-
Notifications
You must be signed in to change notification settings - Fork 3
/
hadcrut5_plot.py
executable file
·256 lines (216 loc) · 7.36 KB
/
hadcrut5_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/python3
# Copyright (c) 2020-2024 Davide Madrisan <[email protected]>
# SPDX-License-Identifier: GPL-3.0-or-later
"""
Display a plot of the HadCRUT5 temperature dataset.
"""
import argparse
from math import trunc
from typing import List
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from hadcrut5lib import argparser, HadCRUT5
def parse_args() -> argparse.Namespace:
"""This function parses and return arguments passed in"""
descr = "Parse and plot the HadCRUT5 temperature datasets"
examples = [
"%(prog)s",
"%(prog)s --global --annotate=2",
'%(prog)s --period "1850-1900"',
'%(prog)s --period "1850-1900" --smoother 5',
'%(prog)s --period "1880-1920" --outfile HadCRUT5-1880-1920.png',
'%(prog)s --period "1880-1920" --time-series monthly --global',
]
parser = argparser(descr, examples)
parser.add_argument(
"-a",
"--annotate",
action="store",
dest="annotate",
default="1",
help="add temperature annotations (0: no annotations, 1 (default): "
"bottom only, 2: all ones",
)
parser.add_argument(
"-f",
"--outfile",
action="store",
dest="outfile",
help="name of the output PNG file",
)
parser.add_argument(
"-g",
"--global",
action="store_true",
dest="plot_global",
help="plot the Global Temperatures",
)
parser.add_argument(
"-m",
"--smoother",
action="store",
dest="smoother",
help="make the lines smoother by using N-year means",
)
parser.add_argument(
"-n",
"--northern",
action="store_true",
dest="plot_northern",
help="Northern Hemisphere Temperatures",
)
parser.add_argument(
"-p",
"--period",
action="store",
dest="period",
default="1961-1990",
help="show anomalies related to 1961-1990 (default), 1850-1900, or 1880-1920",
)
parser.add_argument(
"-s",
"--southern",
action="store_true",
dest="plot_southern",
help="Southern Hemisphere Temperatures",
)
parser.add_argument(
"-t",
"--time-series",
action="store",
default="annual",
dest="time_series",
help='do plot the "annual" time series (default) or the "monthly" one',
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
dest="verbose",
help="make the operation more talkative",
)
return parser.parse_args()
def dataset_current_anomaly(temperatures: List[float]) -> float:
"""Return the current anomaly"""
return temperatures[-1]
def dataset_max_anomaly(temperatures: List[float]) -> float:
"""Return the maximum anomaly with respect to 'temperatures'"""
return np.max(temperatures)
def dataset_smoother(years: List[int | float], temperatures: List[float], chunksize: int):
"""Make the lines smoother by using {chunksize}-year means"""
data_range = range((len(years) + chunksize - 1) // chunksize)
subset_years = [years[i * chunksize] for i in data_range]
subset_temperatures = [
np.mean(temperatures[i * chunksize : (i + 1) * chunksize]) for i in data_range
]
return subset_years, subset_temperatures
def plotline(hc5: HadCRUT5, chunksize: int, annotate: int, outfile: str):
"""
Create a plot for the specified period and arguments and diplay it or save
it to file if outfile is set
"""
hc5.datasets_download()
hc5.datasets_load()
hc5.datasets_normalize()
mpl.style.use("seaborn-v0_8-notebook")
anomaly_current = {}
anomaly_max = {}
dataset_years = hc5.dataset_years()
for region in hc5.datasets_regions():
lower, mean, upper = hc5.dataset_normalized_data(region)
if chunksize > 1:
years, mean = dataset_smoother(dataset_years, mean, chunksize)
hc5.logging_debug(f"years: \\\n{np.array(years)}")
hc5.logging_debug(f"temperatures ({region}): \\\n{mean}")
hc5.logging_debug(f"delta ({years[-1]}): \\\n{mean[-1]}")
else:
years = dataset_years
plt.fill_between(years, lower, upper, color="lightgray")
anomaly_current[region] = dataset_current_anomaly(mean)
anomaly_max[region] = dataset_max_anomaly(mean)
hc5.logging_debug(f"Current anomalies: {anomaly_current[region]}")
hc5.logging_debug(f"Max anomalies: {anomaly_max[region]}")
if annotate > 1:
plt.annotate(
f"{anomaly_current[region]:.2f}°C",
xy=(years[-1] - 2, anomaly_current[region] - 0.15),
fontsize=6,
horizontalalignment="left",
bbox={"facecolor": "lightgray", "alpha": 0.6, "pad": 3},
)
linewidth = 1 if hc5.is_monthly_dataset and chunksize < 2 else 2
plt.plot(years, mean, linewidth=linewidth, markersize=12, label=region)
plt.hlines(
0,
np.min(dataset_years),
np.max(dataset_years),
colors="gray",
linestyles="dotted",
)
plt.title(f"HadCRUT5: land and sea temperature anomalies relative to {hc5.dataset_period}")
plt.xlabel("year", fontsize=10)
ylabel = f"{hc5.dataset_datatype.capitalize()} Temperature Anomalies in °C"
if chunksize > 1:
ylabel += f" ({chunksize}-year averages)"
else:
current = anomaly_current.get(hc5.GLOBAL_REGION)
maximum = anomaly_max.get(hc5.GLOBAL_REGION)
if annotate > 0 and current and maximum:
current_year = trunc(hc5.dataset_years()[-1])
facecolor = "blue" if current <= 0 else "red"
plt.annotate(
(
f"current global anomaly ({current_year}): "
f"{current:+.2f}°C, max: {maximum:+.2f}°C"
),
xy=(0.98, 0.03),
xycoords="axes fraction",
fontsize=8,
horizontalalignment="right",
verticalalignment="bottom",
bbox={
"facecolor": facecolor,
"alpha": 0.3,
"pad": 5,
},
)
plt.annotate(
hc5.dataset_history,
xy=(0.01, 0.8),
xycoords="axes fraction",
fontsize=8,
horizontalalignment="left",
verticalalignment="top",
)
plt.ylabel(ylabel, fontsize=10)
plt.legend()
if outfile:
plt.savefig(outfile, transparent=False)
else:
plt.show()
# pylint: disable=C0116
def main():
args = parse_args()
if not (args.plot_global or args.plot_northern or args.plot_southern):
plot_global = plot_northern = plot_southern = True
else:
plot_global = args.plot_global
plot_northern = args.plot_northern
plot_southern = args.plot_southern
regions = (plot_global, plot_northern, plot_southern)
smoother = int(args.smoother) if args.smoother else 1
hc5 = HadCRUT5(
period=args.period,
datatype=args.time_series,
regions=regions,
smoother=smoother,
verbose=args.verbose,
)
plotline(
hc5,
smoother,
int(args.annotate) if args.annotate else 1,
args.outfile,
)
main()