Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

res101 inference result zero #16

Open
SuperPowerLF2 opened this issue Aug 28, 2019 · 7 comments
Open

res101 inference result zero #16

SuperPowerLF2 opened this issue Aug 28, 2019 · 7 comments

Comments

@SuperPowerLF2
Copy link

SuperPowerLF2 commented Aug 28, 2019

看Owner是中国人就用中文了(小声BB...)

我直接用caffe.exe训练了 resnet101 (models/FRCNN/res101/solver.proto VOC2007)
我一开始训练了10000步发现推理结果为0 (使用test_frcnn.exe, 直接用训练集当做测试集)
于是我继续训练到20000发现推理结果还是为0
详细调试后发现score肥肠肥肠低都是0.00x,最高的我看到也就0.05...
我浏览了其他问题, 你说可以不用convert_model.py 于是我就直接训练完的模型直接test_frcnn也不行.输出结果如下

I0828 13:00:15.272047 19684 FRCNNtest.cpp:210] Handle 97 th image : 000193.jpg, with image_thresh : 0, 0 -> 0 boxes
I0828 13:00:15.367131 19684 FRCNNtest.cpp:210] Handle 98 th image : 000194.jpg, with image_thresh : 0, 0 -> 0 boxes
I0828 13:00:15.479229 19684 FRCNNtest.cpp:210] Handle 99 th image : 000198.jpg, with image_thresh : 0, 0 -> 0 boxes
I0828 13:00:15.584322 19684 FRCNNtest.cpp:210] Handle 100 th image : 000200.jpg, with image_thresh : 0, 0 -> 0 boxes
I0828 13:00:15.687412 19684 FRCNNtest.cpp:210] Handle 101 th image : 000203.jpg, with image_thresh : 0, 0 -> 0 boxes
I0828 13:00:15.791504 19684 FRCNNtest.cpp:210] Handle 102 th image : 000207.jpg, with image_thresh : 0, 0 -> 0 boxes
I0828 13:00:15.887589 19684 FRCNNtest.cpp:210] Handle 103 th image : 000208.jpg, with image_thresh : 0, 0 -> 0 boxes

我现在不知道怎么修改了...下面是训练时一部分....我认为正常

I0828 11:53:16.375608 19192 solver.cpp:218] Iteration 19920 (2.24295 iter/s, 8.91684s/20 iters), loss = 1.99799
I0828 11:53:16.375608 19192 solver.cpp:237] Train net output #0: bbox_accuracy = 0.75
I0828 11:53:16.376610 19192 solver.cpp:237] Train net output #1: loss_bbox = 0.430361 (* 1 = 0.430361 loss)
I0828 11:53:16.376610 19192 solver.cpp:237] Train net output #2: loss_cls = 1.27145 (* 1 = 1.27145 loss)
I0828 11:53:16.376610 19192 solver.cpp:237] Train net output #3: rpn_cls_loss = 0.898545 (* 1 = 0.898545 loss)
I0828 11:53:16.376610 19192 solver.cpp:237] Train net output #4: rpn_loss_bbox = 0.391415 (* 1 = 0.391415 loss)
I0828 11:53:16.376610 19192 sgd_solver.cpp:105] Iteration 19920, lr = 0.001
I0828 11:53:25.249524 19192 solver.cpp:218] Iteration 19940 (2.25401 iter/s, 8.87307s/20 iters), loss = 1.99201
I0828 11:53:25.249524 19192 solver.cpp:237] Train net output #0: bbox_accuracy = 0.75
I0828 11:53:25.250700 19192 solver.cpp:237] Train net output #1: loss_bbox = 0.644284 (* 1 = 0.644284 loss)
I0828 11:53:25.250700 19192 solver.cpp:237] Train net output #2: loss_cls = 0.905329 (* 1 = 0.905329 loss)
I0828 11:53:25.250700 19192 solver.cpp:237] Train net output #3: rpn_cls_loss = 0.0850422 (* 1 = 0.0850422 loss)
I0828 11:53:25.250700 19192 solver.cpp:237] Train net output #4: rpn_loss_bbox = 0.0457095 (* 1 = 0.0457095 loss)
I0828 11:53:25.251526 19192 sgd_solver.cpp:105] Iteration 19940, lr = 0.001
I0828 11:53:34.160838 19192 solver.cpp:218] Iteration 19960 (2.24479 iter/s, 8.90953s/20 iters), loss = 2.00955
I0828 11:53:34.160838 19192 solver.cpp:237] Train net output #0: bbox_accuracy = 0.75
I0828 11:53:34.161839 19192 solver.cpp:237] Train net output #1: loss_bbox = 0.721698 (* 1 = 0.721698 loss)
I0828 11:53:34.161839 19192 solver.cpp:237] Train net output #2: loss_cls = 1.35276 (* 1 = 1.35276 loss)
I0828 11:53:34.161839 19192 solver.cpp:237] Train net output #3: rpn_cls_loss = 0.107642 (* 1 = 0.107642 loss)
I0828 11:53:34.161839 19192 solver.cpp:237] Train net output #4: rpn_loss_bbox = 0.0488492 (* 1 = 0.0488492 loss)
I0828 11:53:34.161839 19192 sgd_solver.cpp:105] Iteration 19960, lr = 0.001
I0828 11:53:43.032603 19192 solver.cpp:218] Iteration 19980 (2.25453 iter/s, 8.87101s/20 iters), loss = 1.98453
I0828 11:53:43.032603 19192 solver.cpp:237] Train net output #0: bbox_accuracy = 0.96875
I0828 11:53:43.033603 19192 solver.cpp:237] Train net output #1: loss_bbox = 0.000514256 (* 1 = 0.000514256 loss)
I0828 11:53:43.033603 19192 solver.cpp:237] Train net output #2: loss_cls = 0.411482 (* 1 = 0.411482 loss)
I0828 11:53:43.033603 19192 solver.cpp:237] Train net output #3: rpn_cls_loss = 0.192493 (* 1 = 0.192493 loss)
I0828 11:53:43.033603 19192 solver.cpp:237] Train net output #4: rpn_loss_bbox = 0.0110174 (* 1 = 0.0110174 loss)
I0828 11:53:43.033603 19192 sgd_solver.cpp:105] Iteration 19980, lr = 0.001

请问如何修改使其能跑锕....救救我...

@makefile
Copy link
Owner

你的分类损失比较大,看起来不太正常。和另一个issue里边的问题一样,我很长时间不用这份代码了,也不好找出原因是什么。或许你换个proto再试试,或者换到我commit里边的历史版本,不清楚是不是因为我做了哪些改动造成的。

@SuperPowerLF2
Copy link
Author

@makefile 还在苦战中, 寻找问题

@SuperPowerLF2
Copy link
Author

@makefile 请问在哪里修改优化器类型, 原版在solver.proto type. 您的caffe在哪里改, 还有我想添加自己的优化器能不能帮我指条明路

@makefile
Copy link
Owner

makefile commented Sep 2, 2019

@SuperPowerLF2 优化器类型也是在solver.proto里边指定,优化器的自定义可以在sgd_solver.cpp里边改。

@SuperPowerLF2
Copy link
Author

@makefile 谢谢!

@SuperPowerLF2
Copy link
Author

@makefile 我发现训练的成品(caffemodel), BN层gamma, beta,mean 里有参数! 可是我明明设置了 param {
lr_mult: 0
decay_mult: 0
}
x3
三个参数都是设置了, 你觉得是不是这个原因导致的
我网上找不到使用BN的预训练模型, 只能问问你...

@makefile
Copy link
Owner

makefile commented Sep 6, 2019

@SuperPowerLF2 设置为0表示固定初始参数不变,不进行学习。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants