31, 62, 64], "w": [42, 64, 77], "w_k": 63, "wa": [5, 6, 22, 25, 26, 39, 40, 41, 42, 43, 51, 55, 57, 62, 63, 64, 65, 72], "wai": [0, 3, 6, 12, 65], "wait": [12, 43], "wait_tim": [3, 12], "want": [2, 5, 6, 20, 23, 40, 44, 45, 46, 47, 48, 65, 70, 73, 76, 77], "warmli": 0, "warn": [3, 11, 77], "warranti": [11, 61], "wave": [12, 65], "wavefunct": 62, "we": [0, 2, 3, 5, 12, 22, 25, 26, 33, 37, 65, 66, 70, 71, 73, 74, 76, 78], "websit": [3, 77], "weight": [6, 51, 60, 73], "welcom": 0, "well": [2, 3, 6, 12, 62, 69, 70, 77], "were": [5, 73], "what": [0, 20, 23, 33, 37, 55, 57, 61, 73], "whatev": 76, "when": [0, 1, 3, 4, 6, 11, 12, 18, 19, 20, 27, 29, 33, 43, 49, 50, 51, 55, 57, 61, 64, 65, 70, 71, 73, 76, 78, 79], "whenev": 73, "where": [4, 6, 12, 22, 26, 33, 37, 42, 43, 55, 57, 73, 76], "wherea": 71, "whether": [9, 11, 12, 25, 27, 33, 49, 50, 61], "which": [0, 2, 3, 4, 5, 6, 9, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 76, 77, 78, 79], "whichev": 5, "while": [2, 6, 12, 62, 64, 65, 74], "whom": [11, 61], "wide": 75, "width": [12, 31], "window": [77, 79], "wip": 64, "wise": [6, 12, 22, 70, 73], "wish": [5, 78], "within": [2, 11, 12, 13, 19, 24, 64, 65, 73], "without": [0, 3, 6, 11, 12, 13, 41, 53, 60, 61, 65, 76], "won": [42, 43], "wonjoon": 11, "work": [0, 3, 5, 6, 11, 12, 34, 41, 56, 61, 62, 63, 64, 65, 70, 71, 72, 78, 79], "worker": [6, 12], "workflow": [0, 2, 3, 4, 5, 6, 29, 36, 72, 73, 74, 75, 78], "working_directori": [33, 71], "world": 22, "world_siz": 6, "worldwid": 75, "would": [2, 13, 62], "wrap": 0, "wrapper": 5, "write": [4, 13, 33, 61, 62, 65], "write_additional_calculation_data": [7, 58, 65, 68], "write_cub": [7, 58, 61, 68], "write_imcub": [7, 58, 61, 68], "write_tem_input_fil": [7, 58, 65, 68], "write_to_cub": [5, 7, 58, 62, 68], "write_to_numpy_fil": [7, 8, 13, 58, 65, 68], "write_to_openpmd_fil": [7, 8, 13, 58, 62, 65, 68], "write_to_openpmd_iter": [7, 8, 13, 68], "written": [39, 40, 41, 42, 43, 62, 65], "wuantiti": [62, 63, 64], "x": [5, 12, 22, 33, 51, 60, 65, 71, 75], "x86_64": 78, "xarg": 0, "xc": 62, "xcrysden": 64, "xsf": [62, 64, 66], "xsf_parser": [7, 58, 68], "xvec": 61, "xyz": [12, 33], "y": [5, 12, 22, 33, 65], "yaml": 0, "ye": 76, "year": 74, "yet": [4, 6, 13, 27, 31, 32, 35, 65], "yield": [2, 6], "you": [0, 2, 3, 4, 5, 6, 12, 20, 23, 40, 44, 45, 46, 47, 48, 51, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79], "your": [0, 2, 4, 5, 6, 12, 22, 71, 73, 74, 75, 76, 78], "yourself": 69, "yovel": [74, 75], "ysplit": 5, "yt": 4, "yvec": 61, "z": [5, 12, 22, 33, 65, 74, 75], "zentrum": 75, "zero": [5, 12, 27, 51, 70], "zero_out_neg": 12, "zero_tol": 27, "zip": [37, 55, 57, 73], "zip_run": [55, 57], "zipextfil": [12, 22, 51], "zombi": 43, "zone": 60, "zvec": 61}, "titles": ["Contributions", "Advanced options", "Improved data conversion", "Improved hyperparameter optimization", "Storing data with OpenPMD", "Using MALA in production", "Improved training performance", "mala", "common", "check_modules", "json_serializable", "parallelizer", "parameters", "physical_data", "datageneration", "ofdft_initializer", "trajectory_analyzer", "datahandling", "data_converter", "data_handler", "data_handler_base", "data_repo", "data_scaler", "data_shuffler", "fast_tensor_dataset", "lazy_load_dataset", "lazy_load_dataset_single", "ldos_aligner", "multi_lazy_load_data_loader", "snapshot", "descriptors", "atomic_density", "bispectrum", "descriptor", "lammps_utils", "minterpy_descriptors", "interfaces", "ase_calculator", "network", "acsd_analyzer", "hyper_opt", "hyper_opt_naswot", "hyper_opt_oat", "hyper_opt_optuna", "hyperparameter", "hyperparameter_acsd", "hyperparameter_naswot", "hyperparameter_oat", "hyperparameter_optuna", "multi_training_pruner", "naswot_pruner", "network", "objective_base", "objective_naswot", "predictor", "runner", "tester", "trainer", "targets", "atomic_force", "calculation_helpers", "cube_parser", "density", "dos", "ldos", "target", "xsf_parser", "version", "API reference", "Getting started with MALA", "Basic hyperparameter optimization", "Data generation and conversion", "Using ML-DFT models for predictions", "Training an ML-DFT model", "Citing MALA", "Welcome to MALA!", "Installing LAMMPS", "Installing MALA", "Installing Quantum ESPRESSO (total energy module)", "Installation"], "titleterms": {"ASE": 72, "acsd_analyz": 39, "ad": [0, 73, 77], "advanc": [1, 3, 6], "algorithm": 3, "an": 73, "api": 68, "ase_calcul": 37, "atomic_dens": 31, "atomic_forc": 59, "basic": 70, "behind": 75, "bispectrum": 32, "branch": 0, "build": [73, 76, 77, 78], "calcul": 72, "calculation_help": 60, "check_modul": 9, "checkpoint": [3, 6], "cite": 74, "code": 0, "common": 8, "content": 75, "contribut": 0, "contributor": 0, "convers": [2, 71], "creat": 0, "cube_pars": 61, "data": [2, 4, 71, 73, 77], "data_convert": 18, "data_handl": 19, "data_handler_bas": 20, "data_repo": 21, "data_scal": 22, "data_shuffl": 23, "datagener": 14, "datahandl": 17, "densiti": 62, "depend": 0, "descriptor": [2, 30, 33], "develop": 0, "dft": [72, 73], "do": 63, "document": 77, "doe": 75, "download": 77, "energi": 78, "espresso": 78, "exampl": 77, "extens": [76, 78], "fast_tensor_dataset": 24, "format": 0, "gener": 71, "get": 69, "gpu": [5, 6], "how": 75, "hyper_opt": 40, "hyper_opt_naswot": 41, "hyper_opt_oat": 42, "hyper_opt_optuna": 43, "hyperparamet": [3, 44, 70], "hyperparameter_acsd": 45, "hyperparameter_naswot": 46, "hyperparameter_oat": 47, "hyperparameter_optuna": 48, "i": 75, "improv": [2, 3, 6], "instal": [76, 77, 78, 79], "interfac": 36, "issu": 0, "json_serializ": 10, "lammp": 76, "lammps_util": 34, "lazi": 6, "lazy_load_dataset": 25, "lazy_load_dataset_singl": 26, "ldo": 64, "ldos_align": 27, "librari": 77, "licens": 0, "list": 70, "load": 6, "local": 77, "mala": [0, 5, 7, 69, 72, 74, 75, 77], "metric": 6, "minterpy_descriptor": 35, "ml": [72, 73], "model": [72, 73], "modul": 78, "multi_lazy_load_data_load": 28, "multi_training_prun": 49, "naswot_prun": 50, "network": [38, 51], "objective_bas": 52, "objective_naswot": 53, "observ": 5, "ofdft_initi": 15, "openpmd": 4, "optim": [3, 70], "option": [1, 77], "parallel": [2, 3, 5, 6, 11], "paramet": [12, 73], "perform": 6, "physical_data": 13, "predict": [5, 72], "predictor": 54, "prerequisit": [76, 77, 78], "product": 5, "public": 75, "pull": 0, "python": [76, 77, 78], "quantum": 78, "recommend": 77, "refer": 68, "releas": 0, "request": 0, "run": 6, "runner": 55, "search": 3, "set": 73, "snapshot": 29, "start": [69, 75], "store": 4, "strategi": 0, "target": [58, 65], "tensorboard": 6, "test": 73, "tester": 56, "total": 78, "train": [6, 73], "trainer": 57, "trajectory_analyz": 16, "tune": 2, "us": [5, 6, 72], "version": [0, 67], "visual": 5, "welcom": 75, "what": 75, "where": 75, "who": 75, "work": 75, "xsf_parser": 66}}) \ No newline at end of file