forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcli-automl-forecasting-task-energy-demand.yml
46 lines (38 loc) · 1.14 KB
/
cli-automl-forecasting-task-energy-demand.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
$schema: https://azuremlsdk2.blob.core.windows.net/preview/0.0.1/autoMLJob.schema.json
type: automl
experiment_name: dpv2-cli-automl-forecasting-experiment
# name: dpv2-sdk-forecasting-train-job-01
description: A Time-Series Forecasting job using energy demand dataset
compute: azureml:cpu-cluster
task: forecasting
primary_metric: r2_score
log_verbosity: debug
target_column_name: "demand"
training_data:
path: "./training-mltable-folder"
type: mltable
validation_data:
path: "./validation-mltable-folder"
type: mltable
limits:
timeout_minutes: 180
max_trials: 10
max_concurrent_trials: 5
trial_timeout_minutes: 20
enable_early_termination: true
forecasting:
time_column_name: "timeStamp"
forecast_horizon: 48
frequency: "H"
target_lags: [12]
target_rolling_window_size: 4
# TO TRY: ADDITIONAL FORECASTING TRAINING PARAMS ---
# time_series_id_column_names=["tid1", "tid2", "tid2"],
# short_series_handling_config=ShortSeriesHandlingConfiguration.DROP,
# use_stl="season",
# seasonality=3,
training:
enable_model_explainability: true
enable_stack_ensemble: false
allowed_training_algorithms:
- xg_boost_regressor