diff --git a/docs/notebooks/MMD_misspec_experiment.ipynb b/docs/notebooks/MMD_misspec_experiment.ipynb new file mode 100644 index 0000000..0fe60f8 --- /dev/null +++ b/docs/notebooks/MMD_misspec_experiment.ipynb @@ -0,0 +1,563 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "from torch import Tensor\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.patches as mpatches\n", + "import seaborn as sns\n", + "import pandas as pd\n", + "from labproject.metrics.wasserstein_sinkhorn import sinkhorn_loss,sinkhorn_algorithm\n", + "from labproject.metrics.wasserstein_kuhn import kuhn_transport\n", + "from labproject.metrics.sliced_wasserstein import sliced_wasserstein_distance\n", + "from labproject.metrics.MMD_torch import compute_rbf_mmd,compute_rbf_mmd_median_heuristic\n", + "from labproject.data import get_distribution\n", + "from labproject.utils import set_seed\n", + "from dataclasses import dataclass\n", + "\n", + "set_seed(0)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dpi = 150\n", + "plt.style.use(\"../../matplotlibrc\")\n", + "plt.rcParams.update({\"figure.dpi\": dpi})\n", + "\n", + "\n", + "\n", + "@dataclass\n", + "class FigureLayout:\n", + " width_in_pt: float\n", + " width_grid: int\n", + " base_font_size: int = 8\n", + " scale_factor: float = 1.0\n", + "\n", + " # matplotlib uses inch\n", + " def _get_grid_in_inch(self, w_grid, h_grid):\n", + " pt_to_inch = 1 / 72\n", + " assert w_grid <= self.width_grid\n", + " return (\n", + " (w_grid / self.width_grid) * self.width_in_pt * pt_to_inch,\n", + " (h_grid / self.width_grid) * self.width_in_pt * pt_to_inch,\n", + " )\n", + "\n", + " def get_rc(self, w_grid, h_grid):\n", + " return {\n", + " \"figure.figsize\": self._get_grid_in_inch(w_grid, h_grid),\n", + " \"font.size\": self.base_font_size * self.scale_factor,\n", + " }\n", + " \n", + "textwidth=469\n", + "fig_handler = FigureLayout(469,100)\n", + "params = fig_handler.get_rc(40,30)\n", + "plt.rcParams.update(params)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "class Gauss(nn.Module):\n", + " def __init__(self,dim):\n", + " super(Gauss, self).__init__()\n", + " self.mean = nn.Parameter(torch.zeros(dim))\n", + " self.lower_triangular = nn.Parameter(torch.ones(dim*(dim+1)//2))\n", + " self._row_ix, self._column_ix = torch.triu_indices(dim,dim)\n", + " self.dim = dim\n", + "\n", + " def forward(self, noise):\n", + " sample = self.cov_lt().matmul(noise.transpose(-2,-1)).transpose(-2,-1) + self.mean.unsqueeze(0)\n", + " return sample\n", + " \n", + " def sample(self,size):\n", + " return self.forward(torch.randn(size, self.dim))\n", + " \n", + " def cov(self):\n", + " return self.cov_lt().matmul(self.cov_lt().transpose(-2,-1))\n", + " \n", + " def cov_lt(self):\n", + " cov = torch.zeros(self.dim,self.dim)\n", + " cov[self._row_ix,self._column_ix] = self.lower_triangular\n", + " return cov\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAApMklEQVR4nO3dfVRU17038O+ZAWaYkVfBYC5EJoxMiNEaKyZiRE19a0VXNBbapuvG5CaNtkmvK0kJuSFazbMSrC9d6bOapE3SVH18FAVWWyPm6kPBaKIGY4npjUEG4QqJqMSBGRFQmP384YUwDswMyDkzzPl+1pq1ZM/Zs39nz/ibM+fss7ckhBAgIqKgp/F3AEREpAwmfCIilWDCJyJSCSZ8IiKVYMInIlIJJnwiIpVgwiciUgkmfCIilWDCJyJSCSZ8IiKVYMInIlIJJnwiIpUI8XcAShNCoLW1tffvqKgoSJLkx4iIiJShuoTf2tqKmJiY3r9tNhuio6P9FxARkUJ4SoeISCWY8ImIVIIJn4hIJZjwiYhUwm8Jv7GxEdHR0aioqPC67c6dOzFhwgSEh4cjLS0NW7dulT9AIqIg45eE39DQgPnz57sMjxxIcXExHnnkEcyfPx9/+ctfMHv2bKxYsQK7du1SIFIiouAhKbmIudPpxLZt2/D8889DCIHLly+jvLwcs2fPHrCOxWLB5MmTUVhY2FuWk5ODkydPoqamZtAxtLS0DOuwzLrmNhRWNqDRdhWJMQbkpCfBFGcc9DaDdbjmEjYfOIOL9g6MidTjkfvuQO2lNrc26prb8McPa/FJnQ2AQNrYCIzSheJKZ9ctx3Ir++WtrqfnB9OuHH0vt+GMeTCfz+omO2xXryPaEIq7EiIHfE/+cc6GuuY2dDmdCNFokBxnwJQ7YgeMs665DX84VIvK+su43u2EUReC2yL1vW0AcIlxhnk0Sj8/j0/qbLje3Y1QjQbXnE6EabVIGxsBIQS+bHIAkDDNFIOfZabI8p4O9n0YCZ81RRN+VVUV7r//fvz85z/H3LlzsWjRIo8Jv76+HiaTCTt37sSPfvSj3vI9e/YgOzsbZ86cwfjx4wcVw3Ak/J439mhtM041tqJvB0oAJv5LJNqudeN6txPXu5w4b+90qa/VSHhuXirOXb6KyvrLuHqtG9e6nNBKwO0xBjw3PxUzx8cP2P6vij7DnhONHmPUaiTMv/s27P9nk8ftNBJQ8PAkZE9N8rq/ff9DvnukDoeqL7nt+6TEKExPiUNKvBE7jp/r/ULqu0//6/0v8M6ROpc2JACzLPFYu3gCKusv48WSz9Ht/PbVe/rsk/rLHtvtm0AGen962hkoOfUkvyZ7B650dCMsREJ6ciwWTRqLj6zfDPo/9GCSbn8xazUSXls2EdlTk9y+6Af6rNQ1t2Hd3v/qt6+eX2DBL+aYAQC7TzS49XXfdp+dlwpHR1e/cfUnPEyL+0yxMIZp8WWTA/aOLlxydA64vQR4fU1fJMWG49WlE5EYY+i3rwd7YHalswsfnrmEm7slVCshxhCGXy2w4Id93o/65itoae9y2bbv+9ZfG/74UlA04V++fBlXr15FYmIiKioqMGfOHI8Jf//+/fjBD36ATz/9FFOmTOkt/8c//oEpU6Zg7969yMrKGrC9jo4OdHR0uJS1trYiOTm59+/BJnxP/0GG0w+nJmLj8u/0/t3zQTl57vL/HK0Pr/LnZwNwP9LqL7EP1cJ7EnC1swsf1jQPuI0EQJLg9h/NV5J04zV8qT/bEo9/e8CEj6zfoLrJDuvFK2iwtQ+qve/8zxdN36NSQPR+QQzUf/EROsxNG4OfZaZgx7H/dvsCdNsvAAlRepxv7XB77s44AyRJ09vuKF2I19eLNYbBqNOi4fLg9jfQ9fcFEqELgaPTPRn3fJl5SvCejDaG4Zu2a17jmWWJx10JkYjUh2DzwTMuuePmL2C5KZrw+/Il4e/atQs//vGPUVNTA7P52w6xWq0YP348duzYgZ/85CcDtvHrX/8a69at8xjHYBJ+XXMb5m45JHuy77H936Zh5vh4Rb5kovQ3/lMotGtE1EfuAgt+rkDSD+ipFZxOp8fnNRplrzkXVjYoluwBYOX/+RSzU+NR+nnTsBxhe9La0eV9IyKSxcb/rMb3J46V/fROQI/Dj4qKAgA4HA6Xcrvd7vK8Uqqb7Iq219bZjX0KJHsi8i+BG6eL5RbQCd9isQC4cQqnr56/09LSPNbPy8uDzWZzedTX1w8plt0nGlBRfWlIdYmIvGkc5PWjoQjohG82m2EymVBUVORSXlxcjPHjx7tcfO2PXq9HdHS0y2MovwrqmtvwYsnnPNImItlE6OQ/wx5Q5/Dtdju++OILpKSkID7+xlCzNWvW4LHHHsPo0aOxZMkS/PWvf8Xu3bsVvfFK6XP3RKQ+QoFDyoA6wj958iSmT5+Offv29ZatWLECb731Fg4ePIiHHnoIhw4dwrZt25CTk6NYXI22q4q1RUTqdKWzW/Y2/DYs01+GcuNVwf4v8dahWpkjIyI1WzU7BS8svEvWNgLqCD9Q5aQnQavhMohEJA+NBI93uw9bO7K3EARMcUY8Ny/V32EQUZBS6jwLE74Pdp9owOaDZ/wdBhEFKY7DDxA9QzI5SoeI5KT6cfiBgEMyiUgJiTHhsrfBhO/FlwpPp0BE6iPxom1gaLl63d8hEFGQ40XbABFjCPV3CESkAuv3/pfsbTDhe2FJiPR3CESkAhXVl1DX3CZrG0z4XvCmKyJSghJDM5nwvTDFGfHason+DoOIVEDuoZlM+D7InpqE+0yx/g6DiIKc3EMzmfB9dGe8civLE5H6KDGfDhO+D3afaEBhpfy3PROReqUnx6p7TdtA0DO1Am+2JSI5fdN2TfY2mPC94NQKRBQsmPC9qObUCkSkgGnJ8g8MYcL3wsapFYhIAU9m3il7G0z4XkRzagUiktkdseGyX7AFmPC9uotTKxCRzMxjIhRphwnfC06tQERya+vsUqQdJnwvTHFGPMv1bIlIRsfrLss+cRrAhO8TR4cy375EpF5c0zZA/OOczd8hEFGQK//youxtMOH7QImfWkSkbl82OTgffkBQav0xIlI1zocfACL0HItPRPLjfPiBgKMyiUgBnA8/ALRf6/Z3CEQU5LQaifPhB4KocJ7SISJ5FSybyPnwA0HKGK52RUTymsrZMgPDRUenv0MgoiDHG68CRH3zVX+HQERBTu4ROgATPhFRQJB7hA7AhO8TXSi7iYjkIwGyj9ABmPC9qmtuQ+Nl+X9qEZF6zbbEcwGUQFBY2QBOrEBEcnr8AZMi7TDhe9Fo4wVbIpLXn47UKdIOE74XiTEGf4dAREGuovpScC6AcuDAAaSnp8NgMMBkMmHTpk0QHmajtFqtkCTJ7XHPPfcoEm9OuvwXUohI3QSUGYcfInsLfRw7dgxZWVnIycnBK6+8giNHjiA3NxddXV3Iy8vrt05VVRUAoKysDAbDt0fbff8tJ1OcEXfdNgpfXriiSHtEpE5KjMNXNOGvXbsW9957L7Zv3w4AWLhwIa5fv45XX30V//7v/47wcPdxqFVVVUhMTMSDDz6oZKgu7h0Xw4RPRLIKqnH4nZ2dqKiowNKlS13Kly9fDofDgSNHjvRbr6qqCpMnTx5Smx0dHWhpaXF5tLa2Dvp1uP4JEclJIwXZOPyzZ8/i2rVrSE1NdSk3m80AgOrq6n7rVVVVweFwICMjA3q9HgkJCcjLy8P169e9tllQUICYmBiXR3Jy8qBjv9LJRcyJSD7TkmMVGYev2CmdniPryMhIl/KIiAgAgN1ud6vT3NyMr776Cl1dXfjNb36DcePGoaysDBs2bEBDQwN27Nghf+DgSB0iktfXrR2KtKNYwnc6nR6f12jcf2wYjUYcOHAA48eP7z0ynzVrFnQ6HfLz85Gfn4+0tDQ5wnUxwzwabx2qlb0dIlIne4f3MxbDQbFTOlFRUQAAh8PhUt5zZN/zfF/h4eGYN2+e22mYRYsWAQA+++wzj23m5eXBZrO5POrr6wcd+0fWbwZdh4jIV+GhWkXaUewIPyUlBVqtFlar1aW85+/+jtRramrw97//HTk5OYiOju4tb2+/MXwpPj7eY5t6vR56vf4WI+fdtkQkrxhDmCLtKHaEr9frkZmZiZKSEpcbrYqLixEVFYVp06a51Tl//jxWrlyJPXv2uJQXFhYiMjIS3/3ud2WPG+A5fCKSV0LUrR+Y+kLRcfj5+fmYO3cusrOz8fjjj+Pjjz/Gxo0bUVBQAIPBALvdji+++AIpKSmIj4/HAw88gO9973t47rnn0N7ejrvvvhv79u3D7373O2zZssXlqF9OEXpFu4mIVMaSEKFIO4pOrfDggw+iuLgY1dXVeOihh7Bjxw5s3LgRubm5AICTJ09i+vTp2Ldv343gNBqUlJTgySefxG9/+1tkZWXhwIED+OMf/4jVq1crEnNdcxu2HDyjSFtEpD5KzYUPAJLwNJFNEGppaUFMTEzv3zabzeMvhYL9X3KEDhHJ5j5TDAqfylCkLc6W6QUv2BKRnCrrbYpMnAYw4XvFC7ZEJCenAF4s+Tw4p0ceaXLSkyD5OwgiCmrdTqHIUT4TvhemOCNmWTyP9yciulXVTQ7vG90iJnwfrF08wd8hEFGQs129JnsbTPg+MMUZMZtH+UQko2gF7rZlwvfR2sUToOHJfCKSyV0K3HzFhO8jU5wRBQ9P8ncYRBSElLr5igl/ENKTYxHCw3wiGmazLfHBtQDKSLf7RANyi075OwwiCkLpybGKtMMjfB/UNbfhBSZ7IpLJ5oNneONVoPjjh7VQ1YRDRKQo3ngVQD6ps/k7BCIKco22dtnbYML3CY/viUheo3TyL3PIhO8DpS6oEJF6SQrM2sWE74OnZqX4OwQiCnJN9g7Z22DCJyIKAJxLJ0AUViqzOAERqRfn0gkQXPWKiOTGuXQCBFe9IiI5aTUS59IJFDnpSdByDh0ikoFWI6Fg2URF5tJhwveBKc6I15ZN5PTIRDSsbovQ4c+PpeOHChzdA0z4RER+c8HRiRXvVSoyrQLAhO+TuuY2vFjyOZy84ZaIhlm3U+DFks85eVqgKKxsQDezPRHJhJOnBZDqJru/QyCiIMfJ0wJEU6v8tzwTkbolxoTL3gYTvg8uXWHCJyL5SBLXtA0Yjo5uf4dAREFMqRHfTPg+4E1XRCQnpwAv2gaKcbGcWoGI5MWLtgHi8QdM/g6BiIIcL9oGiNpL8t8QQUTqJYEXbQMGp0cmIjl9Jymak6cFCk6PTERyShsr/1z4ABO+T2aYR/s7BCIKYrs+aeAonUDxkfUbf4dAREFMAMgrPiX7BGpM+D7gOXwikpsSY/EVT/gHDhxAeno6DAYDTCYTNm3aBCE8z0S5c+dOTJgwAeHh4UhLS8PWrVsVivYGnsMnIiXIPRZf0YR/7NgxZGVl4a677kJJSQkeeeQR5ObmYsOGDQPWKS4uxiOPPIL58+fjL3/5C2bPno0VK1Zg165disWdk57E1a6ISHZyj8WXhLfD62G0YMECtLS04Pjx471lL7zwAt58801cuHAB4eHuO2uxWDB58mQUFhb2luXk5ODkyZOoqakZdAwtLS2IiYnp/dtmsyE6Otpjnd0nGvBC8Sko11NEpDYaCSh7braswzMVO8Lv7OxERUUFli5d6lK+fPlyOBwOHDlyxK1OfX09zpw5028dq9U6pIQ/WD2rXTHZE5FcJAnY8PAk2cfiK5bwz549i2vXriE1NdWl3Gw2AwCqq6vd6pw+fRoABlWnr46ODrS0tLg8WltbBxU3V7siIrmEaiVkTRqLvz83W5GFzBVL+D2JNjIy0qU8IuLGDQd2u/uqUkOp01dBQQFiYmJcHsnJyYOKmyN0iEgu17sF9v+zCZX1lxVpT7GE73Q6PT6v0biHMpQ6w40jdIhITkG5iHlUVBQAwOFwuJT3HKX3PH+rdYZbTrr8P7OISN2CbhHzlJQUaLVaWK1Wl/Kev9PS0tzqWCwWl218qdNXXl4ebDaby6O+vn5QcZvijEiKlX/aUiJSt6CaD1+v1yMzMxMlJSUuN1oVFxcjKioK06ZNc6tjNpthMplQVFTkUl5cXIzx48d7PR+v1+sRHR3t8hjKr4KxUfpB1yEiGgwl5sMPkb2FPvLz8zF37lxkZ2fj8ccfx8cff4yNGzeioKAABoMBdrsdX3zxBVJSUhAfHw8AWLNmDR577DGMHj0aS5YswV//+lfs3r1b0RuvrnVxlA4RySsjRf5JGhW90/bBBx9EcXExqqur8dBDD2HHjh3YuHEjcnNzAQAnT57E9OnTsW/fvt46K1aswFtvvYWDBw/ioYcewqFDh7Bt2zbk5OQoFneMIVSxtohInT6ulX+SRkXvtA0EQ7nT9sWSU9j5ifwXVIhIvRZ/53b87x/fK2sbnC3TB+r6SiQif+CatgHiSmeXv0MgoiDHNW0DBG++IiI5hWklrmkbKHLSk6Dl/MhEJJOkWGUOKpnwfWCKM2L+3bf5OwwiClJpYyO9bzQMmPB9UNfchv3/bPJ3GEQUpCRJmTMITPg++OOHtf4OgYiCmBIjdAAmfJ98UmfzdwhEFKQkKDNCB2DC9xEH4hORPBKi9IqM0AGY8H2Snhzr7xCIKEi1tl9XrC0mfB88NSvF3yEQUZDq6va80NNwYsInIvIjJe/xYcL3QWElJ04jInm0X3cqstoVwITvEy5kTkRyyis+FVxr2o5knEuHiOTkFAiuNW1Hshlm+VeiISJ1C6o1bUeyj6zyr0RDROrG+fADBM/hE5Hcgm5N25GK5/CJSG6ln5+XvQ0mfB+kxCtz2zMRqVdlvfxzdjHh+2DH8XP+DoGI6JYx4fvgor3D3yEQUZCbpsCcXUz4PogKD/V3CEQU5J7MvFP2NpjwfZAyhufwiUg+YyJ0XMQ8cHABcyKSz9w0ZdbMZsL3QYQ+xN8hEFEQU+J0DsCE7xPBBa+ISCa5Cyxc8SqQXOns8ncIRBSEvpMYiZ/PMSvWHhO+D3inLRHJ4bNGu2Jz4QNM+D7JSU/iZVsiksWLJZ8rMhc+wITvE1OcEc8vsPg7DCIKQt1OwRWvAs0PJo71dwhEFKSUmAsfYML32R8O1fo7BCIKUkrMhQ8w4fussv6yv0MgoiCkkYDsqUnKtKVIK0GBl22JaPgJodwBJRO+j9LGRvg7BCIKQgJAXvEpRUbqMOH7aJSO0ysQkTycAoqM1GHC99Hp83Z/h0BEQezj2mbZ21A04b/++uswm80IDw/HlClTUFpa6rXOO++8A0mS3B5PP/20AhHfUNfchlONrYq1R0Tqc6qhVfbTOoqdp9iyZQtyc3Oxdu1aTJ06Fe+++y6WLFmCiooKPPDAAwPWq6qqgsViwZ///GeX8oSEBJkj/lZhZQM4fxoRyUngxmmdFxbeJVsbiiT89vZ2vPLKK3juuefw8ssvAwAWLlyIjIwMrFu3DgcPHhywblVVFdLT03H//fcrEWq/Gm1X/dY2EamH3DdgKXJK5/jx42hpacHSpUt7yyRJwrJly1BeXo729v53UgiBU6dOYfLkyUqEOSBOnkZESpD7BixFEv7p06cBAKmpqS7lZrMZ3d3dqK3t/y7W2tpaOBwOVFZWwmKxIDQ0FBaLBdu2bfOp3Y6ODrS0tLg8WlsHfy4+Jz0JWg3H4RORfCTIfwPWLZ/SaWtrw/bt2wd8/vbbb+9NspGRkS7PRUTcGNtut/c/AqaqqgoAUFdXh82bNyM0NBTbtm3Do48+is7OTjz55JMeYysoKMC6det83ZUBmeKMeG3ZROQWnbrl1yIi6s+vFFgI5ZYTvs1mw6pVqwZ8ftasWZg/f77H19Bo+v+hkZmZib1792LOnDkwGm90xIIFC3Dx4kWsWbMGTzzxBCRJmSPv7KlJ+MOhWtReUmYaUyJSj7SECEUWQrnlUzqJiYkQQgz4qKioQFRUFADA4XC41O05su95/mZjxoxBVlZWb7LvsWjRIjQ1NeHChQu3Gv6gXOviWB0iGn6R4coMmFTkHL7FcmMueavV6lJutVoRFhaGO+/sfwHfw4cPY+vWrW7l7e3t0Gq1iI2N9dhuXl4ebDaby6O+vn5I+1DX3IaWq9eGVJeIyJPjdTa8UW71vuEtUiThZ2RkwGg0oqioqLdMCIGSkhLMmjULOp2u33rl5eVYsWIFzpw501vmdDpRVFSEjIwMhIWFeWxXr9cjOjra5THQrwlPdp9owIObK+Dg2rZEJJON/1kdHDdeGQwGPP/881i/fj3CwsKQkZGBP/3pT/j0009RUVHRu11jYyMaGxtx7733QqfT4amnnsKbb76JxYsXY/369TAajXjjjTfwz3/+Ex9++KESoaOuuQ15xacgeDaHiGSkxI1Xik2tsGbNGqxfvx5bt27FsmXLcPbsWfztb3/DjBkzerd55513MH36dJw/fx4AcNttt+Hw4cOYNGkSfvnLXyI7OxttbW0oKyvDfffdp0jchZUNcDLZE5EC5L7xShJCXceuLS0tiImJ6f3bZrMhOjp6wO2f/r8n8f6p8wpERkRqt2p2SnAc4Y9UvMuWiJSgxI1XTPhe5KQrs/QYEanbwnsSZL/xigmfiBSl0L2SI86BLy7IPkqHCd+Lwkr5V6EhUpNYg+fh1GrV7RSyr3rFhO8Fp0YmGl6GMK2/QwhYQTE98kjGi7ZEw6vB1o4YQ6i/wwhIQTE98kiWk54EzoxMNLxsV6/7O4SAw1E6AcAUZ0Rmary/wyCiIKfE9MhM+EREfpYSZxwZ0yOrQQt/fhKRjO67c7Qi7TDh+4AXmIhITvYOZaZeZ8L3gSUh0vtGRERD9GXTFUXaYcL3wQyzMj+3iEidrnU5FWmHCd8HH1m/8XcIRBTERumCaInDkY532xKRnJyCR/gBQ2VLBhCRwr5suiL7xGkAE75PzirwRhCRusk9cRrAhO+TVo7DJyKZyT1xGsCE7xOtlpPpEJG85J44DWDC96quuQ0Nl+X/5iUidbuuwNBMJnwvuAAKESnh3SN1XPHK375ssvs7BCJSAQH5L9wy4XvBidOISClc8crPOHEaESmFK175GSdOIyKlcMUrP8tJl/cNICICgDtiw7nilb+Z4oy4zxTr7zCIKMj9KP0O2dtgwvdBwcOTIPHeKyKS0cHTF2RvgwnfB6Y4I3413+LvMIgoiF2wd8reBhO+D3afaMCmA9X+DoOIgthtkTrZ22DC96KuuQ0vlnwOJ2dIJiIZPTsvVfY2mPC9KKxsQDezPRHJKHtqImaOj5e9HSZ8L7jaFRHJbWqyMiMBmfC9SIwx+DsEIgpyL5Z8zhWvAsEM82h/h0BEQa7bKbjiVSD4yPqNv0MgIhXgilcBgOfwiUgJXPEqAPAcPhHJTauRZJ84DfBTwt+7dy8kH+cq6Orqwssvv4ykpCQYDAbMnDkTx48flznCb+WkJ4GzKhCRXLQaCQXLJso+cRrgh4RfUVGBn/zkJz5v/+yzz2LLli3Izc1FYWEhQkJCMHfuXFitVhmj/JYpzohJiVGKtEVE6hJtCMX/e3YWfqjA0T2gYMJ3OBx46aWXMHfuXISFhflUp6GhAW+++SY2bdqEZ555BosXL8YHH3yA2NhYbNiwQeaIvzU9JU6xtohIPX5wz1hFjux7KJbw3333Xbz99tv4/e9/j2eeecanOmVlZejq6sLSpUt7y3Q6HbKyslBaWipXqG44Jz4RDTeNBDyZeaeybSrV0OLFi1FfX4+nnnrK5zqnT59GREQEEhISXMrNZjO+/vprXLlyxWP9jo4OtLS0uDxaW1sHHbspzogQXt4momGikYAND09S9OgeAEJu9QXa2tqwffv2AZ+//fbbsWTJEqSkpAz6tVtbWxEZ6b7EYEREBADAbrdj1KhRA9YvKCjAunXrBt1uf7QaDbqczmF5LSJSt5z0JMXO2/d1ywnfZrNh1apVAz4/a9YsLFmyZEiv7fSSYDUa5Q67RxvD8HVrh2LtEVHwutLZ7Zd2bznhJyYmQgh5ZpOMioqCw+FwK7fb7b3PK2WWJR47P/F+67MuRIPOroG/qIxhWrRd88+bTUSBQYmbrPoT0GemLRYL7HY7Ll265FJutVoxbtw4hId77rS8vDzYbDaXR319/ZBi+VlmCjQeBuRnTRqL8udn44PVmdAOsKFGAt7/5Uw88YBpSDGMNBoJmGOJx4N3jbnl1wk0Em5MaUs0WBoJitxk1Z9bPsKX07x58wAARUVFvaeNOjs78f7772PhwoVe6+v1euj1+mGJxRRnRMHDk5BXfMplMZSeiy99z8e9tmwiXiz53GUe/b43V+Rn3Y1YYxg2/mc1PP02kiQAAm7bSBLwq/kWODq78HFtM041tLpso9VIeHjKv6D45Ff9zuUvAbAkRODMBYfbvty8uUYCfrXAgorqizheZ+v3tcRNf38nKQrTU+KQPTWp96LU7hMNbn0iAZhticeaxROw49h/450jdW5tb3h4EqYmx2L3iQZUNzlgvejAucu+zznSE0+MIQyHzly65YVs+sZsijNCANhzotFjndHGMIyJ1EEI4Msm91+sAJAUE45GW/uAnwcJQHyEDvpQLUK1Eq53C4SFaDDaGIrKepvb+5g82oizg5h9MdYYistt193Kow2hiNSHoOHywLEBQIQ+BFmTxiIpxoDNB8+4fe76+2Wr1Uh4bl4qHJ1d+Mc5G+qa23C924lQrQamOCPCQ7Vu75lWI+H5+an4r6/tOGJtRle3QFJsOB6fYcLZ5jY02tqRGBOOUboQbOknjr769qlRp8XYqHAYwrQ4fd6OC/ZOhGglpN42Cg2X23Hew+lcjQQI4f7/AOj//64/Ltb2ti/kOh/jwa9//WusW7fO7VRQY2MjGhsbce+990Knu7Hc14oVK7Br1y68+uqrSE1NxZYtW3DixAmcPHkSZrN50G23tLQgJiam92+bzYbo6Gif69c1t2H3iYbeD1bfpDbY7W7eJiNlND6u/calDgC8/eFZfFJ/GQCQnhyDn2WmuLzWQG31lFc3OWC7eg3RhjDclRDh9vzN7Q0U92C3H2yfDLVv+/bbKJ0WEiQ4OruGFP/N70F/78nNMR2uuYRXS0+j4XI7NNKNJDJutBGWPn3dN/aB3s++8XnaD1/7tW95hC4EAgJXOrsHfG1P/d/3OSEEai9dQWt7F26L1OHZeakui3f4Eo+3fRrsZ8KXur68l768Vt++9PT/APD+f1dxwg/Wrl0r+mu6p7yurq63rKOjQ6xevVqMGTNGGAwGMXPmTHHs2LEht22z2QRufPEKAMJmsw35tYiIRhK/HOH7060e4RMRjVQBfdGWiIiGT0BftJXDzT9ohnLnLRGRv0VFRfk863AP1SX8njH8PZKTk/0TCBHRLRjK6Wie0iEiUgkmfCIilVDdKB2n04mGhm+nSIiMjPTpPFhra6vL6Z/6+npFp3YIROwTd+wTd+wTd8PRJzyH7wONRoNx48bd8utERUVxOOdN2Cfu2Cfu2CfulOoTntIhIlIJJnwiIpVgwiciUgnVncMfKr1ej7Vr17r8rXbsE3fsE3fsE3f+6hPVjdIhIlIrntIhIlIJJnwiIpVgwiciUgkmfCIilWDCJyJSCSZ8IiKVYML30d69e32eqKirqwsvv/wykpKSYDAYMHPmTBw/flzmCJXz+uuvw2w2Izw8HFOmTEFpaanXOu+88w4kSXJ7PP300wpEPLwOHDiA9PR0GAwGmEwmbNq0yW1hnZvt3LkTEyZMQHh4ONLS0rB161aFolXGYPvEarX2+3m45557FIxaGY2NjYiOjkZFRYXXbWX/nPhtNd0RpLy8XIwaNarfhdf788wzzwiDwSB+97vfib/97W9i9uzZYtSoUaKmpkbmSOW3efNmodVqxfr160Vpaal4+OGHhVarFYcPH/ZY7xe/+IWwWCzi6NGjLo++C9aPBEePHhWhoaHipz/9qdi/f7946aWXhCRJ4rXXXhuwTlFRkZAkSaxevVp88MEHYuXKlQKA2Llzp4KRy2cofbJnzx4BQJSVlbl8Hj777DMFI5ffuXPnRFpamgAgysvLPW6rxOeECd8Du90u/uM//kNotVoRGxvrU8I/d+6cCAkJEW+88UZvWUdHh7jjjjvEE088IWe4srt69aqIjo4Wubm5vWVOp1Pcf//9Yu7cuR7rzpgxQ/z0pz+VO0TZzZ8/X0ybNs2lLDc3V0RERIirV6/2Wyc1NVVkZ2e7lGVnZwuz2SxbnEoaSp+89NJLIjExUYnw/KK7u1u89957YvTo0b25w1vCV+JzwlM6Hrz77rt4++238fvf/x7PPPOMT3XKysrQ1dWFpUuX9pbpdDpkZWX5dOojkB0/fhwtLS0u+yZJEpYtW4by8nK0t7f3W08IgVOnTmHy5MkKRSqPzs5OVFRUuOw/ACxfvhwOhwNHjhxxq1NfX48zZ870W8dqtaKmpkbWmOU2lD4BgKqqqhH/efDk1KlTWLlyJf71X/8V27dv97q9Up8TJnwPFi9ejPr6ejz11FM+1zl9+jQiIiKQkJDgUm42m/H111/jypUrwx2mYk6fPg0ASE1NdSk3m83o7u5GbW1tv/Vqa2vhcDhQWVkJi8WC0NBQWCwWbNu2TfaYh9PZs2dx7dq1fvcfAKqrq93qeOqzgeqMJEPpE+BGwnc4HMjIyIBer0dCQgLy8vJw/fp12WNWwh133AGr1YotW7bAYDB43V6pz4kqJ09ra2vz+K17++23Y8mSJUhJSRn0a7e2tiIyMtKtPCIiAsCNRdRHjRo16NeVmy990traCgBu+9d33/pTVVUFAKirq8PmzZsRGhqKbdu24dFHH0VnZyeefPLJYdgD+Q1l/4faZyPFUPavubkZX331Fbq6uvCb3/wG48aNQ1lZGTZs2ICGhgbs2LFD/sBlFhsbi9jYWJ+3V+pzosqEb7PZsGrVqgGfnzVrFpYsWTKk13Y6nR6f12gC80eVL30yf/58j68x0L5lZmZi7969mDNnDoxGIwBgwYIFuHjxItasWYMnnnhi0Eu1+cNQ3tuR+nnw1VD2z2g04sCBAxg/fnzvMn+zZs2CTqdDfn4+8vPzkZaWJke4AUupz8nI/rQNUWJiIsSNC9b9PnwZPjWQqKgoOBwOt/Keb+hAXcvTlz7pif3m/fO2b2PGjEFWVlZvsu+xaNEiNDU14cKFCzLs0fAbyv4Ptc9GiqHsX3h4OObNm+eypitw4/MAAJ999pkMkQY2pT4nqkz4crJYLLDb7bh06ZJLudVqxbhx4xAeHu6nyG6dxWIBcGNf+rJarQgLC8Odd97Zb73Dhw/3O564vb0dWq12UD99/SklJQVarbbf/QfQ71Gppz4bqM5IMpQ+qampwR/+8Ae0tLS4lPdc9I+Pj5cn2ACm1OeECX+YzZs3DwBQVFTUW9bZ2Yn333/f6ymRQJeRkQGj0eiyb0IIlJSU9P4k7095eTlWrFiBM2fO9JY5nU4UFRUhIyMDYWFhssc+HPR6PTIzM1FSUuJyU1FxcTGioqIwbdo0tzpmsxkmk8mlz3rq9D2lMVINpU/Onz+PlStXYs+ePS7lhYWFiIyMxHe/+13Z4w40in1Ohm2AZ5Bbu3Ztv+PwGxoaxNGjR0VHR0dv2aOPPip0Op3YvHmz2Lt3r5gzZ46IiIgIihuv1q5dKyRJEvn5+aK0tFQsX75chISEiCNHjvRuc3OfNDU1iYSEBJGamip27dol9u7dK77//e+LsLAwcezYMX/typCUlZUJSZLE8uXLRWlpqcjPzxeSJIkNGzYIIYRobW0VR48eFRcvXuyt89577wkAYtWqVWL//v29N9Ts2rXLX7sxrAbbJ93d3eJ73/ueiIiIEK+//ro4ePCgWL16tZAkSfz2t7/1457Io7y83G0cvr8+J0z4Phoo4feU971jtKOjQ6xevVqMGTNGGAwGMXPmzBGX2AbS3d0tXnnlFZGUlCT0er2YMmWKKC0tddmmvz6pqakRy5cvF2PGjBHh4eEiMzPT6925gaqkpERMnDhRhIWFCZPJJDZt2tT7XM9/7vfee8+lzltvvSXMZrPQ6XQiLS1NbNu2TeGo5TXYPmltbRXPPvusSE5OFjqdTtx9993i7bff9kPk8usv4fvrc8IlDomIVILn8ImIVIIJn4hIJZjwiYhUggmfiEglmPCJiFSCCZ+ISCWY8ImIVIIJn4hIJZjwiYhUggmfiEglmPCJiFSCCZ+ISCWY8ImIVIIJn4hIJZjwiYhUggmfiEglmPCJiFTi/wOQiOGR/C+BswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_samples = 12000\n", + "uniform_samples = np.random.uniform(-1, 1, size=(num_samples, 2))\n", + "uniform_samples = torch.tensor(uniform_samples, dtype=torch.float32)\n", + "\n", + "mean1, mean2 = (0.7, 0), (-.7, 0) # Means in 2D, y-coordinate is 0 for both\n", + "variance1 = 0.04\n", + "variance2 = 0.04\n", + "\n", + "# Generate samples from the mixture of 2D Gaussians\n", + "mixture_samples = np.concatenate(\n", + " [\n", + " np.random.multivariate_normal(\n", + " mean1, np.diag([variance1, variance1]), num_samples // 3\n", + " ),\n", + " np.random.multivariate_normal(\n", + " mean2, np.diag([variance2, variance2]), num_samples // 3*2\n", + " ),\n", + " ]\n", + ")\n", + "mixture_samples = torch.tensor(mixture_samples, dtype=torch.float32)\n", + "plt.scatter(uniform_samples[:, 0], uniform_samples[:, 1], label=\"Uniform\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAA66ElEQVR4nO2de3RU9bn3v3sC5EauJBAwocQJCahEqUk8YiHBgtAKLkVMqn1L0dZa+npuYIG+h+prXasGAznntKuVQj1eeryEEtY5Rzy8cilJoBwlKWK8JSG3OlGCCbky5EKY/f4R9ziXfZ3Z19nPZy3WIjOzJ7/Mnv3dz++5MizLsiAIgiAiHofRCyAIgiD0gQSfIAjCJpDgEwRB2AQSfIIgCJtAgk8QBGETSPAJgiBsAgk+QRCETSDBJwiCsAkk+ARBEDaBBJ8gCMImkOATBEHYBBJ8giAImzDF6AXoDcuyGBwc9P6clJQEhmEMXBFBEIQ+2E7wBwcHkZKS4v25v78fycnJxi2IIAhCJ8ilQxAEYRNI8AmCIGwCCT5BEIRNIMEnCIKwCST4BEEQNoEEnyAIwibYLi2T0J6OXjeq6l3o6r+CzJQ4lBVmITst3uhlEYTtIcEnVGV/gws/O/gBrnlY72P7Trbj2XWLUFqQZeDKCIIgwSdUo6PXHST2AHDNw+JnBz9A4bxUsvRtDu3+jIUEn1CNqnpXkNhzXPOw2N/gwrbVC3ReFRGIUaJLuz/jIcEnVKOr/4rE8yM6rYQQwijRpd2fOaAsHUI1MlPiJJ6P1WklBB9SotvR69bsd8vZ/RHaQ4JPqEZZYRaiHPydR6McDG3bDcZI0aXdnzkgwSdUIzstHs+uWxQk+lEOBuXrFtGW3WCMFF3a/ZkD8uETqlJakIXCeanY3+BCV/8IMlNiUVpAmRhmwEjRLSvMwr6T7bw7DNr96QfDsiz/Hi9CGRgYoH74hC3p6HVjRWWtoOge21ys6Y2ZL2DM7f4eIMHXBRJ8EnzCRhgtuh29btr9GQgJPgk+YTPMJLpUiKUvJPgk+Lqh1sVNIhEZCO02qBBLO0jwSfB1Qa2Lm0QiMhCLJzAAXvlBEZbOT9d/YREOpWUSmqNWwY+RhUOEuojVBLAANrxwhoqxNIAEn9AcqYKfzVXn8PhrZ1F+uElUtKlaM3KQqglgAbqJawDl4ROaI3Vxv+cawHuuAQDA72rb8NNVefjJ8hzF70PVmtogFTMJJaYiVRMAUMM9LSDBJzRHzsXNwQJ47u1msAD+d4Doyy0coqBuePh+fpfHJlDX0gPfjZVvs7VQm7GJFWL5QjdxdSHBJ1TFVywSYqaAZYGLQ6NgMCnmctn1djO+vWi2n1DLqdbkEyCxXYOcv8NONw2+zy8QLmYyOykm5A6YXBuObQcaRb8X1HJBXUjwCUUECuEdOTPw59ZLgtZgqLBA0HaeEwmhwiEAvAIktmvgw65924WC4nxc87CoPNIS1vyD0oIszE6KwYYXzvCKPrVcUB8SfEI2fEK4p7ZN0XswAEoWzMSAe9zrtxeCbzsv1qun/HCTqFjx7RoCsXPfdrGgOB8Xh0ZFn5fjjlk6Px071+cL3sQj9bM2ChJ8QhZKrD8xWAALMhJQWpCFO3fVhLSdz06L57Uc5WR+SFmddp7aJfX5BTIrMQafDwqL/sefD6L8cJOkO4wa7ukHCT4hC6XWnxhHP7oIV98VFM5LwZnOft7XhLKdlxMclrI67ZwJpCS4HuVgsPmuXGx8sV7we9HW40ZbbZssd5jQTZxQF8rDJ2Sh1PoTo7XnMg41XhAV+1C282WFWeAfv/IVUkFAO/dtFxtg4wt3fpbOT+edfxAIFcaZB7LwCVkkxGj3VXEwwHcK52J4bCKs7Xx2Wjx+uioPz73dzPu8nF2Dnfu2CwXFHQxQnJuO6TFTkZkSiyXOyUD946+dRWZKHF56uBCn2y7h6EcX0dpzmfe9xdxhds2IMgISfAKA+EW3v8GFqnrtqlg9LJAUNxW//DLTJhx+sjwHLCYDtL6SLXfXIJUJFOlCJOVP39/gCnLjcC6bBbMTBAUf4HeHCaXRFuel46m1N0b856031DyNmqeJNiQrnJcq2ORKDAZASV46TjT3yHr92pvn4NcPLuZ9LhQLkGsB3NQ9jAH3OJLjpiIvI9EvjVTsvczUQtgsSA1QKS3IxOtnhA2DTSVOPwtf7P2AyZ1F+f35Eb2r0huy8G2OVBriA7dmior9zZmJaOwa4rWm23rcsgU/MyWWV9jrO/tCyonPTotHdlo89tZ95Z450dwTlEYq9F4URAxGKoMJmDz3QjeEJc4ZKD/c5D2/gyPjot8tDwvFqbDkHhKHBN/mSF3E9Z19ose7xzwoyUvHwJWrSI6f5k25zE6Lx+OvnZW1BgbAxDVPkLW3t25SnAOXJycnXm4aqR3y69VCKnBf29KDpfPTgorvohwM7v/6dUGuIOnwsLJUWLsWzCmBBN/mSF3EjMRl2dpz2eu3ZQD0XR4Dy04GP+Wm+bEA9p3sCHpcTKu5LpuVZbcgOy0+yLKTsh4D3yuS8+vVQup8fj4wis8HRuFggOV5/kFevvRNuU5COamwdi6YUwIJvs2RuoinTXHI7oPDAni/axDvdw1i38l2bFmZq8YSBXnPNYA7d9UgMyUWXf0jinr1BBLJ+fVqIbfhmYcFapp78MoPipCZEod/rDoXVg1H2xeX0dHrFhVsOQVzpQVZtnf3UNDW5kFbqcBZODgYcSvdTAQGFAl+5DRX80Vp0zwhpAK4j792FocaLwgef3NWMj78bND2k9J0L7w6cuQICgsLERcXh+zsbOzatQti95zW1lYwDBP076abbtJx1ZELl4Yop+BGKVYR+0jPrw+Vjl43yg83eYfTnDzfg/YeN5bNT8PirGTMTJgm+R5qfQU8LLC9uhEnz/f4rYkr5pLaqTa6BmhSGnR26bzzzjtYs2YNysrK8Mwzz+DUqVPYunUrJiYmsH37dt5jzp07BwA4fvw44uK+Oqm+/yfCIzD3uqvvimRjs0jBLvn1SvntiVZUBNQyBGY4qW8iiONhEdRZkwvKirmbxHYZdovf6OrSWbVqFQYGBvDuu+96H9u2bRuef/55XLx4EbGxwWXrO3bswMsvvwyXS53CH3LpSCO1PY4UaFg2P7/5UuytQpSDwbHNxbwpvFEOBjfNScT7XYOCx4vVgEQaurl0xsbGUFNTg/vuu8/v8fXr12N4eBinTp3iPe7cuXO45ZZbdFghwaGkiZaVYQGcbrtk9DJMRUevG7ssJPaAf1D22OZibCpxYu3Nc7CpxIljm4txuzNN9PhI7o8UiG4unfb2doyPjyM31z9zIydnciBFc3MzVq5cGXTcuXPnkJOTgyVLluDs2bNITk7Gxo0b8cwzz2Dq1Kmiv3N0dBSjo/7tWwcHhe/0kYrSYhS52RhiOBggOXYq+q5cDfk99KC5e9ivGMgumRtC34mqepdqfne55MycjoWzE8GybMg7Sy7Liq9gTuz77GBgq/iNboLPCW1iYqLf4wkJCQCAoaGhoGN6e3vx2WefYWJiAs899xy+9rWv4fjx49i5cydcLhdeffVV0d9ZXl6Op59+WqW/wJrwZVXsrWvDstx0TI+ewityQv1kpOByry+PXkVtS4/pxR4ATjR9gT81feH92Q6FOmIFSs3dwdeh1qy8YRa2rV6A8sNNIb/H5dHJ75rQjezZdYuwrboRfA7s+s4+W9zkAR0F3+PxiD7vcAR7l+Lj43HkyBHMnz8f8+bNAwAUFxcjOjoaO3bswI4dO7Bw4UItlmsp+L7kwKSwv3Em2GLj8qQ5uJz5odEJv/c4trnYG8h9/9N+fCqRq36iuQcV6/Ox/eAHlsnQCVxmpBfqSBUo5c6aHvJ7p8ZPQ597XNExXIZUR68bRz/uDvl317b04LcnWrH7aAvvjaxwXipv8DaU9g1WRjfBT0pKAgAMDw/7Pc5Z9tzzvsTGxvK6ee6++27s2LED77//vu0Fn7fbYF0bGMhPi7zmYYNaCgfuAi6PXpUUfAD46YFGJcs3DLtmbkgVKA1cUSbYvigVewbAlpW5vMFWpXhYBGUVAV/dyEoLMgWvh0g+34HoJvhOpxNRUVFobW31e5z7mU+4z58/jz/96U8oKyvzy6QZGZkUnvR08eyK7du34x/+4R/8HhscHPTuFqyOkLXGsuHnPwfuAiIJBkBhdgrOdPAPYAEit/JWqpXGhcExnVby1XB5Nd+Pj2seFvUi5xqI3PMdiG5ZOjExMVi2bBkOHjzoV2hVXV2NpKQkFBUVBR1z4cIF/PjHP8Yf//hHv8erqqqQmJiIW2+9VfJ3Jicn+/3j20lYFTXHDtoJFsDVCfHPLVIzN+ySgaWUSD3fgehaeLVjxw6sWLECpaWleOSRR3D69GlUVFSgvLwccXFxGBoawscffwyn04n09HR84xvfwDe/+U1s2bIFIyMjuOGGG/DWW2/hV7/6FSorK22fP6/m2EG7kRI/TbSVb6QGbdXIwLIihdkp6Ljktt35DkTX1gp33nknqqur0dzcjHvvvRevvvoqKioqsHXrVgDA2bNncfvtt+Ott96aXJzDgYMHD+LRRx/FP//zP2PNmjU4cuQI9u7dG+SqsSNkrYVORmIMb0uJSK+8FWqlEWrVrN7VtmIIrSXKweBHy5y2PN+BUPM0C1faatn4LNJxMMATd+Xh074rqO/sAwMGRdmpeHTZ9Za++OXWXARO9HL1XVGUA3/ngpnIy0gQbH1sBDdnJeHDz4Z4R1M+8KUFb/dJZiT4FhZ8gD9Lh2GgKEuHmMTq3RPFRlWK/U37G1zYXt0o6/viYICd9+d7BVTp8VqyqcSJ0oIsWwu6FCT4Fhd8gN9qAYDdR5pt0RNHTbi+LL4iYYWxeVLzZgP/JjnHBTI3NRZLnGl4rNgZ9Pn8rrYNRz6+qDg1Uy0cDHB8S4npzovZoAEoEYDQ/FXy8SsnMCfbKmPz5AwA4fuOKMn0+rRvBJ/2ufDHv3R5/36l/fG1gMHkriNQ7K1wo9YbEvwIhrJ4QqOpe7I40Epj86TOdWCeeUevG3vr2vDm+58r/l3c388A2HagUffeO4HcnZ/h52ICrHOj1hsS/AiGLPzJeAYA3h4qQtQ0fYH9DS609/Cn8QHmq86UOte+eeZq+NyveVjTVFW/1diNhbNbMfxla5CEmCmoqncF/X1mvFHrDQl+hMC3fbVrzjUAJMZMwXXJsUiMnYLPB0bhUlBJyWKyv8rS+eJtdfWuzhRzUYida988845etykCrGrCArL795vtRq03JPgRgNj29dl1iyLuApfD0OgEhrqHpV8owDUPi0GJbp96VmdKuSiEOpwG5pnzWb52wy5tFPggwbc4Un7mY5uLUVaYhdfPqDMxzE6YpRpXbiwhcFQlX1oixXXs00aBDxJ8iyMnO2N4dELnVUUGXDWulNWsNUoycAIztrhB5JwbKCHG3pe8ndoo8GHvsx8ByMnOoOBtaLBgUVqQBQaTPuLh0atIiJmKn67KC8oK0RKlGTgcfG4gh5l6IeiMg4Gt2ijwQYJvceRkZ5QW2Dd4Gw7dQ2NY9S91aPaJBYxcHcNPDzTiV8fP4+78ObrkdivJwOEQcgPZ+SvgYYG3PriAgoAsHS3y9c1aA0CVthattOW+UM3dQ6hp7uHNhWYAfKcoCz9a5kR9Z58pcqathNiQFA492jGEUkW7vboRb9QLx23k/G2RioMByu/PFywcC/ecavGeakGCb0HBV1rdyAAozkvHp71utF+ioJ3aMABe+UERls4XH8gTDkIi4tsYDJi8OTz95keyhtcwjLL6hEgiysHgpYcLBRu/ibWjECPUFhd6QYJvMcGnDpnmhAGwc32+5pa+WAaOWZqYWYXFWcl4zzUg+PymEqfifP3yw03YU9um6nuqCfnwLQZNuTInXLGWllWcQj2TgK989vTVkE9Hr1v0+VDy9UMNsOsFCb7FoDxq8xJqFacaAT4yBJQzMKJ+YV0oAXY9IcG3GJRiaW6UWnBqNflq6h5S9HuJSYSC16Hm68ttcWEUuo44JMKnrDAraEwboQ2hfMpKLDipCloplwPH/gYXamUEaYlgWATXJoRTWCc0QtIsoxTJwrcY3BeKgnPakxo/Dbc7U1HT3IPLY9ckX6/Uggu1h70v3E2Dvgrh8VDRXAyPTagyJUtOiwujIMG3IKUFWXjv037qj6Mxl9zjONTYjewZcbg8Jh47CcWCUyPAR7778PGwwCcXhlBZdotqoiwWYDcSculYFOqPox8dErULDxXNxbHNxYrbLagR4KMgvjq85xrAN3fXYH9DZBtRJPgWhYK3+jI3NTbI1+tggIr1+fhliL5ZsXiMXPeQ3ZuhqYmHBbYeaMTGF8+g/HCT7BiKlaDCKxMWXslJ06MCLH2ZmRCNqsduV90vK7eCVuhYiuVoh1naIagJCb7JBF9JHw4zDJC2C7MSo/Hu/1mhyXtz82XrO/oBAIXZKfjRMqfozeTk+R5seOEMBWs1xgztENSEXDomQmmaXmlBFo5tLsbCjAQ9l2lLtLzg6zv7sL+hC609l9Hacxmvn3FhRWWtoD95f4OLxF4nuGypSIEE30TISdMLpL6zD5+EMcqPkMfYVQ8ef+2s6r5dpTd5SsPUHyXFdNzAGS2+K2pAER8ToTRNjxtITWjPe64Bb6OtUCphhVCai09pmPqTEC1PJtWqmtYSEnwTIZV5c3nUv/cHDaQ2Bt9ZsgC8cwn6r1zFtCkMxidYpMRNRV5GomRfHKU3eUrD1B9Wxn5K7txhoyHBNxFlhVnYW9cmKOK1LT3o6HV7vzh08RvHNQ+LX7z5EerO9wpa3CeaeyQtPKW5+JSOqz9yqqzVqJrWA/Lhm4jstHgsyxUeouFh4efHp4vfWE4090i6V6T64ijNxb8jZ0ZIPX6I0FGjAM7otsgcJPgmY7qEv9D3i1NWmGXrodRWQSzTQ0mzrf0NLmx8sZ4CtjrC3XSlgrFmb4vMQS4dk6Hki5OdFo/7b83EHxu6tF4WESZiFp6cZltCPmJCOxgA5esWob6zTzIYK9YWGZA25PSCLHyToWSLf/J8Dw6Q2FsCKQuPa7b16wcXY9vqBUEBPsrO0Z+SBTNRMC9VVtpsdlo8tqzMFXyvyqMtpkjRJME3GWJb/C0rc1FV78Ljr53FxhfP4HtUfGMJ1Bh8QQF6/VmQkaCoNmZIpKGhWQq4zLHPIIL657z0cCFOt13ybvEToqdg99EWsvIshlqDLyhAry8MgCXOGaiqFxdpX1edFQK3JPgmQKxgY9vqBdQozWQIjcXzZUFGApYvmCm7wRpfwzwA3semR0+R9XsJdWABbHyxHkvnp4m+ztdVZ4XALQm+wcgp2CD/rbkoyk5Bw18HRM/J+S8u4/n/dasssee74e+tawMLwLe1ISVk6cs1D4sakdGRga46s8+zBciHbzhyfITkvzUXzvQEHNtcjMVZyYKvkeuzFbrhe1h/sQcmrU4+0acbgf7wuerMPs8WIAvfcOT4/ch/ay4+ujCI7LR4XJcS6+2vw4cWIwpZTE7YSoqb6o3vNF0YwgkaYq4LDIDvFGUJtq828zxbgATfcOT4/UoLxHN8CX1pdA2io9ctee4Soqeg/HCT6CCbUHZvw2MT+OW6Rd6fS3/3P4rfgwgNFkBy3DRRATfrPFuAXDqGI5Z3zwBoujCEqnoXNq/MFXwdoS8sgM1V59DcPSToTnEwwBv1n2JPbRsONV7Anto23h73oezefIN/vz3RijMdfYrfgwgdM2TbhAoJvsEI+f2ASWE50dyDPbVtqDzagrtumEX+WpPwnmsAJ5p7eLNmHMzkuQvckPH11RG74fPhW+q/vboRz73dHNofQIRMV98VUxRRhQKNODTJiMOOXjf2N7jQ1D2MmqYvKP3OYjCYrMxckJGAfvc43hDJ395U4vTb8v/2RKss4eaCf18Mj2HX2830HTEQq867JQvfJHB+v7xZCXQhWxAWk7n321YvwOUx4YpLINglIFahCQDJsVPxYNHkOMue4TFUkNirxrSo0PbMUl1QzQoJvsmgFEzrwgm50gIcqXM+MHIV+xu6cPiDC6ggF46qjF8L/dZplnYJSiDBNxmUgmldMlNi0dHrxuDIuGCsha8AR845v+ZhybI3IVYL4JLgmwylQTzCHEQ5GCRET8GKylq8fsbFK8xCBThyzzmJvfkwQ7sEJVAevong+qncNCcRjV2Dfhd4lIPB/V+/Dn9s6KIL32QwALaszBVsbidUrOPbP2fp/DTUtfTQjGILwQCWC9qS4OsEX3OswGlGgSX2DID8rCQscaZ5q/XW3jwHG6gtsmlgALzygyL8ufWSYGEcX7EO3/l2MMDclFh8ajE3gV0pyUs3TQWtXEjwdUCsGyaXU83XT4XFZFXnDbMTAUzeNP7cegn5mUlBOwBCfxwMsPP+fCydn66oja5Y/5yugRE4mOAcfsJcOBjgybU3Gr0MxZDga4xYN8xtBxoxOylG0jp8/YwLVfWuoO6JhPFwpyMhRvxS8vX1ivXP8bDA8rx01J3vpVYaJuC27FQ0/LXf71yYqRmaUkjwNUbs4mYBbHjhDPIzkyTfh6598+Fhge3VjegZHhO18LlhGhxSaZjTY6bi2OZi/OTf/4JPuofVWi4RAs3dw3jg1kw4GAYXhkYx4B5HctxUtPW40dHrtpzok+BrjNTFzQJo7BrUZzGE6nhYSObGc8M0OBeenDz97LR4jF/zqLhSIhQGRq56q6YZ5qsd9onmnqBB5laA0jI1Rk6OtVCfcyJy8K3MlDuo/ioJvqkIdKdasdqWBF9j5OZY52clUf59hMNVZsodlBEfTRtws3PNw2JfXbvRy5ANfaM0hru4tx1oFM2qWeJMw7+ULcb3/+1dfNpHaXmRCpetIzQoA4C3h/5liR47hDl4/cynuGVusiVcOyT4OlBakIXZSTGC+fPcNj47LR7fXjQHe2rbdF8joQ++2TqBgzL40ncJ88MC3vnTZg/i6urSOXLkCAoLCxEXF4fs7Gzs2rULUt2ZX3/9ddx4442IjY3FwoUL8fLLL+u0WnVZOj8dO9fnS27jqbVC5CI2yFoofZewBlZppKabhf/OO+9gzZo1KCsrwzPPPINTp05h69atmJiYwPbt23mPqa6uxne/+138/d//PVavXo3/+I//wMaNGxEdHY3vfOc7ei1dNeTMu+RcQHTxRxZiudsdvW78Y9U5Ot8Wp6l7WHKkpdHoNgBl1apVGBgYwLvvvut9bNu2bXj++edx8eJFxMYGNyHKy8vDLbfcgqqqKu9jZWVlOHv2LM6fPx/SOsw6ACWQjl435WFbCAb8zc2khl6TGydyCPwOmHFIii4unbGxMdTU1OC+++7ze3z9+vUYHh7GqVOngo7p7OxES0sL7zGtra2yBH90dBQDAwN+/wYHrZHzTnnY1qIkL53XXffc+nw8uy5f0LInsY8cAs+iGdM2dXHptLe3Y3x8HLm5uX6P5+TkAACam5uxcuVKv+c++eQTABA9Zv78+aK/t7y8HE8//XRYa+eQan6mDeTLtwKMT18VMXddIGJV2ERkwPn2fYPzRqKL4HNWdWJiot/jCQkJAIChoSFVjtEKqeZnasPdXK5eu6b6exMa8OXXIjDrRgqabmYPzDQkRReXjscj7ppwOIKXEcoxWiDW/EyL7dr+BhdWVNZiT20b5eNbBBbA3jrlqbThTjfLmTkdm0qcyJ5BU9LMjJmGpOiimklJk83Bhof9A5Cclc49H+4xgWzfvh39/f1+/zo7OxWtXWzbrXYqFvl0rUt9Zz86et0oP9yEx187i/LDTZLGQDgpuFEOBvs2FKC0IAudfbRTMCtiqbhGoIvgO51OREVFobW11e9x7ueFCxcGHZOXl+f3GjnHBBITE4Pk5GS/f3JuFL5IbbvV3K6RT9e6DI1c9e7MDjVewJ7aNqyorBU1CIRaLEjdAhjAm+K5t66NWmYbzKSoZ0rW2JgBXXz4MTExWLZsGQ4ePIgnnngCDDP5wVRXVyMpKQlFRUVBx+Tk5CA7OxsHDhzAAw884H28uroa8+fPx7x58/RYuqzOhmpBPl3r0jM8JpilIVaByVebcej9z+ESMSSyUuPwwJdW45mOfrX+BEICBsDNWUlYODsRDBgMj034Bec3leQoCtobgW6FVzt27MCKFStQWlqKRx55BKdPn0ZFRQXKy8sRFxeHoaEhfPzxx3A6nUhPTwcAPPnkk3j44YcxY8YM3HPPPfjP//xP7N+/H2+88YZey0ZZYRb2nWzntbzV3q6F69MljEPIyJaTpREY7D3y0UXR3zVtyuTG/OT5HjISdMKZHo//e8+NWDo/XfA1SoP2RqBba4U777wT1dXVaG5uxr333otXX30VFRUV2Lp1KwDg7NmzuP322/HWW295j9m4cSP27NmDo0eP4t5770VtbS1eeeUVlJWV6bVs2Z0N1aCsMIsSMS2GgwHSE6JFX6PU7VeUnSL6/PjENaz6lzp874UzGJugWg09aOtx43svnMHGF8+YKq9eKbpV2pqFUCttO3rdumzXfnuiFc9JDNQgrMWmEqciy6+j141v7q6hKWcmxcEA5ffnmyoYKxcSfBO2VvjNiVbJKUqENYhyMDi2uVixcbC/wYXt1Y0k+iYl1PNqNDQAxYSkJ0SDGmZan3DcfqUFWTi+pQSbSpzISZ+uweqIcLBKd8xAqB++yeBy8YUsu4SYKAyPUgWu2cmZOR37NhSEZQFyQUBX3xW09lxWcXWEGpipglYuJPgmwLdPT1f/iGguPom9NVh5wyzVtvuUvWVOzFRBKxcSfIOh9riRyRLnjKDHQm3AJ5YaTBiD2Spo5UI+fAOhVgqRy+m2S34/+/ZIkluJyyGUGkxoy4z4aZgRPzXocTNW0MqFLHwDoVYKkYuvf1eqAZ+cWahcRS4NxdGPS+5xMADyMhIQNzUKKfHTkJeRYMoKWrmQhW8gVCUZuVwever9v1oN+Oo7+9B8kcReT1gAzd3DeM81gNqWHmSnxVtW7AESfEOhYFzkUtvS463IVKMBn1T2FqE9ZpxgpRQSfAMJpz0uYW48LLyWezgN+LiWyz98uZ7cfybAqvn3HCT4BpKdFo8tK3OlX+hDlINBxfp8LJydgCl0szA1nOUudmMXy/bwDfS29VjXqow0rJh/z0GCbzBDoxOyX8tlB3B+xQmy+EwNZ7mH0oCPMrjMixXz7zkoS8dAOnrdOPpxt+hrcmZOx8LZid6GbQCworKWfLkmJ9By5+t7L5btQRlc5oWvxsIqkOAbhNyCq5U3zPLrtFh+uImEwOQIWe6B/dI5/zxfIRZlcJmX022XRPvimxkSfAOQu13n8++SEJgbBsCWlbneiVQcHb1u7K1r+3JCFYsZ06ehobPfb6e272Q7nl23CKUFWZKB3pyZ05EQPQXvuQZU/xsIccL14Ydaca0GJPgGIGe7LmQlUiqnuWEB7D7agm8tmu09d3ytjvmCsL6FWFKT1vZtKAAA6ptvAOH48Pl29r43eq2hoK0BSFnpOTOn49jm4iArEaCpWFbAN3Wvo9etqK89d6zcQC+Jvb6E00NHquJaj/x+svANQMpKF+u0mJ0Wj5+uyqOpWCaH2/ZX1bsUizJ3rFSgt6reuvngViTcHjpyKq61nolLgm8A4Q5G/8nyHLAATcUyMdy2P5SYi6/LQGwwNsVz9EON+QZqVFyHC7l0DECNwejk1jEvvjdtpTEXJS4DiufohxrzDcKpuFYLsvANQmleti8nz/eQS8ekOBjgibtyvVkY06OnwMHI87UrdRmUFWZhb10b+fE1hgFUCaiGu7NXAxpirtEQc61Sr/Y3uLDtQCNsddIsxG3ZKWj464DfRc0wAFgEnTMGQEleOqbHTFV0w/eFBt5rj4MBjm8pUe36DQzccjd6viQNtSHB10DwhU6qWOoV3w0CgN9jd+TMwMYXqYmWmflS24NwMMC3F81G05e97AvnpeBHy5yCIiLHYOBL9yS0YVOJU7WAakevO6SdvRqQ4Kss+B29bqyorBXcth3bXMx74QbeIBhmUjx830ZITAhrIFc05BgMHb1u3Lm7Bva6eo3jzgUz8W8bC41eRthQ0FZllA67EMrNZdlgvy9d2+ZGKpCupO+9VK7272rbSOzDZPHcZKy9eQ42lTixMCNB9LX9V8Z1WpW2kOCrjNLUK2qSFRlEORiU5In3V5GThSHXYKjv7FO+SMJLlINBZekt+PWDi7Ft9QLMSooRfX1y3DSdVqYtlKWjMkpTryiX2po4GKA41z/gCgB154XdeXKyMOQbDJSYGw4PL5nn51pdkJGImuYewdcPuMfR0eu29HhDgCx81VE67IJyqa1FzBQHZiZEo2BeCvIyErF5ZS5KC7JQVe/C7iPNWDo/DYGnX266ZUevW9LtwxkMRdkpoq8jxPn9qQ78+N8bvD9LTZ97zzWAFZW1lp52BVDQVtcsHb7UK7EgLx9RDgbfuikDhxovqLpmIjT4gut81r+U2Mtpl+0b9KegrTokxU5F2vRoFGWnIDMlDpVHW2SfAytCgq9hHr7c1Cu5WTrcTaO2pYcE3+QwAF75QZGsvulybvp8BsP+Bhe2VTeS6KvEZNFcHo5+fFG07bSaKZp6Q4KvkeBLEZhnfUfODJxuu+R3gwDAe9MoP9yEPbVtuq+ZUAYDYOf6fEnfvdT5XDw3GZWltwiOQtxX144zXwZxWQ+LNh26LkYqDgZYlpsu6s9fvmAm8mYleCupGQYYHp3Qvbd9KJDgGyD4oRRm+aLUDUQYhxwXwOOvnRXdsa29eQ5+/eBiWb9P6r0IaRZnJYta+GL1MEquYyOgoK3OqNETm2u+Rnka5oev9iIQtZpqyQn6EtKkxE8TDeCKmVl69rYPBRJ8nVFamCVEaUGWZN43YQ6kRFhpZhcf+xtcWFFZi3M08jBs8jISeLvZyjWwlFzHekN5+DqjZk/svIxEnBDxNRLawzCQDJpKWejcjk0os0tOOqecGcmENA4G3lhZYDfbpgtDsq83s+60SPB1Rs2e2GWFWZMl9uEuilDEwtkJyEiKxYKMBJQWZKGr/wo2vHCG9zzItdBDbZfd0evGP1adI7GXyeK5yfCwwPs8OyEHA+y8P9/7mQcOnyk/3CRb8PXobR8KJPg6I6cntpxOidxr8jISvB0YCX0oyZvpJwTZafHYuT4/ZAvd932UpPvJyd0nvoJrp8DVMeyta0N9Zz8AoGheKh5ddr3ouRK7dgN/j1mDtpSlY6IsnfJ1i8ACkhk8dKEby9qb52DzylzedtZ6tb2lTC1lqNVzXura07O3fSiQ4BuYhx8oDgAkWyuLvYYIHwcDXJcSC1efsA92eV466s73hpxWqwZUiyENA+DmrGTc7pwRdPMNZ0CR77U7PToKDBgMj03o3ts+FEjwDRJ8PqQu4k0lTrAs6ELXiNT4aRi4Mi46UIRL3OB7jZ5l95RvL41Q4Vu4dTBWhtIyTYRUBk9z9zCOftyt02rsR59bXOyjHAyKc9MFX6NnOh413ZOGBbC9utEvJ16NOhgrQ4JvIqQu4hNNX6CtJ7K/kGZl8dxkHNtcjPho8TwHvdLxygqzqPBOBh4WfjdhtepgrAoJvomQatFqK9+bychMiUN2WryqabXhkJ0Wj2IqvJOF701Yahd9uq2X9/GOXjfKDzfh8dfOovxwk2V3AiT4JoIrwAm1wo/QDk7I1aiKVYun1t4Y1HufCMb3Jix1w250DQaJOVfFvKe2DYcaL2BPbZtle+OT4JuM0oIsHNtcjE0lTu+8TSlLbm5qHNbkz0ZO+nTkpE/HbTQcQ1V8hVzopqw0514NstPiUX5/vuiu0O5wlbMcUq4wFv4uoEjz+VPhlQnhq/ATa9fq6ruCT/u+2qq2UrcF1eAT8lCrYrXAdy1HP7qI1p7Luq/BrARWzgKT11Z+ZhLe7xoUPM7XBSTH52+l3vgk+BZAqsKPfPvqwgAoWTDT2zqBT8iVVsVqCbeW0oIsqtH4koWzE/Db797Ke+5ud6aJCr6vC0jN3ldmgFw6FoB8+/ryQEEmXtxYiG2rF5iyiEYogCj0PbEjOTMTBM+dkjiMWYL0akGFVyYqvJIisDr3kwtDoq4eIjQCC6jCqcpUGzlFQ4HfkyXOyWlqzd3D6L8yjkvD4/hUwnK1OlJjCOXOnRZrYWHF+bYk+BYS/ECovF47OMGQElg9bwZqiU9Hrxvf3F0jWmRmdX66Kg//e3mO6Gvkzp2We3OwAiT4FhZ8aqAlD7GRdEJwDdLEBHbzylxUHm3RrURfTusNuXGFSB+Arrb1LffmYHYoaGtBfK3KpfPTUNfS42etRTkYbFmZi+GxCXT1j+BkSw8GRq4at2ADqVifj4J5qfjhy/WKqpQzU2IlMzR2vd0cdCPh0vUK56WqLghqBhC57J69dW04/GE3Bq5Y7/tx96IMvPUBf6sRtTNozBSkDwcSfIvBt710MJMdHKfHTOW1Pr65u8a2gt/e68YDX4qbXMHnAne7jzSLvk7IONYqXS+UAKKYy2kyyJuPby+aje+9cEbVterBB58JZ9oA1sug0QMSfAshVATiYYG6872CW1glYhdpHP3oIk639oqm4fniYODNuw+nQZkWYiNneI4vfMbBvpPtQS6nP7deUn2tevCpSAtrwHoZNHpAaZkWQknjJ9/UveFRe1r3ANDac1m22HNwn/AdOTNC/r1aiI2SKl8lFaJSriKOGfHTMDc1DlOjzJ/2GXgDjJReOOFCFr6F+B+Bxk4cnFVJE7FCx8PC64OXsnyFgsFa9tSRW+WrpEJU7k7mknscl9zj4f0BCggl2A4E3wDl7nTsAAm+RejodaNRwlKdHh2F7dWNqKp3UfVtGHCCKGX55mcl4cPPhsKaYxsKcgKISgK8ZYVZ2FvXZro0zdU3ZeD/fdQtK5MoZ+Z0LJydGHQDlNrpaBFcNzO6unT+9V//FTk5OYiNjcXXv/51/Pd//7fkMb///e/BMEzQv8cff1yHFZsHOSJeVe/CGyT2qjBpPYtbvkucaUGN7o5tLjZFbraSAC/XhM1svP1Rt2wTf+UNs/DrBxcHVUfbvf99ILpZ+JWVldi6dSueeuopFBQU4IUXXsA999yDmpoafOMb3xA87ty5c8jLy8NLL73k93hGRobGKzYXcvysZrPQrAxnKUoFSc2arqc0wMu5in7w0hm095qjClfJ93mJkz/eEmm9cMJFF8EfGRnBM888gy1btuDnP/85AGD16tVYsmQJnn76aRw9elTw2HPnzqGwsBB/8zd/o8dSTYvWI+2ipzgwNuHR9HeYDYYBr7vAV8yfXbdIsMrSzK6AUNaenRaPPz2xHCfP96DyaAsuDo1hVmI0rkuOwaFGc4/WPN12CUvnB7cRj7ReOOGii+C/++67GBgYwH333ed9jGEYrFu3Dj/72c8wMjKC2NjgD55lWTQ2Nvodp4TR0VGMjo76PTY4qCxjwyyIWWyhBrc4ohwMZiZGwyWR5hZplOSmo+58r6ggmqkVslKk1i6Uo790frqfeHb0uvFWY7epXYVClrrSnU6ko4vgf/LJJwCA3Nxcv8dzcnJw7do1tLW14aabbgo6rq2tDcPDw6ivr0deXh7a29tx/fXX45/+6Z+wYcMGyd9bXl6Op59+Wp0/wmA4i217daPfVtfBAMty0yWbqEU5GNz/9etQffYzXoH7y1/78UafvfyZzd3DeODWTDgYBsNjE4Jibia3jdLePb5r9z328tgEapt7/ER8b10byu/PDxJBbpyi3EZ9DIDlC2YiLyMBNU1f4JPuYaV/pmKELHUr79K0IGzBd7vd+MMf/iD4/Jw5c7xWdWJiot9zCQkJAIChoSHeY8+dOwcA6OjowO7duzF16lS88sor+P73v4+xsTE8+uij4S4/Iiial4qTAZYqBwPgwaK5eHTZ9chOi8emkhxei69gXiqqGlwR21uFj88HR/FGvUvT/jdqEk56oZxUXQ8LbKtu5M1ceWrtjahrkddwjQWQl5GAbasXYIlzhuZVvFKWupV3aWoTtuD39/dj06ZNgs8XFxfjrrvuEn0Ph4M/WWjZsmV48803sXz5csTHT56cVatW4YsvvsCTTz6JH/7wh2AY8xeBqAGXXhZ4wXlYYPfRFsFGXoEd/YSs1ey0eOy8P593B7HoOvEJQVbHCil64aQXCh3LB8tOWvrPrvPP2uEyebYdaJTl2uFcLEvnpyMjMRrdQ2MyjlKOXEvdTLs0Iwk7LTMzMxMsywr+q6mpQVJSEgBgeNh/a8dZ9tzzgcycORNr1qzxij3H3Xffje7ubly8eFF0bdu3b0d/f7/fv87OzhD/UmORSi+7PDYRdopgaUEWjm8p8XuP41tKcLszTa0/Qzec6fFYe/McLM9LlzXo2+wpeuGkF4ody0d9Zz/v46UFWZLzlTk4F8v+BhcuaiT2OTOnmyYN1iro4sPPy8sDALS2tqKwsND7eGtrK6ZNm4brr7+e97iTJ0+ivb0d3//+9/0eHxkZQVRUFFJTU0V/b0xMDGJiYsJcvTmQk16mhhXD9x5lhVn4XW2bqYN2gbT1uDElyoH5M6ejtCALDoZBTfMX+HxwVPAYM6fohZNeKLd1ghwWZCTKihdxswJ+dvADzb43K2+YZdodmVnRpfBqyZIliI+Px4EDB7yPsSyLgwcPori4GNHR0bzHnThxAhs3bkRLS4v3MY/HgwMHDmDJkiWYNm2a5ms3C0aml3GDn61Gc/cwDjVewBv1LlQ1uJCbkSD6+ssm7jkUzvlXmtJbNE/YkBIbD8hx05xEVNW7sLeuTbP2HnbMsFEDXQQ/Li4OTzzxBCoqKvDzn/8chw8fRmlpKf7yl7/gqaee8r6uq6sL77zzDsbGJreAjz32GDIyMrB27VpUVVXh0KFDWLNmDT788ENUVFTosXTToGQOpxZY0a3jyzUPi7qWHtE5wLUtPaZtqhXO+Zcj0hwOBnh0Gf+OG5A3N/f9rkHsqW3DG2fCd5HNTooJOmd2zbBRA91aKzz55JP4xS9+gZdffhnr1q1De3s7/uu//gt33HGH9zW///3vcfvtt+PChQsAgFmzZuHkyZPIz8/H3/3d36G0tBRutxvHjx/HbbfdptfSTYGSTolaoEQ0tCbUVXhYICtV2BL2sDCtHz+c8y93uDnDADvvz5f8LpUWZPnFix4qmssbJ5Gy7R8qmovbslMEn49yMHjt0b/Bn54oMWX7CitCIw4tNuLQyFFrZunCeVt2KsYnPHjPNaD42DnJMfh8QNiPv/bmOfj1g4vDWJ22hHP+O3rd2Fs3aXnznUEHAxzfUqL4+xTKbOUoB4OXHi7ExhfrBb9P21bnYVOJ+FxaQhnULdNiSAVmtRyqzeUzb646F5LYiuFg5PdOqe/sw8uPFImKhRCzEsQF3+yl9uEE5rPT4pEUO03Q8uZ2OErfXyooHFgJzu1K/tx6SfT8DY1OKFoHIQ0NQIkg9je4sKKyFntq23Co8QL21LZhRWWtqm6K7LR4VJbdopp75/q0eG/654NF8rbpHnayd4ocN4UvUQ4Gm+/KNTQWYjRaNBOTCgp/pyiL1yXT1M1fcMlxoukLxWshxCHBjxCUTDgKF7k+YTm097rRe3kM2Wnx+NEyp+z37Oof8fqS1+TPlnw9g8nRhUvnpxsaCzEaLbK9pOI7WSlx2LZ6QVD7YqnB6U3dw6YNolsVculECEomHKlBYLn65dGrOCGz10ogf2zowsj4NQDA0vlpqGvpkXTvcMIkd/bsg0VzvYE+O5faa9FMLDstHptX5qLibf6h77uPtuBbi2YHfb4pcVMl31uLYfB2hgQ/QtC773dwrCAXsxLb8EZ9aO6jQ40XvP93MJOB2TMdfbJGCEq5BgDgW4v85yfYtdReq2ZiwyL+diGDIy8jUdJIMHMxnBUhwY8Q9CzMEmriddcNs1R5fw8LNPy1H0+syhPsD+Q7r7RWxs5CqF+6HdFihxOKwSGngtvsQXSrQYIfIejV91ssVnD4Q/WGZPj2BxLr5y63dJ8sRX/U3uEkxIhLCZ9w13f2iR5jhyC63pDgRwh69f1W2ogrHKT6AylZC1mK2rG/wYUqEVcen3BL3awdDGwRRNcbEvwIQo9gpJqNuKSQEmm5ayFLUTuE2nZzCAm31M26rDCLqmk1gAQ/wtA6GKn1bF0OOSItZy12Sbc0ilCFW+pmfXnsWthrI4IhwScUIRYrUAsGk+mZ4awlcNIXoQ2hCncoSQZaVpHbBSq8IhQh1sSrtCBTlWIsFkBNc49klbDYWp5bn49fkmWvOaFmhynt/qlHFbkdoOZpFmueZhaEmnj5Pt7VdyXsnjtRDgbHNheLCreRDeXsTkevGysqawWzw8TOHV96L99YznB+B+EPCT4JvmaIXahK2FTitGWRlFWQK9x8yLlZS3XjpO+HfMiHT2iGUKpoIIHdFAOhHHr1UdMfHk52mJwkA72ryCMZEnxCU/jEYIlzBk63XfL+3O8eF23JQDn06iJUKf3sukUhp69qmR1m5HjPSINcOuTSMRzy0eqHkZ91qLsK+n6oB1n4hCEEXvxbVuZit0TfHEIYuWKqd1dVjnB2FXpVkdsBEnxCd4SCfJtX5uLy2ETI4/vsmqOtREyN8IeL9V/aXt2Is3/tx+WxCdHzZueW1mpCgk/oitjFX3m0JaTtuRY+aasgNfimcF6q3+dphD9cbFfhYeEXvxE7b3Ztaa0mVHhFiNLR60b54SY8/tpZlB9uCnsCkRyXgtL16TXpy4wo/TyVFjypgZL+S3Y5b0ZBgk8IokV1o9ouBbVvIFZD6ecpVp2slT9caf8lO5w3oyCXDsGLUleBXNR2Kdg9RzuUz1Nvf3go/Zci/bwZBVn4BC9aWc5quxTsnqMd6ufJ+cMDB4trQShD7yP9vBkFCT7Bi1aWs9ouBSN80mbCCBdNKJQWZOHY5mJsKnFi7c1z8FDRXAjpvx3Om1GQS4fgRUvLWU2XAuVoWydlMTDL5pa5ybY+b0ZAlbZUacuL1aobqWOmNaHzpi8k+CT4goTTBZEgCPNBgk+CLwpZYAQROZDgk+ATBGETKEuHIAjCJpDgEwRB2ATbpWUGerAGBwcNWglBEEToJCUlgWHkF7MBNhT8oaEhv5/nzZtnzEIIgiDCIJT4I7l0CIIgbAIJPkEQhE2wXVqmx+OBy/VV46/ExETFfrBIZHBw0M+91dnZiaSkJOMWFIHQZ6w9dvqMyYcvA4fDga997WtGL8P0JCUlUX2CxtBnrD30GftDLh2CIAibQIJPEARhE0jwCYIgbILtfPgEPzExMXjqqaf8fibUhT5j7aHPWBzbZekQBEHYFXLpEARB2AQSfIIgCJtAgk8QBGETSPAJgiBsAgk+QRCETSDBJwiCsAkk+IQkb775JjWYU4EjR46gsLAQcXFxyM7Oxq5du4IG8hDq0NXVheTkZNTU1Bi9FFNBgk+IUlNTg4ceesjoZVied955B2vWrMGCBQtw8OBBfPe738XWrVuxc+dOo5cWcbhcLtx11100zY4HKrwieBkeHkZ5eTl27tyJpKQk9PX1kTUaBqtWrcLAwADeffdd72Pbtm3D888/j4sXLyI2NtbA1UUGHo8Hr7zyCp544gmwLIu+vj6cOHECJSUlRi/NNJCFT/DywgsvYN++ffjNb36Dv/3bvzV6OZZmbGwMNTU1uO+++/weX79+PYaHh3Hq1CmDVhZZNDY24sc//jE2bNiAP/zhD0Yvx5SQ4BO8rF27Fp2dnXjssceMXorlaW9vx/j4OHJzc/0ez8nJAQA0NzcbsayIY+7cuWhtbUVlZSXi4uKMXo4poeZpNsPtdotaP3PmzME999wDp9Op46oiG86XnJiY6Pd4QkICAGBoaEj3NUUiqampSE1NNXoZpoYE32b09/dj06ZNgs8XFxfjnnvu0XFFkY/H4xF93uGgjTahDyT4NiMzM5OCrzrDzVQdHh72e5yz7CN15iphPsi0IAiNcTqdiIqKQmtrq9/j3M8LFy40YlmEDSHBJwiNiYmJwbJly3Dw4EG/3VV1dTWSkpJQVFRk4OoIO0EuHYLQgR07dmDFihUoLS3FI488gtOnT6OiogLl5eWUUULoBln4BKEDd955J6qrq9Hc3Ix7770Xr776KioqKrB161ajl0bYCKq0JQiCsAlk4RMEQdgEEnyCIAibQIJPEARhE0jwCYIgbAIJPkEQhE0gwScIgrAJJPgEQRA2gQSfIAjCJpDgEwRB2AQSfIIgCJtAgk8QBGETSPAJgiBsAgk+QRCETSDBJwiCsAkk+ARBEDaBBJ8gCMImkOATBEHYhP8P6RTLuVRLquoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(mixture_samples[:, 0], mixture_samples[:, 1], label=\"Mixture of Gaussians\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bandwidth: tensor(0.0628)\n", + "Iter: 0 loss: 0.0028317468240857124\n", + "Iter: 1 loss: 0.0026132017374038696\n", + "Iter: 2 loss: 0.0023460667580366135\n", + "Iter: 3 loss: 0.0022469405084848404\n", + "Iter: 4 loss: 0.001986090559512377\n", + "Iter: 5 loss: 0.0018160156905651093\n", + "Iter: 6 loss: 0.001737288199365139\n", + "Iter: 7 loss: 0.0015592286363244057\n", + "Iter: 8 loss: 0.001450967974960804\n", + "Iter: 9 loss: 0.0013313470408320427\n", + "Iter: 10 loss: 0.0012849150225520134\n", + "Iter: 11 loss: 0.0013002967461943626\n", + "Iter: 12 loss: 0.0013061752542853355\n", + "Iter: 13 loss: 0.0013325968757271767\n", + "Iter: 14 loss: 0.0014072954654693604\n", + "Iter: 15 loss: 0.001346486620604992\n", + "Iter: 16 loss: 0.0014483612030744553\n", + "Iter: 17 loss: 0.001456654630601406\n", + "Iter: 18 loss: 0.001407652162015438\n", + "Iter: 19 loss: 0.0014006160199642181\n" + ] + }, + { + "data": { + "text/plain": [ + "Gauss()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit the Gauss model to the data using sliced Wasserstein distance\n", + "\n", + "# mean = torch.tensor([0.0, 0.0], requires_grad=True)\n", + "# cov = torch.tensor([[1.0 , 0.0], [0.0, 1.0]], requires_grad=True)\n", + "# mvn = torch.distributions.MultivariateNormal(torch.zeros_like(mean), torch.diag(torch.ones_like(mean)))\n", + "# data.requires_grad_()\n", + "# print(data)\n", + "\n", + "gauss_model = Gauss(dim=2)\n", + "\n", + "with torch.no_grad():\n", + " samples = gauss_model.sample(num_samples)\n", + " bandwidth = compute_rbf_mmd_median_heuristic(mixture_samples, uniform_samples)\n", + " print(\"bandwidth: \", bandwidth)\n", + "optimizer = torch.optim.Adam(gauss_model.parameters(), lr=0.1)\n", + "gauss_model.train()\n", + "num_epochs = 20\n", + "for epoch in range(num_epochs):\n", + " gauss_model.zero_grad()\n", + " samples = gauss_model.sample(num_samples)\n", + " #print(samples)\n", + " loss = compute_rbf_mmd(samples, uniform_samples, bandwidth=bandwidth)\n", + " print(\"Iter: {} loss: {}\".format(epoch, loss.item()))\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + "gauss_model.eval()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEfCAYAAABI9xEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADFUElEQVR4nOydd3xT5f7H3ydJ073pgg5oKXtvpMgWUcAFKigoIKJXrwMHXPVer/uiqPzcCwduERAHIiAoyN7ILmW0lBa6d9MmOb8/nubknDbdKat5v16BnOQkOU3Oeb7P8x2fryTLsowLFy5cuGh26C70Abhw4cKFiwuDywC4cOHCRTPFZQBcuHDhopniMgAuXLhw0UxxGQAXLly4aKa4DIALFy5cNFNcBsCFCxcumikuA+DChQsXzRSXAXDhwoWLZorLALhw4cJFM8VlAFy4cOGimeIyAC5cuHDRTHEZABcuXLhoprgMgAsXLlw0UwxN+u7JSbDyO8jL0T4e2QaGjoWIqCb9eBcuLknKTHDuDJxNhbQUSE+BnMzaXxfYAuI7Q9vO0DIGJKnpj9XFJY3UJP0Aystgw0rY+Zf28aAQGHItxHV0nZwuXNSH0mI4kwynT4hbWgpYLdXvHxAMXfpAp17gH3j+jtPFJYXzDUBJEXz/sZi12NDpYMBwGDAC9HqnfpwLF82SMhOknhSr7FOJYrVQHdFtodcgMfHSuby+Luw41wAU5MLijyDrnP2x4FC45lYIj3Tax7hw4aISeTlw7AAkHoDTx8HRZe0fCD2ugO79wd3j/B+ji4sO5xmAvGz45n3IV/n7u/eH4ePB4OaUj3DhwkUdyMuBAzvh4C7HsQMPT+hzpVgVuAxBs8Y5BsBUCl+9A5np9seuGAlXjHL5+l24uFDIsogX7N4ER/eDbNU+7+4BvQdD3yvB6H5hjtHFBaXxBkCWYfnnkLjf/tiwcdBncCMPzYULF06jIBd2bYLdm6HcpH3O2xcGXQVd+4DOFaNrTjTeAOzeBGt+sG/3HwZXjmncUblw4aJpKCmCnRth119i5a4mOFS4bFu3uzDH5uK80zgDkJcNn7wm0j5BnDgTZrjcPi5cXOyYSmHrOti5Acxm7XPtuopVvF/ABTk0F+ePxhmAxR/CyURx39MLpj8KXj5OOjQXLlw0OQW58NcqETRWDwUGNxg4AvoOcaVuX8Y0zgC88rj9/thJ0LGnEw7JhQsX552zqcKVe+aU9vHgULjqJlG97+KywzlVIW06QIceTnkrFy5cXADCWsHkf8CYm7Wr+Kxz8PW78Nv3ohrZxWVF47WADG4w6nqX39+Fi0sdSRLyEW07CymXvVvsbqF92+DYQRg+Tkz2XNf7ZUHjVwBXjAT/ICccigsXLi4KPDxh1A0w+T4ICbc/XlwIP38N338EuVkX7vhcOI3GxQA+fQ2mPOgKErlwcblisYhMoY2rwVxuf9xggP7Dod8QV6X/JUzjDMDZVOE7dOHCxeVNbpYIEp84on08IFjUDsR1vCCH5aJxNI0ctAsXLi4/ZBmO7IN1P0Fhvva5Nu1h2FgIDrswx+aiQbgMgAsXLuqHqRQ2rhLSEmp9IUknBCCvGCnkJVxc9LgMgAsXLhpGRhr8/iOkJGkfN7hBryug31Dw9L4gh+aibrgMgAsXLhqOLIs+BH/8UjUzyM0d+iRArwTwchmCixGXAXDhwkXjsVhgz2bYslaki6oxuEG3fkIh2JUyflHhMgAuXLhwHuVlsGsjbPsDSku0z0k6aNcFeidAq9YX4uhcVMJlAFy4cOF8TKVCcnrXpqorAoDwKNGRrH03UVPg4oLgMgAuXLhoOsrLYP9O2LHecfWwp7dwD3Xv73IPXQBcBsCFCxdNj9UqtIR2bhBtKisjSRDbQTStb9POpTV0nnAZABeOsVhE68CyMiEBYDGLxiEWs7iYrZaK/60iE0SWRU647XSy5YerTy9JAiTxv04POp2QEdHrRcaI0Vjxv7voV+saBC5PzqYK19Dh3VWb0YBYCfQYAF37utJImxiXAWhuyLKo4sw6C7nZkJ8D+blQlC/aBZYUi5vFwYV5PtHpwMNLNBry9QefAPG/fyAEtoCgEDE4uIzEpUtpsXAP7dkMOZlVnzcYRI+RnoMgrOX5P75mgMsAXO6UFMHpk3D6OKSfhsz0qtkZlyruntAiDEIioEU4hEZAaEtwM17oI3NRH2QZTiWKVcHxQ9pVo42oWOhzpdAcchl9p+EyAJcbsgxpycLfmnRIDPiNRacXszG9we6ykXTicUkCnSS2JUnr5pGg4h/t8dncRRaL3bVkLhcuJ0cugfogScIohEVBy2hoFSP0aVyDxqVBfq7oQ7Bvm+PsocAWwhB06ePKHnICLgNwOSDLYnZ/YCcc/RuKCmp/jY8fBIaAnz/4BQn3iqe3cLl4eonZtZtR3M6n3LfVAmUmKC4Sq5fiQuGyys8V/WvzsiE7o36rGHcPaNkaomMhMlYo2LokzC9uzGY4slesCtJTqj7v4yekJrr1c634GoHLAFzKFObD/h1i4M/OqH4/Lx+xhG7VWrhIQsKFf/1SprhIxDEyzwpNmsx0OHdGpB3WhptRrAwiY8X3EhHtMggXK7IMqSdhxwYhOVF5uPLygQHDofsA14qgAbgMwKWG1Qonj4plctJhrRqjDUknmni37SRS6wJbNA8XiNUKORliNXQmWTQ4z0hz7FNWY3CDyNYQFQfRbSG8lXBvubi4yM2C7euFe8hq0T7nGwAJV0GnXiKBwEWdcBmAS4XCfPh7O+zdKlwhjohsA517Q3xnV/qcDVOpiImcPgEpx4VhqDx4VMboLoxBTFuIjhMB5uZgQC8VCvOF1MTerdouZSB+qxHjhSF3USsuA3AxY7XAiaPw9zY4dsjxbN8vUORLd+7lqqSsC+ZySEsRxiAlSRiEyoNIZTy97KuDmLbNZ0V1sVNYAFt+F4agslHv0B2GjhWxLRfV4jIAFyPZGXbffuXOSyBcPG07ifL51q6qyUZhNosVQnISJB+r2wrBNwBi4qF1W/G/l895OdS6UPlylprDuZGbBX+tgsN7tO4+N3e48mroeYXrGqkGlwG4WCgthkN74eBOMQg5wjdAZD106yeyICqQZRmLxVLtzWq1Kjf142azWbnZtsvLyzWPV97H9n6yLGO1alckOp0OSZLQ6XTo9Xr0ej0GgwE3Nzf0ej1GoxE3NzflZjQalccMBoPmvu1/g8GgvO95obxMuIuSjwmjcDa19hhCWCthCNq0F4H2OgaUZVmmuLiY/Px8CgsLyc/Pp6CgQNm23YqKiigqKqKkpISSkhJKS0sxmUyUlZVRVlam/D6Vfw8QBkD9O9i+c3d3dzw8PPD09MTT0xNvb2+8vLzw9vbG29sbHx8ffHx88PX1Vf63PWc0XqRZN2kpom9x5ayhqFgYc4soInShwWUALiDlpSUU7N2O5e8duCUnYikvx2I2Y7ZYsNoGaatMkuTOXquRI2UypaYy5eIvLy9XBuzLHYPBoAxk6vs2Q6N+rvKtslExGo2aAdGRAbI972a14JubgW/OWbyz0vEoyBGzyYrLRpZlZNv/VivlOj1ZPkGc9Q4k2ehLfrmZ4uJiZRC3DeoFBQUUFhZWmbFfChgMBnx8fPDy8lJuHh4eys1mYGzfp/p/RwbIZnD8/f0bb1xkWQSJ16/Qpgob3eGqG0VlsQsFlwFoYkwmEydOnODEiRMkJyeTevo0UnoKMQWZtJdMeOkcz2zTy2W2FlvZUWKlyIHr38WFwUcH7dwl2rnraO8u4a+vfmUiA8dNVv4uldlTYiXf9TvWipeXF8HBwYSGhhIREUFUVBQxMTG0a9eOwMB6zOCLC2H1MlEXo6b7ABg+3pUyWoHLADiZgoICdu7cyd69e9m/fz/Hjx/HarXiBvTx0pHgrSPCzfGgUWiR2VliZXuxlTNOntTbXAE294x69lzbzFm9n+09bG4Zm2tGlmXlZnMTqV1HthWL2WxW7qtXMTZXxqVGmAHau+vo4C7R1l2HoRp7IAMnTFZ2lcjsLa1q1L28vPDz88PPz8+h28XmorHNmo1GIx4eHoo7zfYb2X4X229hc/vZ3HtlZWIFaTKZKC0tpaSkhOLiYs0qxbZSKSoqUlYqBQUFDl1M55OwsDC6detGnz596NevHwEBATW/QJbh0G5hCMpM9sdbtYbrp15UsZsLhcsAOIGCggLWrl3LH3/8wd69ezXLek8JBnvrGOyjw9vBbL9chqOyG0nu/uT4tcCnYhBQX/ReXl6ai962vFa7MtRuEfUgrx6sL3ZsxqOsrAyLxaIYDEfxCttj6uccxTbUcQ2bsalsdCrfV/9fOY6i/m0rxzo8DXpa663EUUYbSzE+WNHp9eh1OvG/7WZwwxQTj9y1Hx7tOuPt44P+Ii9Ek2WZ0tJSxUDYDEZxcXGV2ERpaSnl5eWYTCbNd23732aEbO9XXFyMyWSq/SBUSJJEjx49GD16NEOHDsXd3b36nfOy4ccvtbEB/yC4aZqQCWnGuAxAI0hKSuK7775j3bp1lJdrUwl1wFW+Oob66PHQ6fDw9MDD3R13dw/c3Y1YWrZG170/vr364+bte2H+ABdNh02eI3E/HN4rBiFH+AeJzlhd+wrJimZKWVkZeXl55OTkkJmZydmzZzlz5gynTp3i+PHjZGU5aCZTgbe3N+PHj2fixInVu4nMZlizTNTS2PDwhIl3ie5kzRSXAWgAp0+f5oMPPmDDhg0On28f5Mc9UQFEehjwrli2S5IkKk679hVpacGh5/moXVwwbMbg0G44tMexyJnRHbr1F/1y/QLO9xFe9GRmZrJv3z52797Nli1byMysKh/t4eHBpEmTuOWWWxyvCGQZtv8J63+1Z3Z5eMKt9whF2WaIywDUA7PZzBdffMGXX35ZxV8dEBDAqJEjGR/uR6uTB5HUueQenmKW13MQeLkqdJs1FouQPN67DU4eqZpiqtOLScKA4S5DUA2yLHPw4EF+++03fv/9d4qLizXPt2zZkrlz59K1a1fHb3B4L/zyjb3ew8tHGIFmOClzGYA6kpaWxtNPP01iYqLm8bZt23Lrrbcy5MorMfz2vZjlqekxEK4c06yX9y6qIT8Xdm8UlaymUu1zOr3oijVwhCtYWQPFxcX8+OOPfPPNN+Tl5SmPS5LEnXfeyZQpUxzHv47uhx+/sFfX+/jBlAc09TXNAZcBqAP79u3jqaeeoqDALrMcGhrKPffcw9ChQ8UJtu5n0fjaho8fjLlZVOq6cFETplJR+b19fVWdJ3cPuGKkWD1e5IHiC0lRURGLFi1i8eLFmkD90KFDefLJJzE4Svs8uAtWfGtfhbWMgVtmNasUUZcBqIXt27fz1FNPUVZmlxkeN24c99xzD15eFZLKO9YLA2AjOg6um3LpSy67OL9YLEL3afPvVSVAAluI/PXYDhfm2C4RDh06xAsvvEBqaqry2IABA3j22Wdxc3Or+oJdG+H35fbtbv1g9ITzcKQXBy4DUAMHDhxg9uzZyuBvNBp5/PHHGTFihH2n9BT44i37LCK0pfAnulw+LhqKuVz0yd20pqprqGMPYQhcbqFqKSgo4Nlnn2XHjh3KYyNGjODJJ5+s6g6SZVi1RFQP2xh3mxCTawa4DEA1ZGZmMnPmTHJzcwHw9PTkpZdeont31Ykhy/DFmyLDA4Qy5233g48rrdOFEyguFCJn+7Zqg8UenjBsnJD+vgTqOy4EZrOZZ599VpOpd88993DLLbc42hm+fc+uweXlA9NmNwsj6zIADpBlmYceeoh9+/YBQvtk/vz52sEf4MAuWPGNffuWu5tMhzwxMZGFCxdy8uRJWrduzYwZM4iPj2+Sz3JxkZGRJmaplUUCYzvA6ImuCUc1mM1m5s6dy86dOwHQ6/W8++67jq+b3Cz45DW7NHjHHjB28vk72AuEywA4YOnSpbz55pvK9qOPPsq1116r3UmW4bPXIaOi6Xr7bjD+9iY5nk8++YSZM2disdhTS/V6PR9++CHTpk1rks90cZFhtQq30PqVUK6qmvX0htE3QXyXC3dsFzEFBQXcddddnDt3DoB27drx3nvvOc4M2vkXrP3Rvj35H0I24jLG1TutErm5uXz88cfK9rBhw7jmmmuq7njmlH3wBxg0qkmOJzExscrgD2CxWJg5c2aVtFQXlyk6naglmf6IkJ22UVIEPyyCXxfXrR9yM8PX15e5c+cq20ePHmXNmjWOd+41SEh72/jjl9qlwC9xmk++U21knYFda8jYsYnJoRZWpOvI1XnywAMPOJ4t7N1ivx8d12SaIgsXLqwy+NuwWCx8/PHHvPTSS07/XFmWKSwsJDc3l7y8PEWrXq1Nr5altmnlAEiAhyTjKYG7ThJSGHoJo8GA0aDHzWDA6OaG3s2IweiGm9Edg6cXek8v3Ly8MXh5Y/Dxw1ihf+Tu7o67uzu6i6zX6wVxy/kFwE3Txfm37me7y2L/djhzUgQwQ1s27TFcYvTs2ZNhw4axbt06AL788ktGjhxZ9bqWJBFb+eY9sX3mFBw7KFqsXqa4DADA7t/hx3dAthIPxEd7cEuUOztb9nesOFheBkcP2Le7D2iyQzt58mSjnldjtVrJz88nLy+P3NxccnJyyM7OVm6ZmZnk5OSQk5NDbm5utYbHTYJQg0SYAVrohSRykB4C9BLeOvDWS9QnNCkD5RU3dc6LySpTZIV8K+RZZArRUSAZKDK4U2T0oMTdCzdPL0VTXt3MxNfXV7lVVtl0hjCeI7fc/Pnza3XLmc1m5bu3GVebgVU3gCktLVWMa2XXn8FgwN3dnXB3AyNKswi1mnAzuOGWm4vbe//DOvRafBNGIV1kBvNCMm3aNP744w9kWebUqVPs2rWL3r17V90xKhbiOkHSQbG9/U+XAbisyTqjDP5q9JJE3/Qd4vngSjOqk0ftflg3I8R1bLLDa926dY3Pe3t7s2HDBmVQr9xNyibla5u91xejBNFuEtFGiRg3iUg3icDqNI+djLtOwl0HotOx7TPN4mYtgpIscgtl0stlzppl0sywu8xKuhmqEy7W6XT4+vri7++vGAabcVAbCR8fH6Vblk122WAwIEkSSUlJ1brl7rrrLgoLC/Hy8lIG99zcXGXQVxcTOoNfgat9dYzw1duN7pHDHHzrdTb6RhAW3Zo2bdoQHx9Phw4d6qepfxkRFRVF//792bJFrNxXrlzp2ACAkOGwGYDUk2Il0DLm/BzoecYVBF69CDYuq/75hBth5BTtYz9/bZd86NBdLLubiG3btjFw4MBqtdj79etnL0hzEi0N0MFDaNzHuuswGgwY9Ab0BiFtbOuIZeuEha0XAIAsY5VlkEFGxiRDWcXNIstYKv6XZRnJdkPGDRkjMkYJpIrnAZAqVhOq/2vDIkNaucypcpmTZVZOlclk1tLmtz4kJSWRkpJS7fPR0dHExsY67wPrQDujxG2BenxVDWqyzTKf5VhIKbdf4qGhoXTq1ImOHTvStWtX2rVrd9FLUTuL9evX8/TTTwOi/8Ly5csdVwgDfPWOGPwBOveCa249Pwd5nnGtAHIzann+nHbbJuZlo303px5OQUEB27ZtY8eOHezZs4f09HTi4+M5cuRIlX3bt2/foMHfYDDg7+9PUFAQAQEBBAcHE+nrTXtzIZH5GbiXFCgtKcsrGriUlZVRZjJRXiGCVy7DObNMhlkmxyKTa4Eci0yBBYqsMoVWKG3g1MJNAm8deEngLcn4SuCnkwnQQwujgTB3A8EGHW46HZJOQidJwkBIdteTD9BWlpGtMmaLmfxyC8dMVo6ZZI6XWUlrRO+Z0tLSRj0Poq4kICBA6f2g7pdsNBqVHsq2VpW2FopeXl4YDAbKysqUxi25ublkZ2ezNOMcVxaeoY1O/HFBBokHWhj4Kd/C+ooONOfOnePcuXP88ccfgBgIu3btSo8ePejSpQsdOnSoflC8xOnXrx9ubm6Ul5dTXFzMkSNH6Ny5GvdOr0F2A3Dkbxhx/WVZ3Hl5/tL1ISCklucrKQQmH7NXZxoM2oyMBiLLMlu2bOGXX35hy5YtVVwLERER+Pv7k56eTmlpKR4eHoSHh+Pl5aUZyG0DSuWG3j4+Psrjfn5+WK1WsrOzycjIoCjpCP4Ht+OffIYyk4mzJlOV1YbJKmbTyWUyyeUyZ8plsp04o65MuQy5FsgF7K6fiv+LrEAZEhCohzCDRLhBIsxNopWbuK/u0ihJEm5uboR5etJKr2d4RZMcs5s7ub5BZPsFk2b0IaPMomnIrm5UUlpaqlF/9fCoeSCIi4tj9OjR+Pn5odPpkGVZ6YRma4KSm5tLVlYWSUlJ9e6EZjQaCQsLU9ol9u7dmw4dOhAeHo4ElK5fifXPFZhKSyktNXGHfzFdC0x8fKaQkkpGubi4mK1bt7J161YA3N3d6dq1K127dqVjx47Ex8fX3nnrEsHDw4OOHTsq9T0HDhyo3gC07QTunmAqEYH2I/uETMRlhssA9BoJm5ZXiQEAIOmg5wjtY4f32u+3aS9iAA1ElmXWrl3Lp59+yunTp6vdLyQkhPj4eGJiYoiKiiIiIoKwsDD8/PzIz88nJyeHvLw8pX2fbYBJTU1V2vrl5+crfujy8nKi3CRG++ro5KFDxjbY2kkukzlssnK4VAz6lb8dHx8fxeB4enoCaLo/2bpB2Tpt2bps2TpsWSwWpQOYrXWhreOWettisSjtLCu3r8yS9ZwuKCYtLU0xjK0iIojz9ybKTaK1UaKNUSJELtNoOdk5TSAQrNNR5ObBOe9A8ltEUBbXDd/AIGV2buvGZuPkyZPcdNNNDoPkkiQRGxvL7t27ycjIaJKm72VlZaSkpJCSksKmTZuUx1u0aMGAAQNISEig99QH8Pr1W0VTKBYY18+T/a27syMtgwMHDnDo0KEqxsdkMrFjxw6NjEJQUBCxsbFERkYSFhZGUFCQEiNxc3NTWoNW/lsNBgMeHh5Kw/eLYWWhNgA1plAb3EQx2J7NYvvw3svSALhiAED+n8vwXvsZerV/WdLB+Pug53D7Y+ZyePtZe3/RsZPFSdIAUlJSmDdvHgcOHKjyXGBgIAMGDKB37950796dgIAAjh49yuHDhzl27BgnT57kzJkzGvnbuuIpwY3+enp7Vc0QyTDLbC+2srPEii4gmJYtWxIREaH8Hxoaiq+vLxkZGRw7doyjR4+SlJTE2bNnq80YcgbqPsNqA5KZmVnFFy9JEt27dyc0NFQZ9L0kiHWXiDOKvr0t3WrOUiqX4ajJysFSmUMmK7kO/rS0tLRq3XIREfVvLiJJkqb1py3gbGtxWVpaSmFhYZ1XC76+vowfOYJJATq8z6q+I0knalb6D8NUXs7+/fvZs2cPf//9NwcPHqzS2c5ZSJJESEgIcXFx9OnTh0GDBhEWdv7bMf7222/873//A8Rv9d5771W/8+kT8PW74r6kg3/8+7Lr5+EyAMCqVatYtGAeY8KNxAb6MHDMeDHzr5z9c3gv/PSluO9mhPv+06AVwJo1a3j11Vc1vmJJkkhISGDs2LH06dOHoqIi1q5dy8aNG9m3b1+9e6Y6Is4ocXugHv+KNE03NyNuRjcKvQM406YT7h26ExUdTXR0tBJbsFqtHDx4kPXr17Nnzx6OHTvWJLPa+lJcXMy2bduqfb5///7ExMTQokULZcbq7u5OUVEReWfT8c5Op0VxHm3dZEJryWpKLZf5u8TK36Xa2EFxcbFDt1xl/P39CQ0NJSQkBH9/fyRJUtxBtqbsJpOJkpISpR+yXq/Hw8MDb29vgoKCaNmyJbGxscTExODh4UFaWhrJyckcP36co0ePVruC1Ol0PDCgG2N8RB2GQlSsCGyqms6UlZVx8OBB9u3bx4EDBzh69KiiheVsJEmif//+3HXXXcTFxTXJZzhi//79/POf/wTE7/LDDz9Uv7Msw3sv2JVZr54omvVcRrgMAPD666/z44+iBHzMmDE8/vjjjnf89n1IThL3G5gZsHjxYt555x3NY4MHD+buu+8mMjKSpKQkvvnmG/744486z/b8/PwICAjQ+Py9vLyUnHgfb2/aZ5yk1emjoom8wYDeYEAKayVmg7EdNdk1ZrOZ7du3s2HDBrZs2UJOTk6djsPHx4fg4GD8/f3x9/dXmtrbGtnbXDe2RvU2bO4em6vIFnRWD5C2lFZbauWRI0calIkTHBxMfHw88fHxtG/fnsjISMzZGZQe2och5RheGWeQTaWYLRYsZjMWqxWrxYpVtoIsk2WVOGgxcMjqRo6bB15eovbA9jcHBQUREhJCSEgI7u7unDt3juPHj5OUlMSJEycUSYLGEBAQwIABAxgxYgS9e/dGkiRyc3PZtm0bf/31F1u2bKkyk2/v68FT3dvQys/Hvvrx8BTSx+0cd86SZZns7GyOHz/OqVOnSE1NJSsri+zsbKVWwVYEKMsykiQpMQ9b3MNWLFgdBoOBu+++mwkTJjilPqM20tLSmDzZrvGzevXqml1Tq5fZ3UDtugqZ98sIlwEAZs2axdGjRwF45JFHGDt2bNWdss7Bx/Pt2w3QCVm+fDkLFixQtn19fZkzZw6DBg0iKyuL999/n9WrVzt8rZubG+3bt6ddu3bExcURGRlJeHg4QUFBNZ/AZjP8/JVoTm5Dp4eEq6DvECExgMgO2b17Nzt37mTLli015qt7e3srqYTx8fFERUURFhZWa3DUWciyzMSJE1myZEm1+9jSHetCSEgIbdu2pU2bNsREtiLeQ09LUwHuKUlCJKw6AoKhU0/M7bpxuqiUEydOcPLkSZKSkjh69CgZGbVkmDmB2NhY7rjjDgYPHqwMoMXFxaxcuZLFixeTnm6XK/GQ4JGurRkaEYShIvUzMSOHhSfOcVIy0jo2rkmqmU0mE1lZWaSkpLBnzx42bNig0esHmD59OlOmNP3gWlxcrNH1WrZsWc1B7qRDsPQTcd/oDvf/97JqzNPsDYDZbGbMmDHKbPuDDz5wfAH8tkTI8gKEhMMdD9dLinffvn08/PDDSoZNREQEr776KhEREWzatImXXnqJwkJts/CAgABGjhzJoEGD6NSpE+np6Rw+fJjk5GRSU1PJzs4mLy+PkpISJZhqqxL18PDAz8uL8XIuMZYSdHo9Op2OEg9v9kZ1JlPvTmFhIRkZGZw8eZKzZ89We+x6vZ7u3buTkJBAjx49aN269XmZrdXE3LlzmTdvXrXP33fffUyaNEkZjA8fPkxWVg2DuQN8fX3oEBJEd2834qUywiwmqAh2Wi0WzBaLCHyXlXGqTGZbRfzEVMsV5eXlpQnot2jRAn9/f7y8vBTJC4vFgslkIj8/n8zMTE6dOsWRI0c4fvy4Qxdc//79mTt3rmYws1gs/Prrr3zwwQcagz62dTgPdIrmi+37mLnkNyxW+/udD5FBWZbZvHkzr732muY3efXVV+nVq1eTfa7ts4cPt8f1vv76a8LDw6t/QXkZvPVfMZEC0esj6vzWeDQlzd4AHD9+nBkzZgDi5F+5cmXVGXVhPrz/kr2JdD19gUVFRUyfPl1Z/oeEhPDWW28RGhrKV199xYcffqjZPzY2lilTppCQkEBSUhK//fYbGzZsIDMzs86f6QZMD9bT3t3uajlYamVRjoWyOvziRqORgQMHMnjwYPr164ev78UlOZyYmEjHjh0dBp/1ej2HDh2qYsizs7NJTEwkMTGRo0ePcuDAAbKzs+v8mQF66O6ho7unjtZGxwawXIbdJVY2FllJKZcJCQmhc+fOxMfHExsbS2xsLCEhIQ02oAUFBezYsYPffvtNSd20ERISwmuvvUZkZKTm8dzcXF5++WU2b96sPBbt78OXP63A4qDAsLrvz9nk5uZy//33K6uByMhIPvnkkybPFho1apQy4Vu0aBFRUVE1v2Dxh3CyImOo/zDR4/syodkbgLVr1/Lcc88BQnbhk08+qbrTup9gR0VjCR8/mDm3Xn1D33nnHRYvXgyIi+utt96iQ4cOfPPNN7z//vvKfh4eHtxzzz2MGzeOv//+m/fee4/Dhw836O+6M1BPN0/74L+vRAz+1UkkALRq1YqePXvSu3fvJqkwdjbVyWR/9NFH3HnnnbW+XpZlMjMzOXbsmOLnPnXqFMnJybUWcwXooZenjt6eOiIqsorc3T3w8PTA08MDT09P3Nu0wyNhlNCS0TnfbXDixAneffddtm/frjwWHBzMO++8Q2iotn5FlmUWLlzIl1+KJIbaqpnn3ncvL731TrXPO4vExERmzZqlrGpeeuklBgxoOm0tgNGjRytxiU8//ZSYmFpkHtQtX0Nbwh0PNenxnU8ufGLuBUZ9ETjU3SnMtweBAPpeWa/BPyMjg2XL7FITU6dOpUOHDvz555+awT8yMpLnn3+ekJAQXnzxRX7//fcq7yVJEjExMbRt25aoqCglq0Sdj11eXo7f31sIPLyroprXymnfYIqD23CtyYTZbFZcRT4+PgQGBhIVFUVcXFyVQeNiZ9q0aSQkJPDxxx8ripzTp0+v88zVlpoYEhLCwIEDlcdtwc/09HSys7PJycmhqKhIqWOw5bf7+voSHBxMqJtEeEYK+sN7oLTE/gHZZ+HHL8A/EPoOFatGJ85u27Rpw7x58/j+++959913kWWZrKwsXnzxRV577TVNoF2SJO666y7c3Nz49NNPazVwJzeugz9/gUFXiZz4JiI+Pp7Bgwezfv16AP78888mNwDqQsc6rcTatLcbgHNnoCAPfP2b6OjOL83eAKiDUa1ataq6w9Z1dv+fl0+9lT8XL16sLDdbtGjBrbfeSlZWFvPn2wPKLVu2ZMGCBZSWlnLvvfeSnKzt/NSlSxeuvvpqBg0aVHtV5uG9kH4cbPu1aU/ojXfSqwlmoBcD8fHxTpfDliSJ4OBggoOD6/GqPjBsLBz9G3ZvFgJiNvJyYM0y2PI7DBjhVEMgSRITJ07EaDQqCQZ79+5l1apVXH311VX2nzp1qlKBXBOtA/1h25+QdBiuvVWrk+9krrzySsUA7Nq1q8k+x4Z6xVgnifGgUPAPgrwKd2HSIejRtEbqfNHs9WLVWRItW1bK+8/PhT0q3f8Bw8HNSGJiInPnzuXWW29l7ty51VYUlpaW8ssvvyjbkyZNwmg08s477ygBXy8vL+bNm4csy8yePVsz+Hfo0IG33nqLN998k2uvvbb2wT87A1Z+b98ODhVCdZfp4H/RYXCDTr3gtvvg9n8KoUBJdYkV5gtDsPAVYaid6H0dP348Q4YMUbYXLVrkMFgsSRIPPPAAI0aMqPKcDb1Ox/Q+FamhWWdF3+tNa+wxMCejbrV67ty5OqcdNwRbsoQNdYV3tUiSkIawcXiP8w/sAtHsDYA6+6WKC2TTavtJ7+MH3fvzySef0LFjR+bNm8e3337LvHnz6Nixo8PYwaZNmyguLgbEQD9mzBiOHj3K2rVrlX1mzZpFWFgYTz75pCZH/Pbbb+ftt9+uXqukMuVl8OPndplqdw+44c7LUsDqkiAiShjfu+dCj4FaI5yfIwoKv34X0qr3w9cHSZKYNWuW4tJIS0tTJA8qYzAYWLBgAX37Vk1k0Ov1fPTB+8SPVqVCW62wcRV89S7k1D0Roa60aNFCM7mpT4+L+lK5JqFOBgCEMbeRclxMti4DmrUBsPlMbYSEqIThsjNg/0779hWjSDxxsl7tGTdu3KjcHzx4MJ6enprc9fj4eMaNG8eXX36p1CEA/POf/2TGjBn164D15wpti8oxN0Ngi7q/3kXT4BcAo26AmXOE+1D9m6aeFLPrVUvtAoONICIiQqNxXzlLSI2/vz+LFy9m2LBhREdHExoaSnR0NC+//DJTp02HEdfBLXeDb4D9RWnJ8Nn/wf4dTm+VqM7ESUtLc+p7q6lcUV/n2pWIaGihShdVxwUvYZq1ASgoKNAM5kFBQfYnN622C8QFBEOXPnVqz2hDlmV27rQbkEGDBlFSUsKff/6pPHbLLbeQl5fHt99+qzw2fvx4brzxxvr9IccPw267KBi9E1xNwi82/ALgqhth2iOi45SavVtEkaG6WK+B9OtnFyyrLYMsJiaGN998ky5dutCpUydiY2P56aefuPfee9m2bRtyVBxMmw1d+thfVG6CX78TxYVOMFo21KtvZ1RLV0dJSYlm293dvW4vlCTo3t++vXcrFDq3uc+FoFkbALXOiV6vx8fHR2xkpmtVPweNAr2+Xu0ZU1JSFLE2SZLo0aMHO3bsUGYg3t7eDB48mF9++UXJyPDz82PWrFn1+yOKCsQFaSMkHK500MTexcVBUAjceCfcPFPbR7owXzR3//EL0ei9gURHRyv36zKQdu7cmTfeeEMjzHb06FHmzJnDHXfcwSdffc2B6M6Yr50kpCNsHN4Ln78BGc6ZrasD7vWpzagvagPg7u5ev3qMrn1FIggIYcht65x8dOefZp0FpK6O9PX1tZ8Mm3+3L3GDQ6FDD6D29ozq59UunejoaHx9fTUSuwMGDMBoNGqkH2688cb65d7LMqxcDMUVFcQGg1AobWCGSW5uLkeOHCE1NZWCggIkScLT05OIiAhat25Nq1atLngF8MWMLMuK9o3FYkGn0ykN7at8bzHxIp982x/aAOuRfcI1NOZmaN2u3segdhvWVaE1Li6ODz74gLfeektzPqakpLBo0SIWLVqEm5sbXaIjudlXJppy0SIzNxfdOy9SPGg0Hr1FhlpDzw91DKAhKrd1RW0AbDLmdcbNCP2H2lNCd28SRiGk/uqvFwvN2gCoe+Qqs/+ss+IitHHFKMVvO2PGDObPn19t9en06dOVbfVqoG3btgAcOmTvJNajRw9yc3M5dcqeLjhq1Kj6/QF7twj3j42hY7V+yjqQk5PD6tWrWbduXa0ug8DAQPr27cvgwYPp378/bm5Nlx9+3sk6A7vWiA5xASGiT0RlNdgKTCaTUk188uRJkpOTSU9PJysry6GAn06nw8/Pj8DAQEJCQggLCyM8PJyIiAgiIloROXEmPht/E/LDIFYDiz8Srrwrx9QrD3/Pnj3K/RolDirh5+fHE088wXXXXcdXX32l6TMAotfD7qQT7AFG++oYpe5BfPQI6998nRXFOiJataJ9+/b069ePhISEOrtY1JXmlSVRaiIxMZGFCxcqdSC1aRk1ygCAiOPs3CgC+VaryLq77R+XbKZdszYADk+GLeu0s3+VUmJ8fDwffvhhtdWn6hNPnV5qqy9Q1xy0bdtWI+Hr6+tbNQ21JrIz7DMRgDYdRLZJHTlx4gRfffUV69atq/NMMScnh1WrVrFq1Sp8fX0ZPXo0N9xwQ/2O+2Jk9+/w4zvapkCblsP4f0DPEVgsFg4dOsT27dvZuXMnR44cqVcXL6vVqjSGP3HihMN9/Px8GRcRyAg3E54VLSCN639Dl3gQ44Tp6INrLtLLzMzk559/1sSTqm16XgOdO3fmhRdeIC0tjfXr17N582YOHTqkZM/IwMoCKyfKZKYE6vHSCTNwpY+eUIOVz5JFNfWqVavw8vJi6tSpTJw4sdaEBnUwti4tNcFxJfj8+fNr1DJSX/MNqnR3M4pYzvcLxXZ6ikjAGDau/u91EdCsDYA6I8BoNIpCj0N77DsMGK7N2qDu1afq+EJwcLDSh1T92PHjx5XterXds1rg12+FHxLA00voE9Vh+X348GE+++wztmzZ4vD5wMBA4uLiCAwMBCA/P5/U1NQqevMFBQV8//33LFmyhIEDBzJ58uS6p6zakGURSCzKF8V2FgtYzOLvcHMHo1H87+XVdDOsrDNVB38A2Yq8/G3e/vF3Vm7fp1ktNgX5+QV8mV/AOgPcHmgg3K3it0xMpPSPtfxk8STdJ1jpa2AwGDCbzRQVFXHu3LkqQnf+/v7ccMMNDT6eiIgIbrnlFm655RbKy8s5deoUx48fJy0tjbNnz5Kdnc0POVlcXXqWFpYyrLKVDh46Hmgh8WG2mVyLUN5877332LFjB88991yNGTfq1WRdmtIkJibWmJGXkJDgcCWgNgANVq9t0x669IX9FRIcOzZAQAvoWfcJ2MVCszYA6pPHaDSKH9I2EPgHaXN/VdSl+lR9onl7e1fJP/bw8NCIXtWkmV6FrX/AGVW18FU3gU/NYm379+9n0aJFGt0YGy1atODqq69m2LBhtGnTxqEfNz8/n127drFhwwY2btyoGE9Zltm0aRObNm2iR48e3HbbbYpGvQZZhuxzkHwcUpJEoL0gz95drSYkCTy9wdsHfPzFb+MfKLKzAoJFuquqMU+93AK71jhuBwpIyASe2k1RUdUZqYeHB/Hx8cTFxSnxkRYtWuDr64unpyd6vV5R9CwqKiIvL4+srCwyMjJIT08nPT2dM2fOkJaWpjlXzpjh9Qwz4/31DPIWkw8PHUzUlfBH1il+PmGtUc8JxO/53//+F29v53SvcnNzo23btoorU0N5GfzyDZbD+ygrMxFTWkpccSnzjmdxokD8XTt27OC1117jiSeeqPYzKveHqI26ZOQ5ukYbvQKwMWI8nEsV0hAAv/8g5CHadqrxZRcbzdoAqE80D6ywT9Vhqu+QRs061e+t0+mqKByWl5dr6g4yMjIoLi6u/aQ8d0akqNro3KvGhh7btm3j22+/Zffu3VWej4uLY9KkSQwdOhS9A41zRwPpv//9b4qLi1m9ejVLly7VVC7v2bOHPXv20LFjRyZNmkRCQgJSXraQRji8x95Zqb7Isgh0Fxdqax3U+PhBUAifbNvHzP97D4vF/v3X5BawZKdT068c7iEGphgfN6Z0aUnbFn74RsXhP/Qm9KGRNbxS4OXlRWBgYBWFTvufJpOTk8Pp06eVW2pqKvvS0kjLOsM4own3CjfLUB89kW4Sn+VYKHIwRoaFhTFixAhuu+228yfk52aE66agD/wVz21/4OnpSVAgfBATzTsZ5SzbLCYcq1evZvTo0XVyS9UlkFyfjDw16lV4o74jozvcOE3UcRTmi3N0+ecw/rZLKgW7WRsANZ3KC8BcMYv09IYu9fefqlFXGJpMJoxGI0ajUZnpZ2dnExsbi6+vLwUFBVitVlatWsX1119f/ZtaLCLl02ZcfANg+HVVdisvL2ft2rUsXrzYoeZL+/btufPOO+nfv3+1F1tt/tXrrruO8ePHs3XrVr788kv277fnsB86dIgvXniavIgA+ocGEBQUhL4mH7BOLwYSvV643GRZzCzLy+pecFSYT+KJU8xcsFCjbw8VboG77iLBQya+R08ICiMxJ49fVv5G5OGNTAiv/ti8Wrbmg6FdaXtoNZKcJ1YtB1Pg0HolRtAYJEkiKCiIoKAgunXrVuV5U/ppzN9/gpyZjtlsJsZi4Qo3D/bH96YsoAUeHh60aNGCqKgoWrS4QIV/kgRDrhGrsdVLQZYxmMv5Z6iRgg5xrDkszsGvv/66WgOgXgHXpTq3Phl5apxmAEDM+CfMgK/eEStZqwWWfwFjJkLnxo0f54tmbQBsy04d0KUsH6jIRe4xsEG9ftWosxpyc3ORJIlWrVopQcBjx47Rtm1bRo0axdKlSwH47LPPGD58OH5+fo7fdNsf9iUnwNUTNLnZaWlprFixgp9//tlhL9fOnTtz5513OnbRqKirf1WSJAYMGMCAAQPYt28fn3/+OYd27eBmfz1dPXVQVsjp04WknTlDYFAQwUFBeMbEIUXHiW5q/oHgFygMrqPjkWUR5ygqqLgViuyLvGxxy82C3GwRNwAWbt9XZfBXjt1qZeEH7/PYgK5kZmZSVFRMe7NMoQTWMG90Dj5flnQMnDQTvnjOYYyAH9+B6I6abCGz2cypU6c4ceIEp0+fJiMjg9zcXIqKiigrK1OUWD08PPDx8SEgIIAWLVoQFhZGy5YtiY6OtmekAe7hkbjPmiPSfVW1Ka0yj0HfXtW6KS8I3fsL6ZFfvgarFam8jAcivDh5XOJYmcyuXbuqXeWqM3/qMjDXJyNPjdoANCgLqDIhETDxLhEUNpWK82LFt+J87TukXk2jLgQXrwGoR1peQ7HNNHp5SnhZKwJPOr1TgjnqykZbRlCnTp0UA7Bjxw6uvvpqbrnlFn755RdMJhO5ubk89thjvPTSS9qqZBAaLJtVEtHd+kPrdhQUFLBp0yZWrVpVrZLigAEDmDRpEl27dq3T8roh/tVu3brxysw7KFgKmSmnNAYovczC4qSz7N6fRnBkAcOGBTI4pjOxYZE1H48kCUNs8/U7wmqFglzIyeTkmpqVJPeeTCa5pb/y1rZA6+mMcqJCjNprVZKQrpoGx/dVGyNAtiLvWsPBlr3ZunUre/bs4fDhw3UKYtZEcHAwsbGxtGvXjk6dOtG5c2f8x06GsEhYv8JuGH/6UsRSBl118Qw0HboL98jyRWA24+PpwawQI+9klHGiTCY5OZkOHTpUeZk6iF3l3HdAfTLy1KiD+c6KkdAyBm65B77/yF6T8+cKyMmCkddf1C0kL04DUEtanrOwGYAhPnq7z75zL/BufPcrtbaJbdDv16+fog66adMmSkpKCA0NZcaMGUqj+KNHj3LnnXdy8803M2LECMLDw0W+9ZplYBFNygtlHasyi9k8ezb79u1zOFgbjUauuuoqbrzxRtq0aVOvY6+3f9VigTU/wL6t+OolfFu3xmQycbiojI8PnmJfvj3wVpSczGeffcZnn31GaGgo/fr1o2/fvnTr1q1+mVA2dLqKoHAQrXv2gVVV+ygouxrdSSuXCTVI6CUxAAQHBxPgH4AkmcGcD9Zy0LmBwQ/+Wg/WmpUpN/6yjH/vddBEqBFkZWWRlZWlCdi3bt2aXr16MaxDfzol7UFXVhGY3vy7MALX3CoG3ouB2A5w0wxY8jGSuRxPNwN3B1l4L8tSbTaVWv+nrn0pGtIPokkMAEBYS5h0r1gJ2GSj922F3EzRSN7j4myudPEZgBrS8hwtuRuDl5cXcUaJVm6SvTVe78FOeW/1SWjLG+/fvz9eXl4UFxdTUlLCypUrueGGG5gwYQJnz55VhOIKCgpYuHAhCxcuxNfXlwFBPtygK8RsMWM2m/ks28ze0qrZPCAMzzXXXMM111xTvSupFurlX7VYxExUrWNjcMN9+Hi69xrEPJOJtWvX8ttvv1VRpzx37hw///wzP/8s6hkiIyPp1KmT0vi+devW+Pv712nVYrFYGDVqFK+88kq1WSSZAWG8VejG6FEjuWHIYKI9DXAuDdJPw9nTYHLg9jPXXCNxKr9qhpDBYFB6/oaHhxMUFISPjw9GoxFJkjCbzZSWllJQUEBOTg4ZGRmkpaWRmpqqcVGoOXnyJCdPnmQpEOnlzmNtQ4nx88LP1xcp8QB8855Qf71YGpVExwnJi6WfIFutuOskZgbr8SpxrJ+jLoistUWjivr2g1C7mtSuNqcQFAK33w/LPrP3g0hOgs/fhBvuqHeR5vng4jMANaTlIVvF6mDkFKd8lI+PD1dWpNpZLBZoHS+0dJxAu3btcHNzo7y8HJPJxMGDB+nWrRtjxoxRBvrPP/+cESNG4Ofnx3333UdUVBTvvfeephCmqKCAfp4llBrEIHjEZGVvqdbPHRAQwODBg7nqqqvo3Llzo+Ua6uxfNZcL7Zoke4UzEdFwzS3iYkCkS9oMUnp6OmvXrmXDhg0Oq45tWTCrVq1SHvPy8iI8PJwWLVrg5+eHt7e3JsUyNzeXs2fPkpqaSllZGfHx8Rw5cqTKew8ePJjZs2dz1VVXaX3MHXuK/2VZuNnOnBJyvylJopGLwQ+5PAdH36hFlvktvQydTkf37t3p168f3bt3p23btg2qkrap0x4/fpzExESOHDnC/v37q+jjny42MefvFKYE6unm605ISAgtLBb0X1QMNOF1H0CblJh4SkbfTOn2Hegl8NJJtN6+Brr1EOJ4FZSXl2sK5Oq7Yq0PleVfnI6Xj1BRXbnYXlOUmwVfvA1jJ110aaIXnwHIrUVnO9d5SoH+WOniaTcA1p6DnKaOZzQa6datm6IIunnzZrp168bNN9/Mzz//jMlkIicnh1dffZX//ve/SJLEddddx7Bhw1iyZAnr1q0jJSWFBG8dwRWDvyzDD3kWJQe9Z8+e9O3bl06dOtVLOtpsNnP27FmysrLIy8ujpKQEi8WCXq/H09MTHx8f5s2bx5w5c6r3r1os8MPncEI1kMd2EMvdaqQLwsPDmTx5MpMnTyY7O5vt27ezfft29uzZU6WQyUZxcTHHjx/XFM3VREREBP7+/qSnp2OxWGjfvj2PPfYYo0ePrj3eEBQibhXql6ZzaWz96lO8jx+jV7hB83pZlsnIk5jXtyP+o67Ha8CQRrdOlCSJFi1a0KJFC0XVU5ZlUlNT2b17t/J9lZaWUirDR9kWrjOXcmX5Gc6mnyUsPIyQL99BN+42aHdxpCJuPZfLshwzdwQZMOj1eJjLhK988n1KAsPRo0eVymqj0XhpGwAQ58G1k8SM/6/fKrLaTPDDZ5AwWjSWv0hiNhefAQgIqeV55/WtDUw+gs3zmGmWyQ+OIMBp7w5XXHGFYgD++OMP7r77bkJDQ5k+fTrvvvsuAOvXr+fjjz9m+vTpSJKEn58f06ZNY9q0aeScO4t+4SvIRUKYrbBtV/7v6gmEhITUecAvKyvj0KFDHDx4kMOHD3P8+HFSU1MddouqTJ8+fcjPF7n7bdq0YerUqYwePVo8ue4n7eAf3xnG3V7ngFdQUBCjR49m9OjRYjA9so/iv36kPCOVU3klLE7K4Whm/eR2dTodcXFxSlP7bt26OaxvqAt//fUXb775pqKo2TZFx5Qod+K9DXgb3XH3DiG8VYULYfMq+HuL0I3q2rdK9XhjkCSJyMhIIiMjGTduHCaTie3bt7NmzRo2btzID/lmzprhJn84c+YMWZlZRBe8i8/YW4Q78wIPNL/99hv7SmW+z7Uwq02gWEllnYOfvoAbp4Ner6lR6dixY5WaGWeiFprz929Cd5kkCSWBFuEiK6rMJAzBhpXi7x99U5P2Wq4rF58B6DVSBHwduYEknfOCwBYLxiN7kSQJWZbZWGSlbW4uARUSCM7gyiuv5K233kKWZdLT09m2bRv9+/dn4sSJbNmyRTnxv/jiC0pLS5k1a5bm5A88eRgMOvD3B4MbfhOm1hqglmWZY8eOsW3bNnbs2MH+/fvrpVujxtPTU0mVs5X1v/fee4yNDmGinw5vHx+8vb1x79IbadxtDc52kPasJVQV94n3gBFd3CgZ9QinAuPIyMggKyuLgoICiouLMZvNitJmQEAAwcHBtGrViujo6Lrru1dDbm4ur7/+utKj1ka63ouTgybS84Yb8C3OFw1B9u+0q3gW5sOqJUKgb/h4iGyaWay7uzsJCQkkJCSQnZ3N0qVL+eGHH8jIKmZakB7KhFBd+NcfEZ6VgXQBs1BSUlKUpjSbi63MHDAc0irqUk4mwu/LYdQNGpXcXr16NdnxlJaWauRfmtQA2GjbScQFln4qXEEAB3eJ+zfcYZeXvkBIcl2mgucbR1lAkg7G3wc9hzvnMw7vhZ++5MCBgxSXlfF0ejnPvvwKffr0qf219eDJJ59UlBX79OnDK6+8AoiZyEMPPaTJqOnQoQOzZ88WLpbyMvjgf/a0sn5DYMi1Dj+juLiYnTt3smXLFrZu3VqtO0WNJEkEBgYSEBCAp6cnBoMBq9VKSUmJIlvgKJja0gAPh7ihr5hYppTJLCr3on3nLnTs2JH27dvTrl27ul9cWWfgrX9Wb/Dvf9Pp6b/VsXPnTl588UWNHr3BYOCGG25gypQpVV0GBbmicfrerUotgkK3fkKd9Ty05MzPz+fTTz9l888/MDNQT2CFyzDA35+oIaMw3HDHBckQeuGFF1izZg0gJNE//eQTpF++1tQzlAy6mnH/eVFxNb799tt06tQ0fvL09HQmTZqkbK9evbpJVxsaSopEkViKqjAzIFjUEFSX4nweuPhWACBm+dEdhSHIPSfcPj1HOHcg2C9mHW5uBvbklVIiN00jigkTJigGYMeOHSQlJREXF4e/vz+vv/46jz76qFKte/jwYe6++26uuOIKJneOo31BHga9XiwV+9obfufl5ZGYmMjff//Nnj17OHDgQI2Knu7u7nTu3JmOHTsSHx9PbGwsERERNZ78FouFs2fPcvLkSZKSkjh69ChHDx5gir5AGfwLLDIfZ5vJs+YrekA2goODiYuLIyYmhtatWytZMVUyk85j0L86ZFnmq6++YuHChRrXWLdu3XjkkUeIjo4mMTGRF154oaq+0IjrhHFev1LM7Gzs2wanjsG1t4qitybEz8+PBx54gKuuuorXnn+Wa0wZxBglcvPyMP/+K62LCnC7+e5a9aKcyYEDB5TBH2Dy5MlIOp0QLczNFiqaQNFPXxOtt3LCItyCjmoEnIU6mO7r63v+Bn8QxY4T71LSpQGxCvjybVFNHNbq/B2LiotzBdDUFObDey+ALHPixAleSMoiqUzmrrvu4rbbbnPqR8myzKxZs5R+wYMHD+bZZ59Vni8pKeGtt95ixYoVmtfNCTEQ5iZhNBo55B7ABvdgSkpKlMrSmoj01DOlSwTxIf74RMYSOGIihtDGZ4bIa36gbOsfFBUWUlhUxMJ8HetPnan9hSr8/f2JiooiOjqaqKgoRubupUV6DX0IuiTAhEcaeeTVU1ZWxrx581i7dq3ymMFg4N577+WGG25AkiSHshh6vb6qvlDqSVi9TNslS5JEbMCBsmxTUFxczIvPPkP80Z10q0hw8Pb2JrZHbwy3VOpC1kRYrVbuuece5Zy3NZxR4laF+aKbWGE+SUlJpObm82qGmeHjr+fBBx9ssuPatGkTTz75JCBWJJ999lmTfVa1yDJs/1MUitkwuosU3ui48344zbMl5JF9isZMuZcPSWXifmZmptM/SpIkJk+erGxv2LBB0xjG09OTxx57jP/973/ExsYC0M4oEVZRpWoqK+PbY6ns27ePxMTEagd/X19fRowYwVt33cii/v5c5VVIm6JUQo5swPDuQ2Im3RjSU5D2bMbdaCQoKIjoG27jmU+/5Mcff+R///sfU6dOpV+/frUWc+Xl5bF//35WrFjB+++/z6pte2r+XCcG/SuTn5/PI488ohn8IyIiePfdd7nxxhuRJKlWWQzbIAeImf7UB+CKkfbgqyzDxlWw7FOn9tCtDi8vL5598SXODbiK9YXimIuKiji5bzfWL98WRqqJWbp0qeZ7efDBB7VJCz5+cN0UzLLIyvHVS0wJ1DP0yiub9LjUK/xAJ8b66oUkQb+hIlVaqvhOykyw5GM4lVjjS5uCi9MF1NSo8tZzw2KAkwB18p03hCFDhtCuXTulTeTChQuZP3++Zp/+/fvTr18/tm3bRunihejPpYhGJKVWMh14d/z8/OjUqRNdunShd+/etGvXDl1OumN/emOL6GRZBOzUjXIGXw0Iw9O/f3/69+9fsavIZU9KSlKKl06dOkVycrLDKtAV6WXcEuWO3kG2ikWWmf3pT/ivT1RiC/Hx8Q2rGK7E6dOnefzxxzUVqL169eK///2vxtdfb1kMnV5IM7RuB798Y68KPX5YLPdvvLPJfb46nY5HH3uM1/R6fli3guv89RQUFJCSeJTobz9AGn97k+Wjnz17lo8++kjZHjVqFF27OlCrbRnDoZbtkPfuAaC9t5HOBWeb5JhsqF1AF8wA2OjcW7iFln8u6mnM5bD0E7j+DtFv4DzR/AyAqVQTiDG3bgf8CTTNCgDEKmDmzJk89thjgAg27t69m549e1bZr3/XzvBXMHJYACaTCfdug/mXhx+yLGM0GgkODqZly5YEBwdXzWtvKn/6od3a/gMjrqu277A6l91mFMAue5ySkkJKSgrJycnK7dWjWTzSzlNjBCyyzCtHSth3Ng9SM9iwYYPyXHBwMPHx8YpBiIuLE5IZdUh5lGWZ1atXs2DBAo02/JgxY5g9e3YVv3BDZYdp1Vr0/F3xDRw7KB7LOlthBKZBRNMWa0mSxOzZs3m+uJhFm9Zxe6CB7OxsPD09Cf3hMxg9QaSsOpn3339fybTx9/fnvvvuq3bfX1OzCC620stLh5+vL7pt6yA6tkG9kOuCevVcF72hJie2A9w0Xcz+zeWiKdKyz0RM4Dy5g5qfAUg9ZZdT9vDEvY1dsqGpVgAg2vN169ZNkUP44IMPeOedd6oOWof2gNWCBHgEh9Bp7A10qmtfgqYoorNaRdNyG/FdREPzeqKWPe7eXatgaTKZOPX3DuSda7Bkp5GSX8p3x7I5mum4SY5NK0fd1czT05OoqCiioqJo1aoVLVu2JCQkBF9fX9zc3CgsLOTgwYOsWrWqikT2zJkzmTRpkkMD0lDZYUBkAF1/h8j93rpOPFZcWCHbcEeTDXQ2JElizpw5PPZYJu8d/pu7gvScSU3F28sL75WLobQE+jrP7XLw4EHWrVunbM+aNavGbLCdu3aRl2chyigR4+cnVpgrvoU7HwYvn3r3+60N9QrAGatIpxAdJwb8JZ+IYjGLWbgLb71X6As1Mc3PANg0OgBatSYo2K6hnpOTgyzLjZZScIQkSdxzzz384x//AETGz65du6rqo6szSTr1ql9TmqYoojuyV0gkgPBfXjmm/u9RC+7u7sT2GQR9BgHQDhguy2RkZIjso6NHOXLkCEePHq02BlJSUqLsW1d8fHx45JFHGDp0qPYJlRLt470i+KGFH0cyqzazqUl2WMH2nQWHigbiVouY7S35BM5Dxa7RaOSZZ57h7rvv5s3MDGYFGzh56hQdOnRA/8fPIj1x8NVOKRhbtGiRcj8+Pt5eNOiArKwspcjus2wzQ3tWGIqiAli5mE9yZWbefXe9+v3WhvrcuWgMAEBULEyYDos/EudGmUlUS992X9O7C5v03S9GKtLPAGgZo/EFlpeXa9wCzqZjx45KiT/A8uXLtTvkZAphMhud6lkU02ukPbBUmYYU0cmyaD9po0MPReOnqZEkidDQUBISEpg+fTrz5s1j6dKlfP/997z00ktMnz6dhIQEwsMbpt3Ur18/Pvroo6qD/+7fRRxl4zI48BdBB//g4H0jmN6rtWa32mSHq9C5t1ju2/pMWC1CR0mVE99UBAQE8PTTT3NW1vNGppn0YhNnKyTK2bpOpCY2MhkwOzubbdvsHfVmzpxZY7W6Wvyt1C8I46jrle3ELZuYeXcdA+/1QC0D0VChxCYjso3oJma7fosLhTuovB6tYhtA81sBZKvcJCERVYp78vLymrSd3g033KBcKJs3byYvL8++TE48YN8xOKz+wnTBLYVkdnVFdPUNAKcla1MaBwyr3+udjCRJBAcHExwczIABA5THi4uLOXXqFCkpKaSmppKSksLZs2fJzMyksLAQs9mMh4cHUVFRdO/enVGjRjl23VSjRKtD5qPxveg4+kZ2njhTJ9lhh7SOh5tnCp9vaYn4nJ+/Ev937Fn76xtB586dmTRpEl988QVvZJq5V8ogJCREiNbt2SzcD1dPbHAb1IMHDyo1FC1atKi1oFIdb4uIiIBeg+DEUThxWDT2sTiOZdXU77c2LmoDABDXSTR5+vU7sZ2ZLkTlxk5uMkmP5mUALBbIz7VvBwSj1+sViWbQysU2BX379iUoKIjs7GzMZjO7du1i2LCKgfWYygA01DXgzCK6vVvt96NiL0o5WxCpjx07dqRjx46Ne6OaGsTLVh4d3gNGvtq4z2gZAzfPgsUfQEmxmHn/8g0gQccejXvvWpg8eTIrVqwgOzubN86V0bZMpq1NjubALuF6GHtbtQH+mlDHz6Kjo2t1o6oVbz09PcUAd/UE+ORVTubU3Du6tsB8dTRZLwBn0qWPSBbYJhJTOLxXJAz0aZoU2eblAioq0F7g/sL9oz4ZqtNjdxZ6vV6jd6L4rEtLtPGJxqTpBbcU2T4THhH/N2TwN5vh6N/27e79q9/3EkOWZY4fP84vv/zCkiVLWLZsGRs3bqQ47VTNL3SWEm1YS7hlll0HxmYEju6v+XWNxNPTkzFjRAynRIYvyz212SaJB+CHRcIPXU/U19DZs2drFRtUZ1spWlU+fjDqRloH1jw7ry0wXx1q965T2kE2FYOv1v4uf67QZuE5kea1AjCp/PsGN0WNT30yqGcmTUXLlvYBWSlOSUmy+2G9fET7vwvJqaNiRgjie2rb+cIeTwWNyQwxm838+uuvfPHFF0oAUs3MNh5Mjq5Bu8eZRWkhEXDz3fDt+yIQK1tFY53rp0JcI1cyNaBuHJ9dWCziEj9+CUkVqaonDosslOvvqFdfbHWuf2pqKn/99ReDB1ffXEkdhNWkX3fozozJtzJ//XaH/Z3rFHh3gMVi0cQUGisa2KTo9CJBYNH/QUGeyMT76Uu440GndxZrXisAdSWmqpm6rTUkCGmApkY9O1KWyqeOAZCYkcPcddu5ddIk5s6d2+CAV6M5qnJHxXWs12DQVHzyySd07NiRefPm8e233zJv3jw6duzIJ5/U3pIxJSWFmTNn8tprrzkc/EEUpVmqmbnKzlSitRESDhNngnvFuWi1iMKg5GPO/ZwKZFnWpGlGRkYK437dFGinKtY6mSiKkuoRgAwLC6NvX3tdwSuvvMLZs9UXdrVqZde+SU1N1Uy84qfcw4e33YBep3Uj1TvwrqKyIq76mr8o8fKp8P1XDNH5ObBmec2vaQDNywBYKwVGK3C4HG1CUlLsmUjKjCwthU+2/03HVxcyb8nP9R7gnIosw0lVV634Cz/7r5ckQyX++OMPZs6cqfEdS5JEu3btGDRoEH369KFVq1aklliZf6SkihGwyDJvp8h89vPqKt25Gk1YSyESZlPrtJhh6WdOX/LLssxbb72lact5pU16Qa+HcZNFQ3cbyUmiv209jMA///lPZWAtKChg7ty5Sj+JykRGRirJFrIsc+CAasLh4cm05/7HoUdmMHdYf27t3oG5kydw6NAh7rzzzjofj5rK5019GihdMCLbQMJV9u1Du0VFuRNpXi4gdWBKFQtQB6yq6yfrLCwWC3v27FG2bd21Eg/sZ+aS36ose20DXEJCQqOKYOpFTqYQ7LIR3fb8fG4N1FuSATGwfP7551UM6DXXXMMdd9xRpfl4QUEBu3bt4pOt6wk8sYsAqYz0Uiu/ppeRWmKFpE/54osvGD58OBMnTqRtWyd9LxFRwhVjywMvN8GShXDrPcJV1EjOnTvHK6+8otHdv+KKKzQpyej0oouVXi8CwgCnTwgd+xvvrNMKMCoqikcffZQXX3wREMHaJ554gldffbWKy0Wv19OtWzelmG/btm3ampiYeOJHj+WlkIo0bUkCjwvT1+CC0m+oqCRPq5gQ/PY9THtE48FoDJeAGXQiaqtvdWwAmpodO3YoBSl6vV6c9NnnWLh1j0OfJ9gHuPNGiqr9Ykh4rU1ozgf1lWQwmUy8+OKLmsHf19eX5557jscee6zK4G97fsiQIdz1+L+5/q3v8bnjPyRG9+dsuf28MZvNrFq1ipkzZ/Lwww+zadOmOnVXq5XINsL/b0vDLC2B7z7Upi3Xk/z8fD788EOmTp2qGfw7dOjA3Llzq573Oh1cfbOoWbCRfEy0MqxjYHjUqFHcfvvtyvaBAwd4+umnHa6s1QZIXdWtcOUYCKxYIdsC5aUNq9OpPONv6ome09DpRHaU7bwozNcqiTb27Z32TpcCaqtZWqIEXet7AScmJjJ37lxuvfXWevvp1bLPAwcOxMfHB3Kymiz1rUGkqdwPrZquP2t9qI8kw9mzZ3nwwQc1evSRkZG8/fbbJCQk1Onz9Ho9/fv357///S/fffcdM2bMIDhYW5W5Z88ennzySaZOncr3339fbQpxnc+XNu1F8M82MBcXCiOQV3e3kyzLHD58mFdffZVbbrmFr776StMF64orrmD+/PnV98O1afarixBPJor+z3V0j06fPp2xY8cq21u3buWNN96ocp0NHDhQuZ+cnKwpDgPEqmPsJPvErSBXFK01gMoaT+fD1es0WoQLhVkb+7YKF50TaF4uIE9V7q/VIrJc3D00J0NtTSIcacPXtUQ9LS1NI2pmS8kjN7PW1LcjR44wefJkLBbRFD4gIIBWrVoRGxtL9+7diYuLc55fU10t3cSiZXVlxowZzJ8/36EbSJ0ZsnnzZl566SVN0U+PHj149tlnG9wEPDAwkNtvv51bb72V9evX891333HkiD1Gcvr0ad5++20++ugjhg0bxpgxY+jatWu1vQRqPF/adYExNwtNHBCD3ncfwKR7RZqkA2RZJjExkY0bN/LHH3+QnFw1fuDv788//vEPRo0aVfuKV6eDMRPFNWKrVD5xWBStjb+t1mIxSZJ46KGHyM/PV1pr/vTTT0RHRzNhwgRlv/DwcI1K7u+//141wyc8SvRT+Os3sX1oN8R1qHfhnF6vV9q/wvlJ9nAq/YYKWZaMigruVUuEK6iR7T6blwHw8BTBX5v/vzAf3D0oL7cvb93cqm/UXFsgsjY//RdffKGcgC1btrRXsxYVMKNvt2pT32zHpZYuTk5O1gT0AgICSEhIUOR3G+zWslggS+V2uECdiioTHx/Phx9+6LAxy0cffURkZCQLFiyoIq9x/fXXc9999zml+5PBYGD48OEMGzaM/fv3s3jxYv766y/lNzWZTKxcuZKVK1cSFhZGp06dePbZZ+t/vnTuDWVlsGaZ2M7NEiuBW+8BL2+lx/TevXvZvXs3O3bsqLabnZ+fHzfffDM33nhj/XLfdXrRzcxqtdeDJO4Xlaljbqm1MlWv1/Pkk0+SkZGh9L9477336NKli6br1/DhwxUDsGbNGqZNm1b13O0/DE4csfcyWL1MrEz9Aur850iShLu7u5JtdD7SvZ2KXi9WZl+8JTwXOZmwc4MwDI2gebmAdHrwU6kTViyt1QagpvSwugQiqyMzM5NVq1Yp25MnT7bP2EtLiQ8J5I1rh6BzcGG1b9++VnmK3Nxcfv75Zx588EGmTJnC0qVLG6ZrlJdtb3QuSRB4frR/6sK0adM4dOiQxp1y6NAhunTpwvTp0zWDv7u7O//617948MEHnd76T5IkunbtyrPPPsuXX37JrbfeWkVawKaL39DzhZ4DYcg1WK0yJaWl5CQd4cgLj/H0v+Zw4403MnnyZObNm8eqVascDv7dunVjzpw5fPfdd9x2220NK3zS6UUqorou4cCuOmsHGY1GXnjhBSXeYrFYePHFFzUuqREjRigDflpammZlZT8OnWigYsuUMpWK1YjV8XdbHR4e9hqPptT8ajLCo6CH3W3Gpt+1yRoNoHmtAAD8g+w+1TxRvq6eDdRUINJgbXhg8eLFiqspJCREo5RoKSnkTEoKA33duH9If344fobS0lI8PDzo378/w4YNIzY2luDgYAwGAyUlJWRlZXHq1CkOHjzIkSNHNANNamoqb775Jp9++ikTJ07kpptuqru+kTro6B/UIFmApiQ+Pl7J9snMzOTtt9/mjz/+0OzTtm1bnnrqKWJiYpr8eCIiIpg1axbTpk1jw4YNrFy5kp07dyLLcq2zzO+++w6z2YyXl5ey8iwvL6e4uJi8vDyysrLob85jlI99ntbNZGVzbtWBT5IkOnXqREJCAkOGDBH6Os5AX1GUtPQTu995z2axmq5oClQTgYGBPPnkkzz00EPIskxKSgqff/45d911FyDSoLt27aqsZjds2OC4L3BAMIy83u4aSz0JW9ZpfeO14OXlpSRgXJIGAERa6KHdIoZZboI/fhZGuoFcXFf3+SAo1H4iV/jT1BeqepZQmYZqw+fn5/Pjjz8q2xMnTlRmpQUFBWxcvYawfGGMgr29iIuLY/To0dx88820aVN7ELawsJBNmzaxZs0aduzYobgkCgoK+Pjjj1myZAlTp05l/Pjxtc+Gi+y+8/ossc8nZrOZJUuW8Omnn2p+O71ez+TJk5kyZUqNrrymwGg0MmLECEaMGEFWVhbr16/nxRdfJCOj+iwes9msyc5xxK+AOzJX+ghfb6y7jjuC4ONsCy0jI+nRowe9evWiV69eNWrvNwo3o6gMXvyRPUFgy1qRHdZrUK0v79atGxMnTuS774TI2ffff8+NN96oNGUZPHiwYgA2btzIzJkzHb9R595CMO7QbrG9aQ3EtBXNd+qAWq7CUXe6SwIPL2F4V1e4Bw/tEd9LA7uINS8XEGgVNjPSkGW5zhohM2bMQF9N0KWmEvVly5YpA5Wfnx/jxo0DxMD90EMPkaaqmGwZHsaHH37InDlz6jT4g9C1v+qqq3j55Zf56quvuPnmmzV/R15eHm+++SbTpk3TSPY6RG0AbFo1FxEHDx5k5syZvPfee5rBv1OnTrz//vtMnz79vA/+lQkODuaGG27gq6++qvZ8AeosZf1TkcQRN18C/P2JiIhgXKe2/HL/VD5ftIhHHnmEYcOGNd3gb8PdQ2jWq5vKr/2xzvpFd955pyL/YDKZWLx4sfLcoEF2I3Lq1CnOnDlT/RuNukHR8EK2wi9f17nXstoANLXoY5PSfQC0jLZv24xBA2h+KwB1Yc25M5SVlmhygmsyALUFIh0F9MxmMz/99JOyPWHCBDw8ROD5qaee4vjx4/QLEINEUFAQ0266DX1cw9vBhYeHc++993LbbbexePFivv/+e2WgPH36NHPmzCEhIYF//vOfDnPhtXIZTSeLXV9sPvOvv/5ak07o5+fHzJkzufbaa89rPUddqOl8+e9//0tCQgL5+fkUFxdjNpuRZRk3Nze8vLzw9fUlODiYkJAQQkND0UsIzZ7EigH3+CGx/B827vz9QR5eMHEGfPmOyE6SZTEA+95Ta7aYp6cnkyZN4t133wVEVtDUqVPx9PQkIiKCmJgYJQ10+/btXHfddY7fyN1DFKx9/Z4wAHk5ol/1NbfUevg+PvYJzSW7AgARm7vqJvjs/yq+A8cJAHWh+RmAsFYiuFXRmakk+YTm6dpkYqdNm0ZCQgIff/yxIkhWkzb85s2bFalcg8GgzP7feust9u4VKXb5FpnQ0FBatmyJVCJOzOLiYrZt20ZiYiJnzpzBZDJhMBgIDQ0lNjaWHj16aETlKuPn58eMGTO44YYb+PTTT/n555+VgfOvv/5i+/btTJ8+nZtuuqnSLFUV3LtIBtSCggL+85//aCqoJUli7Nix3HXXXRentnsF9T1famTsZFEhbHNh7tgAPv5ObetYK74BFUbgbTFZsDUzv/1+ETOqgbFjx/LZZ59RXFxMUVERmzZtYsQIoa/Ur18/xQDs3LmzegMAwuUzcARsWi22D+wU/XXVUhYOuGwMAIiJbO9B4hxoBM3PABjcILSlkutuPmUX3tLpdHVSCVQHImvjl19+Ue5feeWVBAQEsG3bNk1MILZbD1r665GAgjMp/N/zz/Pnn3/WWqwSGxvLNddcw7XXXltt7CIoKIjZs2dz3XXX8cYbbyi+VpPJxLvvvsvvv//O448/TlwjVh1NSUFBAQ8//LCmj29kZCRz5syhS5eqPROc3UfWGdTnfKkRg0H44r99H86misf++FnEatp3a/z715XgMCEg9/1CkSZaXChE7CbdW6NkhJeXF0OGDOHXX38FRPWvzQD06NFDcQtpdIGqY+BwOHnULqG+aqmopq6mVgIuIxeQjStGwcHd4vtvIM0vBgDiRLGhUl709vZ2qhshKytL43MfO3YsJSUlvPqqvalIfHw81027C2RIS09n75rf+P333+tUqXj8+HHeeustbrvtNpYvX15jeXtcXBwLFixg7ty5Gn/x0aNHmTVrFp9++qn4THeVC6y0aXsj1IYsyzz77LOawX/EiBF8+OGHDgf/xqiFXjK4ewjdIPVse8U3TaYXXy0x8cINYeNsqlCrrCU9VC3/oF7RqZv5ZGdnaxrMOMRWp6CkhpaInss1fP5lZwDcPWDINY16i+ZpAFrbZ4SGM6eUL0G9RHQGGzduVNwuYWFh9OjRg6VLlypyxAaDgX/9619YgkI5fuI46enpeOvAr+KAfH19GT58ONOmTeOf//yn4uuunN6YnZ3NggULePjhh2uU4JUkidGjR7No0SKuvtqewmexWPjss8/4xz/+wbliVQygkTnGjWX58uWaLJlbb72VJ5980uFqpzFqoZcc3r4wYYbdWJvNQsO/IO/8HkfXvtDzCvv2/u3w9/YaX9Ktm32lkpmZqQz0gYGBGqmNY8fqIIkdEKyNgZw4DPurz6q6rFxANjr31k5o60nzNACRbZRydtlUShujmPU72wBs2rRJuT948GBMJpOSCgciHTQmJoZn579GSo794u0dHsSTTz7JsmXL+Pe//83UqVOV4p9HH32UTz/9lM8//5yJEydqCtf27dvHzJkzNTMrR/j5+TFnzhxeeeUVwsLsWR2JiYk8/39vkWUrLMrJrOYdmp7y8nI+//xzZXvw4MHcfffd1a7QGlOkd0kSFALXT7Hr5BQXiibz1XwHTcawcaLNpY21P4rK5WoICgrSDPQnTthjcLGxscr9KrpA1dG1L7RR1Q2s+xkKCxzuelmkgVZGkmD0hNr3q4bmaQDcjGIJixgcuno43wCUlZWxe/duZfuKK67gt99+U/TR3d3dueWWW1i4cCGbNm0i0SRWCv7+/sy9+QZGjhxZYwphZGQk//jHP/jqq68YOnSo8nhBQQGPPfZYleIoR/Tp04ePP/5YI9x1qthEcnIyySkpWAvyLtgqYNeuXUqFq5ubGw8++GCN7rnGFOk1FY0RDawT0W1FWqSNM6fgz1+q378p0Oth/O12ocXyMlGsVYM7MjransKo7o2hrqOpswGQJBh9k9YVtNZx4xR1MeRlYwBATAYaSPM0AKD03BUGQHwNzjQABw4cUASnPDw86Nq1qybwe+2113Lu3Dm+/vprAA6ZrPj7+dGmdRuMp4/Xucw9ODiY//znP/zrX/9S8t/NZjPPPfdcnYyAl5cXjzzyCC+++CJ+fn7kWyHPIpOVlcXxpCRKTxyt51/uHNSrmAEDBlRR4qxMQ4v0morzFo/o1h+62DtxsfMvoR9/PvH1h1E32rdTT8JeB/LOFaiz19Quy6goeyqp2jDU6fOvVPnCj+xz2DjlsnQBNZLmbQAkCYvFQqBBIspNcqoBUM/+u3XrxpkzZzh+3K6zf/311/PBBx/Yq3aDI4iJjRWZl8WFQoK3jkiSxFVXXcWCBQsUxUur1coLL7xQa6WpjYEDB/Lhhx/SsWNHTpRVHFNhIb++9doFuVhSU1OV++3b117l2NAivabgvMcjRl6nrW/57fsGZYY0asXSoTt07GHf/uu3apMI1PUn6vackZH2Ptj1MgAAPQZoK4LX/VTFHXbZrgAaQfM1AD5+ENkGS0W2TS9PqcFywY7Yv99eIdmjRw9NPCAuLo6CggLN4HzX/Q+gj1dlttQQzKqOTp06sWDBAiUv3mw28/TTT2sMT02EhoayYMEC3FQXckh+Bv9+8kmNYN75QJ0FVZM8hw1b0VVlI9CYPrIN5bzHI9yMoqWjTeajuFCkRdYDp6xYho4DtwpXTGmJkGpwQEiI3WWhlspQrwByc3PrN0hLktAKsrkJszNg90bNLpdlDKCRNF8DANChu3Kh9vLU4edTcxFYXbHps9vo1KmTZrAfOHAgS5faL9DOnTuL9LgufexvkrhfVFvWk9jYWObNm6cMmsXFxfzrX/9SRLBqw2g0cttTzxLcQlyk3jqJ0sP7eOutt+p9LI1BXdxVk56OmurUQhvaR7ahXJB4RHAYDLnWvp24H5IO1emlTlux+PiK/Hwbe7Y4XImoEw/S09Ptf0JwsKYS31FfgxoJbSlcYja2rBU9PypQGwCz2Xzp9QRoApq3AWjfjTKLCFb56iWizM5RCMzIyNDkGcfExGhWBD179mTz5s3K9sSJE0WAs017UWkJIoi2UzuDqSsdOnTgP//5jxI0PXfuHP/+97/rPIuXPL2IGnoVQYFCc+UKbx0//vij0tzjfKDWQaotq0mNrejq66+/5qWXXrogRWAXLB7R8wptSuDvy+vUytGpK5beCXYNKYtZGIFKqDWQsrKylIFYkiRNgLjOgWA1CVfZi9FKimG3feVducq/uPjC1rlcDDRvA+DpzVGrvRg6Kjethp3rjjq1LTQ0lPT0dEUD3WAwIMuycvK5ubnRv3/FrEWvhz6D7W+0dwuUNGypOnDgQO69915le//+/cyfP7/O7S+lngOJio7Gy8uLTh46gvSwYMGC87Z07tvXHtg8cuSIY534i5QLFo+QJBh5g2h6BEIjpg5SAU5dsRjctLUBezZXSWgIDQ1VVGllWdbM9NUGoN4rABDGp6dKM3/bHyIzCeFKVHfNuyyKwRpJ8zYAwNZie7pacM5ZyM9t9HuqT9yYmBgOH7ZnJLRr107pkATQtWtXrY+7Wz97Sl2ZSZzADWTChAn2tpPAqlWrNLn1NRITjy6wBa1jYtBLEqN89eTk5PDVV181+HjqQ2xsrEYX/tVXX9U0EmkMFouF3Nxc0tLSOHPmDOnp6eTl5VU7C64vFzQeERIuNGJsbPuz1kbqtfVNqPeKpccAe9vIogJI1c7kDQaDZoV38KA9a0n9WXWNXVWh7xBtLGL/TkCsMNSJHi4D0By1gCqxL7+EoZ4yQQZJXLB7t9Sp0UVNqDMYoqKiNCdyfHx8FQOgwegu2rytF3op7NooNNdtrqF6IEkSDz/8MKmpqYoG0CeffEKLFi245ppaSsglCfoPxf23JYSFhdEnLZ3fCiwsWbKEiRMnKtK+TcmMGTN47LHHAOGnfuaZZ3jqqafq3NzGYrFw/PhxDh06RGJioiI1nJ2d7XAlJEkSQUFBtGzZkujoaNq2bUuHDh2Ij4+vsSbDEU4VgasvA0fAvm1iAmEqEauAhKsAMeM+efIkW7du5eDBgxw7dqxGV4tOp2Pq1Kn1+3wvH4iOtWeyHTsIUbGaXbp27arEFrZu3cr48eMBNJpUdaoGru7zu/UVKbEgWif2GACSSPSw1eKo+0Y3V5q1AZBlmYLCIjbKEuP89Bj0Bti7FQYMr1HUqjbUKYyRkZGaRvAxMTEa/7/DFMdeg8TAX5gvyvz//BXGTmrQsbi5ufH888/zj3/8g9OnTwOiKbmHhwfDhw+v+cWd+8Cm3wmxWsnIzOQqHyvf5ZlYvnw5d9xxR4OOpz706dOH66+/nh9++AEQyqp33XUXU6dOZejQoVWyg4qKijh69Cj79+9n3759HDhwoF6dn2RZ1D9kZWXx999/K497enrSs2dPrrjiCgYPHlxn9VGnicDVFw8vMQveWNGCdOcGTN0H8NNvq1i+fLlyHtgwGo20b9/eoZstPj6ep59+mrvvvlvTvrFW4jrZDcCpqrUk6kSIbdu2kZeXh7+/v8ZAZmVlkZmZSYsWLer2mWps15Ctf27yMYiJ12T62QxBc6ZZG4DCwkJkWWZLkczVvnr0Br3wuR/cDd371/4G1aBu3t6yZUvNdkhIiCb32eHy2s0olP5WLRHbhyqOp9Isqq74+vryyiuvcP/995OVlYUsy7zwwgtIksSwYcOqf6FeDwOGoV+9jJCQEPqb0/izyMLy5cu57bbbnN5r1xH3338/586dU9Jo09LSmDdvHq+88grR0dH4+flRVlZGZmYmmZn1l66QJKnWuEhJSQmbNm1i06ZNvP766/Tv35/x48fTr1+/i64HgULvBNj+J5SZyMs4xwf33MmKMznV7h4REYG/vz/p6elKO9Lw8HC8vLzIyMjghRde4NChQ9x///11+5vV52rWOZGTr1pF9ejRg6CgILKzszGbzfz222/cfPPNBAUFERYWphSI7d+/X1PpXmcCgqF1e6EPBHBwTxUD4FoBNHMDYDsBSmTYXmylr+0E3blB+OIbcHFbrVbNAB8aGqpJY1QHofR6vSYlTkPXvsIdZZP9Xb0M7nhIcxHVh/DwcObPn8+DDz5Ifn4+VquV5557DqvVqkjyOj6OfrBjAy3MZtLT07nOT88H2Tn89ddfDbsw64ler+e5557jiy++4LPPPlMUT61Wa52Ck3q9nvj4eNq3b09sbCxRUVGEhoYSGBiIp6cnkiRhtVopKSkhNzeXc+fOcfr0aU6cOMGRI0c4evSopibBYrEoxqBNmzbcfvvtDBs27OIzBO4e0K0fZ1cs4cyZM3Q3y6xQPd2hQwd69+5Nhw4diIyMJDAwEDc3N8rKysjOzubYsWNs2rSJjRs3Kn//0qVLiY+P1wgJVktQqNApslrFLTtD043PYDAwZswYvvzySwBWrlypZMN16dJFMQD79u1r+HnWuafdABzdB6Ou16ze8vLOs3jeRUizNgDqJeAOxGCALIsZy7GDEN+53u+ZmZmpCSYajcZqg4stWrTQGAQNOp3I6PiyIv8+6yxsrV8T7Mq0bt2a1157jdmzZ5Ofn6+sBMrKyjTBYg16PQy5BsMPiwgMCKCDnEMXDyu//PLLeTEAYPdDX3nllSxdupTff/+92hQ+b29vOnbsSNeuXenatSudOnWqtceDTqfD29sbb29vWrVqRc+ePZXnTCYT+/btY/Pmzfz555+KPhGIbK/nnnuOH374gdmzZ593uYnaWF9owefMGSQgxCAR62Gg19jrmTBhQrUTDy8vLwICAoiNjeWqq64iPT2dp59+mqNHhRvno48+YuTIkbWv/vR6MQvPrpj85GVr27ECV199tWIATpw4wf79++natSs9evTg999/B4QmVINp21lkJZnLRTwk9aRGCt3lAmrmBkCdBWDy8hUnjK3l3pa1ilxEfVDP/v39/TXLTG9vb00mS62B1JbR0GOgSKUD2Pw7tOsCLerWS9YRcXFxvP7668yePZu8vDxkWebll1+mrKys+i5MbTtDdFuCCwvJzsnhRn89L+3YwZkzZ2rsSuZsWrduzezZs3nooYc4deoUycnJlJaWYjAYCAwMJDIykpCQEKfOxt3d3enbty99+/bl/vvvZ+fOnSxfvpyNG+01Gn///TczZ87kkUceqdvs+DxQXFzM6x9/xmS9lbbuOtyN7rwy4yaCJtxZr/cJDw/nueeeY9KkSVitVrKyskhKSqqTPIempaipaiwmMjKSnj17KrIpS5YsUQyAjVOnTpGfn9+wrm9uRoiOs+sCnTyqMQB1LY68nGnWaaDqwdnX1xf6q/zh6Slwqv6aLZXdP+oZY3BwsCaPvrb2kwBcOUaIXYHIp17xbaMlf2NjY1mwYIFGYG3BggWaRt0aKsrsvf388XB3J0AvMdpXp+l1fD7R6XS0adOGIUOGMHr0aEaMGEGvXr0IDQ1tUleMTqejb9++PP/883zyyScMHmyv2TCbzcybN48vvviiyT6/PuzcuZPc3Fx2lcjoJB1xbeMIOptca8MWR9jakNpQJznUiKa5kONg/E032ZvKrF+/nszMTFq1akVgRREiaGVV6k3rdvb7p45pJl0uA9DMDYB6BeDr6ysaW6uaxbBxVb0vGHUno5CQEI0BCAoK0mSl1EXjBnePqp2XNv9er2NyROvWrVmwYIFGl+Wdd96pPs8/OBSpz2CCKzIyhvno2bnyZ6XhfHOjdevWPPvss7z00kuaQWXhwoWsWrXqwh1YBbYuantLrPj6++FuNApZhnNnGvR+6t+5Lm1TAXuvghoYOHAgERFCyE6WZX7//XckSaJzZ7v7VV0nUG/UweiMNIJUKwmXAWjmBkC9AlAKRK4YZd/hTDKcqF8FqtoABAUFkZNjz7wIDAzUuIDqZABANLzuZm+lx5a19l6ojSAyMpI333xTU5r/4YcfVm8ErhhJUOs4dDodkgTXGkr55ecLswq4WBgwYADvvfeeRsjs//7v/2pvadjE2GJLJTJkGlQz8XqezyAGSvWsv7bCMRuy1UJeXh4pKSl88tki3nrrLXbt2qXJutLpdIwcaY9rrV27FsB5BiA4zC6SZ7USKtlXzy4D0MwNgHoFoBiAVq21HYbW/1qvVUBll09NBqDOMymAoWPtfWBlK/zyDZgaP/sOCwvj//7v/zRSvB9++KFjV4abEcM1N9OiwnUUbZRIXvKF0yp0L1XCwsKYN2+ekmJYXFzMt99+e0GPSS2psDk9G6u14hxOSarmFdWzdu1aZdAOCQmhVatWtb4mLy+PDevWcvzECTKzsjialMSSJUt45JFH+N///qfRpVLXoxw9epSzZ89qqsCPHDlSZwmTKuj1QiSugkCV3pctBtacafYGoJWnjpltPLjenASrF0HWGaVqEoCMNNFgoo5UHvDV20FBQQ1bAYBwBV17qz0onZsFa50z+7bJQKsv7IULF/LNN99U3bl1OwISRiq+9sFSCb99VUd5icuYiIgITcWsetC8EPTu3VtpEHQgt8heI5F+ul4TGqvVyrJly5TtuqS8FhYWinTjDHs8rMRq/8xVq1bx73//W0npjYmJ0UxAtmzZQrt2dt99cXGxRjW03gTZM558TPbsMYvF0uwF4Zq1AYgvTOazvr5MjvagbWk6bFwGb/0T0o5AO5VEw4aVdQ68Vvb5VzYI6hhAvVYAIFYnA1Q5+/u3w+G99XuPaggODq6yEnj//fc1stU2vMfegm+4mFXpJXBbtYScBhRhXW6oXRlZWVmac+F84+vrq8h9pJTLpKWnUWoyiWBsXt2Pa+XKlUrlsCRJ1WeKqXjnnXc4deoUXhV2wtfHh5Fjx9O2bVtln61btyqxEkmS7IKICPVXLy8vjWuyQcqgNoLtcS6PYm3xV3NPBW2+BiDrDNdaTqGvPJuRrfDjO9Clh11VMTfLnopZC+qLPjAwsEpMoN5ZQJUZOAIi7Mt7Vi2BvOorPOtDcHAwr732mia188033+Tnn3/W7ujhRfjU+xR9nHCdhY2vPuuUY7iUCQgI0OjZq43/heDOO+/Ez8+PUhmyyy0cTzpOebm5xqbtarKzs3nvvfeU7eHDh9ea9puSksLKlSsB8NFLhIaGEte2LWMn3My7777LwIF2pU715EKtiWXTzlLHVeqceeSIAHu2m1SYp7numrsgXPM1ALvWoKtuJStb4cQebeB10+pqW9zZsFqtmurCgIAAjTxBcHCw5vkG5Tbr9UIXSGmCXQo/f1XnHsK1ERISwuuvv64pFHrttdeq9Bf27tYHner7aXnqMPtXr6A5YzabGx7jaQICAgJ49NFHAcg2y5jKTBw7dozsk7XHAcxmM//73/+URAkvLy9mzZpV6+t+/fVXZFnGXQIfD3daRkQgAfj4YjAYuPvuu5V9ExMTlQmSerA/c+YMsixrzsG6NgVyiLeq019hgcsAqGi+BiC3lhMq9xwMGlWnFnfKS3JzNX5fNzc3TfpcSEhIlRVBgwgIhlE32LfPnIIt6xr2Xg4IDQ3ltddeU0S4ZFnm+eefZ9u2bZr9Ot03B7OXuLgkCXK/eIeCrEvbFdSYvrgHDx5U/NoGg0FJb6wPOTk5/Prrr7z66qu89NJLvPHGG6xfv77BvurBgwdz9913k1MxPyg1lfLFO29rBAkrI8syr7zyCtu3b1cemzVrliZluDpslbu+OlHpLkmSODk8xaDbunVrjbibbbavvhbMZjMlJSWa9NpGyTaoDUBJET5e9lVafcQCL0earwEIqOVkDggVJ84AVXHYrk1CkqEa1Et+d3d3zezCaDTi5+dHWlqaEnjunrjGHniuL516Qede9u1Na0TaqpNo2bIl8+fPV1YpFotFIwkAoPP0InzGQ0pg2ttcxo6XnrhkMysa2xf3xx9/VO736NGjXmJ5eXl5vPHGG0ycOJGXX36Zn3/+mVWrVrFs2TKefvppbr75Zr777rsG9SyYNGkS3frYG+yYTSU88cQTPPXUUxw4cECz7+nTp3n44Yc1tQyDBw9m3Lhxdfos24o3QC/Z3WHevpqaAHXyg01nqHJCRFlZmeaxRtWbeGpdrb5Gu9Jvc89ga74GoNdILNWNU5IOelYEW/sM1qZfrvu52iyKygHgylXBaWlpDA9ECTz7ntprDzzvbkBx14jrwT/Qfmy/fK3pgdpYYmJiePnll5ULubS0lDlz5ihCXQBRAwZj6pWgbAeknWTHJ+867RjOF43ti7tjxw5FvwaolyTEnj17uPPOO1m2bFm1A3xRURHvvvsujz/+eINmrf0GDCAmJgZJkrDJCW7cuJH777+fCRMm8NBDDzFjxgymTJnC3r32xIKePXvy1FNP1bnC2pZO7a+HclvPXR+t/s6ZM/YJj83NU7ldqcFgcF5Vt9FdI+ni62YXVKxrm9TLleZrAIJb8kGaHkvlwVzSwfj7ILgi2GVwEzn4Nk4cqbbZdm0G4NTuLTza3rP6wHN9VwLuHnBNpdTQdc4tzGrfvj3PPPOMEvDNzc3liSee0AxC/R6YS76vyp31+3JO7qjaC/ZipjF9cY8dO8azz9qD4LGxsTXLbKtYvHgxs2fP1hQlBQcHM3bsWO644w5GjhypaYCza9cunnnmGcXVVGesVoICA2nfvj0RlQK5WVlZ7N27t0oHriFDhvD8889jVM2Ya6NTp04A+Oslzp49h8VqVaRMZFnWKLoGBAQoAnrqv1+n0+Hl5aUZnG0prQ1CkjT9PTz09mHPWV3gLlWarwEA1mTJ3LG9gC+TS8mL6goJN8L9b0LPSo1S4oUYmsLaH5U+o2rU/v3g4GBN5kJ4eDiGfX9UHfxtyNaGrQIi22g1jPZtswvaOYm+ffvyyCOPKNvHjx/npZdeUlw9OoMbnec8T5lOuDwMyKS89SL5mY0I3J1nGtoXd926dTz44INKsNTNzY0nn3yyepXXCsxmM6+//jrvvPOO8j26ubkxa9Ysvv76ax555BHuvPNOnnzySb766iuN8urWrVv5/vvv6/y3AUIGAvD08GDiHdN59tln6datm8Ndo6Ojeeqpp3j66afr3H3Nxg03iNhUgF6i1FTK4cOH2Xk0iZ9//pnHH39ck/lz3XXXKd+TuoteaGgoOp1O4/dX6/g3CIPdgBiwT/ouVXels2jWaqAWi4XUEisfnSil9+OT8VdVH2qQJBh5HXz6utA2z8sWvXoHXaXZrXKAV20AWrZsiXnHFvCnenLP1fBkDVwxCk4eFUU+AKuWQqs24NWANNNqGDNmDMnJyUpx2IYNG1iyZAkTJkwAoEWbtmTcejelX70DgE95KZv+/RAj3/gUQ2Nmb+eJ2qScKz9/8OBBFi1axNatW5XHdDodTzzxhEY4zRFZWVm88MILigomiAnCf//7X4cqm/7+/vznP//BbDbz11+izeG3337LjTfeWPc4Q4F9MJW8fRjctS+DBw8mJyeHw4cPk5OTg7u7O23atKFNmzYNdr/Ex8dz66234vmbEBYsKytjxYa/WPvres1+MTEx3Hzzzcr2nj17lPu2tpDqFbRNuDAxMZGFCxcqbTZnzJhRtzabKgMgqWb9tRnqy51m/derl3+19nwNDhNt5mxsWWfXOq+gsgyEuvWep6cnJ/NqyeQICK39oB2h18O1k+wneXEh/P5Dw96rBmbOnEnfvvZg4vvvv6/xjXe89npMPe3fUVh+Bj//+5FLYpY1Y8aMas8BvV7PtGnTOH36NN9//z333Xcf9913n2bw9/Ly4rnnnquxR4Isy2zYsIG77rpLM/h36NCBt99+u0aJZUmSeOSRRxRXSHZ2dpUAbrVYLFoRuGD7eRYYGMjAgQO55pprGDFiBLGxsY32vc+cOZNe7eKwvUtupWBbr169eOONN5TVhe17sWE7x9SrglatWjUuSK8a6K2qBj+Nci1dBjTrFUC9uWKUqLwtzBd597//ABPuUnzwagMQEBCgCXbl5uayNr2MW6LcHbuB1IHnhhAUIqSj11ZkohzeC+27i/4BTkKn0/Hkk09y1113kZmZidls5qWXXuKDDz5QZqL9H36KrY/Pwj1dZCRFpxzm2xef5pYnnnFKUK+0tFRp8J6amkpmZib5+fkUFxcrGSVGoxEPDw+8vLzw8fHB398fPz8/5ebj44OPjw9eXl4YjUYMBgPh4eEsWLCAhx56SDMx0Ol0XHvttfz73//WzEjVdO/enTlz5tSY9nns2DEWLlzIli3a2MiIESN4/PHH6+RnDwgIoEuXLorxSExMpHv37rW+jnNnwFIx6On0EFq7lk9j0Ol0dImJwuTjSWZWJtERQRQXldO2bVv69+/PoEGDNOfCnj17FKkHSZJISEigtLRUYwCAGoP0CQkJNa8EVJ9XrnLf1ie+cTniMgD1wd0Dho2Dn0QXI04mCp2gDuIiVBsAWZaVAUmSJE6ePElqiZX5R0p4rIOXdulVOfDcUHoNEseTelJsr14KUW2qpME1Bn9/f5544glmz54NiE5O3377LbfddhsAkl5P76df5e85dyPl5yABbQ5s4e2nn2TWv5+p94zLZDLx999/s2PHDnbt2kVSUlL9A6D1oHfv3lX64ubn5zuUDOjcuTO33XYbAwYMcGjcLBYL27dvZ9myZVVqKAwGA//85z8ZN25cvQyjOje+zqmRR1VaVuGRdnXMpsJigaIC3N2NtGrZkgfvehwCq2/svmTJEuV+v379CA4OZs+ePcrK0cvLixUrVtQapH/ppZfqdHhlqtRPdeV2c8RlAOpL+27w93bhcweRddOmPbh7aAyAunAnNDRUmbWtPFvGqBkP0EvKFj7/gFAx82/s4A9ilnP1RPjsdTCbK1xBP4rKYSfSs2dPrrvuOpYvXw7A559/zujRo5UCHzc/fzo9+TLHnn2Y8qJCfI0S43L28veTt9G6zyCCRkys8e9NT09n69atbNmyhd27d5/XXG0vL68affixsbEMHDiQIUOGOJxx2gzWX3/9xZ9//ulQcrhnz548/PDDmurXuqKuLK9TJbnVAgdUbRU71GHF0FgK87Wp0r7VB7727dun6a52/fXXK4/b6NixY61aQLX2h1YdT7Eqg01RAW6mNGsDoJ551XlWKUmiCvfjV8WyujAfNqyk7MprNIO+OoPB29tbyZ03GAx0TBgOTTXzCAqBhKvhjwr9nkO7oWMPiOvo1I+56667lAHOZDKxaNEiZVUA4BEZQ9uH/kPeh88S6mdFkiRiKIeDf2A58Af7YgYh9RqJ0WikoKCAM2fOcPToUfbu3UtaWlqNn+3p6UlsbCzR0dGaBu82N1RZWRmlpaUUFRVRWFhIXl6eMovPz8+nsLCQwsLCag2Lp6cnfn5+tGjRgvDwcFq1akXbtm3p3LmzpmJVlmUyMjJITEzk0KFD/P333xw6dKja3PL4+HimTJlCQkJCg9xhZWVlHDli1/Nv06ZN7S86vBeKKgTQdHro2FOkG+9aI6rhA0Kg10jnTEBsFOTa73v5aAKwasxmMwsWLFC24+PjFVE4dS/guhTV1dqPWRbXtwwUFNmvU5cBaMaog371ygcOCIaBw+GvimrJPZspahWn2UWdEWRWBZ26du3a9MvO3gli2W+rDF69THRGMjpPm8bHx4c777xTuYB//fVX7rjjDk2bSY+wUNwDQJK1g51egm6n/uKO738ltaR2w+vh4UGvXr3o3bs3PXr0oHXr1k7J3pBlmbKyMiwWC7IsYzAYcHNzU967vLyc/Px8cnJyyMrKYtOmTZw7d44zZ86QmppKcnJyrRINBoOBK664gnHjxtG7d+9GxUG2b99OWUVxlYeHBx071mLUy8tg/Ur7drsucGSLqDmRVd/7puUw/h+Ni0GpUauN+gVUu9vnn3/OiRMnlO2HHnoISZIoLi7WtIHs1asX/fv3Z/78+Q6vU71ez/Tp02s+porXWSwWzKrVgLpHcHPEZQAqqHdBSN+hcHAPZJ8DWcawdjk6wIrILFCLV6kVQNUNr5sMnQ5GT4DP/k+4AApy4a/fYPh4p37MNddcw+eff05WVhZms5lff/2V22+/3b7DrjVI1WQA6SWJMeFGPjrh2I8dFRVFv379GDhwIN27d69xBmgymUhOTiY1NZVz586Rk5OjBIZNJhPl5eVYLBZloLfdQPzuVqsVs9lMeXm5snooLi5ucJWop6cnPXr0YPDgwSQkJDQ+h70CdaXxwIEDa08B3fanfTau00PnHvD5f7SDP9gLEaM7OmcloFan9Q9yuMuWLVtYtGiRsj127FiliGzz5s3K9ejr60uHDh3Q6XR8+OGHVQLBer2ejz76qPZU0IoguNlsxlxxSup0OtcKoEnfvamXmo1EHZBUz9LrhMEAV90I3wi5XF1GGoO9dfxZZMXb21tjANSxAXWjiyalRbgoENtcIWC3a6Pw/7asWzu/uuDm5sb48eOVNLw1a9ZoDUAtgnsx/p4EBIhsnZCQEOLi4mjfvj09evQgNLT6lNji4mK2b9/Ozp07+fvvvzl16tQFTTUNCQmhQ4cOdOrUia5du9K+fft66QDVhdLSUjZt2qRsjxhRy2w98YD9tweRIJC0s+rgb8NWiDhySuMPVi03bZMqUZGUlMSLL76obEdGRnLPPfco23/++adyPyEhQVmRTZs2jYSEBD7++GOlDmD69Ol1qwOouL7N5eXKCiAgIMB5chOXKE1nAHb/3vRLzUaiNgC2pXW9iIqFLn1h/3asVitj/PTsLbXi4WEPCJvNZsrKypSc59qKhJzKgGFwZK+oV5BlWLkYpj7k1CyQUaNGKQbg1KlTpKen2xt51CK4l9C1GwmvPa1J0asOq9XKli1bWLFiBVu3bq2/wW4EHh4eBAUF0aJFC0JDQ4mIiKBly5ZERUURExNzXmaRO3bsUGIWXl5e9OvXr/qd01OERLjNKPoFij4SP71T84c0tBCxMjkqRdgAbfbP6dOneeyxx5TKaXd3d55//nlFotlkMmkypoYMGaJ5fXx8fJ2zfRRkGcxiNVduNmOq+FoarMZ7GdE0BiDrTNXBH5y/1Gwk6hzgBhkAgKHXQNJBrPn5GCW4yV/PKjeD4hsuKytTZoMeHh51ktR1GgY34Qr6ukKcLeucaCivbnnZSCIiImjVqpVS9Xzw4EG7Aeg1Uhj96madGbmi5/KVY6o1AmazmV9++YVvv/22xuCw0WgkMjKSsLAwgoOD8ff3x9PTEw8PD9zc3NDr9ej1emU2KUkSkiSh0+nQ6XSK/99oNOLp6Ymnpyfe3t74+vpecF1/QCPNPGDAgOrTaVNPwpJPlAEPozvcNA08POumgOsM1CsAVfrn4cOHeeKJJxTVXFtdibrJ/M6dOxVD5+npSa9eKsXbhmIuV4yhubycMpcBUGgaA7BrzflZajYS9YXdYAPg6Q3DxiJ//QEAnT10nJTKsZWwlJWVKZ8THh5+/peckW2g5xWwu8J9sHWtCAaG1sEA19GF17ZtW8UAaDo3BbcUKz5HkwFjGOiMQlIDGa68RmMEZFnmzz//5IMPPnA48Pv6+tK/f3969epFp06diIqKuqzL+tVB0d69ezve6cBOIQNiG/x1OrhuqnAHQs0GWdKRG9uHTStWsHfvXpKSksjKyqKoqEiRMm/VqhWxsbF07tyZ7t27Ow6glhQpukMABIUgyzKrV69mwYIFGhHBOXPmMHjwYM3L1dXV/fr1c06lrqrwq9xsdhkAFU1jAOrSbOUiQG0AGpVr3qkXhUFhUJHRcJWumL8kMMliBmsbmC7YCXflGDh+SATnrFbhCrrtfiEhUR31cOGpi5PUAW9A7BvdUbyfre6hwxWwZjlkVDT63vanyNIYNg4kiaysLObPn1+lalaSJAYPHsy1115L7969a5fvuEwwmUyabJnOnTtrdygugrXL4dAe+2M6PYy7DVqr/OPVGGQZie9KW/D+Xfc5jKWUl5dTVFREWloaO3bsAMRv0b59e/r160e/fv3o0KGD+D2yVNe2uyenMrNZ+PJ8jdSDXq/nkUce4aqrtCtRWZY1jWrUfYIbhUoi3awyAOrztrnSOANw5pTjoOL5Wmo2Eqc1nJAkznQegG7HFvQSeGPlGl8dy/KtWCwWZdZ/wTIOjO5w1U2w+COxfTYVtq6DK0Y63r+eLjz1rM5h8DO4ZdUV3y2z4LsP7Ro1O/+C0mJ2hsTyzHPPKz5iEAPGtddey+TJkzVtApsLp0+fVgZmg8FAZGSkeMJigQM7YMNv2lm3hyeMvx1iHARHKwyydedq0g7vY+exZL47lk1qSf36F8uyzOHDhzl8+DCLFi3C29ubjh07MizQk17ZZ7FYLBwrLueZH6ZrjIqXlxdPP/20wxjGiRMnlOQJSZI0/YMbhcoAlFrs53RzTwGFxhqAxR/BxLuqGoFalpoXSxBYbQAa2xrO4hfI2kILo331yLJMgo+eXSUy6aqT/4LqjrRupwSsAdFBLLY9hDuoRq2nC0+tI6/4/2vD0xtuuVsYgbPCbZT55yqOJqVQWmgP8Pbp04cHHnigQVWzlwtqF1hERIRo6LJ3q3Dn5VUauFu1hrGTq82/l2WZvw4m8f6i1Q4brYeGhjJw4EA6depEZGQk3t7elJWVkZWVRXJyslLwpq5zAbHy27FjB2389UR4ixXv/iKrZvDv2rUrTz31VLUZXmqBvHbt2jlvhq5yAZWY7SmkLgPQWANQZoLvF8It90CYyjdcne/XWZo3TsJpKwDE4L6mwEpPTx0tDTIScEuAnh0p4qKTJOnCq2IOHwcpx8SgIVvh569h6oNVC8Tq4cJLSUnh2LFjynbXrl3rfjweXmIlsOxTMnZt5XRqKh3cJe4LNvB5oZ4777ufa6+9ttmn6tlE6CIMcH2AAd5/0V7da8PgBoOvFume1cRCzp49y/z58xU3jg1Jkhg6dCjXX389Xbt2dfh9x8fHM2DAAECczydOnGDbtm1s3bqV/fv3K1lZrdzsrz1dLs736Ohopk6dyrBhw2qM06jjHE6tl6nGADT3GgBwRgzAVArffwST7hUyBDYc+X6dpXnjJJxpADw9PbEA3+RaeDhUfK3hbhLjQn3YaLWi1+svfP9Rdw8Ycwt8+77IisjJhN+Xw5ibtfvVw4X3+eefK/dbt25NdHR0vY/pr/AOHD/2PV09xeAQ523kk75d8e3VtU4popc0NQXazeVw5hTBh3bwWIiBCDeJYLlYO/jrdNClDwwYXm3RFcCqVauqBGElSeLqq69mypQp9WpgL0kSsbGxxMbGcuutt1JSUsKhQ4c4cvAgPbb/imwuR6fXM/DKBKYPv4q2bdvWyYirZS6qxDkagypl2GUAtDTOAEg6MZMsLhRL+cn/0C49Hfl+LyKcaQBsef4ny2T+KrIwsELtYXyoD0czyslGr/FrXzCiYqHfUBEDANi/A6LjoLMqs6SOLrxt27axevVq5ambb7653rP1s2fP8tIrr1BSbOFGKwwL9KBt27a4S1b4+j0YMR66D7g8DYHDQPsP0G4wSF6QdgrMZlqnnSK7YmbtZmttqNNXDPzDahz4zWYzb775pqZhPQjX2v33369JwWwotnTNXmFBkFYh4mYwEH3XPTUnGqgwmUyKJDTYm8I4BbO9otukMgb17XZ2OdK4vDn1zLEgV7iDShvnSz+fOCUNtAJ1uf+PueUUVny1Bp3E5EA3dFDFb3rBGHSVNm6zaimcVTcMqXDhSZVOD5UL78yZM7zwwgvKU23btmX06NH1PpRXX32V4uJiZODXciOhk2bibjPMVovQMfrpS22Q81JFlsXsPeU4bPoNlr/tINAuw5H1cOqQMnNVn5tlwaEw8nq49ykYfVONg39JSQn/+te/NIO/r68vTzzxBC+//LJTBn8NqSrFzrDIOg/+IOIc6kB3nWNJdcFqn/WXqVYA6glgc6VxK4DOvcBUItwIAFlnYfnnMGFGvX78C4VTCsEqUBsAkwwrLF7crC9EJ0nEGGG4j8T6c+eUeMAFRa8XgcJFC4TBNpfDD5/BlAfsbSRrcOHl5eUxd+5cRSPfaDTyxBNP1DsPf+/evZoCp4cfnk3IyJHQqZs4j2yD/pF9YtAccd35kTN2BrIsRNFST4pWnZnpIu21pCJNtiwTqCEmZM4HYwswuLG/qJy/8ywcMFmZ88hkYnrWXhxVVFTEo48+yuHDh5XHOnTowDPPPFOjzEajOHXUfj+yDkqlKtTNdrq2DEb3+xfOk5BRxd7MKtXf5t4NDJwRA+g1SEgi21wKycdgzQ9CJ+dCD3S1oE5ZbKy0gNFoxMvLS6kATvf0Z3tuPn08dVjMZq72NXAos5zMzMzzWw1cHf6Bwggs+VhcIPk58OPnosOZ7Xtx4MLLz89n9uzZmm5Njz/+eN2kiSuhbgTSrVs3u75NZBu44yERpE5JEo8VF4qVwMHdMOQaTVvDi4aCXDhxRDQKSj0provqsNYiNBcSCmPuJs/bnzd+nKA8XJcYS3FxMXPmzNEM/sOGDeNf//pX0w165nI4ba9VoE317S0dYasOvjrMyKOtTbBxmf1JJ0nIyKAxBs2ljqQmnFMINvhqMYDYClH2bRWVpj2dlMfbRKhPAGdoywQFBSkGwMvLi2WnLMS7G/CRJHQSTA3Uk5x07OIwACAu0ivHwJ8rxHbKcVjxjSggcmC8CwoKePTRRzVpn9OmTatdmMwBubm5mkYgt9xyi3Zl5OMHN88UFczrf7X7cZMOiqK2Tr1EHUNAMBcMWRa1MMcOwvHDYpZfFzy9wBgMOTW4tWI7Q1Qsh1WVsf7+/hq5bUeUl5fz1FNPafoFX3fddTz44INNu/I8fsQebHUz1lt0MD8/n1aeOh5t74m+8mE2WkLG/obq7+CCr8QvApxjAGydqHKzIa1Cg37tcggOgei2TvmIpkDtsnBGimZgYKDSCN7T05NSGb7MsXBPoPicEIOEfv0KGHARGca+Q8TAZesadWSfGHwrqnJtlJaWMnfuXE0T+FtvvZUpUxoW5N+8ebPShCc4OFhJMdSg04neBrEd4Lcl9tWALAvZg0N7oGN36NpPrBrOxwVdXAinEuHkMWGIaotNBLYQufmhLSEkXMgyePmI7J+3/llroF3dGKVLly41DloWi4Xnn39ek08/duzYph/8AQ7vsd9v26neLuDi4mKuCTc67pcNjZOQUR2L+qiasrXopYLzpCAMbnD9VPj8jYqm6Vb48UuRZ15DU4gLibPz8gMD7dK3tqV2UpnM6vxyrg4UAWf/5KMi86ZLH6d+doORJBg9UQQnT1YM7jv/sueVV9QvvPbaaxw8eFB52cSJE7n77rsbPLDs3LlTuT9o0KCa4weBLUTR2JF9oq+BTW3S1u7wwC6xT6deorgttFW1ufD1pqhABDdTT0Bykr1yuTr8g4TBim4Lka3FYO+IOtbKqOUwahJGk2WZt99+m/Xr1yuPjRo1itmzZzf94F9SJFZmNjr0qPdblJeXE+VRy2/WUAkZvRjmJMBNZ/8unK4oe5HL3zvCuVpAPn5w/R3wzbtiOVhSJIJ5k+5t+kbUDUBtAJwhJKY2AGr30k9ZpXTyNhJtlCgsKhLN2luEiwbdFwN6PYyfIuoDKqpylZjO4KtZv369Jt1z3Lhx3HvvvY0aWP7++2/lfs+ePWt/gSSJAHC7LmLA37RGuB1t5GTCxlXi5uEpZBDCWkFwGLQIE5MQXTWzUlkW52pBPuRlQUaaCNhmpGmVLR0elw6i2kDbzmLgr6H5eRVqqZU5efIkycnJyu41SSN8/vnnLFtm95v379+fxx9//Py4OfZutbt/vHzq7f8HcS2ml9YyI2+ohIwq7uGut1/nTq3LuQTk7x3h/FE5IgpG3Qi/fie201Ng7Y8iKHyRoZ4BOKOBh9oAqA2KZDCwMKOUxyM8oKyM8pJS3H5YBFP+Cd7O6RbVaNw9RAD4u/ftIm1b14G5nG++W6Hs1q1bNx544IFGDSxZWVnarI/6VA/r9NC1r5jtH/1bSFucOqZtQl5aIlYLR/ZpX+vmDh4eovLZYqm4maG0WKxY64qPnzAwbdqJwc6jEfnkNdTKrFxpb+cYHx9fbbHWr7/+qvRkAHu2j7Ob0jjEbLYrzQL0GNigDEBJkliRXsYtUe6O3UCNkZBxs2f7eagMQGNrfxQuEfl7RzTNGdKlj1g276sIYO3dAi2jLx63RwXqln/OyI5Qa5eUlpbi6+tLQUEBRqORMnd3Pssu494WBoqKiwhwM8DST+HWWZoT9ILi5Q033w3ffWA3Ajv/YkDmcY4BZmDKlCmNHljUJf+hoaG1BjYdoteLZvcdewhpi4O7RAbOmeTqdYzKTeJWX3z8RIyhZYxQ1wwKbfJ4g8lkYsUKu+G9+uqrHe63ceNG5s+fr2xHR0fz0ksvnb8eBrv+smc76Q0NTvxwc3MjtcTK/CMlPNbBS1ug1FgJGYP9+vIy2I1Tbf2c68wlIn/viKabIoy4TvhL0yvSBVcvhZAIsSy/SFDPAJxxwahrAQoKCggPD1eqf8PCwjiWnMyPeRbuLioiwN9ffDe/fCOUGy8WLXsvH7h5lpD3qHAH9fTS44uVj3Ms/Pnnn41ubq6W/K3X7L86/Cs6Xg0cIaRJkpPgzEnIPCtqUyoLplWHwU24ioLDxLkaEiE0rvwCz3tK88qVKzVdsypLJwMcOnSI5557TglmBgUF8b///e/8yRwXF8Jme59iuvevPuZRC7brb+XZMtzb9eChK7s4T0JG7QJSGQCnVeZfIvL3jmg6A2AwwHVTYNH/Cf+q2SziAVMfaNyS2YmoZwCenp6Nfj+1tkhBQQGxsbFK1oyfnx8AfxZZ6VGm53rbjon7YdUS0bnrYklL8/IWIm0/fg4nEwkOCsJiyeCREIlPfvuFx9LSmDVrVu29WB0ExYo8/DU9XwcNGuTcY3f3gPjO4majvAxKikXRYmmJEDHU68WMVacTMQNvP/Hai+A3sFqtfPfdd8r2tddeW0W3JjU1lTlz5ih+bG9vb15++eV6afo0ClkW9T42qWUPTxg0qsFvZ2sJCXC62OLcGbPKABj1enSAFScagEtE/t4RTesk9AsQxUbff2SvjPz5a7hx2kUx41UbAPUJ2FDU2iLFxcWafH912fmnKdlcN+xKpBMV4ld/bxezzxHXXRQDECAGwxunw6qlhFks5OcXEGAq5YEWBpYe2s3dd99N//79ufbaax23KHQQFJM3LWeLd3tl5eXr68sVV1zR9H+Lm7HCzRbQ9J/lBNatW8eZMyLbSJIkJkyYoHm+oKCAuXPnKgOYwWDgmWeeca5+Tm3s3aKNsVwxqlETO/X1V6WpUGPRG1R3DeglsMr24rNGc4nI3zui6aNEreMhYTRsqAhonTgiMjUGO/Zpnk8KC+053M4wAOpVRGlpqca3rQ4K5xUUknnF1YSUmUTFKIhAmt4AQ6+9eIyAXg9XT8AQHEq89BPJJ0+Sl5/PxAA98e4SS7ZvZevWrUqTclt7xmgfN9wcBMUk2crQgoN84qkjtcTKDTfccFH0272YkGWZL774QtkePny4ZlZvtVr573//q9SbAMydO7f6NpFNwdlUWPuTfTs6TrQdbQTq6099XToH+/XkZjAoW04zAJeI/L0jzk9uZv9hwt+dWFGduGWt8K9eYF0X9Ymm9t83lMotJtUtIIuKiggODlYE4ZKSUwi5abpQUbXFSXasFxWvI6+/eIyAJEG/IRgiomjz4xfkp6WSlp5OD0qIM/5/e2ceHlV97//XmZnMJJM9ZN8h7JtiWeqOgFZEbdWqiF6LVqpW7HNby+/e59F6b3tvW7XW5VqtC4r7RsW6glvBohaRTWWTQAJJSMhKkslMZj+/P745J+eEJCRhspHv63nOMzNntjPJOd/P9/tZ3h+F1U0hdno8bNiwgQ0bNgDwszExXJPX+cBuVRQWZtpZF0hlyZIlA/hDhgebNm3i4MGDgJj9dyy0e/bZZ03FYUuXLu1TJXafaW6ENatE9hQIn/+iJSe8oje6uCJvANqxRUXpBqCuri5yHzwM5O87Y2D8MIoidOhTDL6wta8LkaxBxOgDjIQ2uNEAhMNh3e8P0NTUZPKZHzhwQLhZrvypuUH7jn/Be6+IFMWhRN4YlJ/8O4lTT2PChAkUFRWRn5rCTaPs/FuylTjDmZTh6N54TchI5qGHHpKz/04w+v7PPPNMk2Lntm3bTKuDuXPncv311w/cwXlahOKvlvWjWODiayDuxCdPxu5czc3NkS3SNGR+2aOi9J7AWvvJiKGl9P74DnE7xAd/GCgDAG0+5aUiWARipvvms+BqGrBD6IhxphEJA9DRD250CTU1NZl8tLqeTrRTVLlmG0S+9uyANc+IjJahRJs+j3LexSQkJ1NYUMC0aVO5YnIR/zc9l8VF2dhttuMW9Jx23g/6lvp5klNSUsKOHTv0x1dffbV+3+v18qc//UkfGPPy8lixYsXA6dm0uODVJ0RWlcb5l3Xed7gPGA1AOByO7CrAcB3ZnLG6Bmt1dXXnrx9BDGwkNjlVpDxqOvMtzUKNcpAGukgbgI49f41B4ZaWFlNfW22ZDwgjcOUy88V0sBheeaznKYwDhcUCM8+Bn/wSsguwWCwkJiYyOjuLmyfksPbK+Vxw1Y2oXQ1MigXL9/qeLXIy88477X718ePHm7pivfDCC3rDFKvVyt133z1wDU2aG8W5aBz8T18g0j4jRFxcnMmYNTVFcGJoUGW1Jybp95ubmyNXCzBMGfhUnIJxIttFo7YK3nl5wF0eqqpGPAuoowEwrgBUVTXFBMrKyggZf7PdIbKjJkxv31d7BF58pD1QPJRISRMd4BZcBo7232lpaiD1269Q0iZ221BGYiYUCrF+/Xr98aWXXqoPiLW1taxevVp/7uqrr2bs2AESWWyohZcfM0tinD7/hFI+O0NRFFP9QsQCtAAN7Xn49owcUyGjsQvZSGRwcjFnnC5UKDVK98IHq83l/P2Mz+cz+RkjMZuy2WwmDSBFUUxGICYmRr+og8Ggnupn+AAhxTx7bvs+Twu8+jhs/9eA/n16hKKI/+VN/09IABhn/e4gROdBUj7kT4UzL4Plj8CMeYN3vEOYnTt36rNem83Guee2Xx9r1qzRq9ZHjRrVZwXWXlNRCi/9RfQ50Dhnocjq6wfXk3GC1NDQELkPrm1fuSij0k3dxqqqqiL3PcOQwUvGP/ciGG+oAt21DTa8O2CDXEcdkEi1hzMaErfbbaoFaGxsJCenvRJ6//79x36Aooi/zcKr2sXLwmH4+E14/zVR1DTUcMYKf/ANv4Kiye37LXYIOKDeB6WVUHZw6MU1hgjGzmgzZszQXZLBYJD33ntPf27x4sUD08pw79fw2pPmFq/zLhUZff2E0QBErH2qqgr5bo3MXLKz21egx0zCRhiDZwAUBRYthjxD8cqWjebS8n6kYwvIju6bvtIxnc2Yw11ZWcn48eP1x3v27On6g6bOFDpBce2ZROzeBs//n3CbDUVGZYhA/5KfH6sI2dQgKkf/+nuh7X+kYuitaAaRb75pL6oy5vRv2bJFz1az2+0sXLiwfw9EVUWa9jsvtffStVjFyvR7Z/XrV6emtiupRswANNSYVzAF403XpFwBDCa2KLjsJ2Z9oM8/hK/+2fV7IkSoQ8whUu3hjIqgDQ0N5Oa2Sz4fOnTIFNgzauJ3Sk6h6NNr7K/aUAMvPCI0+4fqAJpTKPpC/+TfhVibMRYQ8AmRwBf+D559EDZvGNRMsKGAqqqm1aDxHPnS0BFszpw5EYlVdUnALwZ+rWgTRNbe1T8bkJodY2ZYxHL0dxqusfRsiIuXBsDA4OsxOKLFYGGsEdjwrlgN9CNG/38kU+mMs5jq6mrGjBmjP963bx+zZs3SH5eUlLBv3z66JS5BXIDGuEAoKCS2jTnZQ5H0bCEFctMKMXt0dHBd1B0R7Sif+IPoRbD9ixFpDGpra2ltbXe1GM8ZY2vH2bNn999BNNYLf79R3iFpFFy7vNcN3vuK8dqJiAEIBuDbze2Pp4iVldEAyCDwUMAZJ/q/Jrb7AFn/jqiM7SeMg76qqhErPDH6FysqKpg0aZL++MCBAyQlJZlmeC+//PLxP9RiFXGBK28yqy0e3Aer/ixcQ0N1NQBiIJl3Kdx6l4htdOwXq6pCwfPjv8PjvxcrnC8+FhXSQ/l3RQijH3rUqFF6HElVVVO68IQJvW+0clxUVXSoe+6hdglwEBIu1y0X2V4DhDFeFhEX0LdbhAggCG9Dmxx9RkaG/pLq6uqIdwYcTgydNl3xiUKB8rXH23Pf178rAqDG2W+E6KhpHwqFItJAo7CwUL9fXFxMYWEhSUlJNDY2oqoqmzdv5sorr9Rndp9++ilbt27tmZZL4XhY+kv44G9woC1+4G0VktJ7vxGB2PhE01tUVaWlpYWGhgZcLhder1d3f9lsNqKjo0lISCAxMZH4+Pj+LSyKsouLcOpMkV64e7swXk0dMj6OlIvt8w+FwSsYK9KH84vMk4STBGNFqnEQPHr0qKlnhXFyERFaXEKJ1tjOEUSG3jkXdt1BrZ+IaBaQzyvOH40pp+lFqOnp7d6G1tZWPB5P/7rWhjBDxwCA0HW/+hbhDtAGhU/fF77JM86PaOpZx0wKr9cbkWIw44y/tLSUpqYmTj/9dNauXQuIYp8HH3yQcePG6VLRd999Nw888EDPZnix8XDZUrG0/ce7epm7emA3/gN7KMmdyNagjYOHDnHo0CEOHz5sci90R1RUFGlpaWRlZZGVlUVmZibZ2dnk5OSQk5NzYhdJZ/1Sz7pA5JNXHoJ9O4U0dkdj4GkRldF7dojH8Umi125OIWQXQlrGgA9UkcY42BkHwcbGRv2+w+GI3CAV8Is2jv/62JzlY3cIWfJB0ugy1gG4XC5CoVDfY3NffCxk6EFMPM5or1tISkrCarXqE6H6+nppAIYMicmwuM0IaMUnX7SdqPMujZgR6Kj/73a7I2IA8vLyTKJvmzZtYuHChboB+Prrr9mxYwcrVqxg+fLl+P1+PB4Py5cvZ+nSpVx22WXHr0lQFDxjp3HQHcT6yZvYKw/hdnsIBAOwYztxfpW9TSEOB3q3tA0EAlRWVnaZGpeUlEReXp6+ZWZmkpGRQXp6OikpKV2vHo7XLzWnUGxzF4kMp5K9Yuusu5er0WwQbFEi1pCZK5IJ0rJgVLrYP0wwujuMgdBIixUS8MM3m0WrT3cHLfzCcfCDK4WE+yDR8frzeDx9+92HD8JWQwxxzlxTNp2iKCQnJ+txhqNHj5Kfn89IZOgZABAn4eJbYPVTUN9Wxbftc9HQ48IrIzLjs9lsOJ1OvRq4ubnZ5BvsK4qicMYZZ+hl/f/4xz+47777mD59up7q98gjj/D444/z29/+lrvuuotQKEQwGGTlypW88MILzJ49m8mTJ5Oenk50dDTBYJDGxkaqq6spLy+npKSEyspK3Xc522nhRwkWoi1iAC6wK/wqzcZnLSHWusJ4VfF74+PjiYmJ0V1dgUCA1tZWfbZ1PBobG2lsbDQ1dDf+PVNSUkhLS2PUqFEkJyeTkpJCtkNh/p43UehgjNQw6tuPsq/VSosjHq/XS3NzM01NTTQ1NeFyeQi47KR6GskNeckNexllUYl2OHDGxuJwOISqYzAgVhCVhwz/BAukpIrEgpQ0YRCS0yApBWJih47SahtGF5AxEGqsVO9zoaKqis5oe7aLvhOeDho7UQ6YexGc8v1B/7t0TMU2ur96TMAvhCY1v35yqpAu6UBCQoJuAJqbh3AiRT8zNA0ACF/24lvhjafbVUN3bRMrgUuujUgf3aSkJP0ii2Tl4bx583QDsGXLFiorK7nlllv4+c9/DgjX0B//+Ed+85vfcM8993DPPffos0Cfz8fGjRvZuLHnWVCbPWH2eMNclmhldoKDmJgYomNiuK4gmhsSkrCcuxDn7HNRulhOa3GCuro6qqurqays5MiRI1RVVVFZWcnhw4f1zlNdEQwGqampMTV7B1g2Oholv/PCJUVV2bLyXlaW9qw4LMECo+0Ko+0KE+NjmJgSz6iUFGJjYzENXWpYTBzqa479kCi7iCPEJ4pZYVyiULN0xgnj4IwV0haOaLGKGIBBsby8XL9v9PMbG6P0ygD4vFBRIgLrpd91/new2cSgP/u8iKh5RoJgMGh6bOmLxPQ/3oajbRlEiiKSDjoZK4wun5GsBzR0DQC0Nyl/8zkoPyD2HdgjKhQvX9rn/qMaaWlpuruj48B1Ipxyyink5uZSUVGBqqo888wz3HXXXVx++eWsWbMGgA0bNqCqKitWrODZZ5/lueeeY926db1SQXQ6nYwbN45JkyYxdepUJk+eTFJjDf73X8dfU4Xf76eltprAK0/x3Sur+NSaSGnIol9oNptN9y0nJCSQnJxMamoqOTk5zJw5k6ysLKKiolBVlYaGBsrKyqioqKC8vJzDhw9z5MgRqquru+3glBnd/UV8vOeNNIfha6/K114Vmt1EHXaTFVXNjKxU5k0ex8RRSdibGtoLmDoj4Bfpp3U9SP+zWMFuF7Nku729s5jNLtoMRkUJIxFlF7d2R/tr7A5hRIy39rZbg1Fxu92Ulpbqj40poEY9HKNapum3uJqg+ajI4KmtbLut6jp7Sh/451LlcvOvDz+itbWVpKQk5s6dO6i+8I4CcL12yX7zpXBxacw6R7gWO6Fj746RytA2ACAunituEBr5WkOZqjIhUPXjn4oUwz6SmZnJ119/DUS2JFxRFJYsWcJ9990HwCeffMKiRYu49dZbKSsrY8uWLYDIANq7dy9Lly7l5ptvZtmyZWzZsoWdO3dSWlrK0aNH8fl82Gw2EhISSE1NJTc3l4KCAsaMGUNycjIlJSUcOHCATZs28corr3Do0CFaW1o4L87C+fFWotrGGgWYSzUZ3jDvNoeoCnZx8B1+R0ZGBrm5ueTl5ZGfn09BQQFnn322KWDn8Xiora2ltraW+vp66uvrOXr0qAhiuvcDjV1+R5PiICsrEYfDQUJCgp6RlJCQQGybqyccDuN2u6msrKS4uJiysjJUVSUAlAVUyspqeausFqfTyQUL5nPFgrnkOqwi06ihRtwerWvvX9tTwiGx4vT2LIjeIxRFGIg2o1BXVc0tyQoB1YpitzN61ybYuxkUKxnbP2NJkuhhO1lxweqV4PeKGb7H3R7k7AmZeTDpFJjyPY56/az86xN8+OGHpln3Y489xrx581i6dOmgyHUbDWFaWlrvsvKqyuHjt9ofZ+fDWV13HTQGl8Ph7uXLT2YUdbgkwYbD8MlbomGKhjNOZMRk9y2A89JLL7Fy5UpANN/43//93wgcqCAcDnPLLbfomT6pqak8/vjjxMbGctdddx1TBZyYmMgZZ5zBpEmTyMvLIzk5GbvdTigUwuPx0NDQQG1tLZWVlZSXl1NaWnpco5VggYsTrMx0mmfZKrDVE2atK8TRPoqwJiUlMXr0aPLz801bWlqaORhcXwl/ub3rfqnLH+m1OqjL5WLTpk2sXbuW7du3d/qaOXPmcOmllzJnzhxxsauqiCE1NogZs6sJWprA1Sz84p4WMaB63N2vICJIKBxm7969uixJamoqeW2V4ypCKkSbnebl5ZHam0E5OkbIrOQXwZiJ+kRp27Zt3Hvvvd2ueKOjo7nuuut6lpAQQR5++GH+/ve/A3D22Wfzu9/9rmdvbHHBCw+3F0U64+D6X4iMsS5YsWKFPhH71a9+xSWXXHICRz58GT4GAMRF/OV6c6m6zSZa0o2f2uuP27hxI3fffTcAOTk5pm5LkaC4uJhbb71VD7AWFhby4IMPkpCQwIsvvshzzz3Xb7OPpKQkcnJyyMzMpCjWzveaKklpbcZisegDdFhRqBqVw77kXGp8ARoaGqirq9NdO305tujoaD1LKCcnh6ysLCb5qij4+j2UzvqlnqA66JEjR3j33Xd5++23TR3eNNLT07nkkktYsGCBSQWyW4IBMcv2ecWqIeAXt36feC4YFOm3waB4LhgAv1/s014b8Le/3+8VrzUQDquUHizVA5AKMHHiRD09uampiRLDjHjK5Mmd61UpiohlpKRDWqbIgkrPFrcGQ+zz+Xj++eePKTxMSkpi4sSJfPvtt8e48hISEvjJT37CD37wg353Dbndbq655hr9f7hixQouuuii478xFBIZg5pkusUiemvkF3X7tttuu43du0X9w5133smCBQtO5PCHLcPLAGjs2grrVotVAbQpaC6CmWf3KmhXUVFhktZ97733Ij7jeeutt/jDH/5AVVWV3ij+gQceYOHChVRUVPDyyy/z0UcfHRMA6ylOp5OioiJ9KygooLCwkPj4eFRVxe1209DQQHNTExzYQ+ruzThamlARg45isWCx2vCOnYo66xySRo/F4XAQDAY5cuQIhw8fpry8nPLycg4ePMihQ4f61KwjJ8bCwkw7efEOWqwx7HJkoSZnkpycTHJyMgkJCcTFxREXF4fT6SQ2NpaYmBhiY2OP6bTWGR6Ph/Xr1/PGG2+YXAlGpk+fzvnnn8+ZZ55p0mwaEEKhNoPgpfzAflY+9ih1hyuItoBNUVhw7jmcP/dcCIWor6vjlZdepNXjIQQUjili8TXXiBiCwyGC1NExIoAdn3DcrLgdO3Zw//33c/jwYX2foigsW7aMK664Arvdjtfr5YMPPmDVqlXH/H+dTieLFi3i0ksvNWlbRQpVVfnd736n95R2Op28/vrrxzc6qgofrhG+f40FP+pRg/prr71WX0Hfe++9/SuzMYQZngYAoGw//P15s7zwKd+HBT/scZqoqqpccskl+sznz3/+M6eddlpED3PVqlXcdNNNx8ymr7rqKh555BHS09Nxu918/vnn7Nq1i+LiYmpra2lsbCQYDGKxWIiJiSE5OZlRo0bphVn5+fkUFRWRlZVFa2srZWVllJaWcujQIT1IW11dfYzstQLMclq4MN5CktVsLFVgZ2uYL9VofKMyycrKIjs7W/f/5+Xl6VXNJSUlHDp0iLKyMv07I6bg2AGbzaYbh7i4OJKSkvSAdUZGhl60lp6ejtVqZevWrbz77rt89tlnnaa3KorCpEmTOP3005kzZw5FRUV9yzjpBaqq8t1337F69WrWr19vkh8455xz+K//+i8sFgsbNmzggQce0GfCNpuNlStXmnoD95SSkhKefPJJk6AcCHfSnXfe2WnhYXNzM6+//jpr1qzptICwqKiIBQsWMHfu3J6vqLrB4/Hw0EMP8dFHH+n7brjhhp71Ot7yT6EWoDHleyLr5ziTQFVVueCCC/RJ19NPP20Kvo8khq8BANGi7o1nzG0TR08QaaIdhce64D/+4z/YvFlkDlx//fXccMMNETu84uJiJk2a1GWO/Zw5czj77LM544wzmD59OgUFBccEvlRVRVEUwuEwDQ0NegxAG3hLS0v7lMFkQdQPLIizkGI79oIp86tsdIfY0apiPPrY2Fjd319QUEBBQQH5+flkZWXh9Xr1Y6uoqKCqqkp3J9XV1fW75orFYiErK4uCggJGjx5NWloaZWVlbN68mYqKii7f53Q6mTx5MpMnT2bChAmMHTv22FhGH2hqauLbb79l27ZtbNq0qVPlycsvv5ybb76Zb775hhdffFFPSgBhqO68807mz5/f4+9UVZWtW7eyevVq/bw2ft4VV1zBDTfccNyVbm1tLa+//nq3mWlZWVmceuqpnHrqqUybNo3MzMwe/81cLhfr1q1j9erVpjqImTNncs899xy/AvjgPiGGqJ1T2fkiY7AH6eFVVVUsWbJEf/z+++8fUxg6UhjeBgBEReObz4nMIA1Nl74HGUKvvPIKTz75JCBkHB577LGIHdp//ud/cu+993b5fH5+vmnmYbFYSElJIT4+Xs9+8fl8uFwuGhsb+xwvsFqtJCYmEhsbS3R0NFFRUSiKIgrQ/D7G+ZqZqXpI5lg3VEtIZZMnzCZPmIZuYqM2m43MzExycnLIzs4mOztbl5TIyMjA4XBQX19PXV0dtbW1NDQ06FtjYyMul4uWlhbcbjdut5vW1taIGYyYmBhSUlJobW2ltrYWv99PdHR0t4NVTEwM2dnZZGRkkJaWpv9fYmNjsdvtuqEOBoOm/1F9fb1eO9HdiigvL4+FCxficrn45z//aXLPaN9/xx139Hjwr6io4JNPPuHjjz/u1NhNmTKF2267zSRV0hNaW1tZu3Yt77//PgcOHOj2tU6nk7y8PLKzs0lNTSUlJYWYmBisVivBYJDm5maOHDlCSUkJxcXFx5zP06dP5w9/+MPxXT+N9UJOXMvOSkgWwnWxPatn2LBhA7/97W8BYcR6JMh4kjL8DQCIgNv7r8E+Q4VqDzOEDhw4wE033QSIGdLq1asjlgK3ePFiXnvttS6fT09PZ/LkyV0+3xuio6N1/39+fj65ublkZWWRnp5OQkLC8Wdmqkpw3078n3+EWnYAfyCAz+fD7/Ph9fnwer0UewJ81aqyozWMr5dnjdPp1AdSbUtMTCQpKUlP+0xISCA+Pp64uDiioqLwer14PB48Hg8tLS20tLTQ3NxMY2OjHrDWCtfq6+t7ZDBUVaW1tRW3200oFMLn8+FwOHA4HERHR+NwOPrFHeT3+2ltbSU1NZW0tDSam5u7nFmfeuqp/PrXvzZ1j+tIIBBg586dbN26lc2bN+vZZh0pKCjgZz/7GaeffvoJr2jKy8v5+OOPWb9+val47USx2WwsWbKE66+//vgzf78PXnq0vY7DFgXX3iYC3z3koYce4q23RMro/Pnzueuuu/p66MOek8MAgFgKblwnsoQ0bDZYeHW34laqqrJkyRJdF/z222/n8ssvj8ghHW8FcOONNzJr1iy2bt1KaWlpj+QYEhMT9bx8bcAvLCwkIyMjckqe1Ydh2xewd7speyUYDOHzefH4AxyyxrDVE+azqjoOH4m8pK7m94+NjTVtWoBYiwfEx8eTkJCA0+nUZ+LGWWbHmXVHtDRbt9uNx+OhtbWVcDiM3W4nKiqKqKgovdez1WrVs6i0Tfvd4XCYcDhMKBQiFAoRCARMBXdOp5OEhIRuO8/Nnj2bJUuWcMop5vNVVVVqamrYt28fxcXF7N69m507d3ZbwDRr1iwWL17MjBkz+kXhtba2lh07drBjxw6++eabbl1sXZGUlMTChQv50Y9+ZFLo7BJVhbeeb68HAtFvYtKpPf5OVVW55pprqK4WfYJ//etfs2jRol4e+cnDyWMANHZthXV/M+dyn3kBnD6/y+DQE088wauvvgrA+PHjeeKJJyJyKN3FAKxWK3v27GHcuHGAmCHW1NRQV1eHx+PB5/NhsViw2+3Exsbqs+aBzMum1S30Y3Zu6VxOAMDuIFgwjrrEdEqwU1FbR2VlJVVVVXoMoE+aLieAw+HQZ9pJSUkoioLX68Xlcumrhu5Oe82t4/f7CQQC+hYKhfSBXnu/oihYLBbdQERFRWG32/UVhc1m63IAtlqtTJs2jbPOOouzzz6blJQUfUWjZV9phX6dpbh2ZMyYMSxYsIB58+ZFRNeqN7hcLsrKyjh8+DBVVVXU19fT1NSku/KsVitxcXGMGjWK/Px8JkyYQFFRUe+M0z/Xmid4s+eKPhm9YNeuXSxfvhyI/Ip/OHLyGQAQGUJvvWCu4Jx8mpC67aS6sLS0lBtvvFF//Ne//pWJEydG5FBWrVrFsmXLTEbAarWycuVKli5dGpHv6HdUVegx7doqRMW6qoy1WET3qDGToGgSpKShqqouZFdfX6/7/Y8ePcrRo0dpamqiublZ3wbCWITDYRRF0d09oVAIr9eL2+1GVVWioqKwWq36zP9EUVWVUChEcnIymZmZpKamkpycjNPppLm5merqao4cOUJNTU2vVlIOh4Pp06cza9YsZs2aZepFcdKx71txTWuMnijifL101/3xj3/kww9Fn4AZM2bwwAMPRPAghx8npwEAUf6/ZlW7MBQIXZAfXd+phtDtt9/Ozp07gV5WIfaA4uJinnnmGQ4ePEhhYSE33nijPvMfdoRCIgNjz3bYv1vEX7oiOVU0sRk9XlSl2h1dv7YNv9+Py+XC7XabgsItLS26q8a4TzMcTU1NetOdvqKqKoFAwDTz11JxO4sLGF1B2mu0raOLyOFwnLAxyczMZNy4cUyYMEHXfupJjcSw50gFvPJXUXAHQt312uU9zvTTqKmp4dprr9Vdc3fddVevMqxORk5eAwDg9cDfX2gXkgPRb+DyGyDVnMP82Wef8Zvf/EZ//MQTTzB+/PiBOtLhScAvjMH+3UKkrzttGotVBOTzx4oqzewCiMDs2kg4HKapqUnXI6qpqaG6ulrXKaqtraW6unrAXVK9QVEU0tLSyM7OJjc3l8LCQr3ILyI9AYYbzY2iV7Em8+CIhutu71Oryvvuu0/vy5GWlsbLL78ckS6Aw5mT2wCACGJ+tEb4sTXsDrj0OlEz0IaqqixbtkxPdZsyZQqPPPJI/7ZIPJkIh0Uq7oE9ULLH3F+2M6LskDdGrBAKxwkpgwH4W6uqSlNTU6fGoa6uThexc7lcEQ9sW61WXXVVK2RLS0sjIyNDb66TmZk5Mmb1PcHbCq/+tf1cUizw4xvFOdNL9uzZw2233ab/T++44w4uvvjiSB7tsOTkNwAgfNhffSqCSNrPVRQ47xI47Ux94NmyZQsrVqzQ3xbJjKARR3Oj0KI/uA8O7RdCbN0Rnyj6/haMhfxxg65RHw6H9dRTl8uFx+PB6/WagsPGYLAWCI6KisLhcGC323E6nXrWUkJCAjExMXJC0VMCfnj9KXOjnwuugFPm9PqjfD4fy5Yt01NXR48ezZNPPjniZ/8wUgyAxv7d8M5L7b5EgOlzhH5Imzviv//7v/n0008Bkb736KOPSlfQiRIOCT9u2QGxHS49RhztGNIyhUEYPUHEDyLsLpIMYYJBeHMVHDTUNsw+V+h99RJVVbnnnnv0wK+iKDz88MNMmzYtUkc7rBlZBgCguhLefFb0ltXIHQ0//DdwxtHY2MgNN9ygN+ROTU3l0Ucf7VmesqRnBANCvfHgPnGR1xynF4PdIZb9YycLaeOYkdnAe0QQ8Itsn9Lv2vdNnwMXXN4nF+Hzzz/PqlWr9MeLFy/m5ptvjsSRnhSMPAMAQj/8redE03GNhGSRVpaWxfbt27njjjv05X1ubi4PPPAAaWm9DzxJeoDbJVJ3D+6HQ8Vm49wRRRHZXGOnCIOQnNr1ayXDC7cL1jwLRwxVxhNPgUXX9DrdE+DVV1811fRMnz6dP//5z9L1Y2BkGgAQs9AP3xB9hjWi7EJNcMJ03n77bR588EH9qbS0NH7/+98P3/TN4YKqitTdQ8ViFnhov9ll15HUTFEJOvGUE+oOJxlkqg+LKl+jsOOE6WLw76X7T1VVnn76aV566SV9X15eHn/5y19ISEiI1BGfFIxcAwBisNm6ETa8Z+6hOvtcOPtCXn71NZ566il9t8PhYPny5SxatEgG8waKgF+sDva3ZRdp6YCdkZUvjMGEUwY9iCzpIaoK2z4X16Cxev/U02H+D3s983e5XNx77718/vnn+r7s7GwefPBB6cbthJFtADRKvoN3XzL3Fsgvgkuu5a2PPuHhhx82pQTOnDmTX/ziF+Tl5Q3CwY5gtIrk/bvgwO6uU00VRWQTTTwVxk/rdcGQZICorRKrcKMrVlFg7iL4Xu+aOwF8+eWX3H///dTVtRd/FhYW8qc//YnUVOkq7AxpADQaakXwqc4wqMQnwiXXsqWqjv/5n//R2/eByOm+6KKLWLJkSUQaY0j6wNE62LsD9uzoWqvIFgUTpsHUWaLuQK7cBp+GWpGW/e1X5pW3Mw4uWSKKBXtBeXk5Tz31FBs3bjTtnzNnDnfffffA6mcNM6QBMBLwi1aTe9ubcqBY4KwLqB87nT/df/8x3ZUUReHMM8/k4osvZubMmRHRjpH0ElUVs8k9O8TWVRA5Pgkmz4App4meEZKBIxwWMZ3tX5gzfDQmngLzLu2xpj+IjmevvfYaH330kWmFbrPZ+OlPf8rVV18tXbXHQRqAjmhxgU/fb+85DFA4DnXh1WzctoPHHntMl5M1kpiYqLcZnDFjBomJiQN44BJA/P8qSoUR37uja+G6tEzhIpo0Q8iDSCKPp0UE8w8WQ8le8bgjyali4B/TM/HF5uZmNm7cyLp163TtLiNTp07ll7/85Yht8dhbpAHoispD8M7L0GzISnDGwQWXEyicwNq1a3n11Vc7bfOnkZ+fz8SJE/Vm7bm5uWRkZPRLGprWAF6rXtWE1DSN+9bWVnw+Hz6fzyR01pW0sc1m06WNjZvWNMXYRCU6Otr0nPbaQZ99BQOi+G/nFlFz0NWpbkwr7YPGzJAkHBZB1XBY/G5VRXR9RqxqQbjDFEXoNFksvXOPhUIQ8IHPJwb2lmaxNTeI2ExtVfcB+1Hpws8/dWa3WT7BYJDi4mK+/vprNm/ezDfffNOpvHpubi5Lly5l3rx5g3/eDSOkAegOr0e4hIwNKEA0n57/Q1S7gy+//JK1a9fyxRdf6CqD3aEoiqkjVnx8PE6nUx9EjfrxWoORYDCI3+/H19aZq7W1VVfG1Ab7SLZQjBSaEdE27fdpcstas5Xu9hkNUUeDpBkbzfBotzExMURHRxMTE4PD4RB/zxaXaHCze7tIOeyKUemiAjlvDOSOAecAF52pqkhGcDeDxw2tHiGy1+oWchper7j1eYXL0u8Fvx9CQWHwggExOPflXFAUYRwsFnGr0H6rAmq4zbCEzRk7Pf58izCyp50hqrvbzvNQKERTU5Opw1tZWZneC6E78b5x48Zx1VVXcd5550n3ax+QBuB4qCrs2AQb3jXno8cnierEtqVrS0sLX375JZs2bWLr1q0cPXq088+TDCiKoujGQNuyHDam2IJMDHlIUjW557ZuXxaDtLOi4ItPwp84Cn9yGqHkNFEwmJCENTpGXylpm9YUxrhpKyolGEDxtorZsjZjdrvEpt3XbkPHn0icKCoQDoX1BjfhcIhQ2Pi4fVPDYcKqihpWUVWxYlRVVawn2u5rn9n+BeKRx2KjwuakwubkoOLAHQrrExljq8/eDEPJycmce+65XHjhhYwfP17O+E8AaQB6SkOt6DtsbD4PnQavVFXl8OHD7Nmzh/3791NSUkJZWRm1tbUDMkt3Op3ExcXpQmTawGd00WgDlqZdrx23cdVh7IZlFELT7msXstbvdjieSrlRCtOiFaZGW8iK6vlA4gmruMPgV8EXVtGmBlbEhDlKUYixgEOBGItClCL2Y+ghoKC0eWEU837Tazo83/Y9HQc9/S+vDc5tW1i7bRvIQ+EwalglrJobsp8IvrBKYwiawirNIagKqlQFVCoDKs0R+BqbzcakSZOYMWMGs2bNYvLkyf3St3kkIg1AbwiH4MsN8MXH5iVwdIxoTTdtdrd+1EAgQE1Njd4Zq6mpSW904vV6db+8dvEaFSaNbQZjYmJMSpNaf1ytb+5gLIW1rleaqyqgNZVvU870+/1YG6tJPriNKPdRWh3xVKRPpNkWSzAYNG3a36GjETJ+pvY9RteYz+fTYx19IcUKExwWiuwKYx0KCdbBm1mGVWhpMzLusEpLGFrD0BpWaVXBGwafquJVhRHyqxBQIaiqBFUItX2GdgvtRkLRNgUstG1t9xXAarivKAoWIEzb/7jt83yG742UKXE6naSlpZGZman3Qhg3bhxjxoyREtn9hDQAfaH2CHz4N3MBC4iGJwsug4ycwTmuocz2T+Dtx4QfWUOxwKU/hxmR7cqkqqpuDDRXg/G+FkfRts5WNH6fjxivm5RAK8lBL6lhPylqkDg1BGjuEBUVtVcrH19YzIpdofbbpjA0tz1uDqm4wuCO3AT9uHR0k2lxFG3CYYy7aHEZo4vL2DFNu9VWKMbntfcaJzJxcXEkJiaSlJRETEzMwP1oCSANQN8Jh+HrTaLHgN8w41QUUcZ+1gUQLQtQAKivhL/cbh78NRQLLH8ERmUP/HH1hXBY+OldjYZArA81ECCkhgmHVcJASLEQskURttoI2qIIRjkI2uyEEEFP4xYMBvVb433jreaaM/rmQRg7zV0EmOIPdrsdq9Wqu/06Zm5pg/CQyNiSDArSAJworkZY/y589415f3QMnPUD0cDCMsKzEz56Hj5/s+vnz7ocFvzbwB2PRCIBhKtPciLEJ4n2klfeZJYm9rbCx3+HZx8SOegjmcba4zzfhYyDRCLpV6QBiBSF42Hpr+CchaKBiUZ9NaxeCX972qwzNJJIOk5xVZJUaZRIBgPpAuoPWlywcR3s2mIuyFEscOr34YzzB77AaDA5mWIAEslJhDQA/cmRClFAVl5i3u+IgTMWwIwzRk6v2y6zgG6DGfMG77gkkhGMNAD9jaoK/foN70Fjvfm55FSY90MYM2Fwjm2gqa8UhqCxRrh9ZsyXM3+JZBCRBmCgCAZF56N/fWxOGwXRtOS8SyAhaVAOTSKRjEykARhoPC3w2YfwzZfm+ECUXcQGvnfWyHELSSSSQUUagMGiphI+elPIThvJyIEf/FhWE0skkn5HGoDBRFWFVv2n7wu5Xw3FIhrTn7FAtDSUSCSSfkAagKGA1yOCxN9+Zd4/Kh0WXg1Zsvm8RCKJPNIADCUOFcMHb0BTQ/s+RYHZc0V8oB86iUkkkpGLNABDjYBfFJFt+9wcJE7LhIsWQ7pMm5RIJJFBGoChSkUprH3dXDtgscKZ54sVgWyIIZFIThBpAIYyAb8IEG//wrw/uwAWXnXyNDCXSCSDgjQAw4GDxbDudXA1te+zRQnhudPO7LYLmUQikXSFNADDBW8rfPIW7N5m3p9fBBdeCYkpg3NcEolk2CINwHBj37fw4Rpz3UCUA865UIjLydWARCLpIdIADEc8LcIIFO80788ugAt/DKMyBue4JBLJsEIagOGKqsLeHaLrmLe1fb/FKqqIvz9P6AtJJJKTG6+nz/3HpQEY7nhaRGxg79fm/fGJMPdimDBduoUkkpMVvw/eeAauubVPb5cG4GThwG4hLmfMFALIHQ3nXiTcQxKJ5OTB1QRvPgvVh2HFfX36CGkATib8Ptj0D/jqnxAOmZ8rmgxnXygqiiUSyfDmSDm8+Ry0NIvH0gBIdBpqYf07ULLXvF9RYNxUER+QctMSyfBk11aRBBIMtO+TBkByDIeK4Z/rxGyhI6MnimBx3hgZI5BIhgM+r0j6MNYCKRZY8EM49fQ+faQ0ACc7qgrFu+CzdVBfc+zzKWkwbTZMnQnO2IE/PolEcnyqyuHdl83aYI4YuPQ6KBzX54+VBmCkoBmCTZ+IoFFHLFYomgSTZ8CYibIRjUQyFAiHYNN60Us8HG7fn1MIFy854T7i0gCMNFRVuIa++hQO7TdLTmvYHTB2CoyZAAXj5cpAIhkMGuvhvVfNbWMVBU6fLzbLifcOlwZgJNNYL7qQffsVuF2dv0ZRICMXCsaKpWZ2oWxMI5H0J6oKX38JG94VisAa8UmwaLGI20UIaQAkEAqJVcHu7bB/l/mk64gtCrLyITtf3GblQVzCwB2rRHIy01gPH/wNyg6Y9085Deb/CBzREf06aQAkZgJ+OLAHSvfBwe/a84y7wxknOpWlZ0N6FqRmwai0iCxRJZIRQTgs+n5sXGeegEXHwPmXw8RT+uVrpQGQdI2qQk2VWB2U7YfyEnPucXfYbJCWDZm5YsvIFU3uZSczicTMwX2w4T2orTLvL5oMF1zerytsaQAkPScYFDUFlWVQVSaCUz1ZIWhEOSArV8hSZBcImYoIL2klkmFDVTl89oEwAEZinMLdM/GUfq/RkQZAcmK4XWLmUlMpttoj0FBjTlnrCi3AnF8EYycLoyCL0iQnM6oqVtObPz124Afh6597sXCrDgDSAEgkEskIRTpkJRKJZIQiDYBEIpGMUKQBkEgkkhGKNAASiUQyQpEGQCKRSEYo0gBIJBLJCEUaAIlEIhmhSAMgkUgkIxRpACQSiWSEIg2ARCKRjFCkAZBIJJIRijQAEolEMkKRBkAikUhGKNIASCQSyQjl/wPXgqsDaKinbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "SWD_samples = gauss_model.sample(num_samples).detach().numpy()\n", + "# Create a dataframe for the mixture samples\n", + "unif_df = pd.DataFrame({'x': uniform_samples[:, 0], 'y': uniform_samples[:, 1]})\n", + "\n", + "# Create a dataframe for the SWD mixture samples\n", + "SWD_df = pd.DataFrame({'x': SWD_samples[:, 0], 'y': SWD_samples[:, 1]})\n", + "\n", + "# Plot the probability contours\n", + "fig,ax = plt.subplots()\n", + "sns.kdeplot(ax=ax,data=unif_df, x='x', y='y', fill=False, color=\"black\",alpha=0.75, levels=5)\n", + "sns.kdeplot(ax=ax,data=SWD_df, x='x', y='y', fill=False, color=\"tomato\",alpha=0.75, levels=5)\n", + "\n", + "ax.set_xlim(-1.5, 1.5)\n", + "ax.set_ylim(-1.5, 1.5)\n", + "ax.scatter(uniform_samples[:20, 0], uniform_samples[:20, 1], color=\"black\",zorder=10)\n", + "ax.scatter(SWD_samples[:20, 0], SWD_samples[:20, 1], color=\"coral\",zorder=10)\n", + "ax.spines[['left', 'bottom']].set_visible(False)\n", + "ax.set_xticks([])\n", + "ax.set_yticks([])\n", + "ax.set_xlabel(\"\")\n", + "ax.set_ylabel(\"\")\n", + "fig.tight_layout()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bandwidth: tensor(0.0678)\n" + ] + } + ], + "source": [ + "gauss_model2 = Gauss(dim=2)\n", + "with torch.no_grad():\n", + " samples = gauss_model.sample(num_samples)\n", + " bandwidth = compute_rbf_mmd_median_heuristic(samples,mixture_samples)\n", + " print(\"bandwidth: \", bandwidth)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fit the Gauss model to the data using sliced Wasserstein distance\n", + "\n", + "# mean = torch.tensor([0.0, 0.0], requires_grad=True)\n", + "# cov = torch.tensor([[1.0 , 0.0], [0.0, 1.0]], requires_grad=True)\n", + "# mvn = torch.distributions.MultivariateNormal(torch.zeros_like(mean), torch.diag(torch.ones_like(mean)))\n", + "# data.requires_grad_()\n", + "# print(data)\n", + "optimizer = torch.optim.Adam(gauss_model2.parameters(), lr=0.1)\n", + "gauss_model2.train()\n", + "num_epochs = 100\n", + "for epoch in range(num_epochs):\n", + " gauss_model2.zero_grad()\n", + " samples = gauss_model2.sample(num_samples)\n", + " #print(samples)\n", + " loss = compute_rbf_mmd(samples, mixture_samples, bandwidth=bandwidth)\n", + " print(\"Iter: {} loss: {}\".format(epoch, loss.item()))\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + "gauss_model2.eval()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEfCAYAAABI9xEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAABtgUlEQVR4nO2dd3xT1fvH30m6N3RTRoGWvcpUBEFkKCoqICJbEFSGiJPf1y0qoKIiCooCAqIoigIiKIJskL1XaWmB7kF3m6bJ/f1xm5ukM21TVs779eJF783Nubcj5znnGZ9HJUmShEAgEAjsDvWNfgCBQCAQ3BiEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFOEARAIBAI7RRgAgUAgsFMcbvQDCG4SdIWQHA+JV+FaKuRkgU4LKg24uIC7F9TxA79A+Z+L241+YoFAUEOEAbBXJAnSkiDqLFw6D3GxYNBb/35PH6jXEOo3htBmUNe/1h5VIBDUDipJkqQb/RCC64Akyav6uBi4fBFiIiEz3Xbj1/GDpi0hrLVsFFQq240tEAhqBWEAbjcK8iElATLSICsDsjMgI11e7eflVPxeB0cIDAH/YPDyAScXkAzymFnXIC1ZHkdbUPE4Hl7QrC00bSUbAwex0RQIbkaEAbgdyMuBEwfg/AnZj18VAkPklXtoMwhqABpNxddLEmRnyrGCuEsQGwkpieVf7+gE9ZtAwyYQ3BAC6oGzS9WeUSAQ1ArCANzK6PVwcAfs2wpFOuve41UHQkKhUZg86Xt61/w5Mq9B9Dm4eApio+RdQ0V4eMkxAx8/2XVU1x/8g+RnE64jgeC6IQzArUpuNqxbKfv0S+LsCr7+8oTq5QNedaGun+zacfOo3efKy4XIU3DxNFyOst4wAbi4QkhjaNwMwtuCh2ftPadAIBAG4JYkKwN+Xiynaxpx84CI7tC8LdQNuDlW0kU6uBojB53jYyEpDgq11r1XpYLwNnBHH9lNJRAIbI4wALcaOVnww0LLDJ7WHaHPw/IK+mbGGD9IS5KNV0YapKfKx1nXyn9fm85wz0M3//cnENxiCANwK5GXAz9+BenJpnM974Nu99wcK/6aUJAH8VfkoPL5E3L2kjnedeHRcXKsQCAQ2ARhAG4VcrJhzTeQapZx0+sB6NqrVm9rMBgoKChAr5eLxDQaDc7Ozmgqyxaq2U3lArU9f8sprUacXeGxpyC4Qe3dWyCwI4QBuBVIT4Ffl8ouEyN39YfufWs8tCRJJCUlcfHiRWJjY7l8+TKJiYmkpKSQmZlJXl5eme9zc3PD29sbPz8/AgMDadCgAaGhoYSHhxMUFITKFjsSgx72/wt7t8juI5BTSEdOAd/Amo8vENg5wgDc7Jw7Dn/9Yhk8vfNe2QBUY5KVJImoqCiOHj3K8ePHOXXqFJmZmTZ8YKhTpw7t27enS5cudO/eHR8fn5oNGHkK1q8ySVV41YHRz4Gbe42fVSCwZ4QBuFnJyYatv8OFk5bnew2Err2rNFR2djYHDx7kv//+48CBA2RkZNjqKStFpVLRuXNnBg4cSI8ePXCoblXwhVOwfqVpJ9AwTHYHqYWgrUBQXYQBuNmQJDhzBLatlyUYjDg5w/2PQ7M2Vg0TFxfH3r172bNnDydPnsRgqLg4KygoiCZNmhAaGkq9evXw9/enTp06eHl54eLiokzcRUVFFBQUkJWVRUZGBikpKcTHx3P58mUuXrxIQkJCufcICAjg8ccf56GHHsLR0dGq78OCAztgx0bT8Z19oUf/qo8jEAgAYQBuLnSFsHmN7PYxp35juH8Y+PiW+1ZJkoiMjGTXrl3s2rWL2NjYcq9VqVS0aNGCDh060K5dO1q3bo2np22KrrKysjhx4gSHDh1iz549pKamlromKCiISZMm0bt376rFCiQJNqySs4TkbwSGTZR3AwKBoMoIA3CzkJcLv3wrF0sZcXKGuwdChzvK9PdLksS5c+fYvn0727dvJzk5udQ1RurUqUPXrl2544476NSpk80m/IqQJIkTJ06wceNGtm3bpmQSGencuTMvvPACwcHB1g+qLYAV800BcQ8vGDtDxAMEgmogDMDNgLYAfvracvJv0BQGPi5LOZQgJSWFTZs28ffffxMXF1fqdSOhoaF0796dHj160KJFC9tk5lST5ORkfvzxRzZs2GBhCJydnXnmmWd4+OGHrX++pDj4/gtTULhpK3h07K1fCyEQXGeEAbjRSBL8vhwunjGdi+gOfR4CtWWu/cmTJ/npp5/Yu3cvZf3aVCoVbdq0oUePHvTo0YN69erV9tNXmatXr7JgwQIOHDhgcb5z5868+uqr+Pn5WTfQoZ3w7x+m436PQoc7bfikAsHtjzAAN5qj++Cf30zHnXrIsgdmq9lz587x1Vdfcfz48TIGgPbt29O7d2/uvvtu6tatW9tPXGMkSWL79u189tlnZGVlKec9PDyYMWMGffr0sWYQ+GUJxFyQjx0cYezzojNZNZAkifT0dGJjY4mLiyMpKUmpA8nKyiIvLw+tVqskEjg5OeHu7o6npye+vr4WdSCNGzeu3SJBgU0RBuBGkpMFSz4y5fg3bg5DxiuTv1arZdGiRaxfv77Uij84OJiBAwfSv39/AgICrveT24Rr167xySefsHv3bovzvXv3Zvr06ZXXD+Rkw3efQH6ufBxUH0ZMqbyngZ2TlpbG6dOnOXv2LBcvXuTixYs2Sw12cXGhVatWdO3ale7du9OggajavpkRBuBG8udqOH1E/trFFca/BO5ycDYhIYH//e9/xMTEWLylXbt2jBgxgq5du95Qn76tkCSJzZs3s2DBAvLzTWmv3t7eTJkyhb59+1b8fUaell1oRnoMkAvlBAqZmZkcPnyYo0ePcuzYMa5evXrd7t28eXMeeOAB+vfvj7Oz83W7r8A6hAG4UaQkwPLPTIVN/QbL2T7ApUuXePHFF7l2zaSQGRoaytSpU+nUqVOFw0ZGRrJkyRJiYmIIDQ1lwoQJhIeH2+659XrQF8mdvmxogBISEpgzZw4nTpywON+pUyemT59e8Upy0xo4dVD+Wq2BMc/JvQ/sFEmSuHTpEnv27GH//v2cPXu2zJhRSerUqUODBg0IDg62qANxd3fHxcUFjUaDwWBAq9WSm5tLVlYWqampJCYmEhMTQ0xMTKlMLyPe3t4MGzaMIUOGCENwEyEMwI3i9+Xy6hXANwDGzQC1hqSkJKZMmUJamkn357HHHmPSpEmVVtEuW7aMiRMnWnwINRoN33zzDU8++WT1nrNIJ0sxXDgla/rnFPvs1Rqo4yu3kWwUJruvathsRpIkfvvtNxYvXoxWa5K+cHBw4PHHH2fUqFG4uJTRTlJbAMs+MSmIBobAqKmlgui3O7GxsWzZsoUdO3ZUusoPCAigVatWNG/enLCwMMLCwmos2aHVajl//jwHDx5k7969REdHl7rG19eXZ599lj59+twWO9hbHWEAbgSJV2Hl56bjh8dAszZotVqmTJlCVFQUIGf1vPzyy9x///2VDhkZGUnLli3LXIFpNBrOnj1btZ2ArhCO7IFDuypvJi8/rNzvt0ETqNdINgxePtXaJSQlJfHpp5/y33//WZwPCAjg2WefpVevXqUnj+jz8OsS03HP++RmMrc5eXl5bN26lT///JNz586Ve52vry+dO3cmIiKCdu3aVa32oppER0ezYcMGNm3aZGHQQc76evnll2/Z+NXtgjAAN4JflsCl8/LXgSGysJlKxbx58/jjD1Nq40svvcQDDzxg1ZAzZ85k7ty5Fb4+e/bsygfS6+HkQVmBMzfbqnuXi4urbBQC6skB2pDGZdY1lIUkSezevZsFCxaQkpJi8VpERATTp0+nUaNGlm8q6QoaPU2+921IXFwcv/76K3/99Ve5iq0tWrSgR48edO3albCwsBu24s7KyuKHH35g7dq16HSmFqFubm48//zz9OvX74Y8l0AYgOvPlWhY/ZXpePCT0LQlW7du5b333lNODx06lClTplg97PDhw/npp58qfP3HH38sf4CiIjh7FPZvs5SdBnBwgBYREN5absji6AS5OZAcD1eiZGOWk1X2uCWp4yeP07arVSmbBQUFfP/99/z0008UFRUp5zUaDcOHD2f06NEmn7K2AJbNk7uOgSwZPXqa/Ly3CdHR0axcuZIdO3aU6dcPDw+nX79+9OrV66ZbXSckJDB//vxSO7sBAwbw/PPPl+3eE9QqwgBcTyQJfvgS4i/Lx/UawYjJxCckMHHiRGUl16JFCxYsWFAl5cxq7wDSU+DUIXnVX9LV4+AAHe+CLr0q9u9LEqQmyb1/42JkF5d5y8qyUKmgeTvo/SB4eld8LXIB2RdffFFq8qhfvz4zZ86kdevW8omYSLlxjpGI7tD3kUrHv9mJjY1l6dKl7Ny5s9RrHh4e9O/fnwceeIAmTZrcgKezHkmS2LJlC/Pnz7fYuYSGhvLOO+/QsGHDG/h09ocwANeT8ydg/fem4+HPUBhYn6lTpxIZGQmAu7s733zzTZV9tFWKAeTlwNljcOYoJF4pPZhKDW07y2qbVrpsSlGQJ+8QkuMhKV4OIJfcWYDc4GXQKAhtVumQkiSxd+9ePv/8cwvdI5VKxRNPPMGTTz4pG81/N8ixCyNDxkOTFtX7Pm4waWlpLF26lE2bNpVa8devX5/HH3+cvn373nKr56SkJGbNmsXp06eVcy4uLrz66qv07t37xj2YnSEMwPVCr4elH5smwaatYPA4PvnkEzZs2KBc9tZbb1X7A1BeFtC3337LuHHjZA2dA9vlHgMl5KElCQr1epL9GxDl14DkQr3SClKj0eDk5ISnpyd16tTB39+fkJAQ3NzcqvaAmdfg4mk4vh/SzITrVGrZCFgpdZ2fn8+yZcv45ZdfLCbF1q1b88477+Dr7Q3fLzC1k3T3hCdfANdbRzBOq9WyevVqfvzxx1IB1CZNmjB27Fh69OiB+hbuh1BUVMSSJUtYvXq1xflhw4YxadIkUVF8HRAG4HpxdC/887v8tUoNT85g67FTFn7/hx9+mOeff75Gt4mMjGTp0qVKHcD48eMJDw6UV8VmMtOSvhBdQRp6XQHXtAZ+v5LHxpQC8qrw1+Ds7ExmZiaSJNGyZUteeuklkyumIiQJTh6AbRvkbCOQ3U1PTJaDxVZy5swZZs+ebZHy6Ovry5w5cwjz8YAVn8s1CwCtO8LA4dZ/czcISZLYsWMHixYtKqXuWr9+fSZMmFB2FtQtzJ49e5g9eza5ubnKuYiICN58882ad5MTVIgwANcDXSEsnmPysbfrRmyLzjz99NPK6q5FixZ8/vnn1WuUUhHR5+SK43zZ31pYqCM3KwEflwKLSUQvSXx8Pp/NSYWlhghxVTMwyIkgFzWJBQb+TCzkUHQc58+ft7hOpVLRv39/Jk2aRM+ePfH3ryTIm3gVfv4GtMUVwD6+sp6Pk/WFQgUFBXz++eds2rRJOefm5saHH35I67w02G4mGPfYRAi1YVGcjbl69SqfffYZhw8ftjjv4+PDuHHjeOCBB6rfUe0mJz4+njfeeMOidsDf35+3336bVq1a3cAnu70RBuB6cGA77PhT/trBkaInX+TZl1/l4sWLAHh6evL111/bPjf72D551yFJFBbqSExKJCo9nbubuqIpYwWplyRmRDli8AnEx8cHV1dXIkjnPl005o6GIoPExA1H+e7Y5TJv27VrV9zc3GjXrh333XcfvXv3xtXVtexnvHxRNgLGP8NqBG0lSWLDhg3Mnz9fESxzdXVl/mefEv7f36Y4R93igrubzLVQVFTE6tWrWb58uUWmk4ODA0OHDmX06NFVd7fdghQUFPDRRx+xbds25ZyDgwNTp05l0KBBt9Wu52ZBGIDaplArr/6NgmVde/HNhXh++OEH5ZIPPviAO++0sZTxkT2wdR2SJJGcksKVhER+u6ajdaATIxpWEDDsMRj6jpa/TouHL6aBVLqdZJHBQMsvt3IxPbfUaw0bNrTIRnFzc2PAgAEMGTKEkJCQ0vfctVlOPwU5O2jkVAiuuojY3r17efvtt5Vcc19fX755/x3qbFhhMjB33w/d7qny2LVFTEwMH3zwgZIEYKRr165MmzaN+vWtd4ndDkiSxNq1a1m0aBF6vZ68vDwSEhLw8fFhwIABTJo0ybbSJnbOrRtBulU4tt80+Ts6EelTzyIf/+GHH7b95H/qEGxdh7awkMjISM5eieOTJC178wwEuVTyK88w8zsf+afMyR/AQa1mfESjMl8ruVLLy8vjt99+Y/To0bz99tulJQLu7CuvzkGeqLesLRWktobu3bsza9YsJTCalpbGO4u+QWrfzXTRvq2QlVHlsW2NJEn8/vvvTJo0yWLy9/X15d1332XOnDl2N/mD/LczZMgQPv30U7Kysjhw4ABXrlzh5MmTfPzxx7Rs2ZJly5bd6Me8bRAGoDbRFcqNS4oxtL+Djxd+pWSuhISE8Oyzz9r2nhdOweY1ZGZmcv7cOa5m5fJ5ahEJRbIgV8N2nSt+v49Z8VBGSvnXAaHeZbslhg8fzqJFi3j44YctXBfGAOeECRN49913TQ3kHRyg/2DTAElxcqZQNejWrRvTpk1Tjo8fP87GzCJwLX4OXaHiFrtRaLVa3n//febPn29RGfvggw+yfPlyevbsaffuDhcXlzL7X+j1eiZOnFhqxySoHsIA1CYnD5rkFDQObEjI4MKFC8rLL730km2VEaPPIW1YRWJCAtGXLpGh07MorYhreujfvz8rV64k7LGn5SykslCpIcJMStmn4iBuTGZpCQKNRsOECRNo0aIFzz//PL/++isvvPBCqdXsv//+y5gxY/j222/lQHiDJtCqo+mCXX9Zp0FUBg8//LBFKu3Xy1eS28XM7RN1Bk4fLv3G60BWVhYvvPACW7duVc75+PgwZ84cXnzxRdzdb51U1dpkyZIl5SqL6vV6/ve//13nJ7o9EQagtigqkoO/xWQ3bslXK1cpx/3796dDhw62u9+54xjWLiP2UjQJiYnkGyS+Sisi18mVN954g//7v/+TG8H71oNBk0sbAZUaBk2RXzfSsS/6chbKRQYDS4/GWpzTqFV8O+EJwuMvwNVLIEm4uLjw0EMPsWLFCt5++20aN25sGqOoiFWrVjFhwgROnjwJvR4wZQBp8y0zeKqASqXiueeeU3YfOTk5LP3vODRsarron3VyFfR1JCMjg+eff54zZ0ztPyMiIli6dCndunWr4J32R8k+GCXZuXMny5cvt0rmWlA+IghcWxQHYQEktYbZqXq27JeFyry8vFixYgXe3pVLIFSKJMH+bei2byQ6Olpu32eQ+CpNjz4whDkvTyck6YzszvHxh4595Uk+LR6ObpV9/j4B8srffPIvyINTh0ja/AO+hQk4mBUcFRkMPLX+GN+fuMKEru3IKtASWteb8Z3bEu5fxzSGbwDc1R+atVVUQY1SAN988w2pqanKpSqVirFjxzK6dRPU/5oK4xj+jLw7qAY///wzixYtAuRskp++/Zq665ab0k59A2DUtCqlnVYXrVbL888/b6HYOWjQIJ577rkbXvAkSRKJiYkkJCRw7do18vLy0Ov1ODk54eHhgb+/P/Xq1bPN36uVVCZtYkw0GDNmTPWlzgXCANQK2gL49kPFhXHOtS7P/vqX8vKrr77KfffdV/P75GbDpp/JP3OM6OhoCnU68gwSi9P0+LbpwPuP3Yvr30stA7kqtbwDiCjdNUuSJK4cPUjuri24xZyjqCAfXWEhWy/HkSMV0NDbjZjMPJYejeXStTze7t2ZERGt8HRyxMPVBRcXl7J91+Gt4b7HwMUUDygoKOC7777j559/tljF3dmtG+8288chLUk+4RsAY6uXullYWMiIESOU3grDhg3j2Xt7wroVpouatZWrkGvZ5/7hhx9a1CqMHDmSCRMm3BBfvyRJXLx4kd27d3Ps2DHOnz9fqtq4LPz9/WnZsiVdunSha9eutSo2V5G0iUqlokuXLsoOb9q0aQwePLjUdYLKEQagNti5Cf77F4BCCcbtPkNCtpwJ1KlTJz766KOaf/AvnpGDvYnxxMTGYjAYSCuS+Ca9iDsGDmLayKE4LHq+7CwelRqmLgDfeuTl5bFv714u/7sZ30tnaaDSlb4e2JOWy08X47iakw/OLgQEBVkEeN3V0MjTjbubNaabnxcNDFrLla1vAAybBB5eFuOeO3eOWbNmER8fr5zrGd6YN5vUwcH4/hqkbq5Zs4aFCxcCcuXyqlWr8D31n4V7jnsegs49qzW+NRw4cIBXX31VOX744YeZPn36dZ/88/Ly2LhxI+vXr7dJW8g2bdowYMAA7r333vLrPGpAedImn3/+OQcPHlTcRKpiKfWIiAibP8PtjjAAtuZaqtydSl+EBPyWkMmCo3Lg183NjWXLltVs5aTXw/Y/kI7sITk5WZk4TxcY+DHDwPjJUxg8eDCqf1bCnt/KHSYhrDtLovPJP7yHMF0OO2Pjic/Jp56HK480qUdDL3dyDRL7cw3szzOQVnY8rlyCnR2Y1qoh7bxccHN3RwVyqufIyRY7AZAnpg8++IA9e/Yo555uGsjQsBDZCDg4wlMvg6dP1R4CeacxYsQIpb3mo48+ynNTp8rNY2KKM0nUGtkVFGj73gGSJDFp0iSl6K86Sq81paioiF9//ZXvv/+enJzyA+v+/v74+vri4eGBRqNBq9WSlZVFYmJiuT0HQP67fvDBBxk2bBi+vr42ffYypU3Cw0lLS2Py5MmKXIafnx/Lli3Dw6NmXensDWEAbIkkwa9LlWYvSbkFjNl5ksLin/CMGTMYNGhQ9cfXFsDvyzHEXuTq1aukpaWhk2B9pp6jOPPmm2+Zgolr5sHp3eUOdSC1kPTkQvZfjue9A2fRm/0ZqFUqnn7oPno/PpKg+g3w8fFRJoWioiLy8vJIT08nMTGRK1eukBl9ltbaBAKcVYpURFy+vPMY6KnmkSAvgoOD5Q9n/cbyTqCES0eSJL744gvWrl0LgKsK5oT70qZpY9QqFbTpDPcPq9aPbe3atSxYsACQYwHff/89gZ4esPxTUx+DWmojee7cOYtU38WLF1/XQqbo6GhmzZpVZlC1devWdO/enfbt29OkSZNyV/GSJJGens7Zs2c5evQo+/fvt9ixGXFwcGDQoEGMHj36umj4REZGMnnyZKV62hZaWvaGMAC25Nxx2CBn+hTp9bx9OJI9qXIaaOfOnfnwww+rv+3XFcKab9FfjuZSzCWys7OJ00msSC/CISCYDz74gNDQUNP1W1ZUuANITC/kv0sZDNm4z2LyN2J1G8mjW2H9QgtXU0ldofs81fT31FDHx4eQ+vVx7NwT+j1aaihJkvj666+VxjZ3uKl5tmkADRs0kH3041+yqolMSQoLCxk9erSyWuzTpw9vvPEGxFyANd+aLuw3GDrcUeXxK2Lx4sVK4V+7du2YP3++TceviL///pt58+ZRWGjSd3Jzc2PQoEE88sgjBAYGVmtcSZKIjIzkr7/+YvPmzaV2B66urowZM4ahQ4fW+k7n+++/Z8kSuRWoWq1mxYoVZVebC8pEpIHaCm0BbFuvHJ7IzFcmf2dnZ1566aXqT/6SBH/9gi72IhcvRpKdnc2RPAOfpxTRulVzlo64h9CDv8qTflrxyqxjX6Ry8v0lSSI9q4g/r6aWOfmDnGu9dOnSip8rLb7U5A+gUal4pYU793ZoCcDmbAOH8gxcy8jg3NlzZO36G84cKTWcSqXi6aefpn///gAcyDNwLimV9GvX5J/BwR0VP085ODk5MXbsWOV427ZtcpFRaDNZJdTIvn/k9F0bYq5336NHD5uOXRE//fQTs2fPtpj8Bw0axI8//sjTTz9d7ckf5N9Ts2bNmDZtGr/88gtTpkzBz89PeT0/P5+vv/6ap556qsI+xbZg+PDh1Ksnu+4MBgNr1qyp1fvdbggDYCv2/K0UfeXriphz2KSUOWrUqBp94DhzFN2Jg1yMjCQvP5//8gz8q5X4sldD3qybhMuhP2V3z57fZO2eo1uJzdHxY45PqQlekiTScx1pEtaCTKeKi44qy8WuSCpChcTrD9zJZ599RosWLfg5Q8+VQokifRFRUVEkrFhokYcfGRnJzJkzeeKJJ0hPTyc4OBgD8E+2nqtXrsgT2dljsqGtBvfffz8tWpiawixcuFDOPupxn8ntk5MF545Va/zyuHzZJJh3vVw/a9as4auvTG1Hvb29+eijj5gxYwZeXl4VvLPquLq6MnToUFatWsXkyZPlWpNiYmNjmTJlCsuXL1dE+myNg4MDTzzxhHL8zz//WBg9QcUIA2AL0lNkvf9i/s7SkaKT/+Dr1avH448/Xv2xtQUU/r2WyIsXKdBqidIayHLWsKKrF+FkUWpPIRkwrPuSt6ZO5JtD0Yw9mM3fcQWkZReRle+Azqk+voGNcel+L6G9+lZ4awuXUllUIhVBRjLt27dn4cKFPDttGj/masg3yAYp8cplLnzyNhQVsWzZMlq2bMncuXP56aef+Pjjj/n5559JT0/nWL5EdpGey1euIOkKIfpsxfcsB5VKxdSpU5XjCxcuyNW4Xj7QppPpwpMHqzV+WWi1WjIyMpRj40q1Ntm2bZuS9QQQHBzMokWL6Ny5EgmQGuLk5MRjjz3GqlWrLJQ7DQYD3333Ha+99lqFgeSacO+99yod0XJzc0u1DRWUjzAAtmDfVkW8LN/JlS8PmLb948ePr5HGv3bfVqJPnUCr1aKT4N8CiZdauFf4i1Mj0c9fXtXWV0FTB3fc6zTBy68xTi6eMPBx6DOICRMnlluEpNFo6NWrF3v27OGff/7h77//Zvv27Rw9epT4uDh5RVeJVIRRV0ilUjF48GDeW/Alf6l9lJdzL0Wy7p2ZpVL9QHZBnTp1isy8PE4VSGRnZ5OZkQFR1TMAIAc97777buX4m2++kbV42plV4V69ZH2D+0owD5RqNBoLN0ltcO7cOebMmaMcBwcH8/nnn9teZrwCPD09mTFjBp999pnFfffv38+MGTPIzs62+T1dXV256667lGNhAKxHGICakp0BZ48qh5uy9OiK3S716tXjnnuqLz1clJ9P5OrvyC+Q3R47cvQ827czaiqP2we5qBlSz5v/iwijaZMmuDg7yxWvjz0FreUVb3h4ON98800pI6BSqQgLC2Pu3Lm88frrrP7oA85+OZesL99H++ErJL3yJIfHDOTIhk3lP0lJXSGgadOmTF/wNWedTBWlv639tVzNF6Pb4GyB/H9cfDyGy1GVfu8V8cwzzyiByeTkZP7++2+5C5mXWQVzrG2ExswFy+rXr1+r7RszMjJ48803FXE5T09PPvzww1o3OuXRrl07vv32W4u4x4ULF3j11VetKjqrKl26dFG+PnHihM3Hv10RBqCmnD6iKEvq3L34ds8h5aUnnniiRh/6jZ/OQZedKY8tge99j9ImxLoagqZ16vBs26am8n13T3jiWQs9nLy8PLy9vRkyZAgNGzYkICCAhg0b0qVLF8JDgunnoeaNQAem+Dlwt4eGBk4qnNXy1t5BMqBKS+Nykra0HktZukLF1K1bl/4fzCdX4wRAQk5+hd9HUFAQl/Xyz7CwsJC02EvVFokDeVV8//33K8dr166VjVjDMNNF8WU3uqkqBw4cUL6uza5WkiTx/vvvk5Iiu+Q0Gg2zZs264XLSbm5uvPvuuxZVumfPnuWjjz6yuYaPeSvSK1eu1Jq76Xbj9uwvdz0xc0mcMjiRX7y68fT0pF+/ftUedteuXRQe2QPO8uSXWa8JTz47Bf5ZWel7JSDUy88U3KzrD0MngHddQJ74f/rpJ3799VelD6uxgUugA9zjoaGTqxonjRpHRyc0DhpUyCtyXVGRhYRxelYRufl66no5YHBQUxjWjkbDJqPyKz8Vzy+4HiFjniVz2XzqeVRcQdqqVSsCAwLI+e9PPDQqkpOSqJMYh0OT5pX+HMpj6NChbNgg6w1FR0dz5swZWgfVh1PF/v/UxGqPbSQjI4Pdu011GDbv+WDGDz/8wKFDpoXHM888Q/v27WvtflXBGHvR6XTKz3zr1q3ccccd9O1bcQyqKoSEhODm5qZM/NHR0bRp08Zm49+uCANQE/R6SLiiHP5xztToZMCAAdWWek5LS+Orjz/kRQ958nd1daXXlBflwFrHvrB3XbnZNxKgUptV2oaEwqNjwdUdSZLYtm0bX375pVIZa8RfA6Ma+dHJyxkPDw/c3NxwcHCQg8wqtdxLt2krCKpPvkrNpVMniNu/C48Lx0GnIyFNNgrZ8Qc4eE1iSJfmqDNTLQXozGh870BO//snj2TlsvJsbLm1COPHj8fHx4dd+zbhoYFCnY5ze3fRpgYGoGHDhrRv317Rm9+8eTOthzxkuiDzWjnvtJ7vvvtOcXX4+Phwxx22rS8wcurUKYt03Z49ezJkyJBauVd1UalUTJ8+ndjYWMU988UXX9CtWzeLrKGa3qNx48ZK2m1UVJQwAFYgDEBNyEhTJmKtTsf206bUz5qs/j///HMaF+WhQoNaraZhm/Y4hRa7KIrlnKX1X6IymzQlSa6VUgEY8iA/Fhp1hmETwcGR3NxcPv74Y7Zv325xLy83V17o1pauGi2uTk6WD+LhJRdGte1qoeHjCrQKCqFV3/vR5eZw9utP4Ng+9Ho9jeo40rPwDKq9ZsHavetKC9CpVISNnIgU9xqvd21ZqhpZo9Hw7bffKqmTPg0bQ8IlALZu3sT3py4q8gATJkyocorlwIEDFQOwe/duZowabvKHGju4VZPIyEjWrzfVhIwYMaJGiQDlkZmZyaxZs5RYSWBgIK+88spN2UxGo9Hwv//9j3HjxlFQUEBmZibLli3jueees9k9wsLCFANw/vz5Sq4WgDAANaPA5GdMzs7FuCavX79+tXO+Dx06xM6dO3naV3bfhISE4Na+q4VaZXqjCN44K9HdrYDG7mruqOsoyyWU5PIRyEwhUafm1VdftchJd3Z25slHHmKwJhfHjFQiU3JZcnAfMdeyCK0XzISp0wgfMKhSFU5Hdw/avfAmmbu2kPbDQhoGSKUnIMkgF4x5+UL0CUWa2rlDH3wbhvKwTkeEvw8fnosnoE0HWrRooWi+GGnepRvJ6y+xLiqOWQfOYDDbMHz88cd88803VZIFvvPOO1Gr1RgMBjIyMrh0NR4lOqKvfjFYUVERH3/8seLjrl+/Po888ki1xysPg8HA+++/r1Q3azQa3nzzzZtaCycwMJCxY8fy9ddfA7B+/XoGDx5ss1hFixYtWLdOlmA/efKkTca83REGoCaYFbckp5hy4vv27Vt6EkyLlwunSuryWwxnYOHChTiqIMxJjbu7uyyuFWYKIEqSxIcffsiZpAzOAE83daN7eSs+yUDWzt+ZumqbIokMchOS/xs3Cv8d6yA7n2UHTzLx17/QG2fV4+f4+O+dVZpUvXv2wyP+BKqz5egPSQZY+Y7lub3rCGx2B+mXY2jo5c7TbZuS07cfkydPLvX2emHNOFGg470DZy0mfzC1CezRo4fVhtfT05PmzZtz9qy8Uzl/9ozJAJSurrCalStXWnR9mz59eq2s/pctW8bBg6aahUmTJtU40KzVajlz5gxRUVFcvXqVnJwcCgsL8fDwoG7duoSHh9O6desaZRYNGTKE9evXk5CQgF6v59tvv+Xtt9+u0XMbMVcDvXr1KlevXr3hgfCbHWEAakJxIxFtYSG6XFNmink7QqBMvZyy3CI7d+7k0qVLtHJWoVHJq0eVswuEmJqvb9u2zSLPuXfLJpBdvrTvyV1bSUtLV45Hjx7NuPv7of55MRRqiUy5Zjn5F1OdSVVT1YQnyYA6ah/Bgb7EXk2kibOKD/7YwJgxY0qtZFVu7my8klKpdMXs2bOtvn2bNm0UAxBzMRKMhdEO1Zuwo6OjWbXK1PXtwQcfrJUCrJ07d/L9998rxz179uSxxx6r1lharZbdu3ezZcsWDh8+rAirVUTr1q257777GDBgQJWNm6OjIxMmTOC9994DYMeOHZw5c8YmWVKBgYE0adKE6OhoZeyRI0fWeNzbGZEGWhPc5QBWZkYmzmoVzipo0KABjRqZJuzy9HIUt0ixdo8kSaxevRqA5s4q6vj44ObqCo3ClWwerVZrUeLfpUsXAt0qkXPIMLmpXnjhBcYPG4r69+XK5D/6pz9LTf5GrNIDMqeywrCykCR8PDVoNBrc1SpcCgv4448yWkE6u5GUX3GJf6XSFSVo1qyZ8nVyzCXTC2Z9DqxFr9czd+5cpaYhKCiozJ1MTYmOjrYwcg0bNmTmzJlV9vtnZ2ezbNkyhg0bxnvvvcd///1n1eQPsr7RvHnzGDVqFH/99VeVUzr79Olj8bP/6quvbJYW2qtXL+Xrf//91yZj3s4IA1AT3D3BwYGMDDlrxFeDRaUpUKFeDpJB3h0gZ3MYA1fhzmoCjNpBoaYPym+//aa0UXRwcGDGlMmocspu4AKyKuemRHnSnDx5Mg89+CBs/BFyslh28CQt5y3hv8ulZX3NqdKk2rFv+Q3nK0DtqFbcCvUcVKxbt670hODiQhO/OmW820Sl0hUlMJ+EtCmJpoK0avQdWLdunYXrZ8aMGRU2STFqHw0fPpyZM2daFI2VR05ODm+88QYFxYWB7u7uvP/++xaNeSqjqKiINWvWMHLkSFasWEFWlmXVs6urKx07duTRRx9lwoQJPP3004wcOZJ77rmnVB+L5ORk5syZw+uvv15qnIpQqVQ888wzyvHJkydtVr1rXngZFRVlEfcSlEa4gGqCSkW2xpnc4tzjAAdVafePFXo5gBK8clFBeB1PefUPSj9crVaryCQDDB48mGBtDqABpwAoTLYYVi9JfHQ+n7h8A/fffz9Dhw6FY/vhclS5bp+yqNKkevmsUhRnjiSVERg2x70Ofn56kpKS8HNQcToxkcOHD1u6T5xdeapLO+btOFhhymhVaNCgAZ6enmRnZ+Ongdy8PLw8PcG7YkNTkvz8fJYvX64cDxgwgK5du5Z7fVmdrioLZBtjP0Z5CZVKxeuvv14lH3d0dDRz5swpZWycnZ3p06cP/fr1o23btuVKOBtbSf7xxx/8+eefyo5h7969TJ48mU8++cTqZkcRERF07dpVKZZbtmwZ3bp1q3EGU4MGDWjatClRUXLF+Pbt2xkzZkyNxrydETuAGnI6wTTxtq0fTFhYmOUFVujl5OTksHPnTgAaOqnw8y9+j4sr1JFXxlu3blWExZydnWUFxIRY+TpHb2jVH3oMRmrTg8257ow9mM1fSYWEhITI7Qe1+bB7MwBLDp6wavKv0qRqdHWVIw5R7hZfpYaGbXFydMTby4u6xUlH5v1zAXB1J9y/Dp/cdxeaEpNEyZRRa1GpVLRsKUtW+zuoyCsuiqNO1VxZ69atU1bALi4uPP300+VeGxkZWa720cSJE8vdCWzevJldu3Ypx+PGjatSbcHmzZt55plnLMZ3c3PjySefZM2aNbzyyitERERUqN+vUqkIDw9nxowZrFy50kJ+IS4ujpdeeqlKO4EJEyYoX1+4cIGjR49WcLX1mO8Ctm3bZpMxb1eEAagB+fn5HLxoKv7q3rpF6YsqcosU6+Xs2rVLqa5t7u1ukuwNbqikfxqrKEFeYfr4+ECa2ao/tCX0Hc2ugC7MPRSndOR68cUX5YK0Q7uhQJZdiMmsXEqhypNqRdLQKhVZufryJSMCGwJQ19cXH438/e7Zs8dSM8bVDdRqJt4Zwa8P3EnLUFm64qWXXuLs2bOMGzfOuucsgVFCIMBBpezkqtJ0xuhSMfLII49Qp075O4glS5aUq31UXszl2rVrfPnll8pxp06dGD16tFXPJ0kS3377LXPnzrWo4B44cCCrVq1izJgx1SrGCgoKYu7cuRY7litXrjB79myr/fnNmjWzMCK///57lZ+jLPr06aN8HRsbK9xAFSBcQDXg33//JSW/EJw0aNQawoLK2P4WF26VCgSb6eVs327qEnVH01BTTn+AnCZ6+fJli8YaSlvJrAzTeF51kCTJIgulZ8+ecmqcrhCOmvrtdurQmg51IdTHjZiMPJYcjeViuqn46Y477mDFihXK5B8ZGcmSJUsqLryqxNWlM0icjc3Hz9uJum3b4RDaQs6A8q2nNIfx8vTCz9kB0KPVajl27JipxaVKBZ4+uOgNhHp70Kd5U05rJZ566qka6ew3by5XFPs6qMjPK9YlqoIBOHLkCOnpcpaVg4NDpdLflcVUynp9+fLlimSHm5sbr776qtWukmXLlln8Tfj4+PB///d/FbqowLrfuUqlUtwry5YtA2TVz507d1oEYytiyJAhSjrr3r17yc7OrnF1cHCwvBM39mH+77//aNiwYY3GvF0RO4BqIkkSv//+O7nFrpQ6devgUFROQDbiXpi6AHoMhjY95P+nLoCIPuTl5XHkiKk7Vrh/XdP7fGWDYnQPgVzt2LRpcca6ecWquydnz561CEQqXbAunFRW/xhyealRETN7NGN4m/rM7NGMs1PuZVwH+QOi0WgsJv+SWv1z586lZcuWygdeoRJXV0KhCq1OIi5Vy6lrGug72lQHURx0VatVhPqaVs+HDx+2HMQ3AJVKdrMEO8oTYGxsbIX3rYymTZvioQYHFeiKdPLq3Mv6GIC5Bk+3bt0q7YVbWUyl5OtpaWls3LhROR4/fjz+/tYZqM2bN7NypUk7KjQ0lK+++qrSyd/q33kxo0ePtojXLFmyxOpdQJcuXZQdk16vZ//+/Va9rzKUhQNl/B0JFIQBqCZRUVFERkYqDd/9/PygqII0Rd968qQ39EWLye/o0aNKMM3T0xM/J7PK2+KJyLzgp2fPnqbXzV0kzi6ytHEx7du3NxmKU8WTlKEQ8hMsJCQAHNRqvnmoA839vCzcPlXyV1fi6rrWoK1ymHH2pOUEYTbh+ru5YMwsN+boKxTviJycnWlQbAASE2sm3Obr64uPk2kjXGgwKPUd1nDpkil91BoBtgkTJlTYg6FkzMU82Orn52fa/VVCfHw8n332mXIcGhrK/PnzK+1MV50YhVHwzbgruXLlCvv27bPqOdVqtYVQnrlBrQkdOnRQvj516pTN1UdvF4QBqCY7dsj9aSUJ3N3ccHVxKS/+WSGnTp1Svu4UEYHKfFXv4YXBYLBw/3TqVNy9SpIsDY6Ts8XqydhXl7wcuFIcpyjKoryHdFCr2fvlLAtfepX81UZXV0kjUOzqavGAqVDJvSCXGLOJE09vpdbB1c0N3+L5ODo62vKDGyzvUpwcHWnkJE82RvdLdVGpVPi4uijHRRpHC9mNysjMzFS+tiYDprweDOXFXMy1mx566CGrC6++/PJLJYbi7e3NnDlzrGoHWZ0YBUCjRo0stP/Ndy2VofxNYzsJh1atWikGKTc3l7i4OJuMe7shYgDVxLitVKvA27jtr4b2vzFdDaBNs3CIN2tm4epGQkKC0uPU2KgFgCKdRcplenYuSUlJyrGyBY4yS82s5PHqqi1dWFX2V0fcCw1byrUNGclyR7BiP3+AtoBrrq7k5efjoILj+/fSuFiCGrUafHwhPRkXZ2cCHVQkFknk5eWRk5Nj8gkHNwBA4+CAl0aFj4Yad5iSJAnJ3HVXxSpg834P5U2cJXnyySfp0aMHS5cuVXzsJbWPQJaUNla1AlY3F4qMjGTvXlOL0ueee87qntTViVEYGTRokJKpdODAAav9+eZa/gkJCWRmZpr6WFQTNzc3QkJCuHpVrpKPjo4WshBlIAxANTAYDEqAyVmFSbbA0amCd5WN+aTdICgQzOuyHJ2Vwi+Qm6koEtMlmqNfNhunbt26soYQQIwpJoBfPYirQOrYx3IFW1V/NWBydZXE2QU3L2/y8uVYxNXz50q8LwDSk9E4OBDs7MDxAnlSTk9PN00i7p7g6YM6WQ44N3BU1bgBeGZmJobCQowfBecKirfKom5dU8zG/HdZGeHh4ZXKVhj/xgDq1Klj9QRmrkTavHnzKnWlq9bvvJiIiAh8fHzIyMigqKiI3bt3WzTfKY+AgADlfSAbMFtIaDRu3FgxADWNFd2uCBdQNUhOTlZS6tzVKtn9A3LefhXJyTGlZHp5lJB10GiUqk/AsuKz0Mz/r1aTei1DOVRWe5IE5i0UO/arNCXVnKr6qyvDxUzfJym+xJbcT35mFdDQzWRIS3V2CqqP0Y1Vz1FV48Kh8+fP41A8hIPGAcdKpDVKYi77YR6AtwUJCQkW97Hme5UkycL/Pnjw4Cr9jGryOzf2kTZiXrdQESqVyhSvwjKuUhPq1TOJLVbFONsTwgBUA/NmKkHuriY3gHvV09fMfdyqkiqUkmTxYbRwMZhJUePsSqFZjreL0SClJ5vaJ6pU0LpLhX76kuqkFfmrBwwYwBtvvGG1jAGAs1lw1dx3DigZTwCBDqafQyl9mrr+GIp/Zr4aVY2VNg8dOoRL8e3cPdxRVSEADJbui6NHj9o02Gju3qosu8jItWvXLJRfK8v4KUlVYxQlMY8DHDlyxKL2oCLMDemVK1cquNJ6zH9mVSlQsyeEC6gamK/Kg5zNPig+vlUey83NTTEoOfklVruSwcKHatwiyw9h1kvXxdViIlTcIua9bf0CwcWtQj99WZT0V2dlZbF582b+/PNP5Rqr9PgNBhwkkwHLyLd0YVHXZADqYLquVE9lTx/FEHpqIKsawm1GjKvllsXFZ56enuBWNT39Dh06KH0FMjMzOXfunFJdXFOqY0zMXYZubm5WGw5zrI1RlEX79u1xdnZGq9Wi1Wq5cOGChZEsj5AQUwtR851PTTDvyFdTV+HtijAANSRYbVbc5R9c5ff7+voqGQrJ6SX88zqdRWZJXl6eKUCmNTcAbhZBMyUzJtksoBDYwOym5fjpy8Hor46MjKRly5ZKByojVklHZ2dapJ9mFJWoGjYTYNNIBlxVkC9Ruq2mk7NiAJxVKqsyW8ojPj6euLg4evnIRtzby7vKRtzDw4O2bdsq3cX27NljMwPg7m5yR1kb7Db/3ZTnyrEGa2IUZeHo6Eh4eLiS3RYVFWWVATCvbahpZpcRW/0sbmeEC6gaGF0sAQ7gZjBzywRVPcvAPLB36WoJv7hOh4+Pj8UuQMkKMduF4OJKcLDJ+CQmJsorHnOpiICqG6eSVDdFEICkOMV1k6GXSgfMi+MnEqA3GHAp/sssS+nS6BaSoEYG4MyZMwDUd1Th4uyCk5Mj+AdVeZy77rpL+dq8ZqOmBAWZnsVat4i5DEV2dnbpGMp1wPy5S/aeLg/z/g/mcbGaYKyeBipUZrVnhAGoBsYJua2LGr2+SA5JBtSrsvsAoIkxFRI4fzHK0j9fWGCZ+gmmmoBCMwPg5Ey9evVwKu7pa1RtJMPkCzaKytWEKqUIpsXDlhWwZp78/5mDivGIKZRKty4sDlQarzH+FEpdpytEX2wAdJJUIwMQGxuLuxqCHFW4uhVPEMFVlwwwz2OPjIy02QRmHhhNTk5W2j9WREBAgMXO4Ua0RjR325XcLZZHubGuGmDu97dV8/nbDWEAqoFxldXZVY1E8Yo0rPJtblm0aGESkDt/4QKSeWP24lRP8y30iRPFdQI6y9x1jUaj6NoAHDt2DHLNAl+eNcurhiqkCB7dCl9Mgz2/wend8v/H1qPWZ3M5K5dFxyM5ePCgZQC5OKtJXyR/+AslOTuklAHIz6Wo+Jo8AzXKF09NTaW5s2x4nJ2c5Mb31TCUjRs3VgyRJEmm31EN8ff3t8hksaa6VqVS0bFjR+V469atNnmWqpBi1h7V2hiEuY/eyanq6dRlYR4MN0/XFZgQBqAauLm50czdmcBiOYIinQ5aRVTyrrIJDw9XJHi1Wi3ZOrPVT3FQ2Fxi4MSJE7LBMXc9Fa+4zD/4/+3dC+YZNC7VD5YasSpFsLwOaICbQw6v7DvBwejLXLx40VJjJkt2FeiKdBgkyCme3EsFgXOy0Bc3bc/SSzVa2eXn59PSWR5frdFA4+ZVqgI2olKpLPrR2lJ7xty99M8//1j1HnM1zO3bt1smD9QyOp1Oca2BbBytwdzvX53AdVmYG6Ka9DG+nREGoBqoVCr6+pp8ipleftV2sTg5OVkETlPzzIK7xbIQ5k068vLy5A+Y2mwiLt5md+/eXTl17sxpCgvNdgk2CIKVlSIYVteduX1bE/nBM4TH7IM9v5crC61WqRTROSOKxswBeXWrKywkuUhCouwPrZSZTlGxi+CavmYxALVKRXjxDgBJsui+VlXM3UDGJie24N57TbUZp06dskrSoEePHsqKV6fT8euvv9rseSpj3759igSFs7Oz1b1+zSWbzeNZNcE8I8paAT17QxiA6pCTTVuz5JTLviHlX2sF5lkjiVlm/uN8+WtnZ2eLXcCBAwfAfJtc7D4JDw9XgspFEqSlmT4A2Miv+uSTT3L27FlmzpzJoklDOTe1H6/cFU7jvDjZ1XNkS4XvD/UuvRPR6/Us/U7uqFWg1RKrk4PFZU0E+tQkJT0yTS/VyAXk7yxLSsjPYICGTSt5R/mY59tfvXrVZrnszZo1s8iRL9UopwwcHBwYPHiwcrx27drrlge/du1a5esePXpY7c4x3zWYxz6qi8FgsDAA1nYqszeEAagOJ//DqXhFnqmXiHGoWvVoScx995dTzbImsk3FUubytvv27QNXs3sWF3upVCoGDhwIgAFITE1DbwzCFdgmG8SoE59/NYqJQUVoqugxicks+zliouWK5fy8PM4VyM9cyn1g0KMzy2zKQFMjA9DQLAn6mkpTrSC+kcDAQIuAvrVVsJVh/jsFWeLZmiDpI488osRP8vLyypVytiVHjhxR0mEBHn74Yavel5eXZxGstkZVtTKSk5Mtfk7WaiHZG8IAVBVJgpMHcSh2g+zLNZBZw6wPcwMQnXbNNGmbNXwxl8yNjo4mpdDMv2+W7fPAAw8oufNpWp1pFZRpXTpeRZjrxAclnK7y5F9kMLD0aNmaLKHeHkiSxLWcXM5o5RV+KfdBVgbafJOLzMEvsEZSEEEaU11CvL7mHwVzqW5r5ZCtoX///orbLS0tzapUU3d3d0aOHKkcr1u3rrS8tg0pKCjg008/VY7btWtHmzZtrHrv7t27LSTRzRMjqotRAwhkV2KpehIBIAxA1bl6CTKvoXFwQAL25xlqHGRr0KCBkqecVmQg3zjJXTNtYevXr2/hCth1+rxpgNxsJV7g5eXFI488AkBykURSUpKcNZNaM938kjrxoT5VCyrrJYmn1h+z6DxmRKNWM75zW3Jyczmao0MnyW6Mtm3bWl6YnqJ07crQS9QPtS7AWB7ekilGkqizLl2xIswDtqdPn7ZZQZOPj49FfMe8CrsihgwZorgEJUli1qxZtRIQliSJTz/9VJl0VSoVkydPtto4m0tH9+rVyyZFW+YpyaIbWPkIA1BVLp4G5IrHC1oDWQbLYFN1UKvVNGsmByCTiiAvt9hNci3VQvLZXGhr8649cp9cI4mmFc8TTzyBm5sbcToJvV5PQmICxMXU6BlLFoHFZFTiUnLwAsc6GNTunEnXM/ZgNvsLXEtNChqNhm+HDiDcvw7p6enszpUn4k6dOpUuAktPJidHrohNKpJqvFJ01ZlSDzOkmonKgdytzehrliSJ3bt313hMI+ZuoH379lk1kTs6OvLyyy8rP/OEhAReeeWVGktomyNJEosWLbJoRjR8+HCLXW1FnDt3ziJt1vz7rAnmSqrmrjmBJcIAVJVidU1nJydO5cuTs/l2s7oYA8EpRRK5ucUupSIdZJpWkebpfZEXL5Ll7mMaIM7kWvH29mb06NFcLG5XlpqaSs7ZE3Jv4GpSsghsydFYiioq8nGsA05+nE5T8eKpbOLyDYSGhrJ3715mzpzJ8OHDmTlzJmc/m8W4zm0o0us5npKhBICVhjZmFMZfUao7k3SSRdprdVBrTUZMq6l57rlKpeLuu+9Wjs1bedaULl26KBLfRUVFbN682ar3tWvXjokTJyrHkZGRTJo0ifPnz1fwLuvIzs7m3XffZc2aNcq5tm3bVkkl1rx6vFWrVjaT0TBvolSTntG3O8IAVAW9HlJkV4qLiyvRhfIEGB8fX+MsC6O/tFCCK9l5pr5dyZaSwOYZEkdTMkwDXDU1DgEYOnQousD6aIt7Fl+5FI3+9BGqS8kisIvpuUzccKxsI+AUCGonknPzeff0VQqKv5nx48dzxx13MHv2bH788UdmT3uG8Hw5NpGamsrmDNlA+fj4WLa+LCbl9HHl55Lh5Gr1KrM8JDPxPQfP6qeTmmNuAI4dO2azqmCNRmOxOv7tt99KK6WWw/Dhw3nsMVNHtsTERCZPnsxnn31mUSxlLTqdjj/++IOxY8dadCwLDw/n/fffV1KWK+PAgQMW8Qxjg/makpWVZaH/b20qqj0iDEBVyMlUctydnJ0o9DBloNS0+Kddu3bKVv1SrtakOJpkubvo27ev8vUfx86YDEVcrMUK38HBgedffInD+RLOjirquuvJ/eVT+Hu5XKxVRcoqAvvu2GVafrmVuXsiyXb2lVf9ro3A0Ys8tSMzj0SRWuw1atu2LUOHDrUcdJe8ijUYDBxLTOVscfB30KBBpWWei4rIu2wycvXady5dJFYVJAl9nike4e1vmzTB1q1bK4VMer2eo0eP2mRckH8uxsk1OTmZLVsqTrk1olKpePbZZ5k4caLyN2YwGFi3bh2PP/44b7/9Ntu3b6/QNaTVajlx4gQLFy5k+PDhzJs3z0Lnp1OnTnzyySdWF+bl5eVZBI3bt29fZenq8jhyxLTQqVu3roXSqMASoQZaFcwmWJWDA526dlN8n7t3765S56WSeHp6EhYWRmRkJFd1EtlZWXKjmUTLfPJ+/fqxePFiJEniSEIKmc0D8HFzkyuD42Ih1LTdbdeuHZld29NSG1X8wS+Evb/DvvVyX4ASDWAqwlgEVrJh+KXMAgIbtcHTwVRqX+Tty//tPcWlbDlg6+bmxv/+9z/LCfvSecWdlpqaxm+p8rXOzs48+uijpe6ffu4kOcW7LJ0Ene9/0OpnL5MinSnYDtSrYUDZiFqtpkOHDsrK+MyZM2XuZqqDn58f/fr1U2oBVq5cSb9+/axacatUKkaMGEHr1q356KOPlIIyvV7Pjh07lB7XAQEBhISE4OHhgUqlIj8/n+TkZOLi4srccTg5OfHkk08ybNgwqw2yJEl8/vnnJCbKu2m1Ws1zzz1X4+Y+RswzsDp37myzcW9HxA6gKpj3iy0qoodZZsaePXtqrLxozPW/XCiRYWyYknjVIhDs6+urpIQagCPJZo1VYkt0pEqLp4cupvQHQDLIcg1V3AmYF4ENHz6cmdOmcPaNaYxrbsqy0Ic2463IFE7EmnYur776qoVCJAY9bJczP/QGA/sTUrhgtvovSwrg9MbfTd+WoysdOnYqdU1V0OXnWRiAxs1q5k4yx9yPbQtfuzkjR45UdmIJCQn89ttvVXp/+/bt+e6775g2bVqZ1bHJyckcPXqUXbt2sXPnTg4ePEhsbGypyd/BwYFBgwaxfPlyhg8fXqXd2O+//85ff/2lHI8aNcpmgdrCwkKLfsjm6dOC0ggDUBU8vCy0Yro1a6IU22i1Wos/6upg9B9f0Unk5ubKbqCCfIuCMJDT+4zsiI03yd7GlOjMdeQfVOXIMiAZYO/6sl+rgPC67szu05If+4UxOyiXcE06FCRAYSq6Fm154/BF9h4yucNGjRpl4RcH4PgBJS01JSWFn5Nlw+ns7Mzw4cNL3fPcuXN8sXIVM3ef4PNjkWQGN67xqi7q3DmlolilUtHEhgbAmNEFcptIW3YJCwkJ4cEHTbuf5cuXVznd1Fgp/OOPP/L+++/Tv39/Cxnp8nB2dqZTp048//zzrFmzhhkzZlgadivYtWsXCxYsUI5bt27N6NHW96awZnxj3MXZ2dlmbqXbFeECqgoOjnJnreJAsFPCZe677z5++eUXAH7++Wceeughq4NgJQkLC6NJkyZER0eToZdITk6Wc5hT4sHLR7kuIiKCFi1acO7cOc5rDVyNi6NZeDNUyfGysTAqf2aklH2jYgr+24bzNS2q0GZyL4O6/uBdt/zm9ke3liv0hh7Uh9biHWPaBfXu3dsiIyQyMpIlXy0i5t+/CfV2Z0xEK/ZfTSauOPPn0UcfLaXauGzZMp566ikLWeGV578gv3n7ijuQVULk6ZMYOzE4u7vjYCMFSrDMOsnNzSUxMdFm+jYA48aN459//iE3N5fc3Fy+/PJL3njjjSqPo9Fo6N69O927d0eS5JqRmJgYOWvMbBL18/MjJCSEhg0bVvtvG+SsqHfffVcxiH5+frzzzjs1GtMcSZL44YcflON77rmnzH4SAhPCAFSV0OaKAeDccYYMGcJvv/2GXq8nMTGRrVu3MmDAgGoNrVKpGDp0KB9++CHxOok66ekEBAbikpoETVtZXDdp0iReeOEFkorgalYu3slJBAUGwsUzEFG87fWpWAArIyuXzJ3bCL54Dk9PT1RAZMo1lhw7R0xWHqEhwUx4aCDhTZtATjr89wtQ/mpWo4KXmrtyMquIpl168Nprrykr9WXLlpWKH3y84yBtmjejTlAwnp6ejBgxwmI8Y/FZtTqQVcL5kycUA+DqXfnqtyq4u7sTEhKi+NnPnDljUwPg4+PDxIkT+eyzzwDYtm0bvXr1Kr3TqgIqlYqgoKAqr+itQZIkfv/9dxYsWKBM/h4eHsydO1dJbbUFW7ZsMTVMAovMJ0HZCBdQVWlhplMSF0OQg2XO+g8//GB1E4yy6NevH8HBwSQVK2LGXb2KZN7Zq5iIiAglI+hEgYGEhAQ5FfWMWapnx76lG8AXY5Ak0rOKyMvPJyoqinPnzvHZ1j20/HgJc7fs5qf/jjB37UZaTpjKsgXz4cg/VDT5G9GoVEzv2Zo333xTWdmVrCI2opckjp87T15eHhMmTCiVQVKjDmQVUFBQwNULJt+8l7/tdWLMZRBsKQ9tZNCgQRZ9Ij7++GOb9dK1JYWFhXzyySd8/vnnyuTv6enJvHnzbFqglZeXx+LFi5XjPn36iAIwKxAGoKoEhsj/jBzezfDhw5WV7uXLl63WbS8LBwcHJk6cSHJxzC0rO5tLR8rWfnnuuecIDAzkcHFB2qVLMWRfOG3qBexbT872KWEEJJWajQ6NmRVXyIZMPcfzDexPSOOlv/ehL+Gv1hskJv7yF6kZ1msJdQlvZJEyWtFEDnJe+UMPPVTqfMylSxXep7IOZeXx33//4VLcoF6j1uBTz/Zpgl26dFG+Nte6sRUqlYqZM2cqGjfZ2dn873//s1ndgS24fPkyU6ZM4Y8//lDO+fv7M3/+fIs4iS1YuHChUtPg4ODAhAkTbDr+7YowAFVFpYKOJs0XTh+hoV9diyrdpUuX1ugD37t3b4JamlaQiWdOWlQ2GvH09OS9994jTePMlUIJg2QgKiqKmJ+/M10UcS9MXQA9BkObHtBjMKqpC3jojU95a8Eiclt3Zvk1PW+dulJq8jeilyS2xiRZ/w34WObUVzaRN2jQoMwsEq+CiiezCjuUlWxJaZbxtGHDBor7wOPt7YXaLL5iK+68805FCjk7O9umshBG6tevz8svv6wcx8TE8PLLL1836efyMBgMrFmzhokTJ1pIMrRs2ZJFixZZ3STGWvbu3WuhJzRq1CiLTmqC8hEGoDq06ADuxe4KfREc3cf48eOVVW9SUpLVgl1loVKpGPv8i4oLxVUlMet//1fmFj8sLIwPPviAPYXyvSVJIn3fdn6aP89khHzrQd/RMPRF+X9f+cPRokUL5s6dy/fff1+p7/fT43HlGgjLh1db1hdIEqH6/PKvp+xKTe25EzzskIemnGwfpQNZWZTVkvKLaXB0K8eOHePw4cP4F0uZ+vr6yoFvG+Pm5mbhk//hhx9smg1k5N5777VQ/Tx37hzTpk2zWT+CqhIdHc3UqVNZuHChRZvHwYMHM3/+fJv6/EFOW50zZ45yHB4ebvHzEFSMMADVwcEBIkw1ABzbR72AAItS/RUrViidkapDnZAGNAxvjnH6c83N5MUXXyyzMXhERAQj351DCrIRUAHuezbz3JQpXKpk9Q1yaqH5DqYsnIIasdWtBQYqSL9UqWHQFMXAIEnw91omNAms2kQeG0ni1x9Rz8WR17u2RF2WgNy335YdAC6vJaVkQFq/kJ8WfQZAiKMKd3d33D08wN/2gU+wDEJGRkZarFJtyYQJExQFWJBdL5MmTeLPP/+sFaNTFsZspIkTJ1rITvv4+PD+++8zbdq00tXdNUSn0/HWW28pFczOzs689tprNssqsgdU0vX6C7ndyMuFr9839d198AmSfUMYNWoUuuKG7U8++WTN9E1++pq0Ywe5fPkyf2Tp2ZZjIDg4mHnz5pWZVZJ4YA/XvppDQbHh2Zmj5488NY899hijRo2qMCUuMjKSli1blumr12g0nD17Vp5w0+LlFXZGMjgXj6fNk90+EfeaJv8iHWxeA2ePkZefzyd/7eStfScwSJbjfvvtt4wbN8508tJ5MlcsIPqCXNSmNUj817QziXrZxREaGsr48ePLz/7ZskJe8ZfDqssF/BhbwKwgR5qFh+Pu7g4TXpZTYGuBd955R6kK9vDw4LvvvrP5Khjknd/KlStLNX5p164dzz33nE26bJVFUVERGzdu5LvvviulUHrvvfcybdq0GjXtqYhPP/2U9etNtSwzZ86sdgaevSIMQE348yc4XZzhUb8xPPEsX3/9NatXrwbAxcWFVatWlcptt5rdf8G+rSQnp7D90hUWpcmTs6+vL3Pnzi3zQ63buJqEzb+TVlwc9GeWnn9yDNSpU4dRo0bx0EMPlbsSKytVs8xJujKyM2D990jxl0lJTiE+IZ5LWgOfXMnickIi/v7+9O3blwkTJlhO5NHnKPz5W86fPUNRURE6CTY4+fP610utb+ixZp7s9imHrcmFbI7JZ1rTALnGwsMLnnmtWs3grSE1NZWxY8cqVeKdO3fmww8/rDV5gt27d/Phhx9a6PqoVCp69+5t04pbvV7Pv//+y/Lly0up4QYHBzNjxgyLQLit+eOPP5g3b55y/NBDD/HCCy/U2v1uV4QBqAnxsbDqS9Px+BfJdfFg5MiRZBZLOQwYMICZM2dWb/y4GPhhIQDJKalMPHyJrGLPhpubG2+99VbpSkddIaz6kqyo81y5coVCnY6T+QbWZ+lJ08vFN0OGDOHBBx9UqpjNiYyMZOnSpdattsvi4hnY/DO5qSnExcWRm5dHpNbAknQ9OmRRsqFDh5aeAGMuYPhlKVEXzpOTm4vWILEsS8Urny+q2urVih2Ah86BB1o3k7u6tesGA4aUe70tKDlZPfXUU7Xqp05NTeXTTz+1kEQw0qFDBx544AF69OiBi4tLlcfOzs7m77//5tdffy0Vk3J2dmbkyJE8/vjjVvcCrg7nz59n6tSpSoyrRYsWzJ8/v1bvebsiDEBNkCRY/hmkFH8QOt4F9z7MunXrlCIdgE8++YSIiIiqj28wwOI58ooaOOnmx/Nr/1LqDNRqNdOmTbPw/wKQkwU/LMRwLZWkpGSSk5MwSBKXCyViCw2k6CFX7UiLrndw58CHaBPRseYr0oI8pK3ryTmwk+TkZCUTZV+ugV8z9XjXqcPrr79etoZ/fCzST4u5cimatLQ0tAaJr9P0PDJlutV9ZRXS4uWAbxnVynpJ4vnD2XzQqTmeRuP3+NM1agZvDZIk8dZbbyl9gtVqNQsWLKh1meL//vuPr7/+usw4kFHWoXPnzrRu3ZpGjRqVucvS6/VcuXKFkydPsn//fg4cOFAqw02lUnH//fczfvz4WnFvmZORkcGkSZNISZGr3H18fPjmm2/w8/Or1fverggDUFOO7YMtxStORyd4+v/QO7nw7LPPEhkpa/M0aNCAJUuWVC8I9t+/sFNWf8TBkcPte/P6R5+Y5KKRi4KmTZtmGfzKy4H1q+BKFDqdjsSkJNLS0koFBSUgQ+OE1DAM7zt6EXZXb3ys0IUxUqTTcfmvdah3/EluarKS+aGT4NdMPQfyDPTp04fp06fj5VWG5n56CvzwJYkxl0hISKBQgq9Si2h2Tz9mzpxZPcNUhmSFXpL46Hw+PcJb0sOreKVY1x/Gv1Rr7h9zcnJyeOqpp0hKktNpg4KCWLJkSa1LFUiSxPbt21m9ejUXLlwo9zqVSoWfnx/e3t44Ozuj1+vJzMwkNTVViWmVRK1W06dPH8aOHau0nqxN9Ho9L7/8siKxrVarmTdvHh06dKj1e9+uCANQU3SF8PUHYGwu0u0euPt+Lly4wDPPPKNMuNUOCBdq4Zu58oQOUK8RkZ3v5X+vv2HRirJDhw688847lpOsJMGpQ3BgB6Qno9PpSElJJTUttdzCrKuFEv8UqDmQkom2sJCQkBAGDhxIaGgoBoOBvLw8srKySEpKQh97kXbXrtKwhF27XCix6loRPk3CefbZZ8vf/eRmw6ovSY48T1x8HHoJFqcV4RjWkk8//bRmW/q0eHQH/+Lg3xu5lJHLpsRCAgND+KhlEGrjfD9gKLS7fmJhp06dYvr06coO7nr6rSVJ4vTp02zatInt27fXSLm2Tp069O/fn8GDBystMK8HCxcutOg+NnnyZCH3UEOEAbAF+7bKAVsAtQbGPAf+wcyfP5/ff/8dkKsTly1bVr2V0rnjsGGV6bhdN9I69eL1N96wKBCrV68e77//fukCKUmSO4tdjYbUJPTXUkm6eJ7sq5fJy7YsGloXFcd7B86Wyvlv3rw5wcHBuKuhlbOKO901hDpZrpx1EvyVbSC7eQcee/zxirXYtQVIq78i8fhhEotXxSvSi0j1C2HBggVlSkJXlY8//lhJvVSr1awZfj91M4rTaH185dW/DRqQV4UVK1ZYZOosWrSoxr2Nq4pOp+P48eMcOHCAkydPcvHixQoLF9VqNaGhoXTo0IE77riDiIiI655quXnzZubOnasc9+nTh9dff11o/dcQYQBsgbYAln2i+Orxrgsjp5CLmrFjxyol6j169GDWrFnVu8efq8G8pWP3fmg7383HH39sIT3h6urKa6+9xl133VXGICUwGMiMjSZ6+98UnjhIaswlHl63s8yCL7UKvru/O2183Eu9plKpSPUOIP/OvtwxYGCZOvMW6ArRrf6aK/t2KsHy9Zl6znsF8tlnn9lkVbl3715ee+015filhwbwgN5MNnnQKGjersb3qSpFRUVMnDhRkbFo06YNn3/++Q2dyPR6PUlJSSQlJZGdnY1Wq0Wj0eDp6Ymvry8hISHWZ2HVAidOnODFF19UjFRYWBgLFiyoVhBbYIkwALYi+jz8usR07F0XHh3Lv6fO8e677yqnFy5cWL3G10U6+OlriL9sOtfrAaQud/PDDz+wZMkSC//+mDFjGDduXJUmllenTeHDLxaW+/rTHZrxyh1t0Wg0ODo54ezsjLphUzzuG4JjYyu1XXSFJH71IWmH91FY7FvekaPnWJ36fPjhRzaZ/JOSkpg0aZISiG7fvBmftKmHOr+4b0LDMBg28br4/svi6NGjFq6faicJ2AFGPSGjxpGPjw9fffUVgYG2F/CzR0QlsK1o0hx6mSqByUyHlQvo7VREa7Pm5SULdazGwREefRJ8zSbIHRtRHdnDyJEjef/99y0CiitWrOCVV16pUtPv2JSKr82U1DRp0oRGrdtS775H8H3uLeo8+39WT/6Jl2PZ/8ozJOzfqUz+B/MMJLbozIIFX9hk8tdqtbz++uvK5O/s7Mzbd0eYJn8HB+g/+IZN/iBXbptnQxn7SQgsSU5O5uWXX1YmfycnJ9577z0x+dsQYQBsSZdecPf9pslFX4Rq7xbeCfWiubN87uDBg0RFRVVvfDd3eGyi7L82sm09HNvHnXfeycKFC2nQoIHy0qFDh3jyySfZtGmTVZIAFYqrAaHd74aJr8qFU/2HQHCDCq83kpyczFfzPuLQyxNxTjYVDR0rkHAfPIbZc+ZY3Uy8IgwGA++//76FANmsMY/jE2fSiOeuAVDnxqcMDhs2TPl63759Sn9cgcy1a9cspE9UKhWvvfaahQS2oOYIF1BtEH0e/loj5+Mjp1peOH+eram5rM3UM7Cm2R9ZGfDjIsgyk2i+fxi06Uxubi5z585Vcs6NNGvWjLFjx3LnnXeW6xayWg7CCiRJ4tixY6xfv57ovTsZV0eNj8Z031j3urR56V3CbCQLLEkS8+bNs9DbGfnIIJ7SZIFx9R/cEEZMhir0r60tJEli9OjRStOYoUOHMmXKlBv8VDcHaWlpvPjii8TGxirnpk+fXrreRVBjhAGoLbQFsHcLHN4NkkRaejqXL1/mUqHE8hwN3/+8pmar3ow0WP2VqV+wSgUPjoAW7ZEkiT///JMvv/zSovE5yDUJ9913H/fcc0+ZekI1kYMwGAycP3+enTt38u+//5KUlMRdbmoe9tbgUDz3Ozo6ou7ck5aTX0Flo4lYkiS+/PJLfv31V+XcHd268X5EE9SXi3cDDo4w9vla0/ypDmvXrlX64zo7O7Nq1apaL6S62UlMTOSll15SDCPUfuW0PSMMQG2THA+b12BIuMLp06cp0uuJKZTIfWAEo8ZVv6ctIBdRrf5KzqcHWY3z4VEQLvcSSE5OZvHixWzdurXMtzdq1IiIiAjatGlDWFgY9evXR6PRWC0HkZ2dzaVLlzh//jwnT57k2LFjigZNgAMM8dYQ7ixP8k6OTgQEBeLz6Ggcu/Wu2fdthiRJLFq0yCI/vE2bNnwy7EEc95t93/0ehQ532uy+tkCr1TJ8+HBFRK1Xr1689dZbdpvaePbsWV577TWuXTPtbGssqCioEGEArgdFRbDlNxK2bCAxSfb1HtZpGLr4x5rnu6clwY9fmdwcag08MgaamjKNNm/ezKxZs7h48SLOzs4EBweXWYGq0WgICAjA398fb29v3N3dlfQ/vV5PQUEBWVlZXLt2jcTERAvBMSMBDtDHQ0MXVzUqFXh5euLr54d3UD1Ug0bKGTg2QpIkvvjiC9auXauca9asGZ/OmILbHz+YKoHDW8PDY25o4Lc81q9fz6effqocT5w4sVRv5NsdSZLYuHEj8+fPt6hHmDRpEk888cQNfLLbH2EArheSRMGGH7nwy0rFvXIivDNj3/6g5mMnxcFPi0Fb7O5Ra+CR0dC0VZkuHZVKRbNmzWzWqNxRBW1dVNzhpibcWY27uzs+Pj74+PjI8hdNW8lBY4+aB3qNlDX5h4WF8enbb+Dx2zKTQfSqA2Ong0vtSi5UF0mSePHFFxV5A5BdHiNGjLCLnUBmZiaffvopO3bsUM5pNBpefPFF7r///hv4ZPaBMADXE72eqPdeJOvCGQASdRKaCS/R3xYa5glX4OfFsnQEgFpNZIuutHx4WLlB3YULF5KSkkJkZCSXL1+uUvMQR5VcEdzZ24WO3q54u7ni4e6Oh4cnGk2xb9/HF3o9IK/AbTiZSZLEJ598YtFrtnnz5nz0/nt4rl8BqcUZNRoHGPEsBFmXrXSjyMjIYPLkyRbqmvfccw8zZsywSXbUzYgkSWzbto0vvvjCoo+Aj48P77zzDu3aXf8iPXtEGIDrjD7hChffnKZosazKgnGzP6FNmzaVvNMK4mLglyWKEZj55w7mbj9Q7uUzZ85k9uzZABQWFpKYmEhCQgLp6elkZmaSn5+PVqtFkiQ0KhV+FFHPoCWoIAu/3Gs4azQ4ODqW7hHmFwRd7oaWETaXWihr8m/RogUfzZmDx18/Q2yk6eKBj0PrTja9f22RnJzMjBkziI839S728/Nj6tSp3H333bfVbuDSpUssWLDAYtcDcn3Ea6+9ZveB8OuJMAA3gJwfF3Np028U6fVEaQ0sy3dm3rx5ttGESYqTjUBeDsNXbeCn46WbyRsZ/thj/PhtseuoIB8KC2TjodXK5/LzZHmLjDRITZKrkcvDyRmatYN2XaBeo1rxt0uSxEcffcSmTZuUc61bt2bunDm4b18PZ4+ZLi4W5buVyMzM5J133ilzYnzmmWdoZqOU2RtFRkYG3333HRs2bFAE8UDOgHrqqacYMmTIbWXobgWEAbgRxMeS8/VcLkZFIUkSHyTpyHN244MPPqB9+/Y1Hz8zHdatZOayHyreAdzTjdn3313u65Xi7AJhrSC8LTRuJqda1hIGg4GPPvqIzZs3K+dat27Nhx9+iNuBf+GgyYdMyw7wwBM3ZdC3MgwGA6tXr2bZsmWlBNp69uzJmDFjCAuzXSD9eqDValm7di3ff/99KRXSbt26MX36dJvFowRVQxiAG4EkwXefkhl1nksxMWzJKuLPbAMODg7MnDmTe++9t+b30OuJ/GUlLUeMR28o/SvWqFWcfXEC4f7Wa/+jVkNAPWjQFEKbQYMm10VNs6ioiA8++IB///1XOdeuXTtmz56N29kjcjW0kYZhMGS8LPlwC3P16lXmz5/PoUOHSr3WrVs3nnjiCdq1a3dTr5glSWLLli0sWbJEqeg1Uq9ePaZMmVJhYaKg9hEG4EZxcCds/4PMrCyOXLzEu4mFyksjRoxg/PjxaGwwuS776ismTp2CXm/acmvUKr4deh/jOhfHHRyd5NW8sws4Opu+dnGTM3e864JvIPgFytdeR7RaLe+++65Fe8P27dsze/ZsXONj4LfvZIMK4B8MTzwrP/ttgCRJHDx4kMWLF5cpHxIWFsbgwYPp06fPDVXrLIkkSRw4cIDFixcTHR1t8ZqHhwdjxozh0Ucfve6S0oLSCANwo8jOlBvJSBI5ubm8fvIyx9NzlJc7dOjAa6+9ZpNWdxaFXfVDGP/EcMLDwmSXjbPLddfEt5acnBxee+01Tpw4oZzr3Lkz7733Hs7Z1+R+zMasJ08fGDVVbvJ+myFJErt372bFihUWOkdG3N3d6du3L/fddx/Nmze/YStqSZI4fvw4S5cu5eTJkxavOTg48OijjzJ69OjbNrPpVkQYgBvJL0vhkhykzQ4OZdo/Byz0Tzw8PJgyZQoDBgywu21ySkoKr776qkU/2x49evDmm2/iWFQIKxfIsQ6Qdy0jJ8s7gNsYSZI4fPgwq1ev5vDhw2VeU79+ffr06UPPnj1p2rTpdfm7MRgM7N+/nx9//JFTp06Ver1Pnz489dRTws9/EyIMwI3k4hnZhQGgUpE/YiofL/mObdu2WVwWERHB9OnTadSoUe0+T1o8HPkHMlLAxx869gXferV7zzKIiori//7v/5TG3wD33XcfL730EhqANd/ClWKXiEoFj4yVg9F2xKVLl/j999/ZsmVLKb0nI4GBgXTr1o2OHTvSoUMHvL29bfoMcXFxbN26lc2bN1vUMBjp3LkzkyZNslpAUHD9EQbgRmIwwJKP5DRLgJYRSA8MZ/PmzXzxxRcWGRNqtZqBAwcyduxYm7iFSlFGI3VUahg0GSJsEJS2kn379jFr1iyLSW3kyJFMmDBBrjfY9JNlZ7S775dTPu2UvLw8duzYwebNmy1cZWVRv359WrZsSVhYGKGhoTRs2JCAgADUVojyGQwGEhISiIyM5NSpUxw6dMhit2pOhw4dePLJJ0Ux1y2AMAA3mlOHYNPPpuNR0yC4AcnJyXz22Wfs27fP4nIHBwceeOABhg8fTlBQkG2eIS0evphmOfkbUalh6oJa3wlIksRPP/3E4sWLlYpklUrF9OnTefjhh+VA7/aNcGin6U2tOsrFXnbmHiuPpKQk/v33X3bu3MnZs2eteo9arcbPzw9vb2+8vLxwcXHBwcEBg8FAYWEhubm5pKenk5KSgk5Xfh2IWq2mR48eDBs2TGj230IIA3CjMRhgxWeQUixf4B8Mo59TArN79+5l4cKFFvK4IE+OvXv3ZtiwYTUvINuyAvb8Vv7rPQZD39E1u0cF5OXl8dFHH7F9+3blnJubG2+++SbdunWTJ/+dm+CA6XUaNIGhT93y6Z61RVpaGgcPHuTQoUMcO3asSp3hqkJoaCh9+/alX79+NunoJri+CANwM3D5oizmZqRrL1lDp5iioiI2btzIypUry/wgt27dmkcffZS7775bFl+rKmvmwend5b/epgcMfbHq41pBVFQUb7/9NlevmjqFBQUF8cEHH9C4cWPZQG5dB8fMdkIB9eDxp8HFtVae6XZDkiTi4+M5e/YskZGRREdHExsbaxFjsQaVSkVwcDAtW7akbdu2dO3aVQR2b3GEAbhZ+HstHN9vOn5oJLSwrArW6XRs2rSJ1atXlxl08/HxYeDAgTz44INV+2DegB2AXq9nzZo1LFmyxKLitWPHjrz55ptywFJbABt/hCgzd4Z/EAx7Wm6PKagRWq2W5ORkUlNTyczMJDs7G61WS1FRESqVCicnJ9zc3KhTpw5+fn6EhITcVPUGgpojDMDNQqEWvl8AacUVk2Xo+hsxGAzs2rWLX375pcy0O5AzMAYOHMhdd92Fk1MlxVvXOQZw+vRp5s+fT2SkSbhNpVIxcuRIxo0bJxfApafA7yvkfgdGghvC0PE3rbSzQHCrIQzAzUR6Cnz/hUnXX6WSXUGde5Yb6Lxw4QK//fYbW7duLTNI5+npyT333EP//v1p1apV+Xnh5WYBTYGIPjX9zgC5IG3lypWl+hX7+voyc+ZMOnfuLJ+4eAb+XC3vAIyEtZJbXl7nSmSB4HZGGICbjfjL8PM3oNOazjVoCv0HV9jPNjs7m82bN7NhwwauXLlS5jUBAQHcfffd9OzZk9atW5eWmkiLlw1BRjL4BMjpnzVc+efk5LB79242btxY5m5lwIABTJkyRa4ONRjkPsr7SrSw7HYP9LxPZPsIBDZGGICbkaR4+G2ZqeE7yC6hzj3gjnsr1LqRJImTJ0/y559/sn37drRabZnXubu707FjRzp27Ei7du1o1KiRTbSHdDodkZGRnDx5UslAKalqCXLrxilTpphyxQvyYMMPEHPBdJGjE9w/DJqLfHKBoDYQBuBmJS8X/v4VIkusmt08oNdAudFJJSvivLw8du7cyd9//82xY8cq7Pjl7OxM48aNCQ0NpX79+gQGBlKnTh28vLxwc3PD0dERlUpFUVGRkh+elZVFamoqSUlJxMXFERsby+XLl8uc8I20aNGCESNG0KNHD5M7Kjle9vcbpR1A3u08MkYWoRMIBLWCMAA3M5IEkadluePsDMvXQkJhwBCrJ8hr166xa9cudu3aVe6qvLbw8fHh7rvv5v777y9ds3DqEGz5zbLZTHgbeeV/m6h6CgQ3K8IA3AroCuHADjjwL5hP3GqN7BvvcneV/OP5+fkcO3aMI0eOcPz4caKioiw6NNUUJycnwsPDiYiIoHPnzrRp06a0eyk/V87vN+/ipVJBjwGyz1/4+wWCWkcYgFuJrAx5N1DSLdQoHAYOl7X7q4FWq+XSpUtcunSJmJgYEhISSE5OJiMjg+zsbPLz8y3cR46Ojri7u+Pp6Ymvry9+fn7Uq1ePBg0a0LhxYxo1alS+1ruuEE4cgH3/yC0njbi6yVk+obd220OB4FZCGIBbkYtnYMtayMkynfPwknVxGtleeVGSJAwGg9wcXqOpmsSwtkCubUiOh6uXIPqsZXonQP3GcgtHLx+bPrdAIKgYYQBuVQry4K9f4YJZ4w2VCtrfAXf2rfZuoMbkZEPUGVneIuGKZWC3JI5OcFd/6NRDbjcpEAiuK8IA3MpIkqyRs20DGPSm82qNLJbmFwhOznJ+fZEOjIViDg7gXtzq0T8I6gbUfAJOipdjFBdOyverCEdnaNtZ9vXfhh28BIJbBWEAbgeS4mTNnLTkyq8tC0dnCG4gG42QRhAYYr3cQlI87PnLUq+nJA6O4BcEQfWhUZjs53cSmjICwY1GGIDbBb0eDu+Gw7ssYwPVxdMHfP2hjj/U8ZP/uXvKbpuCfNnonD9h6sxl8V5vCGsNDZvKyp3edUVWj0BwEyIMwO2GQQ9xsRAfK2cNFelk946Do/xPpZIzcXKy5B1DekrZInDVITBEduuEtxE+fYHgFkAYAHtHVwiJV+FKNMTFQOIVeYVfFQJDoHs/WblUrPQFglsGYQAElkiSrEGUmijvDq6lyv9nXYPcHNDr5JiBT105ZtCsLdRrJCZ+geAWRBgAgUAgsFNEQ1VBzUiLhyP/QEYK+PhDx7613kBeIBDYBrEDEFSfcpvITJZ7CQgEgpsakaohqB5p8aUnf5CP1y+UXxcIBDc1wgAIqseRf8pPH5UM8u5AIBDc1AgDIKgeGSmVvF7NqmSBQHDdEAZAUD18yu9PLL8ecH2eQyAQVBthAATVo2NfOeBbFiq1CAILBLcAwgAIqodvPTnbp6QRUKlh0BSRCioQ3AKINFBBzUiLlwO+Gcmy2yfiXjH5CwS3CMIACAQCgZ0iXEACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHaKMAACgUBgpwgDIBAIBHbK/wPaS3pSZTjOmwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "SWD_mix_samples = gauss_model2.sample(num_samples).detach().numpy()\n", + "\n", + "mixture_df = pd.DataFrame({'x': mixture_samples[:, 0], 'y': mixture_samples[:, 1]})\n", + "\n", + "# Create a dataframe for the SWD mixture samples\n", + "SWD_mix_df = pd.DataFrame({'x': SWD_mix_samples[:, 0], 'y': SWD_mix_samples[:, 1]})\n", + "\n", + "# Plot the probability contours\n", + "fig,ax = plt.subplots()\n", + "sns.kdeplot(ax=ax,data=mixture_df, x='x', y='y', fill=False, color=\"black\",alpha=0.75, levels=5)\n", + "sns.kdeplot(ax=ax,data=SWD_mix_df, x='x', y='y', fill=False, color=\"tomato\",alpha=0.75, levels=5)\n", + "\n", + "permuted_mix_samples = mixture_samples[torch.randperm(num_samples)]\n", + "\n", + "#ax.set_xlim(-1.5, 1.5)\n", + "#ax.set_ylim(-1.0, 1.0)\n", + "ax.scatter(permuted_mix_samples[:20, 0], permuted_mix_samples[:20, 1], color=\"black\",zorder=10)\n", + "ax.scatter(SWD_mix_samples[:20, 0], SWD_mix_samples[:20, 1], color=\"coral\",zorder=10)\n", + "ax.spines[['left', 'bottom']].set_visible(False)\n", + "ax.set_xticks([])\n", + "ax.set_yticks([])\n", + "ax.set_xlabel(\"\")\n", + "ax.set_ylabel(\"\")\n", + "fig.tight_layout()\n", + "#plt.savefig(\"MMD.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SWD_mean: [-0.00975406 0.00832371]\n", + "SWD_cov: [[ 0.44918722 -0.12206161]\n", + " [-0.12206161 0.57692784]]\n", + "uniform data mean: [-0.00267119 -0.0171042 ]\n", + "uniform data cov: [[0.34271112 0.00867608]\n", + " [0.00867608 0.34278804]]\n" + ] + } + ], + "source": [ + "print(\"SWD_mean: \",gauss_model.mean.detach().numpy())\n", + "print(\"SWD_cov: \",gauss_model.cov().detach().numpy())\n", + "print(\"uniform data mean: \",uniform_samples.mean(dim=0).numpy())\n", + "print(\"uniform data cov: \",uniform_samples.T.cov().numpy())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SWD_mean: [-0.26451185 0.01485614]\n", + "SWD_cov: [[0.82529294 0.0021447 ]\n", + " [0.0021447 0.038281 ]]\n", + "mixture data mean: [-0.1417305 0.01251941]\n", + "mixture data cov: [[0.53172207 0.00548582]\n", + " [0.00548582 0.03852978]]\n" + ] + } + ], + "source": [ + "print(\"SWD_mean: \",gauss_model2.mean.detach().numpy())\n", + "print(\"SWD_cov: \",gauss_model2.cov().detach().numpy())\n", + "print(\"mixture data mean: \",mixture_samples.mean(dim=0).numpy())\n", + "print(\"mixture data cov: \",mixture_samples.T.cov().numpy())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADOCklEQVR4nOydd3xb5b3/30fDsmR5j3jFcYaz9yYJBELYG0JJobSENB2M2xZaSsftr+sWKKW3dNBbQgilpRBW2DOMACE7znYSZ9nx3tvWPL8/Ho0jW7JlW7It+7xfrxMfHSnSsXXO832e7/h8JVmWZVRUVFRURhyawT4BFRUVFZXBQTUAKioqKiMU1QCoqKiojFBUA6CioqIyQlENgIqKisoIRTUAKioqKiMU1QCoqKiojFBUA6CioqIyQlENgIqKisoIRTUAKioqKiMU1QCoqKiojFBUA6CioqIyQlENgIqKisoIRTfYJ6AyzGlthtIiKC+C8nNQVQ6W9sE+KzDHQUIyJKZAUiokpkJymjimUedFKiMDSZWDVgkpDgecOwVnjkNRIVRX9P299FFi0+pAqwVJAvfl6nCAww52G9is3uP9RaeDpDRIzYC0DEjLFFu0KTTvr6IyhFANgEr/sdvhdAEcPwinj4HV0vP/MceJmXdCCiQkQVyiOBYTC6YYiDKARhvc58uy+ExLB7S3QXsrtLeI1UdLMzQ3QHMjNDVASxPIzt7/jvFJMCoL0rMhYzSMygZDdO/fR0VlCKEaAJW+IctQUQKHdsOxA927dcxxkDlGbOnZkJo+eDNqp0MYgsY6qK8RW1212Brrgl9JSJJYKWTkQKZrSx6luo9UIgrVAKj0DptVDPj5X0Jlqf/X6HQwZiKMnQhj8oSfXZIG9jz7gs0qDEF1udiqysTWEWTMQm/wrhAyciAjG8zxkfG7q4xIVAOgEhwd7bB/O+z9Atpauj6v00PedJg0A3InCt/9cECWxYqhshQqzkFlCZSXBB/IjokVRiEtS8QSUtNFoFk1CipDANUAqHSPpQP2fAZ7Pvfv28/KhZkLxeA/UnzisixcR2VFYis/J4LdwcYWdDpX9pEr6ygh2TcOotOH9/xVVFyoBkDFP3Y77P8SdnwsAqtKdHqYOhfmLhHZMirCfVRRIoxBxTkoKxbB575gNIHJDCZXQDzaBNFGsRmMIkDu3tyZUlFRwgUVFRV88FxlxKMaABVfZBlOHoFP3hJBUSWGaJi7VGwm8+CcXyTR1iKMQkWJiCVUl/cu0NxXdDqIihYGwm04ot1GJUa4pcwJEBcPsQkjZ+Wm0gXVAKh4qa2Ej9+As4W+x/VRMP8CWHCBOlj0F3egua4KaquhqQ4a6oRhaG0Ov3Hwh8nsLYhLzfDWQKi1D8Me1QCoiGKqHR/Dzk9FmqQbSQOzF8OSleqMfyBwOFy1C43Q1gptzeJnR7tww1navfUOVoswJjYLWK2+31uoSExxpbjmQs74yMnmUgka1QCMdIpPwQeviKCmktw8WHGtyG1XGfo4HF5jYO0QRsJiEUajox06Wl1GpUUUwzU3iq03hiM2QaT1jp8iro8oQ9h+HZWBQTUAIxVLB2x9Gw7s9D0emwAXXwsTpqmzveGOLAtj4C6Iq60UWk3VQdQ+aHXCCEyaKa4V1TUYkagGYCRy9gS897JvlookwbxlsPTSwZ3ZdbQJN0hHuzBSDof3/PR6kQUTbRSBzOFSazDUkGURkygvFkJ+xaeEcQiEVgfjJsP0+TB2ktBtUokIVAMwkrB0wKdvw8FOs/7UDLj8ZlGwNFA4HVBd6cqjLxIB0Yaa4KtuAYwxEJcgfNPJoyBllCi2ik9SVy+hpqUZigvhVIEQ+rN0+H+dyQxT58DMRUJdVWVIoxqAkULxSXjvJWis9x7TaOC8lbDoooGZtXW0w5ljcPJo94NIf4k2CrG2zDGQnStkGSLEReFwOGhubqalpcWztba20tbWRmtrK+3t7XR0dHg2i8WC1WrFZrNhs9mw2+04HA5kWcbp9BamSZKERqNBq9Wi0+nQ6XRERUURFRWFwWAgOjoao9Ho2WJiYoiJicFsNhMbG0tcXBxxcXEYDAaX4utpIf534mBgo509VhiCSTPU4rYhimoAhjs2K2x9R2j3KBmVJWb9aZkh/Tj35aS8rKTKUqT9O+BYvigw6wmN1pu/7jZMThnsVq9rqDdIkjAIYyZAzgTIGjMg7iOn00lTUxONjY00NDTQ2NjoszU1NXmOu1/X1tbW8xsPIgaDgfj4eBITE0lISCA5MYG8KIk8SyMZLXVEaTXo9Hqi9Ho0bmE8owmmL4BZi8RqTWXIoBqA4cy502LW31DrPSZpcC6+iNbpi2hpb/fMMJVbW1ubZ2tvb/eZdVosFjo6OrBarZ7Nbrd7Zp7KWecUg8QlsVpyo4Q7RkLMRN2bLGmoQkeFJopaXTStBhPthhjkaCPRRqNnVhodHe07QzUYiNXImGUHZpsFY3szhpZGoprq0DY1IGkkunUAaXVidpqbJ3SLUjP8uoxkWcZqtXr+Bu3t7T5/p+bmZp+tqanJszU0NNDc3MxIur2MEsw1ajgvRkOmXkKr1aJ3GQN9VBR6vZ72UaOxT1+AeeZ80tLT0enUnlSDiWoAIgi73U57e7uPO0A5YLv3O5qbyCsrZGxjBU6HA4fTicPuoMIu8596OydbwuR6cTFaL3FdnIZxhq7SyG1OmUMdMkc6nBy3yNhCfPVFSzA6SsM4o47x0Vpy9WDUeI2OxxRJgOuzW5E45dBwyq7hhBXqLDasVisWSxB9DcKERqPBbDZ73DAmkwmTyeQxgm6jaDAYiHINrnq9Hp1Oh1arRetaOUmS5DFCTqfTY6jdLiOLxYLFYvEx8u7ryO2Cam5upqOjd9fMaL3EkhgNc40a9H6scYNDZkebTKExkdj0TDIyMsjMzCQrK4usrCxGjx5NTExMv/+OKt2jGoBBwGq1Ul9fT11dHfX19T5ugKampi7+X/cNabVae3zviQaJr8RrSdJ57zoZ+KjZwfvNTsJQLuQhWoKr4rQsidF0mYGftcp80ergQLsc1nPwR6YO8gwa8gwS46MkDJruA8SVNpkTFieFVplTFpn2ft4hOp2O+Ph44uPjSUhI8OzHxcV59pXHYmNjMRqNSEMokG2z2XzcWfX19Z5r130d19bWUldXR11dncfoREsw36RhqUnDKD+WwCnDwQ4nX7Y6OWn1/UMnJSUxZswYxowZw7hx4xg3bhzjx48nOjoy4jmRgGoAwoDT6aSyspLi4mJKS0spLS2loqKCyspKqquraWpqCvlnmiS4Pl7LfJPvrLvCJvN8g4NzAabaJpPJM9N0b+7ZpnLGaTQaMRgMni06Otpn5mmsPEf89g/QtrcC4J5r27JzaZ97PraUDBwOBw6HA7vd7pmBut1I7mCm28Wk3JQuGOXmfq6jowOHIzizogFyoyQmGSQmGTSMjurBXeT6G562ypSip1pvxGoyExNjxmwWm3vQVv5MSEjwbENtMA83DoeD+vp6ampqqKqqEj8rK5FKzzK6uphsSxMOm63L/6u2y+xodbKr3UlrAGFVSZIYPXo0kydPZsqUKUybNo3x48d74w0qvUI1AP3Ebrdz8uRJjh07xokTJzh58iRFRUVBzdb7g8FgwGw2YzRGM8+o4WJNOzGSjFarRePaijMnUD1+BtGuwcpkMhEbG+vjVuj3jeNwwBfvwa6tvseT02DFdcLPPgDY7Xa/8Ql3jMJtfJxOp0+cQme3EVNTRmxdBeaaMvTtrWgkCUmjQSNp0GgkNBotGq1iVWOMgfTRkJ7l0vnPUFNPe0NLE47927Hs/hx7fa34nixWLFbhjmrrsLC/zc52P6sCf5hMJmbOnMncuXNZuHAhOTk5I8rg9gfVAPQSu91OQUEBe/bsYf/+/RQUFGDzM5sJhtjYWJKSkjyuAXeqXWxsrGd2aTKZPLNy90+j0Sh8vHXV8OGrolBHSXo2XLoKRoU2w6cLrc3wxr+h5Iz3mEYLSy+BBcsjryBIlkXAvPiUSJstPuW/+Y0/dHph9FJGiUyXxFTxMz5JZDOpdMXpgNPHRaOhsyc8QngywuVk6eigQdZwUDLyWW0rB0+fDSoWkZGRwdKlS7nwwguZOnWqagy6QTUAQWCxWNi+fTuff/45O3bsCCpVT5Ik0tLSyM7OJisri4yMDNLT00lNTSU1NZWkpKS+Z0DYrEK4bden4FCkVer0sOwymLc0/Jrw1eXwykbfauLkNLjmtuHTI8Dd+KXkDJSeFUVrddW9fx+DEeIThcxGXALExovGL+4tJla8ZiQPVI11cHCX6DHd2tz1eUmDPG4SVeljOdxqo+D4cY4cOUJhYWG37r9Ro0Zx2WWXccUVV5Cenh7GXyAyUQ1AAGRZ5tChQ7z99tt89tln3c489Ho9EydOZOLEieTl5TF+/HjGjBkjimbc1JbBvi3QUA0JqTB3JST3YYZ++hhsea2rVv/4KXDxdWLGGW7OnoDX/iXEx9xMmwuX3Dj85Rk62rwa/5WlYuv8XfQFrU5U0cbE+m7mWNFX2G00TObhbSgcDlFtfHCnz6rAB3MczFgAMxbQYTBx+PBh9u3bx549eygsLOz6esSEbMmSJdxyyy3MmDEjzL9E5KAagE7YbDa2bNnCiy++yNmzZ/2+RqfTeXyOs2fPZtKkSd3P5vM/gjee8G0ZKGng2rtgzsXBnVhjHXzyJhQe8T1ujoOLr4e8ARJvO7IP3nsR3H50SYILrxY6QsN5YOoOqwVqq4ReTl212OprhDvJ3jf3YEC0OrGKiE+EhBRITBbuppRRoqXkcPoOmhrg8B6xKmiq7/q8JAl10tmLxQRIo6WmpoYvv/ySrVu3kp+f77cOY+bMmaxbt47p06eH/3cY4qgGwIXD4eDdd9/l2Wefpbq66zLfZDKxbNkyzj//fObPnx98KlptGfz1Xv/9YiUN3POX7lcCDgfs3grbP/IdTDQamHc+nHfxwMkc7P1CNIxxo9PDtV8TN59KV2RZxBAa68Rg1tQgXGbNjUKFs6VRuDucAVJeekuUAVLSRQwoM0dIYAyH4LQsQ1GhUK49ecT/38scB7MWi/7U5jgAamtr+fDDD3nzzTcpKyvr8l/OP/987rnnHtLSRq5mkWoAgPz8fB5//HGKioq6PDd37lyuvvpqlixZ4uvSCZYPn4VtmwM/v+xGWHm7/+eKT8GWzWJ2qSQrFy65YeB87bIsGsZ88b73mMkMN66BjNEDcw7DFVkWbqWWZlcDmBax39rsbQ7T0gTNTb4ut2Axx8Ho8aKhy9iJIg4RybS1wOG9wkXUuYcFiInRxBliRZo5BhDu3F27dvGf//yHgwcP+rzcaDRy1113cdVVV43IYPGINgBtbW088cQTvP322z7HdTodl19+OTfffDM5OTn9+5CXHoMjXwR+fvoyWHW/77H2VqHaeXiP73GTGS68SjRkH6iLVZbhs3dFwNlNXCLc/E3RQlBl4LB0CFdIY71YVbh1/Ouq/btI/JGaIVZsE2cIHahIHfRkWUid7N8u3KL+Gttk5MD882HidE9SxP79+/nHP/7BsWPHfF56wQUX8OMf/xiTaWS1wRyxBuD06dP84he/oLS01HNMkiQuv/xy7rjjjtAtC3uzApBlOLYfPn7TN/1QksTy9vzLBrZPqyzDR6/7CsklpsBXviX80CpDB0sH1FSI5vPlxVB+rueMpfgkodQ5eXZkG4PWZpFBdGCHcK91JiFZpCVPnwc6PbIs8/777/PEE0/Q3OzNOBo7diyPPPIIqakjZ2IzIg3Azp07+eUvf+mT2ZOXl8d9993H5MmTQ/thwcYAmhtFa8bTvjMTRmXBJTdS2NLBhg0bOHv2LLm5uaxdu5a8vDAWWTkdomnMkb3eY6npYvBX+wNHBm0two147rTIqFGKAnYmKQ2mzhary4HIJAsHTgecLIC9n/vWpriJiRXS57MWgU5PbW0tDz/8MHv2eFfa6enp/OlPf2LUqJHRCnXEGYDPP/+cX/3qV57cYUmSuP3227n99tvDp0wYMAvobph9kRhkP37DV+ZYkdO/8Z/Psm7dOp98Z61Wy/r161mzZk3oz9dug7f+45txlJEDq+4c2BWISuhw1zScKoDCw6KuIRCjx8G0ecJNFCF9FLpQUQJ7PoNjB7tOvsxxsPhimLkQpyTx1FNP8fzzz3uezs7O5m9/+xtxcXEDfNIDz4gyAPn5+TzwwAPYXZr0RqOR//f//h+LFi0K/4fXlglD0FAFCWki/dMYB++/LBqkKMnNEzn1CckUFhYyZcoUv8UuWq2WgoKC0K4EOtrhtX+KWaOb0ePghjsidzBQ6UpzI5w4BMcOiAI3f+h0ot/v1LlCNjvSKrtBrHp2fyZSSR2delEkJIuY2oRpvPzKK/ztb3/zPDVv3jx+//vfD3uNoRFjACorK1m3bp3H5xcbG8sf/vAHJk6cODgndOY4vPuib9VjlAEuukYUubj8sQ8++CCPPPJIwLd58MEHeeihh0JzTk0N8PIG3/6v46eI6t7hXuDVBwoLCwfWLRcuGmqhYL9YifrLrAHh9ps8SxiD9OzIixe0NMHOT2D/jq4B49Hj4eJr+dd7W3j66ac9h7/97W+zevXqAT7RgWVEGABZlvn+97/vSQEzGAz87//+L1OmDEL+usMhsmr2fOZ7fEye6NDVKbi6evVqNm3aFPDtVq9e7bN87TPl58TMv0WhVDptHly2KjJnfmFm48aNA+uWGwhkWbhODu8RyQiBWj3GJwljMGmWEMKLJGPQ3ABffgSHdvlWGUsa5Pnn8z+f7uKjreLeNBgM/POf/xzW8YAR0Y7n3Xff9cn/ve+++wZn8G+sgzf/I7I03Gh1sPxKmLvU742Um5vb7Vv29HxQFOTDuy/5LpEXrxAxiEi6uQeIwsLCLoM/iGLCdevWsWzZsshcCUiSqOvIGA0rroXTBaLy+1SB76y5sU7Mpnd+IrLCJs+CSTNFEdpQv15iE+Cym4Re1qfviB7VALITafdWfpwWS11KPPk1jVgsFjZu3MiDDz44qKccTob9CsBms3HrrbdSUyOWtsuXL+eXv/zlwJ/IqQJ4+wWwKGZVyaPgmlu7LegKawzA32pEoxHSErMX9+09B5jBcMMMqFtuKNDRJuIFR/aJ4HGgISMxRQSO86ZHjpvIj7ZWbW0tzxac5a0mJ2g0PP/888O2WnjYrwA++ugjz+Cv0+m46667BvYEnE7Y9oGopFUyc6GYZfXgW8/Ly2P9+vV+3Q1PPfVU3we7pgZ4899QpliNRBvhuttF4/QIwJ8b5g9/+EPY3TCBNKKCfT7iiDbBzEVia26E4wfh+AHfawdE/MC9MohNEAVYk2aKityhagzGTYY198GXW0SwWHaSlJTEpYmV5Bks/LPOznvvvcfXv/71wT7TsDDsDcBbb73l2b/88ssH1pK3tcLb/4GzCoVCnV4sQafODfpt1qxZw7Jly3j66ac9M90777yz74P/8YOi5kDp401Jhxu+ITIjIoDBdMMMiFtuqBIbL6pr558vKpLdmUQV53xf19wgtKP2fiHSLvNcxiB77NAzBvoo4YadNBPeeQGptorklGSs5eXcn6pjy9YPYZgagGHtAqqpqeHmm2/2PH7yyScHzjdbUQKv/8u3RD8pVcywUwZJl7yjXSx3C/J9j09fACuvi6hMn165YWRZKHa2NEJri/g7dLSCxSJ6K9htIv4hy173hkYrgt9aLegN4m9jMEC0icKySqZcePHApeaGkZC50JoaRH3BiUPdu4nMcSJmMGWOKHIcasbAZoVP36Zj56cUFBQAokFN3je/T+yFVwy98+0nw3oFsG/fPs9+eno6EyYMkGvj0G74cLNvUHXiDJHlM1i59CePiu5hyiwffRSsvB6mzx+cc+oHPbphdm6DV5+BhhoxUw2hLHMesP7GS1j3yvs4nN6BTqvR8NRP7iPP2S4a5iQkD2mjGlIXWlyCEGCbt0yI2Z08DMcPiXoSZSFWSxPs+VxsyaPEtTdtrqjSHQroo+CSGzCMHof08M+QbVYkwL7lNXDahNt2GBmBYW0A3BYcYM6cOeFX+7PbRUXvgR3eY5IEF1whtEgG48JpaRJ6PicO+R7PHANX3iICdxFIj24YrHDqaLev6Q9rFsxgWW42T+85xNm6RnKT4rlz/gzy4hBtMkF83wnJIsifliH6CGeMHhLV1GF1oZljYfZ5YmtrFRLOxw9A0SlfY1BbCVvfhs/fE/0sZi8WOflDYICVJs9i25hZTD2+iwStRHtbG4n7toHVKly4w6RAbFgbAKW8c9iX5E0NwuWj9IUaY+Da2wYnqOp0QP52EYBWSky4e/YuvDDyLmKbVWjanD7G2hg7f9BIPjNwN1qNxLcXTAVrjZi1afSgiwNdtJhpRptcW7SIybg3SfIOPk6nyJJy2MBmEy4ka4dwH7W3QUcbeamJPHTFBYHP1y2/UF/ja4ATUyBrLGSNEVXWCckDPuht2LAhYCtFh8PB008/HZpMJlOMSHiYuVBoEx0/JFyQSikKp8MVWD4ojOXiFWLFPMjXZ8LEqfzxiy9Zl6Qj3uKS4j68G2QHXHHLkDBU/WVYG4Dy8nLPflZWVsjet4vf9LIV5B35UgwMbtKz4bqvD45q5rnT8NFrUF3hezwrV8xekiOosMXSIXzLxw6KRu0ut1petIb1N13mxw0j8ek9N5NrbACb67gDsDfCNd8VrThDgdMhZretzSIzpqleTAIaaoUKZ0NtV+kBN26jcHi3eByXCGMmCLmF3IkD0kR+UDKZTGaYc57Y6mtE5fGh3b5uyepyePM5YSQXr4Cpc8Lf3zoAmZmZtDjhiVo7P4qXGed+4sg+MYG46JqINwLD2gDU13sDsCkpoXF1+PWbPvp71t90GWsWuHqNzlwEF18rZpUDSWMdbH1HzKSUGKLhgiuFCmIkXLB2u6sIaS+cORFwIF2zYAbLZs3g6YMnOdvUSu6kSXz7a6vJffuxrkFI2Qlv/h3GTO1bL+bOaLTepu6j/EwunE5hBKrLhSGuKBGrw/bWrq9tqhcD4aHdQiQwawyMnyrSKMOUlTXomUyJKaLQcMlKOHVM6PqfPeF9vr5GSKXs/kzEqUaPC/hW4SI5WfztLTI8Wefg4pzxQl0VXNlN8bBw+YCfVygZtllAdrudSy65xPN406ZN/U4B7bYoSyNR8ONvkXfrNwc+qGrpEHUGe7/oOlhOXwDLr4gMCefKMtHpqTsZAkM0jJ0k8rdzxnftcNWfDmzhRpaFkS4tgtIzQrK4c7e3zqSkixTKyTNDmj024CKDwVBdLmoIjh3oasCnzYMV1wxo/KSoqIg77rgDEDVEH771Jmz6B1S6eohIkmiMNCYyMr78MWxXABa3z85F0D18u6Fbv6lT5ukWPQ8N5ODvcAhNk20f+jaQATErXXm9py3ekMXSAUfzxe/hvrE6YzQJn/CkmZA9rnttooYemqA09DDghhN3UDghWWS+gHB/FJ2EohNitdP5e6ypENv2LZCcJv4Gk2eL/X4QtgLD/pCaAVffCksvFYVZR71ZfBzZK1YI19w2YKsBZXcwu92OXatDt2ot/PsvIrNMloW0yze+L+ojIpBhawDcks9uQqH1f/b06e6frw6gpBhqZFmUsH/6VteuT+Y4kXU0kG0j+0JVmQhSF+SL4G5ndHox6E+dI4LowQrSJfTQzSlhiJX0m+OEMZg2V7iNKkpE9tLJo2LgV1JbJQbGL7eIwXLKbJFP38c4U8gLDENFYgpctRrmLBE9sd0Tg9ZmePFJkYo5ZwkQXimQzpNGi8WCLsYsYnv/+ZtwVba3wvuvwE1rhvb9FoBhawA60+8U0Koyclu6H+AHpAK0okT4+YtP+h7X6YU/cuGFQzf33GYV2TD7dwTWoM/IEbGKvjYjmbsSvnw9cAe2ORf3/j0HCo0GMnPEdv7lwg9eeFi4RDqvjqrLxfbZuyK4P2WOWB2YYnr1kXl5eUNXtygzB752j6gZ+Px9EXh3OkUxY3MjG09VhFUKRK/3jeHZbK5aklFZsOI6UU0PQlDu8B4h4x5hDNsYQFNTE9ddd53n8dtvv923hs9OpxBL+/x9CitrmPLYBv+ph+H2mzY3wufvigwEJZIkYg5LLx26y9CGWjHoH9rl37cfbRQ+3hkLRdvJflL53n9I2f4SWqXNd3dgm7Oi3+8/KDTUelMlA7nKNBqRRTR1jmjkMlQnAn2hrBhef9aTMVRYXc+Ux57G4exq6EN1L9psNi699FLP45dfftkTGEaW4ZWNXjVRkxm++UDENU0atiuAzp18Avnuu6WpAd7ZBOdE5D8vNdGVeviBz4UXVr+pzQo7P4XdW7tWs+ZMEIGxbtRE+0O/ltcOh1BAPbBd+Lj9zTPSR4uUwEkzQzZYubO0xsZHc+ecMeTGmyhuamfCzd/mpkgd/EHEDRZdJLa6arEqOLrPt4GL0ylcg6ePCfmKia5uXjkTBj2nvt9k5sDt/wUvPwXVFWzYfdDv4A+hq2Po7DVwKj9PkuCyG+GpR8V92dYiMpaWXUokMWxXAB0dHVxxxRWex5s3byYhISG4/yzLwje95TXfIipzHFxxC4U2wu83dZ/D1nd886RBzJKXXyVme2HyO/a54UljvcjkObTbt9uZG51eDEqzFolaiRAyJDNbwoksQ2WJ6OZ17EDX68SNOU4EjqfOjbwGLp1paYL/PMHqJ/7JpgPHAr4sFI2SHA4HK1d660b8ZhJ+8T5s/0jsG4zwnZ+Kzn4RgroC6IylQ2jmFOz3PT5pJlx6I0SbyIPw+k3Lz8HHr3eV2zWZRe70jAVhndH1WibAbhfl/od2Q1Gh/9l+UqqQBpg+P2zL5AGrbh0qSJJYRaWPFhOCc6fg6H44cVBULrtpaRJuzD2ficnDtPnCTTRU9Hd6gzkOvrKO3Bff7PZloYjHBRU3XLBcpF9bLaLXx6HdQg8pQlANgJLSs/D282IW6ybKACtvEDdMuGdOba1CF6VzuzqtTsjvLrpoQHyMQQ+klaUi+HV0n3/fvkYLk2aIwrjR48L+9xtxOv1KNBqRjz4mTyi7nioQ6bVnjgnXkJvqCpE99tk7ot/z9AUwbtKgVdv2iYRk1v7X9/nDJ9sDxuPuvPPOgTkXQ7SQudjzuXisGoChgbZT2qAzgL8QEIPt7s9ERoUyeyR7LFy5GuITw3SWis8/uEvclJ0H0rzpcOFVA6rT3+NAuncXPPPHrlITbhKShYtn+vwBLUAb9OrWoYI+SkguT54lJhXHXfEC5YrS6YTCI2IzxwkjPWuR2I8A8q5Zxfo1q1m38QVfKZAQxuOC9o7PWuw1ANXlIl23n3UaA8WwNQCdl28Bv0xLB7z3kq9Yl6SBpSth0YrwB88qy2DLq13dPclpopBrEITkehxI7a1dB3+dXsz2ZywctKYfa9eu5Q9/+EPAGMCAzQqHEqYYkTM/Z4kIHh/eI4qqlPGClib48kPY8ZFwdc4/X7iVhjKSxJr7fsiypBihyNrQTO4lV3PnN78ZsjhP5zEjoEsoKRXSMkVtC4hVl2oABh9Jkjxfot8VQEOtSOWqU1SHxiaIPr1ZueE9ObtNFPTs2uq76ogyCLXOOUuDL34KMd0OpBqJO+fP8B7IzBExiUmzBj0FLpzVrYPRezjkJKWKIsFll4kudYd2iYIzd8N3p1PEvgr2C1nmpZcMigZP0EycQV5GqleRdfW3w3q+3cYEcvO8BqC0CCKkxcawNgAajcYzEHRZAZSfg1c3+pbe5+bBVbf2upim15ScEauO+k6FZZNnCYXBwVqGWy1w6ih5xw+yftXlrHvpnS5Km0+tupy8vAmi8GjqHDGoDCHCUd06WL2Hw4ZGI/z+4yaJTK1Du0WdRnOD9zXnTsELp0RMYdllwtAPNXR6yMz1FkWWF4fUAHSeNHZrADJzga1iv7IkZOcQbkaMAfCZzZ4thM3P+ObVL7pIXOjhdPnY7SJtbM9nvkHe+CSRYZQ7MXyfHQhLh1DePH5ILF1dEhpr5k1lWU6Gt+FJWgp33vpV8i69SlTrDuFUwlBWtw5m7+EBISZWyC4vXC7iAXs+83VHFhWKbcocUXMy1EQFU0Z5DYAyeSMEdDYAneOKPihdPk2NYlUVAYH1YW0AtFqtp3zbcwMXFcLmjZ6BDo1GtGqcNi+8J1NdLjKMlL5zSRIZA8suG9iqTddMn+MH4fTxgHLLeaMzeejiy4VfOGdcRFzQoWbEpJZqtOJ7njRT9JP44n2xUnVT4MoouvBqEdwfKhMApRpsS2NI37qzAeicWeh7HooqfNkpgu8REFAf1gZAr9fT0SEKuWw2m0jzfPUZ7+Cvj4LrvyFcP+FClkWLyI/f9B1ok9Lgiq8M3NLabhcVoscPCL9voB65BqNXfrg3ImzDlBGZWjp6HKz+jpgsffauV3qio124Lk8eEdlxYY75BBV3UYo8OrrJ9OsDnQ1/tyuAzr0/QtiDOpwMawMQFeWdVTvqa2DLR94vRqeHm+4Mb5DLZhVKgQX5vsfnLhXBuHDP+mVZiK4d2ScG/kAa+9GuQX/iTNGZaoQP+kpGbGqpJAmXZM4E0azl8/e8xWUnj8JzfxWTpzDFgIZC3KXXisKS5HXtdpd2PoQY1gYgJiaG2tpa9EDKZ2+B5LqYNFoh3xrOwb+hFjb/01fS12QWjdjHTgrf54KQqD2yV9QWBGo4YoiGvBnqTL8HRnxqqUYjJix508Rk5sxxcby2Cv79V1i1NuSr2F7FXZRSLYbQSjB41D9ddGsArBbfuN4ANq7pDxGuENU9sbGi1P36eC26eoVu/mU3hTe/vvSsuDmUg3/2WNE4IpyDf2WZaKP3xG/hk7e6Dv46vdCQv+EOuOsXcMXN4nzUwT8g7tTSzsv/QW2cMhjEJogV82KFoJ6lHV7eIK67EBJM3MWDssVmiAddq9Xbp0Kj0XTvAlLWVUjSgPR1DgXDegWQkJDA9GiJ82I02NzLufnnh7dl47ED8PYL3txqEHohF1weniCqLAu1zZ0fe/uVdiZnvAhy500f9Fz9/jIY+fhDtnHKQCNJok9Baob3Gre0w0vrhW5/iKrVexV3aVJk/vSxMU4glAZA6U72i3KylZAcMeqrw9oApCclckm8GHRtVqto5HDBleH7wIO7RJMI91JQo4XLV/UqwyjoAU6WRZBu24f+m6uYzKJAa+bCAZWRCCeD6Rce0o1TBprJs8S1/ca/RcZLeyu89k+47Z6QxLV6FXdpqPXux4VWskXZVtbQk3up4px3P4S9m8PNsDYAix3NaF1dQdqtNtFvNFzujvzton2dm2ijcLVkjw36LYIe4Gor4aM3hAHoTPpomL9MBHSHkWtn2OfjRxoTpwsX4jubxOPqCpExdPF13f+/IAg67iLLvsWUIQ5IuzMIIYie4srVd7hVBELI8DUADbWMb6rgrOvhx22QF6ILpMssffl55B3e5n2BOQ5u/mavZgJBDXA5o2HbB7Dvy64tD8fkwXkXD5oOT7iJ5Hz8YSEj4Y9p80SL0n2uaz//S+FeHZXVr7cNWtKjsc6b0g0hNwDt7d6sOaOxG59+W4vvCiBnfEjPI5wMXwPw+XsYXX67OrvMqxV1rLFae/bl9YDfWfqjEutvuow1C2aIYNnqb/fa7dLjAPenx3hoRo5vuT6Ii23ZZRE16+gLYcvHl2Xhx25qEK6M9jaRWeKwe+M4uijh2oiOBnOCKPoxmoIytEMhnTGsLL9KrERrq8Tf8qPX4avf7fckJKi4S02ldz8+KeRp1W1tbZ79btvJHj/kdfvGJghhuAhheBqA6go4dgCDwYAkSbzbbMfqlCkqKuq3IJjfWbpTZt0r77Nsch55a9f1yefe4wD35VbIvcZ7ID4JVlwrNN2H2oy/tgz2bYGGakhIFY3ak/t3U4QkH7+lWei0uBuq11aJWaSyeUqw6A2iu1ZqhuhsNnpcl+99RLitdDqhX/XyBvG49KzQEQpBll2PcRdlll0Y/O5BG4Aje737k2YMvfuxG4anAdghWrRJkkRrtJm97XUAnDx5sl83XLezdKfM0/VOHurjMrTHAS7RVWqu0YhUvEUXda0+HArkfwSv/w1Q5ERvew2uuxvmXNznt+11Pr7bP1x0EkpOC6GwUGrF2CxisCs96z0WnwTjJotU28wxEe226hVjJwkXpDsmtfuzgZExry737qeMCvnbt7Z6U0xjYgIIRFaWiWvLzdQwS8qEmOFnABpqhcaNi+LsiXBqBwCnTgVIkwySHmfpNbXdPt8dQUkwJ6aIQHaIe+mGjNqyroM/iMev/w1ypvR5JRCUX9jSIQb8UwVw9njgHrn+0OlF5pTRJPLJNVrQasSvYreJqu72VmhuDFzm31gn/OD5X0J8Emf37Oj2I4eVjMSCC7wG4Mxx4apU6vSEA6ULKDX0K4CgDMA+RewvfTSMihz3DwxHA7Bvm9cfl5CMPnccbBU34pkzZ7r5jz0TTlmAgAOcW4L5govgslUDKxrXW7a9RtfB340MX74O13y3z2/v1y/81VvIky3w0lMiE8Ppf8btwRwnfLSpGWLQSEgRHd+MMcEt3d0xg9oqqCoXGvAlZ3x7SgA01pHrCCC94WJYyUjkThQroMY68Tc6fkjU3IQLh0M0uHETBhdQS4tXKt6vAWhpFp3W3MxdEvJzCDfDywBYLULb3M3888l1eAfMoiI/+fK9INyyAGvWrGHZnNk8/ZMfcLa8ktykeO6cP4O8a1fB0ktD51sMg48egOKC7p8vOtrvj8jLy+OhX/4/KDwsNJY+eN6nBL+wup4Nuw9ytr6J3MQ41l62grwFi0V2VEZO/4uFJEmsELJyfQPvzQ1i5luwX6hpyjJrF8zkD5/tHvy+tQOBJIn6gJ2fiMenjobXADTUeo29pIHE0GsSKQ2A2exHBnvv595zMMfB5NkhP4dwM7wMwNF93oBelAGmzSOrts7zdG1tLTabDb2+b77zvLw81v/0h6z7n9+Hpw+pzUrega08tGKh99jKG2DOef17XyX5H8EbT/imkX75Olx7V7989IIge6j26a1loft+aLcY/O1dJaw37j7Eulfe9/lu/vD5XpFxE4L89G6JTRB9dWcuEsbgyD7y9u9g/U2XdTknrVbDU+vXR34AuDPjJnsNQFmx+I56ElDrK8rZf3xiWD6nWwPQ0SZE8tzMWxaRdTfDxwDIssiPdzN9PkQZSElJ8XlZfX09aWl97Ndps7ImLZpl968VjVJkHbmLzw+dLMCW17xt5UBor4dy8K8t6zr4g3j8xhP98tEDkDMVakoDPz9mau/fs6VJDPqHdgUO4prjKDQmse7VP3aZbQ9Kxk1sAixeQWFCJsd3H+eyqROpa2oi2WRkRkaqWNXFOoULwRw7MOc0EKSPFrEUu01sVWXhkztXanuFSZG0WwOw5wvvZDPaKBrDRyDDxwCUnBEVsm7mCH+cXq8nOjraU9XX0tLSdwNwcBe0t5GXmshD166Ebz0Yug5JBftFw24385aJwFoo2bel6+DvRnaK1cHK2/v+/kuvh/wtvqqIbiQJlvRiFl5WBHu/gBOH/EvrRhtFH+IpsyF7LBt+8pMhlXHjL/9fq5G4acZE8lIThbvomT/CtbcNTMYMhM/150anE754d1FUTUX4DECDd2VPYkrg1/UDpQFwC0sCItlg3xfex/POj1iNreFjAA4oMi5y83xmBUoVv0CDRI/Ism/Ef9ai0A3+lg74+A3v48wxosAm1DRU9/B8AOnoYEnOhGvv7rrKkDTieE+DjdPhakv4uX99I0kSKYczFor6B8X3OpQat3RfL/IBy3KzhRFobxXB64HoSBeE6y8kFctKAxBIijwU+IjAhVYDyE3AIPCBHV4Z6iiDkMuOUIaHAWhrFVkHbmZ53SayLPdO1CkQRYVe4SlJgrnL+vY+/vhyi7c5vU4PV381PP7EhB6Wygl9XBkpmXOxcCXlfyQMSkKaONbd4G+3i2KanZ+ILJLOxMYL3/qMBb6t9xQMpcYt3deLOHm6xsJDGTrxezudQk+nvRXmh3jF5yYI19/GN94PTcVyvGIwDnGLRh+aFe8dYhVQN35dQHa7mKC4mbMkYqSf/TE8DMDRvd5ofEysmB26aG5u9unsk5CQ0LfPULpnxk32vdD7Q1uLyBt3s+gikU4XDuauFLM+f24gSROCILCL5MzgXEl2u/Dv7/ykq8QFiCyb+RfAhCk9SmkPpcYtPa5G2m2w+rvw6kav4f/kLdGOc8aC0J9QD66/uo9eZt26+0JTsazsg9ubOozeojQuYei9a7fbfSaOHgNQkA+tzWJfqxOu2ggmMkSru0OWhW/ezfT5PrNnZeqnyWTy9eUFi90uiouUnxEq9n3p7RVsMofe768kOVMs+aVOX3uwLppQIcvCoD71e6Ggqhz8JY3w699+L9x6l1CdDKKPwlBq3BLUaiRjNNx2t6+xf/9l0bc51PTg+is+tCf4Biw9ofSF26yBX9cfnA7f9qahcsUqUBaBgcsAyLJI/XQzbZ6YcEYwkb8CKD/n62vsNIM6cuSIZ3/ChAlIfcmlLzntjfjr9KHr6uV0wsGd3sfzloW/0KsvLppQUnwSPn3b22jcjUYLM+b3awU0VBq3BL0aSUiGr6yD/zwhZpWyDO+8AHfcF9pZbQ+uv7MNbd0/35v4ifL6DZcB6Nzb2higSrcfKHWAJEkSaqClZ4XOmJv5kT37h+FgAA4pZv+jx3XJCNi1y/v8zJkz+/YZSq3vnPGhG6SLT3mXkxqN8HMPBMG6aEJJc4PoYVB42Pe4Riua1iy6KCS+3KHQuCVoOWMQRmDVWnjubyJ1sr1NtPVctTZ0hX89uP4Kzd1n6vQufjIAQmjKPsCSJAKxIUZpAIxGo5g4KidrOeMhOfT6QwNNZBsAqwUKDngfd5r9NzQ0cOCA9/nFi/uYq1uikJAIZcqecjDMnQim0M9kBh1Zhv074LN3uqpuTp4lWgwOk45lSnq1GknLFMquH7wiHp89IVyOE/pQN+EPt+svQHbW9ebR/OTRP4cmfuJjZMJkDBStGtFHhUV9U+kCMhqNYjXjk2gSmXn/nYlsA3DikFBlBOF7nDjD5+mPP/4YpyuHPDk5malT+3BDybJvcVYo85qLT3r386aF7n2HCo318PbzvoqZINJcL7pa/BzG9Go1MnOhuJ7PnhCPP38vtFLf3bj+8iD4FUtPKN0+yt4boaxBcCjE+MKkiNulGcyZE14RwChD6IzzIBPZBkCpwz15VhfXzHvvvefZX7lyZd/8/w213otakoSIWChoa/EtZx+oYqCB4sRheO8lIZzmJtooqpunz48ozfQBQZJg+ZVeA1BTIVKPcyeG7jO6cf2FLH6idM+4XTOhlh9RrlTCJL+gdAHFxMTAScVqffyUoSnF3gci1wA0NwrRLTedCmkKCgooLPT2zL3iiiv69jnKptPm+ND5G5WrCpN5+LhBnE7Y+rZvrjTApJmw4rrhJX0QatIyxeDizjg7mh9aA9ADIYmftDV7903m8MiPKCvNO2e0hQjlCsDkXgG4mTB8VuuRmwZ6/ID3QohP6uJO2LzZ26B9xowZjBnTR3eDsjApIYT5+VWKZhYR1EKuW2xWeOPfvoO/3gBXrYZrv6YO/sEwda53/9RR/7IaQ5kWhQGIiQ1OfqQ/hOnvo1wBZEVpvfUakiSUBoYJkbsCOKFYkk2e5eNSaGho4JNPPvE8vuGGG/r+Oa3easCQpuYpDUuYxKwGFEuHaAuolHBIzRAD/3D4/QYK5Yy/w9WrOFRFhwOBUrAvLgHOFAZ8KdA3+RGNYt4ayLj0E+UKIEdjB1zu5VFZQg58mBCZK4C2Ft+BZpJveuf777/vqf5NSkri/PP7oUverigICWXBiVLLJJJucH/YrLD5Gd/vZPwUUeikDv69I9roq22jFDiMBBpqvPvxSeGRH1EWBvZV26sHlCuATFkRdM4eG5bPGywicwVw5oR36efu8ORClmWf4O8VV1yBrj9a4VZlUCuEin9tCsMSydWEsgxv/cc3HjNzEVxyfVAVvEONkAii9RdTjHeC0JeG9YOF3e6r0pmUBklhkB9R9vPw0xciFChXAKlOC+BK0c4Ik7rpIBGhBuC4d3/sJB/3T2FhoU/lYp+Dv25sCuvfx0YyfulQVF+GoZJxwNj1KZxUdPqaNg8uvTEis3z8STj3SRCtM71NgVQGNntqcTmUqK/2DvQarUhs0Gq7rUHoUyqoMgPHbhWTkBBfb24DEC1BrEOR2jpU+3H3kcg0AMrCrE5ZEkrf//Tp08nKyurfZymDTKGc0Sobiw/lPr/dUVYEn7/vfTxuMly+KiIH/4ASzv1tKNOXFEil0JkpglaHSnmP5DRvimao5Uf0ikw8WRb3UojvIbcBSNdLaNwxhyhD+IQaB4nIMwDNDb7iYZ18ctu2eTX7L7roohB8oDLlLARv58YW/mKWsOJ0wgevege22ASR7ROBbh/oQcK5rw1l+pIC2dHuq6IZysyzcKM0AKM6TbxCJD9SWFjIhief5OyHb4mezwtmkme1hM0AZOgUBiAlPSInN90ReQZAKcZkjvPJzKmpqeHcuXOex+edF4J2iuEKOPkshyPwojq6D6oVqaxXfzWisyPC0lCmLx3YziriWyZzZM04y733XjhcJX5ddJ/tZn3ODNbc818h/Sy3FHS6DrRKAzDMiDwDUKMwAKm+syel8md6ejoZGSGo2tUq/kRhCjiFs5d6WJBl2PGx97GrLWMkE5aGMn3pwFaQ790fOzFyJgd2u+8KIH10SN8+kItubIKJ6tefpDmmjtjscSFrc+k2AKP0EpLbACQPv4y2yEsDbWrw7if6Vs+ePu3NRJk8eXJoPk/fKeAUKnxymSMo0AciBlOvSPdbeungnUuIWLt2bZdeAm763FCmtymQtVW+fScmz+79Zw4WVaXegLVOF/LiRn8uujtm51Bw98U8sDSP2KIDsG0z/PXe/heXATaXizZNJ6FxG+GkEHTMG2JEngFQBsg6tQcsLfXOQHJyQpSupUz9VOqc9Bdd+FPZwsYxhQJrbl7YmnIPJGFpKDN3ZWCpgs4pkLIsJDTc7p/ktND1nRgIShU1IOmjQ67R09kFNyEphvXXzEan6fT3dcdXasvoD06nEx0Qr5W8q7BhcJ13JvJcQMpB2ODbi7O21qvbk5oaouWast9nuAxAuBpnhAtlzn+nIrxIJuQNZXqQYfZxVRQe9p39n3dx5Lh/QDRNcpOVG/K37+yCWztnTNfB302g+EovkGWZZJ3I+5BArNgjvWDTD5FnAOyB8/KVGt59av3oD6UBaO++c1KvULbOi6RiH6vFtzo1e9zgnUsYCHlDmWBSIBtqRTtINznjI8v9I8u+kt9hiAd17rKWm9BDwkFfJCYUaDQaUrTCAMuyLKqzIzTDrTsizwAoczE7BU+VPsJ+Vf8qUWa2dITJAHRucTeUUaYoStLwUTENJ92lQFo64LVnvdeATg+XRFghXU2Fd3IkSWFZAXTustZTG8s+SUwoiIqKIk0nvgOnLEPi8AsAQyTGAJQDu8PXd65XrAhsyjz7/qDs0qWUb+gv4TIs4UapjWSM8Q1mq/QOqwVeedo3nfbyVZGnn6RsmZqW6Tu5CSFr1qyhoKCABx98kEopHkcgJdC+SkwoiImJIcVtAByOLgknw4XIWwF0M3M2m71ibU1NTYQEpUxDewgNgFJYrq0l8OuGGtrABlilF1g6hICe0nUy/wKYMmewzqjvKGNCo8PrEvS46F5+Gk7sBGsnV09/JCYUxMfHk+a61G12+7DMAIJINAA+A7LvwJmc7LXSVVX98wF6UM7U7TYRsA1F1aFyZdEaQQagc1Dcbvddlan0TFMDvLrRd+Y/cyFceNWgnVKfcTrhnGIFMGCd7WTQx4PWCNnpYND3X2JCQXJysscFZLNah2UNAESiAYhRaPI3N/o8pSz8KikpCc3nRftmGmHpCI0BMCtSWFtDtFoZCGITxIBvbQN7E/znd5CRG7ICnGFPWTG89k9oVTROmTYPLr0psvz+bqrLvStxSTNwBYHu1GlNFMy8GGYsCOnb56SmEOsKAlssFnUFMGSIUwycyqIwfFPFTp06RUjQR4kBz33BtbeFpjGMsjtWJ0M2pNFqwSBBoyvv+3Q9nM7vX4/XkYAsw94vYOs7vgqf8y8QM/9IHPxB9C12kzE6bP7/LihTp8OgpZWXGIs76bu2rZ3xJnNIpcCGCpEXwYtTaKMom6qAT752SUkJzc3NhARlMZg1RLUAsQne/ebGyGn9V1sG1QVdj4eoAGdY0tIkgr2fvOkd/DUauOwmuOjqyB38AYpOevfHDJT7B9/Eic6r9BCQa/a+Z2m7jRJFkelwIvIMgFIdsaXJpy4gMzOThIQEz+NDhw6F5jOVLp9QFW3FJXj37bbQ1hgEQ20ZfPgsvPSY+BnswL1vS2BjFYoer8MJWYYje2HjY749LMxxcMu3ReOcSMZu95VmHzD/P52y0UIvQmhsqccYLSZ+ZXbYs2dPyD9jKBB5BiA2wTtjkmUfN5AkScyc6a1M3bdvX2g+s5vU0z5jMPoalk6rmbCS/5HQTNm2GY580TsNlb4InI1EGmrh5afgnU2+2Wrjp8I3fhDx4nmA6AfhnoDp9JA5ZmA+19LhW5Vvjg/82r5SVU5srHD1lttkvvzyy9B/xhAg8gyAVuv7hXcaOOfNm+fZ37VrV2g+00cSOkRNqCXJt/frQBmAnjTqe1oJhKPH63DCZoUvt4hZ/1mFf1wfJQK9N3zDNwMskjl7wrufPXbgssGUsT+NNvQtVZ1OqC4nPl4YgBKbTH5+Po2NERSrC5LIMwDgKwLX6uvnX7hwoWf/3LlzlJWFwietbAoTQn9t/CAYgGA06rujNwJnIwlZhhOH4enHYNsHvgJ/YyfDmvth1qLI9vd3RmkAOnXmCyt1ilVmQnLo/6Z1VWC3ERNjRqfTU26TcTgcPt0GhwuRaQBiFEVUnQxAeno6Y8Z4l6IhWQU4FQNmKCtflSuAxgEyAP114bgFzvwZgZgsgk4s62sMYihSfg5e+D94/VlfQ24yi0Y5N60ZfkJiLU2++v/jBlC5tFZxjSaHYcVZIVLIJQl06Vm4o4zvvvtu6D9rkIm8NFDwVQH1I6S2cOFCiopEmuLOnTu5/vrr+/d5Sn9jlCHw63rLYKwAQuHCUQqclZ+Bc0WgjQU5Cl58UgQ4u5Mz6Euf3KFIQy188T4U7Pc9rtHAvPOFoudApUUONCePevfjEwc2T75SUeMTji5dis5mo2bNg13ClXfixAmOHTsWul4jQ4DIXAH0kJWzaJE3uyI/Px+rtR+ZO7LsG8QLZcqZMhW0U01D2AiVC8ctcHb7L+CGe0DrMowtTfDcX331YZT0NwYxFGhthi2vwYZHuw7+YyfDHfeJ3P7hOvgDFCoy7CZMGzjXlix7ZugAZIS+9SQVXgOQNHUWM2bM8Dx+7bXXQv95g0hkGoAemDlzJtGuFC6LxcLBgwf7/maWdl8J6lAGnJSpoEqVzXASyIXTHw2VKXOEgqWbjnZ4aT3s29Y1ZbS/MYjBpK0FPn0bnnwY8r/0dQ2mZcLN62DVneFxSwwl2lqgSGHg86YP3GfX1/jeKxkhavzkxm6DKoVER8ZorrvuOs/Djz/+OHQ6Y0OAyHQBKVvD+fHJ6/V65syZw/bt2wHYvXs38+fP79tnKX3zOr2vFlF/UVYUt7WI3yvEnZT8EoxGfW+ZtUjMeN/dJAKgTid89LpodHL5zd7m5pGYRtraLKp4923ruuKMS4Rll8LUucMrwNsdxw54jbg5bmBTWpXCc8lpvqKKoaCqzLe1ZUo6y5eP4m9/+xv19fXYbDbef/99br755tB+7iARmQbAonDJGPy7ZBYsWOAxAHv37u37Z9Uomp8khjjjoPPF29bSpc1l2OhOo76vTJ4lBsTNz3gVTotPwcY/Cn/43KWRlUbaUAu7PoXDe7vWf5jMsHgFzFo88sTwDu327k+ZE5p7orZMrA4bqsU1EkhbStk1bUwfO7V1R1mxdz8tC7RadMCVV17Jc889B8Cbb77JqlWrkIaBwY/MK7etkya9H+bOnevZP3XqFM3NzX3rEqZUbAx1wEkfBXoD2FyB7IE0AOEiMwfu+AF8uFnM/kHMmj97V8ygZ8wR7iZ/bqChkEYqy0LeYN82OF3Q1YVlNMHCC2HOktCIAkYa5efELNnNjD6urJUEmxRgs/pqD42f0v/P7kyZorexorDtqquu8hiAc+fOceTIEaZPH0DXV5iIzBhAU513P8CAmZOT4yMLceTIkb59llKvPT0MAadw9RweTGJi4brbRQqk8vdraYLtW8E8uuusMUQ67n2mpQl2fgJP/0HEL04d9R38zXGw/EpY96AwACNx8AfY85l3PysXkkf17/16kxRwqsAbj4syhL4daefWlorOZhkZGcyZ4+3VsGXLltB+9iAReQbAbvfNmAnQklCSJKZNm+Z5fPToUb+v6xZLh09GQFh8nZHaG7gnJEm4B775gFC8VDaScUZBdA7okyA+EyYvgW/9AeasGNhzbGmG/TvEgP9/vxOrlLpOMYrEFFHB6x74h3NmT0/UVcNxRfbP/PP7/569SQooyPfu500Lveutsc43wJyd6/P0JZdc4tn/4osvRK/gCCfyXEC1ld6ZmVbnDS76YcqUKWzbtg2AggI/CpY9cbrAm+lhNAmfYKhRXsTKbKPhgjFGKF7OWwY7PobDe4Q/XRMFUclgB85Vw3+eFAY2N0+IiqVmhP4Gt3QIF0bxSeHmqSwJLGw3djLMWyoqXIeBrzckfKkYrBOSRfpnfwk2KaClCU4d8x4PR+c0ZepyUmqXGN2SJUuQJAlZlqmtreXMmTOMGxfeDmjhJvIMgNL/mDKq26wZZcHG8ePHkWW5d4Eb5Wxn/LTw9L9V6gwFmgkNB+IS4NIbRcbMgR1wYKdvHwSnQwzMxS55YY0W0jJEemViitjiEsVNaTIH/t5tVhEjam2GxlqorxWl/ZWlIoWwu1lbXCJMnycatKjN7n2pKIFj+72Pl6wMzf0QbFLAoV3e+yM2ITwBYPe1BzB6fJen4+PjycvL48QJIYFx6NAh1QAMOMoo/ajuZ+QTJ3r1SZqbm6moqPDpGtYt7a2+GQeTZgR+bX9Q5pIPy5YTnTCZ4byVsPhiISV8NB9OHOzS3xmnQww6yqIfJTodaPXipyyLVYXd3nu11tgEmDhd5LJnj1Vn+/6QZVH45jaeyaNCNwOfu1IEfLtLCrDbYZ9CjXPmwtBPxtzBfzc5XQ0ACK+C2wCErOnUIBJ5BqDcf5TeH7GxsWRmZnoE4Y4fPx68ATia780HjokVrolwoOwONRA1AEMFSRINxEePg0uuF66ZMydElkdlac8Dud014Pc2bBJlEAP9mAleV5M66HfP/u1Qrph4XXxt6AZgd2Fi50CwMingwE5vWrFWB7MXh+azlVSVeT9DkgLe72PHeuOApcOgSUxkGYCOdt+8/MyeqwAnTZrkMQDHjh3jwgsv7PlzZFkEB91Mm+vrqgkl4dIZiiQ0WpFxkZUrXEQOB9RUiNl/XZVw3dRVC7dOsIFyg1Fo1CQkiy0tA0ZlC1eSOuAHT32NqH52M2lm6N0v3RUm2u2wXREInjYv9MVf4Lvaz8iBaP9NZpKSvDHHhoaG0J/HABNZBqD0rHcZaowJSoBqypQpHhnXoFNBi0/6Ss7OCsOMw00QRW0jDq1WuPf8ufjcPn671bUKsAkDotGCTgsGkwjYj6TVVLiw2+DN57zJCcYYWHl9eD4rUGHigR3Q3CD2NVpRfBcOTisCzOMCi71FRXnTf222yE/aiCwDUKIoAw/SX6ss1jh+/Dg2mw29vocm0ns+9+6PnRy+gKDd7uv7DsfMZrihj4J4101YWwYHP/OtHjWHuDnISOajN3wlny+9aWCv0Y42+PJD7+MZC8Ijq93S7Jvu3U2BWXu79351641FMpFlAM4p+o+ODi76npeXh8FgwGKxYLPZOHLkCLNnzw78H2oqfGcD85b27VwVFBYWsmHDBs6ePUtubi5r164VDexbOnUYUmoDqXTPcJGUHqrs/QIO7vQ+nn2eCJYPJFvf9U6Qogyw9JLuX99XTiuK/mITRFwoAOXlXmWA5OTIzxSLnEIwq8VXBzzIoiydTucj57pz585uXg3sVlQ6pqb3u9PRxo0bmTJlCo888gibNm3ikUceYcqUKWzcuNG3oC0mVnVbBMtwkJQeypw6Cp+86X2cPhouumZgz+HcaV8DdN7FoW/96Oa4Qi14wtRuPQvKeiJlQDhSiRwDUFbsTZmMMnRrpTtz3nnnefa3bt0auIKvpUlk/7hZcGG/AoaFhYWsW7cOh1K9FHA4HKxbt47Cg/u9B7spaFPpRCRLSg91zp2GN57znRHf8I2BFbyzWuC9l7yPU9NFg51w0FnaetLMgC+1WCw+wpLKiWWkEjkGQOn/zxrbqzS0Cy64wFMAVl5ezv79+/2/MP9Lb1pmbLxQt+wHGzZs6DL4u3E4HDz9wibvAdUABE8kSkpHAuXn4NWNvno7N60ZeNfkR28IJVYQE7DLbg7f6vhoftDS1h9//DFtbW0AGI1GH8HJSCVyDIBSB3x075ZeKSkpLFiwwPN406ZNXV9kt4t8Yzdzl/b7ojt79mz3zxcrAk+Jke9PHDAiSVI6UigrEu083Wm2Oh3ccEevVtoh4fAeOKyQm158MWSMDs9nybKvtPW0eQFX/FarlX/961+exxdffDEGQ+SnbUeGAXBXhbrpgyjbTTfd5NnfuXNn15TQwsOi+hdE45eZC/typj7k5uZ2/3y8IqNCXQEET6jaWqoIzp2GF5/yDv4aLVz39YDVsGGjsgw+fNX7OCNH+P7DRckZkfThZnpgaevnnnvOEwDWaDTccsst4TuvASQyDEB1hXdZqtH2KAHhjwULFjBp0iTP4z/96U/Y7YpqU+WsY/KsgIUgvWHt2rVoA6witFotd86d6j2gGoDgCUdby5HKicPw0lPenhQaLVx/e7e58GGhpUk0EnLfk0YTXPu18CZG7Nvm3c/NEwJwfti/fz///ve/PY9vuOEGsrPDIA0/CESGAVAKwKWmixl6L5Ekibvuusvz+OTJk2zYsEE8aG321QHpZibQG/Ly8li/fn0XI6DVannqySfJi1XkEUd6I5iBZs7FcM9fYNmNMH2Z+HnPXwZeUjqSyd8Ob/zLK7uh08GNd8D4qd3+t5Bjs4rB313wJUlw9a2+PbNDTWO9t2ERwOwlfl9WVFTEL37xC5yuBJSMjAzuvPPO8J3XABMZdQDKrlypfZ/dzZw5k6uvvpq33noLgBdeeIGxY8dyaVqcIushPqS6/2vWrGHZsmU8/fTTnjqAO++8k7ysTPjbr7wvDGWv4ZFCONpajgScTvj0LZHr78ZgFNk+QdbXhAyHA177p6+L96Jr+p1+3SN7P/fe8/FJfou/ioqKuO+++2hubgZEr/Ff/OIXmEz99w4MFSLDANTVePdT+teB6O677+bQoUMUFQlRuUceeYS8ay/EM+TnTQ+5VkxeXh4PPfSQ70H3bMdNT9XJKiqhwNIBb/4HziiKHWPjYdXa0Lc87QmnE95+Hs4q2jzOWSJ6R4STlmYhMeFm3rIuWYX79+/nF7/4hWfwlySJn/70pz4S88OByDAADQoDkJjSr7eKjo7md7/7HXfffTcNDQ04nU5Kd3xOTHYmqWlpSOHQGQ+GvjQXCraRtkpkE6rvubYSXvuXr87VqCwx849NCNnpBoXTCe+96FuENWkmrLg2/J+982NvrMFk9kn4kGWZTZs2sX79eo/bR5IkfvSjHwUnJBlhRIYBaGn27ofgQs3MzOTRRx/lvvvug9ZmYjRQWlZGa2srSeZEBsQbH9VJR6SjrXeVjqoUwsigP9+z0nA4gZJK8dNN3nS4avXA9zd2OuH9V+DIPu+xsZPgqq+Gp+mSkrpqIW/tZtGFnt+/rKyMRx991KdOSK/X87Of/Yzly5eH97wGiaEfBLZZvRkKADGhEaOaMGECf/nLX5g8yruiKKlr4I7v3sUHH3wQ/n6fhmhf+WelLERPqFIII4P+fM/5H8Ff74Vtm+HIF1DwBTQXgs2lP3XexXDd7YMw+Dvg3Rd9s+5GjxfnMhBSKJ++7VUUiE+C2efR0dHBxo0bWbNmjc/gn5aWxl/+8pdhO/hDpBgAJSFsyj1mzBj++/77iI0VM+9Gp9D4fuihh/jOd77D7t27w2sIlHLWpWcCv64zqhTCyKCv33MgwwFgrYKLr4Zllw18XwSHQ8Qfjipm/qPHiWrjgTBEpwqEzpEL63krefWNN/nqV7/Ks88+i9XqHWuWL1/OU0895ZM6PhwZ+i6gzp2hQtyYJdagxzx+PNVV1RQXlyO6lMOJEyd44IEHmDBhAqtWreLCCy8MfeXfmAleGdqTR2H+BcH9P1UKYWTQ1++5O8MBUFcU+LlwYbOKbB9lwDdngkg7HYjB39IBH70mTsVu52SHg5/+4rc0NPgq8iYnJ3PPPfewfPny3vUPj1CGvgGQOg34Tkdol4oaDRKQlpbKJXlT2FvSwuefe/sBnDx5kocffpg///nPrFixghUrVjBr1iw0ofBVjpsMO0WzGs6dFuX4PbS5BFQphJFCX77npgY4tKPrcSUDPUHoaINXNorr283YyaLgrA81PX1B/vRtWkqKqa2ro76+gUerrDQo5pYGg4FVq1Zx6623Dqs0z54Y+gag86zbagntjCHam39vkmR+/etfU1BQwDPPPMOuXbs8z7W1tfHWW2/x1ltvER8fz6JFi1i4cCGzZ8/uuy54Vq5oa+ludP/xm/DV7/Zs4IJppK0S+fTme5ZlOLhL5Pe3d3R9vZKBnCC0NMHLT4lqfjeTZoqAb5h9/g6HgyNHjlD47utMKtjh6eD1frODctfgbzAYuOqqq7j11luHhb5/b5HksEc7+4ksw59+7pWC+Pr3+iQFEZCaCtj4R7EvaeB7v/YYmDNnzvDqq6/y0Ucf+XQC6kxWVhbTp09n8uTJTJw4kdzc3OBnEaePwysbvI/nXwAXXd3z//OXHeKWQlCrYYcPwXzPNRXwwauiZSqA0wrtAdw8kkZUTA9EunB9jZCZaKzzHpu1CFbeELZsn6qqKvLz89m9eze7du1C29bMD1N1mDTCnVNqk/nfajuJyclcc801XH/99cTHj9wq/KFvAACefkzkMANcc1u/ZZp9cDrg8V94Dcytd4mZuYL29nY+//xzPv74Y/bs2RNQ4llJeno6OTk5ZGdnk5mZSVpaGqNGjSI1NZWEhARf/+J7L/mqEi65BJas7DlIV1vmv5F2kMiyTEdHB21tbbS2ttLW1uaztbe3d9ksFgsdHR1YLBasVitWqxWbzYbdbsdut+N0Oj350260Wi0ajQadTkdUVJRnMxqNns1kMhETE4PZbCY2Npa4uDhiY2NJSEggISFhWCgv9plA37OlA77cAvu+8Ga2gKjqHZcDe98ZvAlCZSm8vEHo7btZdBGcf3nIgs8Wi4VTp05x/Phxjh49yuHDh6mo8K409MC9KTqyo8Tn2WT4OHsGS66+jiVLlqAbyB4HQ5TIMABv/NtbMLJgOVx4VWjf/4V/wDlXU4iFF8LyKwO+tKWlhT179rBz50727dtHVVXv/akajYb4+HgSEhKIjY0lPsbETe3lJDmtaDQaNBoN1UkZnBw/G6IMaLVaj56QJEnIsowsyzidThwOh2fwtdvtnkHZarV6Bur29nY6Ojro6Oigvb3dZ4CPhK8fxFI9ISGBxMREEhMTPfv+fsbHxw/vm9vpFBOGL973HWABJs6Ai68T2vb9nCD0maJC2Pysb/r2RVcHn+SgQJZl6uvrKS8vp7S0lJKSEoqKijhz5gwlJSXdXr93JGqZZdJiNptJiI8n+sZvYF40fFM6+0JkGIA9n3tb1KWPhtvvDe377/0CPn5D7McnwTcfCGqJKssyFRUVHDlyhIKCAo4fP86pU6fo6OjBB+uHBC18N1lHqs47O2p0yLzf7GRXm5NucjpU/BAbG0t8fDzx8fHExcV5NvcKw2w2YzabiYmJISYmBpPJ5FmNREVFDYkMEFmWcTgcnlWW1WJBOnmU6D1b0TTUIDudYiIgy1iNMZROmk99UjoOh8OzOV2vcW9uJElCkiTPhMM9ydBqteh0ui6bXq/vckz5f9yrPE3hIXTvvwwOJyAjazTYVlyHZcJ07HY7NpsNi8XimZi0trbS2tpKc3Mzzc3NNDY2Ul9fT11dHTU1NVRXV3t898GSlZXJmjEpzJM6iDXHotVqRH+Pi68L8TcU+USGAagqg3/+yfv42z8NrVJgcwP84yGvONT1XxdVkn1AlmXKy8spKiri3LlzlJWVUVZWRlVVFVVVVd3GEowSfD1JyySDr/Gps8t80uJkf4eT1m4sQZZRw5XpUaRHa6jocPJOhZXS9uBMh06nw2QyeTa3W0bppomOjsZoNGIwGIiOjva4ctyDg3sgcA8sypWK0+n0WaEoVyetra20t7fT0tJCS0sLzc3NmNobOC+6jWSto9e/S3+RJAmDweDZlL9j599V+fu6/y/gGWzdA7B7MO68anPvu91oNpvNM+ArB77JBokrYrWMjvI1TDYZPmp28EmLk94Nk6Hn/BgNN8R7A7s2GZ6ps1NgCd8QYzAYmDBhApMmTWL69OlMnz6d1JMHxerIzdhJIt00xCnkw4HIMACyDBseFUElEH7ExSH2Y77+LzhxSOynj4av3ROWQpm2tjbq6upoaGigoaGB5uZmz8DX3t6Opb2dCbXFTG2sQJLF4IEsIyP+DGVaA2d1Jqp0Rup0RnDN2OZrG7mGcz6VfU4kdqXPpyxtss9A7t7cM9+YmBj0Q0mMzk/gU5Y0nJ15Jafjcqmvr6e+vp6GhoYu+xaLpZs3jjymR0tcatZ6/NhuZGBvm5O3mxw0DoHl4dWxGlbEegfYNqfM+loHRbbQDC+xsbFkZmaSlZVFTk4OY8aMYfz48WRlZfmmZO/8BD571/t4VBbc8u2QFpAOJyLDAABs+0AEvEDoAX3rx6G16GVF8NzfvI+v/ipMmRO69+8tDbXiYj68xzfAp0SjFf0RjAY48gF+FeUkDax7FFKzxeslvI1UhoCbowu1ZULCIFDqYw8ZLB0dHR7j2tjY6Nmam5tpamryrDDcbgd38Lu7ldlAowfmmTRcaNaQpuv6HRVYJT6y6qjTeFcmUVFRPu4bj0vGtbldPuBdnSjjSP425apE+VPZSEkDrE7QMt/kHYTr7TL/V2unOkCuhF6vJzo6mujoaEwmk8cdp3TbJScnk5ycTGpqKqNGjSImpge5dFmGLz/0jhEghCNvvUsIvqn4JXIMQEuTcNO4m7aHY4B+7VlvkwhzHKy5LySdwfpFQ62IUZw4JP4G/rDWgK0+8HvoEyGqFyqqkkYYB40kjIZWC1qd2HR6kSYbFQV6g9AzijZ6N2OMd4uJFTdfbwKyHz4r9GsCsezGsPQAkGXZJ1je0dGB1WrFYrH4uGWUAXf34OkeSJUDq3vAVfrZO/vatVqtj0vJZG0nofg4cWePo7NZkCQNkkZCI0lif/xkpCUrkTplqQ0GTqcTe1sr0hv/Rio+CTLIyDiT0mi78qs4TWaP4en8u4Y8vuJ0wJbXfSWeE1PgK98Kb1OZYUDkpEqY40QBSUG+ePz5+zBxZmiLSS68SuiFOB1isN3yujA0g0lCsgherbgWys/BySOil2lliVfS1tmD97en5zsjO8ViwgluaYx+YTCCORZi4iA2DszxYhUXFw9xiWJzL9EHSeZCkiRP/GNAsduEDMihXV6ZBK0E2mj3iYl41OIVoa1/6Sea1maiXtkgCrzc92DOeLj+GxgG0t1itcBb/xH3rZvkNDH4m+MG7jwilMgxACBy448dEANUYx3s+UzkFoeKhGRYdqnXh1iQL3qFhqhFZL+QJFE1nJkjHjscUF0GtVWw620oyg/8fzWD7N+3tIuttpvB22CE+ERorez+vYaDzIXTCSWnoeAAHD8g8vk7o4+CafNEs5IAvWoHjcoy2LwRmhU6OpNnwRW39G61118aaoW+kLLKOCNHBHxVt09QRI4LyM2Hm7163lodfON7kNy/LmE+OJ3w/N+9uiVaHdz6XREYHqr05Ddf96gYOB0Ob6aTv9d6npNdm1P8H4dDrIpsNjFjtdvA2iFmXxaLa4DvgPY2aG8VW1urON5buqtiRYL5N0DWeEhMFTM9c9zQjGV0xm6D4tNiBVd4uGv+vpvkNJi1WAz+0caBPcdgOHlUzLiVKr0Ll8MFVw7s91BUKOqDOhTXWN40ITEx0BLXEUzkGYCONiHd4PaHp2fDrXeH1hXU1ADPPi4GMhCDzK13ixnqUGUoSkPY7WKga20W31dLE7Q0ipljc4P42dTQVfHV1ihkizsTNQr0nZb1UQYhq53s3kaJGXNCcvibi3SHLENNJRSfhKKTYsCyB3DF6aNg4nSYsVD0ox6KBk2WRVLCF+97JwqSBBdfD3POG9zzAFEgesEVg/udRyCRZwBAzEI2P+N9vOgi8eWHkuKT8OJT3gE1KU0ItZmGcPP2war87A+yDK0t0FQv3HqNddBYD1XFUFkIHS0g6UAXB5pezOw0WmEIlFtiitiiTaEdZGVZGLbqSqg8J2I1ZcXeCUSg8xuTB1NmCR9/1BCWurB0CLkSd5o0iPO95mswbgD18jva4J1Nvv5+nQ4uWwVT5w7ceQwjItMAALz/slA/BHEz33AHjJ8S2s84sBM+eMX7ODVDBJeGshEYbtjtwjjUV4s6kLpqqKsRfW1bm3v+//6IMojVXFyiCEybY0XGksHo2gxigHanzTocYvZuswo3V0ebGPCbGoSxqqvy78fvjD4KcifChKliG+wMs2CoLIM3/iX87W4SkoWfPZSu154oPSuayTQ3eI/FJ8K1twsvgEqfiFwDYLOK6mB3cViUAb52r3ADhJJtH4r8Yjep6S4joAaZBp2ONhFYrqsWP2srxc+mel/3wGAhSZCWKRqfjJkgul8NkP59v5Fl2LcNtr7j66LLzROCjANlvGQZdn0qsv6U7s3xU+DKWyLDiA5hItcAgIj+P/c3r+hUYoqo4A3lRSHL8Nk7sGur91hiCtx0p/ipMvSwWcUqod5lGOqqxEShvkYErsOFOU6sEjNGi2yUzJzIHKAa64TLp/iU95gkweKLRSbeQPnZW5rg7ReEO9aNRiOUABYsH5qxkggjsg0AiIyK1571Ps6ZAKvWhjYoLMvw+Xve7l0ARhNc/w0RtFOJDGRZ+OUbXfGGpgbhRmptcmUtdYjMJZvVm/kky64iOK1w4RhNYlA3xbrcSAnCJZIyKjIHeyVOB+RvF7NtpZKnySzqYcbkDdy5nDku/P3KbKm4RLjm1uC65qkEReQbABDl39s+8D6evgAuXxX6QN/OT4QhcKPRwsXXirQ9dTaiEskUn4KPX/fNqQcRoL70xoFzeTocYsW953Pf4xNnwGU3Rb6RHWIMDwMgyyI3+dgB77Gll4rlaqgpyId3XvRKUoCoUL70pqGZt62i0h3V5WJSo8ysAXEtr7weJs8euMlNQy28+RxUlHiP6XRw0bWik5g6yQo5w8MAgFi2v/SUty0ewBVfCU8Vb+lZ4XZSLk9j40U62tgBTItTUekrZUUiruXWvlIyfQEsv2JgEx2OHRCZfcoYTfIo4fJJzRi48xhhDB8DACIr5Lm/iawQEIVQN94B4yaH/rNamuDt530DZSBWAxddIwyCispQwuEQA/7eL7yV7koyc8Rs2y03MhDYbfDxm75CbgAzF8GKa9Sq3jAzvAwAiGXkc3/zzs51elj9HZGZEWqcTpGitu1DX5eQPkq0v5u/TPVZqgwusizcPEf2wpF9/ovTUtOFy3TCtIF1s9RVC5dPVZn3WJRBuFOnzB648xjBDD8DAKIh9fP/581kMJmFLni40jaryuDDV0X1p5IogxDzmrtUrRtQGThkWdwDJ48I14q7VqYz2WPFRGXC1IH3r584BO++6OvyGZUF135NZFWpDAjD0wAAnD0BrzztbaYSnySMQLgkYmVZVCZ//l7XWZZGK4SqZi+G0ePVYJZK6GlrFfnyZ0+IFMpAvSN0OiGjPndpeFbFPeFwwNa3hRtKyZwlcOHVA6smqjKMDQCIJe87L3gfp6bD6u+GN1vH0iEu7j2f+1fDjIkVqXV50yArd+j4OGVZnHtbi1BY7HBJONssYpZmsyly45VKopIrT14DWr1Y9RgMQlIh2ujKmTcLvX/V8IWOthYoOStkpYtPCTdPd2TkCIXRKbMHL1utqQHe/LfvSjnKIJI1Js4YnHMa4QxvA6CioqKiEhBVO1VFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURimoAVFRUVEYoqgFQUVFRGaGoBkBFRUVlhKIaABUVFZURim6wT2AkIcsy7e3t1NXV0dDQQENDA83NzTQ3N9PS0kJrayutra20t7djsViwWCxYrVZsNhs2mw2Hw4EsyzidTgAkSUKSJHQ6HVqtFr1eT1RUFFFRUURHRxMdHY3JZMJkMhEbG4vZbCY2Npb4+Hji4+NJTEwkISEBjUadB6iojERUAxBCZFmmrq6OkpISysrKqKiooKKigurqas9msVgG+zR9kCSJxMREUlNTSUlJYdSoUaSnp5OVlUVmZiYZGRkYDIbBPk2VQcDpdNLa2uqZnLS1tdHe3k5HRwcWiwWbzYbdbsfhcOB0OpFlGRDXlHtCotPpMBgMGAwGjEYjRqORmJgYz2REp1OHoMFEkt3fmkqvqKur4+TJk5w+fZozZ85QVFREcXEx7e3tg31qIUWSJNLT08nJyWHs2LGMGzeOvLw8cnJy1JVDhOJwOKipqaGyspLKykpqamqoqamhtraWuro66uvraWxspKWlhXAPDyaTibi4OBITE0lKSiIlJYWUlBRSU1M9k5HU1FS0Wm1Yz2OkohqAIGhvb6egoICCggKOHj3K8ePHqa2t7fP7aTQajxsmLi7O454xm83ExMRgNBqJjo7GYDAQFRXlmUlptdouN4LT6cThcGC327Hb7VitVo/7qL29nba2Ns8srqWlhaamJpqamqivr+/XasRgMDBx4kSmTZvG9OnTmTFjBnFxcX1+P5XQIssyVVVVnolJSUkJpaWllJWVUVlZicPhGOxTDBqtVkt6ejrZ2dlkZ2eTk5NDbm4uY8eOJTY2drBPL6JRDYAf2traOHDgAPn5+Rw8eJDCwkKP3z0Y4uPjycrKIiMjg/T0dEaNGkVqaiqpqakkJycTHx+PJElh/A2Cwx2PcM8Aq6qqqKyspKKigtLSUsrLy4MeKCRJYsKECcybN49FixYxY8YMddY2QDQ3N3Py5ElOnTrlWZGeOXMmpO5GdyxJOTnR6/Xo9Xq0Wi0ajcZzTbsnJQ6HA6vVitVqpaOjw2dC0pv7qTuSk5MZP348EyZMIC8vj7y8PDIzM4fE/RUJqAYAMVsqLCxkx44d7N69m6NHjwZ1gSYlJTFhwgTGjh1Lbm4uY8aMYfTo0ZjN5rCda2FhIRs2bODs2bPk5uaydu1a8vLywvJZDoeDiooKiouLKSoq4tSpU5w6dYqzZ8/26BqIjY1l6dKlrFixgrlz56rGIES0tbVx/Phxjh07xvHjxzlx4gTl5eV9eq/ExETS0tJIS0sjJSWF5ORkkpKSPMkB8fHxnlVpKN19sixjsVg8q9GGhgbq6+s9LqiqqirPZKSurq7X7282m5k0aRJTpkxh6tSpTJ06lfj4+JCd/3BixBoAm83G3r17+eKLL9i+fXuPF5rJZPJcTJMnT2bixIkkJycP0NkKNm7cyLp163xm5VqtlvXr17NmzZoBOw+LxcLJkyc5evQoR44c4eDBg9TX1wd8fWJiIpdeeinXXHMNWVlZA3aekY4sy1RUVHDo0CEOHTrE0aNHOXPmTK/88qmpqYwZM8bjPsnMzCQzM5P09PSICO5bLBYqKiooKSmhpKSEc+fOUVxczJkzZ2hpaQn6fbKzs5k+fTrTp09n5syZZGdnq6sERpgBsFqt7N69m08++YTt27fT1tYW8LWxsbHMnj2bOXPmMHPmTMaOHTuoQc/CwkKmTJni1yWj1WopKCjo20pAlsFmBatFbO59mxXsNvHTZgO766fDDna74qcN2eGgsa6OitJSKspKqamqRHI6RTYIIAEa1702KjWVcePGkpSQiP/7TwJJEv9J0rj2JXFcI3mPaTRiX6N4rNEG+KnYJA1otd7ntFrX+2hB2/n/Bvj/yvdWnovPeSnO1f3Y/bu5ryPP8659oLKqin379pGfn8/+/fuprq4O6muMjY1lwoQJjBs3jvHjxzN27FhycnIwmUy9vyYiAFmWqa2t5fTp05w8eZKTJ09SWFhISUlJUP8/ISGB2bNne7acnJwRaRCGvQFwOp3s37+fLVu2sHXr1oCDviRJTJs2jUWLFrFgwQLy8vKGVJbLgw8+yCOPPBL4+R98j4d+/CPoaIOOdtfWBpYOsW9pB4vF9bPDNeC7fob4EnA4nDQ1NVLf0EBTU5PfGWtMTAzp6enExsYy8m47Lw6nk5bmZpqam2luasJitQIgu/6R3fuKnxqNhhiXa0b8NBNliHINYC6DAl4DI/6T95jbGGmUBqqTgfMYSZdh1Opc+zrQuTatDnR60EeJnzod6KMoLC1nwyuvcbasjNwxY1i75k7ypk4VrwvzINva2sqJEyc4duyYZ4Xa3erUTVJSEnPnzmX+/PnMnz9/wFf3g8WwNQBlZWW88847fPDBBwFnUQaDgUWLFrF06VIWL148+FksNqsYtNvbxM+2Vs/j1T/7FZs++Tzgf109azLP33bNAJ5scNjtDurr66ipqaXD0tHl+VizmczMzGE7U/WH1WqjsbGRxqbgUi0NBgNm92BvMmGIjh6yRnPj7kOse+V9HE7v76TVSKy/6TLWLJwJUdFgiIZoo9gMRjCaxL4xRrGZICYWTGaI6ruryu1GO3LkCIcOHeLgwYOcPXu2x/83fvx4Fi9ezHnnncfUqVOH7epgWBkAh8PB9u3bef3119mzZ4/f1xgMBpYuXcqFF17IwoULw+MHdTq9M/H2Vu+A3mlQ7/LTbgv4lg++s5VHPt0V+PmLFvHQFRf077wlSdxs+iixRRlcMzy9a4anB12U7wxQq1XMDl2b20WicIXIksTxEyf44MMtnDhxwmdmC7B48SKuu/Y64uPjXNNe2bUykcXf07Mvg+z0HnM6wenwHvPZFMcdDu8xp8P3NT7PKf6/3On/Kd/L/dnKz5Vd5+YHi8VKfUM9jQ0NtPVQK2IwGIg1mzHHxmKOMaPXR0axVGF1PVMe2+Az+LvRaiQK7l9LXmpi799YpxfGwBwnfsbGi/3YeDDHi5+xCeLaC4KmpiYOHjzoyfQ7depUt69PTExk2bJlXHTRRcyaNWtIeQb6y7AwAK2trbz11lu8+uqrVFVVdXleo9GwcOFCLrnkEpYsWUJ0dHTwb26zisHZPZC3Kwbw9taug3x7m3CzhJigbq6sdIg2+c6uoo3imMEgHhuivT+jDL6bTh/2JTrAkSNH2LBhA/n5+T7HjUYjt99+OzfffHNkV4i6jEN9fR2ffvwJH3+0hcLCQjS43P0Snn0Ac0wMc2bPEv7ombNISXG5H5SZaLLCZMqy10cU6LHHf6QwSu73k53CkLqNa2dD5mMYHd59h0NMUhwOVwzI5trE/oPPvsgjb34Q8M/ib5JSWF3Pht0HOVvfRG5iHGsXzOybkZAkYRziEiE+UfxMSIKEZLEflyAmJX5obGwkPz+fvXv3smvXLr9jiJvk5GQuueQSrrrqKrKzs3t/nkOMiDYADQ0NvPTSS7z22mt+fftjxozhiiuu4NJLLyUxMVFcyO1t0NYiBu22Vt/HykHevdntA/b7OGVZ6P7IYNFosWh0dEgaOtBg1ep5de9B/ufF131SVLUaDY899BB3fe+/0Bt6YdgGGVmW2bt3L3//+985ffq0z3OjR4/mnnvuYeHChYN0dn3Hbrezc+dO3nnnHXbs2BEwnTg7O5slS5awdOlSpk2bNiTSZG02m6cmxF0R7E7VbGlp8UhBuDWq3DIQsiwjSRJbt27lzJkzAd//gvMW8/AD95McYyLRFM3rH2zhO799BEen63n911exZt4UMbkK1fCk0QrDkJACicnCMCSmiv24RM/qQZZlzp07x86dO9m+fTsHDhwI+B0uWLCAW265hblz50asiygiDUBzczPPP/88r776KpLVglkDsVqJWA3E67TMnTKRhdOmkhEfi+QZ6FtCe0EFg0bjmpGbXH5OEw5DNA0dVioamymrb6CsvoFzNbWcq66loqGJVid0V3rV1tZGRUUFHR0dREdHk56e7vGfp6amkp2dzZgxYzxFMePGjRsSg0sgHA4Hb731Fk8//TRNTU0+zy1btozvfvvbZKYke4PWlg5XppIVbBbXT6tiNqqYlTrs3tmqchbrmfE6FK4bP5s/lNk84AmkdlhtFBcXc/bcOdo7LDgQBl1GfJ8OGWLjE8gZO5YxY8eSkJyC5HafaXXifXR6MRDp9N5gqyfQqvcNuOqjICrK+9ogByCHw0FJSQlnz56luLiYc+fOUVZWRnl5eZ9y7pWcOnWKc+fOBXw+JyeHcePGAeI63rXLv0tTq9Vy9OhRJk4YL+7d1hZobYbWJmhxb43iZ1ODmMD1B0kjVgiJycJAxCeJ1UNcIk0aPV/u3cenW7eye/duv8Zg5syZfPe732Xy5Mn9O49BYGgaAKfD9aU3QUuz+KJbm7A3NXB87x6Kjh4m2mEjViuhc133Wo3WpSGSgl6vD/05RRk8g7gnSKUY2DHF+D42xiDroygqLubo0aMUFBRw4sQJzpw5g80W2NcfaoxGI9OmTWP27NksXLiQCRMmDPxsxekUg3dHu2uF1QYWd/xDZCtZGhs4sGsH504WYpTAqAGjBNFaDWmpaYwaNQqtduj5Xtva26mqqqKhvh5/N5JerycpMYnEpESMvXE99gZJI4xBlAH0XpeebIimob2Dkpo6zlVXc7a8krMVVTTZ7LQ5odUp0+oES4hGgO4GdYCFCxd6Jis9GYsJEyZwww03MGXKFGbMmMH06dMDu27tdmhuoPDgfjY8+y/Oni0iNymetefNIc+oE+NHf9AbIC6eDr2BwvIq9hw7wZmqGlqcMs0OaHH9HS+97nq+9Z3vEhUV1b/PG0AG3gDYrNDcKCx4U4PYb270WvXmRuF6UZyWjPDTlZaWYnWlybnRaXWkpaWSkpIa/ACh04HRLAZto8mbeWBSZCGYzL4DehA+aafTSWFhIfn5+Rw4cIAjR47Q3Nzciz+OwC3ZbDabMRqNGAwGT7m93W7HZrPR3t5OS0sLDQ0NNDY2Bv3eCQkJHtfD/Pnzg79YlYO4pUPEOTrcP9u9Pzt8B3ZPKmqQl1lbezslJSW0trb6HNfpdGRkZJCclDToy20ZaGlpobKigmY/xUiSJJEQH09ScjKx5tiBCKt4sFitQmK8qYmWllbsjp5dmDYZmh0yzU5odsrYo6JxxMS6AqwJaOIT0SQkEW2O9ZGCcGtTSZKELMvIssybb77Jo48+6jNT1mg03HDDDUyYMIG6ujpqa2v54osvuvW1p6WlMXXqVM9jrVbLlClTPJk5Y8eO9bkOui2S/Npt0FAHDbViq68RP+uqxZjTyyHQ8/1XVna5v6NMMeRNn0FUbJyItSljbO7kCr07kULvXd1pXWm0nhWgVhxTPvYcD37F1xOhNwB2OzS6/tiNddBYD02urbFeDO69wGKxUFJSQlOnP7RWoyHNpbGj1WrFoB1jFoEgo1nsm9xbjHfAN5lDmo9cWVnJrl272L17N/v27esycPlDq9WSnZ1Nbm4uOTk5nupMd0l+bwOgbt9taWkpxcXFnD59mhPHj1NWdBatw06UBFESGDSS+OnaYqMNzJiYx7SJeYzNykTnsAmXiqdOoJPbZYCQgYb6ekrLynxWSzYZtNFGRk+YQGpmNpLbDaKPEtlJnmwlneKG6uRe8RSCKQu2tIrceNd1IXWdTMhOJ4cPH+btt97izOnTIIHbuaYBkpMSOX/pUhYvWoTZZFQEU5UZRorgqsdF5fB1V7kK7ERw1e7r2rK5ivOc3oGuo6OD+voGGhsbaO/ommrbGQmRaSQG8mgMhiiiFMKDmkD3hsks3CPxiS43STIkpogtJtZzTxUWFvL000975EruvPPOLkWKDzzwAI8++mjAc1S6i/yRlZXFihUruPTSS2lvb+97kaRyvHIbh8Y6sTU19HjdN7e0UHKuxCfFOdpgIG/iRHThdL12rsn4zs/69Db9MwBnT0BtlbCkddXij9cHi+oPpyxTVlPL0eJSGu0OGh1idtIiS8xYvISV192IOS1dDPTGmAHJXgExyz969Cjbtm1j+/btFBUVdft6SZIYO3asR0IiLy+PsWPH+rqpHA5vUZbVKvbdfm7PvsV181v8+L+tCr+467V2m9Bzb2ujpaWF5ubmbo2TVqMlPkE0iQnbrFWSXDngCldatOJxdLQ3c8lgxCJp2PzOu2x67Q2aOiwova/Tp0/nzjvvZM6cOWE4UV9kWWbHjh08++yzHDt2rMvzkyZNYvXq1Zx//vkDFm9pbW7i4/ff5+P336PkzGkMGslj2KM1EC1JRGvApJHISklmdFoKGYkJJJuMxOq1aN2ruVChjxIGISlVGAT3z4QUsYrudEH1VNn+0ksv0drayuHDhzl06FC3VfstLS0B075BFFE+9NBDvf+dZFmsZpvqfb0ULU3CRd3WDG2tOFubKS06S41CITg+Lo6x48YNXL3Gj37fp//WPwPw6AN9+3+elK0Ekb9rjnMtN8XPE+WVPPr3f3DyrO/gOn/+fO655x7GjBnT51PuC3a7nX379vHZZ5+xbds2GhoafJ6PlsCkAaNGIlanYfKYHKaMH8v4rCyy01IwyE6X26TDO9B3tHtn2UEs00PyezgcNDc10dDYSFNTU8DsBp1O59FnNxqNXS9iZSppl5RToyIVVRkncb2mD5altraW9evX88EHH3QpmpozZw633347s2fPDrlryOl08tlnn/H8889z4sSJLs/PnTuX22+/nVmzZg2YW6q8vJwXX3yR9957j44As/3Ro0ezYMEC5s2bx8yZMwOLEyqz4lqbfYOtbtese+ALUN8QFAajCLAmpnhXDvGJbHzzPdZ97/td3DZPPfUUd9xxh/c0nU5OnDjBrl272L59excjfOTIkW4lM1avXs3zzz/f9/PvCZecyn82buDNl1/CqJEwSrDu9tuYPXWqd7Jm7XDJqihWcw6bN7VWmbzg2XcE97cfUgbAHVVXRNM9ubjxSWCO9ZuTa7Va2bBhAy+99JLPjZ6cnMw999zD8uXLw3+jOR3Q1orc0sSJ/fs4uHM7pw8fRGfpwKyViHHNqmI0YJIgRiMRHW0gLjaW2Lg4zGYz2qFWKCJJ3sIu10+7Rkt5TS2nS0opLCqmxWrDIoPFCe0yWGWZdickpWew6IILWXLRRSRnZIpKzkH6/U6fPs2TTz7Jzp07uzw3efJkbrnlFpYtW9bvGoKWlhY++OADNm/e7FdbZuHChdxxxx1MmTKlX5/TG0pKSnj22WfZsmWL38rhvLw8VqxYwbJly0Kan+5wOKiurKSx7BztFWXYayqhqR5dSxPRHS2YLG1E2W2iPalG44kL6HQ6j1x0QJcSUFjTwNMHjnO2qZXczEzuvP5q8qZM9S38ion1qQauqqri008/5b333uPMmTM9BpT7vALoJbIs88ADD3hWI+np6fzrX//qf02L0+lyEdrB7hBGQ+kutNtgdGB3WXf0zwA88RtIToOkNNeSr2tebbAUFhbyP//zP11cKtdffz3r1q0LjVRARzs0N7iWdJ3SyVoaobUFS4MIUtXX1WENkK0jISRnRUOXeAyGEEb9dfqugaPOQaQog/B366PA0grnDkN7E8SmwLSlkJLt9Y1HGXoMGnV0dLB9+3a2bNnCzp07/S7LJUli/vz5XHHFFSxdunRQMx0OHTrE008/zf79+7s8l5iYyGWXXcby5cuZNGlS0BMGt1Dg1q1b+eyzz/xq6S9ZsoSvf/3rTJo0qb+/QtDU1NTwzDPP8O6773ZZscXGxnL55Zdz1VVX9XtV7HA4KCoq4vjx45w+fZqzZ89y7tw5qqqqepSqiJYgVSeRqnP91Eqk6iTSdK64k14vYg6ulpAmk4no3spZ6KNEDMLt8o02IRtNlNTW8+L7W/jRhn/59Tz3SyixD5SVlfH1r3/dcw898MADXHHFFQPy2X1h0NNAZVlm8+bN/P3vf8euKLrKzs7mgQceYMaMGcG/mc3qCubUQaPrZ0Odd9C3+m+Q4ZRlGhsbqa2p8ZvVAaCRJGLj4khISCAuLs5/gMfjEjEp3CRGVxWuwm1iiBYz6SiDeC7KIB7ro3o3u87/CN54wneJKGng2rtgzsXBv4+C5uZmPvnkEz744AOOHDni9zWxsbFcdtllXH311QPujnMjyzL79+/nueeeY+/evX5fk5KSwowZM5gyZQqZmZkkJycTHR2N3W6nra2N8vJyzp07x+HDhykoKOiSYQbC8F100UWsXr16wAYREM16XnjhBTZt2tTFGGVmZnLLLbdw2WWX9VnKRJZljh8/zt69e9m/fz+HDx8O6FLqDzEaSNVKpOggRSeRrJVI1kmMMuhIj40hNi6OuLg4DP2cUDz55T7uev1jHIrhTCtJ/L+lM/n+NZcRm5TsrX7XG1wTJMVEyt/WRQbFnbGj6/Ze/f3vf8+7774LiHHsmWeeGbK1OINqACwWC7///e/5+OOPfY7fdNNNrFu3zv/FLctitl5b5d3qXQHo5uDTIcHVG7W2lurq6i65+RZXwNmUkkb62PFkT5xEVHyi33x/TwAzQKl5T1hdqXvuakt3W0d3lSXgWVa7szfirM2kvvRbJH/+QUmCS74FBnOXcn1PholnCalYUnbKUmlrbaWirIyqigqsHe0iYQZF5oskEWc2k5aWSkJCAhokhARBN5eUZ0auLKZyF1dpXNrR/uSVO2/ejJ66xkZOnDzFmeJz2BwO7IjCK7ssirDssoxdxnPcpnjO5nrOfcyG+BltNnP+RSu45PIrSB892luQFWYXpCzLfPjhhzz55JNd2o5mZWXxjW98gxUrVvQ4oPhrHDR27Fjy8/P59NNP2b59e1AqmW7cfXvj4+M9M3idTodGo0F2VbBbrVZP69G6urousbLO6IF4LSRpJablZLFwyiRmjMkmRna6VuTNXVLCu/2dq+v5vy/3cqysklHGKK4bl0lOXAySJJGVlUVKSkpog7Lu7LJOBqKlvYN3PtyCVZaxybBo6TKmzpzlNSpRnY2NciLomizqDb32ovSFQTMAzc3NPPjggxw9etRzLDk5mZ/97GfezA5LB1SVQU0FVJWLnzUVAWfyQaHVYTeZOV5WyZ7jhdR2WGhwQJNDptEp8qGTRo/hkiuv4uKLLyYpKamfv6mYzRUVFXHu3DlPq8Wqqiqqq6tprK9D09GOWQNmrYRZI+IKJkWMwegKMHsKpDQSY1L0jEoKPGtqdxiR9clEGwz9Fq+SgdaWFmrr6miob8Dpx+jodXpSUkVD77Cmv3WD3e6grr6OxoYGWoJIx+2MRqMh3rPKi0ej8TNcKPO33VW4+k4zxM4zRp2+06wyyu/zp4qKeWL9UxwsOIYyLSAxMZE77riDK6+8Mih/sr+ceI1Gw8yZM0lISOj29x83bpwnUy0nJ4esrCzS0tL65PKz2+1UVVVRUlJCcXExp06d8hRDBhp2JEliyZIl3HDDDUJiQXZCW5swBm3NvnItba1ebS5PLUoHzo52KsrLqayq9HnvpMRERo8ePSBibkVFRdS5DKxWo2HSpMm9dxXr9L5JFZ1rlkxmbwJNUmqfznNQDEBDQwM/+MEPfGRZl8yeyY/v+BpxbU1QWSoG/sY+lKZ7ND9ceh/uvOW4BBwxcbzx4Uc8889/dpEd0Ol0XHjhhVx//fX9kn+1WCwcO3aMI0eOcLrgKDWnC7HVVpOolYjXQrzrZ5xGIk4rAso9UdzUymunyyhraSfTbOT6cZlcMDGJxNjAg0F9s52zFcJQRkVFYYyOxmg0YTIZMZli+qww6XA4qK+vp6a2lnY/qpYajYaU5GTS0tLCU5EdJDa7ndaWFlpd+jU2qw2b3YbslF0S+BqioqIwREVhNJqIMcdgMpm6DViGC7vDQXlZmU8aoQzYkUjLzCJ73Hh00UaXEdEHdl1EGSgsq2DKDav9x3GABYpqXHcPjPnz5zNr1iymTJkyIF3C2traOHz4MHv27GHHjh0BA7gTJkzgtttu633yhyyD1cKhPbt54k9/pKOpEaMrRXbc6Cy+fsstxJuivWnT7vRqz75VrIrdGTvu486uf9NA2Gw2Co4d83wPRqORvLy88CWIDEoWUB+wWCw8eO/dWIpPM1ovMTpKYmFOFnkZab37ks1xkDxKWD735lb+8/NHPn78OI8++mgX6VeTycQNN9zADTfc0KcmEHJ7K0X5ezi1ZydVx45grSonSZJJ0gU3uCuRJAmtRkt0lERirA69Do5UN3HnW3s4XuuNTWgliU+/dj7LxgVenRRUW9hXYcXqdm3IwhVic7k5zHHxZI3JJWfsOMbl5ZGYkuJ1rbiLp/x1wZLc8s5w8tRpPvjwQ7Z9+SU2V/zGrVkZpY/isssv44YbbiC+c58FpdaOR7nStbnlnmXFz85qle7UOI9apTtLotO+O3Oic6GV0vXl092sk8Klwx5W7Sh3wVtJaalP/AsgIT6ezKysXvvGH3jrEx79LHBO/JqpY3nwwgUkpKaROCodfYzZG49yux+iorxVrG6/uTtu5Y5hGYwhc1EUFRXx0Ucf8eGHH1JRUdHl+bFjx/Ltb3+bhQsX9npiVldXx69//WsOHDjgOZaQkMBvf/tbpk2b1rsTdTq7ulTd3fIcdt8UT7udwwfyee2ll9C7CjHzcsdwxcqVaJ0On3odb9Glpe8Fl0PWALQ0QWUJVJZBRQnHPvuI9mrv0mzUqFFkZGQE9s1FGSAtE1LSITUdUjPEwB9tDOrjZVnm3//+N88884xPFkV0dDRf+cpXuPnmm4Nr4u50QG01VJUiV5VRd/wo9SePYampCpgtpEQjaYiONmAwGHyqLvV6PTqdDl20EY05DmyNUH0cpVq+3elk3Zv7eWZ/sefYpJQ4Cu65GMnP1+eU4adlseQXV/oNbPpjzJgxLFq0iAsuuKDXK6D6+npee+01Nm/e3KU03mQycfvtt7Nq1arIk3h2G58ebvQuQnSeWaRd0VJT8R42G5bWFo4dPkRDTTVREuglCa0kqkizs7OJjY3t1anaHQ6qKqu4c/MW3i/qOoi6uWXmJF742rX9/csItDpfg+DejzYKYxGtSIToVORHtLFLTEWWZXbt2sXmzZv9pvrOmzePe++9t9eJB3a7nSeeeILNmzd7jul0On70ox9x6aWX9v33D4InnniCl156yfN4yZIl/OpXvwp8Lzid4prxyK0opFbcNRtucUuPXloT/DBwt8DuCJ0BkGXhsqkq9w74VaXCd+eivqHBx+2TmpJCVna2d/CPiYVRWWJLy4K0DOHC6eOyvK2tjV//+tddLqYrrriCb37zm93791uaoOQMlBdDWTFUleGwWKirqw3Y3cqNRtIQE2PCFBODMcaMIS0dY2o6Uly8t4FFTJwrz9nslaeoLYO/3uu38MPudDLlbx9xss7r237pp99hVVSVnyygu2HOCpxOJxUVFZw9e9bTM7WgoKBLcLEzKSkprFy5kssvv7xXN1tHRwdvvvkmL7zwQhdlydGjR/PDH/6QmTNnBv1+w5X8/Hx+85vf+ARhDQYDd3z9dlZdfx06j9FRVoC7Kr6tVp/nnFYLR/fnc2DPHrBZeOnwSV4/Ebg6PSSNg0KFRusyCNFeIxFtAoOR6pZWtu7cxb4jR2lzCLG1NqeMVaPjyhtv4rY71hDVS3fVu+++yx//+Eef1dZtt93G2rVrw1Zf5HQ6+fWvf83WrVs9x5YsWcIvf/nL0LlInY4+J6D0zwAc2i189e6tm+Csw+mk4GgBNnfXq5hYZl16JZqM0ZCeDaOyxYAYIhoaGvjhD3/o4/JJT0/nxz/+MbNnz+76H5oaoPgkFJ8SA78i/mC3O6iqrqKmugaHHz+gRQZ7bAIx2bmkTZ5G+uRpaJNcVY8KjZQe+fBZ2LY54NMPfXGCn37kDZqvXr2a5//6mEgHbaiChDSR/pmc2e3HVFVVcfjwYQ4cOMC+ffu6baQ9c+ZMbr75ZpYuXRr0TWKxWNi8eTPPPfccLZ3SaletWsW6desiSjExlLz99tv88Y9/9FmNzp07lx/+8IdkZGT06r2Ki4t56KGHfCpj29ra2L17t98gq1arpWDnl+TljBb3qkXRF9q9KfpFy5YOOpoaaa6poqOpEUdrK7KlA6fDLjT8XZ+hLACLiooiKiqK6OhojEZjv33ebe3tlJWWdknPjjJEM2bSZMwpad4AqbutpDs7z6TYN8aAycShI0f57//+bx8BxUsuuYQHHnggbCtUu93Or371K7744gvPsfnz5/Pb3/52QGIu3TEwUhDmOI7UNvHmrr2cs8pUoOMvTz9DZmb3A1VfaW5u5nvf+55Pc4ply5bx4x//2OvuaWsRg33RSTHwN3SdFTtlmerqaiorKnA4ncgyVNhlSm0y5TaZmNzxTFt+MYsuvoTEXmQLOZ1OSktLOXXqFKWlpZSWllJRUcFXNOdYbA4sC/H8oRJufdXr383Ly2PJkiWkpaWRlpZGVlYWOTk55ObmkpmZGfSAXV5ezo4dO/jiiy/Iz8/3O3iMGTOGO++8k/PPPz/o921qauLpp5/mjTfe8HnPiRMn8pvf/Ia0tLSg3me48MYbb/C///u/nsd6vZ7vfOc73HDDDb2egX766ac8/PDDPjUCJpOJ1atX09bWxt13392jxII/Ghoa2LFjB7t37yY/P99vqqhBEsVf0RowSiJLTak/JLLVRCbbqIR4RqemkJ6YQLLZhNbdu6EXyEBTYyMlJSU+7lZJksjMyCA1Lc3Hhdxtl7FoI+2Sji/25VPW0CQUUB0y6RMmctu3vk1UYoqYiJrMIa14t9vt/PKXv2Tbtm2eYwsWLOB3v/vdoLpGQ28AEpKFz35Uluen3WBk9erVHtfD6tWr+fa3v93nj+0Om83G/fffz6FDhzzHvvKVr/CdO76OVHIWSk6Lgb+qrNv3aWtr41BRCYfrWyiyyRRZxaCvN5m45ppruPrqq4Muubfb7Rw+fJj8/HwOHjzIsWPH/BbdrBsbza05gTXjO68AlPrqnTGbzUyePJmZM2cyb948Jk2aFFQxSkNDAx9//DHvvPOO316pM2fO5Ac/+AG5ubk9vpebY8eO8fDDD/tUeSckJPDwww8PaFVtv6ktg31boKEaElJh7soeV1tu9u/fz3333ecxhMnJyfzP//xP979/gM978803+eMf/+jz0ksuuYTvfve7ovMdwSlyunH73t944w2/XczcRXPuJkQZGRl9qsw3Go2cf/75XLZyJXOmTkaydCh83G1CXtwtH65M7XTJizvaWikvPttF9ychIYExOTloNJrum9Iv8BaV2h0Ozp4547OyiI2NZdzYcSL9V9IIyZrYBCFhE5cAcUneDMP4pF4Hwe12O7/73e/45JNPPMeWL1/OL37xi0HrM9w/A/Ds45CaKXz1aZli89OW8NNPP+VXv/oVIIIvmzZtCkl+vT/+/Oc/s3nzZlK1MCZK4sbzFrA4exRSTeDAmIfEFOTR4/miqIw/v/IGNVbvbNxsNrN69Wquv/56YmJienwrd8vDDz/8kG3btgUlE51l1PDPBbFo/cwGO8cAJk2a1CuXQVxcHBdccAErV65k5syZPc44ZVnm6NGjvPjii3z++ec+M3idTse6deu4+eabeyW18MQTT/D66697jplMJh577LHI6KTUj6pru93OHXfcQWlpKSA6tz3++OPdf38BPu/ktMv41hMveL4Ps9nMj3/8Y5YtW9a3Xys/n7///e8UFhb6fb68vJwTJ074fP8ajYb777+fq6++GlmWPQVgDQ0NVFRUUFpayunTp/2mCbvJzc3llltuYeXKlb2bATscHNqziyf++Bgd9XWiXkYDeaOzWXzeYuauvdenxaQbf03pnbJMUVGRT8FaQnw8uWPH9lwwJkki4zApVcjhJKeJ5JTUDB/doq6n7+C3v/0tn376qefYqlWruPvuu4P8A4SWAUkDvffeezl8+DAAK1eu5Gc/65t2tV/sdqirgupyzuz6kj1vv85ovYRBI5GclMTonJzAX6Y5DsZMgByxybHx/OUvf/HJFgC49tprWbt2LXGd0xn9YLVaeeutt3jllVcoKwu8ypAkydO+MTs7m/T0dFJTUxnbcJr03Zt9KnxlScPL1jRePd1AdnY2q1evZtSoUTQ2NlJfX09VVRUVFRWUlJRQVFTU7eeCcOesWrWKyy67LKhA1NmzZ/nHP/7Bjh07fI6ff/75/OxnP+uVH/Pdd9/lscce87gnYmNj+dtf/8Lo9HRvVo1bK9+thuhuTO7TtNyJp6m5J20UfBujK1AaKsldhSx5992prsp9d9+Aphp48SH/qoySBu56HFIDrwY///xzfvGLXwBi8Pz73//OxIkTA/+RukkGcMjwjd1NlLY7SU1N5bHHHmP06NGB3ysAFouFxx9/3CNZoCQlJYUlS5aQnp7O7bff3iedfVmWKSkpYf/+/ezZs4c9e/b4lXTOzs7mrrvu4rzzzuvV+Tc1NfGb3/zGRwa6trbWZ+XfmQe//z0eeuB+j4wzbS04m5vY+u5b1BSdIV4rEaeBMRnpvY7HeJAkYRRGZYvYZvY4MUFWXH92u52f//znPskpv/zlL1m+fHnfPrMfhN0AFBYW8q1vfcvz+O9//3vfZnx2u5B7qK10SUBUQk2lkIFwOnE4nRwrKPD4CI1GIxPzJvpWc5rMkD1WKOeNmSBE7FxfjCzLXQb/lJQUfvazn/kPGndClmW2bt3K3//+d7+djvR6PbNmzWLOnDnMmDGDvLy8wC3uast6HdhV0tLSwokTJzh8+DB79+7lyJEjfm/i9PR07rrrLpYtWxbUTH779u089thjPllEM2bM4OGHHxYuAadTZE81N/jopXuqN13NZarOFXM0fy96ZKIkCXO0gYmTJoWnSMZpBXsTOG2g0YMuDjS9DEBba8DWjWyCPhEMqYqq4ChF0VYUu/Yf4GjhSSwyjJmQx+XXXudfUtsdsPzsxW6TAZ4r7uBfZTL/93//1ytXnJvm5mYeeOCBLrLKS5Ys4frrr2fevHloNBoefPBBHnkkcHphb1Q2LRYLO3bs4N133/Wb4rlkyRLuv//+XnkGHA4Hf/nLXzyryr7KQncekA0S/OGXv2D6mGwhL9PU4GpspWgU05thM9oIuRNh3GSYMA0M0XR0dHDvvfdy8uRJQEyENm7c2KdapP4QdgPw8MMP8/777wMwZcoUnnjiie7/g9XiHeDdWj91VULUrRtd7IrKSsrLywExu540aTLGrNGQkQOZY8Sgn5gSMCPn9ddf509/+pPn8eTJk/nd737n8al2h8Vi4bHHHuPDDz/0OS5JEueddx6XXHIJixYtwmgMrnYh1LS2trJt2zY+/PBDv40zli1bxo9+9KOgVjiNjY38/re/oeLgPjL1EqN0EtMy0lg+azqa1ibXzLxnOqcEp6SkMDqEMsaAqKmw+mk7GJUG+vjg36ejHBzdNB7XmiE68Izx5KlTnvqI7OxsUlNSuv88SwXYA7cS3V5t5dSc6/na2m/2OkXaYrHwve99j+PHj3uOTZ48me9973tdJmarV69m06ZNAd+rrzr7xcXFvPDCC7z33ns+rqWEhAR+8pOfsHDhwqDfS5ZlNmzYwHPPPdcvWei2tja+853veP5/WloazzzzjP971uEQhqC+RjTCqqn0TkhtPcjUaHWQNw0WXkipHb75zW964oErVqzgv//7v4P7xUNEWA1AfX09X/nKVzx5tz//+c+5+GKXv1SWhSWtLBX1Am6tnz7IPzgliS35hyhus1Jqk5l68WXcfNd/+Y1H+KO8vJw77rjDUzQ1efJkHnvssaACXW1tbfz4xz/2uLhA+MivvfZabrnlliGX6VJSUsKmTZt49913fVYF6enpPPzww/7z/luaRPe3c6ehvBi5topz5875rARSkpN77YooK/PVa5k8aZK44SRJ3ChandcN427nqNF6XTVKl417IHT/tLXBmS/Bb6t2YMx5oDd1qjaWfSuO3e6lpnPQHrh/LfpEiAo8qPsYgKxsUlN7MAA9rDiqG6wkJaWg1UlgjIOsKZA5zlssmZgSMC/8T3/6k08c5tprr+Xee+/164cP5QrAH6dPn+avf/0r+fn5Pse//e1vc8sttwQdX5Jlmb/+9a/8+9//DtiUPhhZ6MLCQr773e967otbb72VdevWBfnbIK6f+hpRB1V+DkqLxPgWaOI6cyFvtWl57M9/9hxav349EyZMCP4z+0lYDcA///lPnnnmGQCSk5N44a9/RldyCkrOQulZkYrZGzRa0W8gJgbaqsXyPjWLLxyJ/Pef/wGICt8XX3wx+ErK2jK2/fXXWCrPUdHh5IvWaH779w1BLUVlWebnP/85X375pefYzJkz+dGPfhTSphzhoLi4mD/96U8+N19sbCyPPfaYuEkaauHYASg8DBVd6wRkoFgheAWiZD8hPl4sec3xXfTbPUU/ripRu0bHAz/7OWdLS7HKMG/RYn7129/2uajFhx5qKlh2I6y8Pbj36sYnj6SBNf8jejH4SARYPdvmF1/kcP5eoiVYOHsWy887T2S3WNpdGS+Kak8Q13W7/2Iu9+3aZXBUrmp0OlFImZkDo8eL1a8hmhMnTvhk31133XV873vfCzjQ9tS2MRQ6+7Is88Ybb/DEE0/4VK3feOON3HPPPUEbAafTyU9/+lNee+01n9WN+1yDSYEF2LBhA//+978BoaH1n//8p39uGUuHyDo8fUzcS516osvjJvOtd7/kpCvj7vLLL+fHP/5x3z+vl4TNAFgsFm655Ra0LY0sNmm4edoEcpOCXHbr9CKqnjLK1WzGFWVPSIaDn3bJjnDI8IfjbbxXaeXqq6/m/vvvD+5z8j9CfuMJn4CrEwnNdXcHpaf/8ccf85vf/Mbz+IorruD+++/vkm7pT5p3ILXlAyHLMps2beLJJ59ElmU0wJLUOH5y2XJMdT1kTRmicSSn88rWLzhUVkmtXcYZm8Cfnn6G6NjgC/q2bdvGz3/+c8/jZ599tk9BzS689Bgc+SLw89OXwaogrxPoJgtIVF13h9K9mJeXx5NPPun/hU6HMATtrbD/E/jiRR9fs1OWkfAz+LsxjvEf39BoIHss/9p9kOf3HaVdFlk469ev9878A6Sc+lMW7c2AGiynT5/m5z//uceNC+J++tGPfhS0EWhubmbt2rUUFRVRUVGBTqdj1apVfPOb3wz6fuvo6OC2227zVLJ/5Stf4bvf/W7vfyF/OBxw8ghs3wLV3vtrx/h5/OQv/weI2OXrr78+YEKKYTMA77/zNsf/8UeWxWjRajRMmzYNnc7PzC4+UUTM0zIgJUMsYQPJP3SbHSHzjd3N3P8/fwiuUXhPs7p7/tJj4HXt2rWcPn0aEEUdjzzySJeLNdANtH79etasWdPlPQfDWGz95BO2/PF3XGiCJJ1ETEwMeRPyfL+CuEQRyMrOFXEVVzylpKSEO++809NP4Vvf+hZf/epXg/5sWZa58847PfGA2267jW9+85v9/6VCuQJw08fgfFFRkc9guXnz5m5lmf19Xlmbnb1fbOWazG4yrmKzQI7xG6C02mwcOXIEqwzbWx0svu/nLF5+kXiyhxTX3tQU9IeGhgZ+8pOf+ASnb775Zu66666g32Pfvn0+E8B7772XG2+8sVfn8dJLL3lilSaTiZdffjm08bvGOnjyYc9D6+U3c+2P/ttT1Pf4448PmGRKeAyALLPlnq+T3CD8uz7+4VFZIgMna6wIzpp6zqn30MNN/fw5C6v+L0jr2c8BorS0lK997Wuex88880wX/3lvl9C9NRYhofAIfPImtacLKVYE0EZnZ5MyaSpMng1508VqLMBM7B//+AcvvPACIAqcNm3a1KsOSMobbsyYMR63Yb8IgYEPFbIsc8stt3gyVH7yk5/0WoQsPz+f+vU/Z0VaNxlM05fB9f8lZpdlRRTu3sGGVzZztrqOVIOOlWlx5MTFEBUVxdR5C5CuvhViYwbs7xTM5Ka9vZ0HH3yQgwcPeo65aw6C5ZFHHuG9994DhFvzhRde6FXhWltbGzfffLMnbTVkbR1lGU4cgi2ved3fGi1868f84Be/8rQ4vfvuu1m1alX/Py8IwlJ+Zi0/R0qjN2gWmz0GLroavvtz+Pr3YPlVMGFq7wZ/EMvTbhgTbwx+6dTDe9HQTdAPfApncnJy/AZPN2zY4HfwB5HC9vTTT/u8X+fB3/26devWBSzU6TM2K7zzArz2T2isIzk5mcSEBJwy7Gtz8tszDdhv/x4sWSlWZd0sw2+55RaPK6G2ttZvr97uWLp0qWe/c2FOn0nOFDNYqdMl7nbbDNDgD8Jlo8xsCdTCsjvMZjMVHT1kWCWkCfdpxmg2Hixkyj0P8siWL9l04Bh/3XWYG9/+ktdPlZKQkIDU3gqvPA2fvhw4SCk7xeogBGzcuJEpU6bwyCOPsGnTJh555BGmTJnCxo0bfV5nNBp56KGHfAKhjz/+uI+sS09861vf8szYm5ubeeONN3p1riaTiUsuucTzWFm01WcqSuDFJ+GNf/vGPpdfAbEJPm7P7lJZQ01YDEBVSYlPsCp28XKYu7T/Ym8J3Xe9qXH0InjYw3uR0H32jlLtMlDRiDLNsafne2Ms+o3NCi9vgCP7vMc0GlJWXs3DtTL/bnBwoLqefZ2yMwKRkJDA/PnzPY87Z3X0REZGho9LpDc3e7fMuVjMYJfdKGbHy24Uj3vw2YeDuXPnevaVs9tgiYuL450Kq0/PWx8kjSduFWgy4ZTh17uOUmFzvYfTAYUHOr+TLz1MhIKht5Mbk8nEQw895EnEsNvtPP744z02p3eTmJjo4/bprEUVDMqirAMHDnTp1xA0tZXw+r/gX38WwWA3Oh1cehPMF8qsymLKzu1pw0lYDECj0UyVXfzBtVot2p2fwLN/FqJr/WHuyq4zOhcOWea1oubgv+hu3kt5MwVC6eLwN3AXFhb2aACURTy9MRb9ZvtHQvHUTeYYuOMHmG/4OpMWLPIc7s1ANX36dM9+b8/V3bPVTUhnQMmZwpW36n7xcwBn/kqUf5+KigofNcpgSEhIoLTdyR+Ot3c1Ap1WNd1NJmQZnmnVea99Rw/3Sw8ToWDoy+QmJSWFH/3oR57HBw4c8Gkf2xPXXXedJx5XXl7uidUFy/Tp0z33uMVi6VYx1y+NdWKFvfGPwu2jJHcifOMHMMt7rylXvcFIzYSKsBiAuIRENtTaqbPLOOwu6djqctj0JLz8tMj37wsBlvUOWebR4+2caezgxIkTvXovZ2ehiCBdBCmKYh63xosb93LXX8WjG61Wy5133ul53FNFZ18qPgNyROGCmDIbVn9H6JggUjnd9NQ3QIlyBu+v5L8nlEG27jRkIpXU1FSfQjulMF4wGAwGYmJieK/Syjd2N1M7ZXnAVU1PBrisqcW7Gtd1tyqXgsqG64m+Tm4WL17sEwz9+OOPg/7M1NRUH7mNgoKCoP8viMp9ZQ1P0JMSmxU+exc2/EGssJXGOjUDbroTVq3t0sNXuepVTobCTVgMQGZmJq0GE49V29nZ5vSd7Zw5Bs/8CT56XeTI9hY/y/r/aUjn/UqRQ9ybi4Q5F3P26vt5rriDj6qs/Ke4g4bbfxuUi0DpoywvL/e0sgu03FXiTqNTBsDWrl0bMHDa2Vj0G+W5Wa1CosGFsqNXbzR+lLLBfZnBKI1GQImMCMat/eRGme4YLO589NJ2J8dHLwy4qulxMqF1CrkO78kFOOlen6L/z+vH5GbFCu+92Dm/vzefW1lZGfiFAei1W+bcadj4GOz8RGhZuUlKhWtug298X8hBdPp7t7W1+RiAbnWiQkxYDIBWq2X58uW0y/BCg4OHzzXjyFAESWUn7Nsmlkfnerc0A7os62dceJnnqXfffbdXM9Cx85bwRmscvy1oY/2ZDt7cFrifqpJRo0b5BG7eeecdoPvlLohZTUFBQZcc6ry8PNavX9/FCPgzFv1mkiLF7NRR+MfD8OFm7GdOsP1Lr175+PHjg35LpcTEuHHjenU6TqfTZ0bcZyGuIY6yuLAvgW5lQVJ3M9LuJhMaCb6RoWiBGhsVWNdGlkMSBO7P5GbUqFGe/aampl59rjIhpC8+fGUzox6ziPZtg03/EJpBbsxxcPnNsOY+mDwroKE9ePCgR4LbbDaHdrXfA2EToVaWcu8uqWRjexRc/w1RzOWmuUG4hfZv79dnXXLJJT5R/+70SzojSRJXXnml5/FLL73UpYtVIC6//HLP/iuvvEJ1dXVQfv9Ag/maNWsoKCjgwQcfZPXq1Tz44IN+jUW/ueAKUR3qxmaB/dup+etv+S9tA2sStSyP1bFsQq6obO2BwsJCn6bbixcv7tXpHDhwwCOXrdVqB7QUfiBRDiLKRi7BkprqdRt0554LOJmQJH6xaBqjY1wrrOQ06KniPQRB4P5Mbmpqajz7ve2TrPwbxcf3QvsJURCm/P9KQ9SFQ7uFR8NtSCUNLLoIvvkAzFjQY2W7Mitszpw5A9obIGytaMaMGcNNN93Eyy+/DMB/nn+ehYsWMXPN/bDrU1EN59Za+XCzKJ+f37depWazmZtuuslTwv3CCy9w6aWXBu1Lu/7669m0aRPt7e00Nzfz1FNP8f3vf7/H/zd16lRKSkpobGwkOjqa+++/v8cq1rNnz7J69eqAedB5eXn90lcJCkM03LxOzFp2fAQd7TQ2NlJeUYFJIzHDKHFRSgqJb/1LXLwpo0QqaEq6GDQSUz0NMRwOB48//rjnrSdMmNBrtVdl0+x58+b1qdlIJKAsEuxulRgIZdzJ7wqgrUXE2ipKWJOoZdlP7+LpL3Zxtq6RRC1clplETlwMLS0tJC5eDpfeCJ+/3P2HhiAIDGJys2zZsl4XlG3f7p0c9mYVLMuyTzwwJyenV+d78uRJT0KJwWAIbAA62uAjRZppbAJcdztkBF/Nvm+fNxtv3rx5vTrP/hLWXmR33nknX375JWVlZciyzK9//Wv+8Y9/kLxkJYydJHLQW1zLuk/eEpZzXt8aW3z1q1/lnXfeoa6uDqvVyu9//3v+9Kc/BVVGHh8fz6233sqGDRsAUbq/ePHibmey/oq2/vWvf3HhhReidQ2M/tixY4dHV/8Pf/hDeIu8ukOrhQUXwOzFHHzxXxzdtYkJetBKQgMl0+2GcTq8PZ+VuBpiHDlXxrSSY2SZNdQ7ZL5+w9VIjXWiF7K+Z9nlXbt2+dzk119/fQh/yaFF5wK/gASQZRg1ahQGCZK0YCw5Bbs/E5pNddUisaKTtlZebLSnAXxdXR1FxcUc///tnXl0HNW1r7/quVvdrdZkS5Ys2caTbMezsSGG2ECAkAkIGXDCxTwekORhsoAHBBIcHMgjQAiQe8PNBYchLyQQSAIhl+kRYgO2g43xbJDlWZI1Sz2rx6r3R1W1qjW2bMkYdL61alVVd6vVUledfc7ev713XOZ3x6Lc/4Vvqi6S+efBxpf6TwQbhiBw5vMMcXJTV1eXdW0MpenNoUOHsmbwM2bMyPlnQS0trTNt2rT+Z+X793ZXAHU4YcX31e5hOdLV1ZXl/8+l9PxwMqIGwOl0cuedd7Jq1SpSqRTt7e389Kc/5aGHHlKbwX/7enj2N90VQN/6GwQ74awL1YSWIeByubjhhhu46667ANWv9txzz/Gtb30rp5//5je/yVtvvZX5Mu6++27+/d//vU9/9kCB3nXr1rFw4UK2bds26CxP10EvXbr0Y6kNlEql+O0TT2ayeO0SzPA6uePir2GOR6D1WP8uIEWh/WAt6bo6luSpN0dhQQFVezbAHi2OYHdAnldtrZenbS63ujnzCMvwxIP345SgS4GZM2cO2X30ScLoh85KWEyntZ4JEdjxT9jwQrZffsOLUHAanwvEGV+m/pwlWI+y7u85dK4yQdl4nIuWcd/PH6Y5ngaCvPLKK3z1q1/tVtb1V+foY5LNKorCr371q8wsvKKiIiuXYjCMyVvTp0/PrfSGAWNjGaOEtxcRQ9nu8ZOGNPiDqgYzrjSGulI5UUa8G/H06dO5/vrrM8Wwdu7cyR/+8Ae1jILXB9+8Fp79L3XgB3j/HdWqnnmeWoZgCCUFPve5z7Fs2bLMl//4448zffr0nKyq1Wpl9erVfPe73yUejxONRrn55pt58MEHexmBwQK9LS0tLFmyBJ/Ph8vloq6urlc3LR1dBz3ibp8e7Nq1i4cffjhLH21ze/if/+fnFOuzpXRaTWRpbVTLC7Q1qb0Zgn462tuzSkc47A4qKnose+NqAxg6evuRZUWh6eBBrrOEoMwKksTUShfSbx9QG6U49IYpTrXFnt2h7vXNauveLFatEYtVTbDRS0nrs7YT6OXbC0VR3ZWyrCo99CbnyaRWDTSpKquS8e699n8401/HaYVmHBLM/2gT/OaQ6kJIalUw+60CqkDnflzWbhVRKpUiEU9gt/dYZTldaiXQ0go1v6NiIjicOIFFWz/k73//OwBr165l8eLFlJaWqrP8yuoTakI03Pz2t7/NEhZcffXVOfvGU6lUVqezZcuWDel3K4qSlQMzYF2efEMMpe6g+l3msPLV0dWDoMo/cy18N1yclHb0X/nKV9i5c2dGovnkk0+ycOFC1VecXwiXf09NS9fzA/zt8MpzsO6/VcXK1Flq7aAcjMFNN93E3r17aWlpQZZlVq9ezaOPPppTeeYJEyawevVqfvzjH6MoCn6/n1WrVvGTn/wkK5V/sEBvLBbDarUSiUSwWq2DJqcNa5KXkT4Gvpq2EL///e95993sSplVVVXcc8892f8ns7m717OGoij86Y9/5IXXHqfEIlFskajwurn8vC9gVlJqj4dIaMCOSQpqOWqj5HRcWRl5Emo99eFCktTGKrEekssNfwXvBMjTO8Jp7SQzn1np7hFgbEWZTg/YlGgwJieCFDvUQSwvEoBQD7lramCVi5UIDruDcCxGR1rBjpUZ8z+rCiuKxqjFFPPc/apNrrzySt566y2i0SjhcJibb76Z+++/X42V6cq6jxlFUXjyySd55plnMo8tXbp0SO0S33zzzUzw2Gw2Z5V1yIX9+/dnrk2TycRnPvOZ/l88cZo68Ugl1Uque7dlJXgNhlENNlJ90gfipBgASZK46aab2LNnD83NzciyzM9+9jPWrl2ram29PvjO9fDOa2pgUr8Ro2HYtlHdLFa1EmXFRLUaZWmFWmO+Bx6PhzVr1nDDDTeQTCYJhULccsstPPLIIzk1ZznzzDO5/fbbuffee1EUhWg0mlHlXHXVVVit1kFlWsblpt/vH7RH74jIvvqo8Jh+96+8WBPl3eZE1ku//OUv8/3vf39Q/X0sFuOXv/xlpvNZW1qhwOXj6nsfwmOshZROq+0gwyHVGISD6j4aRomE2LbhHVpaOsgzQZ5ZotDnG5nGOel478FfJ3gYksrQ20OeABbDBKZvWeIggeGqiWwtXsRvn/0TACU7j/B/b7kn53yN4uJibrzxRn72s58BcOzYMb773e/ygx/8gHPPPfekzz57cuzYMR588MGsoOiECRO47bbbhlQSeu3atZnz8847b8gDq7G/R3V19cCiBLsDZi3sVjLW7hmSATDmzwzVTTUcnJSm8Dq7du3iBz/4QWZG3Gfp345WNZHio+2DSxDzC1Rliq5OKRyjNoxxuFi3bh1r1qzJvLSsrIxf/OIXjBuX27J2w4YN3H333VlyvcrKSm644Qa8Xu+AVT63bt3Kli1beOGFFzLupP46FZlMJjZv3jys0f9E42Gsj92E1MdXq5fNbuiSmTp1KqtWrRrYx6mxd+9e7r333qyU+LKyMu6///6cm9+kUinuu+8+3nzzzcxj8+bO5b6f3oU1mVDdIbFY72Ypibi6xWPacazb7aI3Xkn1kaiTSy/fATp55YzZku2GslrVpjdWW7fLyu7gve07ePWtdcQUqJwyle/fdLPWB9il7tc9O2iF2tY5F7JixYqMAfnqV7+ak2LNyHPPPcdvfvObrMemTZvGFVdcwZIlS4ZUyXU4qKur4/nnn+fVV1/NMoxVVVU8+OCDOTdkSaVS/OhHP8rca1arlaeffnpIeSWpVIpvf/vbmb7e11xzDStWrOh+Qc9V9dxz4IP3YKeW9V9WqU5mc+Tee+/ljTfeANQWm8aGPSeDk2oAQG0K/6c/qTMYs9nMY4891nfiUKwL9u1ULeqR/dmZdYPhcIKvmL0Njby26T0609CZUpDzPKy6406q5y/IqZfqwYMHueuuu3r1GV20aBFer5e77rprwEYZfr+fF198kb///e/s3r27z0zGadOmUVZWRlFREZWVlZSXlzNmzBiKi4spKCjA4/HgcrmwWq1YLBZkWSadThOLxYhEIgSDQdrb22ltbaWhoYEjR45wgbmFy8f3Pyt8PerGc/H3OOOMMwadWfn9fp566qleBbVmz57NmjVrcp61hMNh1qxZk+XXnTlzJvfff//wyD51l00qqV4rqRS8/GuoHSCxb+JcWLbCcC1I3ccmk9aC0tR9bDZ3xxcs5u6BP8fZ6Y4dOzKDtcVi4YUXXsjWp+dYwvqxxx7L6sW7cuVK/u3f/m1IM/i33nqLX/ziF73KbhQWFnLuuedyxhlnMGvWrBFpTKIoCkePHuVf//oXb7/9dp81fs466yxuueWWnLX/kUiEe+65JyvWNtTeFADPPPNMZgVhNpt59tlnu+W3ffVNgOxubAvPVisf54CiKFx++eWZLOXjKRN+opx0A9DV1cXKlSszFnbKlCn8+te/HvhCSyXh2FGoOwCN9dB0FLpyy/Zt0QZGHUmSKCuvYMzE05DcXjVbz6hO0VsYascxReLxtWv561//2suXX1lZSSqVIp1OM3HixH51zel0mi1btvDnP/+ZF198kWAwiMPhoLS0dEQ073dWuwavGz9IN6xQKMSf//xnnn/++azMakmSWLFiBStXruyzj2xfHD58mDvvvDNr9TBv3jzuueeekdX8j0RTmBMglUrx9a9/PeP3/drXvsb11/eYLebQeSyRSLBq1aosnfs555zDjTfeiNvtJlcaGxt59NFHe8WDdOx2O9OmTWPq1KlMnjyZ8vJyysrKKCgoyCkgqygKoVCIpqYmjh07xqFDh9i/fz979+7N8n2XO01cVGqj1GEiKNkpvegKFl90cc4Gbdu2bTzwwANZ5TXOOuss1qxZMySjuHHjxkz8D3qsrur3w29v7T+25axS4yjfub5P13R/v+9HP/oRoN5Xzz///Im1nzwOTroBAFX7bex7OdSuP2pD+U41aNymqVQ6WqGjrVuTa6Cjo4OjdXVZA7jH42H8+PHYbYP4gCUJHE6CyTTba2o52tpGVIaorNAlQ0QGkyuP2acvZv4ZZzJxejWSw6X6BvuYHabTaWpqatixYwc7duygpqZmeOrfG7hmooMVlQP48wcY+A4cOMDLL7/Ma6+91itbtaqqiltuuYWZM2fm9DkUReG1117jkUceyXqv5cuXc/vtt49827tTqCmMjnGGCbB69WqWL1+e/aIcOo91dHRw4403cvTo0cxjBQUFXHPNNZx//vlDcuN89NFHPPvss2zYsCGnkgmSJOHz+TIlPCKRCF6vl5kzZ+JyuYjFYoRCIQKBwKDvd+FYG/97mhOz8T4xdCMbiNraWp566qksnz2oQePVq1cP6fp65ZVXePihh3ArKYrMEpOLfPzgihU4wp3qGNNxcGB3Yul0WHlnzoN/MBjkuuuuy6iAzjzzzExs5mRyYgbgV6tVnXeeR50561rvPA+4DI+58nqlQz/88MO89NJLmfOf/OQnQ5Zr9UJR1MCxv13dAp3qFvbjP3KIQ7t2ZPmKTZKJsaVjGVMyBpNp8JmCAoSCQZqamzOlC3pis9nI93rx5ufj9ngwOfNUY6BvGUmjeq7Y7IQSSRrbO2hq76Sxo5PWQJCmTj8d4QjtoTDBaFdmpQGq+8Bms+F2u3G73RQVFVFcXExZWRnjx49ncmEe5X/9eVav4wx9DHx1dXW8++67/OMf/+DAgQO9fsTj8XDFFVdwySWX5Dzrb29v56GHHmLDhg1Zj1955ZVceeWVJy/geAK9fEeCeDzOddddl6l9ZDKZuPHGG4fU8UonEAhw11139WrAM27cOC677DIuuOCCIa2wgsEg//znP9m0aRPbt28fsFxFY2PjgC7NXDhz2kTuLvVjoo8hqB8DnUgk2LBhA3/72996/d2SJHHllVdyxRVXZK9QFEWNKUXC6vgQ0cUJAWKtzezc8A6hY/X4zBImCcwmE5OnTMFlbAMZa4T0ACVihtBjOhQKceutt2ZaX5pMJh577LEh1d4aLk7MADxwa+6vzbhVVMOQtDl44tk/cbC5lXBaoUsyc/2ttzF/6dlD0tEOBX9nJ4/cfx8fvv8e+SYJrxm8Zolx+R7Omj+PyeWlmLqiakJONKz6lPshEonQ2taG3+/vV+YpSWp/XXeem7w8F668vCwlSM6YTGCzo1jtSDabajwymvge53rgsX4vbP5b74Hvi9fRMXEBu3bvZtu2bWzdurXfWuf5+flccsklXHbZZTlX+Eyn07z88susXbs2y0h6PB5uv/12zjjjjKH//SfKcfbyHSmOHj3K9ddfnyWDXbZsGTfccAMFBQVDei9Zlnn22Wf53e9+12vAttvtnH322SxfvpwFCxZgG2y1ayCRSLBv3z5qamrYt28fR48epaGhgVAoNKCoAeD000/PMjy6u7OqqopJkyYxdepUZs6ciedff83JRRePxdi2+T3ee/cdPvjXJuRYFw4JHCZwSuAwSUyuGMeFy5cxxutRxQRd2hbT7uce96isKLS3t9PY2JgVx7NYLEyaNIm8noZzMEFBju7ExsZG7rjjjizpd69A81BIp1VPyNjjKyF98gxAH8Ticfbt25f5AiRJYuKECeQXl6irBqfmj89za+eGzXhud+QciFMUhTfffJNHH320l+tl3LhxXH755Zx//vnYrFZ11tDzQuqKqgHqmPpYPODn2KEDtNbXEfN34jJJmAf4KDarDafLicPhwOFwYLfbsdvsmC3m4aq+m0FOxUjH/ShygkRSoTOcJhjqIp5MkpAV4grqJkNcUUho576SMUyd9RmmzpyF1enKNixWq5aAZTy2oVis/Ov9rTz2+OO98hoWLFjAbbfdllXMbLSzf/9+br311l5ltFesWMGll1465JLYzc3NPPnkk7zxxht9Tkjsdjvz589n0aJFzJkzh4kTJx7XKiwajXLLLbdkejj3xVWXXcrt112N2+nE63LislmRUqnuAH0yCakE7HoT2g73+z6RtJ2jrSni4f4bPblcLsaOHUt+fn5O94+sKHR2dtLc1EQ8kS2HduflUVU1AVthkZpb4StW62AVjQGLBE/ecULuxHfffZf77rsvq9jkpZdeyvXXXz/4d6EoEAqoiZntzdDarGbqtzapuSq33J/DX9/HRz8hA9BY172ciobUJZZ+HtHO+/DJG4lEIhw4cEBtGqNRPm4cJWPG5D4gmkzdcjpnXreszniceV49Dqdlnv79M7z44ou9/JQ+n4+LL76YL33pS0MKyrS3t7Np40Y2b9pIzY7tkIjhkCScJnBI4DRJ2HvMXPRzt9VCvsOBx27DZTXjNJmwmM2YzCZMJnWTJAktbQkUBVlRUGSZdFomLadJp1IkUylSySSJZHJIJXCdTif5+fkUFBTgGEIfAAXVddDc1EQkGiWpQEJRSCqQNluYMr2ayslTkPSMXYtmNCwWw7m1W1GjZ/L2d6wrcSwW1a2oZ/x+zBr246G1tZV77rmnV+c1n9fDpRdfzJcvugifx6Pe4OmUOtuT05CWux+T05BKZ87bW1vZ+M47bNv6PslYF2bAKqk1nsyoewvgstspHVPM2KJiigryKfB68bpcmEH7XZqSSk6re/33p1N86+m/8NyOj/r9u741Zzp//PaXB/8HDDKrbupI0NjeW95rkkz4fPkUFxfjysvLaZxIp2XaOjs41NRCW1ecYFohKIM/rdBltnH2RV9i+cWXYvIV9e+BOE53Yjwe5z//8z+zXN4AV1xxBVdddVX34J9MqImUIb/quva3QWd7t0s7mej13hk+FgOQC8lEtkGIhiAaySQGEQ3jP9ZAzbb3sRn+sQUFBYwfPx7zSJZGtVjpwkRtXT376uqJphUiMnQp6j6GiSkzZ7Hw7M8xY94CTK481ZDY7IMOOKlUipqaGrZv387evXvZs2fPkNsAWiXVcNiNxkICuwnskmQ4hkCki/eOHqOzq4tSl5MvTCpngteFXft5m0nKulGsVitutxuP243H48VmG1pANi3LdHZ00NraRqyPxj6FhYWMKxuH1XpScg2BNKQCoKTAbAdXCVhd3TJOo5xTkjSJp2Q41yWgkvp4Fvq54VbJZA7rWcSyep7Z5G5pqn4uGzbtXJHTNDc2cqyuDtLprMtKkiTy8/MpKirC43YPacYuywrBYIBOv59gMJipNz8YNpsNu82GzWbDarNl5McWi0Vt72o28+M3NvDA+i39vsdty07nnguWIqfTpNNpUuk0KW1ikkymSCQTJBIJlHSCqRXWPv8uRVH48EgXca1/sdlkwuP14vP58JaMxex0gd2eiaWhCy8cWvkQbbJX19bB62+/y6vr1tMRzb5OJUnii1/8IitXrsx9ojdEd+K+mo/4xT13E2w6Rp5JwmOCIoeNy75wAdXjKzKxCEJ+1bNwPJjMcPPxlZI5MQOQTg+pVs9AHDx4kB/fcTuR1hbcJnCbJCaMLWHlNy6jLN+jGg29YFY0Al1h9R82TPYrHk/Q0tJMR0cHch/vabVYKSgsoKCgAKfLpSp9HM7u1YXDkb3SyOzV1ygOJy2BEPsPHuTAgQMcOXIk41c90RaIAwXkxo8fT3l5OZXjxzNl4gQmV45n2sQJFLrdWr0abdMTqpKJ7vMejyuJOP6WFlrq6+hsbcYsy1h63Lter5eysrLsANpIkwxAoo+69UZ99ilOKpWmuaWZtra2Pgdri8VCgc+Hz+cjL889pAWPLCuEI2FCwRDhcIjoCV5vR4MRvvbfm/psUG+S4HdfOJNSt4ukAinUhOuktipMKpBSIKE9NrXAygVVDkzGUtmKwh8OJ2jwVnLajJnMmDOXabM+g8XpyinvIhwOs27dOl555ZU+W0Hq5SG+853vDF4yPp1WEw8ThnslriUjxrWkRT1ZMaa5h7uiKLEoDQf201qXXdvJ6XQyYcKEIa2ys/Dkqy6porFqiZaSMvU4R3FGT048BuBw9lb9GJVAHk0l5Mwb9Ivz+/2sWbMmK7pvsVi4+uqr+cY3vtFbeyzLBj+9ZhiyfPUG/70xMDRAUlkqlaKtvZ32tjYS/bSBs9vt+PLzydeKveV8L0qSOksxxDIUh5MuJAKJFP54gvZonI54grZIF53xBIGuOF2xGMkeLh2z2YzFYiEcDvP444/36SM1m83s2bOHadOm5foJeyHLMq+++iqPPPJIRrVQVlaWCfJJgE2CpUsW881LLmbKhAlaZq5uOLRs3ZShcJq+JZOQTqrPZc61Y93tkEnsMrg8sj5gfwXU1LlBe5ebeEJBUWQUVPeBxaL+7+x2O3a7HYvVOuzxlwGRE2rdHzkJJqval1crSZFKpWlra6OtrY1kj+xmRVGLRUgWC96CQnxFRRQUF2O12Q0uMd0tZjg2a8eayyyRlmlua+NYSwuNzS00tbbR3NZGIi2TAlKKQlobqNVztXd8UnsupcCBhkZ2fFTTS78zFBWQzqR8J9+YUkhVvhNTYSmW0y+kcu7iwRVn6XTmWopFwmzfsoX3NrzD7u3bMclpbJJ6bVokCZsEHoeDRfPmsGD2bLxOh2HCY7xeE9nF/HpebzmQSqU5cuQwQUOQH2DsmDGUlpVlGbtemEzgzlfL4/iKwVeoxSOK1NaS9uFtl3rygsAmU7dk1JOvJmDpe7dXbaTgySdtMvPUU0/xzDPPZA1qn/nMZ7j99ttPvF2gXs1Rt9aaxSYWyTqXuyI0HTpAw8EDhFpbcEkK9j6kohaLBa/Xi9frxe12Yz1OS9wvJnN3wDvPrQbGM/JaNz/8j//ivv9a2++P//CHPxxypdG2tjY++OCDTDmLnnI7UG/00047jQsvvJBLLrkk53IQJ0xWNc40/PMPsOWVfl/+akOMl+rimFD93xJqGzwJdbZqQg2+VlZUUDF+PBOrqqjMyg9RuncSZNxBkmHflwspy9Vk2Pa/Dxv+3NuPfM53YObSzECdBrZ88AGvvfH/2LR5C4l+4jmSJDFt2jTmzZvH7NmzmTVr1pCSwXRSqRTNzc3U19fT1NRES0sLzc3NdHZ20tHRQTAYJBQKZfXGjUajNDU1EYvFMkqfPJcLm+Z2tErgttsp9Lrx5eVR5PVQqG3F+V4KvV6K8724HXYk48Qga7KQ6jFh0IPISZKJBMFQkGAgQDAYQu6nUJ/L6cxk1o90t61oVxeHDh4iYfDXW61WqiZOxDOmVLuPPd0JqPrm9aljYJ6nu4rtSeBjVQH1id0Jbi/N0RhvbHqPhlCEQBo60woxq51v/I9r+MLFl5zUwlV+v59169bx1ptvcvDDPTglcJkk8kzgNKnHLglcJqgoKaKqpJiyAh+FeU4ciowUiw6bq6on33rm5YEDcsvP4o8//6lBgqutzFwuMJmRZZmjR4/y4YcfsmvXLnbu3JnJnB6shtHOnTtzTgobThRF4fDhw7z99tvM2Psqi5z9Cw3+0ZLgng9z7xEN6t9WXV3NwoULWbRoEdXV1cMzcBxnYlooFGL9+vWsX79+0D4TkiRRWVlJdXU106dPZ+rUqUyaNKnvgnGybHBt9HBz6LWXslyCCdKxLlJdEdKa20NJxCGZREolMaWTSIqCSZKyhAvDRSqVJhIJEw6HCYVCdMV6x550dJdZYVHR8LkjrTZ1Bq7v7c7unB6Hg4PHGvn9C38hEE9oyaIwa9HpfPfGm/EUFZ+SQoUTMwCBDkNA1xDozSRaaFUg+yrUlQOpdJr6+vosqRyA0+tjwuw5OEpK1VWEtnrIWFFP/ojlErS0tPDuu++yfv16du3aNWip58LCQqZNnUr1aROZUlHB+JIixnrdWBKxbldVZh9VA+N6rCOHr+aHr6znvnX9a7J/uHwx937hbBQgnUoRi8eJxWJ0dcXo7IrRHI7gT6QIyRBOK4RlCMkQkRXWfXSAXYeP9v/ex7G6OF4UReHQoUP885//ZN26dZnchcGynt9WStjqq8ZmsyFJEvF4nEAgQFtbGw0NDTllYXs8Hk4//XTOOOMMFi9efFwzbGBYSlOEQiG2bN7Mln9tYvfW94kHAzhMqtJMV5apijM0rbyEwyRR4nVT4vXgcznx2m3kWcw4zOYRkR+fKAqQSiYz12m0K0o0Gh20j7JiMuMpKKBobCm+4hJMdjuYddWZpjazWsFiy5IwY7Eaekz0KORnPB9gEvD666/zwAMPZEnar7322qze6AN/eCWjsure93CHZtypupsq0W2sl31xKP/iDCOvAlIU9QOGA6pBMG6hHo/1s4Tr7Oykrr4+u/CayUR5eTmFRUV9X8DOPM0g5IO3oMfep7qjTnBWFwqF2Lx5M5s3b2br1q0DNuo2YjabKS0tpby8nNLSUsaMGUNJSQmFhYWZAnAet1tbPUS6A+C6ikrPaIyG2XfoMDNW/4K03EcMQJJ44/ILKHfZicfjQ+pDa7PZuH3DLl6u7d8AfOvsM/jjnbeqN4quvjBmPOsJana7mjdwHIKB+vp63nrrLf7xj39klT3QKXeaeHqRJ7uUgE4O+uxgMJhJeNq9eze7du3qN8sb1O9u9uzZLF26lM9+9rMDNwvvyZ8egL0b+3++fDrMPj+76mnMcBw3bHIaBYh1dREKhQlHwkTCEVJDKZoImE1mbDarqvqxWlXVj9WKVVf+WCxYzBbM5uOYzUuSYbBVJb+KxUpSgXhaJpZOE4knCHXFCEa76AxHaPcHaO7oIBxP9Aoed29qzkoKyC8qYeGSJZx+5meZv2BBdtxAdxfqktZUUosbpLoH2MxmHHzT2dLbdLq7AZBsfF5GSafYvXMH295/X80iBuxWC2cuWUJpSXH3a3WXpd5jIvMehudPhFNWBporsqwOaqGAtvk1eVQAgn7iHa0c3bObcDBbSulxu9WaPkONqhuDLR6fuvf6NCOhHQ8h4KJXONy5cyc7duxg7969WcWpjgdJkroDlRZLxg2hVwRNJBLE43Hq6+vZV5MdkJMkuHR2NcsmjMNrAo9ZlaB5zGpArCdOhwNXXh7uvDzy3G7sNlvOq4ucMZnVzGVjIlkmD8CayQ2IxOPsO3CQvftqaWhqUgOSqIHItLaXgXHlFcyaM5sFhRa8+9Znl7+WJDjjazB5Ad1+e+05/XWKnC3hlGVkOU1DXT21NTUcqN1H3eHDoMiYyNbTW7TgYmlJMadVjqeqvJzCfK/my05ll6lOJtWgYqxlRMtTK6ia82gkQiQapSsapasr1q9v3EhSgbisEMskBxoSBbXztFkvdW0HixXZYkWx2pBNZtJmM2nJRBITcUUhnlaIp1IkkkkSiQSxWIxoNJpVWNAEWVJmuyRpkmW0OIKUCeTqW77LSUXpWCrGjqGspASPw46UTmXHD4yz5hFEVhQaGhoyzWdAdT2dNmnSyBY57ItPvAHIAUWW+cfLL/HCE2uxJbrwmSV8Zii2WTi9eipTSsdgjoaHz99us2cbBKOx0F1PA8xq/X4/H330EbW1tdTW1nL48GEaGhpy1mT3RTQapbGxMRN40xU5fQXk+roI8/LymFJVybTxFUwpL2XS2BLKC/KxpRLqSiOq10sJU3u0juq7f9X36sIk8eHNVzOlZGilC/ojnZbxB/x0dnZmlUjo9fldLnw+Hz5fQXbuwgDKmhP9XKFwiGAgQCAYHDC5zma14s3PJz8/H3eeu3d9qQEUS4BaUXKon1kyqSssu1Ndhdkc2rnqm5ZtdjrCEZo6/DS0tVHf2k5dcwtHm1vwd8WIyeoAP9Qr0gQZt5PT4ILqeayXbMi4owx5LT0lxD2xWCw4HQ6cTiculwuny4Xdbj8lXFaJRJIjRw4TNqwWbTYbk0+b3LtN5/EiSd1JjxYtWdJmcFtZDaVgzr/0+H7FJ8kA6LS1tfHLX/6STZs2ZT1eWlrKd6+9lrPnz0UKB7qz6oL+7uOQP+dS0oMiSVpEP7/btaSvKnR1kzs/S6ObTCZpaGjg2LFjNDQ00NLSQktLC+3t7XR0dNDR0dHL16kP+n6/v8/BUZfeWSwWbXD0UVRURFFREWPHjqW0tJRx48ZRUVGhpswPYSn/5BNPcM211/bue3Dnbaw8f7mmnOrRxCVuCCgOEP9RFAiFQ3R0dBDwB/qdqTodDnwFag7GoNVbRxBFgWg0gj8QIBAIDOiTNkkmPB43Hk0hlvnc/eUsjJ0BxROzCwZa7Wp+iZ7sZHxOd7cNoR9B9t+iEAgEaKqro72hjs7GBqLtbXR1tBEPBpAjIeSuCOZ4TBM9aGIHbW8dhlHYYrFgtVhU15PNhs2quqLUVa8Di2UEGtOYzNkDqi6RtVh7y2gtmnTWkHEum0zs3vsh6999h1g8kVmRjh03jm+u+DYeb77qXTCbNeWXUYJrfMyS/bxRsmsyHI9w4PgTaQBAvYDXr1/Pf/zHf/Tyvc+cOZNrr722/2bOxpTrYCcEA+reaCyOQ//bLy53tkFwe7r3RmWOtppIpVKqyqGri9///vfccccdA/rvzWYz27dvZ+bMmSOijqqtreWJJ57g8OHDTJgwod++B30ipzVj0K2zbm9qZOPb69n6r01E/J3YJHVAsUqaawUozPdSPXUKUyZNoig/X/OTamUPFN2X2iOzNpOBS/c+I+Ps4R4yNoExSd3VanvKNnvewGaz6q4ym2kPBNh/6DA1Bw5wpP5Yxl+d0HzUCc1nnVDU+kozZs9hxrx5zJ00Ht/hD4avOJ2iqP9bXdIc1zqrdUWyc2BiXdpj3bWsBuu6p4CW0auWG5HTaWRFQU6nURQFRStJkvkc2v9VAiRNBWQymVRlkNmM2aQGns3mHsFnYyA2M8u1Gc4NLkPNBZXVhc3S7ULMLiOilR3RB/njvD8URWHLli2sXbuW2trarOfOP/98brrppqG7oU8BPrEGQCcajfLUU0/xl7/8pdcguXDhQlauXDl0qaKiqIFWfcUQ7DSsIjRjER2gNOzx4nR1yzWdedR2BKm+elVWnaT+OJmKnONBlmXee+89XnrpJTZv3tynesrj8bBs2TLOP//8ETNmI0VnZyebNm1i48aNbN26ldgAEkWA8vJyZs+ezYwZM5gxfToTxpViSqXUVZQuwcxshvaYxuNYtPt4OCcsQ0EyqasUfUWil2TIbM7slYuhRSZWfT+wwubjJJVK8c477/Dcc8/1yrZ3u92sWrWKz3/+85+oa9XIJ94A6Bw9epTf/OY3vdxCoHafWrFiBQsWLBi+LyqVUoPUulEwHof8qqrpBI3EYEFYI986YyF/vOV/ZfUa6D7WVDg2ww1nrOo5gj1gg8Egr7zyCi+++GKm9Z0Rk8nEkiVLuPDCC1myZMnIN4kZKrpSI0tJkjIkJfXIck4mSMVi1B3cz5ED+zl2+DBhf2dWTSabRC9fuEky4XI5cbpcuJxOnE4ndodj4KzR4cRqyy5f4szrUerEmf28cWD/hA5+A3H48GFef/113njjDTo6Ono9f+655/K9733vpHfwGm4+NQZAZ+fOnTz++OPs3r2713OTJ0/msssu45xzzjk5A00qBZEectdIEELaXn8s0bcvebAkLyNDVuQYMZkMS+eeFToNVTh1P6nJDGZTtl9T0s61ypzNra1s3rKFnbt2k0ylVK+M9usU1PyIBQsXMm/ePDxuT/czejE1GKDYmgyydiynDec9XEJGiV2WFC/dv9wvU2FTU5EMw+2RSCYJhUKEQyHC4XC/JUZ6IgF2uwOH04HD7sDhsGf842ZzPzNmfSB3aCVHsupTGQdxw97hOu5aMp8WFEWhtraWjRs38vbbb3Po0KE+X3f66adz1VVXMX369JP8CUeGT50BAPXLfP/993n66afZs2dPr+d9Ph8XXXQRX/rSl068tMRwkExkdyrSdP8/fPjX3PfcXwb98eFW5BwvsqwQCPhpbWvrU0svAfk+H8XFxbjd7lNCzXGyUYBkIkE4EiESDhONRunq6soYx4QCMU2OGdMq03bJ0CVDzHBscuXhKRmDt2QMvtIyCsrKKSqvYGzZOEpKSj6R/uiTiaIo1NfXs2vXLj744AO2bdvW50wf1GD18uXL+frXv5577OsTwqfSAOgoisLOnTv5wx/+0G9Jg/nz53PBBRewdOnSk6/dHYTa2lqqq6sHDQCv/dldrLzogmwVTjze7U82pvrHY6r7YjBtuCTlNPtVgGgkQkdnJ52dnX1+VovFkmlbaTvVXDzHQ8+Ao55dajy3ajI9vf+BHsg07jV/eByJg3UNfHjwIPtq97N//36OHDkypH4OPfF4PJSUlFBcXExxcTGFhYUUFRVRWFiIz+ejoKAAn8+nGuJPoQvHiCzLmab0+/bto7a2lr179w4oNwaYOnUqF1xwAeeddx5er/ckfdqTy6faABg5dOgQL7zwAm+++SaJHp2AQNXwLl68mLPPPpvFixfj8Xj6eJeTz5NPPsk111yTNbBKksSiRYs455xzhqbI0dHTzrMqdmpdmoz+7UxCTVqt2qm5SdLJBI0N9RyoreXQ/v1EQiEk1CQpE9omQUlxMdXTpzGhskrr66C7cAb5fKqEJPu4Z9G1XrX9+6j7r7ukdBVPT9ldLwmeJs0z93B7ZdxgJ0eaB2rwsaGhgYMHD3LkyJGs8uGDlUQYChaLhXwtd0HfPB4PXq9XzUg3bG63W21x6nbjcrmG1Hh+JFEUhWAwSHt7O62trTQ1NdHU1ERDQwP19fXU19dnFbHrD0mSmDlzJmeeeSZnn3324KWiPwWMGgOgEwqFeO2113j55Zepq6vr8zWSJDFr1iwWLFjA/Pnzqa6uzrkZ+khwQjLMYUCWZQ4ePMjOnTvZvn07W7duzcroNGK32znnnHP4yle+8qnxk55KKIpCW1sbx44d49ixYzQ2NtLY2Jip4Nna2jpofarhwm6343K51CQtLXDtcrky7U4dDgc2rbmM3W7vLjVhaC6jy0T1v02W5UymezKZJGnIJO7q6iIajRKJRAiFQoRCIQKBAH6//7iTK6uqqpgzZw7z589n3rx5n9qZfn+MOgOgoygKe/bs4fXXX2f9+vUDLgetVivTp0+nurqaadOmMXnyZMrLy0+ZGdBwkkgkqKur4+DBg+zfv5+amhpqamoGlDVKksScOXP4/Oc/z7Jly045V9poIp1O09HRQUtLC21tbbS3t2f2eqJhZ2cngUDghDLSP2lIkkRZWRmTJ09m6tSpTJs2jenTpx9/Yb9PCaPWABhJpVJs3bqVt99+m02bNvWqPtoXVquVqqoqKisrGT9+POPGjaO0tJTS0lKKiopOWeOgZ4C2trbS3NxMc3NzJiu5rq6OxsbGnGaQFouFuXPnsnTpUpYuXfqJl8ONNhRFIRQKZYyBX2sdqW+hUCizD2nqpbAWtD5VsdlsFBcXZ7Lfy8rKqKiooKKigsrKShEY7wNhAHqgKAo1NTVs3bqVrVu3smfPnj5jBgMhSVIm4FaglTAwNo3RfajG5bLN0H/VuDzW30+WZRRFUXusplKkUikSiURmeWwsthWJRDI10wOBAMFgkE4tSNvR0XFcwUWTycTUqVOZM2cOc+fOZe7cuTgcw9udSHDqI8sykUiESCSSUTDprploNJpx1cRiMeJa6XH9Ok2lUiSTycw1nNayiWVZzrrWTSYTZrMZm82G2WzG4XBgt9szLiaXy5WJS+Tn52fKn4yGgPZwIwzAIKRSKfbt28eePXuoqalh37591NfXnzQ/68eBxWKhsrKS0047jSlTplBdXc2UKVPEDEog+JQhDMBxEI/HOXr0KIcPH6auro66ujqamppobGwkEAgM/ganAHa7nbFjxzJ27FjKysooLy+nvLycqqoqysrKTlkXlkAgGD6EARhm4vE4ra2ttLa2ZtwuAa16ZDAYzPhS9WWzvkQ+Hmmf2WzGarVm3Ej68lhfIrvdbvLz8/F6vfh8PgoLCyksLKS4uFhtZi+WywLBqEYYgFME3b+fTCYzMji92iJk+0b1gX+kG1wLBIJPN8IACAQCwShFTCEFAoFglCIMgEAgEIxShAEQCASCUYowAAKBQDBKEQZAIBAIRinCAAgEAsEoRRgAgUAgGKUIAyAQCASjFGEABAKBYJQiDIBAIBCMUoQBEAgEglGKMAACgUAwShEGQCAQCEYpwgAIBALBKEUYAIFAIBilCAMgEAgEoxRhAAQCgWCUIgyAQCAQjFKEARAIBIJRijAAAoFAMEoRBkAgEAhGKcIACAQCwShFGACBQCAYpQgDIBAIBKMUYQAEAoFglCIMgEAgEIxShAEQCASCUYowAAKBQDBKEQZAIBAIRinCAAgEAsEoRRgAgUAgGKUIAyAQCASjFGEABAKBYJQiDIBAIBCMUoQBEAgEglGKMAACgUAwShEGQCAQCEYpwgAIBALBKEUYAIFAIBilCAMgEAgEoxRhAAQCgWCUIgyAQCAQjFKEARAIBIJRijAAAoFAMEoRBkAgEAhGKcIACAQCwShFGACBQCAYpQgDIBAIBKMUYQAEAoFglCIMgEAgEIxShAEQCASCUYowAAKBQDBKEQZAIBAIRinCAAgEAsEoRRgAgUAgGKX8f1ruhUPqsyhDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "params = fig_handler.get_rc(40,40)\n", + "plt.rcParams.update(params)\n", + "# Plot the probability contours\n", + "fig,axs = plt.subplots(2,1)\n", + "ax1,ax2 = axs\n", + "sns.kdeplot(ax=ax1,data=unif_df, x='x', y='y', fill=False, color=\"black\",alpha=0.75, levels=[0.05])\n", + "sns.kdeplot(ax=ax1,data=SWD_df, x='x', y='y', fill=False, color=\"tomato\",alpha=0.75, levels=[0.125,0.25,0.45,0.85])\n", + "\n", + "ax1.set_xlim(-1.5, 1.5)\n", + "ax1.set_ylim(-1.5, 1.5)\n", + "ax1.scatter(uniform_samples[:20, 0], uniform_samples[:20, 1], color=\"black\",zorder=10)\n", + "ax1.scatter(SWD_samples[:20, 0], SWD_samples[:20, 1], color=\"coral\",zorder=10)\n", + "ax1.spines[['left', 'bottom']].set_visible(False)\n", + "ax1.set_xticks([])\n", + "ax1.set_yticks([])\n", + "ax1.set_xlabel(\"\")\n", + "ax1.set_ylabel(\"\")\n", + "\n", + "sns.kdeplot(ax=ax2,data=mixture_df, x='x', y='y', fill=False, color=\"black\",alpha=0.75, levels=5)\n", + "sns.kdeplot(ax=ax2,data=SWD_mix_df, x='x', y='y', fill=False, color=\"tomato\",alpha=0.75, levels=[0.125,0.25,0.45,0.85])\n", + "\n", + "ax2.set_xlim(-1.5, 1.5)\n", + "ax2.set_ylim(-1.0, 1.0)\n", + "ax2.scatter(permuted_mix_samples[:20, 0], permuted_mix_samples[:20, 1], color=\"black\",zorder=10,label = r\"$p_{\\text{true}}$\")\n", + "ax2.scatter(SWD_mix_samples[:20, 0], SWD_mix_samples[:20, 1], color=\"coral\",zorder=10,label=r\"$\\hat{p}_{1}$\")\n", + "ax2.spines[['left', 'bottom']].set_visible(False)\n", + "ax2.set_xticks([])\n", + "ax2.set_yticks([])\n", + "ax2.set_xlabel(\"\")\n", + "ax2.set_ylabel(\"\")\n", + "\n", + "# ax2.legend(loc=\"upper center\")\n", + "\n", + "fig.tight_layout()\n", + "fig.savefig(\"../../plots/swd_misspecified_models.svg\")\n", + "plt.show()\n", + "\n", + "params = fig_handler.get_rc(40,30)\n", + "plt.rcParams.update(params)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "labproject", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/notebooks/wasser_misspec_experiment.ipynb b/docs/notebooks/wasser_misspec_experiment.ipynb index 32927e8..3b8d345 100644 --- a/docs/notebooks/wasser_misspec_experiment.ipynb +++ b/docs/notebooks/wasser_misspec_experiment.ipynb @@ -118,7 +118,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -127,7 +127,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAAp0ElEQVR4nO3dfXRU1b038O+ZyctkhrySYPAmwJghY1QQkaAESUB5sRJY8mLSq30qeqVCq70ssRgrQtG7NMhLl13Ll1atBR4eCCRZbRH0wqUJQkUM0oi9Yl4gWSZKgMgkM4QkkMx+/qCJDJPMnIScPZOZ72etWYvsOXv275w5+eWwzz57K0IIASIiCng6XwdARERyMOETEQUJJnwioiDBhE9EFCSY8ImIggQTPhFRkGDCJyIKEkz4RERBggmfiChIMOETEQUJJnwioiDBhE9EFCRCfB2AbEIINDc3d/8cHR0NRVF8GBERkRxBl/Cbm5sRGxvb/bPNZkNMTIzvAiIikoRdOkREQYIJn4goSDDhExEFCSZ8IqIg4bOEX19fj5iYGJSWlnrddtu2bbj11lsRERGBtLQ0bNq0SfsAiYgCjE8Sfl1dHWbOnOkyPLI3RUVFeOSRRzBz5kz8+c9/xtSpU7Fo0SJs375dQqRERIFDkbmIudPpxObNm/Hss89CCIHz58+jpKQEU6dO7bWO1WrFuHHjUFBQ0F2Wm5uLY8eOoaqqqs8xNDU1SR+WWdPYgoKyOtTbLiIp1ojc9GSY403SPvPqbSMNIRACuNDecd2xXM9+aXFMfNnOQBrImNV8Vtc2FQ122C5eRowxFDcnRrlt27XdP76xoaaxBR1OJ0J0OoyKN2L8iLhe46xpbMHvD5xEWe15XO50whQeghuiDN1tAHCJcbJlKPZ8eRqf1dhwubMToTodLjmdCNPrkTY8EkIIfN3gAKBgojkWP8tM8YtzZzCca1ITfnl5Oe6++278/Oc/x/Tp0zF79myPCb+2thZmsxnbtm3Dj3/84+7ynTt3IicnB5WVlRg9enSfYhiIhH/tFzvZMhR/r/6+O6HaWy/j6wYHLnc6cbnDidP2dpf6ep2C5TNSYW/rQL3tIoQQONXYguaLlzEsyoDlM1MxZXRCr+3vOFqH54u/RKdTuHzmq/PHIGdCskuczxUdx2c153v9LJ0C5C8Y61LP2/7mpiejrPa8WwwKgLFJ0ZiUEu9yTK49+d8oqcb6/67A1SeeAiDLmoDVc25V9Yer6zMB9Fp2+GQjjtc3u7TT03FSu9+e9qkvn+Mp6XqL+WDVOWzYW4mz9jaP50pNYwvW7PpfHKg453acn51lxS+mWQD0fC5d3e4zM1LhaOvoMa6eRITpcZc5DqYwPb5ucMDe1oFzjvZet1cAr5+pxtR/nTuA+/lgjjf16Tuot13EhfYOfFx5DtcellC9glhjGH41y4qHrvo+ahsvoKm1w2Xb3n4nfflHQWrCP3/+PC5evIikpCSUlpZi2rRpHhP+hx9+iAceeACff/45xo8f313+j3/8A+PHj8euXbuQnZ3da3ttbW1oa2tzKWtubsaoUaO6f+5rwvf0CzKQHpqQhHULb+/+uetE+brB7vZLfLUfpyfjyawUlNWex3NFx6Hm21UU4G/LpwJw/2XpKbHrlCu/pH05c7oSTdPFS3jnYE2v23X9AUofFecSS5QhBBv2Vbr9gbk2BEW5Uu7p61FwJUFYE6O6k/i1V7edTifePVjjNRndftUfuK6rUkAgfVQcZo8djvcO1fT4fSVEhmN62jD8LDMFH355Guuu+QPYU8yJ0Qacbm5ze++meCMURdfd7pDwELx7qPdjDABxpjCYwvWoO9/qZQ8HF53i+t0rAJJiI1Bva/X4h78/v9dDTWH4vuWSx226LmRuTozq8RzuywXIQJCa8K+mJuFv374d//7v/46qqipYLJbu8urqaowePRpbt27Fww8/3Gsbv/nNb7BmzRqPcfQl4dc0tmD6xgOaJ/suW/5jIqaMTujXydjXK6fhUQaccbS5/LL0J7EPBN2/ZrqQdJh9aqCucKnvFAA/npiM8SNisaLwuM++B71Owf88kyXlSt+vp1ZwOp0e39fp5N5zLiirk5bsAWDJ//0cU1MTsOfLhj6fjH3d/rTd/crRVwk3GBJ9lyDaVb8jAGz7rA7bPqvzaRydToEdR+vw3P03a96WXyf86OhoAIDD4XApt9vtLu/LUtFgl9peS3sndn/ZILVNIpKv3iana82vH7yyWq0ArnThXK3r57S0NI/18/LyYLPZXF61tbX9imXH0TqUVpzrV10iIk8utF2W0o5fJ3yLxQKz2YzCwkKX8qKiIowePdrl5mtPDAYDYmJiXF79+V9BTWMLni/+kv/9JiJNHKg8h5rGFs3b8asuHbvdjq+++gopKSlISLgy1GzVqlV47LHHMHToUMydOxd/+ctfsGPHDqkPXsnuuyei4OIUkNKP71dX+MeOHcOkSZOwe/fu7rJFixbh7bffxr59+/Dggw/iwIED2Lx5M3Jzc6XFVW+7KK0tIgpOMvrxfTYs01f68+BV/odf4+0DJzWOjIiC2dKpKcF1he+vctOToe8aHE5ENMB0CqQ8fMWEr4I53oTlM1J9HQYRBShZ/SxM+CrsOFqHDfsqfR0GEQUogSt5RmtM+F50DcnkKB0i0pKMm7ZM+F5wSCYRyZAUG6F5G0z4XnwteToFIgo+Cm/a+oemi3IeeSYi0hoTvhexxlBfh0BEAU4I3rT1C9bEKF+HQERBgDdt/QAfuiIiGXjT1g+Y4014df4YX4dBRAFMr1N409Zf5ExIxl3mOF+HQUQBasH4f5OyxCETvko3JchbWZ6IgsvOz+ulzIfPhK/CjqN1KCjz7bqXRBS4hAD+8LH2M/Iy4XvRNbUCH7YlIi2V1do0b4MJ3wtOrUBEgYIJ34sKTq1ARBJMHKX9wBAmfC9snFqBiCRYnHmT5m0w4XsRw6kViEhjI+IiOCzTH9zMqRWISGOWYZFS2mHC94JTKxCR1lraO6S0w4TvBadWICKtHak5zwev/EXOhGQpExsRUfDi9Mh+4mDVOSlTlxJR8Cr5+qzmbTDhq7Bhb6WvQyCiAPd1g0Pzbh0mfBXO2tt8HQIRBQGtu3WY8FWICNX7OgQiCgJadx0z4avBUZlEJIHWg0OY8FVovdTp6xCIKMDJWPWKCV+F6AhOr0BE2sqfP0bz6RWY8FVIGcbVrohIWxM4W6Z/uNDOLh0i0hYfvPITTZwimYg0JuPhTiZ8FWI5RTIRaUzG9C1M+CpwgUMi0pICaD5CB2DC96qmsQUfV57zdRhEFMCmWhO4AIo/KCirA9cwJyItPX6PWUo7TPhe1Nsu+joEIgpwfzxUI6UdJnwvkmKNvg6BiAJcacW5wFwAZe/evUhPT4fRaITZbMb69eshRO99JtXV1VAUxe112223SYk3Nz2ZU+kQkaYE5IzDD9G8hat8+umnyM7ORm5uLl5++WUcOnQIK1asQEdHB/Ly8nqsU15eDgDYv38/jMYfrrav/reWzPEmjE2Kxhf1zVLaI6LgJGMcvtSEv3r1atxxxx3YsmULAOD+++/H5cuX8corr+A///M/ERHhPg61vLwcSUlJuPfee2WG6uKWG6OY8IlIUwE1Dr+9vR2lpaWYN2+eS/nChQvhcDhw6NChHuuVl5dj3Lhx/Wqzra0NTU1NLq/m5r4nbg89TkRE102nBNg4/FOnTuHSpUtITU11KbdYLACAioqKHuuVl5fD4XAgIyMDBoMBiYmJyMvLw+XL3qc7yM/PR2xsrMtr1KhRfY79QntHn+sQEak1cVSclHH40rp0uq6so6KiXMojIyMBAHa73a1OY2Mjvv32W3R0dOC1117DyJEjsX//fqxduxZ1dXXYunWr9oGDI3WISFvfNctZRlVawnc6nR7f1+nc/7NhMpmwd+9ejB49uvvKPCsrC+Hh4Vi5ciVWrlyJtLQ0LcJ1MdkyFG8fOKl5O0QUnOxtciZolNalEx0dDQBwOBwu5V1X9l3vXy0iIgIzZsxw64aZPXs2AOCLL77w2GZeXh5sNpvLq7a2ts+x/736+z7XISJSS9a62dKu8FNSUqDX61FdXe1S3vVzT1fqVVVV+Nvf/obc3FzExMR0l7e2Xhm+lJCQ4LFNg8EAg8FwnZHzaVsi0lasMUxKO9Ku8A0GAzIzM1FcXOzyoFVRURGio6MxceJEtzqnT5/GkiVLsHPnTpfygoICREVF4c4779Q8boB9+ESkrcTo678wVUPqOPyVK1di+vTpyMnJweOPP45PPvkE69atQ35+PoxGI+x2O7766iukpKQgISEB99xzD+677z4sX74cra2tuOWWW7B792787ne/w8aNG12u+rUUaZB6mIgoyFgTI6W0I3VqhXvvvRdFRUWoqKjAgw8+iK1bt2LdunVYsWIFAODYsWOYNGkSdu/efSU4nQ7FxcVYvHgxfvvb3yI7Oxt79+7FH/7wByxbtkxKzDWNLdi4r1JKW0QUfGTNhQ8AivA0kU0AampqQmxsbPfPNpvN4/8U8j/8miN0iEgz06wJeP8x9y5tLXC2TC94w5a0YAjlrx5dubpfNedWae3xrPOCN2xJC22XPT+XQsFhqtXzSMOBxoTvBadHJiKtlFScw/SNB6RMjQww4XtljjchS/JfYSIKHp1OgeeLvwzMBVAGo9US+9iIKPh0OoWUq3wmfBXM8SbpfW1EFFxkLIDChK/S6jm3QsfOfCLSSEAtgDLYmeNNyF8w1tdhEFEAkvXwFRN+H6SPikNMRKivwyCiADPVmhBYC6AMdjuO1uG5wuMIqseSiUiK9FFxUtrhFb4KNY0tTPZEpJkN+yo5LNNf/OHjkwOa7HUKcJc51vuGRBQUOCzTj3xWYxvQz3MKwBjG3jQi+gGHZfqNge/MKak4N+CfSUSDF4dl+glZN1SIqHd6JXAfhNEpHJbpN57MSvF1CERBrzOAl+6QtWdM+CrxKVsi0ooQ4E1bf1FQVgdn4F5cEJEf4E1bP8FVr4hIa7xp6ye46hURaUmvU3jT1l/kpidDz058ItKAXqcgf/4YKXPpMOGrYI434dX5Y3jjNogZQvirQgPvhshw/OmxdDwk4eoeYMInUqWtg4uO08A742jHovfLuKatP6lpbMHzxV9ypA4RDTiuaetnCsrq0MlsT0Qa4eRpfqSiwe7rEIgowHEcvp9oaG7zdQhEFOA4Dt9P2Fov+ToEIgpgCidP8x9tlzhCg4i0I2vENxO+ClERXKyEiLTj5ORp/iMjJd7XIRBRgONNWz/xZFaKtP9yEVFw4k1bP2GONyHLmuDrMIgoQCngTVu/MiSc/fhEpI3bk2M4eZo/udDe4esQiChApQ2PlNIOE74KNY0t+LjynK/DIKIAVVBWx1E6/oJLHBKRlpwCUiZQY8JXgUscEpHWZEygJj3h7927F+np6TAajTCbzVi/fj2E8Hz5vG3bNtx6662IiIhAWloaNm3aJCnaK7jEIRHJoPVYfKkJ/9NPP0V2djZuvvlmFBcX45FHHsGKFSuwdu3aXusUFRXhkUcewcyZM/HnP/8ZU6dOxaJFi7B9+3ZpceemJ3O1KyLSnNZj8RXh7fJ6AM2aNQtNTU04cuRId9lzzz2Ht956C2fOnEFEhPvOWq1WjBs3DgUFBd1lubm5OHbsGKqqqvocQ1NTE2JjY7t/ttlsiImJ8Vhnx9E6PFd0HPKOFBEFG71Owf88k6Xp8ExpV/jt7e0oLS3FvHnzXMoXLlwIh8OBQ4cOudWpra1FZWVlj3Wqq6v7lfD7qmu1KyZ7ItKKrIXMpT1NdOrUKVy6dAmpqaku5RaLBQBQUVGBGTNmuLx34sQJAPBYZ/To0b222dbWhrY217nsm5ub+xQ3V7siIi2MiItAmF6PieY4LM68ScqDV9ISfleijYqKcimPjLzywIHd7r6qVH/qXC0/Px9r1qzpX8D/whE6RKSFb85fuUFb830Lxo0IsCdtnU7Pc8rrdO6h9KfOQOMIHSLSUkAuYh4dHQ0AcDgcLuVdV+ld719vnYGWm679hEZEFNwCbhHzlJQU6PV6VFdXu5R3/ZyWluZWx2q1umyjps7V8vLyYLPZXF61tbV9itscb0JynPbTlhJRcAuo+fANBgMyMzNRXFzs8qBVUVERoqOjMXHiRLc6FosFZrMZhYWFLuVFRUUYPXo0Ro0a5bXNmJgYl1d//leQkjCkz3WIiPpCxnz4Uuf8XblyJaZPn46cnBw8/vjj+OSTT7Bu3Trk5+fDaDTCbrfjq6++QkpKChISrsw/v2rVKjz22GMYOnQo5s6di7/85S/YsWOH1Aevbk6MQmkFJ08jIm3odUrgzYd/7733oqioCBUVFXjwwQexdetWrFu3DitWrAAAHDt2DJMmTcLu3bu76yxatAhvv/029u3bhwcffBAHDhzA5s2bkZubKy1u9uMTkZaWz0iVMkpH6pO2/qA/T9rWNLZg2vpSbQMjoqD18MQReGX+GM3b4WyZKhSUaX/3nIiCV2nFWSntMOGrwIeviEhL37dcktIOE74KfPiKiLSkV+RMx8uEr0JuejL0nB+ZiDQyPMYgpR0mfBXM8SYsn5HqfUMion5IGx7lfaMBwISvUmmlnJsqRBR8FHbp+I+axhZ8VmPzdRhEFKBkPGULMOGrwmGZRKQVWU/ZAkz4qnBYJhFpRdZTtgATvioclklEWqmTeEHJhK8C59IhIq18Uv29tLaY8ImIfMh2Uc5TtgATviq8aUtEWrG3dUhZ7QpgwleFN22JSEt5RccDa03bwYw3bYlIS06BwFrTdjCbbBnq6xCIKMAF1Jq2g9nfJd5FJ6LgJONpWyZ8FdiHT0Ray0jRvieBCV8F9uETkdb2fHla8zaY8FVgHz4Raa2sVvsJGpnwVWAfPhEFAiZ8FdiHT0RamzgqTvM2mPBVGBIe4usQiCjALc68SfM2mPBVkLQYDREFqWGR4VKmSGbCV8HR1uHrEIgogE1Pu0FKO0z4KkQa2KVDRNrQKXK6cwAmfFWE8HUERBSIdAqwdsFYrnjlTy60s0uHiAZebnoyHpK0ni3AhK8Kn7QlIi002NultseEr0JuejI4UIeIBlpDs/YzZF6NCV8Fc7wJz86y+joMIgowF9s7pbbHhK/SA2OG+zoEIgowoSFyUzATvkpc15aIBpqMOfCvxoSvEufTIaKBVv5Nk5S1bLsw4avEkTpENNCaWi/jvg2lUtazBZjwVeOc+ESkBacA8oqOS7nSZ8JXiXPiE5FWnAJSrvKZ8FU6fLLR1yEQUQD7REKOkZrwX3/9dVgsFkRERGD8+PHYs2eP1zrvvvsuFEVxez311FMSIr6iprEFx+ubpbVHRMHneF2z5t060qaB3LhxI1asWIHVq1djwoQJeO+99zB37lyUlpbinnvu6bVeeXk5rFYr/vSnP7mUJyYmahzxDwrK6sD504hISwJXunWeu/9mzdqQkvBbW1vx8ssvY/ny5XjxxRcBAPfffz8yMjKwZs0a7Nu3r9e65eXlSE9Px9133y0j1B5xSCYRyVBv03aqBSldOkeOHEFTUxPmzZvXXaYoCubPn4+SkhK0tva8k0IIHD9+HOPGjZMRZq84JJOIZND6QSwpCf/EiRMAgNTUVJdyi8WCzs5OnDx5ssd6J0+ehMPhQFlZGaxWK0JDQ2G1WrF582ZV7ba1taGpqcnl1dzc97743PRk6HWcPo2ItKMAyNF4quTr7tJpaWnBli1ben3/xhtv7E6yUVFRLu9FRkYCAOx2e491y8vLAQA1NTXYsGEDQkNDsXnzZjz66KNob2/H4sWLPcaWn5+PNWvWqN2VXpnjTXh1/hjkFR2Hk535RKSBX82yar4QynUnfJvNhqVLl/b6flZWFmbOnOnxM3S6nv+jkZmZiV27dmHatGkwma4ciFmzZuHs2bNYtWoVnnjiCSiSVhjPmZCMjyvP4YPjp6W0R0TBIy0xEj+fZtG8nevu0klKSoIQotdXaWkpoqOjAQAOh8OlbteVfdf71xo2bBiys7O7k32X2bNno6GhAWfOnLne8PvkxGmH942IiPooKkLOgEkpffhW65W55Kurq13Kq6urERYWhptu6nkB34MHD2LTpk1u5a2trdDr9YiLi/PYbl5eHmw2m8urtra2X/tQ09iC7y/IXZ2GiILDkRob3iyp9r7hdZKS8DMyMmAymVBYWNhdJoRAcXExsrKyEB4e3mO9kpISLFq0CJWVld1lTqcThYWFyMjIQFhYmMd2DQYDYmJiXF69/W/Ckx1H6zB94wE0tV7uc10iIjXW/XdFYDx4ZTQa8eyzz+Kll15CWFgYMjIy8Mc//hGff/45SktLu7err69HfX097rjjDoSHh+PJJ5/EW2+9hTlz5uCll16CyWTCm2++iX/+85/4+OOPZYSOmsYWPF/8JTp5t5aINCTjwStpUyusWrUKL730EjZt2oT58+fj1KlT+Otf/4rJkyd3b/Puu+9i0qRJOH36yo3RG264AQcPHsTYsWPxy1/+Ejk5OWhpacH+/ftx1113SYm7oKyOyZ6IpND6wStFCBFU2aypqQmxsbHdP9tsNsTExPS6/VP/7xhH5hCRFEunpgTGFf5gxadsiUgGGQ9eMeF7kZuu7RdARAQA99+WqPmDV0z4XpjjTRge1fMoIiLqu1A9pynpyd6vzmg+SocJX4UQPQ8T0UCxJAzxdQh+qdMpNF/1iplMhbAQva9DIAoYAuBkhL0IiOmRB7uJ5ljvGxGRKhUNDkxOGerrMPxSQEyPPNg9MGa4r0MgChgCwMdVXCP6Whyl4yf+Xv29r0MgogAnY3pkJnwVvm7oeb5+IqKBMGimRw4GTRc5aRoRaeeOEXLuEzLhqxBrDPV1CEQUwOxtl6S0w4SvgjUxyvtGRET99HXDBSntMOGrMNnCIWREpJ1LHU4p7TDhq8BROkSkpSHhAbTE4WBXb7vo6xCIKIA5Ba/w/UaQLRlARJJ93XBB84nTACZ8VU5J+CKIKLhpPXEawISvSjPH4RORxrSeOA1gwldFz/m7iUhjWk+cBjDhe1XT2IK689r/5SWi4HZZwtBMJnwvCsq071cjInrvUA1XvPI1TpxGRDIIaH/jlgnfC06cRkSycMUrH+PEaUQkC1e88jFOnEZEsnDFKx/LTdf2CyAiAoARcRFc8crXzPEm3GWO83UYRBTgfpw+QvM2mPBVyF8wFgqfvSIiDe07cUbzNpjwVTDHm/CrmVYw5xP1HS+W1Dljb9e8DSZ8FXYcrcOGfZXgnJlEfcfJZtW5ISpc8zaY8L2oaWzB88VfotPJs5aItPPMjFTN22DC96KgrI7Jnog0lTMhCVNGJ2jeDhO+F1ztioi0FB6iw2sLb5fSFhO+F0mxRl+HQEQBLCVhiLS2mPC9mGwZ6usQiCiAPf/AzdLaYsL34u/V3/s6BL/z8MQRiDNxjiGi63VzYqSUvvsuTPhesA/f1bDIcPxoTCLOt3AWUaLr9cLsNKntMeF7wT58V2cd7fg/733m6zCIAsKeL09Lbc8nCX/Xrl1QVD5+19HRgRdffBHJyckwGo2YMmUKjhw5onGEP8hNT+YTtkSkibJam9T2pCf80tJSPPzww6q3f+aZZ7Bx40asWLECBQUFCAkJwfTp01FdXa1hlD8wx5swNilaSltERFqSlvAdDgdeeOEFTJ8+HWFhYarq1NXV4a233sL69evx9NNPY86cOfjoo48QFxeHtWvXahzxDyalxEtri4iCx8RRcmfilZbw33vvPbzzzjt444038PTTT6uqs3//fnR0dGDevHndZeHh4cjOzsaePXu0CtUN58QnooGmU4DFmTfJbVNWQ3PmzEFtbS2efPJJ1XVOnDiByMhIJCYmupRbLBZ89913uHDhgsf6bW1taGpqcnk1Nzf3OXZzvAmh+j5XIyLqkU4B1i4Yq/mCJ9cKud4PaGlpwZYtW3p9/8Ybb8TcuXORkpLS589ubm5GVJT7EoORkZEAALvdjiFDen9KLT8/H2vWrOlzuz3RKToAzgH5LCIKbrnpyXhI4+UMe3LdCd9ms2Hp0qW9vp+VlYW5c+f267OdTs8JVqeTd895qCkM3zW3SWuP3Ol1Cieyo4Bwob3TJ+1ed8ZMSkqCEKLXV2lpab8/Ozo6Gg6Hw63cbrd3vy9LllXd03DhIZ4PqSksuPqGdAow0Rx7XZ+hAFi3cCwWT5Hb3+mJZdgQ3JEc4+sw6Bo5E5Kkfi8JQ9QNQLlWUmzEAEeijl8/eGW1WmG323Hu3DmX8urqaowcORIREZ4PWl5eHmw2m8urtra2X7H8LDMFOg8D8rPHDkfJs1Px0bJM6HvZUKcAH/xyCp64x9yvGK41PNrQ63s6Bcgem+jTZwj0OgVrF4zF2gW393rsFAAJkZ5/aTb/x0Q8NCEZuenJvR5bmfQ6Be/8dAI25o7zeE6QXD+6LRGvLbwdG3PHaXqeDI8Kx9KpKSh5dip2LMno84peep2CHB905wAD0KWjpRkzZgAACgsLu7uN2tvb8cEHH+D+++/3Wt9gMMBg6D0p9oU53oT8BWORV3QcV/cqdN18ubo/7tX5Y9wWTdHrFOTPHwNzvAkrs29BnCkM6/67wuMqWnqdggXj/w1Fx77t8bMempCMHUfrem3roQnJyEx1f18BYE2MROUZh9u+XNtjolOAX82y4pvzF1FWa8OlDieGhIfghmgDIAQOVJ5zqaMAuD05GpNS4pEzIbn7plT+grEe4/yvD77Cu4dq3Npeu2Bs91wj5nhTj8fWk654Yo1hbrHqFECgbysyXf09du3Xc0XHe/0MBcBd5jiYE0y40N6JC22XezxmSbERqLe1upwPXW1NGBWHdz4+hc9qzwO4Mv9KpCGk18/TKcCooSacamxRvV9xptAep8uIMYYiyhCCuvOtHs/VSEMIsscOR3KsERv2Vbp9P6YwPVouuXZj6HUKls9IhaO9A//4xoaaxhZc7nQiVK+DOd6EiFC9277pdQqenZmK//3OjkPVjejoFEiOi8CvH0jr83ly5WIjHIZQPUzhegyPjoAxTI8Tp+04Y29HiF5B6g1D4GjrQHNrB26ICsczM1Ld5r5Z20teWHhnUq+/u7Jv1nZRhJC/ANlvfvMbrFmzBtc2XV9fj/r6etxxxx0ID7+y3NeiRYuwfft2vPLKK0hNTcXGjRtx9OhRHDt2DBaLpc9tNzU1ITb2hy4Gm82GmJgY1fVrGluw42gd6m2tSIqNcElqfd3u2m0yUobik5Pfu9Xx9ln9fb+ncgCq9q+vx+N64vT2OVcftyHheihQ4GjvcPsMNft77XfQ23dybTx/+Pikyx/ExGgDrImRqr53td9zX7+Dq8sjw0MgIHChvbPXY+Sp/avfE0Lg5LkLvSbBgdy//h6Tnuqq+S77a6C/U80IH1i9erXoqemu8pqamu6ytrY2sWzZMjFs2DBhNBrFlClTxKefftrvtm02m8C/LuwACJvN1u/PIiIaTHxyhe9L13uFT0Q0WPn1TVsiIho4fn3TVgvX/oemP0/eEhH5WnR0tOpZh7sEXcLvGsPfZdSoUb4JhIjoOvSnO5pdOkREQYIJn4goSATdKB2n04m6urrun6OiolT1gzU3N7t0/9TW1kqd2sEf8Zi44zFxx2PibiCOCfvwVdDpdBg5cuR1f050dDSHc16Dx8Qdj4k7HhN3so4Ju3SIiIIEEz4RUZBgwiciChJB14ffXwaDAatXr3b5OdjxmLjjMXHHY+LOV8ck6EbpEBEFK3bpEBEFCSZ8IqIgwYRPRBQkmPCJiIIEEz4RUZBgwiciChJM+Crt2rVL9URFHR0dePHFF5GcnAyj0YgpU6bgyJEjGkcoz+uvvw6LxYKIiAiMHz8ee/bs8Vrn3XffhaIobq+nnnpKQsQDa+/evUhPT4fRaITZbMb69evdFta51rZt23DrrbciIiICaWlp2LRpk6Ro5ejrMamuru7xfLjtttskRi1HfX09YmJiUFpa6nVbzc8Tn62mO4iUlJSIIUOG9Ljwek+efvppYTQaxe9+9zvx17/+VUydOlUMGTJEVFVVaRyp9jZs2CD0er146aWXxJ49e8SCBQuEXq8XBw8e9FjvF7/4hbBareLw4cMur6sXrB8MDh8+LEJDQ8VPfvIT8eGHH4oXXnhBKIoiXn311V7rFBYWCkVRxLJly8RHH30klixZIgCIbdu2SYxcO/05Jjt37hQAxP79+13Ohy+++EJi5Nr75ptvRFpamgAgSkpKPG4r4zxhwvfAbreLX//610Kv14u4uDhVCf+bb74RISEh4s033+wua2trEyNGjBBPPPGEluFq7uLFiyImJkasWLGiu8zpdIq7775bTJ8+3WPdyZMni5/85Cdah6i5mTNniokTJ7qUrVixQkRGRoqLFy/2WCc1NVXk5OS4lOXk5AiLxaJZnDL155i88MILIikpSUZ4PtHZ2Snef/99MXTo0O7c4S3hyzhP2KXjwXvvvYd33nkHb7zxBp5++mlVdfbv34+Ojg7Mmzevuyw8PBzZ2dmquj782ZEjR9DU1OSyb4qiYP78+SgpKUFra2uP9YQQOH78OMaNGycpUm20t7ejtLTUZf8BYOHChXA4HDh06JBbndraWlRWVvZYp7q6GlVVVZrGrLX+HBMAKC8vH/TngyfHjx/HkiVL8NOf/hRbtmzxur2s84QJ34M5c+agtrYWTz75pOo6J06cQGRkJBITE13KLRYLvvvuO1y4cGGgw5TmxIkTAIDU1FSXcovFgs7OTpw8ebLHeidPnoTD4UBZWRmsVitCQ0NhtVqxefNmzWMeSKdOncKlS5d63H8AqKiocKvj6Zj1Vmcw6c8xAa4kfIfDgYyMDBgMBiQmJiIvLw+XL1/WPGYZRowYgerqamzcuBFGo9Hr9rLOk6CcPK2lpcXjX90bb7wRc+fORUpKSp8/u7m5GVFRUW7lkZGRAK4soj5kyJA+f67W1ByT5uZmAHDbv6v3rSfl5eUAgJqaGmzYsAGhoaHYvHkzHn30UbS3t2Px4sUDsAfa68/+9/eYDRb92b/GxkZ8++236OjowGuvvYaRI0di//79WLt2Lerq6rB161btA9dYXFwc4uLiVG8v6zwJyoRvs9mwdOnSXt/PysrC3Llz+/XZTqfT4/s6nX/+p0rNMZk5c6bHz+ht3zIzM7Fr1y5MmzYNJpMJADBr1iycPXsWq1atwhNPPNHnpdp8oT/f7WA9H9Tqz/6ZTCbs3bsXo0eP7l7mLysrC+Hh4Vi5ciVWrlyJtLQ0LcL1W7LOk8F9tvVTUlISxJUb1j2+1Ayf6k10dDQcDodbeddfaH9dy1PNMemK/dr987Zvw4YNQ3Z2dney7zJ79mw0NDTgzJkzGuzRwOvP/vf3mA0W/dm/iIgIzJgxw2VNV+DK+QAAX3zxhQaR+jdZ50lQJnwtWa1W2O12nDt3zqW8uroaI0eOREREhI8iu35WqxXAlX25WnV1NcLCwnDTTTf1WO/gwYM9jidubW2FXq/v0399fSklJQV6vb7H/QfQ41Wpp2PWW53BpD/HpKqqCr///e/R1NTkUt510z8hIUGbYP2YrPOECX+AzZgxAwBQWFjYXdbe3o4PPvjAa5eIv8vIyIDJZHLZNyEEiouLu/9L3pOSkhIsWrQIlZWV3WVOpxOFhYXIyMhAWFiY5rEPBIPBgMzMTBQXF7s8VFRUVITo6GhMnDjRrY7FYoHZbHY5Zl11ru7SGKz6c0xOnz6NJUuWYOfOnS7lBQUFiIqKwp133ql53P5G2nkyYAM8A9zq1at7HIdfV1cnDh8+LNra2rrLHn30UREeHi42bNggdu3aJaZNmyYiIyMD4sGr1atXC0VRxMqVK8WePXvEwoULRUhIiDh06FD3Ntcek4aGBpGYmChSU1PF9u3bxa5du8SPfvQjERYWJj799FNf7Uq/7N+/XyiKIhYuXCj27NkjVq5cKRRFEWvXrhVCCNHc3CwOHz4szp49213n/fffFwDE0qVLxYcfftj9QM327dt9tRsDqq/HpLOzU9x3330iMjJSvP7662Lfvn1i2bJlQlEU8dvf/taHe6KNkpISt3H4vjpPmPBV6i3hd5Vf/cRoW1ubWLZsmRg2bJgwGo1iypQpgy6x9aazs1O8/PLLIjk5WRgMBjF+/HixZ88el216OiZVVVVi4cKFYtiwYSIiIkJkZmZ6fTrXXxUXF4sxY8aIsLAwYTabxfr167vf6/rlfv/9913qvP3228JisYjw8HCRlpYmNm/eLDlqbfX1mDQ3N4tnnnlGjBo1SoSHh4tbbrlFvPPOOz6IXHs9JXxfnSdc4pCIKEiwD5+IKEgw4RMRBQkmfCKiIMGET0QUJJjwiYiCBBM+EVGQYMInIgoSTPhEREGCCZ+IKEgw4RMRBQkmfCKiIMGET0QUJJjwiYiCBBM+EVGQYMInIgoSTPhEREGCCZ+IKEj8f5UYaPiolF7wAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAApMklEQVR4nO3dfVRU17038O+ZAWaYkVfBYC5EJoxMiNEaKyZiRE19a0VXNBbapuvG5CaNtkmvK0kJuSFazbMSrC9d6bOapE3SVH18FAVWWyPm6kPBaKIGY4npjUEG4QqJqMSBGRFQmP384YUwDswMyDkzzPl+1pq1ZM/Zs39nz/ibM+fss7ckhBAgIqKgp/F3AEREpAwmfCIilWDCJyJSCSZ8IiKVYMInIlIJJnwiIpVgwiciUgkmfCIilWDCJyJSCSZ8IiKVYMInIlIJJnwiIpUI8XcAShNCoLW1tffvqKgoSJLkx4iIiJShuoTf2tqKmJiY3r9tNhuio6P9FxARkUJ4SoeISCWY8ImIVIIJn4hIJZjwiYhUwm8Jv7GxEdHR0aioqPC67c6dOzFhwgSEh4cjLS0NW7dulT9AIqIg45eE39DQgPnz57sMjxxIcXExHnnkEcyfPx9/+ctfMHv2bKxYsQK7du1SIFIiouAhKbmIudPpxLZt2/D8889DCIHLly+jvLwcs2fPHrCOxWLB5MmTUVhY2FuWk5ODkydPoqamZtAxtLS0DOuwzLrmNhRWNqDRdhWJMQbkpCfBFGcc9DaDdbjmEjYfOIOL9g6MidTjkfvuQO2lNrc26prb8McPa/FJnQ2AQNrYCIzSheJKZ9ctx3Ir++WtrqfnB9OuHH0vt+GMeTCfz+omO2xXryPaEIq7EiIHfE/+cc6GuuY2dDmdCNFokBxnwJQ7YgeMs665DX84VIvK+su43u2EUReC2yL1vW0AcIlxhnk0Sj8/j0/qbLje3Y1QjQbXnE6EabVIGxsBIQS+bHIAkDDNFIOfZabI8p4O9n0YCZ81RRN+VVUV7r//fvz85z/H3LlzsWjRIo8Jv76+HiaTCTt37sSPfvSj3vI9e/YgOzsbZ86cwfjx4wcVw3Ak/J439mhtM041tqJvB0oAJv5LJNqudeN6txPXu5w4b+90qa/VSHhuXirOXb6KyvrLuHqtG9e6nNBKwO0xBjw3PxUzx8cP2P6vij7DnhONHmPUaiTMv/s27P9nk8ftNBJQ8PAkZE9N8rq/ff9DvnukDoeqL7nt+6TEKExPiUNKvBE7jp/r/ULqu0//6/0v8M6ROpc2JACzLPFYu3gCKusv48WSz9Ht/PbVe/rsk/rLHtvtm0AGen962hkoOfUkvyZ7B650dCMsREJ6ciwWTRqLj6zfDPo/9GCSbn8xazUSXls2EdlTk9y+6Af6rNQ1t2Hd3v/qt6+eX2DBL+aYAQC7TzS49XXfdp+dlwpHR1e/cfUnPEyL+0yxMIZp8WWTA/aOLlxydA64vQR4fU1fJMWG49WlE5EYY+i3rwd7YHalswsfnrmEm7slVCshxhCGXy2w4Id93o/65itoae9y2bbv+9ZfG/74UlA04V++fBlXr15FYmIiKioqMGfOHI8Jf//+/fjBD36ATz/9FFOmTOkt/8c//oEpU6Zg7969yMrKGrC9jo4OdHR0uJS1trYiOTm59+/BJnxP/0GG0w+nJmLj8u/0/t3zQTl57vL/HK0Pr/LnZwNwP9LqL7EP1cJ7EnC1swsf1jQPuI0EQJLg9h/NV5J04zV8qT/bEo9/e8CEj6zfoLrJDuvFK2iwtQ+qve/8zxdN36NSQPR+QQzUf/EROsxNG4OfZaZgx7H/dvsCdNsvAAlRepxv7XB77s44AyRJ09vuKF2I19eLNYbBqNOi4fLg9jfQ9fcFEqELgaPTPRn3fJl5SvCejDaG4Zu2a17jmWWJx10JkYjUh2DzwTMuuePmL2C5KZrw+/Il4e/atQs//vGPUVNTA7P52w6xWq0YP348duzYgZ/85CcDtvHrX/8a69at8xjHYBJ+XXMb5m45JHuy77H936Zh5vh4Rb5kovQ3/lMotGtE1EfuAgt+rkDSD+ipFZxOp8fnNRplrzkXVjYoluwBYOX/+RSzU+NR+nnTsBxhe9La0eV9IyKSxcb/rMb3J46V/fROQI/Dj4qKAgA4HA6Xcrvd7vK8Uqqb7Iq219bZjX0KJHsi8i+BG6eL5RbQCd9isQC4cQqnr56/09LSPNbPy8uDzWZzedTX1w8plt0nGlBRfWlIdYmIvGkc5PWjoQjohG82m2EymVBUVORSXlxcjPHjx7tcfO2PXq9HdHS0y2MovwrqmtvwYsnnPNImItlE6OQ/wx5Q5/Dtdju++OILpKSkID7+xlCzNWvW4LHHHsPo0aOxZMkS/PWvf8Xu3bsVvfFK6XP3RKQ+QoFDyoA6wj958iSmT5+Offv29ZatWLECb731Fg4ePIiHHnoIhw4dwrZt25CTk6NYXI22q4q1RUTqdKWzW/Y2/DYs01+GcuNVwf4v8dahWpkjIyI1WzU7BS8svEvWNgLqCD9Q5aQnQavhMohEJA+NBI93uw9bO7K3EARMcUY8Ny/V32EQUZBS6jwLE74Pdp9owOaDZ/wdBhEFKY7DDxA9QzI5SoeI5KT6cfiBgEMyiUgJiTHhsrfBhO/FlwpPp0BE6iPxom1gaLl63d8hEFGQ40XbABFjCPV3CESkAuv3/pfsbTDhe2FJiPR3CESkAhXVl1DX3CZrG0z4XvCmKyJSghJDM5nwvTDFGfHason+DoOIVEDuoZlM+D7InpqE+0yx/g6DiIKc3EMzmfB9dGe8civLE5H6KDGfDhO+D3afaEBhpfy3PROReqUnx6p7TdtA0DO1Am+2JSI5fdN2TfY2mPC94NQKRBQsmPC9qObUCkSkgGnJ8g8MYcL3wsapFYhIAU9m3il7G0z4XkRzagUiktkdseGyX7AFmPC9uotTKxCRzMxjIhRphwnfC06tQERya+vsUqQdJnwvTHFGPMv1bIlIRsfrLss+cRrAhO8TR4cy375EpF5c0zZA/OOczd8hEFGQK//youxtMOH7QImfWkSkbl82OTgffkBQav0xIlI1zocfACL0HItPRPLjfPiBgKMyiUgBnA8/ALRf6/Z3CEQU5LQaifPhB4KocJ7SISJ5FSybyPnwA0HKGK52RUTymsrZMgPDRUenv0MgoiDHG68CRH3zVX+HQERBTu4ROgATPhFRQJB7hA7AhO8TXSi7iYjkIwGyj9ABmPC9qmtuQ+Nl+X9qEZF6zbbEcwGUQFBY2QBOrEBEcnr8AZMi7TDhe9Fo4wVbIpLXn47UKdIOE74XiTEGf4dAREGuovpScC6AcuDAAaSnp8NgMMBkMmHTpk0QHmajtFqtkCTJ7XHPPfcoEm9OuvwXUohI3QSUGYcfInsLfRw7dgxZWVnIycnBK6+8giNHjiA3NxddXV3Iy8vrt05VVRUAoKysDAbDt0fbff8tJ1OcEXfdNgpfXriiSHtEpE5KjMNXNOGvXbsW9957L7Zv3w4AWLhwIa5fv45XX30V//7v/47wcPdxqFVVVUhMTMSDDz6oZKgu7h0Xw4RPRLIKqnH4nZ2dqKiowNKlS13Kly9fDofDgSNHjvRbr6qqCpMnTx5Smx0dHWhpaXF5tLa2Dvp1uP4JEclJIwXZOPyzZ8/i2rVrSE1NdSk3m80AgOrq6n7rVVVVweFwICMjA3q9HgkJCcjLy8P169e9tllQUICYmBiXR3Jy8qBjv9LJRcyJSD7TkmMVGYev2CmdniPryMhIl/KIiAgAgN1ud6vT3NyMr776Cl1dXfjNb36DcePGoaysDBs2bEBDQwN27Nghf+DgSB0iktfXrR2KtKNYwnc6nR6f12jcf2wYjUYcOHAA48eP7z0ynzVrFnQ6HfLz85Gfn4+0tDQ5wnUxwzwabx2qlb0dIlIne4f3MxbDQbFTOlFRUQAAh8PhUt5zZN/zfF/h4eGYN2+e22mYRYsWAQA+++wzj23m5eXBZrO5POrr6wcd+0fWbwZdh4jIV+GhWkXaUewIPyUlBVqtFlar1aW85+/+jtRramrw97//HTk5OYiOju4tb2+/MXwpPj7eY5t6vR56vf4WI+fdtkQkrxhDmCLtKHaEr9frkZmZiZKSEpcbrYqLixEVFYVp06a51Tl//jxWrlyJPXv2uJQXFhYiMjIS3/3ud2WPG+A5fCKSV0LUrR+Y+kLRcfj5+fmYO3cusrOz8fjjj+Pjjz/Gxo0bUVBQAIPBALvdji+++AIpKSmIj4/HAw88gO9973t47rnn0N7ejrvvvhv79u3D7373O2zZssXlqF9OEXpFu4mIVMaSEKFIO4pOrfDggw+iuLgY1dXVeOihh7Bjxw5s3LgRubm5AICTJ09i+vTp2Ldv343gNBqUlJTgySefxG9/+1tkZWXhwIED+OMf/4jVq1crEnNdcxu2HDyjSFtEpD5KzYUPAJLwNJFNEGppaUFMTEzv3zabzeMvhYL9X3KEDhHJ5j5TDAqfylCkLc6W6QUv2BKRnCrrbYpMnAYw4XvFC7ZEJCenAF4s+Tw4p0ceaXLSkyD5OwgiCmrdTqHIUT4TvhemOCNmWTyP9yciulXVTQ7vG90iJnwfrF08wd8hEFGQs129JnsbTPg+MMUZMZtH+UQko2gF7rZlwvfR2sUToOHJfCKSyV0K3HzFhO8jU5wRBQ9P8ncYRBSElLr5igl/ENKTYxHCw3wiGmazLfHBtQDKSLf7RANyi075OwwiCkLpybGKtMMjfB/UNbfhBSZ7IpLJ5oNneONVoPjjh7VQ1YRDRKQo3ngVQD6ps/k7BCIKco22dtnbYML3CY/viUheo3TyL3PIhO8DpS6oEJF6SQrM2sWE74OnZqX4OwQiCnJN9g7Z22DCJyIKAJxLJ0AUViqzOAERqRfn0gkQXPWKiOTGuXQCBFe9IiI5aTUS59IJFDnpSdByDh0ikoFWI6Fg2URF5tJhwveBKc6I15ZN5PTIRDSsbovQ4c+PpeOHChzdA0z4RER+c8HRiRXvVSoyrQLAhO+TuuY2vFjyOZy84ZaIhlm3U+DFks85eVqgKKxsQDezPRHJhJOnBZDqJru/QyCiIMfJ0wJEU6v8tzwTkbolxoTL3gYTvg8uXWHCJyL5SBLXtA0Yjo5uf4dAREFMqRHfTPg+4E1XRCQnpwAv2gaKcbGcWoGI5MWLtgHi8QdM/g6BiIIcL9oGiNpL8t8QQUTqJYEXbQMGp0cmIjl9Jymak6cFCk6PTERyShsr/1z4ABO+T2aYR/s7BCIKYrs+aeAonUDxkfUbf4dAREFMAMgrPiX7BGpM+D7gOXwikpsSY/EVT/gHDhxAeno6DAYDTCYTNm3aBCE8z0S5c+dOTJgwAeHh4UhLS8PWrVsVivYGnsMnIiXIPRZf0YR/7NgxZGVl4a677kJJSQkeeeQR5ObmYsOGDQPWKS4uxiOPPIL58+fjL3/5C2bPno0VK1Zg165disWdk57E1a6ISHZyj8WXhLfD62G0YMECtLS04Pjx471lL7zwAt58801cuHAB4eHuO2uxWDB58mQUFhb2luXk5ODkyZOoqakZdAwtLS2IiYnp/dtmsyE6Otpjnd0nGvBC8Sko11NEpDYaCSh7braswzMVO8Lv7OxERUUFli5d6lK+fPlyOBwOHDlyxK1OfX09zpw5028dq9U6pIQ/WD2rXTHZE5FcJAnY8PAk2cfiK5bwz549i2vXriE1NdWl3Gw2AwCqq6vd6pw+fRoABlWnr46ODrS0tLg8WltbBxU3V7siIrmEaiVkTRqLvz83W5GFzBVL+D2JNjIy0qU8IuLGDQd2u/uqUkOp01dBQQFiYmJcHsnJyYOKmyN0iEgu17sF9v+zCZX1lxVpT7GE73Q6PT6v0biHMpQ6w40jdIhITkG5iHlUVBQAwOFwuJT3HKX3PH+rdYZbTrr8P7OISN2CbhHzlJQUaLVaWK1Wl/Kev9PS0tzqWCwWl218qdNXXl4ebDaby6O+vn5QcZvijEiKlX/aUiJSt6CaD1+v1yMzMxMlJSUuN1oVFxcjKioK06ZNc6tjNpthMplQVFTkUl5cXIzx48d7PR+v1+sRHR3t8hjKr4KxUfpB1yEiGgwl5sMPkb2FPvLz8zF37lxkZ2fj8ccfx8cff4yNGzeioKAABoMBdrsdX3zxBVJSUhAfHw8AWLNmDR577DGMHj0aS5YswV//+lfs3r1b0RuvrnVxlA4RySsjRf5JGhW90/bBBx9EcXExqqur8dBDD2HHjh3YuHEjcnNzAQAnT57E9OnTsW/fvt46K1aswFtvvYWDBw/ioYcewqFDh7Bt2zbk5OQoFneMIVSxtohInT6ulX+SRkXvtA0EQ7nT9sWSU9j5ifwXVIhIvRZ/53b87x/fK2sbnC3TB+r6SiQif+CatgHiSmeXv0MgoiDHNW0DBG++IiI5hWklrmkbKHLSk6Dl/MhEJJOkWGUOKpnwfWCKM2L+3bf5OwwiClJpYyO9bzQMmPB9UNfchv3/bPJ3GEQUpCRJmTMITPg++OOHtf4OgYiCmBIjdAAmfJ98UmfzdwhEFKQkKDNCB2DC9xEH4hORPBKi9IqM0AGY8H2Snhzr7xCIKEi1tl9XrC0mfB88NSvF3yEQUZDq6va80NNwYsInIvIjJe/xYcL3QWElJ04jInm0X3cqstoVwITvEy5kTkRyyis+FVxr2o5knEuHiOTkFAiuNW1Hshlm+VeiISJ1C6o1bUeyj6zyr0RDROrG+fADBM/hE5Hcgm5N25GK5/CJSG6ln5+XvQ0mfB+kxCtz2zMRqVdlvfxzdjHh+2DH8XP+DoGI6JYx4fvgor3D3yEQUZCbpsCcXUz4PogKD/V3CEQU5J7MvFP2NpjwfZAyhufwiUg+YyJ0XMQ8cHABcyKSz9w0ZdbMZsL3QYQ+xN8hEFEQU+J0DsCE7xPBBa+ISCa5Cyxc8SqQXOns8ncIRBSEvpMYiZ/PMSvWHhO+D3inLRHJ4bNGu2Jz4QNM+D7JSU/iZVsiksWLJZ8rMhc+wITvE1OcEc8vsPg7DCIKQt1OwRWvAs0PJo71dwhEFKSUmAsfYML32R8O1fo7BCIKUkrMhQ8w4fussv6yv0MgoiCkkYDsqUnKtKVIK0GBl22JaPgJodwBJRO+j9LGRvg7BCIKQgJAXvEpRUbqMOH7aJSO0ysQkTycAoqM1GHC99Hp83Z/h0BEQezj2mbZ21A04b/++uswm80IDw/HlClTUFpa6rXOO++8A0mS3B5PP/20AhHfUNfchlONrYq1R0Tqc6qhVfbTOoqdp9iyZQtyc3Oxdu1aTJ06Fe+++y6WLFmCiooKPPDAAwPWq6qqgsViwZ///GeX8oSEBJkj/lZhZQM4fxoRyUngxmmdFxbeJVsbiiT89vZ2vPLKK3juuefw8ssvAwAWLlyIjIwMrFu3DgcPHhywblVVFdLT03H//fcrEWq/Gm1X/dY2EamH3DdgKXJK5/jx42hpacHSpUt7yyRJwrJly1BeXo729v53UgiBU6dOYfLkyUqEOSBOnkZESpD7BixFEv7p06cBAKmpqS7lZrMZ3d3dqK3t/y7W2tpaOBwOVFZWwmKxIDQ0FBaLBdu2bfOp3Y6ODrS0tLg8WlsHfy4+Jz0JWg3H4RORfCTIfwPWLZ/SaWtrw/bt2wd8/vbbb+9NspGRkS7PRUTcGNtut/c/AqaqqgoAUFdXh82bNyM0NBTbtm3Do48+is7OTjz55JMeYysoKMC6det83ZUBmeKMeG3ZROQWnbrl1yIi6s+vFFgI5ZYTvs1mw6pVqwZ8ftasWZg/f77H19Bo+v+hkZmZib1792LOnDkwGm90xIIFC3Dx4kWsWbMGTzzxBCRJmSPv7KlJ+MOhWtReUmYaUyJSj7SECEUWQrnlUzqJiYkQQgz4qKioQFRUFADA4XC41O05su95/mZjxoxBVlZWb7LvsWjRIjQ1NeHChQu3Gv6gXOviWB0iGn6R4coMmFTkHL7FcmMueavV6lJutVoRFhaGO+/sfwHfw4cPY+vWrW7l7e3t0Gq1iI2N9dhuXl4ebDaby6O+vn5I+1DX3IaWq9eGVJeIyJPjdTa8UW71vuEtUiThZ2RkwGg0oqioqLdMCIGSkhLMmjULOp2u33rl5eVYsWIFzpw501vmdDpRVFSEjIwMhIWFeWxXr9cjOjra5THQrwlPdp9owIObK+Dg2rZEJJON/1kdHDdeGQwGPP/881i/fj3CwsKQkZGBP/3pT/j0009RUVHRu11jYyMaGxtx7733QqfT4amnnsKbb76JxYsXY/369TAajXjjjTfwz3/+Ex9++KESoaOuuQ15xacgeDaHiGSkxI1Xik2tsGbNGqxfvx5bt27FsmXLcPbsWfztb3/DjBkzerd55513MH36dJw/fx4AcNttt+Hw4cOYNGkSfvnLXyI7OxttbW0oKyvDfffdp0jchZUNcDLZE5EC5L7xShJCXceuLS0tiImJ6f3bZrMhOjp6wO2f/r8n8f6p8wpERkRqt2p2SnAc4Y9UvMuWiJSgxI1XTPhe5KQrs/QYEanbwnsSZL/xigmfiBSl0L2SI86BLy7IPkqHCd+Lwkr5V6EhUpNYg+fh1GrV7RSyr3rFhO8Fp0YmGl6GMK2/QwhYQTE98kjGi7ZEw6vB1o4YQ6i/wwhIQTE98kiWk54EzoxMNLxsV6/7O4SAw1E6AcAUZ0Rmary/wyCiIKfE9MhM+EREfpYSZxwZ0yOrQQt/fhKRjO67c7Qi7TDh+4AXmIhITvYOZaZeZ8L3gSUh0vtGRERD9GXTFUXaYcL3wQyzMj+3iEidrnU5FWmHCd8HH1m/8XcIRBTERumCaInDkY532xKRnJyCR/gBQ2VLBhCRwr5suiL7xGkAE75PzirwRhCRusk9cRrAhO+TVo7DJyKZyT1xGsCE7xOtlpPpEJG85J44DWDC96quuQ0Nl+X/5iUidbuuwNBMJnwvuAAKESnh3SN1XPHK375ssvs7BCJSAQH5L9wy4XvBidOISClc8crPOHEaESmFK175GSdOIyKlcMUrP8tJl/cNICICgDtiw7nilb+Z4oy4zxTr7zCIKMj9KP0O2dtgwvdBwcOTIPHeKyKS0cHTF2RvgwnfB6Y4I3413+LvMIgoiF2wd8reBhO+D3afaMCmA9X+DoOIgthtkTrZ22DC96KuuQ0vlnwOJ2dIJiIZPTsvVfY2mPC9KKxsQDezPRHJKHtqImaOj5e9HSZ8L7jaFRHJbWqyMiMBmfC9SIwx+DsEIgpyL5Z8zhWvAsEM82h/h0BEQa7bKbjiVSD4yPqNv0MgIhXgilcBgOfwiUgJXPEqAPAcPhHJTauRZJ84DfBTwt+7dy8kH+cq6Orqwssvv4ykpCQYDAbMnDkTx48flznCb+WkJ4GzKhCRXLQaCQXLJso+cRrgh4RfUVGBn/zkJz5v/+yzz2LLli3Izc1FYWEhQkJCMHfuXFitVhmj/JYpzohJiVGKtEVE6hJtCMX/e3YWfqjA0T2gYMJ3OBx46aWXMHfuXISFhflUp6GhAW+++SY2bdqEZ555BosXL8YHH3yA2NhYbNiwQeaIvzU9JU6xtohIPX5wz1hFjux7KJbw3333Xbz99tv4/e9/j2eeecanOmVlZejq6sLSpUt7y3Q6HbKyslBaWipXqG44Jz4RDTeNBDyZeaeybSrV0OLFi1FfX4+nnnrK5zqnT59GREQEEhISXMrNZjO+/vprXLlyxWP9jo4OtLS0uDxaW1sHHbspzogQXt4momGikYAND09S9OgeAEJu9QXa2tqwffv2AZ+//fbbsWTJEqSkpAz6tVtbWxEZ6b7EYEREBADAbrdj1KhRA9YvKCjAunXrBt1uf7QaDbqczmF5LSJSt5z0JMXO2/d1ywnfZrNh1apVAz4/a9YsLFmyZEiv7fSSYDUa5Q67RxvD8HVrh2LtEVHwutLZ7Zd2bznhJyYmQgh5ZpOMioqCw+FwK7fb7b3PK2WWJR47P/F+67MuRIPOroG/qIxhWrRd88+bTUSBQYmbrPoT0GemLRYL7HY7Ll265FJutVoxbtw4hId77rS8vDzYbDaXR319/ZBi+VlmCjQeBuRnTRqL8udn44PVmdAOsKFGAt7/5Uw88YBpSDGMNBoJmGOJx4N3jbnl1wk0Em5MaUs0WBoJitxk1Z9bPsKX07x58wAARUVFvaeNOjs78f7772PhwoVe6+v1euj1+mGJxRRnRMHDk5BXfMplMZSeiy99z8e9tmwiXiz53GUe/b43V+Rn3Y1YYxg2/mc1PP02kiQAAm7bSBLwq/kWODq78HFtM041tLpso9VIeHjKv6D45Ff9zuUvAbAkRODMBYfbvty8uUYCfrXAgorqizheZ+v3tcRNf38nKQrTU+KQPTWp96LU7hMNbn0iAZhticeaxROw49h/450jdW5tb3h4EqYmx2L3iQZUNzlgvejAucu+zznSE0+MIQyHzly65YVs+sZsijNCANhzotFjndHGMIyJ1EEI4Msm91+sAJAUE45GW/uAnwcJQHyEDvpQLUK1Eq53C4SFaDDaGIrKepvb+5g82oizg5h9MdYYistt193Kow2hiNSHoOHywLEBQIQ+BFmTxiIpxoDNB8+4fe76+2Wr1Uh4bl4qHJ1d+Mc5G+qa23C924lQrQamOCPCQ7Vu75lWI+H5+an4r6/tOGJtRle3QFJsOB6fYcLZ5jY02tqRGBOOUboQbOknjr769qlRp8XYqHAYwrQ4fd6OC/ZOhGglpN42Cg2X23Hew+lcjQQI4f7/AOj//64/Ltb2ti/kOh/jwa9//WusW7fO7VRQY2MjGhsbce+990Knu7Hc14oVK7Br1y68+uqrSE1NxZYtW3DixAmcPHkSZrN50G23tLQgJiam92+bzYbo6Gif69c1t2H3iYbeD1bfpDbY7W7eJiNlND6u/calDgC8/eFZfFJ/GQCQnhyDn2WmuLzWQG31lFc3OWC7eg3RhjDclRDh9vzN7Q0U92C3H2yfDLVv+/bbKJ0WEiQ4OruGFP/N70F/78nNMR2uuYRXS0+j4XI7NNKNJDJutBGWPn3dN/aB3s++8XnaD1/7tW95hC4EAgJXOrsHfG1P/d/3OSEEai9dQWt7F26L1OHZeakui3f4Eo+3fRrsZ8KXur68l768Vt++9PT/APD+f1dxwg/Wrl0r+mu6p7yurq63rKOjQ6xevVqMGTNGGAwGMXPmTHHs2LEht22z2QRufPEKAMJmsw35tYiIRhK/HOH7060e4RMRjVQBfdGWiIiGT0BftJXDzT9ohnLnLRGRv0VFRfk863AP1SX8njH8PZKTk/0TCBHRLRjK6Wie0iEiUgkmfCIilVDdKB2n04mGhm+nSIiMjPTpPFhra6vL6Z/6+npFp3YIROwTd+wTd+wTd8PRJzyH7wONRoNx48bd8utERUVxOOdN2Cfu2Cfu2CfulOoTntIhIlIJJnwiIpVgwiciUgnVncMfKr1ej7Vr17r8rXbsE3fsE3fsE3f+6hPVjdIhIlIrntIhIlIJJnwiIpVgwiciUgkmfCIilWDCJyJSCSZ8IiKVYML30d69e32eqKirqwsvv/wykpKSYDAYMHPmTBw/flzmCJXz+uuvw2w2Izw8HFOmTEFpaanXOu+88w4kSXJ7PP300wpEPLwOHDiA9PR0GAwGmEwmbNq0yW1hnZvt3LkTEyZMQHh4ONLS0rB161aFolXGYPvEarX2+3m45557FIxaGY2NjYiOjkZFRYXXbWX/nPhtNd0RpLy8XIwaNarfhdf788wzzwiDwSB+97vfib/97W9i9uzZYtSoUaKmpkbmSOW3efNmodVqxfr160Vpaal4+OGHhVarFYcPH/ZY7xe/+IWwWCzi6NGjLo++C9aPBEePHhWhoaHipz/9qdi/f7946aWXhCRJ4rXXXhuwTlFRkZAkSaxevVp88MEHYuXKlQKA2Llzp4KRy2cofbJnzx4BQJSVlbl8Hj777DMFI5ffuXPnRFpamgAgysvLPW6rxOeECd8Du90u/uM//kNotVoRGxvrU8I/d+6cCAkJEW+88UZvWUdHh7jjjjvEE088IWe4srt69aqIjo4Wubm5vWVOp1Pcf//9Yu7cuR7rzpgxQ/z0pz+VO0TZzZ8/X0ybNs2lLDc3V0RERIirV6/2Wyc1NVVkZ2e7lGVnZwuz2SxbnEoaSp+89NJLIjExUYnw/KK7u1u89957YvTo0b25w1vCV+JzwlM6Hrz77rt4++238fvf/x7PPPOMT3XKysrQ1dWFpUuX9pbpdDpkZWX5dOojkB0/fhwtLS0u+yZJEpYtW4by8nK0t7f3W08IgVOnTmHy5MkKRSqPzs5OVFRUuOw/ACxfvhwOhwNHjhxxq1NfX48zZ870W8dqtaKmpkbWmOU2lD4BgKqqqhH/efDk1KlTWLlyJf71X/8V27dv97q9Up8TJnwPFi9ejPr6ejz11FM+1zl9+jQiIiKQkJDgUm42m/H111/jypUrwx2mYk6fPg0ASE1NdSk3m83o7u5GbW1tv/Vqa2vhcDhQWVkJi8WC0NBQWCwWbNu2TfaYh9PZs2dx7dq1fvcfAKqrq93qeOqzgeqMJEPpE+BGwnc4HMjIyIBer0dCQgLy8vJw/fp12WNWwh133AGr1YotW7bAYDB43V6pz4kqJ09ra2vz+K17++23Y8mSJUhJSRn0a7e2tiIyMtKtPCIiAsCNRdRHjRo16NeVmy990traCgBu+9d33/pTVVUFAKirq8PmzZsRGhqKbdu24dFHH0VnZyeefPLJYdgD+Q1l/4faZyPFUPavubkZX331Fbq6uvCb3/wG48aNQ1lZGTZs2ICGhgbs2LFD/sBlFhsbi9jYWJ+3V+pzosqEb7PZsGrVqgGfnzVrFpYsWTKk13Y6nR6f12gC80eVL30yf/58j68x0L5lZmZi7969mDNnDoxGIwBgwYIFuHjxItasWYMnnnhi0Eu1+cNQ3tuR+nnw1VD2z2g04sCBAxg/fnzvMn+zZs2CTqdDfn4+8vPzkZaWJke4AUupz8nI/rQNUWJiIsSNC9b9PnwZPjWQqKgoOBwOt/Keb+hAXcvTlz7pif3m/fO2b2PGjEFWVlZvsu+xaNEiNDU14cKFCzLs0fAbyv4Ptc9GiqHsX3h4OObNm+eypitw4/MAAJ999pkMkQY2pT4nqkz4crJYLLDb7bh06ZJLudVqxbhx4xAeHu6nyG6dxWIBcGNf+rJarQgLC8Odd97Zb73Dhw/3O564vb0dWq12UD99/SklJQVarbbf/QfQ71Gppz4bqM5IMpQ+qampwR/+8Ae0tLS4lPdc9I+Pj5cn2ACm1OeECX+YzZs3DwBQVFTUW9bZ2Yn333/f6ymRQJeRkQGj0eiyb0IIlJSU9P4k7095eTlWrFiBM2fO9JY5nU4UFRUhIyMDYWFhssc+HPR6PTIzM1FSUuJyU1FxcTGioqIwbdo0tzpmsxkmk8mlz3rq9D2lMVINpU/Onz+PlStXYs+ePS7lhYWFiIyMxHe/+13Z4w40in1Ohm2AZ5Bbu3Ztv+PwGxoaxNGjR0VHR0dv2aOPPip0Op3YvHmz2Lt3r5gzZ46IiIgIihuv1q5dKyRJEvn5+aK0tFQsX75chISEiCNHjvRuc3OfNDU1iYSEBJGamip27dol9u7dK77//e+LsLAwcezYMX/typCUlZUJSZLE8uXLRWlpqcjPzxeSJIkNGzYIIYRobW0VR48eFRcvXuyt89577wkAYtWqVWL//v29N9Ts2rXLX7sxrAbbJ93d3eJ73/ueiIiIEK+//ro4ePCgWL16tZAkSfz2t7/1457Io7y83G0cvr8+J0z4Phoo4feU971jtKOjQ6xevVqMGTNGGAwGMXPmzBGX2AbS3d0tXnnlFZGUlCT0er2YMmWKKC0tddmmvz6pqakRy5cvF2PGjBHh4eEiMzPT6925gaqkpERMnDhRhIWFCZPJJDZt2tT7XM9/7vfee8+lzltvvSXMZrPQ6XQiLS1NbNu2TeGo5TXYPmltbRXPPvusSE5OFjqdTtx9993i7bff9kPk8usv4fvrc8IlDomIVILn8ImIVIIJn4hIJZjwiYhUggmfiEglmPCJiFSCCZ+ISCWY8ImIVIIJn4hIJZjwiYhUggmfiEglmPCJiFSCCZ+ISCWY8ImIVIIJn4hIJZjwiYhUggmfiEglmPCJiFTi/wOQiOGR/C+BswAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -137,7 +137,7 @@ } ], "source": [ - "num_samples = 10000\n", + "num_samples = 12000\n", "uniform_samples = np.random.uniform(-1, 1, size=(num_samples, 2))\n", "uniform_samples = torch.tensor(uniform_samples, dtype=torch.float32)\n", "\n", @@ -147,10 +147,10 @@ "mixture_samples = np.concatenate(\n", " [\n", " np.random.multivariate_normal(\n", - " mean1, np.diag([variance, variance]), num_samples // 2\n", + " mean1, np.diag([variance, variance]), num_samples // 3\n", " ),\n", " np.random.multivariate_normal(\n", - " mean2, np.diag([variance, variance]), num_samples // 2\n", + " mean2, np.diag([variance, variance]), num_samples // 3*2\n", " ),\n", " ]\n", ")\n", @@ -166,7 +166,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -175,7 +175,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAA8SklEQVR4nO2de3RU9bn3v3si5H4liQGTlJiQBBWQNkkr1SRQAtiCqyKGF32rqNVK61nLEyzgeqkcX3sJBtJ1ju3xQjneTkUi4bSvelgCLQkgR5IUMVZNIGEoE+SSIVeGJAiz3z/iHuayrzN79mX281nLtWRm9p6d2Xs/+/k9z/d5HoZlWRYEQRBExGPT+wAIgiAIbSCDTxAEYRHI4BMEQVgEMvgEQRAWgQw+QRCERSCDTxAEYRHI4BMEQVgEMvgEQRAWgQw+QRCERSCDTxAEYRHI4BMEQVgEMvgEQRAW4Tq9D0BrWJbF4OCg59/JyclgGEbHIyIIgtAGyxn8wcFBpKamev7d39+PlJQU/Q6IIAhCIyikQxAEYRHI4BMEQVgEMvgEQRAWgQw+QRCERSCDTxAEYRHI4BMEQVgEy8kyCYLQD7vThe2tDvT0X0J2ahyWl+YgLz1e78OyDGTwCcJi6GV0G9oceHrnp7jqZj2vbTlwAr9ZOgPVJTlh/34CYFiWZaU/FjkMDAxQ4RVhWfiMbpSNCbvRtTtdmF/f7PO93t+/t6aCPH0NoBg+QVgEu9MVYOwB4KqbxdM7P4Xd6Qrbd29vdfAae+77G9ocYftu4hpk8AnCIuhpdHv6L0m8PxK27yauQTF8grAIahndYHIA2alxEu/HyvpuIjTI4BOERVDD6AabeF1emoMtB04IxvApaasNFNIhCIuwvDQHUTb+VuByjG4oOYC89Hj8ZumMgO+PsjGoXTqDErYaQR4+QVgEzujyqXTkGF05OYC1i4oFt68uyUHp1DQ0tDnQ0z+C7NRYVJeQDl9LyOAThIUIxeiqkQPIS4/3eSjYnS7U7uoQzQdQsZZ6kMEnNEOtG5cMQGj4G125qJ14lZMPoGItdaHCKyq80gS1Cn70Khwi1C2eEtsXA+CNR8qQnRpHxVoqQ0lbIuyoVfCjZ+EQoW7iVSwfwAJ4YGsLnn33MyrWUhkK6RBhJ9Rkn9r7IYJHrcSrVD6ABdDc2SuxDyrWUgoZfCLsqFXwQ9Wa+sCXM1GaePVHKh8AjBt98X1QsZZSyOATYUetZJ/c/VBSNzS8f7+LY1ew/1gvvBdW3knTcBRiecOA3/BTsVZwUNKWkrZhR61kn5z9tJ7sCzBADICfLyzCT+cWKDpmKz40+Aw4H1E2Bq89VIqVr7YGfV4b2hxYu6Nd1JOfW5SB/cedvHUD95LBVwwZfDL4miCkrlF644rtp2RqmuADARg3+j+TYfStqgQSe6DyMTsnBR87BgTfX1WZL5lTOXC8Fw9sbRH04vfWVAAAFWupBBl8MviaYXe6VLlxhfZTu6sDLzV3C27HAPjrU5Wi32m1vu3eK5me/hEcFTHg/kxJjsGXg6OC7y+ZNQUvrJgtuR+1nAFCGorhEyEjN/wRbMGP3P3IUX5IKXmspASSG74R4vokcYP/+ZeDqN3VIRkOo5YL2kEGnwgJpUm7cMbG5Sg/pJQ8VlECCdU0yCXKxqBmQaFgDB8Auntd6G7ulpXEVcsZIMShwisiaJQWQjW0OTC/vhkvNXfjvfYzeKm5G/Prm1UroFlemgP+XpDXkFIEWaVvu9hKRgou3HLHtAzeQix/qDDOOJDBJ2TBaa2feOsIand1eDx1uZWQWlTJ5qXH4+cLiwTflyPlC7WFsFmQWsl4Y2PG1TJLZk3Bqsp8vPZQKbp7XXjirSM40evCaw+VYlVlPgoyEgT3QZWxxoBCOgQA8VCLUNjmlilJovvkwh92pwv/vP2oJrHxn84tAAtg0wedPsoPueX/obYQ1guloTKplczs3BRkp8YFxNMb2hwBYRwuZFM8ORFdvRcF9ykUDrOqBFYPSKVDKh1RGWKpiNRRqCiGY1VlPvLS42XFiuUqOuQSqiJILUWRFgQjIw1GjSTV8Cw7LRaOPuEcB59Mk+/YGQAVRRnYsORmw/7mZoUMvsUNvtSNf++3svF2q/BSXKwSUqwwx59VlfmoLslR3dOLdO8xFBnpv+/rQp3ASohPDiklexWDux4+7LrgORffLZgken3YGKD2npmKwmiRfr5DhUI6FkcqDt96sk90+5k5yfj76SHe8MeHXRdkGfsoG4PE6OsCDFeofc+t0Es9WBlpQ5sDm/cc8zH2DICaqkJB7buSuL83UTYG93zzhgDj/nJzt+gK0c0CT+/8FKVT0ySNtt3pwrPvfobmzl6ffUba+Q4VMvgWR+omZiR0LzYwKJ+WjoFLXyElfiKKsxI94Y8n3joi+f0MgJJvpGDT7k742y0uoSv3hvf27L5bMEk0SSxnn2YgGBmpUAKdBVC/5xi+P2My728jR/bqTUFmAqpuuh5z8vk9eTmhhatuFjXbj6J++a2C56uhzYF1je0B1w+3fSSd71AhlY7FkbqJy/LSRGV3HzsGsK+zFx87BtDUcR6HupzY3uqA3emS3RHxsL2f92YF5Kk7+OSeD2xtsUQv9WBkpErUVd6IKZj4yEmLw9pFxbJXekJ87BgQlO9yDy+x3UfS+Q4VMvgWR+wmtjEACxa3TEmS1LcD48b7k55Bj74+KeY6WdtJ0dM/wisLBcS9Val9RgLByEiDLS4TGoAixL6O8/jV+5+j8UiPrM+LISTflVtPIHYNWQnNDf7u3btRWlqKuLg45OXlYdOmTRDLG3d1dYFhmID/brnlFg2POnIRuomZr/+5rcWBT3oGPQY0JfY6ZCZGS+73qpvFpt2dspbtUnzi6Me8TU28BVvBFhBFSgFVMFOoQikuqy7Jwd6aCqyqzEdumvQKbssBO3qHxyQ/Jwc+T11uXuHi6FdhLfozC5rG8D/66CMsXrwYy5cvx3PPPYeDBw9izZo1uHLlCtatW8e7zdGjRwEAf/nLXxAXd+0C8/5/IjT8e5kkREdhe6uDd5k8MHIFwBVZ+w1hFe/DKR6pH+fxlXwjRfH+IqmAClDei0asF72c34Zrg+Dou4RTfcElcoOl4+ywz7CVhGhpE2ZjgGa/nv6ANeP7msoyFy5ciIGBARw+fNjz2tq1a/Hiiy/i3LlziI0N9CzWr1+P119/HQ6HOk9ikmVKE4r8TmsmxU/EBddl2Z+nLozjqNGhUo/rxF8GPB52BISsmI0BKgozsE9kXKKcNs6RgmYe/tjYGJqamvDss8/6vL5s2TI8//zzOHjwIKqqqgK2O3r0KG699VaNjpIAgpff6YGUsc/PiMeCm7NMUUClJVKrggPHe7F59zGcHxpFZlIMVi8oxB3TMgBcU0R1nB2SLL5TG//vcrPjRp1hfFeUDIDKogw8s+RmbN7dKbrPSMnnyEEzg3/ixAlcvnwZhYWFPq8XFIwPpOjs7BQ0+AUFBZgzZw6OHDmClJQUrFy5Es899xwmTJgg+p2jo6MYHfVt3zo4OBjiXxL5KJXfGZnuXhfm5E/yGCviGkIdKn++4xO803Yt0frl4Ch+tLUF95Zko3RqWkhdNvng2jiwLIv32s8o3t7NAveV5SI5bgLvw8sqDfHkoFnSljO0SUm+/VcSExMBAENDQwHbOJ1OnD59Gh0dHXj88cfxwQcf4LHHHsNvf/tbrFy5UvI7a2trkZqa6vPf1KlTQ/5bzI6UWkGp/I6PKBuDnDRj3EgPbG2xXHJOCqFr4MDxXh9j7807bT1Ys6NdVWMPjBvkF1bMDsnRGB67grWLilFTVQiWBTbv7vT8XVLXc6KMPECkoNlf6na7Rd+32QKfPfHx8di9ezemTZvmMdQVFRWIjo7G+vXrsX79ekyfPj0chxuxyKk+FWogJpf7ynLxaPmN6Om/hB9tbVHt2IOFhfyKTSsgdg28dfhU0Pv9dl4qWuz9ikM82amxsDtdIck3zw+Niv5dNVWFqPuAP7Szec8x3ClQbBZpaObhJycnAwCGh4d9Xuc8e+59b2JjY1FVVRXglf/gBz8AAHzyySdhOFLzIVdfLNaieF1jO9Y1tnv2UTo1DXtrKjA7J0XRsaTFT8DnZ4bwf9/9DFsP2oP9k1SHim/GkWpTfaoveG36hYtfobIoA9MnJ8rehmur8b3NTSHJNw/b+7C2MXD1wf1dYnkpK10bmnn4+fn5iIqKQldXl8/r3L/5PPXjx4/jr3/9K5YvX+6jpBkZGU+yZGSIx2XXrVuHJ5980ue1wcHBiArrKOkXI6ZZd7PwaZL2yv5ulBdmICVugqLEXJ/rK/S5BhT+FaHBIDBpx4eVknNCSFXZ9rm+CnrfXb0XRdsj83HPN2/A5j3HVJHwCil1rrpZtNr7Rbe1yrWhmYcfExOD8vJy7Ny506fQqrGxEcnJySgrKwvY5syZM3j88cfxzjvv+Ly+fft2JCUl4Vvf+pbkd6akpPj8x7eSMCtyh4pwK4D/d/S07H27WaCpsxf7/JpRGZHKogzU3jNTsqrXSrFaIYymwGpo61E9J8DH4Kj4g8wqiVtN74D169dj/vz5qK6uxsMPP4xDhw6hrq4OtbW1iIuLw9DQED7//HPk5+cjIyMDt99+O773ve9h9erVGBkZwU033YT3338f//Zv/4b6+nrL6+fl9ESR24/ezCTETEB1SQ4mJ8fgga0tgg+ot1tP4dbclIgqulJKJCmwlNA7PAabwCow0grxxNC0tcK8efPQ2NiIzs5O/PCHP8Qf//hH1NXVYc2aNQCAI0eO4LbbbsP7778/fnA2G3bu3IlHH30Uv/3tb7F48WLs3r0br7zySkCoxopIeWudZ4cj3tgDQE/fJdidLtwxLQMbl82EkCCDa7cbCT1Ugu0Lo4YCy6xUFGYoakERidAAFBNX2kpVOs7OScHHjgHtDkhHvCc8rWtsFx3aYvbKymAmXEltbwWWzJqCmqpC00wyCwcU1DQxUj1RkuPEC9MiCe++KBfHxHv9eM/aNdt0JKm8zeTkGJ+pUnx/k3eV7Z7PzilOtBqV3LRY3r5LHNmpsYLFZlaBPHwTe/iAeE+UI6f6sa3FGnIzjlWV+WBZiK58hGbtKvGS9UJqVeevqJL6mw4c7zVErYQazMpOQnvPEG8Ox8aMO0jDo1dM83APB+Thmxyxnih/+4e4FC0S6ekfQU1VoejKR2gCk1D3RCOtBKTyNv5/sVRHyA+7Lqh4dPrySU9gtT7g2+qbw6qjD8ngRwBCy1Sp0EYkwi3b+SqF5cza9Z8Da7S5uMGobMRm2xpNpqk2+Rnx6O51KX4QRipk8COYYIzDxCgGl6+aM8rHAB4jLLbykZq123F2vBpcKl6uh7EQy9uIwZe3SIi+Dt0REr8XortXWL0k9iCMVMjgRwh8YYdgjINZjT0wXoDlbYCFVj5SD8KmjvNoaHPgRK9L9kpAK4RWL1LV0NmpsZZV54hhlQpbDjL4JoYz8v/T7US71xhC4FrY4TdLZ2BdY7tq06cAIDctDl9dvYozg+qMrlML1+UreOKtI8hOjcN3Cybhw64L6Dw7hP5LXyElbgKKs5KwvDQH3y2YhJebuwUNJNds7Y5p6aLfp5ex4Fu9COUlAPG8hdWxSoUtB6l0TKrSkeOtRdkY7K2pwCv7uy2n1hGCYca9YTl2T6qOwWh6fjHFVnevyzRTzLSCuz8ohk8YGqHYsj9c2GF41HrJWyFYVn4juNT4iYiyMUHPftUaIc//w64LivooWQGrVdhykME3IWI9dPwZv/Gt2T8lVLKSYnhDYjYGhjUW3nmLhjYHhXF4WDwzC6sXFBvy/IUbMvgmRImUjlOnBKPssDrs12sB/6CnmwX+86N/oLvXZbgCHu95s80m6HSqB//96VmUF2Ya6rxpBRl8EyLXY+fCDpyyQ+3kbaRjd7oEcx+f9Azik55BQxXwkApHHm4WWNvY7pHVhqOwzkjFet5Q0taESVu704XvbW4SNd5cjPJeL0NU/fIhtEgMgiCUY4Tkn93pwvz6ZtnGPi1+QkjDTiKBFWU5mJ2bqnqLjVCb24UTTdsjE+rQerJP8L3MxGgUZCSguiQbJVPTPK/bnS4y9mHiqpvFlv0ndD0GJXkdAJY39sB4Wwk5A4SUIHcokV5QSMdkcBeU0L19fngM54fH0NV7EW+3ODAzOxm35afjyD+EHxJE6Gxr0Xe4SsdZ/j4yhDDOi2OqF9bJGUqkp5SXDL7JUOLJsbgWaybkc2N6PE4o9MS4Yi29erMMXCKPXSmXLl8VfT+YwjopQYXelb1k8E1GpDe7MgLJscHNEQjWg1MjwZdqodkHWhFMFa6UoELvyl4y+CaDNPXhJ0Wk4EoKpR6cWt04r0+KUfS9hDjBFtZJDSWipC2hCCvPJNWK4qxE/GbpjKB+ZyUenFoJvoY2BxraqHVGsPif5lCqcDkJtFFn55KHbzKEuiUS6vHFl4OoLsnB3poKNLQ58OePT+PLwVHJ7ZR6cGok+KSS+IQ0bhaYnpWIySmxKMpKDHnOrVhrbr0hg29C+C6oxOjrUPdBJ1VWqkDTMSeaNzdh4z0zsXZRseTIRCA4D06NBJ9SOSbBzxdnh3Hs/EUsuiVLFcNs1Nm5ZPBNCt8F1XKyD02dvTodUWTBssC6r6sxxeKyDIAVZbl4tPxGxYYimASff4L341NUW6EWV90s1uxox+/+ehzfLUjHY+X5hvDK1YRi+BFEcVaS5GcW3ZIVELMk+HGz4/Fxsbjs88tm4tdBxmbF8jF84aGGNgfm1zfjpeZuvNd+Bi81d+Owneor1OZU3wi2tTjwvc1NEZcbIYMfQchJ6O75/BzKCzM0OiLzw4VVuJj+qsp8LJk1Basq87G3psKndYVSlCT45LbEJtTD/fUqT+/qWDWhkE4EwRmQNTvaBT9z1c3i6KkB7Q7K5CRER3n+PxxxWS4f88r+brR+3fqiNC/Vpy0GQLF6veBWeUaMxwcDGfwIwXvcoRRX3G4Njigy2N7qwOzc1LDqp1tP9qGhrcdj0Lt6L6KhrcdHi08Fd/qhd3WsmpDBjwCUtsW1MRTElwu3rD/yj35cHLuieqtbKS0+16ohMYZuVb1QWlthxLbIHHQVGRS5F04wsd0hGnmoCDcLvN16LXnnXQkb6g0uV4tvrSbmxmJO/iRZn1OrajqckME3IEouHIrtag/nfTuHx7B5zzGf3//l5m5UFGVgw5KbZRl+uVr8i2P0kNaLXZ+exYddF0Qf6nJXanpDKh2DobTcnmK7+nDVzaLug86A88QCaOrslS3pk6vFpx5K+rGt5ZSPFHZ+fXPAuZWzUjMCZPANhtILhwyBfoitq9wsZPXDkavFpx5K+uF/nvmcL6O3ReYgg28wlF44ZAiMixzPTq4WPy89Hku/eUPYjpVQhv+5NXpbZA6K4RsMpRcODSg3NnI8OznNtuxOF3YeOR3OQyUUcqj7guf/xdpvAEBCtDFMLXn4BkNJub3d6ULtrg7sP9aL5aU5+HZeKu92hH7I9ey4oq4XVszG2kXFAQk+Ss5rT66E89XuGPCEdfLS47G6qlDws/V7jhmiYtcYjx3CR953x7R07D/W6+OxR9kYrK4q9Hzm4tiVgM9QYCd8FGQmYPrkJHzx5RC6ei/K2kbNgReUnNee26elY1vLKcFcDQvfKlwxubMR5tkCZPANAZ8M08YAc4sykBAzwdP+2F8C6A/5f+EjMfo61Hz9wO1qljb4wQ688H7wJ0RfB4YBhkevyAoNpcROwMAIzbZVgygbg0fLb8RnX4rPhPY+L2ZI3JLB1xkhGaabBfYfd2JvTQUAYH59My3pdeRjxwDm1zejpqpQcvwhA2B1VaGixmp2pwvPvvsZmjt7g35wf3/GZLzdeopyOSrAPaxvy08XNfjeITszJG4phq8zcmSYFL81BlfdLDZ90ImSb6SItphmAWxWELNtaBtvxdsUgrHnPNLae2aCOmeEzt/+0Q+706Uop6a03bUekMHXGTnLQIrfGgcWwOGvu1rmpgl7bHKLbdQYUegdPqouycHPFxQFvzMCwHgrjfn1zWg92Se7hbXR59kCFNLRHTnLQOqjYjzcLODoE4/JhmtE4bziTBRlJXoknHPyJ+G/Pz2Dl5pP4PKVq4aIFUcCXIHV3poKz3xjqRm1Rp5nC5DB1x0x/a73MlBM40vog9TZSIy+DrW7OkR7sASzeivKSvSoPRraHHjwP1oobh8mvNU1chU2Rp1nC1BIR3fkLAOFPkMYFxsDvN0q3YNFaWsMbyfA7nRRwZ0GRNKKiTx8AyBnGVhdkgPn8BjqPugk+aXBsTHj3r9/KI6vc6JUhaY33k6A3enCP28/SsZeA7JTYyXbYIu9b6Qe+QzLWitCPDAwgNTUaxWp/f39SElJ0e+AZGJ3ukiaaWAYAJXFmSjOSkS/67JP/3x/VlXmY+2iYo8h2Nd5Hp1nhyX3yzkBv9/XhU304NeMNQuLAmpgomyMp105Xx0N9z4Awff0UO2Qh28SSJppbFgAxV/H1p9464joZ3v6R2RPKWMBDLgue4z9v+/rQt0HneodOCFJ3e5OwdXa5OQYwXbm6xrHZ0v7n2I9e+RTDN8kKE3ukRZbe7hYr1RcPjH6OkVTyriiLzL2+iAUA7nqZlG/W7j63c0GGnvvbfXokU8G3yQoTe5ZK1BnDLhKSqkCHDfLKl6tcQNX6LQai3NDo0Fvq0cymAy+SaC+98bGWz0jpbwKdlwhGXvjcX1STNDb6tFqgWL4BkIsm88ZkbU72unGNxgMEFBJKaa86u7Vv00uEToMgJoFhVj5aivvio173vMt5vRqtUAqHYOodMQy/d4XxoHjvXhgawsZfYPAAHjjkTLcMS1D9jZ2pwvzNjdR2M3kzC3KwKsPlQneu7VLZ4AFv0qndukMRc311II8fAMgNrh87Y52fHyqH4+V5wMAPuy6gKKsRHQIyPgI7eBuXCXGnoMBf4iGYcbfI0GWsbExwDNLbgYgXUdjpFYL5OEbwMOv3dWBl5q7RT8jVMxD6ENmUjQ23zsrKGMvdb7nFmVg/3EnyXANip4eeqhQ0tYAyJFculky9kbi/NAYVr7aKiit48ZPPvHWEdTu6vBplSx1vhNiJmBvTQVm56SoechECHw7Lw1zizMxOycF5dPS0d3rMsTIQqVQSMcAKJVcEsZAqICGL6a75cAJTz5GTofUvPR43JAai48dA+E6fEIBh+19YJhrTte+zl6fc2oWyMM3ACS5NC/+BTRi+Zind36qaKhGQjT5Y0ZCqNrWTJ4+GXwDQN0wzY13AY2cCWZyB2VQtbTxuepmsWX/Cb0PQzbkQhgELtP/yv5uvN3iINmlifAuoJE7yFpI2QHA00P/izND4TtoQjW2tZzCrbkppgjtkME3EOOe30zMzk1V1GuF0Bfv0IuSQdb+gzLkNlQjjAWntdejGZpSNA3p7N69G6WlpYiLi0NeXh42bdoEKVXotm3bcPPNNyM2NhbTp0/H66+/rtHR6kd1SQ721lTgvrJc0Kre+NR7DSwPdpC1UOyfMAd6NUNTimYG/6OPPsLixYtRXFyMnTt34v7778eaNWuwceNGwW0aGxtx//33Y8GCBfjTn/6EyspKrFy5Em+//bZWh60beenx+PXSGdi4bCbF9g3OVTeLH7/eitpdHQCgeJA1N8yEjL256Tg7LCjFNQqaFV4tXLgQAwMDOHz4sOe1tWvX4sUXX8S5c+cQGxvYSKioqAi33nortm/f7nlt+fLlOHLkCI4fPx7UcRix8EoKu9PlifVeHP0K+zp79T4kQgCuHYbc6koK40QO/tXTeg46EUITD39sbAxNTU24++67fV5ftmwZhoeHcfDgwYBtTp48iWPHjvFu09XVJcvgj46OYmBgwOe/wcHB0P4YHeBivTVVhdh/3Kn34RAicFI9AFi7qBgvrJiNtYuKBT17ucae1njGx/8sGlG2qYnBP3HiBC5fvozCwkKf1wsKCgAAnZ2BQx2++OILAFC0jT+1tbVITU31+W/q1KnB/AmilZNaQVOvzIHceK7c8xllY/DGI2WU0zEhRovta6LS4bzqpKQkn9cTExMBAENDgfKzYLYJF1KVk1qhdOoVoR9yhlvIOZ8MgFumJOHDrgt4tPxGZKfG4nmaemUq9Bh0IoQmBt/tdou+b7MFLjSC2SYcSFVOhkuKxdcbn1owmAc5wy3knE8WwCc9g/ikZxCv7O9GeaHyZm2Evugx6EQITQx+cnIyAGB42LelL+elc++Huo0/69atw5NPPunz2uDgoKKwjpzKSW8ttRrwrShebu5GUVaiYFtdwjjIHW6xvDQHWw6ckB2mc7NAEyXsDYOce1GvQSdCaOIm5+fnIyoqCl1dXT6vc/+ePn16wDZFRUU+n5GzjT8xMTFISUnx+U/Og8IbuZWTaiG0omAxLvsiY28Mxm/kbEXyS3+EWixQnN74RNkYVBSJr7b4JqHpjSYefkxMDMrLy7Fz50489dRTYL5uEtLY2Ijk5GSUlZUFbFNQUIC8vDzs2LED9957r+f1xsZGTJs2Lejkq1KUVE6qASVmjUtuWhwmRtlQmpeKx8rzkZcej1WVBSENt+BrsfDeJ1/CYaC4LzEOA2BWTjJuy0/3eO0Hjjfz3q/BTELTAs1aK6xfvx7z589HdXU1Hn74YRw6dAh1dXWora1FXFwchoaG8PnnnyM/Px8ZGeM/0jPPPIOHHnoIkyZNwl133YU///nPaGho0LTwSmzZHY7lGiVmjcupvvFzY7/gwuzcVOSlxwe0RwgG/33s/uyc6OcnxU/EBdflkL6TkE9y7AR8f0aW5yHvzW+WzhAcYWg0Yw9oPPHqv/7rv7BhwwZ0dnbihhtuwM9+9jOsXr0aANDU1IS5c+fi1VdfxcqVKz3bvPzyy9i0aRMcDgduvPFGPP300/jRj34U9DEEU3glNrNS7ak3cqZfEcbgzUfKkJ0aJzh4Plie3tmObS3CUr77ynKx69Mv0T9yJaTvIZRRnJWIyqLMgHPsXRip9whDKWjEocxKW61Oqt3pwvx6/mWiFJTQ1R7voRiAOtWVdqcL39vcJDjXNiclBo6B0aD3T4SGESto5UIG34CtFRraHFi7o12x8Z55QxIGRr7CqT6K/+pJlI3B3pqKkByChjYH1jW20zBzg6LGOdYDGoASQbSfHiJjbwDUqK6sLsnBX1ZXYlVlPuYVZ5Jyx2AYrYJWLmTwDQYnyyTHztyoIdflkrmF1yfS9WBAjFRBKxcagGIAvKtqe/pHSJYZAagp1yXlljExUgWtXMjg6wy1x4081JbrUksN42G0Clq5UEhHR2jKUeShpNJWLmJTtAjtMWIFrVzI4OsIVdVGFrlpsaguyUbJ1DRV9yvUgoHQh8riTNXrb7SCDL6OUGw2sjjVN4JtLQ7Mr29WXcHBzTleUZZDih2dKc5K1PsQgoYMvo5QbDYyCdeko3FPfyY2LptJRl8nGMCUsXsOMvg6QrHZyEUtnTbfpLXqkhwsLzWv0TEzjMlvVzL4OpKXHo/VVYXSH/QiysbgzUfKkJ9hvoSR1QhVp93QNh4eeqm5G++1n8FLzd2ecNFPKvLJWdABNwtTFlxxkMHXmaFR+Q2wvLvwVd2UFcajIqSwMcBciX7ooei0pSatAVDsLBDqYMaCKw7S4euMVOK2IDMB0ycnBTRs+27BJOqqqQMFmQmouul6Txx3v0A/9FB12nImrVmrC5ZxSIiO0vsQgoYMvs5IJW6rbrqet9/6h10XwnVIhAAMgC0PlACApzL6jmnp2H+s16fJmRpafDmT1izW99AwMCZOmZPB1xmpuaYJ0fyniCSd2pORGI1n3/0swMBz4Z2EmAmirbP5BtMLPRTkTFojex8e0uInoM/1leD7w2OhzSFQch2oDRl8neESt89/0Mn7fv2eY/j+jMkBFwRJOrXn/PAYzvMMEXezwP7jTtF2uXwtNLYcOCHYV13upLVX9ndTC2WVETP2QGi5GaXXgdpQ0tYAiCVuheR9JOk0FmIyTKkELJ9eX6i61j9cRLZeW0LJzQRzHagNGXwDICde609eejxqSKVhKITUG3ISsHxw1bWrKvOxZNYUrKrMx96aCk9Z//ZWStxqSai5mWCvAzWhkI4BkBOv5WNYgaSTCD9C5ymYBzqH2JB0yuNoR0FmArY8UBL2RHy4IQ/fAIiFZ8SWkP/T7QznYREKEUqwB/tAl4LyONpRddP1ISdWw3UdKIEMvgGQG6/1xu50ob1nUKtDJGRQv+cYbxw22Ae6FMtLqZGaVqiRUA3XdaAEMvhhgq8HihhS8Vr/ff/z9qOUsDMYQnHYYB7ocshLj8cjt+cFtS0hH7X654TrOlACxfDDQDDSK39trpCWmyZkGRuhOGx1SQ5Kp6ahoc2Bnv4RUb0+IE+r3dDmwH98aFf9byB8Yb/unyOUS1GC0utAbRjWYuV6AwMDSE1N9fy7v78fKSkpqu3f7nRhfr1wuT2fVpvPiEfZGNRUFWJ49Irnpv9uwSSsfLWVjL2BWVWZH7JhELoevB0Gu9OFeZubSKWjEUtmTcELK2brfRghQx6+ysiRXnkbBDFtbp1fMdbLzd0UxjEwasRhpbTapVPTkJceP34t0MWgGYkCCXmzQTF8lVEqvVIy5pDub22ZV5yJFWU5kFPfplYcVq5Wu/VkX0jfQyiDjZC7LzIeWwZCqfSKtNTGhAGw6JYsVJfkYHZuaoDXbWOAikLp/jlKke8wkD5HS1rt/bA7XaYcXO4Nefgqo1R6RVpqY8ICWNvY7pkw9dpDpZidk4LMxGhkJkajZGoqirKSUFNViLWLilUxBHanS7L4hnMYyvJSRT9HqEtX78WwzCrWGjL4KqNUehVMTxz/T0fZGNQtm4k3HynD7NwUpMRNCObQCT9Ydrw5WUObAytfbcXHjoHxBmrDY2ix9/tMoAoVbrrVUceA4Ge8HYbHyvPJx9cYLXvehAtS6ais0uGwO12ypVdKpJZRNgavPVSKQ90XRPdtd7rw6Ott6Oq9qMrfY1Vy0+JwemBE9Nxw6isAQbW9FVN2eX9H7dIZPnUZK19tQRNP905CGQnRUagsykRWUgy2HrRLRuvVUGLpBRn8MBl8pfg/IBKjr8PmPccCpHn+N70Ytbs6aCpWiKTETcDAJfF2ucB4P/z9x52iUkohpM7T7NwU1FffGvDweOKtI3iv/YzksRHysDHAUwuKsPPIaVFHaW5xJoquT9Sln32okME3iMHnQ8kqga9QB4Ck50iIk5sWi1N90k2tGPCrqGwM8JfVlaIGQcpwC2nA6YGuPjZmvDjq7VbhMJ3/uZb7YDcCpNIxMGKdEr0Rq+xdXVWIug86I0RUpi0MA8zJT8epPukYvdDv62aB//vuZ3j1oTLBbYNtqiU1LY1QjpsFbAyDKBsj+Lv6v+pfI2FkKGlrcsQKddbsaMfzZOyDpmxqGhhGWgAp9X5TZ69ooi/YplpCAgEiNIbHrvD+rmK/slb97EOFPHyTo6Rwi1BGi70Ph+3iBU5RNgbl09KxTyR5ykK8FwtnuPnaKUgVc/n3Zuk6P4wvzgyL/2GEKFz41L/nTceZIdHzrEU/+1Ahg29yqHArfAg9RqdPTkRWciyKsxI93ndTZ5PoSkrKGITSVMs79PfEW0fI4IcAF8MHAkOqtbs6RA2+Fv3sQ4UMvknhkrR0c2tPZVFmgLdeUZQhKpGUYwzk5mzEoEK+4LExwMZ7Zgo+ZOUOljcyZPBNCLVI1hc+b33Dkpux/1gT+E5JuI2Bt0Lr/PBo2L4nEkmIvg5ZyTEom5qGR8tvFF1RhRJ6Mwpk8E2GUJKWUAcGQFlemmjsns9bz0uPR+09MzU3BvTwD42spBjMn369bC293v3sQ4V0+AbW4fNB2uvwwACoLMrAw7fn4f32M9je6uCNyQvNNOBQUjsRKnIqdAl5mElLHwrk4ZsIu9OFPZ+f1fswIhIWQPOxXjQf6+UNywDyvHU14vByIYWWNDYGgufTGzNp6UOBDL5JoKV7+BH6aRkAK8pyJWO8WkMKLWncLHBfWS5YsGg92Q/nxTHBVhl8A4oiDTL4JoDi9vrCAkiOm2AoYw+QIkcuw2NXPK0ppNpYCMln5cwYNgNk8E0ALd31x4hFNdRaQR7eSXaph+TF0UDvX6x1idli/tRawQRILd1z0+KweOZkFGQkoCAjASvKcvDmI2VYUZaD3DTyAtXAiEU11FpBHt5GeXmp+MjK5mO+bTCkZgybrTc+efgmQMorcfRdwqm+aw+FbudFbG91yEpWEdIYuajGWya457NzNP/Aj0fvyPMJveSlx6O8ULhIzs36tsGQM2PYTDF/8vBNgNRULP/LkWXlKRMIacxQVMMpg7Y8WELevhd33nI9/s8Pbgp4PSFa3M/1Dt/JnzFsDsjDNwFCFX5CPdiJ0JlbnOnplWM0Yy+UQBS6TqzK3OLreV9X0o462NbVRoUKr0xUeOVf1PPFmSEacRcG5Awt0Qu+BKJ/0ZD3dXJx9CvR2oJIRqhITqxgzX8bJZ81A2TwTWTw/VGj6pZhxkNAQhRfH4+Oc+ZKTPExOzcFp/tHcH54TNbn5c4t1VKuF6zx4R4AnWeH0X/pMk70XsTgyJWwHKPREDqPQg9OvhGiSj5rdCikY2JCleUxAH6+oAj9ly5jywF7wHszs5Nx+ao79APVmSgbg5qqQjywtUX2NnJis1rL9YJNIHpX/9qdLszb1KT6sRkVofOopCeO2fvneEMG38QIxva/ntIk9RxgATz/Qafge5/0DKp2rHrBeWIfdl1QlO+Qis1KyfXCUaKvRgJRqEdQpCJ2HpW0wdCyZUY4IYNvQvzDCK89VIpD3Rd8vA8AHo+kp+8SPnYM6HvQOvHaQ6W4Y1oGnnjriOxt5Mgw9ZDrBZNA9L9WOs4OqXpMRoYBDCun1Qsy+CZDLIzgb2C8pyBZ1eAf6r6AO6ZlyG5DIFeGqYdcT+kADr5rxUqizVk5yaYMu4QT0uGbiGCr/qzcc4UzvFK1DPOKM7GqMh97aypkJeL0kOsJVdbyPaSErhUrhXNuy0/X+xAMB3n4JkJJGMF7KZ8QfZ3sNrGRRkJ0FADpaUVK1RZ6jbuTm0CU6r8UbA1H3MQoXLp8NYgttcX/HERK87NQIYNvIuSGEXiX8oz83uCRxLYWB84MjmLDkptVVVvoOe5OTgJR6lqZW5yJoqxEdJ4dxl87zsv+biMZ+4LMBOSkxgbUGfifg0hqfhYqmhr8f/3Xf8ULL7yA06dPY/r06fjlL3+J73//+6Lb/OEPf8Cjjz4a8PrPfvYz/O53vwvXoRoSqTBCQnQU1jW28yoxWHbc6N9XlouzQ6PY13HeMsv7ps5e7D/WhNp7ZqK6JEe1ZKqR5XpS10pRViLWLipGQ5vDsNeCVI1I6dRUPFaeDwCC50APNZWR0azwqr6+HmvWrMGGDRtQUlKCrVu34k9/+hOamppw++23C273xBNPYO/evXjttdd8Xs/KysLUqVMVH4eZC6/ECm/kSjG5QhQrDlQxY2VksMgp0gJg+hGJUqMJpYoT5RbYRQqaJG1HRkbw3HPPYfXq1fjFL36BO++8E++88w5KS0vx7LPPim579OhRlJaW4jvf+Y7Pf8EYe7MjlLSzyTT2wLWwT3VJDvbWVGBVZT6WzJqCFWXibWMjAS7PYQXkJHil4vwTo4x/QUgJFiKt+VmoaBLSOXz4MAYGBnD33Xd7XmMYBkuXLsXTTz+NkZERxMYGqhpYlkV7e7vPdlaHL4wwcOkytrXIM2Te6hHvWHDtrg7DxvcZjK9g1Dg+K93gUiEnKWOYEjcB54cva3GoISFW9xBpzc9CRRMP/4svvgAAFBYW+rxeUFCAq1evorubf8nV3d2N4eFhtLa2oqioCBMmTEBRURHeeOMNWd87OjqKgYEBn/8GB81dPcqpDRx9l3BDyvgNPDwqry+KmHpEznxURieHb1ZOCu75VrYq+7LaDc491F9YMRtrFxX7hLOk2gSbwdhzCD3IxeS4Rp5zEC5C9vBdLhfefPNNwfenTJniMbJJSUk+7yUmJgIAhob4q/+OHj0KALDb7di8eTMmTJiAN954Aw8++CDGxsZ4k7ne1NbWSoaMzISQ2uCOadJ6Yyn1iBytvl5t9m6anITtKoRiIuEGl5IXir3v/d7FsSth67TKYFwFlJUUg8MnLqBbg6lQ2amxgn+7XmoqIxKywe/v78eqVasE36+oqMCCBQtE92Gz8S80ysvL8e6772Lu3LmIjx8/MQsXLsT58+fxzDPP4Mc//jEYvdxOjRFTG+w/1isouWQArCjLxaPlN4pe3GK6cr377g+OXJadWGQAj9zQe4tIuMGl5IVi7wPQLEnPAshKikFS7ATkTIoLu8GPsjFIiL4uIAHt/dsYVU2lNSEb/OzsbEgJfX7/+98DAIaHh30UMpxnn5yczLtdZmYmFi9eHPD6D37wA+zduxfnzp1DVlZWsIduKsQSbG4WmFuUgf3HnUEXFYl5QrdMSdK1kVrH2WHZn2UBHD9/EW88UhbQX8jMN7iUvHBycozg++sa2wEEnwOZV5wJlmWxT8GK4K2WU8F9mUJsDPDUgkJs2n1MUnppJTWOEJokbYuKigAAXV1dKC0t9bze1dWFiRMn4sYbb+Td7sCBAzhx4gQefPBBn9dHRkYQFRWFtLQ00e9dt24dnnzySZ/XBgcHTanwkYqxJ8RMwN6aipC8GCFPaHurQ1eDzyjsAHPVzeJQ94WIusGlqqzreQweR6hOPafZtztd+Ol//g1fKHgAa8Fhe19EzZ0NJ5oY/Dlz5iA+Ph47duzwGHyWZbFz505UVFQgOjqad7t9+/Zhw4YNuO222zwJX7fbjR07dmDOnDmYOHGi6PfGxMQgJiZG3T9GJ+SoDdTwYvj2Ibfvvo0BKgozkBAzAeeHRnDY3h/SsXAUT06E/YJLUTji41P9qN3VETGl9FIP/HNDo2H5Xu+8R156PP79f3/LUNp9Nws0S6w8rKTMkkITlU5cXByeeuop1NXV4Re/+AV27dqF6upq/O1vf8OGDRs8n+vp6cFHH32EsbHxqUQ/+clPkJWVhSVLlmD79u147733sHjxYvz9739HXV2dFoduGPRUGwhpuv1h2fGQCsuymJ2bhlnZ/KE65bD4zdIZivz8j0704aXmbrzXfgYvNXdjfn2zqTX4Ug/865PUd2z48h5yrwUtkXr0WE2ZJYZmlbZutxu//vWv8corr6C3txc33XQTfvnLX+LOO+/0fOZf/uVf8Oyzz8Jut3vCLl1dXXj66aexf/9+DA8Po7S0FL/61a9Eq3PFMHOlrd6j1rxH5ckpx1cr2csA2LhsJiYnx+CBrS1B79PMlbZSlbOvPVSKla+28r7P2Wa5TrmcAe7+YxNHLl8NSJRL8Z0b0/DlwAhO9YXugQtda2Y+5+GAZtqayOADgYPM9UhGqjFLVykMxlc5uWlx2LxHOF4thZlL6aUe+GLvs5Cn0lm7qAirKgsUHZfYw0iM+8py8XbrKVUK6kIVLVgF6pZpMoygNpBTpKWExTMnY9ffz4oaDBbA260Oz3za0/0j2NZySrG3b+Z4rpS8UOr90qlpqNl+VHQYzpDMIj5vpFo08BFlY+BmWVFjn5sWi4lRUejqvSi5r2eW3AxAuIkaMQ4Z/AhDi77fag5UibIxWL2gCOWFGVi7o13SgF91s6jfcwx7aypwa26KYm252eO5Ug98sffz0uNxQ2qsqMEP5oGo1AHgPO/3Pz0j+rn8zEQ8s/gm0dWDjYFPnkFvZ8jokMGPILTq+y1XtSOHh+ZMRV56PPLS4/HxqX5ZPYG8pXZyvFaOSKi0DZVw9JaR2uf0yYmYnZOK4bErPp73Hw+La/W7zw8L1ocwACqLMvDMkpvJi1cAGfwIQcu+30I3YTD84aAdg6NfoW7ZLDxWno+Gth5Z++Q80bz0eNQsKMSPtraIfj4SKm3VIByTuqQcgCUzp+CncwPzAqlxE0T3e6pvBHaniyplVYQMfoSgZPyhGvjfhBdHv0JTZ29QCpp32now8vUkpTumpWO/3wQjPrw90ffbxUMDuWmxeP3hb5OBQHgmdeWlx6OmqhB1H3Tyvr95zzHcOWNywL6LspIkq3e569YIuatIgAx+hKBH32//m/BX73+OLQfsQe3rPS+jbWOAb+elocXeJyi14zzRhjYHtreKh4EcKsj+IolweMxiHVuFHI7lpTmSai8zJ9mNCBn8CEHvvt92pwv/8eFJVfblZoG2f/TjqYVFqPeTYHp7olwYS2pVwQJUXu+H2h5z51n+jrccfIa79WSf5H7NnmQ3GmTwI4RwxGaVEIw0T4yrbhYXx66I9gdS8p3kKYaPhjaHZKtlf8PNPazFoCS7+pDBjxD07vuttjZ/fJ8jop6oku8kTzE8yFll2Rig33UZT7x1xCMVlnpYMwAl2cMAGfwIQk81g5ra/Gv7FDfScr+TPMXwIWeVxRXNcWw5cAK3TEkS3gBAZXEmVciGATL4EYZeagapASr/qywH38xNxc93tMvanxwjLacegOSY4UXOKsu/ectVN4t2iXbbxVmJoRwWIYAm3TKJyEeoi2KUjcHzy2biN0tnortX3uQjBpAc28hVFN8yJSmgiyYD4NacZKyqzMfemgryFMNIsCs7FhDsfkorsvBBHj6hGlIhJbkxdxZAU2cvDhxv5q0S5qsoZgDMzEnGnPx0KsrRkFBGY87MScHfTw/SrFkNoW6ZJuuWaWaC6bLp395Wqk0wtcLVHqEunXdMSxdV76yqzPfM4qUKWm0gD5/QjGB68PgX7WhdUUxII7SyA4ADx4Ufzpxxp/OlHWTwCc0Qa4Ql9gjw1tDrUVEciajdVVXIcOspFSYCIYNPaAqfN9jvuuwj2/PHW56pd0VxJKBVV1VAX6kwEQjF8CmGrztK4vIUww8NPX8/LWY1EOKQh0/ogv/Nv7qqMGB0odgQbQoT+CLXmOqVA9FyVUEIQwaf0BwhVUdNVSEujl2RXPrzhQnm5E/Ch10XfMr3rWL8lRhTPXIgYrMa1jW248g/+nFx7IrlzpsekMEnNEXs5udGF8q54b2ThA1tDqx8tdWS3qPSwTd65EDEVhVuNrDtghXOm15QpS0hit3pQu2uDjzx1hHU7uqA3SmvWlYIOSEFpccnZvBCPV6jo/T3XF6aE1ANzRGuClclTe6sct70ggw+IUhDmwPz65vxUnM33ms/g5eauzG/vlmxUfZG7ZCC2g8Qs6H09xRrgRGuHIjS9gtWOG96QSEdgpdwzchVO6RgdV1+ML+n1lLJYAruIv286QV5+AQv4fKc1Q4pWF2XH+zvyeVAXlgx2zMzNlwIrSrEiPTzphdk8AlewuU5qx1S0CMmbST0CNEEQ3VJDvbWVGBVZT6WzJqC+8pyIWT/rXDe9IJCOgQv4fSc1QwpkC7fPNWs/u0Xbs1NsfR50wOqtKVKW17MVtFqd7oMb/CIQOi8aQsZfDL4gggVSNUunUFDRQjChJDBJ4MvCnlgBBE5kMEng08QhEUglQ5BEIRFIINPEARhESwny/SPYA0ODup0JARBEMGTnJwMhpFfzAZY0OAPDQ35/Hvq1Kn6HAhBEEQIBJN/pJAOQRCERSCDTxAEYREsJ8t0u91wOK41/kpKSlIcB4tEBgcHfcJbJ0+eRHJysn4HFIHQbxx+rPQbUwxfBjabDd/4xjf0PgzDk5ycTPUJYYZ+4/BDv7EvFNIhCIKwCGTwCYIgLAIZfIIgCItguRg+wU9MTAw2bNjg829CXeg3Dj/0G4tjOZUOQRCEVaGQDkEQhEUgg08QBGERyOATBEFYBDL4BEEQFoEMPkEQhEUgg08QBGERyOATkrz77rvUYE4Fdu/ejdLSUsTFxSEvLw+bNm0KGMhDqENPTw9SUlLQ1NSk96EYCjL4hChNTU2477779D4M0/PRRx9h8eLFKC4uxs6dO3H//fdjzZo12Lhxo96HFnE4HA4sWLCAptnxQIVXBC/Dw8Oora3Fxo0bkZycjL6+PvJGQ2DhwoUYGBjA4cOHPa+tXbsWL774Is6dO4fY2Fgdjy4ycLvdeOONN/DUU0+BZVn09fVh3759qKys1PvQDAN5+AQvW7duxZYtW/D73/8e//RP/6T34ZiasbExNDU14e677/Z5fdmyZRgeHsbBgwd1OrLIor29HY8//jgeeOABvPnmm3ofjiEhg0/wsmTJEpw8eRI/+clP9D4U03PixAlcvnwZhYWFPq8XFBQAADo7O/U4rIgjNzcXXV1dqK+vR1xcnN6HY0ioeZrFcLlcot7PlClTcNdddyE/P1/Do4psuFhyUlKSz+uJiYkAgKGhIc2PKRJJS0tDWlqa3odhaMjgW4z+/n6sWrVK8P2KigrcddddGh5R5ON2u0Xft9looU1oAxl8i5GdnU3JV43hZqoODw/7vM559pE6c5UwHuRaEESYyc/PR1RUFLq6unxe5/49ffp0PQ6LsCBk8AkizMTExKC8vBw7d+70WV01NjYiOTkZZWVlOh4dYSUopEMQGrB+/XrMnz8f1dXVePjhh3Ho0CHU1dWhtraWFCWEZpCHTxAaMG/ePDQ2NqKzsxM//OEP8cc//hF1dXVYs2aN3odGWAiqtCUIgrAI5OETBEFYBDL4BEEQFoEMPkEQhEUgg08QBGERyOATBEFYBDL4BEEQFoEMPkEQhEUgg08QBGERyOATBEFYBDL4BEEQFoEMPkEQhEUgg08QBGERyOATBEFYBDL4BEEQFoEMPkEQhEUgg08QBGERyOATBEFYhP8PRl8eJn/G3awAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAA66ElEQVR4nO2de3RU9bn3v3sC5EauJBAwocQJCahEqUk8YiHBgtAKLkVMqn1L0dZa+npuYIG+h+prXasGAznntKuVQj1eeryEEtY5Rzy8cilJoBwlKWK8JSG3OlGCCbky5EKY/f4R9ziXfZ3Z19nPZy3WIjOzJ7/Mnv3dz++5MizLsiAIgiAiHofRCyAIgiD0gQSfIAjCJpDgEwRB2AQSfIIgCJtAgk8QBGETSPAJgiBsAgk+QRCETSDBJwiCsAkk+ARBEDaBBJ8gCMImkOATBEHYBBJ8giAImzDF6AXoDcuyGBwc9P6clJQEhmEMXBFBEIQ+2E7wBwcHkZKS4v25v78fycnJxi2IIAhCJ8ilQxAEYRNI8AmCIGwCCT5BEIRNIMEnCIKwCST4BEEQNoEEnyAIwibYLi2T0J6OXjeq6l3o6r+CzJQ4lBVmITst3uhlEYTtIcEnVGV/gws/O/gBrnlY72P7Trbj2XWLUFqQZeDKCIIgwSdUo6PXHST2AHDNw+JnBz9A4bxUsvRtDu3+jIUEn1CNqnpXkNhzXPOw2N/gwrbVC3ReFRGIUaJLuz/jIcEnVKOr/4rE8yM6rYQQwijRpd2fOaAsHUI1MlPiJJ6P1WklBB9SotvR69bsd8vZ/RHaQ4JPqEZZYRaiHPydR6McDG3bDcZI0aXdnzkgwSdUIzstHs+uWxQk+lEOBuXrFtGW3WCMFF3a/ZkD8uETqlJakIXCeanY3+BCV/8IMlNiUVpAmRhmwEjRLSvMwr6T7bw7DNr96QfDsiz/Hi9CGRgYoH74hC3p6HVjRWWtoOge21ys6Y2ZL2DM7f4eIMHXBRJ8EnzCRhgtuh29btr9GQgJPgk+YTPMJLpUiKUvJPgk+Lqh1sVNIhEZCO02qBBLO0jwSfB1Qa2Lm0QiMhCLJzAAXvlBEZbOT9d/YREOpWUSmqNWwY+RhUOEuojVBLAANrxwhoqxNIAEn9AcqYKfzVXn8PhrZ1F+uElUtKlaM3KQqglgAbqJawDl4ROaI3Vxv+cawHuuAQDA72rb8NNVefjJ8hzF70PVmtogFTMJJaYiVRMAUMM9LSDBJzRHzsXNwQJ47u1msAD+d4Doyy0coqBuePh+fpfHJlDX0gPfjZVvs7VQm7GJFWL5QjdxdSHBJ1TFVywSYqaAZYGLQ6NgMCnmctn1djO+vWi2n1DLqdbkEyCxXYOcv8NONw2+zy8QLmYyOykm5A6YXBuObQcaRb8X1HJBXUjwCUUECuEdOTPw59ZLgtZgqLBA0HaeEwmhwiEAvAIktmvgw65924WC4nxc87CoPNIS1vyD0oIszE6KwYYXzvCKPrVcUB8SfEI2fEK4p7ZN0XswAEoWzMSAe9zrtxeCbzsv1qun/HCTqFjx7RoCsXPfdrGgOB8Xh0ZFn5fjjlk6Px071+cL3sQj9bM2ChJ8QhZKrD8xWAALMhJQWpCFO3fVhLSdz06L57Uc5WR+SFmddp7aJfX5BTIrMQafDwqL/sefD6L8cJOkO4wa7ukHCT4hC6XWnxhHP7oIV98VFM5LwZnOft7XhLKdlxMclrI67ZwJpCS4HuVgsPmuXGx8sV7we9HW40ZbbZssd5jQTZxQF8rDJ2Sh1PoTo7XnMg41XhAV+1C282WFWeAfv/IVUkFAO/dtFxtg4wt3fpbOT+edfxAIFcaZB7LwCVkkxGj3VXEwwHcK52J4bCKs7Xx2Wjx+uioPz73dzPu8nF2Dnfu2CwXFHQxQnJuO6TFTkZkSiyXOyUD946+dRWZKHF56uBCn2y7h6EcX0dpzmfe9xdxhds2IMgISfAKA+EW3v8GFqnrtqlg9LJAUNxW//DLTJhx+sjwHLCYDtL6SLXfXIJUJFOlCJOVP39/gCnLjcC6bBbMTBAUf4HeHCaXRFuel46m1N0b856031DyNmqeJNiQrnJcq2ORKDAZASV46TjT3yHr92pvn4NcPLuZ9LhQLkGsB3NQ9jAH3OJLjpiIvI9EvjVTsvczUQtgsSA1QKS3IxOtnhA2DTSVOPwtf7P2AyZ1F+f35Eb2r0huy8G2OVBriA7dmior9zZmJaOwa4rWm23rcsgU/MyWWV9jrO/tCyonPTotHdlo89tZ95Z450dwTlEYq9F4URAxGKoMJmDz3QjeEJc4ZKD/c5D2/gyPjot8tDwvFqbDkHhKHBN/mSF3E9Z19ose7xzwoyUvHwJWrSI6f5k25zE6Lx+OvnZW1BgbAxDVPkLW3t25SnAOXJycnXm4aqR3y69VCKnBf29KDpfPTgorvohwM7v/6dUGuIOnwsLJUWLsWzCmBBN/mSF3EjMRl2dpz2eu3ZQD0XR4Dy04GP+Wm+bEA9p3sCHpcTKu5LpuVZbcgOy0+yLKTsh4D3yuS8+vVQup8fj4wis8HRuFggOV5/kFevvRNuU5COamwdi6YUwIJvs2RuoinTXHI7oPDAni/axDvdw1i38l2bFmZq8YSBXnPNYA7d9UgMyUWXf0jinr1BBLJ+fVqIbfhmYcFapp78MoPipCZEod/rDoXVg1H2xeX0dHrFhVsOQVzpQVZtnf3UNDW5kFbqcBZODgYcSvdTAQGFAl+5DRX80Vp0zwhpAK4j792FocaLwgef3NWMj78bND2k9J0L7w6cuQICgsLERcXh+zsbOzatQti95zW1lYwDBP076abbtJx1ZELl4Yop+BGKVYR+0jPrw+Vjl43yg83eYfTnDzfg/YeN5bNT8PirGTMTJgm+R5qfQU8LLC9uhEnz/f4rYkr5pLaqTa6BmhSGnR26bzzzjtYs2YNysrK8Mwzz+DUqVPYunUrJiYmsH37dt5jzp07BwA4fvw44uK+Oqm+/yfCIzD3uqvvimRjs0jBLvn1SvntiVZUBNQyBGY4qW8iiONhEdRZkwvKirmbxHYZdovf6OrSWbVqFQYGBvDuu+96H9u2bRuef/55XLx4EbGxwWXrO3bswMsvvwyXS53CH3LpSCO1PY4UaFg2P7/5UuytQpSDwbHNxbwpvFEOBjfNScT7XYOCx4vVgEQaurl0xsbGUFNTg/vuu8/v8fXr12N4eBinTp3iPe7cuXO45ZZbdFghwaGkiZaVYQGcbrtk9DJMRUevG7ssJPaAf1D22OZibCpxYu3Nc7CpxIljm4txuzNN9PhI7o8UiG4unfb2doyPjyM31z9zIydnciBFc3MzVq5cGXTcuXPnkJOTgyVLluDs2bNITk7Gxo0b8cwzz2Dq1Kmiv3N0dBSjo/7tWwcHhe/0kYrSYhS52RhiOBggOXYq+q5cDfk99KC5e9ivGMgumRtC34mqepdqfne55MycjoWzE8GybMg7Sy7Liq9gTuz77GBgq/iNboLPCW1iYqLf4wkJCQCAoaGhoGN6e3vx2WefYWJiAs899xy+9rWv4fjx49i5cydcLhdeffVV0d9ZXl6Op59+WqW/wJrwZVXsrWvDstx0TI+ewityQv1kpOByry+PXkVtS4/pxR4ATjR9gT81feH92Q6FOmIFSs3dwdeh1qy8YRa2rV6A8sNNIb/H5dHJ75rQjezZdYuwrboRfA7s+s4+W9zkAR0F3+PxiD7vcAR7l+Lj43HkyBHMnz8f8+bNAwAUFxcjOjoaO3bswI4dO7Bw4UItlmsp+L7kwKSwv3Em2GLj8qQ5uJz5odEJv/c4trnYG8h9/9N+fCqRq36iuQcV6/Ox/eAHlsnQCVxmpBfqSBUo5c6aHvJ7p8ZPQ597XNExXIZUR68bRz/uDvl317b04LcnWrH7aAvvjaxwXipv8DaU9g1WRjfBT0pKAgAMDw/7Pc5Z9tzzvsTGxvK6ee6++27s2LED77//vu0Fn7fbYF0bGMhPi7zmYYNaCgfuAi6PXpUUfAD46YFGJcs3DLtmbkgVKA1cUSbYvigVewbAlpW5vMFWpXhYBGUVAV/dyEoLMgWvh0g+34HoJvhOpxNRUVFobW31e5z7mU+4z58/jz/96U8oKyvzy6QZGZkUnvR08eyK7du34x/+4R/8HhscHPTuFqyOkLXGsuHnPwfuAiIJBkBhdgrOdPAPYAEit/JWqpXGhcExnVby1XB5Nd+Pj2seFvUi5xqI3PMdiG5ZOjExMVi2bBkOHjzoV2hVXV2NpKQkFBUVBR1z4cIF/PjHP8Yf//hHv8erqqqQmJiIW2+9VfJ3Jicn+/3j20lYFTXHDtoJFsDVCfHPLVIzN+ySgaWUSD3fgehaeLVjxw6sWLECpaWleOSRR3D69GlUVFSgvLwccXFxGBoawscffwyn04n09HR84xvfwDe/+U1s2bIFIyMjuOGGG/DWW2/hV7/6FSorK22fP6/m2EG7kRI/TbSVb6QGbdXIwLIihdkp6Ljktt35DkTX1gp33nknqqur0dzcjHvvvRevvvoqKioqsHXrVgDA2bNncfvtt+Ott96aXJzDgYMHD+LRRx/FP//zP2PNmjU4cuQI9u7dG+SqsSNkrYVORmIMb0uJSK+8FWqlEWrVrN7VtmIIrSXKweBHy5y2PN+BUPM0C1faatn4LNJxMMATd+Xh074rqO/sAwMGRdmpeHTZ9Za++OXWXARO9HL1XVGUA3/ngpnIy0gQbH1sBDdnJeHDz4Z4R1M+8KUFb/dJZiT4FhZ8gD9Lh2GgKEuHmMTq3RPFRlWK/U37G1zYXt0o6/viYICd9+d7BVTp8VqyqcSJ0oIsWwu6FCT4Fhd8gN9qAYDdR5pt0RNHTbi+LL4iYYWxeVLzZgP/JjnHBTI3NRZLnGl4rNgZ9Pn8rrYNRz6+qDg1Uy0cDHB8S4npzovZoAEoEYDQ/FXy8SsnMCfbKmPz5AwA4fuOKMn0+rRvBJ/2ufDHv3R5/36l/fG1gMHkriNQ7K1wo9YbEvwIhrJ4QqOpe7I40Epj86TOdWCeeUevG3vr2vDm+58r/l3c388A2HagUffeO4HcnZ/h52ICrHOj1hsS/AiGLPzJeAYA3h4qQtQ0fYH9DS609/Cn8QHmq86UOte+eeZq+NyveVjTVFW/1diNhbNbMfxla5CEmCmoqncF/X1mvFHrDQl+hMC3fbVrzjUAJMZMwXXJsUiMnYLPB0bhUlBJyWKyv8rS+eJtdfWuzhRzUYida988845etykCrGrCArL795vtRq03JPgRgNj29dl1iyLuApfD0OgEhrqHpV8owDUPi0GJbp96VmdKuSiEOpwG5pnzWb52wy5tFPggwbc4Un7mY5uLUVaYhdfPqDMxzE6YpRpXbiwhcFQlX1oixXXs00aBDxJ8iyMnO2N4dELnVUUGXDWulNWsNUoycAIztrhB5JwbKCHG3pe8ndoo8GHvsx8ByMnOoOBtaLBgUVqQBQaTPuLh0atIiJmKn67KC8oK0RKlGTgcfG4gh5l6IeiMg4Gt2ijwQYJvceRkZ5QW2Dd4Gw7dQ2NY9S91aPaJBYxcHcNPDzTiV8fP4+78ObrkdivJwOEQcgPZ+SvgYYG3PriAgoAsHS3y9c1aA0CVthattOW+UM3dQ6hp7uHNhWYAfKcoCz9a5kR9Z58pcqathNiQFA492jGEUkW7vboRb9QLx23k/G2RioMByu/PFywcC/ecavGeakGCb0HBV1rdyAAozkvHp71utF+ioJ3aMABe+UERls4XH8gTDkIi4tsYDJi8OTz95keyhtcwjLL6hEgiysHgpYcLBRu/ibWjECPUFhd6QYJvMcGnDpnmhAGwc32+5pa+WAaOWZqYWYXFWcl4zzUg+PymEqfifP3yw03YU9um6nuqCfnwLQZNuTInXLGWllWcQj2TgK989vTVkE9Hr1v0+VDy9UMNsOsFCb7FoDxq8xJqFacaAT4yBJQzMKJ+YV0oAXY9IcG3GJRiaW6UWnBqNflq6h5S9HuJSYSC16Hm68ttcWEUuo44JMKnrDAraEwboQ2hfMpKLDipCloplwPH/gYXamUEaYlgWATXJoRTWCc0QtIsoxTJwrcY3BeKgnPakxo/Dbc7U1HT3IPLY9ckX6/Uggu1h70v3E2Dvgrh8VDRXAyPTagyJUtOiwujIMG3IKUFWXjv037qj6Mxl9zjONTYjewZcbg8Jh47CcWCUyPAR7778PGwwCcXhlBZdotqoiwWYDcSculYFOqPox8dErULDxXNxbHNxYrbLagR4KMgvjq85xrAN3fXYH9DZBtRJPgWhYK3+jI3NTbI1+tggIr1+fhliL5ZsXiMXPeQ3ZuhqYmHBbYeaMTGF8+g/HCT7BiKlaDCKxMWXslJ06MCLH2ZmRCNqsduV90vK7eCVuhYiuVoh1naIagJCb7JBF9JHw4zDJC2C7MSo/Hu/1mhyXtz82XrO/oBAIXZKfjRMqfozeTk+R5seOEMBWs1xgztENSEXDomQmmaXmlBFo5tLsbCjAQ9l2lLtLzg6zv7sL+hC609l9Hacxmvn3FhRWWtoD95f4OLxF4nuGypSIEE30TISdMLpL6zD5+EMcqPkMfYVQ8ef+2s6r5dpTd5SsPUHyXFdNzAGS2+K2pAER8ToTRNjxtITWjPe64Bb6OtUCphhVCai09pmPqTEC1PJtWqmtYSEnwTIZV5c3nUv/cHDaQ2Bt9ZsgC8cwn6r1zFtCkMxidYpMRNRV5GomRfHKU3eUrD1B9Wxn5K7txhoyHBNxFlhVnYW9cmKOK1LT3o6HV7vzh08RvHNQ+LX7z5EerO9wpa3CeaeyQtPKW5+JSOqz9yqqzVqJrWA/Lhm4jstHgsyxUeouFh4efHp4vfWE4090i6V6T64ijNxb8jZ0ZIPX6I0FGjAM7otsgcJPgmY7qEv9D3i1NWmGXrodRWQSzTQ0mzrf0NLmx8sZ4CtjrC3XSlgrFmb4vMQS4dk6Hki5OdFo/7b83EHxu6tF4WESZiFp6cZltCPmJCOxgA5esWob6zTzIYK9YWGZA25PSCLHyToWSLf/J8Dw6Q2FsCKQuPa7b16wcXY9vqBUEBPsrO0Z+SBTNRMC9VVtpsdlo8tqzMFXyvyqMtpkjRJME3GWJb/C0rc1FV78Ljr53FxhfP4HtUfGMJ1Bh8QQF6/VmQkaCoNmZIpKGhWQq4zLHPIIL657z0cCFOt13ybvEToqdg99EWsvIshlqDLyhAry8MgCXOGaiqFxdpX1edFQK3JPgmQKxgY9vqBdQozWQIjcXzZUFGApYvmCm7wRpfwzwA3semR0+R9XsJdWABbHyxHkvnp4m+ztdVZ4XALQm+wcgp2CD/rbkoyk5Bw18HRM/J+S8u4/n/dasssee74e+tawMLwLe1ISVk6cs1D4sakdGRga46s8+zBciHbzhyfITkvzUXzvQEHNtcjMVZyYKvkeuzFbrhe1h/sQcmrU4+0acbgf7wuerMPs8WIAvfcOT4/ch/ay4+ujCI7LR4XJcS6+2vw4cWIwpZTE7YSoqb6o3vNF0YwgkaYq4LDIDvFGUJtq828zxbgATfcOT4/UoLxHN8CX1pdA2io9ctee4Soqeg/HCT6CCbUHZvw2MT+OW6Rd6fS3/3P4rfgwgNFkBy3DRRATfrPFuAXDqGI5Z3zwBoujCEqnoXNq/MFXwdoS8sgM1V59DcPSToTnEwwBv1n2JPbRsONV7Anto23h73oezefIN/vz3RijMdfYrfgwgdM2TbhAoJvsEI+f2ASWE50dyDPbVtqDzagrtumEX+WpPwnmsAJ5p7eLNmHMzkuQvckPH11RG74fPhW+q/vboRz73dHNofQIRMV98VUxRRhQKNODTJiMOOXjf2N7jQ1D2MmqYvKP3OYjCYrMxckJGAfvc43hDJ395U4vTb8v/2RKss4eaCf18Mj2HX2830HTEQq867JQvfJHB+v7xZCXQhWxAWk7n321YvwOUx4YpLINglIFahCQDJsVPxYNHkOMue4TFUkNirxrSo0PbMUl1QzQoJvsmgFEzrwgm50gIcqXM+MHIV+xu6cPiDC6ggF46qjF8L/dZplnYJSiDBNxmUgmldMlNi0dHrxuDIuGCsha8AR845v+ZhybI3IVYL4JLgmwylQTzCHEQ5GCRET8GKylq8fsbFK8xCBThyzzmJvfkwQ7sEJVAevong+qncNCcRjV2Dfhd4lIPB/V+/Dn9s6KIL32QwALaszBVsbidUrOPbP2fp/DTUtfTQjGILwQCWC9qS4OsEX3OswGlGgSX2DID8rCQscaZ5q/XW3jwHG6gtsmlgALzygyL8ufWSYGEcX7EO3/l2MMDclFh8ajE3gV0pyUs3TQWtXEjwdUCsGyaXU83XT4XFZFXnDbMTAUzeNP7cegn5mUlBOwBCfxwMsPP+fCydn66oja5Y/5yugRE4mOAcfsJcOBjgybU3Gr0MxZDga4xYN8xtBxoxOylG0jp8/YwLVfWuoO6JhPFwpyMhRvxS8vX1ivXP8bDA8rx01J3vpVYaJuC27FQ0/LXf71yYqRmaUkjwNUbs4mYBbHjhDPIzkyTfh6598+Fhge3VjegZHhO18LlhGhxSaZjTY6bi2OZi/OTf/4JPuofVWi4RAs3dw3jg1kw4GAYXhkYx4B5HctxUtPW40dHrtpzok+BrjNTFzQJo7BrUZzGE6nhYSObGc8M0OBeenDz97LR4jF/zqLhSIhQGRq56q6YZ5qsd9onmnqBB5laA0jI1Rk6OtVCfcyJy8K3MlDuo/ioJvqkIdKdasdqWBF9j5OZY52clUf59hMNVZsodlBEfTRtws3PNw2JfXbvRy5ANfaM0hru4tx1oFM2qWeJMw7+ULcb3/+1dfNpHaXmRCpetIzQoA4C3h/5liR47hDl4/cynuGVusiVcOyT4OlBakIXZSTGC+fPcNj47LR7fXjQHe2rbdF8joQ++2TqBgzL40ncJ88MC3vnTZg/i6urSOXLkCAoLCxEXF4fs7Gzs2rULUt2ZX3/9ddx4442IjY3FwoUL8fLLL+u0WnVZOj8dO9fnS27jqbVC5CI2yFoofZewBlZppKabhf/OO+9gzZo1KCsrwzPPPINTp05h69atmJiYwPbt23mPqa6uxne/+138/d//PVavXo3/+I//wMaNGxEdHY3vfOc7ei1dNeTMu+RcQHTxRxZiudsdvW78Y9U5Ot8Wp6l7WHKkpdHoNgBl1apVGBgYwLvvvut9bNu2bXj++edx8eJFxMYGNyHKy8vDLbfcgqqqKu9jZWVlOHv2LM6fPx/SOsw6ACWQjl435WFbCAb8zc2khl6TGydyCPwOmHFIii4unbGxMdTU1OC+++7ze3z9+vUYHh7GqVOngo7p7OxES0sL7zGtra2yBH90dBQDAwN+/wYHrZHzTnnY1qIkL53XXffc+nw8uy5f0LInsY8cAs+iGdM2dXHptLe3Y3x8HLm5uX6P5+TkAACam5uxcuVKv+c++eQTABA9Zv78+aK/t7y8HE8//XRYa+eQan6mDeTLtwKMT18VMXddIGJV2ERkwPn2fYPzRqKL4HNWdWJiot/jCQkJAIChoSFVjtEKqeZnasPdXK5eu6b6exMa8OXXIjDrRgqabmYPzDQkRReXjscj7ppwOIKXEcoxWiDW/EyL7dr+BhdWVNZiT20b5eNbBBbA3jrlqbThTjfLmTkdm0qcyJ5BU9LMjJmGpOiimklJk83Bhof9A5Cclc49H+4xgWzfvh39/f1+/zo7OxWtXWzbrXYqFvl0rUt9Zz86et0oP9yEx187i/LDTZLGQDgpuFEOBvs2FKC0IAudfbRTMCtiqbhGoIvgO51OREVFobW11e9x7ueFCxcGHZOXl+f3GjnHBBITE4Pk5GS/f3JuFL5IbbvV3K6RT9e6DI1c9e7MDjVewJ7aNqyorBU1CIRaLEjdAhjAm+K5t66NWmYbzKSoZ0rW2JgBXXz4MTExWLZsGQ4ePIgnnngCDDP5wVRXVyMpKQlFRUVBx+Tk5CA7OxsHDhzAAw884H28uroa8+fPx7x58/RYuqzOhmpBPl3r0jM8JpilIVaByVebcej9z+ESMSSyUuPwwJdW45mOfrX+BEICBsDNWUlYODsRDBgMj034Bec3leQoCtobgW6FVzt27MCKFStQWlqKRx55BKdPn0ZFRQXKy8sRFxeHoaEhfPzxx3A6nUhPTwcAPPnkk3j44YcxY8YM3HPPPfjP//xP7N+/H2+88YZey0ZZYRb2nWzntbzV3q6F69MljEPIyJaTpREY7D3y0UXR3zVtyuTG/OT5HjISdMKZHo//e8+NWDo/XfA1SoP2RqBba4U777wT1dXVaG5uxr333otXX30VFRUV2Lp1KwDg7NmzuP322/HWW295j9m4cSP27NmDo0eP4t5770VtbS1eeeUVlJWV6bVs2Z0N1aCsMIsSMS2GgwHSE6JFX6PU7VeUnSL6/PjENaz6lzp874UzGJugWg09aOtx43svnMHGF8+YKq9eKbpV2pqFUCttO3rdumzXfnuiFc9JDNQgrMWmEqciy6+j141v7q6hKWcmxcEA5ffnmyoYKxcSfBO2VvjNiVbJKUqENYhyMDi2uVixcbC/wYXt1Y0k+iYl1PNqNDQAxYSkJ0SDGmZan3DcfqUFWTi+pQSbSpzISZ+uweqIcLBKd8xAqB++yeBy8YUsu4SYKAyPUgWu2cmZOR37NhSEZQFyQUBX3xW09lxWcXWEGpipglYuJPgmwLdPT1f/iGguPom9NVh5wyzVtvuUvWVOzFRBKxcSfIOh9riRyRLnjKDHQm3AJ5YaTBiD2Spo5UI+fAOhVgqRy+m2S34/+/ZIkluJyyGUGkxoy4z4aZgRPzXocTNW0MqFLHwDoVYKkYuvf1eqAZ+cWahcRS4NxdGPS+5xMADyMhIQNzUKKfHTkJeRYMoKWrmQhW8gVCUZuVwever9v1oN+Oo7+9B8kcReT1gAzd3DeM81gNqWHmSnxVtW7AESfEOhYFzkUtvS463IVKMBn1T2FqE9ZpxgpRQSfAMJpz0uYW48LLyWezgN+LiWyz98uZ7cfybAqvn3HCT4BpKdFo8tK3OlX+hDlINBxfp8LJydgCl0szA1nOUudmMXy/bwDfS29VjXqow0rJh/z0GCbzBDoxOyX8tlB3B+xQmy+EwNZ7mH0oCPMrjMixXz7zkoS8dAOnrdOPpxt+hrcmZOx8LZid6GbQCworKWfLkmJ9By5+t7L5btQRlc5oWvxsIqkOAbhNyCq5U3zPLrtFh+uImEwOQIWe6B/dI5/zxfIRZlcJmX022XRPvimxkSfAOQu13n8++SEJgbBsCWlbneiVQcHb1u7K1r+3JCFYsZ06ehobPfb6e272Q7nl23CKUFWZKB3pyZ05EQPQXvuQZU/xsIccL14Ydaca0GJPgGIGe7LmQlUiqnuWEB7D7agm8tmu09d3ytjvmCsL6FWFKT1vZtKAAA6ptvAOH48Pl29r43eq2hoK0BSFnpOTOn49jm4iArEaCpWFbAN3Wvo9etqK89d6zcQC+Jvb6E00NHquJaj/x+svANQMpKF+u0mJ0Wj5+uyqOpWCaH2/ZX1bsUizJ3rFSgt6reuvngViTcHjpyKq61nolLgm8A4Q5G/8nyHLAATcUyMdy2P5SYi6/LQGwwNsVz9EON+QZqVFyHC7l0DECNwejk1jEvvjdtpTEXJS4DiufohxrzDcKpuFYLsvANQmleti8nz/eQS8ekOBjgibtyvVkY06OnwMHI87UrdRmUFWZhb10b+fE1hgFUCaiGu7NXAxpirtEQc61Sr/Y3uLDtQCNsddIsxG3ZKWj464DfRc0wAFgEnTMGQEleOqbHTFV0w/eFBt5rj4MBjm8pUe36DQzccjd6viQNtSHB10DwhU6qWOoV3w0CgN9jd+TMwMYXqYmWmflS24NwMMC3F81G05e97AvnpeBHy5yCIiLHYOBL9yS0YVOJU7WAakevO6SdvRqQ4Kss+B29bqyorBXcth3bXMx74QbeIBhmUjx830ZITAhrIFc05BgMHb1u3Lm7Bva6eo3jzgUz8W8bC41eRthQ0FZllA67EMrNZdlgvy9d2+ZGKpCupO+9VK7272rbSOzDZPHcZKy9eQ42lTixMCNB9LX9V8Z1WpW2kOCrjNLUK2qSFRlEORiU5In3V5GThSHXYKjv7FO+SMJLlINBZekt+PWDi7Ft9QLMSooRfX1y3DSdVqYtlKWjMkpTryiX2po4GKA41z/gCgB154XdeXKyMOQbDJSYGw4PL5nn51pdkJGImuYewdcPuMfR0eu29HhDgCx81VE67IJyqa1FzBQHZiZEo2BeCvIyErF5ZS5KC7JQVe/C7iPNWDo/DYGnX266ZUevW9LtwxkMRdkpoq8jxPn9qQ78+N8bvD9LTZ97zzWAFZW1lp52BVDQVtcsHb7UK7EgLx9RDgbfuikDhxovqLpmIjT4gut81r+U2Mtpl+0b9KegrTokxU5F2vRoFGWnIDMlDpVHW2SfAytCgq9hHr7c1Cu5WTrcTaO2pYcE3+QwAF75QZGsvulybvp8BsP+Bhe2VTeS6KvEZNFcHo5+fFG07bSaKZp6Q4KvkeBLEZhnfUfODJxuu+R3gwDAe9MoP9yEPbVtuq+ZUAYDYOf6fEnfvdT5XDw3GZWltwiOQtxX144zXwZxWQ+LNh26LkYqDgZYlpsu6s9fvmAm8mYleCupGQYYHp3Qvbd9KJDgGyD4oRRm+aLUDUQYhxwXwOOvnRXdsa29eQ5+/eBiWb9P6r0IaRZnJYta+GL1MEquYyOgoK3OqNETm2u+Rnka5oev9iIQtZpqyQn6EtKkxE8TDeCKmVl69rYPBRJ8nVFamCVEaUGWZN43YQ6kRFhpZhcf+xtcWFFZi3M08jBs8jISeLvZyjWwlFzHekN5+DqjZk/svIxEnBDxNRLawzCQDJpKWejcjk0os0tOOqecGcmENA4G3lhZYDfbpgtDsq83s+60SPB1Rs2e2GWFWZMl9uEuilDEwtkJyEiKxYKMBJQWZKGr/wo2vHCG9zzItdBDbZfd0evGP1adI7GXyeK5yfCwwPs8OyEHA+y8P9/7mQcOnyk/3CRb8PXobR8KJPg6I6cntpxOidxr8jISvB0YCX0oyZvpJwTZafHYuT4/ZAvd932UpPvJyd0nvoJrp8DVMeyta0N9Zz8AoGheKh5ddr3ouRK7dgN/j1mDtpSlY6IsnfJ1i8ACkhk8dKEby9qb52DzylzedtZ6tb2lTC1lqNVzXura07O3fSiQ4BuYhx8oDgAkWyuLvYYIHwcDXJcSC1efsA92eV466s73hpxWqwZUiyENA+DmrGTc7pwRdPMNZ0CR77U7PToKDBgMj03o3ts+FEjwDRJ8PqQu4k0lTrAs6ELXiNT4aRi4Mi46UIRL3OB7jZ5l95RvL41Q4Vu4dTBWhtIyTYRUBk9z9zCOftyt02rsR59bXOyjHAyKc9MFX6NnOh413ZOGBbC9utEvJ16NOhgrQ4JvIqQu4hNNX6CtJ7K/kGZl8dxkHNtcjPho8TwHvdLxygqzqPBOBh4WfjdhtepgrAoJvomQatFqK9+bychMiUN2WryqabXhkJ0Wj2IqvJOF701Yahd9uq2X9/GOXjfKDzfh8dfOovxwk2V3AiT4JoIrwAm1wo/QDk7I1aiKVYun1t4Y1HufCMb3Jix1w250DQaJOVfFvKe2DYcaL2BPbZtle+OT4JuM0oIsHNtcjE0lTu+8TSlLbm5qHNbkz0ZO+nTkpE/HbTQcQ1V8hVzopqw0514NstPiUX5/vuiu0O5wlbMcUq4wFv4uoEjz+VPhlQnhq/ATa9fq6ruCT/u+2qq2UrcF1eAT8lCrYrXAdy1HP7qI1p7Luq/BrARWzgKT11Z+ZhLe7xoUPM7XBSTH52+l3vgk+BZAqsKPfPvqwgAoWTDT2zqBT8iVVsVqCbeW0oIsqtH4koWzE/Db797Ke+5ud6aJCr6vC0jN3ldmgFw6FoB8+/ryQEEmXtxYiG2rF5iyiEYogCj0PbEjOTMTBM+dkjiMWYL0akGFVyYqvJIisDr3kwtDoq4eIjQCC6jCqcpUGzlFQ4HfkyXOyWlqzd3D6L8yjkvD4/hUwnK1OlJjCOXOnRZrYWHF+bYk+BYS/ECovF47OMGQElg9bwZqiU9Hrxvf3F0jWmRmdX66Kg//e3mO6Gvkzp2We3OwAiT4FhZ8aqAlD7GRdEJwDdLEBHbzylxUHm3RrURfTusNuXGFSB+Arrb1LffmYHYoaGtBfK3KpfPTUNfS42etRTkYbFmZi+GxCXT1j+BkSw8GRq4at2ADqVifj4J5qfjhy/WKqpQzU2IlMzR2vd0cdCPh0vUK56WqLghqBhC57J69dW04/GE3Bq5Y7/tx96IMvPUBf6sRtTNozBSkDwcSfIvBt710MJMdHKfHTOW1Pr65u8a2gt/e68YDX4qbXMHnAne7jzSLvk7IONYqXS+UAKKYy2kyyJuPby+aje+9cEbVterBB58JZ9oA1sug0QMSfAshVATiYYG6872CW1glYhdpHP3oIk639oqm4fniYODNuw+nQZkWYiNneI4vfMbBvpPtQS6nP7deUn2tevCpSAtrwHoZNHpAaZkWQknjJ9/UveFRe1r3ANDac1m22HNwn/AdOTNC/r1aiI2SKl8lFaJSriKOGfHTMDc1DlOjzJ/2GXgDjJReOOFCFr6F+B+Bxk4cnFVJE7FCx8PC64OXsnyFgsFa9tSRW+WrpEJU7k7mknscl9zj4f0BCggl2A4E3wDl7nTsAAm+RejodaNRwlKdHh2F7dWNqKp3UfVtGHCCKGX55mcl4cPPhsKaYxsKcgKISgK8ZYVZ2FvXZro0zdU3ZeD/fdQtK5MoZ+Z0LJydGHQDlNrpaBFcNzO6unT+9V//FTk5OYiNjcXXv/51/Pd//7fkMb///e/BMEzQv8cff1yHFZsHOSJeVe/CGyT2qjBpPYtbvkucaUGN7o5tLjZFbraSAC/XhM1svP1Rt2wTf+UNs/DrBxcHVUfbvf99ILpZ+JWVldi6dSueeuopFBQU4IUXXsA999yDmpoafOMb3xA87ty5c8jLy8NLL73k93hGRobGKzYXcvysZrPQrAxnKUoFSc2arqc0wMu5in7w0hm095qjClfJ93mJkz/eEmm9cMJFF8EfGRnBM888gy1btuDnP/85AGD16tVYsmQJnn76aRw9elTw2HPnzqGwsBB/8zd/o8dSTYvWI+2ipzgwNuHR9HeYDYYBr7vAV8yfXbdIsMrSzK6AUNaenRaPPz2xHCfP96DyaAsuDo1hVmI0rkuOwaFGc4/WPN12CUvnB7cRj7ReOOGii+C/++67GBgYwH333ed9jGEYrFu3Dj/72c8wMjKC2NjgD55lWTQ2Nvodp4TR0VGMjo76PTY4qCxjwyyIWWyhBrc4ohwMZiZGwyWR5hZplOSmo+58r6ggmqkVslKk1i6Uo790frqfeHb0uvFWY7epXYVClrrSnU6ko4vgf/LJJwCA3Nxcv8dzcnJw7do1tLW14aabbgo6rq2tDcPDw6ivr0deXh7a29tx/fXX45/+6Z+wYcMGyd9bXl6Op59+Wp0/wmA4i217daPfVtfBAMty0yWbqEU5GNz/9etQffYzXoH7y1/78UafvfyZzd3DeODWTDgYBsNjE4Jibia3jdLePb5r9z328tgEapt7/ER8b10byu/PDxJBbpyi3EZ9DIDlC2YiLyMBNU1f4JPuYaV/pmKELHUr79K0IGzBd7vd+MMf/iD4/Jw5c7xWdWJiot9zCQkJAIChoSHeY8+dOwcA6OjowO7duzF16lS88sor+P73v4+xsTE8+uij4S4/Iiial4qTAZYqBwPgwaK5eHTZ9chOi8emkhxei69gXiqqGlwR21uFj88HR/FGvUvT/jdqEk56oZxUXQ8LbKtu5M1ceWrtjahrkddwjQWQl5GAbasXYIlzhuZVvFKWupV3aWoTtuD39/dj06ZNgs8XFxfjrrvuEn0Ph4M/WWjZsmV48803sXz5csTHT56cVatW4YsvvsCTTz6JH/7wh2AY8xeBqAGXXhZ4wXlYYPfRFsFGXoEd/YSs1ey0eOy8P593B7HoOvEJQVbHCil64aQXCh3LB8tOWvrPrvPP2uEyebYdaJTl2uFcLEvnpyMjMRrdQ2MyjlKOXEvdTLs0Iwk7LTMzMxMsywr+q6mpQVJSEgBgeNh/a8dZ9tzzgcycORNr1qzxij3H3Xffje7ubly8eFF0bdu3b0d/f7/fv87OzhD/UmORSi+7PDYRdopgaUEWjm8p8XuP41tKcLszTa0/Qzec6fFYe/McLM9LlzXo2+wpeuGkF4ody0d9Zz/v46UFWZLzlTk4F8v+BhcuaiT2OTOnmyYN1iro4sPPy8sDALS2tqKwsND7eGtrK6ZNm4brr7+e97iTJ0+ivb0d3//+9/0eHxkZQVRUFFJTU0V/b0xMDGJiYsJcvTmQk16mhhXD9x5lhVn4XW2bqYN2gbT1uDElyoH5M6ejtCALDoZBTfMX+HxwVPAYM6fohZNeKLd1ghwWZCTKihdxswJ+dvADzb43K2+YZdodmVnRpfBqyZIliI+Px4EDB7yPsSyLgwcPori4GNHR0bzHnThxAhs3bkRLS4v3MY/HgwMHDmDJkiWYNm2a5ms3C0aml3GDn61Gc/cwDjVewBv1LlQ1uJCbkSD6+ssm7jkUzvlXmtJbNE/YkBIbD8hx05xEVNW7sLeuTbP2HnbMsFEDXQQ/Li4OTzzxBCoqKvDzn/8chw8fRmlpKf7yl7/gqaee8r6uq6sL77zzDsbGJreAjz32GDIyMrB27VpUVVXh0KFDWLNmDT788ENUVFTosXTToGQOpxZY0a3jyzUPi7qWHtE5wLUtPaZtqhXO+Zcj0hwOBnh0Gf+OG5A3N/f9rkHsqW3DG2fCd5HNTooJOmd2zbBRA91aKzz55JP4xS9+gZdffhnr1q1De3s7/uu//gt33HGH9zW///3vcfvtt+PChQsAgFmzZuHkyZPIz8/H3/3d36G0tBRutxvHjx/HbbfdptfSTYGSTolaoEQ0tCbUVXhYICtV2BL2sDCtHz+c8y93uDnDADvvz5f8LpUWZPnFix4qmssbJ5Gy7R8qmovbslMEn49yMHjt0b/Bn54oMWX7CitCIw4tNuLQyFFrZunCeVt2KsYnPHjPNaD42DnJMfh8QNiPv/bmOfj1g4vDWJ22hHP+O3rd2Fs3aXnznUEHAxzfUqL4+xTKbOUoB4OXHi7ExhfrBb9P21bnYVOJ+FxaQhnULdNiSAVmtRyqzeUzb646F5LYiuFg5PdOqe/sw8uPFImKhRCzEsQF3+yl9uEE5rPT4pEUO03Q8uZ2OErfXyooHFgJzu1K/tx6SfT8DY1OKFoHIQ0NQIkg9je4sKKyFntq23Co8QL21LZhRWWtqm6K7LR4VJbdopp75/q0eG/654NF8rbpHnayd4ocN4UvUQ4Gm+/KNTQWYjRaNBOTCgp/pyiL1yXT1M1fcMlxoukLxWshxCHBjxCUTDgKF7k+YTm097rRe3kM2Wnx+NEyp+z37Oof8fqS1+TPlnw9g8nRhUvnpxsaCzEaLbK9pOI7WSlx2LZ6QVD7YqnB6U3dw6YNolsVculECEomHKlBYLn65dGrOCGz10ogf2zowsj4NQDA0vlpqGvpkXTvcMIkd/bsg0VzvYE+O5faa9FMLDstHptX5qLibf6h77uPtuBbi2YHfb4pcVMl31uLYfB2hgQ/QtC773dwrCAXsxLb8EZ9aO6jQ40XvP93MJOB2TMdfbJGCEq5BgDgW4v85yfYtdReq2ZiwyL+diGDIy8jUdJIMHMxnBUhwY8Q9CzMEmriddcNs1R5fw8LNPy1H0+syhPsD+Q7r7RWxs5CqF+6HdFihxOKwSGngtvsQXSrQYIfIejV91ssVnD4Q/WGZPj2BxLr5y63dJ8sRX/U3uEkxIhLCZ9w13f2iR5jhyC63pDgRwh69f1W2ogrHKT6AylZC1mK2rG/wYUqEVcen3BL3awdDGwRRNcbEvwIQo9gpJqNuKSQEmm5ayFLUTuE2nZzCAm31M26rDCLqmk1gAQ/wtA6GKn1bF0OOSItZy12Sbc0ilCFW+pmfXnsWthrI4IhwScUIRYrUAsGk+mZ4awlcNIXoQ2hCncoSQZaVpHbBSq8IhQh1sSrtCBTlWIsFkBNc49klbDYWp5bn49fkmWvOaFmhynt/qlHFbkdoOZpFmueZhaEmnj5Pt7VdyXsnjtRDgbHNheLCreRDeXsTkevGysqawWzw8TOHV96L99YznB+B+EPCT4JvmaIXahK2FTitGWRlFWQK9x8yLlZS3XjpO+HfMiHT2iGUKpoIIHdFAOhHHr1UdMfHk52mJwkA72ryCMZEnxCU/jEYIlzBk63XfL+3O8eF23JQDn06iJUKf3sukUhp69qmR1m5HjPSINcOuTSMRzy0eqHkZ91qLsK+n6oB1n4hCEEXvxbVuZit0TfHEIYuWKqd1dVjnB2FXpVkdsBEnxCd4SCfJtX5uLy2ETI4/vsmqOtREyN8IeL9V/aXt2Is3/tx+WxCdHzZueW1mpCgk/oitjFX3m0JaTtuRY+aasgNfimcF6q3+dphD9cbFfhYeEXvxE7b3Ztaa0mVHhFiNLR60b54SY8/tpZlB9uCnsCkRyXgtL16TXpy4wo/TyVFjypgZL+S3Y5b0ZBgk8IokV1o9ouBbVvIFZD6ecpVp2slT9caf8lO5w3oyCXDsGLUleBXNR2Kdg9RzuUz1Nvf3go/Zci/bwZBVn4BC9aWc5quxTsnqMd6ufJ+cMDB4trQShD7yP9vBkFCT7Bi1aWs9ouBSN80mbCCBdNKJQWZOHY5mJsKnFi7c1z8FDRXAjpvx3Om1GQS4fgRUvLWU2XAuVoWydlMTDL5pa5ybY+b0ZAlbZUacuL1aobqWOmNaHzpi8k+CT4goTTBZEgCPNBgk+CLwpZYAQROZDgk+ATBGETKEuHIAjCJpDgEwRB2ATbpWUGerAGBwcNWglBEEToJCUlgWHkF7MBNhT8oaEhv5/nzZtnzEIIgiDCIJT4I7l0CIIgbAIJPkEQhE2wXVqmx+OBy/VV46/ExETFfrBIZHBw0M+91dnZiaSkJOMWFIHQZ6w9dvqMyYcvA4fDga997WtGL8P0JCUlUX2CxtBnrD30GftDLh2CIAibQIJPEARhE0jwCYIgbILtfPgEPzExMXjqqaf8fibUhT5j7aHPWBzbZekQBEHYFXLpEARB2AQSfIIgCJtAgk8QBGETSPAJgiBsAgk+QRCETSDBJwiCsAkk+IQkb775JjWYU4EjR46gsLAQcXFxyM7Oxq5du4IG8hDq0NXVheTkZNTU1Bi9FFNBgk+IUlNTg4ceesjoZVied955B2vWrMGCBQtw8OBBfPe738XWrVuxc+dOo5cWcbhcLtx11100zY4HKrwieBkeHkZ5eTl27tyJpKQk9PX1kTUaBqtWrcLAwADeffdd72Pbtm3D888/j4sXLyI2NtbA1UUGHo8Hr7zyCp544gmwLIu+vj6cOHECJSUlRi/NNJCFT/DywgsvYN++ffjNb36Dv/3bvzV6OZZmbGwMNTU1uO+++/weX79+PYaHh3Hq1CmDVhZZNDY24sc//jE2bNiAP/zhD0Yvx5SQ4BO8rF27Fp2dnXjssceMXorlaW9vx/j4OHJzc/0ez8nJAQA0NzcbsayIY+7cuWhtbUVlZSXi4uKMXo4poeZpNsPtdotaP3PmzME999wDp9Op46oiG86XnJiY6Pd4QkICAGBoaEj3NUUiqampSE1NNXoZpoYE32b09/dj06ZNgs8XFxfjnnvu0XFFkY/H4xF93uGgjTahDyT4NiMzM5OCrzrDzVQdHh72e5yz7CN15iphPsi0IAiNcTqdiIqKQmtrq9/j3M8LFy40YlmEDSHBJwiNiYmJwbJly3Dw4EG/3VV1dTWSkpJQVFRk4OoIO0EuHYLQgR07dmDFihUoLS3FI488gtOnT6OiogLl5eWUUULoBln4BKEDd955J6qrq9Hc3Ix7770Xr776KioqKrB161ajl0bYCKq0JQiCsAlk4RMEQdgEEnyCIAibQIJPEARhE0jwCYIgbAIJPkEQhE0gwScIgrAJJPgEQRA2gQSfIAjCJpDgEwRB2AQSfIIgCJtAgk8QBGETSPAJgiBsAgk+QRCETSDBJwiCsAkk+ARBEDaBBJ8gCMImkOATBEHYhP8P6RTLuVRLquoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -197,1006 +197,1006 @@ "name": "stdout", "output_type": "stream", "text": [ - "Iter: 0 loss: 0.7023356556892395\n", - "Iter: 1 loss: 0.8078294396400452\n", - "Iter: 2 loss: 0.6658052802085876\n", - "Iter: 3 loss: 0.6809452772140503\n", - "Iter: 4 loss: 0.6219772696495056\n", - "Iter: 5 loss: 0.6706441640853882\n", - "Iter: 6 loss: 0.652212917804718\n", - "Iter: 7 loss: 0.6524364948272705\n", - "Iter: 8 loss: 0.6347347497940063\n", - "Iter: 9 loss: 0.5627247095108032\n", - "Iter: 10 loss: 0.589953601360321\n", - "Iter: 11 loss: 0.6330718398094177\n", - "Iter: 12 loss: 0.564450740814209\n", - "Iter: 13 loss: 0.5568236112594604\n", - "Iter: 14 loss: 0.534448504447937\n", - "Iter: 15 loss: 0.5278967618942261\n", - "Iter: 16 loss: 0.5202865600585938\n", - "Iter: 17 loss: 0.4994956851005554\n", - "Iter: 18 loss: 0.5369226932525635\n", - "Iter: 19 loss: 0.4948105216026306\n", - "Iter: 20 loss: 0.4650391638278961\n", - "Iter: 21 loss: 0.4900588095188141\n", - "Iter: 22 loss: 0.45243895053863525\n", - "Iter: 23 loss: 0.4395028352737427\n", - "Iter: 24 loss: 0.4213251769542694\n", - "Iter: 25 loss: 0.3855494260787964\n", - "Iter: 26 loss: 0.40747177600860596\n", - "Iter: 27 loss: 0.3801105320453644\n", - "Iter: 28 loss: 0.3557896316051483\n", - "Iter: 29 loss: 0.37599313259124756\n", - "Iter: 30 loss: 0.35773611068725586\n", - "Iter: 31 loss: 0.40080758929252625\n", - "Iter: 32 loss: 0.35028329491615295\n", - "Iter: 33 loss: 0.3463832139968872\n", - "Iter: 34 loss: 0.3521747291088104\n", - "Iter: 35 loss: 0.28218504786491394\n", - "Iter: 36 loss: 0.2659966051578522\n", - "Iter: 37 loss: 0.2904514968395233\n", - "Iter: 38 loss: 0.2425980567932129\n", - "Iter: 39 loss: 0.2836245596408844\n", - "Iter: 40 loss: 0.28187423944473267\n", - "Iter: 41 loss: 0.24584881961345673\n", - "Iter: 42 loss: 0.25937047600746155\n", - "Iter: 43 loss: 0.24579399824142456\n", - "Iter: 44 loss: 0.246485635638237\n", - "Iter: 45 loss: 0.2402692586183548\n", - "Iter: 46 loss: 0.22805969417095184\n", - "Iter: 47 loss: 0.22964127361774445\n", - "Iter: 48 loss: 0.22432556748390198\n", - "Iter: 49 loss: 0.2152203768491745\n", - "Iter: 50 loss: 0.2048254758119583\n", - "Iter: 51 loss: 0.2042076587677002\n", - "Iter: 52 loss: 0.1933610588312149\n", - "Iter: 53 loss: 0.187601700425148\n", - "Iter: 54 loss: 0.1842445284128189\n", - "Iter: 55 loss: 0.18727383017539978\n", - "Iter: 56 loss: 0.18121275305747986\n", - "Iter: 57 loss: 0.18042145669460297\n", - "Iter: 58 loss: 0.1743042916059494\n", - "Iter: 59 loss: 0.15880480408668518\n", - "Iter: 60 loss: 0.19093769788742065\n", - "Iter: 61 loss: 0.17554016411304474\n", - "Iter: 62 loss: 0.17212830483913422\n", - "Iter: 63 loss: 0.16546033322811127\n", - "Iter: 64 loss: 0.1648830771446228\n", - "Iter: 65 loss: 0.1656658798456192\n", - "Iter: 66 loss: 0.16041873395442963\n", - "Iter: 67 loss: 0.15855653584003448\n", - "Iter: 68 loss: 0.15926356613636017\n", - "Iter: 69 loss: 0.16133178770542145\n", - "Iter: 70 loss: 0.15314990282058716\n", - "Iter: 71 loss: 0.1538214534521103\n", - "Iter: 72 loss: 0.15423372387886047\n", - "Iter: 73 loss: 0.15019531548023224\n", - "Iter: 74 loss: 0.1437285840511322\n", - "Iter: 75 loss: 0.14294685423374176\n", - "Iter: 76 loss: 0.1483030468225479\n", - "Iter: 77 loss: 0.1358073204755783\n", - "Iter: 78 loss: 0.1424948126077652\n", - "Iter: 79 loss: 0.14649097621440887\n", - "Iter: 80 loss: 0.1383875161409378\n", - "Iter: 81 loss: 0.1301112174987793\n", - "Iter: 82 loss: 0.14174261689186096\n", - "Iter: 83 loss: 0.1355494260787964\n", - "Iter: 84 loss: 0.13491563498973846\n", - "Iter: 85 loss: 0.12742318212985992\n", - "Iter: 86 loss: 0.12207572907209396\n", - "Iter: 87 loss: 0.12029852718114853\n", - "Iter: 88 loss: 0.12356381118297577\n", - "Iter: 89 loss: 0.12212327867746353\n", - "Iter: 90 loss: 0.12052381783723831\n", - "Iter: 91 loss: 0.11872324347496033\n", - "Iter: 92 loss: 0.12011812627315521\n", - "Iter: 93 loss: 0.11585390567779541\n", - "Iter: 94 loss: 0.1176777333021164\n", - "Iter: 95 loss: 0.11166919022798538\n", - "Iter: 96 loss: 0.11276352405548096\n", - "Iter: 97 loss: 0.10811819136142731\n", - "Iter: 98 loss: 0.11123213917016983\n", - "Iter: 99 loss: 0.10851936787366867\n", - "Iter: 100 loss: 0.11063961684703827\n", - "Iter: 101 loss: 0.10622316598892212\n", - "Iter: 102 loss: 0.10249172896146774\n", - "Iter: 103 loss: 0.10544349998235703\n", - "Iter: 104 loss: 0.10625095665454865\n", - "Iter: 105 loss: 0.0959165170788765\n", - "Iter: 106 loss: 0.09959503263235092\n", - "Iter: 107 loss: 0.10027088224887848\n", - "Iter: 108 loss: 0.10191037505865097\n", - "Iter: 109 loss: 0.09700487554073334\n", - "Iter: 110 loss: 0.09780015796422958\n", - "Iter: 111 loss: 0.10339207202196121\n", - "Iter: 112 loss: 0.09377425909042358\n", - "Iter: 113 loss: 0.09272652864456177\n", - "Iter: 114 loss: 0.09914533793926239\n", - "Iter: 115 loss: 0.09545809775590897\n", - "Iter: 116 loss: 0.09254706650972366\n", - "Iter: 117 loss: 0.08959841728210449\n", - "Iter: 118 loss: 0.09029121696949005\n", - "Iter: 119 loss: 0.09125436842441559\n", - "Iter: 120 loss: 0.09378762543201447\n", - "Iter: 121 loss: 0.09363190084695816\n", - "Iter: 122 loss: 0.09282562881708145\n", - "Iter: 123 loss: 0.08579780906438828\n", - "Iter: 124 loss: 0.08889404684305191\n", - "Iter: 125 loss: 0.0942409560084343\n", - "Iter: 126 loss: 0.0872565507888794\n", - "Iter: 127 loss: 0.08810069411993027\n", - "Iter: 128 loss: 0.0861520990729332\n", - "Iter: 129 loss: 0.08977549523115158\n", - "Iter: 130 loss: 0.08169323951005936\n", - "Iter: 131 loss: 0.07997383922338486\n", - "Iter: 132 loss: 0.09225480258464813\n", - "Iter: 133 loss: 0.08292582631111145\n", - "Iter: 134 loss: 0.08288411051034927\n", - "Iter: 135 loss: 0.09144846349954605\n", - "Iter: 136 loss: 0.09152591228485107\n", - "Iter: 137 loss: 0.0788300633430481\n", - "Iter: 138 loss: 0.08175331354141235\n", - "Iter: 139 loss: 0.0853310376405716\n", - "Iter: 140 loss: 0.09075519442558289\n", - "Iter: 141 loss: 0.08600425720214844\n", - "Iter: 142 loss: 0.07689632475376129\n", - "Iter: 143 loss: 0.09269589930772781\n", - "Iter: 144 loss: 0.08431079238653183\n", - "Iter: 145 loss: 0.08299233019351959\n", - "Iter: 146 loss: 0.08700419217348099\n", - "Iter: 147 loss: 0.08988820016384125\n", - "Iter: 148 loss: 0.08587976545095444\n", - "Iter: 149 loss: 0.09055931121110916\n", - "Iter: 150 loss: 0.0868438258767128\n", - "Iter: 151 loss: 0.08423548936843872\n", - "Iter: 152 loss: 0.09041743725538254\n", - "Iter: 153 loss: 0.09012532979249954\n", - "Iter: 154 loss: 0.089149609208107\n", - "Iter: 155 loss: 0.08955226093530655\n", - "Iter: 156 loss: 0.09775348752737045\n", - "Iter: 157 loss: 0.08171217888593674\n", - "Iter: 158 loss: 0.08641188591718674\n", - "Iter: 159 loss: 0.09270123392343521\n", - "Iter: 160 loss: 0.08382895588874817\n", - "Iter: 161 loss: 0.08708726614713669\n", - "Iter: 162 loss: 0.08870881795883179\n", - "Iter: 163 loss: 0.08548784255981445\n", - "Iter: 164 loss: 0.07957016676664352\n", - "Iter: 165 loss: 0.08656366914510727\n", - "Iter: 166 loss: 0.08861787617206573\n", - "Iter: 167 loss: 0.08888865262269974\n", - "Iter: 168 loss: 0.093694768846035\n", - "Iter: 169 loss: 0.09319612383842468\n", - "Iter: 170 loss: 0.08906001597642899\n", - "Iter: 171 loss: 0.08952613174915314\n", - "Iter: 172 loss: 0.08376296609640121\n", - "Iter: 173 loss: 0.08655934780836105\n", - "Iter: 174 loss: 0.09169235825538635\n", - "Iter: 175 loss: 0.08962122350931168\n", - "Iter: 176 loss: 0.08567485958337784\n", - "Iter: 177 loss: 0.08738214522600174\n", - "Iter: 178 loss: 0.08334619551897049\n", - "Iter: 179 loss: 0.0895867720246315\n", - "Iter: 180 loss: 0.08695602416992188\n", - "Iter: 181 loss: 0.08314750343561172\n", - "Iter: 182 loss: 0.08818620443344116\n", - "Iter: 183 loss: 0.08643558621406555\n", - "Iter: 184 loss: 0.09244082868099213\n", - "Iter: 185 loss: 0.08110286295413971\n", - "Iter: 186 loss: 0.09331972151994705\n", - "Iter: 187 loss: 0.07720209658145905\n", - "Iter: 188 loss: 0.08220027387142181\n", - "Iter: 189 loss: 0.08991169184446335\n", - "Iter: 190 loss: 0.09526633471250534\n", - "Iter: 191 loss: 0.08772461116313934\n", - "Iter: 192 loss: 0.08125356584787369\n", - "Iter: 193 loss: 0.08468659222126007\n", - "Iter: 194 loss: 0.08789507299661636\n", - "Iter: 195 loss: 0.09013364464044571\n", - "Iter: 196 loss: 0.08873238414525986\n", - "Iter: 197 loss: 0.08996523916721344\n", - "Iter: 198 loss: 0.08641871064901352\n", - "Iter: 199 loss: 0.08806851506233215\n", - "Iter: 200 loss: 0.09049836546182632\n", - "Iter: 201 loss: 0.08996520191431046\n", - "Iter: 202 loss: 0.08591107279062271\n", - "Iter: 203 loss: 0.08468581736087799\n", - "Iter: 204 loss: 0.08759196102619171\n", - "Iter: 205 loss: 0.08755186200141907\n", - "Iter: 206 loss: 0.07974637299776077\n", - "Iter: 207 loss: 0.08431494235992432\n", - "Iter: 208 loss: 0.08723171800374985\n", - "Iter: 209 loss: 0.09663636982440948\n", - "Iter: 210 loss: 0.07859699428081512\n", - "Iter: 211 loss: 0.08558371663093567\n", - "Iter: 212 loss: 0.0876193717122078\n", - "Iter: 213 loss: 0.08749578148126602\n", - "Iter: 214 loss: 0.08836114406585693\n", - "Iter: 215 loss: 0.09047766774892807\n", - "Iter: 216 loss: 0.08991976827383041\n", - "Iter: 217 loss: 0.08337697386741638\n", - "Iter: 218 loss: 0.08316347002983093\n", - "Iter: 219 loss: 0.0815630704164505\n", - "Iter: 220 loss: 0.08663924038410187\n", - "Iter: 221 loss: 0.09004432708024979\n", - "Iter: 222 loss: 0.07456786930561066\n", - "Iter: 223 loss: 0.08670154213905334\n", - "Iter: 224 loss: 0.0823151171207428\n", - "Iter: 225 loss: 0.08390144258737564\n", - "Iter: 226 loss: 0.08208528161048889\n", - "Iter: 227 loss: 0.08706336468458176\n", - "Iter: 228 loss: 0.09310241043567657\n", - "Iter: 229 loss: 0.08871399611234665\n", - "Iter: 230 loss: 0.08916226029396057\n", - "Iter: 231 loss: 0.08844266086816788\n", - "Iter: 232 loss: 0.0874350517988205\n", - "Iter: 233 loss: 0.08845870941877365\n", - "Iter: 234 loss: 0.08197017759084702\n", - "Iter: 235 loss: 0.0788571685552597\n", - "Iter: 236 loss: 0.08613989502191544\n", - "Iter: 237 loss: 0.0883105993270874\n", - "Iter: 238 loss: 0.08894367516040802\n", - "Iter: 239 loss: 0.08510969579219818\n", - "Iter: 240 loss: 0.09460169821977615\n", - "Iter: 241 loss: 0.08473704010248184\n", - "Iter: 242 loss: 0.07718271762132645\n", - "Iter: 243 loss: 0.08552850782871246\n", - "Iter: 244 loss: 0.08400123566389084\n", - "Iter: 245 loss: 0.08198282122612\n", - "Iter: 246 loss: 0.08224114030599594\n", - "Iter: 247 loss: 0.08810148388147354\n", - "Iter: 248 loss: 0.0867866799235344\n", - "Iter: 249 loss: 0.07938579469919205\n", - "Iter: 250 loss: 0.08868388086557388\n", - "Iter: 251 loss: 0.07898280024528503\n", - "Iter: 252 loss: 0.08430740982294083\n", - "Iter: 253 loss: 0.0867251604795456\n", - "Iter: 254 loss: 0.07980529963970184\n", - "Iter: 255 loss: 0.09111029654741287\n", - "Iter: 256 loss: 0.0852445438504219\n", - "Iter: 257 loss: 0.09079401940107346\n", - "Iter: 258 loss: 0.09322205930948257\n", - "Iter: 259 loss: 0.08530060946941376\n", - "Iter: 260 loss: 0.08785292506217957\n", - "Iter: 261 loss: 0.09585066884756088\n", - "Iter: 262 loss: 0.0855991542339325\n", - "Iter: 263 loss: 0.08894576132297516\n", - "Iter: 264 loss: 0.09343147277832031\n", - "Iter: 265 loss: 0.07646449655294418\n", - "Iter: 266 loss: 0.081592857837677\n", - "Iter: 267 loss: 0.08729425072669983\n", - "Iter: 268 loss: 0.09347153455018997\n", - "Iter: 269 loss: 0.08768537640571594\n", - "Iter: 270 loss: 0.0833638459444046\n", - "Iter: 271 loss: 0.08735314011573792\n", - "Iter: 272 loss: 0.09182970225811005\n", - "Iter: 273 loss: 0.08197062462568283\n", - "Iter: 274 loss: 0.09095766395330429\n", - "Iter: 275 loss: 0.08845127373933792\n", - "Iter: 276 loss: 0.08915523439645767\n", - "Iter: 277 loss: 0.08732037991285324\n", - "Iter: 278 loss: 0.08390139788389206\n", - "Iter: 279 loss: 0.08183076232671738\n", - "Iter: 280 loss: 0.08633165806531906\n", - "Iter: 281 loss: 0.0862484872341156\n", - "Iter: 282 loss: 0.08767955750226974\n", - "Iter: 283 loss: 0.09016936272382736\n", - "Iter: 284 loss: 0.08390821516513824\n", - "Iter: 285 loss: 0.08810239285230637\n", - "Iter: 286 loss: 0.09320210665464401\n", - "Iter: 287 loss: 0.08877678215503693\n", - "Iter: 288 loss: 0.08390293270349503\n", - "Iter: 289 loss: 0.08916258811950684\n", - "Iter: 290 loss: 0.08379319310188293\n", - "Iter: 291 loss: 0.0877322107553482\n", - "Iter: 292 loss: 0.08853926509618759\n", - "Iter: 293 loss: 0.08467591553926468\n", - "Iter: 294 loss: 0.08611807972192764\n", - "Iter: 295 loss: 0.0842658206820488\n", - "Iter: 296 loss: 0.0852932259440422\n", - "Iter: 297 loss: 0.0919458344578743\n", - "Iter: 298 loss: 0.08737930655479431\n", - "Iter: 299 loss: 0.08765470236539841\n", - "Iter: 300 loss: 0.08681709319353104\n", - "Iter: 301 loss: 0.08448892831802368\n", - "Iter: 302 loss: 0.08790326118469238\n", - "Iter: 303 loss: 0.08453542739152908\n", - "Iter: 304 loss: 0.09178568422794342\n", - "Iter: 305 loss: 0.08283811062574387\n", - "Iter: 306 loss: 0.08983318507671356\n", - "Iter: 307 loss: 0.08868605643510818\n", - "Iter: 308 loss: 0.08279433846473694\n", - "Iter: 309 loss: 0.08990035951137543\n", - "Iter: 310 loss: 0.08621509373188019\n", - "Iter: 311 loss: 0.08909415453672409\n", - "Iter: 312 loss: 0.08747535943984985\n", - "Iter: 313 loss: 0.0877082422375679\n", - "Iter: 314 loss: 0.08427458256483078\n", - "Iter: 315 loss: 0.08671098202466965\n", - "Iter: 316 loss: 0.07740809768438339\n", - "Iter: 317 loss: 0.08540342003107071\n", - "Iter: 318 loss: 0.07854786515235901\n", - "Iter: 319 loss: 0.08330699801445007\n", - "Iter: 320 loss: 0.09111335128545761\n", - "Iter: 321 loss: 0.09116499871015549\n", - "Iter: 322 loss: 0.08119204640388489\n", - "Iter: 323 loss: 0.0939774289727211\n", - "Iter: 324 loss: 0.09217527508735657\n", - "Iter: 325 loss: 0.08769341558218002\n", - "Iter: 326 loss: 0.09065078943967819\n", - "Iter: 327 loss: 0.08514432609081268\n", - "Iter: 328 loss: 0.08422717452049255\n", - "Iter: 329 loss: 0.09274047613143921\n", - "Iter: 330 loss: 0.08942773193120956\n", - "Iter: 331 loss: 0.08329103887081146\n", - "Iter: 332 loss: 0.08845686912536621\n", - "Iter: 333 loss: 0.08989082276821136\n", - "Iter: 334 loss: 0.08848439902067184\n", - "Iter: 335 loss: 0.08519847691059113\n", - "Iter: 336 loss: 0.08994031697511673\n", - "Iter: 337 loss: 0.09082158654928207\n", - "Iter: 338 loss: 0.09317158162593842\n", - "Iter: 339 loss: 0.09003090858459473\n", - "Iter: 340 loss: 0.09123515337705612\n", - "Iter: 341 loss: 0.08727200329303741\n", - "Iter: 342 loss: 0.09303704649209976\n", - "Iter: 343 loss: 0.09352436661720276\n", - "Iter: 344 loss: 0.08069682121276855\n", - "Iter: 345 loss: 0.08561746031045914\n", - "Iter: 346 loss: 0.07962868362665176\n", - "Iter: 347 loss: 0.08863966912031174\n", - "Iter: 348 loss: 0.08452709019184113\n", - "Iter: 349 loss: 0.08841420710086823\n", - "Iter: 350 loss: 0.08575824648141861\n", - "Iter: 351 loss: 0.08276103436946869\n", - "Iter: 352 loss: 0.08850101381540298\n", - "Iter: 353 loss: 0.08759930729866028\n", - "Iter: 354 loss: 0.08508040755987167\n", - "Iter: 355 loss: 0.08147408813238144\n", - "Iter: 356 loss: 0.0806238204240799\n", - "Iter: 357 loss: 0.08281832188367844\n", - "Iter: 358 loss: 0.09266365319490433\n", - "Iter: 359 loss: 0.087229885160923\n", - "Iter: 360 loss: 0.09058813750743866\n", - "Iter: 361 loss: 0.09017472714185715\n", - "Iter: 362 loss: 0.08654726296663284\n", - "Iter: 363 loss: 0.08649373799562454\n", - "Iter: 364 loss: 0.08312766999006271\n", - "Iter: 365 loss: 0.09313603490591049\n", - "Iter: 366 loss: 0.0906476229429245\n", - "Iter: 367 loss: 0.09203283488750458\n", - "Iter: 368 loss: 0.0902189090847969\n", - "Iter: 369 loss: 0.08813083171844482\n", - "Iter: 370 loss: 0.08394482731819153\n", - "Iter: 371 loss: 0.09285876154899597\n", - "Iter: 372 loss: 0.0828622505068779\n", - "Iter: 373 loss: 0.08861487358808517\n", - "Iter: 374 loss: 0.0870199128985405\n", - "Iter: 375 loss: 0.09216739237308502\n", - "Iter: 376 loss: 0.08557364344596863\n", - "Iter: 377 loss: 0.0829072967171669\n", - "Iter: 378 loss: 0.09350026398897171\n", - "Iter: 379 loss: 0.08582450449466705\n", - "Iter: 380 loss: 0.08082485944032669\n", - "Iter: 381 loss: 0.08803459256887436\n", - "Iter: 382 loss: 0.08486431837081909\n", - "Iter: 383 loss: 0.08559488505125046\n", - "Iter: 384 loss: 0.09114083647727966\n", - "Iter: 385 loss: 0.08686920255422592\n", - "Iter: 386 loss: 0.08884795010089874\n", - "Iter: 387 loss: 0.0899295061826706\n", - "Iter: 388 loss: 0.08650466799736023\n", - "Iter: 389 loss: 0.09001883119344711\n", - "Iter: 390 loss: 0.0829274132847786\n", - "Iter: 391 loss: 0.09249628335237503\n", - "Iter: 392 loss: 0.08737468719482422\n", - "Iter: 393 loss: 0.09324397146701813\n", - "Iter: 394 loss: 0.08817919343709946\n", - "Iter: 395 loss: 0.08679911494255066\n", - "Iter: 396 loss: 0.08539119362831116\n", - "Iter: 397 loss: 0.08357658982276917\n", - "Iter: 398 loss: 0.08756161481142044\n", - "Iter: 399 loss: 0.09055830538272858\n", - "Iter: 400 loss: 0.08430690318346024\n", - "Iter: 401 loss: 0.08538086712360382\n", - "Iter: 402 loss: 0.09040029346942902\n", - "Iter: 403 loss: 0.08107087761163712\n", - "Iter: 404 loss: 0.08900826424360275\n", - "Iter: 405 loss: 0.08480536192655563\n", - "Iter: 406 loss: 0.08584556728601456\n", - "Iter: 407 loss: 0.09174885600805283\n", - "Iter: 408 loss: 0.08885739743709564\n", - "Iter: 409 loss: 0.07744503766298294\n", - "Iter: 410 loss: 0.09572736918926239\n", - "Iter: 411 loss: 0.08366699516773224\n", - "Iter: 412 loss: 0.09104032814502716\n", - "Iter: 413 loss: 0.08428578823804855\n", - "Iter: 414 loss: 0.08818948268890381\n", - "Iter: 415 loss: 0.08214262872934341\n", - "Iter: 416 loss: 0.0866103246808052\n", - "Iter: 417 loss: 0.08962958306074142\n", - "Iter: 418 loss: 0.09031807631254196\n", - "Iter: 419 loss: 0.07943648099899292\n", - "Iter: 420 loss: 0.08386542648077011\n", - "Iter: 421 loss: 0.08180705457925797\n", - "Iter: 422 loss: 0.08420824259519577\n", - "Iter: 423 loss: 0.09072563052177429\n", - "Iter: 424 loss: 0.0899348184466362\n", - "Iter: 425 loss: 0.08444709330797195\n", - "Iter: 426 loss: 0.08944706618785858\n", - "Iter: 427 loss: 0.07807931303977966\n", - "Iter: 428 loss: 0.08932331204414368\n", - "Iter: 429 loss: 0.08189483731985092\n", - "Iter: 430 loss: 0.08302299678325653\n", - "Iter: 431 loss: 0.08927382528781891\n", - "Iter: 432 loss: 0.0980236604809761\n", - "Iter: 433 loss: 0.08461024612188339\n", - "Iter: 434 loss: 0.08723883330821991\n", - "Iter: 435 loss: 0.08922567218542099\n", - "Iter: 436 loss: 0.08926733583211899\n", - "Iter: 437 loss: 0.09222395718097687\n", - "Iter: 438 loss: 0.08357509225606918\n", - "Iter: 439 loss: 0.08599098771810532\n", - "Iter: 440 loss: 0.08130240440368652\n", - "Iter: 441 loss: 0.0883939117193222\n", - "Iter: 442 loss: 0.0892370268702507\n", - "Iter: 443 loss: 0.08911289274692535\n", - "Iter: 444 loss: 0.08131445199251175\n", - "Iter: 445 loss: 0.084610216319561\n", - "Iter: 446 loss: 0.08864596486091614\n", - "Iter: 447 loss: 0.08573456853628159\n", - "Iter: 448 loss: 0.09144248068332672\n", - "Iter: 449 loss: 0.07981940358877182\n", - "Iter: 450 loss: 0.08690888434648514\n", - "Iter: 451 loss: 0.08087500184774399\n", - "Iter: 452 loss: 0.08503318578004837\n", - "Iter: 453 loss: 0.08272797614336014\n", - "Iter: 454 loss: 0.08530111610889435\n", - "Iter: 455 loss: 0.0931621566414833\n", - "Iter: 456 loss: 0.08650807291269302\n", - "Iter: 457 loss: 0.09053470939397812\n", - "Iter: 458 loss: 0.08764975517988205\n", - "Iter: 459 loss: 0.08592817187309265\n", - "Iter: 460 loss: 0.08665718138217926\n", - "Iter: 461 loss: 0.0811210572719574\n", - "Iter: 462 loss: 0.08552125096321106\n", - "Iter: 463 loss: 0.08688277006149292\n", - "Iter: 464 loss: 0.08604234457015991\n", - "Iter: 465 loss: 0.08620515465736389\n", - "Iter: 466 loss: 0.0845433846116066\n", - "Iter: 467 loss: 0.08861429989337921\n", - "Iter: 468 loss: 0.09714154154062271\n", - "Iter: 469 loss: 0.09447157382965088\n", - "Iter: 470 loss: 0.09429936110973358\n", - "Iter: 471 loss: 0.08304666727781296\n", - "Iter: 472 loss: 0.08815024048089981\n", - "Iter: 473 loss: 0.08154059946537018\n", - "Iter: 474 loss: 0.08278505504131317\n", - "Iter: 475 loss: 0.08480595052242279\n", - "Iter: 476 loss: 0.08311792463064194\n", - "Iter: 477 loss: 0.08498184382915497\n", - "Iter: 478 loss: 0.08132673799991608\n", - "Iter: 479 loss: 0.08017139136791229\n", - "Iter: 480 loss: 0.08675491064786911\n", - "Iter: 481 loss: 0.08101543039083481\n", - "Iter: 482 loss: 0.08725738525390625\n", - "Iter: 483 loss: 0.08228649199008942\n", - "Iter: 484 loss: 0.08537446707487106\n", - "Iter: 485 loss: 0.0887361466884613\n", - "Iter: 486 loss: 0.0926070362329483\n", - "Iter: 487 loss: 0.08844449371099472\n", - "Iter: 488 loss: 0.08266782760620117\n", - "Iter: 489 loss: 0.08775705099105835\n", - "Iter: 490 loss: 0.09079701453447342\n", - "Iter: 491 loss: 0.0932530090212822\n", - "Iter: 492 loss: 0.0852258950471878\n", - "Iter: 493 loss: 0.08088628947734833\n", - "Iter: 494 loss: 0.08903196454048157\n", - "Iter: 495 loss: 0.09023847430944443\n", - "Iter: 496 loss: 0.08589980751276016\n", - "Iter: 497 loss: 0.08771166950464249\n", - "Iter: 498 loss: 0.0885230079293251\n", - "Iter: 499 loss: 0.09015065431594849\n", - "Iter: 500 loss: 0.08663158863782883\n", - "Iter: 501 loss: 0.07748020440340042\n", - "Iter: 502 loss: 0.08229821920394897\n", - "Iter: 503 loss: 0.08975191414356232\n", - "Iter: 504 loss: 0.08583682775497437\n", - "Iter: 505 loss: 0.08729840815067291\n", - "Iter: 506 loss: 0.08382464945316315\n", - "Iter: 507 loss: 0.0829060822725296\n", - "Iter: 508 loss: 0.08629590272903442\n", - "Iter: 509 loss: 0.08811065554618835\n", - "Iter: 510 loss: 0.09046341478824615\n", - "Iter: 511 loss: 0.08591870218515396\n", - "Iter: 512 loss: 0.08977486938238144\n", - "Iter: 513 loss: 0.09311790019273758\n", - "Iter: 514 loss: 0.09394794702529907\n", - "Iter: 515 loss: 0.08796285837888718\n", - "Iter: 516 loss: 0.09394475072622299\n", - "Iter: 517 loss: 0.09044802933931351\n", - "Iter: 518 loss: 0.08711571991443634\n", - "Iter: 519 loss: 0.09039352834224701\n", - "Iter: 520 loss: 0.0895533561706543\n", - "Iter: 521 loss: 0.08640819787979126\n", - "Iter: 522 loss: 0.08114058524370193\n", - "Iter: 523 loss: 0.0876980870962143\n", - "Iter: 524 loss: 0.09594190120697021\n", - "Iter: 525 loss: 0.08580784499645233\n", - "Iter: 526 loss: 0.08695019036531448\n", - "Iter: 527 loss: 0.08818322420120239\n", - "Iter: 528 loss: 0.09496815502643585\n", - "Iter: 529 loss: 0.08303488790988922\n", - "Iter: 530 loss: 0.08953312784433365\n", - "Iter: 531 loss: 0.08228950202465057\n", - "Iter: 532 loss: 0.08280913531780243\n", - "Iter: 533 loss: 0.08725176006555557\n", - "Iter: 534 loss: 0.08270088583230972\n", - "Iter: 535 loss: 0.07970386743545532\n", - "Iter: 536 loss: 0.08976971358060837\n", - "Iter: 537 loss: 0.08525781333446503\n", - "Iter: 538 loss: 0.08355826884508133\n", - "Iter: 539 loss: 0.08249033987522125\n", - "Iter: 540 loss: 0.08875303715467453\n", - "Iter: 541 loss: 0.07585781812667847\n", - "Iter: 542 loss: 0.08487972617149353\n", - "Iter: 543 loss: 0.08048573136329651\n", - "Iter: 544 loss: 0.08545715361833572\n", - "Iter: 545 loss: 0.08537750691175461\n", - "Iter: 546 loss: 0.0785590335726738\n", - "Iter: 547 loss: 0.08737627416849136\n", - "Iter: 548 loss: 0.08837106823921204\n", - "Iter: 549 loss: 0.08606075495481491\n", - "Iter: 550 loss: 0.09227921068668365\n", - "Iter: 551 loss: 0.08889856189489365\n", - "Iter: 552 loss: 0.09181492030620575\n", - "Iter: 553 loss: 0.0896296575665474\n", - "Iter: 554 loss: 0.09007004648447037\n", - "Iter: 555 loss: 0.0854925662279129\n", - "Iter: 556 loss: 0.09132443368434906\n", - "Iter: 557 loss: 0.09583263844251633\n", - "Iter: 558 loss: 0.08825365453958511\n", - "Iter: 559 loss: 0.09134988486766815\n", - "Iter: 560 loss: 0.08962851762771606\n", - "Iter: 561 loss: 0.08794086426496506\n", - "Iter: 562 loss: 0.0858607366681099\n", - "Iter: 563 loss: 0.08626801520586014\n", - "Iter: 564 loss: 0.09069886058568954\n", - "Iter: 565 loss: 0.07995907217264175\n", - "Iter: 566 loss: 0.080362968146801\n", - "Iter: 567 loss: 0.0889272466301918\n", - "Iter: 568 loss: 0.08497972786426544\n", - "Iter: 569 loss: 0.08628152310848236\n", - "Iter: 570 loss: 0.08767006546258926\n", - "Iter: 571 loss: 0.08418918401002884\n", - "Iter: 572 loss: 0.09160546958446503\n", - "Iter: 573 loss: 0.08643538504838943\n", - "Iter: 574 loss: 0.09170543402433395\n", - "Iter: 575 loss: 0.07951413094997406\n", - "Iter: 576 loss: 0.08956930786371231\n", - "Iter: 577 loss: 0.07629723101854324\n", - "Iter: 578 loss: 0.08668413013219833\n", - "Iter: 579 loss: 0.07897808402776718\n", - "Iter: 580 loss: 0.08036347478628159\n", - "Iter: 581 loss: 0.08779047429561615\n", - "Iter: 582 loss: 0.08583121001720428\n", - "Iter: 583 loss: 0.08884880691766739\n", - "Iter: 584 loss: 0.09022883325815201\n", - "Iter: 585 loss: 0.08722890913486481\n", - "Iter: 586 loss: 0.08278868347406387\n", - "Iter: 587 loss: 0.08844122290611267\n", - "Iter: 588 loss: 0.08653327822685242\n", - "Iter: 589 loss: 0.08819916844367981\n", - "Iter: 590 loss: 0.08331351727247238\n", - "Iter: 591 loss: 0.09389514476060867\n", - "Iter: 592 loss: 0.08892770111560822\n", - "Iter: 593 loss: 0.08873418718576431\n", - "Iter: 594 loss: 0.08370401710271835\n", - "Iter: 595 loss: 0.08686599880456924\n", - "Iter: 596 loss: 0.08858881145715714\n", - "Iter: 597 loss: 0.09118232131004333\n", - "Iter: 598 loss: 0.08301757276058197\n", - "Iter: 599 loss: 0.08672874420881271\n", - "Iter: 600 loss: 0.08866185694932938\n", - "Iter: 601 loss: 0.09047389030456543\n", - "Iter: 602 loss: 0.08808708935976028\n", - "Iter: 603 loss: 0.08681529015302658\n", - "Iter: 604 loss: 0.09272777289152145\n", - "Iter: 605 loss: 0.08756319433450699\n", - "Iter: 606 loss: 0.08523321896791458\n", - "Iter: 607 loss: 0.09544765949249268\n", - "Iter: 608 loss: 0.09373291581869125\n", - "Iter: 609 loss: 0.08295823633670807\n", - "Iter: 610 loss: 0.09332026541233063\n", - "Iter: 611 loss: 0.08459773659706116\n", - "Iter: 612 loss: 0.08383499830961227\n", - "Iter: 613 loss: 0.08581729233264923\n", - "Iter: 614 loss: 0.08533681184053421\n", - "Iter: 615 loss: 0.09022361040115356\n", - "Iter: 616 loss: 0.0923750028014183\n", - "Iter: 617 loss: 0.07905100286006927\n", - "Iter: 618 loss: 0.09113158285617828\n", - "Iter: 619 loss: 0.08391434699296951\n", - "Iter: 620 loss: 0.08568379282951355\n", - "Iter: 621 loss: 0.08589648455381393\n", - "Iter: 622 loss: 0.09042532742023468\n", - "Iter: 623 loss: 0.09467482566833496\n", - "Iter: 624 loss: 0.08993024379014969\n", - "Iter: 625 loss: 0.08615512400865555\n", - "Iter: 626 loss: 0.09244340658187866\n", - "Iter: 627 loss: 0.0867079496383667\n", - "Iter: 628 loss: 0.07994451373815536\n", - "Iter: 629 loss: 0.09103351831436157\n", - "Iter: 630 loss: 0.08198041468858719\n", - "Iter: 631 loss: 0.09666028618812561\n", - "Iter: 632 loss: 0.08770512789487839\n", - "Iter: 633 loss: 0.08965837210416794\n", - "Iter: 634 loss: 0.08006217330694199\n", - "Iter: 635 loss: 0.08501473814249039\n", - "Iter: 636 loss: 0.0865212231874466\n", - "Iter: 637 loss: 0.0923156812787056\n", - "Iter: 638 loss: 0.08882075548171997\n", - "Iter: 639 loss: 0.08408389985561371\n", - "Iter: 640 loss: 0.08954382687807083\n", - "Iter: 641 loss: 0.09001224488019943\n", - "Iter: 642 loss: 0.08241104334592819\n", - "Iter: 643 loss: 0.08747601509094238\n", - "Iter: 644 loss: 0.09309053421020508\n", - "Iter: 645 loss: 0.08302147686481476\n", - "Iter: 646 loss: 0.08313249051570892\n", - "Iter: 647 loss: 0.0899413675069809\n", - "Iter: 648 loss: 0.08611660450696945\n", - "Iter: 649 loss: 0.08509620279073715\n", - "Iter: 650 loss: 0.08186549693346024\n", - "Iter: 651 loss: 0.08898422122001648\n", - "Iter: 652 loss: 0.08884534984827042\n", - "Iter: 653 loss: 0.08705446124076843\n", - "Iter: 654 loss: 0.08021208643913269\n", - "Iter: 655 loss: 0.0944838747382164\n", - "Iter: 656 loss: 0.08189550042152405\n", - "Iter: 657 loss: 0.08583429455757141\n", - "Iter: 658 loss: 0.09107126295566559\n", - "Iter: 659 loss: 0.0859062597155571\n", - "Iter: 660 loss: 0.08993609249591827\n", - "Iter: 661 loss: 0.0928395465016365\n", - "Iter: 662 loss: 0.08356378972530365\n", - "Iter: 663 loss: 0.08330614119768143\n", - "Iter: 664 loss: 0.09706327319145203\n", - "Iter: 665 loss: 0.08385588228702545\n", - "Iter: 666 loss: 0.08517487347126007\n", - "Iter: 667 loss: 0.0818430632352829\n", - "Iter: 668 loss: 0.09250371158123016\n", - "Iter: 669 loss: 0.0822092741727829\n", - "Iter: 670 loss: 0.08489323407411575\n", - "Iter: 671 loss: 0.08215104043483734\n", - "Iter: 672 loss: 0.08771584928035736\n", - "Iter: 673 loss: 0.08792109787464142\n", - "Iter: 674 loss: 0.09268633276224136\n", - "Iter: 675 loss: 0.08472359925508499\n", - "Iter: 676 loss: 0.08691126108169556\n", - "Iter: 677 loss: 0.08785742521286011\n", - "Iter: 678 loss: 0.09635390341281891\n", - "Iter: 679 loss: 0.08650105446577072\n", - "Iter: 680 loss: 0.08610295504331589\n", - "Iter: 681 loss: 0.08790350705385208\n", - "Iter: 682 loss: 0.07981467992067337\n", - "Iter: 683 loss: 0.09126971662044525\n", - "Iter: 684 loss: 0.08435016125440598\n", - "Iter: 685 loss: 0.08445479720830917\n", - "Iter: 686 loss: 0.0939726009964943\n", - "Iter: 687 loss: 0.08916419744491577\n", - "Iter: 688 loss: 0.08934440463781357\n", - "Iter: 689 loss: 0.08752182871103287\n", - "Iter: 690 loss: 0.08539348095655441\n", - "Iter: 691 loss: 0.08954203128814697\n", - "Iter: 692 loss: 0.08381637185811996\n", - "Iter: 693 loss: 0.09056384861469269\n", - "Iter: 694 loss: 0.07704910635948181\n", - "Iter: 695 loss: 0.08898673206567764\n", - "Iter: 696 loss: 0.0904364064335823\n", - "Iter: 697 loss: 0.09541190415620804\n", - "Iter: 698 loss: 0.09098722040653229\n", - "Iter: 699 loss: 0.08668296039104462\n", - "Iter: 700 loss: 0.09412600845098495\n", - "Iter: 701 loss: 0.08962491154670715\n", - "Iter: 702 loss: 0.08123224973678589\n", - "Iter: 703 loss: 0.07826800644397736\n", - "Iter: 704 loss: 0.09081493318080902\n", - "Iter: 705 loss: 0.09255752712488174\n", - "Iter: 706 loss: 0.08411327004432678\n", - "Iter: 707 loss: 0.0865972638130188\n", - "Iter: 708 loss: 0.08785519003868103\n", - "Iter: 709 loss: 0.08416783809661865\n", - "Iter: 710 loss: 0.0825292244553566\n", - "Iter: 711 loss: 0.08768373727798462\n", - "Iter: 712 loss: 0.09074266254901886\n", - "Iter: 713 loss: 0.08469120413064957\n", - "Iter: 714 loss: 0.09019406884908676\n", - "Iter: 715 loss: 0.08320047706365585\n", - "Iter: 716 loss: 0.09694841504096985\n", - "Iter: 717 loss: 0.08787116408348083\n", - "Iter: 718 loss: 0.09030734747648239\n", - "Iter: 719 loss: 0.08818746358156204\n", - "Iter: 720 loss: 0.08096601814031601\n", - "Iter: 721 loss: 0.08580341935157776\n", - "Iter: 722 loss: 0.08280374854803085\n", - "Iter: 723 loss: 0.08566892892122269\n", - "Iter: 724 loss: 0.0854882076382637\n", - "Iter: 725 loss: 0.08923590928316116\n", - "Iter: 726 loss: 0.08176419883966446\n", - "Iter: 727 loss: 0.08454906195402145\n", - "Iter: 728 loss: 0.08565382659435272\n", - "Iter: 729 loss: 0.08281472325325012\n", - "Iter: 730 loss: 0.08511397242546082\n", - "Iter: 731 loss: 0.09116081148386002\n", - "Iter: 732 loss: 0.09025058150291443\n", - "Iter: 733 loss: 0.08821704983711243\n", - "Iter: 734 loss: 0.08520923554897308\n", - "Iter: 735 loss: 0.08678840845823288\n", - "Iter: 736 loss: 0.07934858649969101\n", - "Iter: 737 loss: 0.0933074802160263\n", - "Iter: 738 loss: 0.08266909420490265\n", - "Iter: 739 loss: 0.08755818754434586\n", - "Iter: 740 loss: 0.08641203492879868\n", - "Iter: 741 loss: 0.08423174172639847\n", - "Iter: 742 loss: 0.08284199237823486\n", - "Iter: 743 loss: 0.08831264078617096\n", - "Iter: 744 loss: 0.08428525179624557\n", - "Iter: 745 loss: 0.08795083314180374\n", - "Iter: 746 loss: 0.09493742883205414\n", - "Iter: 747 loss: 0.0822596549987793\n", - "Iter: 748 loss: 0.09059159457683563\n", - "Iter: 749 loss: 0.08506046235561371\n", - "Iter: 750 loss: 0.08766666799783707\n", - "Iter: 751 loss: 0.08573035150766373\n", - "Iter: 752 loss: 0.08589807897806168\n", - "Iter: 753 loss: 0.09141653031110764\n", - "Iter: 754 loss: 0.09019745141267776\n", - "Iter: 755 loss: 0.08440372347831726\n", - "Iter: 756 loss: 0.08799431473016739\n", - "Iter: 757 loss: 0.08708013594150543\n", - "Iter: 758 loss: 0.08982369303703308\n", - "Iter: 759 loss: 0.0884898230433464\n", - "Iter: 760 loss: 0.09193206578493118\n", - "Iter: 761 loss: 0.08383865654468536\n", - "Iter: 762 loss: 0.08465180546045303\n", - "Iter: 763 loss: 0.08418197929859161\n", - "Iter: 764 loss: 0.08167476207017899\n", - "Iter: 765 loss: 0.08874867111444473\n", - "Iter: 766 loss: 0.08862900733947754\n", - "Iter: 767 loss: 0.09419757127761841\n", - "Iter: 768 loss: 0.08803059160709381\n", - "Iter: 769 loss: 0.08602968603372574\n", - "Iter: 770 loss: 0.08170896768569946\n", - "Iter: 771 loss: 0.09068285673856735\n", - "Iter: 772 loss: 0.08521758019924164\n", - "Iter: 773 loss: 0.08239161968231201\n", - "Iter: 774 loss: 0.08563400059938431\n", - "Iter: 775 loss: 0.08884994685649872\n", - "Iter: 776 loss: 0.08757125586271286\n", - "Iter: 777 loss: 0.09338422119617462\n", - "Iter: 778 loss: 0.08302663266658783\n", - "Iter: 779 loss: 0.08272740989923477\n", - "Iter: 780 loss: 0.08473487198352814\n", - "Iter: 781 loss: 0.09067673236131668\n", - "Iter: 782 loss: 0.08447729796171188\n", - "Iter: 783 loss: 0.08997844904661179\n", - "Iter: 784 loss: 0.09462514519691467\n", - "Iter: 785 loss: 0.08604323863983154\n", - "Iter: 786 loss: 0.08223932981491089\n", - "Iter: 787 loss: 0.0937068834900856\n", - "Iter: 788 loss: 0.08752019703388214\n", - "Iter: 789 loss: 0.08699226379394531\n", - "Iter: 790 loss: 0.08752390742301941\n", - "Iter: 791 loss: 0.08977854996919632\n", - "Iter: 792 loss: 0.09047122299671173\n", - "Iter: 793 loss: 0.0859769880771637\n", - "Iter: 794 loss: 0.08552051335573196\n", - "Iter: 795 loss: 0.08477147668600082\n", - "Iter: 796 loss: 0.08630716055631638\n", - "Iter: 797 loss: 0.08759839087724686\n", - "Iter: 798 loss: 0.09036802500486374\n", - "Iter: 799 loss: 0.09051153063774109\n", - "Iter: 800 loss: 0.08931834995746613\n", - "Iter: 801 loss: 0.09131580591201782\n", - "Iter: 802 loss: 0.08082489669322968\n", - "Iter: 803 loss: 0.08535401523113251\n", - "Iter: 804 loss: 0.0851280614733696\n", - "Iter: 805 loss: 0.08579348772764206\n", - "Iter: 806 loss: 0.0847330316901207\n", - "Iter: 807 loss: 0.08577203750610352\n", - "Iter: 808 loss: 0.08619751781225204\n", - "Iter: 809 loss: 0.08798874914646149\n", - "Iter: 810 loss: 0.0890754982829094\n", - "Iter: 811 loss: 0.08746492862701416\n", - "Iter: 812 loss: 0.08617731928825378\n", - "Iter: 813 loss: 0.08747897297143936\n", - "Iter: 814 loss: 0.08445902913808823\n", - "Iter: 815 loss: 0.08698485791683197\n", - "Iter: 816 loss: 0.08973227441310883\n", - "Iter: 817 loss: 0.08650186657905579\n", - "Iter: 818 loss: 0.08788170665502548\n", - "Iter: 819 loss: 0.08527486771345139\n", - "Iter: 820 loss: 0.08975464105606079\n", - "Iter: 821 loss: 0.08929653465747833\n", - "Iter: 822 loss: 0.09073290973901749\n", - "Iter: 823 loss: 0.08736104518175125\n", - "Iter: 824 loss: 0.08518093824386597\n", - "Iter: 825 loss: 0.08556842803955078\n", - "Iter: 826 loss: 0.08314918726682663\n", - "Iter: 827 loss: 0.08791854977607727\n", - "Iter: 828 loss: 0.09222771972417831\n", - "Iter: 829 loss: 0.09155430644750595\n", - "Iter: 830 loss: 0.0874151736497879\n", - "Iter: 831 loss: 0.08529774844646454\n", - "Iter: 832 loss: 0.08603372424840927\n", - "Iter: 833 loss: 0.08552046865224838\n", - "Iter: 834 loss: 0.0854896679520607\n", - "Iter: 835 loss: 0.088893361389637\n", - "Iter: 836 loss: 0.0919957160949707\n", - "Iter: 837 loss: 0.09146363288164139\n", - "Iter: 838 loss: 0.09500186890363693\n", - "Iter: 839 loss: 0.0892079621553421\n", - "Iter: 840 loss: 0.08467651903629303\n", - "Iter: 841 loss: 0.08699087798595428\n", - "Iter: 842 loss: 0.08986066281795502\n", - "Iter: 843 loss: 0.09215755015611649\n", - "Iter: 844 loss: 0.08666941523551941\n", - "Iter: 845 loss: 0.08790116012096405\n", - "Iter: 846 loss: 0.09072492271661758\n", - "Iter: 847 loss: 0.08604783564805984\n", - "Iter: 848 loss: 0.08123394846916199\n", - "Iter: 849 loss: 0.08743342757225037\n", - "Iter: 850 loss: 0.08617274463176727\n", - "Iter: 851 loss: 0.08915570378303528\n", - "Iter: 852 loss: 0.08325526863336563\n", - "Iter: 853 loss: 0.07779981940984726\n", - "Iter: 854 loss: 0.08043362945318222\n", - "Iter: 855 loss: 0.08925161510705948\n", - "Iter: 856 loss: 0.08823129534721375\n", - "Iter: 857 loss: 0.08455369621515274\n", - "Iter: 858 loss: 0.09390441328287125\n", - "Iter: 859 loss: 0.08434309810400009\n", - "Iter: 860 loss: 0.088394895195961\n", - "Iter: 861 loss: 0.08801256120204926\n", - "Iter: 862 loss: 0.08470194041728973\n", - "Iter: 863 loss: 0.08297912031412125\n", - "Iter: 864 loss: 0.08009204268455505\n", - "Iter: 865 loss: 0.07822604477405548\n", - "Iter: 866 loss: 0.08421307057142258\n", - "Iter: 867 loss: 0.0898151770234108\n", - "Iter: 868 loss: 0.08766770362854004\n", - "Iter: 869 loss: 0.08880898356437683\n", - "Iter: 870 loss: 0.08790796250104904\n", - "Iter: 871 loss: 0.08811356127262115\n", - "Iter: 872 loss: 0.08107846230268478\n", - "Iter: 873 loss: 0.08668069541454315\n", - "Iter: 874 loss: 0.0783252939581871\n", - "Iter: 875 loss: 0.0791463628411293\n", - "Iter: 876 loss: 0.0895390510559082\n", - "Iter: 877 loss: 0.08596237748861313\n", - "Iter: 878 loss: 0.08753412961959839\n", - "Iter: 879 loss: 0.08689755946397781\n", - "Iter: 880 loss: 0.08404313027858734\n", - "Iter: 881 loss: 0.08567453920841217\n", - "Iter: 882 loss: 0.08025991171598434\n", - "Iter: 883 loss: 0.09248658269643784\n", - "Iter: 884 loss: 0.08146404474973679\n", - "Iter: 885 loss: 0.0839342549443245\n", - "Iter: 886 loss: 0.08397065103054047\n", - "Iter: 887 loss: 0.09073080867528915\n", - "Iter: 888 loss: 0.08717867732048035\n", - "Iter: 889 loss: 0.0837903842329979\n", - "Iter: 890 loss: 0.08213657885789871\n", - "Iter: 891 loss: 0.09033264219760895\n", - "Iter: 892 loss: 0.08414027094841003\n", - "Iter: 893 loss: 0.0925884023308754\n", - "Iter: 894 loss: 0.08839689940214157\n", - "Iter: 895 loss: 0.08695321530103683\n", - "Iter: 896 loss: 0.09134189784526825\n", - "Iter: 897 loss: 0.08507023751735687\n", - "Iter: 898 loss: 0.08567606657743454\n", - "Iter: 899 loss: 0.08673780411481857\n", - "Iter: 900 loss: 0.0892254039645195\n", - "Iter: 901 loss: 0.0930255576968193\n", - "Iter: 902 loss: 0.089823879301548\n", - "Iter: 903 loss: 0.08244386315345764\n", - "Iter: 904 loss: 0.0916951447725296\n", - "Iter: 905 loss: 0.08619870990514755\n", - "Iter: 906 loss: 0.09317699074745178\n", - "Iter: 907 loss: 0.08823142945766449\n", - "Iter: 908 loss: 0.08098519593477249\n", - "Iter: 909 loss: 0.08739661425352097\n", - "Iter: 910 loss: 0.08765161782503128\n", - "Iter: 911 loss: 0.09591400623321533\n", - "Iter: 912 loss: 0.08496254682540894\n", - "Iter: 913 loss: 0.08226484060287476\n", - "Iter: 914 loss: 0.08761963993310928\n", - "Iter: 915 loss: 0.08586957305669785\n", - "Iter: 916 loss: 0.07800547033548355\n", - "Iter: 917 loss: 0.08493893593549728\n", - "Iter: 918 loss: 0.08940985053777695\n", - "Iter: 919 loss: 0.0892627090215683\n", - "Iter: 920 loss: 0.07624227553606033\n", - "Iter: 921 loss: 0.07969644665718079\n", - "Iter: 922 loss: 0.08003661781549454\n", - "Iter: 923 loss: 0.08582476526498795\n", - "Iter: 924 loss: 0.08177398890256882\n", - "Iter: 925 loss: 0.08396505564451218\n", - "Iter: 926 loss: 0.08841069042682648\n", - "Iter: 927 loss: 0.0915909856557846\n", - "Iter: 928 loss: 0.08998242020606995\n", - "Iter: 929 loss: 0.08823230117559433\n", - "Iter: 930 loss: 0.08456458151340485\n", - "Iter: 931 loss: 0.08976525813341141\n", - "Iter: 932 loss: 0.07836426794528961\n", - "Iter: 933 loss: 0.08173878490924835\n", - "Iter: 934 loss: 0.08805808424949646\n", - "Iter: 935 loss: 0.08409114181995392\n", - "Iter: 936 loss: 0.08934912085533142\n", - "Iter: 937 loss: 0.0844445750117302\n", - "Iter: 938 loss: 0.08146867901086807\n", - "Iter: 939 loss: 0.08526340872049332\n", - "Iter: 940 loss: 0.09412819892168045\n", - "Iter: 941 loss: 0.08974110335111618\n", - "Iter: 942 loss: 0.09457851946353912\n", - "Iter: 943 loss: 0.08312926441431046\n", - "Iter: 944 loss: 0.08576135337352753\n", - "Iter: 945 loss: 0.08264634758234024\n", - "Iter: 946 loss: 0.09037263691425323\n", - "Iter: 947 loss: 0.08942301571369171\n", - "Iter: 948 loss: 0.08049140125513077\n", - "Iter: 949 loss: 0.09065385907888412\n", - "Iter: 950 loss: 0.08628378063440323\n", - "Iter: 951 loss: 0.09308015555143356\n", - "Iter: 952 loss: 0.079916812479496\n", - "Iter: 953 loss: 0.08242824673652649\n", - "Iter: 954 loss: 0.09155027568340302\n", - "Iter: 955 loss: 0.0840940997004509\n", - "Iter: 956 loss: 0.09449383616447449\n", - "Iter: 957 loss: 0.08237878978252411\n", - "Iter: 958 loss: 0.08331030607223511\n", - "Iter: 959 loss: 0.08301212638616562\n", - "Iter: 960 loss: 0.08163615316152573\n", - "Iter: 961 loss: 0.08933849632740021\n", - "Iter: 962 loss: 0.08879362791776657\n", - "Iter: 963 loss: 0.08717700839042664\n", - "Iter: 964 loss: 0.08934181183576584\n", - "Iter: 965 loss: 0.08676420897245407\n", - "Iter: 966 loss: 0.0911855399608612\n", - "Iter: 967 loss: 0.08226024359464645\n", - "Iter: 968 loss: 0.09077859669923782\n", - "Iter: 969 loss: 0.08859415352344513\n", - "Iter: 970 loss: 0.07913879305124283\n", - "Iter: 971 loss: 0.08449392020702362\n", - "Iter: 972 loss: 0.07736027240753174\n", - "Iter: 973 loss: 0.0796898603439331\n", - "Iter: 974 loss: 0.09273001551628113\n", - "Iter: 975 loss: 0.09160473942756653\n", - "Iter: 976 loss: 0.08531944453716278\n", - "Iter: 977 loss: 0.0831536054611206\n", - "Iter: 978 loss: 0.0906052216887474\n", - "Iter: 979 loss: 0.08510784804821014\n", - "Iter: 980 loss: 0.08586310595273972\n", - "Iter: 981 loss: 0.08937527239322662\n", - "Iter: 982 loss: 0.0854424387216568\n", - "Iter: 983 loss: 0.08334869146347046\n", - "Iter: 984 loss: 0.09167706221342087\n", - "Iter: 985 loss: 0.07998760044574738\n", - "Iter: 986 loss: 0.08721297979354858\n", - "Iter: 987 loss: 0.08307136595249176\n", - "Iter: 988 loss: 0.08635604381561279\n", - "Iter: 989 loss: 0.09466518461704254\n", - "Iter: 990 loss: 0.08697780966758728\n", - "Iter: 991 loss: 0.08831343054771423\n", - "Iter: 992 loss: 0.09174612909555435\n", - "Iter: 993 loss: 0.0823088139295578\n", - "Iter: 994 loss: 0.08558624982833862\n", - "Iter: 995 loss: 0.08782327175140381\n", - "Iter: 996 loss: 0.08934693038463593\n", - "Iter: 997 loss: 0.08635634928941727\n", - "Iter: 998 loss: 0.08739866316318512\n", - "Iter: 999 loss: 0.07959842681884766\n" + "Iter: 0 loss: 0.6691756248474121\n", + "Iter: 1 loss: 0.782817542552948\n", + "Iter: 2 loss: 0.6915470957756042\n", + "Iter: 3 loss: 0.7094945311546326\n", + "Iter: 4 loss: 0.6808629631996155\n", + "Iter: 5 loss: 0.6491946578025818\n", + "Iter: 6 loss: 0.7024716734886169\n", + "Iter: 7 loss: 0.5830991864204407\n", + "Iter: 8 loss: 0.6354939341545105\n", + "Iter: 9 loss: 0.5721158981323242\n", + "Iter: 10 loss: 0.60772305727005\n", + "Iter: 11 loss: 0.5706533789634705\n", + "Iter: 12 loss: 0.5352375507354736\n", + "Iter: 13 loss: 0.5549331307411194\n", + "Iter: 14 loss: 0.5569245219230652\n", + "Iter: 15 loss: 0.5939146876335144\n", + "Iter: 16 loss: 0.5665262341499329\n", + "Iter: 17 loss: 0.48922407627105713\n", + "Iter: 18 loss: 0.4921073913574219\n", + "Iter: 19 loss: 0.49616214632987976\n", + "Iter: 20 loss: 0.43294504284858704\n", + "Iter: 21 loss: 0.46503233909606934\n", + "Iter: 22 loss: 0.4533018171787262\n", + "Iter: 23 loss: 0.4164152443408966\n", + "Iter: 24 loss: 0.42482253909111023\n", + "Iter: 25 loss: 0.44511720538139343\n", + "Iter: 26 loss: 0.4060160219669342\n", + "Iter: 27 loss: 0.42599308490753174\n", + "Iter: 28 loss: 0.3669809103012085\n", + "Iter: 29 loss: 0.33163392543792725\n", + "Iter: 30 loss: 0.3477928638458252\n", + "Iter: 31 loss: 0.3831281363964081\n", + "Iter: 32 loss: 0.3546076714992523\n", + "Iter: 33 loss: 0.35206106305122375\n", + "Iter: 34 loss: 0.3387505114078522\n", + "Iter: 35 loss: 0.2839508354663849\n", + "Iter: 36 loss: 0.27944159507751465\n", + "Iter: 37 loss: 0.3026738166809082\n", + "Iter: 38 loss: 0.29594889283180237\n", + "Iter: 39 loss: 0.2780405580997467\n", + "Iter: 40 loss: 0.2682780921459198\n", + "Iter: 41 loss: 0.24517309665679932\n", + "Iter: 42 loss: 0.24231471121311188\n", + "Iter: 43 loss: 0.26620543003082275\n", + "Iter: 44 loss: 0.2464265674352646\n", + "Iter: 45 loss: 0.23652461171150208\n", + "Iter: 46 loss: 0.22534602880477905\n", + "Iter: 47 loss: 0.2147214710712433\n", + "Iter: 48 loss: 0.22753307223320007\n", + "Iter: 49 loss: 0.19966544210910797\n", + "Iter: 50 loss: 0.20317721366882324\n", + "Iter: 51 loss: 0.19963204860687256\n", + "Iter: 52 loss: 0.20982451736927032\n", + "Iter: 53 loss: 0.18677343428134918\n", + "Iter: 54 loss: 0.17326177656650543\n", + "Iter: 55 loss: 0.18705454468727112\n", + "Iter: 56 loss: 0.17549251019954681\n", + "Iter: 57 loss: 0.18504834175109863\n", + "Iter: 58 loss: 0.1720600575208664\n", + "Iter: 59 loss: 0.16492244601249695\n", + "Iter: 60 loss: 0.18089811503887177\n", + "Iter: 61 loss: 0.1833844631910324\n", + "Iter: 62 loss: 0.15661895275115967\n", + "Iter: 63 loss: 0.17043828964233398\n", + "Iter: 64 loss: 0.15303613245487213\n", + "Iter: 65 loss: 0.1606787145137787\n", + "Iter: 66 loss: 0.16507579386234283\n", + "Iter: 67 loss: 0.17279133200645447\n", + "Iter: 68 loss: 0.16182856261730194\n", + "Iter: 69 loss: 0.1615993231534958\n", + "Iter: 70 loss: 0.16279850900173187\n", + "Iter: 71 loss: 0.15364715456962585\n", + "Iter: 72 loss: 0.15815837681293488\n", + "Iter: 73 loss: 0.15286478400230408\n", + "Iter: 74 loss: 0.13767272233963013\n", + "Iter: 75 loss: 0.150459885597229\n", + "Iter: 76 loss: 0.1310930699110031\n", + "Iter: 77 loss: 0.14746329188346863\n", + "Iter: 78 loss: 0.1488717645406723\n", + "Iter: 79 loss: 0.13777579367160797\n", + "Iter: 80 loss: 0.1398344486951828\n", + "Iter: 81 loss: 0.1364458203315735\n", + "Iter: 82 loss: 0.1321595311164856\n", + "Iter: 83 loss: 0.12723281979560852\n", + "Iter: 84 loss: 0.128365159034729\n", + "Iter: 85 loss: 0.12391411513090134\n", + "Iter: 86 loss: 0.1228056326508522\n", + "Iter: 87 loss: 0.12789705395698547\n", + "Iter: 88 loss: 0.12083935737609863\n", + "Iter: 89 loss: 0.12183783203363419\n", + "Iter: 90 loss: 0.1215670183300972\n", + "Iter: 91 loss: 0.1197284534573555\n", + "Iter: 92 loss: 0.11841057986021042\n", + "Iter: 93 loss: 0.11780190467834473\n", + "Iter: 94 loss: 0.11444934457540512\n", + "Iter: 95 loss: 0.1139926016330719\n", + "Iter: 96 loss: 0.11266716569662094\n", + "Iter: 97 loss: 0.10908245295286179\n", + "Iter: 98 loss: 0.1089201346039772\n", + "Iter: 99 loss: 0.10571614652872086\n", + "Iter: 100 loss: 0.10553618520498276\n", + "Iter: 101 loss: 0.1042596623301506\n", + "Iter: 102 loss: 0.10273835808038712\n", + "Iter: 103 loss: 0.10250482708215714\n", + "Iter: 104 loss: 0.09848041087388992\n", + "Iter: 105 loss: 0.0990946963429451\n", + "Iter: 106 loss: 0.09684353321790695\n", + "Iter: 107 loss: 0.09541735798120499\n", + "Iter: 108 loss: 0.09713723510503769\n", + "Iter: 109 loss: 0.09816526621580124\n", + "Iter: 110 loss: 0.09885410219430923\n", + "Iter: 111 loss: 0.0988636165857315\n", + "Iter: 112 loss: 0.09508371353149414\n", + "Iter: 113 loss: 0.08960896730422974\n", + "Iter: 114 loss: 0.08767674118280411\n", + "Iter: 115 loss: 0.09038902819156647\n", + "Iter: 116 loss: 0.09818534553050995\n", + "Iter: 117 loss: 0.09005491435527802\n", + "Iter: 118 loss: 0.0872332826256752\n", + "Iter: 119 loss: 0.09659983962774277\n", + "Iter: 120 loss: 0.09051252156496048\n", + "Iter: 121 loss: 0.08885984122753143\n", + "Iter: 122 loss: 0.09190580248832703\n", + "Iter: 123 loss: 0.08443183451890945\n", + "Iter: 124 loss: 0.09510823339223862\n", + "Iter: 125 loss: 0.0922955721616745\n", + "Iter: 126 loss: 0.08954022824764252\n", + "Iter: 127 loss: 0.09113949537277222\n", + "Iter: 128 loss: 0.08688122034072876\n", + "Iter: 129 loss: 0.08823580294847488\n", + "Iter: 130 loss: 0.086590975522995\n", + "Iter: 131 loss: 0.0844116285443306\n", + "Iter: 132 loss: 0.09057106822729111\n", + "Iter: 133 loss: 0.08719936013221741\n", + "Iter: 134 loss: 0.08407258242368698\n", + "Iter: 135 loss: 0.08668079227209091\n", + "Iter: 136 loss: 0.0905776172876358\n", + "Iter: 137 loss: 0.09181836992502213\n", + "Iter: 138 loss: 0.08731189370155334\n", + "Iter: 139 loss: 0.08691776543855667\n", + "Iter: 140 loss: 0.09183556586503983\n", + "Iter: 141 loss: 0.08734306693077087\n", + "Iter: 142 loss: 0.08550012856721878\n", + "Iter: 143 loss: 0.08630765229463577\n", + "Iter: 144 loss: 0.07999114692211151\n", + "Iter: 145 loss: 0.08804307132959366\n", + "Iter: 146 loss: 0.0820670947432518\n", + "Iter: 147 loss: 0.08465178310871124\n", + "Iter: 148 loss: 0.08572586625814438\n", + "Iter: 149 loss: 0.09257490187883377\n", + "Iter: 150 loss: 0.09397558122873306\n", + "Iter: 151 loss: 0.08845103532075882\n", + "Iter: 152 loss: 0.08490332216024399\n", + "Iter: 153 loss: 0.08655409514904022\n", + "Iter: 154 loss: 0.08455518633127213\n", + "Iter: 155 loss: 0.09412313252687454\n", + "Iter: 156 loss: 0.08786162734031677\n", + "Iter: 157 loss: 0.08423376083374023\n", + "Iter: 158 loss: 0.08742733299732208\n", + "Iter: 159 loss: 0.0915340930223465\n", + "Iter: 160 loss: 0.08851556479930878\n", + "Iter: 161 loss: 0.08518343418836594\n", + "Iter: 162 loss: 0.09556640684604645\n", + "Iter: 163 loss: 0.08955676853656769\n", + "Iter: 164 loss: 0.08664087951183319\n", + "Iter: 165 loss: 0.08848276734352112\n", + "Iter: 166 loss: 0.0911281630396843\n", + "Iter: 167 loss: 0.08701565861701965\n", + "Iter: 168 loss: 0.0899571105837822\n", + "Iter: 169 loss: 0.09190663695335388\n", + "Iter: 170 loss: 0.08394207805395126\n", + "Iter: 171 loss: 0.07961369305849075\n", + "Iter: 172 loss: 0.08420927077531815\n", + "Iter: 173 loss: 0.08587122708559036\n", + "Iter: 174 loss: 0.08669589459896088\n", + "Iter: 175 loss: 0.08039610832929611\n", + "Iter: 176 loss: 0.08459270000457764\n", + "Iter: 177 loss: 0.08351828902959824\n", + "Iter: 178 loss: 0.08820309489965439\n", + "Iter: 179 loss: 0.09045720100402832\n", + "Iter: 180 loss: 0.08852022141218185\n", + "Iter: 181 loss: 0.0851336121559143\n", + "Iter: 182 loss: 0.09070008248090744\n", + "Iter: 183 loss: 0.08081112802028656\n", + "Iter: 184 loss: 0.08433793485164642\n", + "Iter: 185 loss: 0.08728194981813431\n", + "Iter: 186 loss: 0.0860551968216896\n", + "Iter: 187 loss: 0.0905214324593544\n", + "Iter: 188 loss: 0.0853060856461525\n", + "Iter: 189 loss: 0.09150638431310654\n", + "Iter: 190 loss: 0.08504866808652878\n", + "Iter: 191 loss: 0.08514290302991867\n", + "Iter: 192 loss: 0.08241944760084152\n", + "Iter: 193 loss: 0.0841534286737442\n", + "Iter: 194 loss: 0.08157350867986679\n", + "Iter: 195 loss: 0.08944420516490936\n", + "Iter: 196 loss: 0.0922984629869461\n", + "Iter: 197 loss: 0.08022629469633102\n", + "Iter: 198 loss: 0.08671870827674866\n", + "Iter: 199 loss: 0.08454210311174393\n", + "Iter: 200 loss: 0.09170659631490707\n", + "Iter: 201 loss: 0.08251968771219254\n", + "Iter: 202 loss: 0.08168564736843109\n", + "Iter: 203 loss: 0.0880642905831337\n", + "Iter: 204 loss: 0.08835054934024811\n", + "Iter: 205 loss: 0.08732454478740692\n", + "Iter: 206 loss: 0.09214912354946136\n", + "Iter: 207 loss: 0.083969347178936\n", + "Iter: 208 loss: 0.08306031674146652\n", + "Iter: 209 loss: 0.08743952959775925\n", + "Iter: 210 loss: 0.0886508971452713\n", + "Iter: 211 loss: 0.0818505808711052\n", + "Iter: 212 loss: 0.08370143920183182\n", + "Iter: 213 loss: 0.08510632812976837\n", + "Iter: 214 loss: 0.08533351123332977\n", + "Iter: 215 loss: 0.09373690187931061\n", + "Iter: 216 loss: 0.08811745792627335\n", + "Iter: 217 loss: 0.09351848810911179\n", + "Iter: 218 loss: 0.08034679293632507\n", + "Iter: 219 loss: 0.09143237769603729\n", + "Iter: 220 loss: 0.08768560737371445\n", + "Iter: 221 loss: 0.08549344539642334\n", + "Iter: 222 loss: 0.08567500859498978\n", + "Iter: 223 loss: 0.08879178017377853\n", + "Iter: 224 loss: 0.08393783122301102\n", + "Iter: 225 loss: 0.0902262032032013\n", + "Iter: 226 loss: 0.08181194961071014\n", + "Iter: 227 loss: 0.0827011838555336\n", + "Iter: 228 loss: 0.08961541205644608\n", + "Iter: 229 loss: 0.0894148126244545\n", + "Iter: 230 loss: 0.08089771866798401\n", + "Iter: 231 loss: 0.09148240089416504\n", + "Iter: 232 loss: 0.08728103339672089\n", + "Iter: 233 loss: 0.08160478621721268\n", + "Iter: 234 loss: 0.0866566076874733\n", + "Iter: 235 loss: 0.08753488212823868\n", + "Iter: 236 loss: 0.08226510882377625\n", + "Iter: 237 loss: 0.089780293405056\n", + "Iter: 238 loss: 0.0891580805182457\n", + "Iter: 239 loss: 0.0855560228228569\n", + "Iter: 240 loss: 0.08464660495519638\n", + "Iter: 241 loss: 0.0872623547911644\n", + "Iter: 242 loss: 0.09291328489780426\n", + "Iter: 243 loss: 0.08475526422262192\n", + "Iter: 244 loss: 0.09094104170799255\n", + "Iter: 245 loss: 0.08450672775506973\n", + "Iter: 246 loss: 0.08549895137548447\n", + "Iter: 247 loss: 0.08925517648458481\n", + "Iter: 248 loss: 0.08605151623487473\n", + "Iter: 249 loss: 0.0854169949889183\n", + "Iter: 250 loss: 0.0873740166425705\n", + "Iter: 251 loss: 0.085502989590168\n", + "Iter: 252 loss: 0.08642861247062683\n", + "Iter: 253 loss: 0.09421967715024948\n", + "Iter: 254 loss: 0.08891129493713379\n", + "Iter: 255 loss: 0.09353049844503403\n", + "Iter: 256 loss: 0.09112557023763657\n", + "Iter: 257 loss: 0.08200002461671829\n", + "Iter: 258 loss: 0.0872320681810379\n", + "Iter: 259 loss: 0.09548481553792953\n", + "Iter: 260 loss: 0.08563098311424255\n", + "Iter: 261 loss: 0.08420973271131516\n", + "Iter: 262 loss: 0.08507563918828964\n", + "Iter: 263 loss: 0.08599979430437088\n", + "Iter: 264 loss: 0.08719614148139954\n", + "Iter: 265 loss: 0.08641308546066284\n", + "Iter: 266 loss: 0.08290095627307892\n", + "Iter: 267 loss: 0.09182021021842957\n", + "Iter: 268 loss: 0.0759919211268425\n", + "Iter: 269 loss: 0.09185978025197983\n", + "Iter: 270 loss: 0.09029411524534225\n", + "Iter: 271 loss: 0.08451046794652939\n", + "Iter: 272 loss: 0.08235280960798264\n", + "Iter: 273 loss: 0.08674222975969315\n", + "Iter: 274 loss: 0.08590231835842133\n", + "Iter: 275 loss: 0.08601044118404388\n", + "Iter: 276 loss: 0.0891367644071579\n", + "Iter: 277 loss: 0.09362367540597916\n", + "Iter: 278 loss: 0.08849041163921356\n", + "Iter: 279 loss: 0.08599279820919037\n", + "Iter: 280 loss: 0.0772034078836441\n", + "Iter: 281 loss: 0.08523142337799072\n", + "Iter: 282 loss: 0.0812937468290329\n", + "Iter: 283 loss: 0.08382689207792282\n", + "Iter: 284 loss: 0.0879758670926094\n", + "Iter: 285 loss: 0.09042909741401672\n", + "Iter: 286 loss: 0.08323393762111664\n", + "Iter: 287 loss: 0.07654749602079391\n", + "Iter: 288 loss: 0.08939479291439056\n", + "Iter: 289 loss: 0.08801189810037613\n", + "Iter: 290 loss: 0.08388181775808334\n", + "Iter: 291 loss: 0.08828114718198776\n", + "Iter: 292 loss: 0.09082573652267456\n", + "Iter: 293 loss: 0.08613185584545135\n", + "Iter: 294 loss: 0.0863136574625969\n", + "Iter: 295 loss: 0.08561623096466064\n", + "Iter: 296 loss: 0.08006523549556732\n", + "Iter: 297 loss: 0.08200210332870483\n", + "Iter: 298 loss: 0.08878184854984283\n", + "Iter: 299 loss: 0.08823218941688538\n", + "Iter: 300 loss: 0.09608513116836548\n", + "Iter: 301 loss: 0.08678530156612396\n", + "Iter: 302 loss: 0.08303158730268478\n", + "Iter: 303 loss: 0.09353448450565338\n", + "Iter: 304 loss: 0.08557187765836716\n", + "Iter: 305 loss: 0.0885348692536354\n", + "Iter: 306 loss: 0.09743405133485794\n", + "Iter: 307 loss: 0.07998324185609818\n", + "Iter: 308 loss: 0.09384322166442871\n", + "Iter: 309 loss: 0.08805075287818909\n", + "Iter: 310 loss: 0.09001043438911438\n", + "Iter: 311 loss: 0.08358544856309891\n", + "Iter: 312 loss: 0.0832161083817482\n", + "Iter: 313 loss: 0.08415490388870239\n", + "Iter: 314 loss: 0.08925463259220123\n", + "Iter: 315 loss: 0.08475913852453232\n", + "Iter: 316 loss: 0.08939779549837112\n", + "Iter: 317 loss: 0.0863025039434433\n", + "Iter: 318 loss: 0.08596581220626831\n", + "Iter: 319 loss: 0.08245483785867691\n", + "Iter: 320 loss: 0.08457434922456741\n", + "Iter: 321 loss: 0.08146359771490097\n", + "Iter: 322 loss: 0.0896916389465332\n", + "Iter: 323 loss: 0.09595957398414612\n", + "Iter: 324 loss: 0.07841844856739044\n", + "Iter: 325 loss: 0.09387148916721344\n", + "Iter: 326 loss: 0.08884579688310623\n", + "Iter: 327 loss: 0.09196646511554718\n", + "Iter: 328 loss: 0.09035373479127884\n", + "Iter: 329 loss: 0.08302336931228638\n", + "Iter: 330 loss: 0.08424480259418488\n", + "Iter: 331 loss: 0.09343722462654114\n", + "Iter: 332 loss: 0.08303091675043106\n", + "Iter: 333 loss: 0.08291845768690109\n", + "Iter: 334 loss: 0.0873582512140274\n", + "Iter: 335 loss: 0.08552194386720657\n", + "Iter: 336 loss: 0.09062350541353226\n", + "Iter: 337 loss: 0.0847320705652237\n", + "Iter: 338 loss: 0.08314350992441177\n", + "Iter: 339 loss: 0.08640536665916443\n", + "Iter: 340 loss: 0.0882372185587883\n", + "Iter: 341 loss: 0.08595658838748932\n", + "Iter: 342 loss: 0.09174004942178726\n", + "Iter: 343 loss: 0.08537935465574265\n", + "Iter: 344 loss: 0.08835786581039429\n", + "Iter: 345 loss: 0.08433815091848373\n", + "Iter: 346 loss: 0.08935832977294922\n", + "Iter: 347 loss: 0.08066858351230621\n", + "Iter: 348 loss: 0.08803755044937134\n", + "Iter: 349 loss: 0.09357208758592606\n", + "Iter: 350 loss: 0.08796078711748123\n", + "Iter: 351 loss: 0.08862774074077606\n", + "Iter: 352 loss: 0.08980125188827515\n", + "Iter: 353 loss: 0.09178075194358826\n", + "Iter: 354 loss: 0.0846083015203476\n", + "Iter: 355 loss: 0.08907586336135864\n", + "Iter: 356 loss: 0.083895742893219\n", + "Iter: 357 loss: 0.08765196055173874\n", + "Iter: 358 loss: 0.08730950951576233\n", + "Iter: 359 loss: 0.07942873239517212\n", + "Iter: 360 loss: 0.08230625092983246\n", + "Iter: 361 loss: 0.09210573881864548\n", + "Iter: 362 loss: 0.0915500596165657\n", + "Iter: 363 loss: 0.08481856435537338\n", + "Iter: 364 loss: 0.08826032280921936\n", + "Iter: 365 loss: 0.08405549824237823\n", + "Iter: 366 loss: 0.08646999299526215\n", + "Iter: 367 loss: 0.09638355672359467\n", + "Iter: 368 loss: 0.08581144362688065\n", + "Iter: 369 loss: 0.08467593044042587\n", + "Iter: 370 loss: 0.08419808000326157\n", + "Iter: 371 loss: 0.07724547386169434\n", + "Iter: 372 loss: 0.08201995491981506\n", + "Iter: 373 loss: 0.0932340919971466\n", + "Iter: 374 loss: 0.08329793065786362\n", + "Iter: 375 loss: 0.0851280614733696\n", + "Iter: 376 loss: 0.08306929469108582\n", + "Iter: 377 loss: 0.08465565741062164\n", + "Iter: 378 loss: 0.08142878115177155\n", + "Iter: 379 loss: 0.08502692729234695\n", + "Iter: 380 loss: 0.08265123516321182\n", + "Iter: 381 loss: 0.08551501482725143\n", + "Iter: 382 loss: 0.09340255707502365\n", + "Iter: 383 loss: 0.08539937436580658\n", + "Iter: 384 loss: 0.08037436753511429\n", + "Iter: 385 loss: 0.08706614375114441\n", + "Iter: 386 loss: 0.08979283273220062\n", + "Iter: 387 loss: 0.08975888788700104\n", + "Iter: 388 loss: 0.09035570174455643\n", + "Iter: 389 loss: 0.08430333435535431\n", + "Iter: 390 loss: 0.0804966613650322\n", + "Iter: 391 loss: 0.08656173944473267\n", + "Iter: 392 loss: 0.08389624208211899\n", + "Iter: 393 loss: 0.08521465212106705\n", + "Iter: 394 loss: 0.08877930790185928\n", + "Iter: 395 loss: 0.09110257774591446\n", + "Iter: 396 loss: 0.08781725913286209\n", + "Iter: 397 loss: 0.09338238835334778\n", + "Iter: 398 loss: 0.08598917722702026\n", + "Iter: 399 loss: 0.08394142240285873\n", + "Iter: 400 loss: 0.08218054473400116\n", + "Iter: 401 loss: 0.08488845080137253\n", + "Iter: 402 loss: 0.08763720095157623\n", + "Iter: 403 loss: 0.08489066362380981\n", + "Iter: 404 loss: 0.0796508863568306\n", + "Iter: 405 loss: 0.08888652920722961\n", + "Iter: 406 loss: 0.08212371915578842\n", + "Iter: 407 loss: 0.08339104056358337\n", + "Iter: 408 loss: 0.09194112569093704\n", + "Iter: 409 loss: 0.08639957010746002\n", + "Iter: 410 loss: 0.08560770004987717\n", + "Iter: 411 loss: 0.08642375469207764\n", + "Iter: 412 loss: 0.08465790003538132\n", + "Iter: 413 loss: 0.0876307487487793\n", + "Iter: 414 loss: 0.09226753562688828\n", + "Iter: 415 loss: 0.0974903255701065\n", + "Iter: 416 loss: 0.08505123108625412\n", + "Iter: 417 loss: 0.08611951768398285\n", + "Iter: 418 loss: 0.0855293795466423\n", + "Iter: 419 loss: 0.08644500374794006\n", + "Iter: 420 loss: 0.0856616273522377\n", + "Iter: 421 loss: 0.08320663124322891\n", + "Iter: 422 loss: 0.0869479700922966\n", + "Iter: 423 loss: 0.08777621388435364\n", + "Iter: 424 loss: 0.08639414608478546\n", + "Iter: 425 loss: 0.09368261694908142\n", + "Iter: 426 loss: 0.08978550136089325\n", + "Iter: 427 loss: 0.0836910679936409\n", + "Iter: 428 loss: 0.0890384390950203\n", + "Iter: 429 loss: 0.08821717649698257\n", + "Iter: 430 loss: 0.09127698093652725\n", + "Iter: 431 loss: 0.09288188070058823\n", + "Iter: 432 loss: 0.08879771828651428\n", + "Iter: 433 loss: 0.091684490442276\n", + "Iter: 434 loss: 0.08938481658697128\n", + "Iter: 435 loss: 0.08572911471128464\n", + "Iter: 436 loss: 0.08574644476175308\n", + "Iter: 437 loss: 0.0850939154624939\n", + "Iter: 438 loss: 0.09203792363405228\n", + "Iter: 439 loss: 0.08508613705635071\n", + "Iter: 440 loss: 0.09285835176706314\n", + "Iter: 441 loss: 0.08819668740034103\n", + "Iter: 442 loss: 0.0864369124174118\n", + "Iter: 443 loss: 0.08479423075914383\n", + "Iter: 444 loss: 0.08722734451293945\n", + "Iter: 445 loss: 0.09091554582118988\n", + "Iter: 446 loss: 0.0853935033082962\n", + "Iter: 447 loss: 0.08701490610837936\n", + "Iter: 448 loss: 0.08126349747180939\n", + "Iter: 449 loss: 0.08489479124546051\n", + "Iter: 450 loss: 0.08236153423786163\n", + "Iter: 451 loss: 0.08950327336788177\n", + "Iter: 452 loss: 0.08195357769727707\n", + "Iter: 453 loss: 0.08064351230859756\n", + "Iter: 454 loss: 0.09357792884111404\n", + "Iter: 455 loss: 0.08749670535326004\n", + "Iter: 456 loss: 0.08499526977539062\n", + "Iter: 457 loss: 0.08625435084104538\n", + "Iter: 458 loss: 0.08770988136529922\n", + "Iter: 459 loss: 0.08640895038843155\n", + "Iter: 460 loss: 0.09148433059453964\n", + "Iter: 461 loss: 0.09006795287132263\n", + "Iter: 462 loss: 0.09018245339393616\n", + "Iter: 463 loss: 0.08011177182197571\n", + "Iter: 464 loss: 0.08446496725082397\n", + "Iter: 465 loss: 0.09387536346912384\n", + "Iter: 466 loss: 0.08691909164190292\n", + "Iter: 467 loss: 0.08992661535739899\n", + "Iter: 468 loss: 0.08327864855527878\n", + "Iter: 469 loss: 0.09369678795337677\n", + "Iter: 470 loss: 0.08657465130090714\n", + "Iter: 471 loss: 0.0880550742149353\n", + "Iter: 472 loss: 0.07827062904834747\n", + "Iter: 473 loss: 0.08969054371118546\n", + "Iter: 474 loss: 0.08486663550138474\n", + "Iter: 475 loss: 0.08931450545787811\n", + "Iter: 476 loss: 0.09107724577188492\n", + "Iter: 477 loss: 0.08785264939069748\n", + "Iter: 478 loss: 0.08507747203111649\n", + "Iter: 479 loss: 0.08755379170179367\n", + "Iter: 480 loss: 0.08537768572568893\n", + "Iter: 481 loss: 0.0870111882686615\n", + "Iter: 482 loss: 0.08269627392292023\n", + "Iter: 483 loss: 0.08639764040708542\n", + "Iter: 484 loss: 0.08632519841194153\n", + "Iter: 485 loss: 0.08933421969413757\n", + "Iter: 486 loss: 0.08939269185066223\n", + "Iter: 487 loss: 0.0932479277253151\n", + "Iter: 488 loss: 0.08537977933883667\n", + "Iter: 489 loss: 0.08293288946151733\n", + "Iter: 490 loss: 0.08305513858795166\n", + "Iter: 491 loss: 0.086737260222435\n", + "Iter: 492 loss: 0.08014106750488281\n", + "Iter: 493 loss: 0.08638770133256912\n", + "Iter: 494 loss: 0.0765906274318695\n", + "Iter: 495 loss: 0.08568373322486877\n", + "Iter: 496 loss: 0.08626272529363632\n", + "Iter: 497 loss: 0.0862661823630333\n", + "Iter: 498 loss: 0.0889141708612442\n", + "Iter: 499 loss: 0.08849373459815979\n", + "Iter: 500 loss: 0.08729111403226852\n", + "Iter: 501 loss: 0.08288206905126572\n", + "Iter: 502 loss: 0.08830155432224274\n", + "Iter: 503 loss: 0.08716873824596405\n", + "Iter: 504 loss: 0.09084270894527435\n", + "Iter: 505 loss: 0.08637207001447678\n", + "Iter: 506 loss: 0.08278246223926544\n", + "Iter: 507 loss: 0.09030396491289139\n", + "Iter: 508 loss: 0.09053866565227509\n", + "Iter: 509 loss: 0.08735372871160507\n", + "Iter: 510 loss: 0.09063747525215149\n", + "Iter: 511 loss: 0.08754151314496994\n", + "Iter: 512 loss: 0.08983311057090759\n", + "Iter: 513 loss: 0.09033190459012985\n", + "Iter: 514 loss: 0.08363348245620728\n", + "Iter: 515 loss: 0.0920548290014267\n", + "Iter: 516 loss: 0.08781415969133377\n", + "Iter: 517 loss: 0.08511244505643845\n", + "Iter: 518 loss: 0.08996215462684631\n", + "Iter: 519 loss: 0.08933378010988235\n", + "Iter: 520 loss: 0.08716507256031036\n", + "Iter: 521 loss: 0.08343863487243652\n", + "Iter: 522 loss: 0.09336424618959427\n", + "Iter: 523 loss: 0.0872296616435051\n", + "Iter: 524 loss: 0.08422259241342545\n", + "Iter: 525 loss: 0.08718505501747131\n", + "Iter: 526 loss: 0.08229579776525497\n", + "Iter: 527 loss: 0.08782274276018143\n", + "Iter: 528 loss: 0.08011151850223541\n", + "Iter: 529 loss: 0.08468977361917496\n", + "Iter: 530 loss: 0.08281265199184418\n", + "Iter: 531 loss: 0.08161476999521255\n", + "Iter: 532 loss: 0.08898990601301193\n", + "Iter: 533 loss: 0.09368380904197693\n", + "Iter: 534 loss: 0.08721538633108139\n", + "Iter: 535 loss: 0.08465489000082016\n", + "Iter: 536 loss: 0.08272431790828705\n", + "Iter: 537 loss: 0.09027907252311707\n", + "Iter: 538 loss: 0.08188540488481522\n", + "Iter: 539 loss: 0.08651447296142578\n", + "Iter: 540 loss: 0.08804277330636978\n", + "Iter: 541 loss: 0.08524065464735031\n", + "Iter: 542 loss: 0.08012000471353531\n", + "Iter: 543 loss: 0.08414241671562195\n", + "Iter: 544 loss: 0.08272398263216019\n", + "Iter: 545 loss: 0.09060198068618774\n", + "Iter: 546 loss: 0.0875932052731514\n", + "Iter: 547 loss: 0.08807534724473953\n", + "Iter: 548 loss: 0.08881135284900665\n", + "Iter: 549 loss: 0.08503732085227966\n", + "Iter: 550 loss: 0.08947080373764038\n", + "Iter: 551 loss: 0.08552239835262299\n", + "Iter: 552 loss: 0.08826419711112976\n", + "Iter: 553 loss: 0.08044823259115219\n", + "Iter: 554 loss: 0.0832015722990036\n", + "Iter: 555 loss: 0.08790300786495209\n", + "Iter: 556 loss: 0.09168039262294769\n", + "Iter: 557 loss: 0.08815371245145798\n", + "Iter: 558 loss: 0.09202287346124649\n", + "Iter: 559 loss: 0.08593718707561493\n", + "Iter: 560 loss: 0.092594675719738\n", + "Iter: 561 loss: 0.09094446897506714\n", + "Iter: 562 loss: 0.08629480749368668\n", + "Iter: 563 loss: 0.08832192420959473\n", + "Iter: 564 loss: 0.0881664976477623\n", + "Iter: 565 loss: 0.0877215713262558\n", + "Iter: 566 loss: 0.08805769681930542\n", + "Iter: 567 loss: 0.08021822571754456\n", + "Iter: 568 loss: 0.08404717594385147\n", + "Iter: 569 loss: 0.09135118871927261\n", + "Iter: 570 loss: 0.08572427928447723\n", + "Iter: 571 loss: 0.08339208364486694\n", + "Iter: 572 loss: 0.09234588593244553\n", + "Iter: 573 loss: 0.0883435383439064\n", + "Iter: 574 loss: 0.08889097720384598\n", + "Iter: 575 loss: 0.09032375365495682\n", + "Iter: 576 loss: 0.09547010064125061\n", + "Iter: 577 loss: 0.08540306985378265\n", + "Iter: 578 loss: 0.08339300006628036\n", + "Iter: 579 loss: 0.08882361650466919\n", + "Iter: 580 loss: 0.0904255285859108\n", + "Iter: 581 loss: 0.07916360348463058\n", + "Iter: 582 loss: 0.0880516767501831\n", + "Iter: 583 loss: 0.08476925641298294\n", + "Iter: 584 loss: 0.0842522382736206\n", + "Iter: 585 loss: 0.08046576380729675\n", + "Iter: 586 loss: 0.08850766718387604\n", + "Iter: 587 loss: 0.08693896979093552\n", + "Iter: 588 loss: 0.08916306495666504\n", + "Iter: 589 loss: 0.08901122212409973\n", + "Iter: 590 loss: 0.0864679142832756\n", + "Iter: 591 loss: 0.09024546295404434\n", + "Iter: 592 loss: 0.07867588847875595\n", + "Iter: 593 loss: 0.0916392058134079\n", + "Iter: 594 loss: 0.08040087670087814\n", + "Iter: 595 loss: 0.08527185767889023\n", + "Iter: 596 loss: 0.0866980031132698\n", + "Iter: 597 loss: 0.083815798163414\n", + "Iter: 598 loss: 0.08720046281814575\n", + "Iter: 599 loss: 0.08508569002151489\n", + "Iter: 600 loss: 0.09108758717775345\n", + "Iter: 601 loss: 0.07827135920524597\n", + "Iter: 602 loss: 0.09016373008489609\n", + "Iter: 603 loss: 0.08339090645313263\n", + "Iter: 604 loss: 0.09044608473777771\n", + "Iter: 605 loss: 0.08543676137924194\n", + "Iter: 606 loss: 0.08554857224225998\n", + "Iter: 607 loss: 0.09254012256860733\n", + "Iter: 608 loss: 0.08696677535772324\n", + "Iter: 609 loss: 0.08651982247829437\n", + "Iter: 610 loss: 0.08482319116592407\n", + "Iter: 611 loss: 0.08756443858146667\n", + "Iter: 612 loss: 0.08521519601345062\n", + "Iter: 613 loss: 0.08346007019281387\n", + "Iter: 614 loss: 0.08752771466970444\n", + "Iter: 615 loss: 0.0899898037314415\n", + "Iter: 616 loss: 0.09028986096382141\n", + "Iter: 617 loss: 0.08594399690628052\n", + "Iter: 618 loss: 0.08143607527017593\n", + "Iter: 619 loss: 0.08380246162414551\n", + "Iter: 620 loss: 0.08402009308338165\n", + "Iter: 621 loss: 0.08555442839860916\n", + "Iter: 622 loss: 0.08250512182712555\n", + "Iter: 623 loss: 0.08494293689727783\n", + "Iter: 624 loss: 0.0894869789481163\n", + "Iter: 625 loss: 0.08999761193990707\n", + "Iter: 626 loss: 0.08700142800807953\n", + "Iter: 627 loss: 0.08959434926509857\n", + "Iter: 628 loss: 0.08639169484376907\n", + "Iter: 629 loss: 0.0860653966665268\n", + "Iter: 630 loss: 0.085842564702034\n", + "Iter: 631 loss: 0.08478894084692001\n", + "Iter: 632 loss: 0.08582567423582077\n", + "Iter: 633 loss: 0.08607731759548187\n", + "Iter: 634 loss: 0.08544079959392548\n", + "Iter: 635 loss: 0.08764030784368515\n", + "Iter: 636 loss: 0.0863305851817131\n", + "Iter: 637 loss: 0.09222956001758575\n", + "Iter: 638 loss: 0.08479806035757065\n", + "Iter: 639 loss: 0.09360908716917038\n", + "Iter: 640 loss: 0.09085268527269363\n", + "Iter: 641 loss: 0.08301305770874023\n", + "Iter: 642 loss: 0.07624161243438721\n", + "Iter: 643 loss: 0.08563664555549622\n", + "Iter: 644 loss: 0.08696223050355911\n", + "Iter: 645 loss: 0.08418500423431396\n", + "Iter: 646 loss: 0.08586788922548294\n", + "Iter: 647 loss: 0.08964016288518906\n", + "Iter: 648 loss: 0.08559977263212204\n", + "Iter: 649 loss: 0.08648132532835007\n", + "Iter: 650 loss: 0.07977768033742905\n", + "Iter: 651 loss: 0.08666960150003433\n", + "Iter: 652 loss: 0.08435910195112228\n", + "Iter: 653 loss: 0.08634011447429657\n", + "Iter: 654 loss: 0.08585862070322037\n", + "Iter: 655 loss: 0.08637367188930511\n", + "Iter: 656 loss: 0.0876687690615654\n", + "Iter: 657 loss: 0.0922132283449173\n", + "Iter: 658 loss: 0.08815321326255798\n", + "Iter: 659 loss: 0.08338543027639389\n", + "Iter: 660 loss: 0.08857529610395432\n", + "Iter: 661 loss: 0.08387955278158188\n", + "Iter: 662 loss: 0.0797712504863739\n", + "Iter: 663 loss: 0.08605270832777023\n", + "Iter: 664 loss: 0.0865386575460434\n", + "Iter: 665 loss: 0.08330567926168442\n", + "Iter: 666 loss: 0.08522682636976242\n", + "Iter: 667 loss: 0.08670516312122345\n", + "Iter: 668 loss: 0.08801186084747314\n", + "Iter: 669 loss: 0.09174791723489761\n", + "Iter: 670 loss: 0.08439139276742935\n", + "Iter: 671 loss: 0.08282966166734695\n", + "Iter: 672 loss: 0.08175072073936462\n", + "Iter: 673 loss: 0.08494467288255692\n", + "Iter: 674 loss: 0.08420522511005402\n", + "Iter: 675 loss: 0.0842084065079689\n", + "Iter: 676 loss: 0.08671071380376816\n", + "Iter: 677 loss: 0.08794158697128296\n", + "Iter: 678 loss: 0.080264151096344\n", + "Iter: 679 loss: 0.0868668258190155\n", + "Iter: 680 loss: 0.08786189556121826\n", + "Iter: 681 loss: 0.08483967185020447\n", + "Iter: 682 loss: 0.08894139528274536\n", + "Iter: 683 loss: 0.08286944031715393\n", + "Iter: 684 loss: 0.08411829173564911\n", + "Iter: 685 loss: 0.08613821119070053\n", + "Iter: 686 loss: 0.08699533343315125\n", + "Iter: 687 loss: 0.08416257798671722\n", + "Iter: 688 loss: 0.08558577299118042\n", + "Iter: 689 loss: 0.08257836848497391\n", + "Iter: 690 loss: 0.0873587355017662\n", + "Iter: 691 loss: 0.08798625320196152\n", + "Iter: 692 loss: 0.08535043150186539\n", + "Iter: 693 loss: 0.08876288682222366\n", + "Iter: 694 loss: 0.08650325983762741\n", + "Iter: 695 loss: 0.08677533268928528\n", + "Iter: 696 loss: 0.09009898453950882\n", + "Iter: 697 loss: 0.08724028617143631\n", + "Iter: 698 loss: 0.0804760605096817\n", + "Iter: 699 loss: 0.09336818009614944\n", + "Iter: 700 loss: 0.08192704617977142\n", + "Iter: 701 loss: 0.08383499085903168\n", + "Iter: 702 loss: 0.08772964775562286\n", + "Iter: 703 loss: 0.09085389971733093\n", + "Iter: 704 loss: 0.08794007450342178\n", + "Iter: 705 loss: 0.08223595470190048\n", + "Iter: 706 loss: 0.0889698714017868\n", + "Iter: 707 loss: 0.08039889484643936\n", + "Iter: 708 loss: 0.08572762459516525\n", + "Iter: 709 loss: 0.08815108239650726\n", + "Iter: 710 loss: 0.08249843865633011\n", + "Iter: 711 loss: 0.08314047008752823\n", + "Iter: 712 loss: 0.09091433882713318\n", + "Iter: 713 loss: 0.09036322683095932\n", + "Iter: 714 loss: 0.08947556465864182\n", + "Iter: 715 loss: 0.0867900401353836\n", + "Iter: 716 loss: 0.0862194374203682\n", + "Iter: 717 loss: 0.08156866580247879\n", + "Iter: 718 loss: 0.08377885073423386\n", + "Iter: 719 loss: 0.08418384194374084\n", + "Iter: 720 loss: 0.0839337632060051\n", + "Iter: 721 loss: 0.0856703668832779\n", + "Iter: 722 loss: 0.08914721757173538\n", + "Iter: 723 loss: 0.0981508195400238\n", + "Iter: 724 loss: 0.08902978897094727\n", + "Iter: 725 loss: 0.0843934640288353\n", + "Iter: 726 loss: 0.08767291903495789\n", + "Iter: 727 loss: 0.08600456267595291\n", + "Iter: 728 loss: 0.08755986392498016\n", + "Iter: 729 loss: 0.08129625767469406\n", + "Iter: 730 loss: 0.0879049226641655\n", + "Iter: 731 loss: 0.08684702217578888\n", + "Iter: 732 loss: 0.08477968722581863\n", + "Iter: 733 loss: 0.08843416720628738\n", + "Iter: 734 loss: 0.08961179107427597\n", + "Iter: 735 loss: 0.09185090661048889\n", + "Iter: 736 loss: 0.07982953637838364\n", + "Iter: 737 loss: 0.08587856590747833\n", + "Iter: 738 loss: 0.09235972166061401\n", + "Iter: 739 loss: 0.08657624572515488\n", + "Iter: 740 loss: 0.09401305764913559\n", + "Iter: 741 loss: 0.09022217988967896\n", + "Iter: 742 loss: 0.08192592859268188\n", + "Iter: 743 loss: 0.08723984658718109\n", + "Iter: 744 loss: 0.0923210084438324\n", + "Iter: 745 loss: 0.08551119267940521\n", + "Iter: 746 loss: 0.09415759146213531\n", + "Iter: 747 loss: 0.08625683188438416\n", + "Iter: 748 loss: 0.09317591786384583\n", + "Iter: 749 loss: 0.08668754249811172\n", + "Iter: 750 loss: 0.09060943871736526\n", + "Iter: 751 loss: 0.09505946189165115\n", + "Iter: 752 loss: 0.09036614000797272\n", + "Iter: 753 loss: 0.09067538380622864\n", + "Iter: 754 loss: 0.08643797039985657\n", + "Iter: 755 loss: 0.08650539070367813\n", + "Iter: 756 loss: 0.09011151641607285\n", + "Iter: 757 loss: 0.08250445872545242\n", + "Iter: 758 loss: 0.0866359993815422\n", + "Iter: 759 loss: 0.08450579643249512\n", + "Iter: 760 loss: 0.08739498257637024\n", + "Iter: 761 loss: 0.08462435007095337\n", + "Iter: 762 loss: 0.08530659973621368\n", + "Iter: 763 loss: 0.08870764821767807\n", + "Iter: 764 loss: 0.08707704395055771\n", + "Iter: 765 loss: 0.08263685554265976\n", + "Iter: 766 loss: 0.08631142973899841\n", + "Iter: 767 loss: 0.09491360187530518\n", + "Iter: 768 loss: 0.08659781515598297\n", + "Iter: 769 loss: 0.08544415235519409\n", + "Iter: 770 loss: 0.0864705741405487\n", + "Iter: 771 loss: 0.08628970384597778\n", + "Iter: 772 loss: 0.086598239839077\n", + "Iter: 773 loss: 0.08942736685276031\n", + "Iter: 774 loss: 0.08590320497751236\n", + "Iter: 775 loss: 0.08923111855983734\n", + "Iter: 776 loss: 0.09300865232944489\n", + "Iter: 777 loss: 0.0816214382648468\n", + "Iter: 778 loss: 0.08408865332603455\n", + "Iter: 779 loss: 0.08744429796934128\n", + "Iter: 780 loss: 0.08513757586479187\n", + "Iter: 781 loss: 0.08954715728759766\n", + "Iter: 782 loss: 0.09014508873224258\n", + "Iter: 783 loss: 0.09189662337303162\n", + "Iter: 784 loss: 0.09232570230960846\n", + "Iter: 785 loss: 0.08679196238517761\n", + "Iter: 786 loss: 0.08626716583967209\n", + "Iter: 787 loss: 0.08451272547245026\n", + "Iter: 788 loss: 0.09482873976230621\n", + "Iter: 789 loss: 0.0889323353767395\n", + "Iter: 790 loss: 0.08567732572555542\n", + "Iter: 791 loss: 0.08391556888818741\n", + "Iter: 792 loss: 0.08437112718820572\n", + "Iter: 793 loss: 0.08294929563999176\n", + "Iter: 794 loss: 0.0910639762878418\n", + "Iter: 795 loss: 0.08760272711515427\n", + "Iter: 796 loss: 0.08800222724676132\n", + "Iter: 797 loss: 0.09278906881809235\n", + "Iter: 798 loss: 0.08521560579538345\n", + "Iter: 799 loss: 0.08448709547519684\n", + "Iter: 800 loss: 0.08403737097978592\n", + "Iter: 801 loss: 0.08991099148988724\n", + "Iter: 802 loss: 0.08579983562231064\n", + "Iter: 803 loss: 0.09115470200777054\n", + "Iter: 804 loss: 0.08030351996421814\n", + "Iter: 805 loss: 0.0858365073800087\n", + "Iter: 806 loss: 0.08477199822664261\n", + "Iter: 807 loss: 0.08526249974966049\n", + "Iter: 808 loss: 0.08981237560510635\n", + "Iter: 809 loss: 0.08627018332481384\n", + "Iter: 810 loss: 0.08196999877691269\n", + "Iter: 811 loss: 0.08968955278396606\n", + "Iter: 812 loss: 0.0903862863779068\n", + "Iter: 813 loss: 0.08507218956947327\n", + "Iter: 814 loss: 0.08603355288505554\n", + "Iter: 815 loss: 0.08177554607391357\n", + "Iter: 816 loss: 0.08802935481071472\n", + "Iter: 817 loss: 0.08693094551563263\n", + "Iter: 818 loss: 0.08825951814651489\n", + "Iter: 819 loss: 0.07991394400596619\n", + "Iter: 820 loss: 0.0859769806265831\n", + "Iter: 821 loss: 0.09184367954730988\n", + "Iter: 822 loss: 0.09253597259521484\n", + "Iter: 823 loss: 0.08501538634300232\n", + "Iter: 824 loss: 0.08481864631175995\n", + "Iter: 825 loss: 0.08235739916563034\n", + "Iter: 826 loss: 0.0876656100153923\n", + "Iter: 827 loss: 0.08951126784086227\n", + "Iter: 828 loss: 0.09172417223453522\n", + "Iter: 829 loss: 0.09366658329963684\n", + "Iter: 830 loss: 0.08275937288999557\n", + "Iter: 831 loss: 0.09045901894569397\n", + "Iter: 832 loss: 0.08423638343811035\n", + "Iter: 833 loss: 0.08915793150663376\n", + "Iter: 834 loss: 0.0828518494963646\n", + "Iter: 835 loss: 0.08685021847486496\n", + "Iter: 836 loss: 0.08502019941806793\n", + "Iter: 837 loss: 0.08977620303630829\n", + "Iter: 838 loss: 0.08494361490011215\n", + "Iter: 839 loss: 0.08725810050964355\n", + "Iter: 840 loss: 0.08767881244421005\n", + "Iter: 841 loss: 0.0850498378276825\n", + "Iter: 842 loss: 0.08703303337097168\n", + "Iter: 843 loss: 0.0918278768658638\n", + "Iter: 844 loss: 0.08105557411909103\n", + "Iter: 845 loss: 0.09833545237779617\n", + "Iter: 846 loss: 0.08764427155256271\n", + "Iter: 847 loss: 0.09886148571968079\n", + "Iter: 848 loss: 0.08320902287960052\n", + "Iter: 849 loss: 0.07889257371425629\n", + "Iter: 850 loss: 0.08280608803033829\n", + "Iter: 851 loss: 0.08436082303524017\n", + "Iter: 852 loss: 0.08644534647464752\n", + "Iter: 853 loss: 0.09348651021718979\n", + "Iter: 854 loss: 0.08774475008249283\n", + "Iter: 855 loss: 0.08618555217981339\n", + "Iter: 856 loss: 0.09274353832006454\n", + "Iter: 857 loss: 0.08889680355787277\n", + "Iter: 858 loss: 0.08629091829061508\n", + "Iter: 859 loss: 0.0838044062256813\n", + "Iter: 860 loss: 0.0905856117606163\n", + "Iter: 861 loss: 0.0905180275440216\n", + "Iter: 862 loss: 0.09108192473649979\n", + "Iter: 863 loss: 0.08630740642547607\n", + "Iter: 864 loss: 0.08708268404006958\n", + "Iter: 865 loss: 0.09588342159986496\n", + "Iter: 866 loss: 0.09362900257110596\n", + "Iter: 867 loss: 0.08522383868694305\n", + "Iter: 868 loss: 0.09050598740577698\n", + "Iter: 869 loss: 0.08414843678474426\n", + "Iter: 870 loss: 0.08394236862659454\n", + "Iter: 871 loss: 0.08347560465335846\n", + "Iter: 872 loss: 0.09234119206666946\n", + "Iter: 873 loss: 0.07869493961334229\n", + "Iter: 874 loss: 0.088435098528862\n", + "Iter: 875 loss: 0.09208975732326508\n", + "Iter: 876 loss: 0.08843284100294113\n", + "Iter: 877 loss: 0.08726536482572556\n", + "Iter: 878 loss: 0.08175912499427795\n", + "Iter: 879 loss: 0.08312124758958817\n", + "Iter: 880 loss: 0.09071546792984009\n", + "Iter: 881 loss: 0.0914819985628128\n", + "Iter: 882 loss: 0.08643269538879395\n", + "Iter: 883 loss: 0.08790989220142365\n", + "Iter: 884 loss: 0.0840124562382698\n", + "Iter: 885 loss: 0.08348535001277924\n", + "Iter: 886 loss: 0.0923561230301857\n", + "Iter: 887 loss: 0.08735720813274384\n", + "Iter: 888 loss: 0.09064534306526184\n", + "Iter: 889 loss: 0.08497031778097153\n", + "Iter: 890 loss: 0.08555151522159576\n", + "Iter: 891 loss: 0.09091547876596451\n", + "Iter: 892 loss: 0.08232363313436508\n", + "Iter: 893 loss: 0.08391173183917999\n", + "Iter: 894 loss: 0.08872732520103455\n", + "Iter: 895 loss: 0.08854537457227707\n", + "Iter: 896 loss: 0.08279778063297272\n", + "Iter: 897 loss: 0.08621867746114731\n", + "Iter: 898 loss: 0.08413414657115936\n", + "Iter: 899 loss: 0.08858625590801239\n", + "Iter: 900 loss: 0.0811791867017746\n", + "Iter: 901 loss: 0.08500656485557556\n", + "Iter: 902 loss: 0.08589643985033035\n", + "Iter: 903 loss: 0.08763100206851959\n", + "Iter: 904 loss: 0.09245997667312622\n", + "Iter: 905 loss: 0.08646063506603241\n", + "Iter: 906 loss: 0.08191832154989243\n", + "Iter: 907 loss: 0.08420380204916\n", + "Iter: 908 loss: 0.09419278800487518\n", + "Iter: 909 loss: 0.08329809457063675\n", + "Iter: 910 loss: 0.09278477728366852\n", + "Iter: 911 loss: 0.08881306648254395\n", + "Iter: 912 loss: 0.08773645758628845\n", + "Iter: 913 loss: 0.09069760143756866\n", + "Iter: 914 loss: 0.08286448568105698\n", + "Iter: 915 loss: 0.08849534392356873\n", + "Iter: 916 loss: 0.08797250688076019\n", + "Iter: 917 loss: 0.08212317526340485\n", + "Iter: 918 loss: 0.08583753556013107\n", + "Iter: 919 loss: 0.08271138370037079\n", + "Iter: 920 loss: 0.09280019998550415\n", + "Iter: 921 loss: 0.0832536518573761\n", + "Iter: 922 loss: 0.08910685777664185\n", + "Iter: 923 loss: 0.08427505940198898\n", + "Iter: 924 loss: 0.08946936577558517\n", + "Iter: 925 loss: 0.08792838454246521\n", + "Iter: 926 loss: 0.09047610312700272\n", + "Iter: 927 loss: 0.09417419880628586\n", + "Iter: 928 loss: 0.08388371020555496\n", + "Iter: 929 loss: 0.08467616140842438\n", + "Iter: 930 loss: 0.0967460498213768\n", + "Iter: 931 loss: 0.08446434885263443\n", + "Iter: 932 loss: 0.08265062421560287\n", + "Iter: 933 loss: 0.08520472794771194\n", + "Iter: 934 loss: 0.0885029137134552\n", + "Iter: 935 loss: 0.09164241701364517\n", + "Iter: 936 loss: 0.08548281341791153\n", + "Iter: 937 loss: 0.09228083491325378\n", + "Iter: 938 loss: 0.08612051606178284\n", + "Iter: 939 loss: 0.09083358198404312\n", + "Iter: 940 loss: 0.08864005655050278\n", + "Iter: 941 loss: 0.09557166695594788\n", + "Iter: 942 loss: 0.08337397873401642\n", + "Iter: 943 loss: 0.08638077974319458\n", + "Iter: 944 loss: 0.08520308136940002\n", + "Iter: 945 loss: 0.09046317636966705\n", + "Iter: 946 loss: 0.08248686790466309\n", + "Iter: 947 loss: 0.08606898784637451\n", + "Iter: 948 loss: 0.08774838596582413\n", + "Iter: 949 loss: 0.0881665050983429\n", + "Iter: 950 loss: 0.08449099957942963\n", + "Iter: 951 loss: 0.0848107784986496\n", + "Iter: 952 loss: 0.08408566564321518\n", + "Iter: 953 loss: 0.08247900009155273\n", + "Iter: 954 loss: 0.09484855830669403\n", + "Iter: 955 loss: 0.08591270446777344\n", + "Iter: 956 loss: 0.08499903976917267\n", + "Iter: 957 loss: 0.08371378481388092\n", + "Iter: 958 loss: 0.08462119102478027\n", + "Iter: 959 loss: 0.09235142916440964\n", + "Iter: 960 loss: 0.08629830181598663\n", + "Iter: 961 loss: 0.09037536382675171\n", + "Iter: 962 loss: 0.08736070245504379\n", + "Iter: 963 loss: 0.08645306527614594\n", + "Iter: 964 loss: 0.08027343451976776\n", + "Iter: 965 loss: 0.08480101823806763\n", + "Iter: 966 loss: 0.09015471488237381\n", + "Iter: 967 loss: 0.08815167099237442\n", + "Iter: 968 loss: 0.08669118583202362\n", + "Iter: 969 loss: 0.08301544934511185\n", + "Iter: 970 loss: 0.08947833627462387\n", + "Iter: 971 loss: 0.09088976681232452\n", + "Iter: 972 loss: 0.0848117247223854\n", + "Iter: 973 loss: 0.08770464360713959\n", + "Iter: 974 loss: 0.08583136647939682\n", + "Iter: 975 loss: 0.08832575380802155\n", + "Iter: 976 loss: 0.09627816081047058\n", + "Iter: 977 loss: 0.08338901400566101\n", + "Iter: 978 loss: 0.08609563112258911\n", + "Iter: 979 loss: 0.08943667262792587\n", + "Iter: 980 loss: 0.08357599377632141\n", + "Iter: 981 loss: 0.08300016820430756\n", + "Iter: 982 loss: 0.0876757800579071\n", + "Iter: 983 loss: 0.08739972114562988\n", + "Iter: 984 loss: 0.0847332626581192\n", + "Iter: 985 loss: 0.0856117382645607\n", + "Iter: 986 loss: 0.09118825942277908\n", + "Iter: 987 loss: 0.08561936765909195\n", + "Iter: 988 loss: 0.09117352962493896\n", + "Iter: 989 loss: 0.08788977563381195\n", + "Iter: 990 loss: 0.08997460454702377\n", + "Iter: 991 loss: 0.08471712470054626\n", + "Iter: 992 loss: 0.08415941148996353\n", + "Iter: 993 loss: 0.0854111835360527\n", + "Iter: 994 loss: 0.0889783650636673\n", + "Iter: 995 loss: 0.08297397941350937\n", + "Iter: 996 loss: 0.08535690605640411\n", + "Iter: 997 loss: 0.0758591815829277\n", + "Iter: 998 loss: 0.08889217674732208\n", + "Iter: 999 loss: 0.07679665833711624\n" ] }, { @@ -1242,7 +1242,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEfCAYAAABI9xEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADQnUlEQVR4nOydd3gUVduH79ndZNMr6SGEQIDQO9KrCGJFEBXkFbCXz67YFfVF7KiviojYBVEREJAqSFF6r6GT3nuyye7O98fJzs6klw1F976uvZLZMju7O3Oec57yeyRZlmWcOHHixMm/Dt3FPgAnTpw4cXJxcBoAJ06cOPmX4jQATpw4cfIvxWkAnDhx4uRfitMAOHHixMm/FKcBcOLEiZN/KU4D4MSJEyf/UpwGwIkTJ07+pTgNgBMnTpz8S3EaACdOnDj5l+I0AE6cOHHyL8VpAJw4ceLkX4rTADhx4sTJvxSnAXDixImTfylOA+DEiRMn/1IMF/sAnDi57DCXQV4O5GRCQR4UF0JRAZhKwGwWj1utIAGSDnQ6cDGCqyu4uIKnN3h4ir9evuDjDwbnpejkwuM865w4qYmCPEg6B2mJkJYMaUlQkAuO7KMkScIYBARBYIi4BYdBcLgwGE6cNBGSsyOYEyflyDLkZsHZE3D+FCSdFdsXC0mCgGAIi4LmLSGyJfgGiPudOHEATgPg5N9NSRGciYczx8Xf/Jy6vU7SgY8fePuChxe4e4KbOxhcxE2vL18lyGCxQFkZlJmgpASKC6CwAArz67+a8PaDmHbi1qK1c4XgpFE4DYCTfw+yDPm5kHIeEk6LW1pS7QOwty+ENoeQcOGWCQwRA7Fe3/hjsliE0cnJgsxUyEyDjBRxXGWlNb/WYICW7aBNR2jVHoxujT8eJ/8qnAbAyT+PslIxu87LhqwMyE6HjFQxqBYV1P76wGCIai1cLuEtxEz/QmO1iuNOPg+JZ4Sxykqv/vl6A7RuDx17QnQs6BxgnJz843EaACeXHrYBvDAfSorBVAwmk3ChlJWKLJvS0vLtMigtEa4VUzEUFYq/9cHDC1q2gRZthFvFy6dpPldjKcgTrqpTR+H0MSg1Vf08T29hCLr0ETEDJ06qwWkAnFwcLBbIShOz8oxUkVKZkymCrqaSpn1vH3+IaAERLSEyGpqFXn6BVYtFBKvjD0D8QSguqvwcSYLottCjP0S3ufw+o5Mmx2kAnDQ9sgzZGcKdkXxOZNekp4DV0nTvKUliZu/fTNwCgoT/PjhC5OD/k7BYxIrg4E44eaTq77VZKPQcCHHdnDUHThScBsCJ4ykuFIN90jkx4KecF66c+iBJ4OZRnl3jBq5u4GoEFxcwlBdUubiWF1cZRQaO0R3cPcDLGzy8HROkvdwoKoRDu2Df38LoVsTLB3oPgc69nRlETpwGwEkjkGWRzpiZAqmJ4paSIFw5dUGnh8AgCAovn6kHgm+gCLq6e/47B3BHIcvCRbRrk4gZVMTDSxiCrlc4DcG/GKcBcFIZWRbBVlOx8McXlUsd2PLWc7OFFEJ2ev1m9gHBEB4lCpvCoqBZiHOQvxBkpsLOzcJFVNE95O0LA66CDj2cMYJ/IU4D8E9AloXbJT9XzMiLC8S2ySQyZErLM2dsN4sFLGahW2Mxl2+XlRcrlYG5tPFSBx5e5QN9c/tfZ576xSU/F3ZshH3bxHmgJrQ5jBwLIREX59icXBScBuByo7jQ7m5JTRS54blZ1acEXgg8vCAoTAweoZHir1Oy4NKlqAD+Xg97/tKuCCQJegwQKwKnW+hfgdMAXOpYraIQ6PQxkQOemnhh319vEFkzHl4isOrtI6pgff1FOmVgsHjMyeVHTiZs+h2O7tPe798Mrpsksqac/KNxGoBLlcw0kc1xaJcoAKoLitSwlzZ7xpYxYzCIAd2mVaO3bRvEtvI8F+GucXVzpgz+GzgTD2t+0Qbv9QYYdi10ucK5kvsH4zQAlxKyLDI2dv4J505W/zwPLzE7C4mAoFDwK8+gMbo7L1YnDaOsFLauFTEC9ZDQoTuMHOecCPxDcRqASwGrFY7sgb//ENWxFZF00KIVtGwrbgHBzoHeSdNwJh6W/6DVTGreCm6YLGotnPyjcBqAi4nVIvyvf62veuAPChOaLu27Of3sTi4cBfmw7FshQGejWSiMmybSRp38Y3AagIuBLEP8IRGAqzjwSxK0ioOeg4QapXOm7+RiYLHAqkVwaLf9Pm8/uOUe8Au8aIflxLE4DcCFRJZFJs+WNUIiQY0kQbsu0O9KoVvjxMnFRpbFJGXbH/b7vH1hwj0iU8jJZY/TAFwozp+Czau0y2oQA39cN7himEipdOLkUmPXZli/1L7t5QM33yUa4zi5rHEagKYm+Txs/l0E1yrSqj0MGiX8q06cXMrs/QvWLLZve3jBzXeLLDQnly1OA9BUpCTAltVVC3FFxwpXT0T0BT8sJ04azP7tsPpne5qouwfcNE3IfDi5LHEaAEeTlS78pscPVH4sIhoGjoLmMRf8sJw4cQiHd8OKhXYj4GKEsf8RLTSdXHY4DYCjKMgTPv6Du0C2ah8LjYT+I0UOvzOrx8nlztF9sHyBXUdIp4dR44SiqJPLCqcBaCxlpbDjT9i+QfyvJjgcBoyEmDjnwO/kn8WpY7Dka62qaK/BMGg06HQX77ic1AunAWgM8Qdh3VLIz9He7xcoBv52XZ0Dv5N/Loln4NevtVXD0W3g6glCk8rJJY/TADSEvBxY+yucPKy9391TuHo693Y2OnHy7yA3GxbPFz2ebXh4wVXjoHX7i3dcTuqE0wDUB1mGvX/DxuVad49OL3TUrxjm1Etx8u+j1CQCw/EHtfd36gVDxojezk4uSZwGoK4U5MPvi+B0hbTO5jFw5VhnEZeTfze2ydGG37RxATd3sSrucoVzVXwJ4jQAdeHEYTH4Fxfa73P3gCHXOHupOnGiJitdqImmJGjvDwyGgaOFW8h5vVwyOA1ATVgs8OdKoc+vplWc8HE6A11OnFTGYoFdm2DrOiir0Ko0MBh6DxHyJ84VwUXHaQCqIz8Xln0nMh1sGFxg6LXQpY9zFuPEYZhMJnJzc8nLyyM/P5/8/HwKCgooKCigsLCQoqIiSkpKKCkpwWQyUVpaSllZGWazGYvFgizLyLKMJElIkoRer0ev1+Pi4oKrqytGoxE3Nzfc3d1xd3fHw8MDLy8vvLy88Pb2xsfHB19fX3x9fTEajY77YAX5Qgbl4E5tkxkQgeLOvYVryMfPce/ppF44DUBVVNUUo1koXDfxgglgybJMWVkZRUVFlQYA28VfVlaGxWLBYrFgtVqVm21AsN1s+1PfbM+zWq2afdj+t1gsygBT3XuosQ0+Op1OGYAMBgMuLi6am6ura623iq8xGAyam3SJGl+LxUJhYSEFBQXKQJ6fn09eXh65ubmam+2+nJwcTCZT7Tu/QBiNRsUY+Pn5KX9tN9tjvr6++Pj44O3tjb62mXxqEvy1RrhSKw43kiSqiNt2hjYdRSadkwuG0wCokWX4e52Qa67YFu/KsaJfbqPfQiY9PZ3k5GRSU1NJT08nMzOTrKwssrOzNTNBs9nc6Pf7J2Kb5dqMjU6nq/Z/mzGquF3xf/XN9h6AYuhsxtFmeMvKyjCZTIphLioqorS0tNpj/iejXlF4enri4eGBh4eHsupwc3PDzc2NACy0zDhHSGYiBklCb/sNDAYMegM6vR6iWkFsBxEr8Pa72B/tH4/TANgozIeVP8LpY/b7DAYYfj106t0gl09JSQnHjh3j+PHjnDhxglOnTnH+/PlLasbn5NLB3d1dmVXbBlQPDw88PT2VQdTNzU1ZJakNmCRJyorOarUqhqq0tJTS0lJKSkooLi6mqKiIwsJCCgsLNSuUoqKiC/Y5PSTo46Gjv6eOAIP9utLrbG4rF1yNRsr8g5Bi2hHQoy++7To5YwZNgNMAgGjSsnyB1uXjGwDXT4aQ8DrvRpZlDh8+zPbt29m5cyfHjh3DYrE0+vAkScLNzQ2j0ahxk9hcIuoZr80NY5vB2lwzVd3Us17b6w0GQ6X/be4c9cy7KjeM2o1kcx+p3VU237Xaj2373+baUj/vcj01JUnC09NT8a/bbmrXSUU3i4+PDy4uLhftmM1mM3l5eeTk5ChuqpycHOWm3s7LyyMvL88hK9SWrhJd3SS6uuvw1lc/yZINLuQHhuHWoRsxw0cRFN2q0e/t5N9uAMpKhYDbzk3a+1u3h9ET6lzUdeLECVatWsUff/xBZmZmnV7j5+dHaGgowcHBNGvWjICAAPz9/fHz89PMAm1L6UvV792U2AxJxXiH2WyuFK9QxyfUhqimGEdVr6sYO1EbTHVcw2aIjUajElh1d3fH09MTT0/Pf/zvJcsyxcXFmliHLf5RVFREcXExxcXFysrDZDIp96lXIgUFBZhMJiSEMejoJtHZTbsyqIpcDx+MHXoQd+ME/Fo41XUbyr/XACSeES6f7Az7fXoDDL0Guvat1eUjyzJ//vknixYt4tChQ9U+z93dnbZt29KmTRtatWpFdHQ0kZGReHg4qyOdOAEoLS0lNzeXrKws0tPTSU1JIe/MSQznT+KTmUy41UR19kCSJMqCw2l+1Q2EDh7prMSvJ/8+A1BqEo1adm3WBnoDg+HaiRAUVusutm/fzqeffsrp06crPabT6ejcuTN9+vShR48exMTE1J4l4cSJk2rJTE3h/JYN5O3ZhkvCSdxKS6p8nre/P8GDr8JnyOg6XcdO/m0G4OQR0dZOrd4pSdBzEPS/stYsn8zMTN599122bt1a6bG4uDhGjx7N4MGD8fHxcfCBO3HiBEC2Wkncu4uTq5YiH9mDr0WbeSVJEmGhoQT1GYhu0GgIibhIR3p58O8wAPk58MdvcGy/9n7/ZjD65jq1Zty0aRNvvfUW+fn5mvsHDx7MrbfeStu2bR13vE6cOKkVi9nM9t9+5dSyRbQoysJTZ/cTeXl60iK6Ja5de8OAUc5is2r4ZxsAWYbdW0SLxorqnX2GQJ+htc76ZVnmq6++4quvvtLc37lzZx566CFat/6XtsLLTILdayEnHfyCoPsICKx7xpQTJ45ClmXWrvqdv7+cQzdrIREuwhC4GAzExMTg4eMjenD3GuxsVlOBf64ByEyDVT9ppRwAwlvAVTeJyt5akGWZd955h+XLlyv3ubm58cADDzBmzJh/fKZHtexZB0s/1ra+lHRw3f3QbXjl51sskJMBWRmQly1kNvJzoLgISorEX3NZ+c2sjc3o9aIew+AijLXRDVzdhBifu6eQFPD0Ak8f8Cq/eXo7L/R/IQUFBXwwezaJm9ZxjY+eUBeR6ty6VSs8PT0hPEpk9wUEXexDvWT45xkAq1W0Z9yyxt6zFMSAMWh0nYu6ZFnmvffeY9myZcp9zZs357///S+RkZFNcOCXCZlJ8NFDlfsegzACD3wAOldheBNOQ2oCZKZrf4umRtIJQ+DtK5b+3n7if/VfTy+nntM/lN9++40P3n+fHkaZ0d46/Fz0xMbG4u7uLiYTQ66Frlc4f3/+aQYgP1cUdJ0/qb2/XRdR0evhVeddff/998ydO1fZ7tixIzNnzsTLq+77+Eey5mvYsrj6xz1DgctAJVWnE6sGbx/w8rWvHjQ3X7HicHLZsW3bNl544QUM5jJu9NXT19dI27ZtcTEYxBM69oIrbxQG4V/MP8cAnDoGKxZoNfu9fISGTz1b0+3Zs4fHH39cKQbq0KEDb731lphBXCTi4+OZN28eZ86cITo6mmnTphEbG3vhD2TRO3Boc/WP673ArYoUPEkSvZJ9/cEnQMzEPTxFtyh3D+HeMbiIm21mJstipWE2C/eQyQSlJVBSLFxHRQVQVCj+FuRCQR6Yqk4RbDCuRvuqwdcffPzFX79m4Bcgjt85k7wk+euvv3juueeQZZmObhJ3RzejY0w0yq8VHiWq/b3+vVl7l78BkGXY8Sf8uULrO27bGUbeVO/CkMLCQu644w4yMkSBWFhYGJ9++ulFTe2cP38+d911l0ZWQq/XM3fuXKZMmXJhD2b1l7B1SfWPu/iDazNRVxHREiKjRU52QJAY3JuaUlN5jKE8zmD7m6f6v9SBWkxu7hAQLG5BIRAcLm7ONoiXBD///DMfffQRAN46+GB4T6JdVAbb2w/G3/mv7eh3eRsAi0U0Z9+/zX5fIwXcPvjgAxYvXly+KwMff/zxxZlplxMfH09cXFyVmkJ6vZ4jR45cmOMzlcDev2D7OsisrvJZgpH3QJd+l3azHFOJWC3YVg22W34uFOZBfp74a60izlFXfPwhrDmERYm/IRH1VpO1Wq1KbwCb2qjtPLDp/bu7uyuyIYZ/uTujKmRZ5vnnn1dqd/y8vVhw160Yj+61P8ndE8ZNhdDmF+cgLyKX7xlTVgpLvtX26PX1hxvvaHAV4NmzZ/n111+V7cmTJ1/UwR9g3rx51QrKWSwWvvjiC2bOnNl0B2AuEwP/3+tFtg6AazCUpmmfJ+ngugeg27CmOxZHYXQTt5pmfbIMhQVQkAN5tlVENuRmQ24W5GQSn5jCvB37OZOdR7S/D9N6dSY2yF+8Pi9b3Gy1JzodBEcIt0NENES2xOrhRXJyMmfPniUxMZGkpCRFIjwjI4Pc3Nx6CeL5+PjQrFkzQkJCCAsLIyIigqioKFq3bo2fn18Dv6zLG0mSePTRR9mzZw/FxcXk5BfwbWoR04ZdB+uXiicVF8KCz+CmKaLH97+Iy3MFUFIMv8zXpniGt4Ab/1OvQG9FXn31VdavXw9AREQE8+fPv6gKjQC33HILCxcurPHxH374weHvazGbKdy+CWnrauS8HCzlomxmi4Uyi5UENw90LmaM1jLSy+DPfBeSTCiCaoCiOGpTLVU3fTEajZqbTebYpnhq+6tuJGNTQHV1dVVE2Sru90LJbsz/4gvuuvturVtOp2PuLdcwpau2KFAGzGVlFJeUUFJcQnFJMSXFxSQVmYgvNnOyVOaUyUpGEyZKBQYG0rZtW9q1a0dcXBzt2rX7VyU0fP3118yfPx8AT09PfvzxRzzOHoMVC+0rPYMLjJv2rzICl98KoKgAFn0OaUn2+9p0gqsnNKphS3JyMn/88YeyPWXKlIs++ANER0fX+LiLiwt//vknZrO5xtmiWvHSJrmsVmXMz89XZIB98jIZoStSCmpslMrwZ4GFPwutFDTCO9KU6PX6Klsgenp6atogVmyFaJNk9vDwqLW+Iz4+vtLgD2CxWrlr4XKCrp1AQEkBpWfj0aUm4VWQjWSpLJ3sJ0EvDx29PAD05FlkTpXKnC6VOWmyklT+EkmScHd3x2g0Km4ei8Wi/IZ1kRzPzMxk69atiitEkiRat25N165d6dKlC507d8bb+xJ22zWSm266iR9//FHphbBu3TquvfZaMHrAkq/siQY/fyFiAnVQB/gncHmtAPJyYNFcyEq339e5t8j0aWThz5w5c1iwYAEgZv9ff/210h3qQmMymTh+/DjHjx9n27ZtvP3229UO7r1793aYsqifHq7z0dPVXfu5LTJsKbSwpsBK4SU68DsKvV6vGAdvb2+lw5VtBaLT6fjtt980k4WKREVFERNjn0XqgDAXiWgXiZau4uavkrd0dXXFzWjE1bbqKR/ky/Qu5HkHkOnlT6qbD7kGI7pySWovLy98fHwUGXGdTkd2djZpaWmkpKSQnJxMQkICp0+fJjs7u06fvVWrVvTq1Ytu3brRqVOni5r11hR8+OGH/PLLL4BI6/7www/FA2fjhUfB1t/A6AYT7q1XL5DLlcvHAGSli5l/nupk7jUYBl/d6DQ8q9XK+PHjycrKAuCBBx5g3LhxjdpnfUlOTmbDhg389ddfHD58WDOrS05O5tixY5Ve07ZtW8LCGq966AIM9dIx3FtPhUk/B8t0bDX4gm+Apg+srf2fbWZqm53aZqjqlom2rlQmkwmz2aw0fLHNYtX/21Yo6m5W6ibotsds/18MDh06RHp6erWPBwcH07595dRjf39/YmJiiImJoW1YCG08XfAryKbo2CEsaUkUFRdTUlxCmbnqz5VvkTlmkjlisnK0RKZYdeW6u7vTsmVL4uLi6NatG127dhXVr4jZ//Hjxzl69CjHjh3jyJEj5OXl1fgZdTodbdq0oWvXrnTt2pX27dtf9iuE+Ph47r77bmX7p59+IjAwUGycOQ6/fAm2lZqHF9x63z++avjyMABJ54SFVuf4D7gKrhjmkBzsPXv28NhjjwFiBvjLL79ckLRPWZbZvHkzP//8M/v27avxuUVFRaSkpFBSUoKHhwetW7cmKCgIo9GotAes2KlL/dPaGprYskdss842lNA9Nxkv2YLeUN7wxGCA0EgMI8dijKkscldYWMjp06c5e/YsCQkJpKamkpmZqfQ0LigowNqYDBpQjInNz6+OA6i7olWMDdi21TEEWzezig1M1M3ZCwoK6hxwPXnyJOfPn6/28TZt2nDllVfSokULoqOjiYmJoVWrVvj5+VFSUsLOnTvZvn07+/bt49y5cwB46kRDlFauEi1ddTR3lajpzJaBMyYr+0tk9pdYya7gBdLr9XTq1ImBAwdy5ZVXagZvWZY5e/Yse/bsYd++fezbt4+cnJxaP3dkZCSxsbG0bt2a2NhYoqOjadas2WUjiSLLMrfeeiupqakAPPXUU4wePdr+hPhDsOQbe5W7bwDcdv8/uk7g0jcAJw7Dsu+Ef87GsOugxwCHvYV6adinTx/eeOMNh+27Onbt2sWnn37KiRMnqnzczc2Ntm3b0rp1a6Kjo4mIiCAoKIiAgADc3d0bf9Eln4c/llXWSvLwEpIZHXuCJFFUVMShQ4c4cuQI8fHxxMfHKxfQpUBRURHJycmUlJTg5uZGWFhYlS4xSZIICAggKCiIkJAQQkNDCQsLo3nz5rRo0QI/Pz8KCgqUdod5eXnk5+cr3a1sqxeLxUJaWhovv/xylUauqtTcxMREtm7dyvbt29m7d2+dWil6uhjoFOBNrFFHK4OVEMmi6U4GIlBfWr56Olcqs6fYyu5iK/kVDsvFxYWhQ4dy00030aZNm0rvJcsy586dY9euXezatYt9+/ZRWFhY6XlV4ebmRnh4OKGhoYSEhBAcHExwcDDh4eFERERccquGd999V5F3GTlyJM8884z2CYd2icCwjaAwsRL4h1aEX7oGQJZFq8aNy+0FXjo9jB4P7bs79K0mTpxIUpIIKj/++ONcc801Dt2/mpKSEv73v//x22+/VXqsefPmDB8+nD59+hAbG4teryc7O5vTp0+TlJREeno6ubm5FBUVKe4PW9DT1oPWz88Pf39/AgMDCQ4OJiAgQGssMtNEG8zjB7RvrtNj6dqXcxGxHD97jqNHj3Lo0CFOnDjR4N68VqtV09/X1oLRNpBarVZN+0U11fU0VvcxzsnJqXIm3hDXmJeXFy1atKBly5ZERUXRokULWrRoQXBwcJXGtrrivM8//5ybbrqJAwcOsHfvXrZv387Zs2drfO/AwEDat2+Pr68vJpOJjIwMEhISNG4mTx20dpWIc9MRZ5Tw0UsY3dzw8vTEw9MTVxcXSkwm8gsK2JNdyIbsYg6XyFQ0UQMHDmTatGm0aNGi2uOxWq2cOnWKffv2sWfPHg4cOFCry6g6fHx8iI6OJjY2lri4OLp3746/v3+D9uUI1q1bx2uvvQaIFc0333xT+Uk7/xTy8TaatxJ1AheikPECc2kaALMZ1vwCB3fa73M1ijTPKMfKL6empnLLLbco2wsXLiQ4uGmqAjMzM3nqqac4deqU5v5BgwZx88030759eywWCzt37mTLli3s2bOHxMTERr2nwWAgODiYmAA/BrmW0c5cYHcVlQ/Kp3TuLC+Q2Xsusc5+dQ8PD6Kjo4mKiiIsLIyAgAAKCgpISkoiMTGR8+fPk5YmagVqWq2oe/BWvKkNRMX7iouLq4yL2GjdujXu7u6KcXFzc1PcZfXBw8ODqKgoIiIiCA0NJSAgQMkWSkxMZMmSJSQkJODt7U2bNm3Iycnh9OnTNRpNT09P+vTpQ8+ePWnRogW7d+9m5cqVyiSkLjR3kejkJtHFXUeQQUKv09GsWRDBwUHo9QaKigpJKSxmxfl01qUXkKuyBDqdjokTJzJ58uQ6FY/JskxSUpKyAjx+/DinT5+uc/9rNZIk0alTJ6699loGDx58wTPtEhISuP3225VjWblyJUajsfITNyyHHRvt27Ed4bqJYhL6D+LSMwAFecIPl6SaNfn4w9g7mqTN29q1a3n99dcBkf3z7bffOvw9QBiaRx55hJSUFOW+2NhYHnvsMdq1a0d+fj4//fQTS5curZM/tq4008OV3np6uusqhUsSy2SW5lqIL635FPDy8qJDhw60bdtW8QGHhIQgSRLnz5/n119/Zc2aNZWa5TQltfnh1Zk4VqtVCR67u7sTGBiIl5cXOp1OSX1talq2bEm/fv3o3bs3HTp0oKSkhK+++orFixfX6BIyGAz4+fkpxqywsJCcnByNgQkzQHd3HT08dAS46GnevDkB5bNsqyyTm5vHn2k5/HI2nXNl9tfFxMTw+uuvExpauzR6VagNfmpqKmlpaaSlpZGamkpSUhJFRUU1vj44OJiHHnqIAQMc586tDavVyujRoyktFf1B5s6dW3VPD1mGlQvh0G77fR17wahx/yjtp0urDiAlARZ/KYyAjYhouGFyowq8auLIkSPK/x06dGiS9ygqKuLpp5/WDP7jx4/n7rvvRqfTsWjRIr766qtq/a7+/v40b96c4OBg/P39lbRESZKwWCyUlJRQWFhIXl4e2dnZZGVl4pmTSR9dCR3ddZWCiRlmmRV5FvaWVB749Xo90dHRtGnThri4ODp06EDLli0rzeIzMjKYPXs2mzfXIAyHmG0GBgbi5+eHr6+vJnPIFqDV6/WKi0c927dYLIq7SJ0ZZDKZap0tl5TYReF0Op2SqQSQk5OjGFlvb2/69+9P69at8fHxITExkXPnznHu3DllBdMQ/Pz86Ny5M926daNPnz4al9Tff//NrFmzKhl6SZLo0KEDXbp0oX379sTExBAcHFwpHbmsrIzExESOHDnC7t272bp1K8vzi1iebyXW1ULfwtNcGV1CRFgYOknC38+X6/x8GRTsy98JqSxPzeeQSebUqVNMmjSJ6OhoCgoK6i0y6OXlRZs2baqNK+Tk5HDu3DlOnjzJsWPH2Lt3r+Y7TUtL44UXXmD06NE89thjF0TKQqfTERYWprjlkpOTqzYAkgRXjRdFpyfLx4iDO8DNDYZc848xApeOATh+QEg5q4O9nXqJHP8mrO5UB2HbtWvn8P3Lsszbb7+t8QPff//9jB8/nszMTF577TX27t2reY2rqyt9+vQhKiqKsrIyMjIySE5O5ujRo5SWluLi4oK3tzdBQUHExsbSs2dPOnbsiEGS4Ng+2LUFUs5jsVgpLSulrNwPn69z4ZBPKCeMPoSbLUTqdHh6euLj40NoaCiRkZG0bNmy1mX5tm3b+O9//1vJL2wwGIiLi6Njx460adOGmJgYwsPDm+TCtlqtzJo1q9rHhw4dypgxY0hOTub8+fOcO3euSj92fn4+W7ZsYcuWLXh4eCg+8nbt2lFQUMC5c+c4f/68EoPJyMigsLCQ4uJirFaroscTGBhISEgIMTExtGnThhYtWlTp+lqyZAmzZ8/WzOADAwO59tprGT16dJ3cjy4uLkRHRxMdHc3o0aMpKiri119/5YcffiC+oID4Ugs/5yYwo003uutMkJuNBPj7+THSx4eOfkkcSk7n/aMJrDpwVLPvt99+2yEig5Ik4e/vj7+/P126dAHEtXDs2DGWLl3KmjVrlJXPypUrycnJYcaMGRfECISEhCjXY03pvOj1cO1E+Gme6G0BIi5pcBFZiP8AI3BpuIB2/AkbVEEXSScE3Zq4aYMsy1x33XUUFBQAMHv2bDp37uzQ99iwYQOvvPKKsj1x4kTuvPNOkpOTeeyxxzSrAi8vL66++mosFgsbNmyos4/VRwfDAj0YHR5A8wC/ygU8AcFwxVCI69poH+bRo0d56KGHNG6L6Ohoxo4dy/Dhwx1WlFYb9RXJk2WZrKwsjhw5wsGDB9m3bx/Hjx+vNl21c+fO3HLLLVxxxRUOS3NUpxsDGI1GbrvtNm655RZcXRtexW4jJSWF5557TokxGY1GFnz/PX4ZScKfrXKr7jhxmr5zf8ZSxeV/IUQGz507x5tvvsmhQ3ZhwZtvvpn77ruvyd7TxqxZs/j9998B+/VYI6YSWDgHUlXxuN6DYVDja5AuNhd3BSDLonPXX2vt9xnd4bpJEN30ImxZWVnK4A/CT+tIysrK+OSTT5TtLl26MHXqVDIyMnjkkUc0y+GBAwcSGRnJL7/8gslUN7niKBeJQZ46urrr0EllFKancjQ9lWaBgYSFh2No2QZ6DoKYdg45Ua1WK6+99poy+BuNRh566CGuvvrqC54LHhsby9y5c6vNxKk4eEmSRGBgIAMGDFB8zkVFRezatYuNGzeyZcsWjdto//797N+/nz59+vDggw82ugucbSVoIygoiDfeeENTMdxYQkNDefPNN5k6dSp5eXmYTCaWr1zJxIkToU1HkfK7YyPEH+Ln4+eqHPzhwogMRkVF8d577zFjxgzFjfjjjz/Sv39/h0/CKqKu8VFf/9VidBMaQQs/g4zyCdv2jUKNeOi1l7URuLgG4K912sHfNwBumnrBtLltRTggfLaOzllevny5MsgbDAaeeOIJZFnm5Zdf1gz+kydPZufOnWzatEnzep1OR8eOHenUqRNRUVH4+fnh6uKCa9IZPA/uwDUtgcLCQk0Rk1mGFefTOZ4N06dNJyjIcZWM+/bt02QlzZo1S1neN5hGNJefMmUKAwYM4IsvvlAa5UydOrXOM1eby2fgwIGYTCa2bt3Kzz//rJmVbtu2jb179/Liiy/Sr1+/Bn1EgKSkJE3c4rXXXnPo4G8jMDCQG264ga+//hqAvXv3CgMAIp4WEQ2ZaZz5rebYzZnTpx1+bBVxcXHh+eef59577+XMmTOAqMn57LPPmnRCYauQhjoaABAxyAl3w49zIT1Z3LdrMxTmw6jxjdIhu5hcPAOwazNsWW3fDgyGm+++oFV36gsyIiLCofu2Wq0aFc8xY8YQGRnJd999pxlgJk+ezO+//64xCH5+ftx6662MHDnSLuMry3D6mMjhT00UAjPl2RsWi5X0klKWnE1l2bk0odeTk8Ljjz/OnDlzHKbpoo6X2ETEGkVVzeW3Lqm+uXwVxMbGOmSmajQaGTp0KEOHDuXQoUMs+3IOUZnxhLrpSCmx8slrL1L61PMMGTKkQfuvmBHTlLnwbdvaq7erDGQHBhPddxD8+Ve1+4jOTxOVsa3bN+kM12g08tRTT3H//fcD4hw7cOBAk64C1NdDXVfbgDACt9wjjIDNHXR0H+RkiRT1y7Bi+OKonZ0+JqpQbQQEwy33XvAvUF3RGh5ed+Gn+Ph4pk+fzi233ML06dOJj4+v9Jy9e/cq/n2dTsdtt91Geno6X331lfKcoUOHsnXrVs1FOnr0aL799ltuvvlm++CflQ4/fS6UClMr1AVERKMf+x9CX3yPaXO/Y+zE25WHzp8/z48//ljnz1Ub6hqBRksJZyZVHvxBbC/9WDx+kehQmsLTXoncFuXGsGBXboty48teXuz/6r0Gp7q2bNkSX19fZXv69On1yvuvD2pjU11Af9q0adVKZ+sliUltmsOvX8GCTyE9pcrnOYq4uDh69OihbK9atapJ308db6m3npSbh5iotlCtMlPOwzcfwPlT1b/uEuXCG4DiQvh9kb2619sPbr6zydI8a0I98Na1+Gv+/PnExcUxa9YsFi5cyKxZs4iLi1O0xm2o1SJ79+5NcHAwP/74o3LCBQQE4OLioplV33vvvTz55JP2JarVKhqxzH8XzlQwMi3bCaN52/1CDlsndHymTp3K+PHjlactWbKkwZW8FVGvko4fP964/e5eW3nwtyFbxerAkZjNoqlLaqJQfzx1VMxwjx8Q/58/JR47fxyWfoxU4dj0ksQDURLbVvzaoLc3GAz85z//UbZPnTrF1KlT+e6772rNl68vNslnEAqfVWGLoVQ0AjoJnu/THiknC1Npqch++ep9MWFzdL9lFaNGjVL+37x5c6O1pGpC/ZnrIstRCTd34aru2td+X0GeCBRvXg3WJmzs4GAuvAto7a/2PH+dXhR4eftd8MMANFk2iipgDcTHx1cKOoIImt11110MGDCA2NhYZFnmr7/sy+uhQ4dSUlLCihUrlPuGDRvGTz/9pGyPHz+eCRMm2HdaVABLv4PzJ7UHEdVaKKCGVh+UnDhxIj/99BOyLJOdnU1SUpJDXFydO3dWcvXT0tIat1TPqSH9DiCnATn4sizaOqYni1tWGmRnQk6m+D7rQmlGtYZJL0n4ntoB3F7l47Vxww03kJaWpsiOm0wmPv/8c77//nuuu+46Ro8eTVRUVIP2bWPfvn1s2LBB2a6pyKpiDEWWZU6fPs1xLw/25hVjPnqMyMgI/P0DkHZuEu6Oq8aJpAIH07dvX3Q6HVarlby8PE6cOFFlfYEjUMcXGmxo9Hq48kZoFgrrl4jJmiyLmObZeBh982WhJHphDcD5U+IksjFwlGigfZFQF+IEBATU+vy6tmc8d+6cYlwkSaJPnz5s2rRJmel5eHiQnJysvLZly5YamVrSk+Hn+WLGasPbV4jgxXas1Sfr6+uLt7e3kvfuqApdf39/unXrxu7dojpy0aJFDTcAfrVcHH51WJEV5gul2JTzoogwNcHetrIuWEvBnAfWMtC5gMFH/F8DMcWZsOcviGkrkhbqgSRJ3HPPPbRt25bZs2cr519RURELFixgwYIFtGrVikGDBtG7d29FD6ouyLLMunXreOedd5SVWfPmzenfv3+Nr6sYQ1mwYAFz5sxhbpaFuEIrN5WeJcwjRUhg+Bbj/tM8pC5XwNBrhDyLg/D09KRdu3YcPnwYgIMHDzaZAaioktsouvUVk7HfvhcTDRDptl++B32HQe+hTVrH1FgunAGQZW3QNywKeg68YG9fFWoJALV/tjpsmQq1PX7w4EHlvpiYGHx9fTUZPr179+bPP/9UtqdMmWIvgElNhB8/ExWINtp1EQVxbnUL5prNZk12gyMbe9x0002KAdi8ebOSfVNvuo8QAd+qZtuSrnIQ2GIRXeCSzopb8jnRn7e+uBrB3QOKsyBbJTdiAcqyQVdzHYOHLMPaxWIjMBhi4kSKZVhUnYOlQ4YMoUePHixcuJBff/1VUwF+8uRJTp48yfz58zWKsC1atCA0NFSRhQAoLi4mNTWVo0ePsnHjRhISEpT96PV6nn322Xo3NbrlllsICgrinXfe4UhxMW+kmRnubWW4KQVDSgo6SYfb8eOYli/mQHRndGHNNQKEISEheHt7N2hgbd++vWIAqlPJdQTqWb9Dmj6FNYfJD8O6JUJNFERfgc2r4eh+GDn2ku0wduEMQPI5bZBk0KhGd/FqLOqZcV30/2sb6GyPq4PC7du3R5ZlDhywq2+6u7srJ2FwcLB9lpaTKaoObYO/JImy8x4D6pWJcfjwYWX/BoOhXgHu2ujbty8tW7bkdHma4Ndff82LL75Y/x0Fhotsn4qBYEkn7tcb4checd4knxeGsYq2ilXi7SeW5kEh4B8EfoFitu7pJao4M5Pgo4eqfq21WHzXVcQ3ZFnG6NHMfkdmmrjt2CgSGNp0Ekq1oZG1/l7e3t7ceeed3HbbbaxYsYLVq1dXSiYoKSlR9Prrg5eXF88++2yDK9uHDx9O+/bt+eKLL1i3bh2r8q3sLbYyyd9AhIuVouJiKC6mTcZaFuWY2VGs/a5s6qZDhgyhf//+VYutVUHz5s2V/9UrZEdTsW7EIRjdRFva1h1g3a92N3dGCnz/sVA1GHw1uHvWuJsLzYUzAIf32P+PiHa4qmd9sVqtmsKfulSwTps2jbfffrva6tOpU6cCaETKWrZsSXZ2tsbdpJ7xDRgwQMxCigrF4G/zVet0ogy9Taf6fjSlyhFE8ZkjFRclSWLSpEm8+uqrgKh0njRpUsNy2rsNh6g42PE7pJ4D9ODiC1u3wNo6ZoJ4+YjZd2gkhDaH0AiRqVETNQWgkaF1dzixV/MciyxzIrAjbTv2FllsWRViGAV5sHuLuPk3E4agQw/wrTnd08PDg3HjxjFu3DjOnz/Pn3/+ybZt2yp1hasLkiTRu3dvHn744UZ3igsLC+O5555j2rRprFu3js2bN/NBfDwjPKyM8NYjAQYJbvU3EOVqZXGuRZGezszMZNOmTWzatAlfX18eeeSROqXPqhMxapRoUBEfH8+8efOUlWhdtIzUgV9HVGBraNMRWrSGP1fCXlWa7YEdcOKQmNB16HHJFI9dGANgtcKx/fbtjj0vyNvWhHrwh7oZgLpWn6qzi0JDQzXpfj4+PmRkZCjbrVu3Ft/P0m8h234/o25u0OCflJTEmjVrlO2rrrqq3vuojSFDhvDNN98ogcMvvvhC0VivFVkWMY7Es5B8Vvjw1Z+bGuIVegOEREB4lBj0I1o0LIGgtgC00YO9A6Zx+PuPCDFKpJRYOe0Xw7MvzbCvWnMyyzOJDoqVrXrFkJ0h3J1b14jBoFNvEbupZbbZvHlzJk6cyMSJEzGZTBw7doxjx45x5swZRXEzLy+P4uJiJEnCaDQSGBhIy5YtlRl3Q5U9qyM0NFRzTKdPnyZ7304id2+A4kLMZjNXeZpp6Qdz04rJLdbm1efm5vLKK6+wZ88eHnnkkRpdQ0raM9Sp/0BVPRnqomWkzv1vEjlqo5sIELfvJmTtbWm0xUWw8kcxFo4aD54Xv1nOhTEA6cnamW2bjhfkbWuiogGo6zK1LtWn6tiCv7+/ZjbTrFkzzckdEBAA2zdos30GjoIO9W96I8sy7733njLDCQ4ObnDhUk3odDqmTp2quH62bNnCsWPHNAVIqoMS2Tinj8G5k5BwBkzFlZ9XFX6BYqAPaw7hLYQcuCPEwmoJQKeYZJ5+c7YiGRwYGMict2Zo/cV+gdC9v7gVFYiU0iN7kM+fwlRSQmFRkegidvYslg1rKNYZOOkdRFpoS7xCwggNDaV58+Y0b968ykHIaDTSuXPnJpdFqA9Go1G4ldq1g9HXiDqB8rqUWODqIWFkD7uRowlJbN68mfXr1yuD7dKlS2nRogVjx46tdv/qSVhxcc3nSF0z8qpCbQDqet03iIhouP1hsSrcshrKxPnEqaMiSDz65ibJqKoPF8YA2JT0AILrsESvjUbIB9iomP9bn5lAbdWnauPi7u6uDCQgTjj1tltOOhxUleW36wJ9htb5WNQsWLCAnTvtTXTuueeeJmu4YbvAbH7rzz//nLfeeks8aDbDuRNidnzqqFbeuzrcPYULJ6x5+aAf2WB/aa1ugRoC0LIk8eyidcpv5OHhwRtvvFFzmrCHFye9mrEyw8zubSdoZcqll4do1KImMiuDsDNH2FVsZXGBhVSzMKZRUVG0adOGtm3bEhcXR+vWrS94o5R64+MnWiX+vkjJ7JPSkwlY8T39xt9Jv379mDRpEjNmzFAa93z66acMGjSIZs2aVblLtRJobe6vumbkVUXF67NJ0euh1yBo2xlW/wKny9VXiwpEYeeg0Q2+3h3BhTEAqfbsBCKqb0VXJxwgHwBaA2BrNego1FkGer1ec2KXlZXh6+tLQkICBiBw2zpwL7/YffxFtk8D/IN//PEHc+fOVbb79evH0KGNO7FqGkglSWLatGlMnz4dgF07d3J01TLaleUL/fTSGkrsJUmk/0ZE2905vgEO8YvWyS1QTQBaRuLt48WczhUDhNFoZObMmVXrxZdz6NAhvvzyS43hPQ2sLbAS4yrR10OI9enLP5pegt4eOnp76DhYYmVNvpUzZ85w5swZVq8WWXIuLi60bduWTp060blzZzp16qTRr7lkcHGFa24Tbjhb96z8HPjhExh/J+HhEbzxxhtMnTqV7OxsysrKWLhwIQ888ECVu6tPcLauGXlVoS68a3IDYMPHD26aAnv/hg3LxCQJRKzAVCJW/RchLnBhDIDax9uYrl61yQdExdV5JeDQXOAKGAwG5WQuLS3VZBhlZ2fTs2dPDh06xGgfHXJGCjRvLn78qyfUOdVTzbp165g5c6bymUJDQ3n66aer/Vxms5kdO3bw559/cvz4cUXgzdfXl06dOjFgwABOnjzJPffcU+NA2rt3b67o1AG/M0fo7aFDWvQ5ctu2lRrQAMJ33yIWoloJd04TNNmul1vAFoDesw5y0jiRkccrS7eQUCxe6+bmxsyZM6t1wWRmZvK///1PU/FtQ5IkWrZsKapwg4M57WIgMjOBsNQz6EuKKCstxWQqpZNkoqObjsMlVn7Pt5JQ3q2rrKyMgwcPcvDgQX744QckSaJNmzb06NGDnj170qlTpwuim18nJAmGjBF1Kn8sEy6/4kIhITF2Cn7NY5g0aRIffvghIJrhVGcA1G6f2lwzdc3Iqwp1EsaFki8HxHfVrS80bwmLv7LXDWz7Q2S4Db32wh1LORfIAKh07f1qr7itlrrIB4yof5Wmo1sieHp6Kn7GgoICTUZGZmYmbdu25dj61QzxEk3fw8LDMfQZAs3rl0ljtVr59ttvNTIUPj4+vPHGG1Wmtebn57NkyRJ++eUXsrMr59CnpaWxbt06li1bxo4dOyp9L5qB1NcTaeefPNdMR3ymmK0VFReTlZkp3CUGF+HfbN0BWra5IFIf9XYLBIYjD5/El19+ydcL7f0ovL29mTlzZpUd4mRZZuXKlfzvf/+rJOHQpk0brr32WgYOHFh1XYnFAkf3wrYNkJmKVZYxmUy0KC5mcFERB4qtfHcuk8QSbTGarZHKsWPH+P777/Hw8KB3794MHDiQfv364ebmeGNab3oMAA9PWL5QXIulJpHVdsNkevfurTwtISEBs9lcpQFTx85qS8uua0ZeVahrZBytAFwnmoXCrffDorl2eemdm4R7vAGxv8bQ9AbAYhEzAhs+fg3flwPlA9QuH1sLQketBAICAsjKygJE60TbEt428wjy9+P2ICMSFixWKycyc2g3oH7ZOsnJybz11lvs2WNPr/X19eWtt96iRQutm81kMrF48WK+//77OlUFJycnV2sULRYLXzz9CDP7isHRy90Nf39/srOzkWVYdzaZ0ePvxLtzjwsukVtft4DZbOadd97RpM0GBgby1ltvVdkbIj8/nzfffLNSG8w2bdpw9913071795rPIb1epAC27w4nj6D7ay3uKQm4u7kR4O9PJHBV6+akh7Tgb703O4/Gs2/fvkq/WVFRERs2bGDDhg2Kiun111/fJB3t6kVcN1Fot+RbMaM1l8EvX9LsqvGapxUUFGgyfmyos+eqixPYqG8/CDXqJIyLYgAAvLyFsuiiz+0Cj2sXCxd5YybJ9aTpDYB68IfGzQQdIR9QTsUZiMVicdiyOiwsTKlkTEhIQJIkunTpooh0Fa1aTOewYDHQArP2nea635Zz44031rrvgoICFi1axIIFCzTB5MjISGbOnKlpXCLLMhs3buTTTz/VKJ+C8DP3799fKezS6/WcP3+ejRs3KtWY1XHm1Cnoa58dh7Vuw4+bdrI5p4R8axmHl63ipe5XVO0KakLq4xYoLCzkpZdeYteuXcp9LVq04M0336xSGPDYsWO89NJLmu/R09OTe++9lzFjxtRv8iBJQma5VRycOiKaIpUPAjogJPUs1xsMXD9iAPKz0zmVlMLu3bvZuXMne/fu1fzuJpOJ33//nd9//51OnTpxxx130L37hZ1FamjVXjRP+eVLKDOB1YL+t+/p7Caxv7wHdXW59+r6mbrUMTS0H4TaANSlALTJcPeE6yfDV++JOECpCVb9LPoOXCAugAFQLZMNLo2bFdZXPqAGKp6EpaWlDjMALVu2VKQfbBkQw4cPZ+vWrcS6SoScP4Z/XBzZWVmsyiziTJnMBx98wMGDB7njjjs0FZEgXD1Hjx5l3bp1rFy5slKK3JAhQ3jiiSc0gcJTp04xe/Zs9u/fr3murfDoxhtvrDQLi4mJYfDgwSQlJTFnzpxqP190QLl7IyQCeg3C2KYzraOWsLLcz7tx40ZWrlzJ1VdfXfcvzQHU1S2QmprKM888o1QzgxC6e+2116qcEa5Zs4a33npLIx3cs2dPnn766VpnqjUiSWLAjIkTqqSbfrfHy8xm2L4Baf82WvUZRqsbb2D8+PGYTCZ27dqlFFqp/dkHDhzg8ccfp1+/fjz00EMOrwmoM1GtYPw04QIqNWEqLuI//ga+yTZzwuBZbeD16FF7f+KaAu9qGtIPQl2UWdVK5ILi6w8jb4Jl34ntcydEXUk93cENpekNQKkq374BAU4NNcoHPFCvVNCKQSaTyeSwgJDad7x//36sVisDBw4kIsCf21zyscoy6WlpRHXvxY5NByFPuLbWr1/P+vXrCQ8Pp3nz5ri6upKTk8PJkyerlAwOCAjg/vvvZ9iwYcoMND8/n3nz5rF06VKNG0ev1zN27Fhuu+22Wk/6xx9/nM8//7zqgVQnMfXKIXDDJOHfL3/fG2+8kU2bNikN7t9//31atmxJXFxcfb66RlEXt8Dhw4d5/vnnNTGQYcOGMX369Eqpl7Isi/hAeXctEK7DO++8k1tuucVxyQOSJNIEW3eAA9th61ohdAdCFmTjcti9GfqOwNixJ/369aNfv348+uijbNq0iV9//VWjP7V161b27t3LY489xvDhdZ8UOZSIaJhwDyyaS15SEpIEtwcY+DswvMrvrbS0lCNHjijbTXXeFBcXa+oALroBAPHb79lqT5f/e90FMwBN3xT+1FGR7wpCHnXak43fZ2aSkr2BX7CY+dezDkCWZYYPH64Mkt99953DNHOKioq4/vrrlVTTDz74gE4dO3Lkv09TcngvABYZPO56kqCOXXnxxRc1s5/a8Pb25sYbb2TChAmK0bJYLPz222988cUXlaoo+/Xrx7333ltpZVEtZaXMf/YJ7nr3IyxW++mhk2DaqBF8unQluipWS+np6dx1111KMM/Pz48PP/yw0f1060t8fHyVboFVq1bxzjvvaGbyt912G3feeWelQclisfDOO++wcuVK5T4fHx9efvllunXr1rQfoKxUdMzb9kfldFq/QBgwEtp11aQNHjx4kM8++0yjOQXCMD/wwAOO07ypJ+bk8+x++l5cLOI7j4iIJHjqw6LeRcWuXbt44oknADE5W7ZsWZPUQiQkJHD77SJRRJIk1qxZc9G+Gw1n4kVQ2Ma9z14QmfymXwGom0i4OihbITC8Qdk+aiRJwsPDQ1lCq5fSjcXDw4POnTsrqpl//vknnYozaWuQOWo0imbdeRb2zP4f//ufuK1du5YFCxZo3BIVj7dz584MHz6cESNGKMtoWZbZvn07n376aaUgZ2RkJA8++CB9+vSp+8GnnIdl3zMl2I0Bj09j3s4DHE5IokjWURoYQnyxmY8//ZQHH3yw0kuDgoJ45ZVXePzxx7FYLOTk5PDYY4/x7rvvNq0RqFAYGNt9hMYtUFpaynvvvcfSpUuV+/R6PY8//jijR4+utDuz2cyMGTM0Cq4tWrRg5syZjdbYqRMurnDFMOjcR8wG9/xlbzKSkwm//QB/rYd+I8TsUZLo2LEjs2fPZs2aNXzwwQfK+bx48WJSUlJ46aWXmrbqtRrW7D3IN8lF3N/MgJdeR4C/nzh+vV7IY5Tz999/K/937dq1yQrhbMkZIKr0L4nBH4RkiG8A5JYf34kjImW0ibmwBqAJcr8bg5eXl3KhOEoz38bgwYMVA3D2z7XIRWfR6SSio6NZcvA4GwqtQC4PPfQQs2bNYuTIkYwcOZK0tDQOHTpEdnY2paWl+Pr6EhYWRtu2bSv5Tvfv388XX3xRSS3S3d2dSZMmMX78+LpfSLIMuzbBxpXKYBMb5M8bk8ZhuWocz380R7lIf/75ZyIjI7nhhhsq7aZLly489dRTygCcnp7Ogw8+yGuvvUbHjk0gAVJLYeCpU6d4/fXXOXXKrkTr6+vLjBkzqszxLysr46WXXtI09OncuTOvv/5649tg1hcPT9EDosdA4RY6tNOuOZSZKvzGW9dAX2EIJJ2OkSNH0rlzZ15++WUl/vTXX3/xzDPP8N///veCpoyaTCa+/PJL0szwcYaZVztEiDibbBXNjsZPg6jWyLKsyazq27fpBr6KsiyXDJIkDOLOcpn408cuiAFoej3mEpXvurExAAejzgCoi/hUfRg8eDAGgwF/PVyvK1ACTx7BYYTc8X/K87Kzs3nwwQf54YcfMJvNBAcHM3ToUMaOHcstt9zC6NGj6dq1qzL4W61W/vrrLx555BEefvhhzeAvSRKjRo3im2++4bbbbqv74F9SBIu/hD9+s880JUmUqE9+GH1ENC+++KImu+LDDz/UVL+qGTlyJI899piynZuby6OPPsqiRYscW3NRQ2GgvPRjFn06m3vuuUcz+Ldt25Y5c+ZUOfjbZv7qwb9v3768+eabF37wV+PrD6PHw9QnKrlOyEwTzUi+fBcO7warhdDQUGbPnq3pBrZnzx6effbZ+jVBbyTz589XUjvTZD1e0x4HY/kYYLXAL19BynmOHDmi9M+GmruYNRa1AQgKusQ6drVQBb7V6glNSNMbAHUWUGM1gByM2gCoi1Acga+vL8MGDmRqgAEPnURaWhqy3gA3/odhV4/h6aefVmoRSktL+eyzz5g4cSI//PAD586d0wyUJSUl7N27l08//ZQJEybw7LPPVpr19+zZkzlz5vD000/Xqb2lQkoCfD1byDfY8PIRAbxBo0XmFmJVMXPmTGXWZLVaeeWVVzRNSNRce+21PPfcc0pmldls5uOPP+b//u//KuneN5gaCgMl2Urp9t81kh9jx47lww8/JCQkpNLzZVmulOM/cOBAZsyYgdFoJD4+nunTp3PLLbcwffp0x32G+hAQJCTC73hUcf0oZKbB8gUw723Yvx2jwcDLL7/MyJEjlafs2bOHF198sf6N0BvA0aNH+fHHH5XtCRMmENKpm5BDKD+nKDPBL1+yYdkS5XldunSp3/lbTxrSB/yCEaJq21qQVzcNrUbS9C6gQtWHuAiN32tCXa3paAOALHN3c1/OHRMXaVFREadiu9Gq/EceNWoUzZo1Y+bMmYpfMi0tjc8++4zPPvsMo9GIn58fpaWlVVbt2ujUqRNTpkypf2BSlkXGydol2kYrMe1g9AThfqhAICbmjB/A/j/XklRkZkVKEc8//zwff/xxlRlUI0aMICwsjJdeeklpkXnw4EHuueceBg0axIQJE2jXrl3Ds2lqKQwMdRMGNjg4mCeffJKePauWIZdlmQ8//FAjo92vXz9efPFFDAZDg2WHm4ygMLhukqgi/WudkBe2TRhyMmHVT/D3OvRXDOPpJ55AlmXls23fvp1XX31V+WxNQWFhITNmzFAmMZGRkUyePFk8GBEN198uVpxWK9b8XFrsPYQBMEOTpw6r6zguOQPg6S3GSJtyck6mmIw1IU2/AshXDaw+tbddvJCoU8AcbgC2byAwIxHvctfBnwUWPv1zu+YpPXv25Msvv+Saa66pFIwymUykpqZWOfjr9XoGDhzIhx9+yOzZs+s/+JvLhDLhqp/tg78kiRn/2ClVDv7sWQcfPUTA4Q0MaWbgtig3vurlTVxJskaHqCIdOnTgiy++0MhS2wrU7r//fqZMmcL8+fM5dOhQvWamxcXFpJpqbuidVipaHH755ZeVB39TiZApP3GYDR+9TdbqJVzlreMqbx13dWjJK6MGYTiwg/g1y2vUF7ooKwEbzULFimDKY6K6WG1Ic7Nh1c/o5r/D09deyZDBg5WHNm3axBtvvNHwhug1YJMkt3X0kiSJJ598UhuAjmkHw28Qh5mbS7jOwo2+etzd3Rk0aJDDj0mN2gBUtRK86KiVEvIa0PK0njT9CsAmeARC7fISQm0A1MUhjeZMvCjqAYJDQtiVmcfSPCvWnTs5cOAAnTrZG714e3vz+OOPM3nyZJYtW8bWrVs5efJkpV3a9OH79u3L0KFDG56/nJsFS76xl5+DmHVce1v1Xdqq8bXrJYkn2rrznx1b+f7775k4cWKVL/fx8eGll15i9OjRfPLJJ5pspbNnz/L111/z9ddfYzAYiIqKIiIigoCAALy8vHBxccFqtWIymcjLyyM9PZ3ExESSk5OJcNfxVS9v9FWsIKzAyKfeILBVe0hPguNJYsDPSBHukvJZVlZWFn7nznG9rzDAHh4etI4MQP/3OgDmrdjYYNnhC0ZgCIy5RWQFbftD9KW1De65Weh/X8QLUSEE9+jEj7tEmui6detwcXHhqaeecqgY4vLly1m3bp2yfccdd1QtqNf1CkhPJvsXUQDV11OHT7duTR6kvqRdQCBE9VLK3aqXvQuopFj7IQIvrS+8SQxAXg4s+1ZZkntHRLEzS8KaKXzs3333HW+88UallwUFBTF16lSmTp1Kfn4+qamp5Ofn4+LiQkBAAKGhoY2XrD4TL45N3XA+LEosyb1rWJ3V4GvXSxKjQ12ZN28ecXFxNcoQ9O7dm169erF582Z++umnSlXKZrOZU6dOaYK2NZFYbOXtY8U80dZdYwRkSULXqi+B2/6AZd/bA9sVyMvL49y5c8q20dVITEwMer39ez6TXfNFeGbTH3BkjyjiusDaR5XwbyY6TV0xDP5eDwd3Kb+bLjOVe4KMtI8L55P4JFLNonWowWDgsccec4gROHPmjKL6CSJ7atKkSdU+P6f7IA7P/YSI8pDAGEORaI1a1QrUARQXF2uy/S7JFYA6Tqq+TpuIpjUAafZWiLgawevSdQE5xABYrbBigf2HMxiQbpjMhB7J7HxSFMBt27aNhISEGvPivb29HStSJcvCV7x1jbZ1Yde+QoK2Nl9wHXztsizz6quv8vnnn9cYxJMkiYEDBzJw4EASExOVHrhHjhzRaNzUhg5o4eVGQGgLDrn50EZfgLGsEAk9ksEHkms+5qKiIuJPnyHTLFNgkbG6ujHyqutw8fEB5HIRwyKiw8NgX/VFetGuiLx2gwvEdoAuV0Bky4vb89Uv0G4INq+CI3sB0OkkBrQII9RSzPKUXFbnW/ntt9+wWq088cQTjTICZrOZmTNnKr+hn58fL774Yo2Tli1//8232WU8HuSCu4sLfi4usPl3IY1Aw/r91oS6FatOpxPd+C41NAagcvW/o2laA3BO5coIj7pkGiHbcHgQeMdGoeNh48qxEBJBj+BwoqOjFdfH0qVLuf/++xv/fnWhpEjMgs8ct99ncIGRY4UyZV2oRYQvvXzczsnJ4Y033mDWrFl1Wq1ERERw6623cuutt2I2mzlz5gznz58nOTmZnJwcCgsLKSsrww0rwVgI1cuE6qw0k834m0twdTGoBOe8wLWaJAOdXjSgCQ6HoFBSLRJPznyT89kiJdLd3Z33Xn8HnypaWk7rNoS3V8dVL4vRs9ydZy4TA+2RvcIl072f+H4v5qrAL1A0bOk1BP5cDmfi0et0tI6J4Rr5JN3cC/gh28KKFSvQ6/U8+uijDTYCCxcu5Phx+zlWl2y0bdu2kWqGFXkWprVqJoaH/duhS1/mr1jl8MC72gD4+/s7tAmUw3BVxUouQLZW0xqA08fs/1fnX76IVKwDaJQkdFY6bF5t327XRRlgJUnihhtu4P333weEuNh9993n8EY0lUhNgiVf26sLQVQbXn+7NuWsNmoR4Qu+6lb4eB4AO3fuZNGiRUyYMKFeh2owGGjdujWtW0QJH2jyOdEwPi0Rciu4YSTApZpTV9JBs2Dh2gqJFC0mm4UqDdlzcnJ49P77Sc4WBl+v1zNjxoyq+xlTi77QzFeJ7dga4g9oCx4zU2HNYqHy2XOgWGldzCLIkHAYdyecOAx/LEWfm02rmFZIp05yn76QjQUWli9bhqenJ3fffXe9z8v8/Hy++eYbZXvMmDFcccUVNb5GlmVFtuLPQiv3hUXaHiD+xy+569EXG9TvtybUCRVNmWraKNQThrKmr9loOgOQkylkBWxc5ObHVaF2s5SVlVFaWtqwcnlZhvVL7b5mL59KrR2HDRvG7NmzkWWZnJwcTpw40ajlbK0c2g2rf7K3ngNRaThqfP0L8moR4RvadSgbDhxXpBM+//xz+vbtS1RUVN32n5kGJw6JCUPiGXsAszZ0OjHbDg6H0Ehh1ILDq511m0wmpk+frmSoADz11FPVpofasMkOL5n/KbH5Z4n286B5px4EDB8vvpsrbxCaV/v+FnEWG0UFouXftg3CEPQYcPEMgSQJF1V0LGzbgH7bemJiYjh56hSDKaSNUcf8RQsIDg6ukyy5mpUrVyoFZj4+Ptx77721viY7O1txu1oB99HjYfUiAOb9sqRJAu9qN6+//6WVkKKgLt4sq7tLtKE0nQE4qipUCggWs7BLjIrVnQUFBQ0zAGeOa1c7Q6+tNMh6e3sTGxurLJNPnTrVNAZAlkUG0jZVq0JJEj1Hew9puBuuQgtFtQifBDz55JMcPnyYzMxMzGYzs2bN4sMPP6x+mV1WKs6RPVu1GUnV4eZe7sIJs/8NDKk9fqHivffeU+QRAO6++25NoVRNxBac4wnjGXC1AvlweAMc+dPei7pNJ3HLSofdW+DADuEWAjAVw5bV4v4rhokVwcVq6ejiKsTkYjuiX/4DrZCIPxFPGMU8EmTgy88+omPHjvU6N9WaSddee22dqqbVlb/e3t54d+4J+/+GlPO1B95rafxTHWo3b5Ud2y4FNCuAy9UFZLWI5sc24rpecv5/ED0B9Hq9MtsoKipq2NJwx5/2/6NaiSrNKggPD1cMgNof6TCsFvj9J5EGaMPNXeSKR7dp/P5rEOHz9vbmscce47nnngPg8OHD/Pbbb1x33XXaJ5pKRKxkz9bqsxxcXIXrJixK/A2OEPnRjTiHtm7dyqpVq5TtG2+8kVtuuaVuL65PL+qAIBhxg0jJ3LlJfE6bomdxoeibu3uzMMgVFD0vKCHhMPn/0G9cQSurhWPHj+NRVsY9/nr++OhtYmdX3w+iIupGLr169arTa9TZOH5+fuJ76H8l/PwF0f41Fz/V1vinOtStIJtM2qOCMCHdR9RPqVhjAC7XFcCJw5CfI/7X6aBz7xqffrGQJAl3d3flxKjYaKVOpCfDWdWyv9+V1V7U6mKv6pa4DcZqFcHe4yo54MBgUdh1gVrM9evXj+HDhyt54PPnz2fEiBH2KuETh2HNL1XnN4dEiA5ZLdsKd46uapXGhmaGLFy4UPm/Xbt2PPDAA3X3dTekF7WHlyis6z1ECHzt3GS/oHOzRebQri0w/Hph5C4GBhcYfj0u4S1ovmAup07Eo5egV8ZpcjasxG9IZaXUKnejWs3UNZmiYjwFEL99QBDTenXm7T93aKTI1c+tqd9vTaiv7yZpBl+LMGGdUAeBK0qBNwGOD4PbUg5ttOnU5OXMjUHt8mmQUNYx1YAbEiFSAKvBJocA1S9BG6Q5I8uw+mft4N88Bm574IL2FwW47777lO80JydHDLxlpUKnZvGX2sHfxVWkTd7xKEx+GPqPhPAW1Q7+8+fPJy4ujlmzZrFw4UJmzZpFXFwc8+fPr/W41K6fYcOG1U8GuDG9qN3cYcBVcNfT0K2fmBDZSD4H334IKxdBgWPVaOtFXFd87n6SMoNq9rlmscjIqQNdutgF6n799dc6Cf6plW2VZkeSBF37Ehvkz9ybrkKv0xrouvT7rYmSEnug3uEFZ7WtEjOTqn5dRdQGQJ1Y0EQ4fgUQf0ib/997iMPfwpGoZy9q4bA6o/b9VxToUmG1WpU+wUCVAdLqNGc+/fRTrrvuOqxWKy4uLpVT2Lb9IXzONlq2gxtut4tuXUACAwOZMGGC0kVrxU8/MsmaiUuWapDU6YXSaK9BdQ6KxsfH1yjJUFtmSEREhFJg9sUXX6DX6xk1alTdZoKO6EXt6S1cQ937ixiN2lgf3AHH9wtDUdFIXCjCW/BZkSsT9Sb89JJYHa3+WRjpuK41vvSaa65h/fr1gBCcW7ZsWWXXXwXUOfiZmZlYLBZhlDv0gD9XMKVXJwZER/JFjpUz+UV17vdbE+rr2+E6SA1ZJVaFu6oIrqRITO6a0E3o2DPNYoE/V9i3YzvUL93wItAot4y5TCvbGl11KiEIn7jN1aTX6yulHdY2wF177bXceuutjBs3jhEjRjBp0iReeeUVVn73FcVrl6DMuSKi4fpJF2XwtzFhwgQR2NPBNE8zWUft7QoJbwF3PCICkfXIiJk3b16tmSG1HZONkpISPvzwQ8aNG8fs2bNrDyp2HyEynqqinr2oCQgSabgT7tYmRpSaRCbZ9x8Lt+IFZsuWLZzMyObjDDN5FnD38BCDz4qFkHy+xtd27dqVHj3sNSUffPBBpSrvioSFhSmTGIvFYo8juLkrMbTYIH9mDu/DDz/8wMyZMxudNKFemTi8BqAxq0Q1agMgy1o15SbAsd/Cni32ptaSBP2vcujum4JGnQh5OfbKWkmCoOpLy9euXav836VLl0ozz5oGONBmTciyTGJiIhs2bKBo8TccPXKEw4cOcTw1nSNxfZAv4uAP5Y3nrx7Fg80MhLhIZGZmCgPVYwDceq/I3qkntQ3StT1+5ZVX8tRTT+Hpab/AiouL+fXXX5kyZQoPPPAAa9asqXoVaEuDrWgEGtCLWiGqNfznYREDMKoyxpLPCXnuP1eKCdUFID09XalRybDAthadcLUJN1otQjuqqKDa10uSxDPPPKPM6i0WCy+++KJGZqMirq6utGjRQtk+fPiw/cHOqg52505o9cQaQZPW3ThilQhiUqS+fvPrFlNpKI4zAEWFsFXl++9yBQRdeqmfFWlIgxLFT3/HFKav2Eh8erZY4lfjuzabzcoSGYRMckU0F0AVqP2XNuKMEjHG8p4CZWV8cPAs9z/2BLfffjvffPNN02Qa1QWrhbEuJQQZxAVnMpk4F9lGpMdW8x3VRm2ZH7U9LkkSo0eP5quvvmLs2LEaQwDi+//vf//LrbfeyoIFCyp/392Gw4MfwoCx0HGA+Pvgh9BtWK3HXm1cR6cXLqE7n9S6WaxW4db79kNRVNaE5OTkMH36dCU+ZTAYmHD//8H1k+0GLz9HSEzXcK0EBgby2muvKa6V3NxcnnnmmRo77alF4mzd8wCxig1QDagHVVltjUC92m+Qu7cmHLVKlKQLqgjqOAOwZbXIdwZhxfpf6bBdNyVqSdy6zBA0gchly5m1YTtx78xj/t97q33Npk2blAvB1dWVwSppXhA9gw8dOlTj+/7nP//hjz/+YOXKlXz99de8/PLLTO3VEY/yYNqREiuHTOICTUxM5IsvvuDmm2/m+eefZ+fOnY7txFUbm37HKytFqbT+Pc/CgnOZjfJlTps2rdrAbX0yQwIDA3nooYf4+eefeeyxxyq5FTIyMpgzZw633norv/zyi3agsKXBjntc/K3DzL9OgWsPLyHZcNM00f3LRlqSWA3s2Vrj4NtQUlJSeOSRRzTiew8++KCYmTePgSEqbf4Th4XoXQ3ExcUxffp05TpKSkri5ZdfrnawVbuNtm/fbl8BSxJ0UqWTHtxZ9+LAGnB1tQe566M7VSccuUr0VSVuZNfiWmokjjEA6SmiCtJGvxGXXPOX6lC7XWoLDFXrp7fK3PXtL9Vm7Pz666/K/0OGDNG4f5YsWcJLL71UY39SvV7PXXfdBYjshebNmzO4d096+nnQtm1bOnboSPPrJtC1a1eNEZNlmS1btvDkk08yefJkfvnlF3vGRVNx6ihs3whAgL8/u4usrC6w8ueffzbqorNJMlQ0Ag3NDDEajVx77bVKA56rrrpK8/vn5OTw4YcfMmXKFO3stB7UFtepdL7EtIUpj4tCMRtmM6z9VbR9dGBe+J49e7j33ns5e/asct/EiRO5/vrr7U/qMVDUtdhYt0TUMtTA8OHDNcZ49+7d1cZnevTooXzn+fn5ijQEAO17aFcg505U3kE9UWf8VbWibjSNWCVqCFStfjIvBwOwcYV9huLfDLr1d8huLwTqJiS1GYAaA5FWmS8+n1vp/vj4eE1ATH2B/fLLL4rv1cPDg06dOlWKSeh0Om644QbmzJnDY489xvTp03nzzTdZ/dU88nJzsVituPj6MfD2qbz33nssWLCAqVOnEhqqdb8lJCQogc/333+/wdWUNVJcCL8vUja9W8bya7H4TouKiti+vW5phdUxZcoUjhw5onGnHDlyhDvuuKNR+42NjWX69OksXLiQCRMmaAaKhIQEHn/8cWbOnKkpJKoLDQpcu7jClTeWN+ZRTaKO7oMfPhFxp0ZQVlbG3LlzefzxxzU5+//5z3+YNm2a9smSJKRDXMq/j5JiWL8Y1nwNi94Rf6tIb5w4cSLDh9tdHgsWLKjUwhTEOa9uZvT336pJpJe3MIg2HOAGUqd+Nqjmpy40YJVYeR+qGFl6HdNHG0jjDcC5k3BaJZc7+GpFeOtyQG0AamuiXmsgUqWGaOO3335T/m/Xrh1xcXGAqEz96KOPlMeCgoJYvnw5f/zxB8OGDSMsLIyoqCh69uxJZmYmu3btYs+ePWzbto2VK1fy9/IlnDx5kgMHDrD+0DGWLV9Bfn4+wcHB3H777Xz//fe88cYb9O3bV7MqKC4uZsmSJUyZMoVHHnmE9evXO65H7LqlUFju89UbMIz9D7372ycDK1asqOaFdSc2NpaZM2c6LDNETUBAAPfeey/ff/8911xzjeZ7W716NVOmTGHPnprdIGoaFbhuFSc6falFFFMT4ZsPxIq7Aezfv58777yT77//XnEJGgwGnnnmGe64446qXaC+AdCvfDAvy4UdP8OWxXBos/j70UMixVGFrQuYTfJclmVmzpxZZZ2NWjROYwAAOqrcQPEHG50Xr155N/lKuDGoMyfTU5o0GaDxBuAve3YLEdGiMcZlhPqkrE0HqNZApJ/W7WUymTTZP9dddx2SJHH27Flee+015SIMCQnhzTff5Ndff2XGjBlYrVbatm1LTExMtXnqzfTiYpVlmf2JKbz77ruMHz+et99+m7NnzyJJEn369OG///0v3333HRMmTKhU/r5v3z5effVVxo8fz0cffaSpU6g3Z+K1PuKBoyAwhNGj7dWkf//9t0aI7VIlICCAxx9/nDlz5tCunV3EMCMjg8cff5z58+fXqZ1iYwPXeHjB+GkiUGyjqAB+/Ex0NqsjycnJvPLKKzz88MOazJzIyEg+/vjj2vWQuvUDN1corSKVsZpCJ6PRyPPPP6+47FJTU/npp58qvVxtAM6ePatp2UirOHAvP//NZVp9sQagPv8LC2t2ZV1UmoXakyWsFm1dlYNpnAFIPq/V/B846pLU/KkOWZY1s9/aDECNgUidxNQu2tz+jRs3KjMNDw8Phg4disViYebMmcoS1MPDg//7v//j5Zdf5pdfftG4DNzd3enTpw+TJk3ikUce4cknn+Shhx7illtuoUXzSPTlJ0l57BeTycTy5cuZMmUKr776KgkJokYhLCyMe++9l59++oknn3yS1q210ty5ubn8/PPP3HXXXUybNo0ffvhBeyHWhtkMaxfbt0Obi5RPhJ9XPRP88ccf677fi0xsbCwfffQRd999t+IelGWZr7/+munTp9eY4QIOClzr9CJV9Kqb7NdWUQEs/EwIz9VAZmYmH3zwAZMnT2bDhg3K/ZIkMXbsWObOnVu3FZSLK/jX0KXLVuhUgbZt2zJu3Dhle8GCBZUG3vDwcE1zJI2bUK8Xekk21MWODUBtAOrrzrug6PVCDsVGwukme6vGGYDdW+z/h0fVKINwKVIxEFRbeXi1gUidxOfjRhFrKbS7QBAt92wMGzYMNzc3Fi1apJElmDx5MjNnztQE48LCwnjqqaf45ZdfeOONN5g2bRrXX389V199NWPHjuWee+5hzOhRdOokVBt79OypkZaQZZn169dzxx138PHHHytGyGg0cvXVV/PZZ5/xv//9j6uuuqqS0Tt16hSfffYZt9xyCw8++CCLFy+usjG9hl2btPUfI8cq1aySJGkGgd9++4309KYNbDkSvV7Prbfeyscff6wZqHbs2MF9992nEUKriEMD1537wNUTtEZg8ZdVukVSUlKYPXs2t956K4sXL9Zk4bRp04aPP/6Yhx56qH5yCC61uHWrKXSaOHGisootKChgyZIllZ7Tu7ddK2zXrgq+frWOWPK5RqXFXjYGAEQWlo3zlXuEO4rGGQB1OXuPgZfV7B8qGwC1Pkl1VApEPv00R158mDt6dhSpagd3AmL2pfYXjxo1iszMTL788kvlviuuuIIffvhBczLedtttfPXVV4wePbrmC9TFiCRJeHl6MmLgAH788UemT5+uKa6xWCwsWrSIyZMnayR7JUmiffv2TJ8+nZ9++onHH3+c9u3bV3qLQ4cO8cEHH3DTTTcxffp0Nm7cWDmlryAf/rLXONCtX6Xq79GjRytZTmazme+//776z3WJEhsby5w5cxg4cKByX2JiIg888ECVAU4bDg1ct+8Oo2+2b2elC7mGclfiqVOneO2115g4cSK//vqrZnUbHBzMM888w6effqpxa9WZgFpqeqopdPL29mbs2LHK9ooVKyqlJKvTQffs2aN9PDhcez4dalhGFlzOBuBUtX2tG0vjBDFseudG98vO9w/aTABJkjR5wjVhC0QqbF5tj4Xs2wa9BrN161bl4dDQUNq3b8/HH3+sxBy8vb05d+6ckomh0+l44YUXGDJkSN0OXl0yXlyIq6srV111FVdeeSXr169n3rx5SvVwZmYmL774IkOGDOHRRx/VdELz8vLimmuu4ZprriEhIYG1a9eybt06xX0EYkWxbds2tm3bRkBAADfddBM33XSTWD1sWW3vXOTmXmX9h6urKxMnTmT27NmAWAVMmDChUqaSI3B0H1k1Hh4evPLKK3z33XfMmyc6oOXn5/PEE0/w/PPPV6rvsFHpfGkMHXqI1Va54KJ8dB9HZVc+3/h3lemqgYGB3HbbbVx77bW1JjnUSC1d4WoqdLr22mv59ttvAWE0z5w5Q8uWdm+BuiAsLy+PpKQkIiJUg377bvaeEUf3NtjVfFkZgMiWYhVttQqZkNSkJlGNdUwaaJuOF6/BRSNQZwK4u7s3vFS8c2/7CZmbBScOaQxA//79yc/PZ9myZcp9ISEhJCXZgzvPPvts3Qd/EJXHNlTl4jqdjhEjRvDll18yZcoUzUW/YcMGpk6dWnmZXU5kZCR33HEHX3/9NZ999hkTJkwgKEhb4p6VlcXcuXOZPHkyf6/8TeuX7T9S29RaxZgxYwgOFrNEs9msWQk5isaohdYVSZKYNGkSL7/8sjJhMJvNvPLKK5qMryal35VYwqPJzMri6NGjnP/uM/ZWGPzDwsJ45JFH+P777xk7dmzjBn8Q6YzX3lf5/joUOgUHB9Omjb0fxc6dOzWPe3l5adxrleoj1HGA3GxIa1gigbr6u6ioqE6B/IuGi6voh2HDAXUQVeEYA+CIZiMXAfUKoC7un2rx8dM0gbFs26Bx//Tt25dly5Yps3+DwaA5yW+++WZN3nSd8LWrKWp6/pZjNBqZPHkyX3zxBZ06dVLuz8zM5Mknn+SLL76oNkddkiRiY2O59957WbhwIe+++y4jRozQ1EmkpaVxeO77JCUlCp0fv0Ah/1ENLi4uGrfH2rVrSUuro0BWHah30VUjGTx4MO+++67SVlSWZd555x0WL15cyysbR25uLt989x0P/LqWs+fOUVIiJDd6uIsJSGxsLC+++CLffPMN119/fZ1XtXWi+whoNxxc/EHvBS261rnQqXv37sr/Bw8erPS4OjHh5MkKPm8vH+1geKLmqvnqqJgFd0mngoI2Bfhc08QBHGMA1P6qywiHGQCAnoPs+z1xhGCrqNo0Go106tSJlStXKo+7ubkpq43IyMiGNbjwUxmAvJxqc4UjIyOZPXs29913nyaT5ZtvvuGpp56qtYGHJEl069aN5557jkWLFnHzzTdjMBhopoeu7jpSU1NJSkwS6p611H+MHDmSkBBR5GKxWByaEVRb0dWdd97J6tWrHaoB06FDB2bPnq3pIvfBBx80SabT6dOneffdd7n55pv54osvOJaRzc4i+wz2+phw3nvvPebMmcPQoUPr1++gPkS3B9dm4BYGvi3qXOikjjFVZYzVLiF1QoRCa1WM6mzDjHnFlOpLOhUUIEo1riaeaZI4QOMNgJu71h1xGVHRBdQowpqLOgiEf3Gol/hqO3bsyLlz50hMFD5Mk8mkyapRN1CpF74B9lJ5Wa5RMVGSJG6++WY++eQTzVJ79+7d3HPPPZw+Xbc0Mz8/P+677z7mz5/PjVFB2Bxmh5JT2ZRee0MTvV7PzTfbg5i//fYbWVmVVy8Nobaiq6NHjzJz5kyeeuoph3Zja9myJR9++KHi3gL45JNPWLhwYcOa+6gwm81s2LCBxx57jKlTp7Js2TKNnMa2EonAwEDi2rWjf3QEXWNbNa3iJWgbDNm6/tWBmBj7YJaSklKpKEydvFClimgLVRwn+XyDZDH0er3mWrvkDUBYlL0eoKxUxAEcTOMNgF/1GjaXOg5dAYCyCigsKqKzmw4fnQhwqeMBLi4uij82KiqKvn37VrmrWtHrtcJhtjTMGmjdurUyQ7SRmprKgw8+WC+9m8igZtzcPgb38iylPwqsfDZ3bp18qmPGjMHfXxy3yWSqsjioIdQWULZlVO3Zs4c1a9Y45D1thIWF8eGHHxIWFqbc99JLL9GuXbt6xyNkWebYsWP873//46abbuKVV16pVH3s5+fHlClTeOf7H4lq31F8NlluMjeBBm9VJ7t6SBWHhoZqVqDq+BdA8+b2AGdiYmLlcyk43N4vtxHFURXlwC9pXFy19QCJjq8HcMwK4DLF4T1CW7cHH3+KiorQSdDPU0e7du2UoJcsy5r3vP766xs3Y/NXGd+cukk/e3h48MILL3Dvvfcq711UVMTTTz/N5s2b6/a+8QcxyFaio6MpscKuIisJCQns3bu31pcajUZNc5alS5c6ZCamHnwrotPpNAZi27ZtjX6/igQHB/Puu+8SHh5OUVERx44dqzSIVRePMJvN7Nmzh//973/cdtttStFeXp62d3JsbCxPPfUUCxcuZPLkyfj5+4sGOzbqMAmoiTqtWNRNyy11d6fp9XrNb1CxIjw83O5KMpvNlWtF9HqtvHwD6wHU1/klvwIAiIy2/59YhWuskTQ+dcfFgUGmC4z6BHCIAdDpKIzthPnPPwDo66EjKjKSI0eOAGKgtQ26Op2u/oHfivg3s7ekzKr7xS9JEhMmTKB58+bMmDEDk8mkZLK8+uqrmvL8KjksZqRubm5kBjenLEXICW/evFkT7KuOMWPG8PXXX1NUVERhYSELFiyoLERWT7Kzs2nbtq2myA7E99ynTx/N0r9Xr14VX94wMpNEK8CcdPALIrT7CN57771q00FBGIH33nuPCRMmcPToUY4cOcLRo0er7Uft6urKoEGDuO666+jYsWPlCYPaJVPHSUBVVNeOdO7cuUyZMsX+RHVsoZ4+6bCwMCW9uKIBcHNzIzAwUOlLkJCQoMSLFAJCIKncPZTZsASCKnsRX8qoDXzSpWgALmPUJ4BDDABwyjMQqww6CfxdDeQe2KUEHktLS/Hz8wNEALG6xvB1Rn3xV5EJVBv9+vXjnXfeYfr06RQUFGA2m3n55Zf54IMPNGl7GspKRWFKOV69BsB+sV1bUxvlNV5ejBs3Tukb/OOPP3LddddVSjmtDyEhIYSFheHr60tKSgolJSW4ubkRGhqqGfy7d++u0SdqMHvWVW4CvnUJwdfdT5s2bTh69Gi1L/3555+VSUF1dOrUieHDhzNixIhKzWs0qNtqNjDAXa9+y2pJ73p2nqtpBQAiYUFtANQFYgD4qVyehbXHnKrishGEsxGmMgAFeeLm5VP98+tJ411A5rLan3OJ0hQG4HRqOodNYlBwc3OjdI9d4dBoNCozuC5dujT+zWpJBa0LHTp04K233lI+v8lk4rnnnqvkflBQZyO4GgnqYr9IK/p1a+KWW25RWgiWlpYyZ86cBh2/jbFjx+Lq6oqHhwcxMTG0b99eI6Zn07/573//2/hAaWZS5cEfFGG0Ae1bVf26cqqq8DYajfTp04dHHnmEn376iQ8++IDrr7++5sHfQdRLtlrdD8C9fsemLu6qKtCrjgNUGQh20xY/NoTLKgYAQhZbHXdJrr7NZkNo/AqgkRKtFxO1C8hRF1pCQgLHi6x0dNNhNBqRk+3LNnVpflXSC/VG3TouP0cEAhswuLVr144ZM2bw1FNPYbVaycjI4L333uOll16q/GRbRSZARDQBzeyz9vz8fGRZrtMA6+7uLgKZ77wDwLp16xgyZAgDBgyo9/EDtPByYeGdY0g8vJdDieksTSgisdhKixYt6Nq1K9dff70m1bBR7F5bdUUsgGxlWrdontHrqx1UIyIiiIyMpHXr1rRr146OHYWmU4Ny9ktVrqMGFmPWS7Za3aKwntl/6kygo0ePVjpXoqLsuf5VaiypP18DVztqF9BlEQMAIa5oC7gnn4fYjg7bdeMNQA3Noi91msIAJCUlcdwkIyNmdSV5eYQYILHErMlBd4g8gdoAmM1QXAQeDfscPXr04O677+bTTz8FRNXwqFGj6NOnj/aJagXKZqGVmuhYLJZaG+vYuPrqq1m5cqXiOnr77beJi4vT5NXXiXJ3jJ9sxQ/oEG5gfIQf1jH3ou/ZBK1Jc2oWs8s+c4xHH32U9957T2ME9Ho9H330EXfddZfj8vQLVCs1r4a5FOslW63+/QPq2Oi8nLi4OCRJQpZl8vPziY+P17ga1QagyloA9aDfwNij+jq/bAxAeJTohwAOXwE03gXkNAAakpOTKZYhqUzG1WjEZDIR7aqjpKRE8UV7eXnVf5CrCqO71g9bUPe0vKq4+eabNVXDn3zySeV0vFzVDNC/WaVmMvUZ2HQ6HdOnT1e+l9zcXF544YVqA6JVUo07RpKt6Jd/WmXHqoaSlpbG2rVr2Xmi5mDc30dPsXPnTgYPHsyUKVM0InD33nuvY4u01DNyb78G7aJestXpKt99YP1iNl5eXpqV7/r16zWPq1doaWlplfV6SlQ+ewcYgMsiBgDaKuiUBIf2h268ASg1XbZuIEcbAFmWFQG2xDIZF4MBs9lMiEH41m1L/MjISMcU7EiSdhneSGMsSRKPPPKIcmxnz57V1DAAUKr6rY1uGk18T0/Pen+u5s2b8+CDDyrbR44c4fXXX697sVYt7piqdOrrislkYuvWrbz//vtMmjSJCRMm8Prrr/P+pkNYqrkILbLMyhQRKLVaraSmpjJr1iyHdy9TUM/I/RtWk1Nn2WqrFZLtIoGERFJfhg2zy0asXLlSM4EICgpSpDWAyg2K1MWO6kr4eqC+zmvr53DJEBxud+2WmmrtA1EfHCMF0ciZ58VCPcOoqBPSEAoLC5VZRarZPkAEGyTMZrNiADRKh41FbQAamBmhJiYmhkGD7LIWv/zyi/YJ6hm/iys5OTnKpq3Aq75cc801XHfddcr2pk2beP3116uWbchM0vakTatlSVyNTn11mEwm1q9fz4svvsj111/Pc889x5IlS5RKboDEYitvHyuuZASswAafjsT2GaQMpkVFRXz++ef1OoY6U1KsdQEF1H1GbrVaOXv2LJs2bWL16tW0atWKP/74o2bZ6sxUu/KrpNMWKdWRK6+8Ulnx5eXlsWWLvaeITYPKRqVMqgxV7n8DjZ3awFzyiqA2jG7a3zYlofrn1hPHpIHm52obGV8mqGcA6hOjoajFzQrQYy0fILx0kkaNsVJ+c2Nwb3xmREVuuukmNm7cCIjK2dTUVPsxq/37FoumYKcxbq3/+7//Iy0tTekL+8cff1BYWMhLL71kz9CqKvWyNqrRqVcjyzKHDx9m+fLlbNiwocbskPDwcDp27Ei79u05HRZAy+yT6PMzwS8YXbfhDA8MZziiGdCsWbMA0eSkrsHxeqEuhnI1arNFqntJZiY//fQTa9asUVIu1URERDBx4kTGjBlT+XjVlcbBYQ1yw3h7ezN48GBWr14NiJRYtQpuXFycUpV+6JBK9K3UpE1ACG7YJEp9nV82KwAQxtZW+5CWCB1qr7epC44xAHk5DtnNhcRisWgudEesANSDoZufv7K89dJpfeONyXevhDroW+QYA9CxY0ciIyOVop0//viDW265RTzoqtItMhVrPnNjPpder+fll1/m+eefVyqnt2/fzgMPPMCMGTNo7qGv/+Bfi059SUkJa9euZfHixZw6darK53h4eNC7d2969uxJr169NJo/goFVvq5/f3sf36KiIvLz8zV9GByCujl8s9BaM8BOnTrFE088UWOHt8TERN555x2OHDnCE088oTUCqvoPjVJlPbnhhhsUA3Dw4EEOHjxIx44is6VDB3tfkYMHD9oNZ8Jp+29vdBdukQZw2RqAkEh7MxwHrgAc5AKqJmf8Eqbi8s8RK4CMDHslpqefH2WlwgDoK1yXDXWVVIm7qn6hxDFBLUmSNL5a9TIdD5WhLMjVfObGGjaj0cjrr7+ucUGdOXOGu+++m/iFn9Qy+Ff4kmvQqc/MzOTzzz/n5ptv5p133qk0+Ht4eDBq1ChmzZrFkiVLeOmllzT9DOpCRX+6IwXoFLJU7q3Amo8tPT2dRx55RDP463Q6mjdvrhh8NStWrGDFihX2O6xW7QqgEQrAcXFxmiYwCxYsUP63GQKAnJwcezro0b32HUS1UlqO1he1Ea621uVSRG3w0pMdFgh2zArAAb7nC43aAEiS5JBCMPWSOsDPj7I8cfJaKvxWDp0JqhuwlDiusKV///5Kpe6hQ4fIz88XRlIdfMvJ0qh52gq7GoOrqysvvfQSn3/+OT/88AMgZurnD+4mNrgGl0NsdwhpIXz+fsFi5l9h8D958iQ//vgj69evrzK+0K1bN8aMGcOAAQMaptCqQl3pqtPpHD/7h3qlZK5cuVKZ8UqSxJ133snVV1+tVKaDOOYZM2YovveNGzcyZswY8WBaIpjKzy+drtH9v2+77Tb2798PwF9//UVmZiaBgYF4e3sTHR2t1B4cOXKEqLBQOK5yB7VreBGleqJXWFiIxWJpOulsRxKk0roylQivi2/jJ5KOMQCXYSqoevnn5eXlEP+sejD09/bGnClWABbQpFM2mQFwUAwARGaIv78/2dnZyLLMjh07xKpArf6akaL5Hh31uXQ6HXfffTft27fnzTffJD8/n5SSWlw/IS1gxO2V7i4pKWHjxo0sW7ZM61Mux83NjVGjRnHjjTdq8tAbi7pPcKtWrZpmkFGLv9USAFZLT9x4443cdtttlZ4TFhbGhAkTeOWVVwChFKtwVpWRExallaBoAL179yYkJITU1FSsVisrV65k0qRJgFgh2AzA0aNHuSrYxx58djVCq7gGv29F+ZX8/HyNEbxkcXMXab42Ce6MlEvIADjI9XAhcXQGEGgNQDMPN2WWmW+RNY2uHVrer1ZjdWA6riRJ9O7dm1WrVgFCQXPYsGHazI+0ZMwl9vd0iKS2igEDBtChQwfef/99VuzYzITmRvRVGGorEqd9W+J6/jwWi4WMjAxOnDjB3r172bNnj0ZD30ZQUBBjx47lmmuucdjvr0ad415J08YRWK3a2FstaZHqz1iT60Ot56RxeakNQC3+//3797Nq1SoOHjyI1SqqsUeMGMHgwYOViZYkSVx99dWKPPbKlSuZOHEikiTRtm1bpYHS8WPHwEN1Xnfq1SgBSnd3dwzl6dkgvovLwgCAqLuwGYDsdKDhhtCGgwzAZaCpUQG1AXCE/x/Q+Ff9XQ2U2QyA2aqpjnWoAVDHABwUBLZxxRVXaAyAxWJB3ywU9AYhBWy1ECSXYtPfbIpmJP7+/rzyyivs3r2bb756n9v98jRGwCLLvHWsiFUbX6jT/tq1a8e4ceMYPHhwnSuW60t8fLxmtaGOpziMgjytGqdvzQagW7durF27FhDtODt06FBJjnzr1q38/PPPyrZiuMxmrRZ9i6oNgMlkYs6cOZXaYiYkJLBlyxb69evHU089pczCR40axZdffqn0Bzh69ChxcXGaVFDvxFPILb1EhEeSoHt/GoMkSXh5eSnpy5dVIDggGM6US3TXQ/23JhxzBZTWo3LzEkFtABw1IKtz4v2wkFtuADIqGACHzpTdHB8EttGrVy9ltpSbm8uhQ4dE8C68BZwXAcFWBiu2LgJVzbQdRffu3enW7Sv2b1hF9rpFWLNSSC6xsjKllMTimt1Dnp6eDBs2jKuvvpp27do12THasMVOQBicJikAU3fjcnOvdVY8cuRIfv75ZyXgPXv2bFavXs2gQYNwd3dn165dbNq0SXl+SEgIN954o9hIPmeXYTC4aCtTyzGbzTz33HPs2rWr2mPYunUrzz33HLNnz0av1xMcHEynTp2UWMCOHTuIi4vTaAYNMVooNZViNLqKvtt+DU81tuHt7a1cq5dNLQCAj8rl46DEG8cYgAa0Z7vYNIUSqLq/rpfZRFZ55kdaqV0fx8XFxbEzT/UKoKxUqLPWU6a3Ojw9PenatauSlrlp0yZhAFq0VgxArME++Db1bEqSJLoMHQVDR5GVlUXZjh102L0bj9OnSU5OpqTcHeXv709kZCRxcXH06NGDzp07N9lsvyL79u3TNNapytfuENTduOogAWEwGHjttdd4+OGHldTdI0eOVClL7eHhweuvv24PhKuzfyKiqxSd+/TTTzWDf8uWLRk/fjzu7u4sXbpU6Wp26NAhfvrpJ6UpUM+ePRUDYGsW7+bmRkhICKG5aYS4SJhMJRjdjNBvRK2fsy6o3WGXlQHwUhd9XkoGwIGNti8UagPgiBWA1WrVnExG1Qwt2WRGrxeDsqP95LhX8F8nnoTj25UmJXQfUefG3VUxcOBAxQBs2LCB+++/H6llW9gsXEOROiveOsi3VggaNjEBAQFcddVVXHXVVRfsPWvDZDLx7rvvKttxcXH1Vje1WCycPn2a+Ph4srOzKS0txd/fXylAU84ftQFQiwLWQFhYGLNnz+a9995jx44dVT4nJiaGxx9/nFatVJLW6vz/KtI/9+zZo3EdDRkyhGeffVYpfhw8eDCvv/4669YJWY5vv/2WMWPG4OXlRVyc3Y+t7kAWERbGlVaRVWcqLYU2nRxWbKq+3i8rA2BUjR0OmnQ7xgDUozXcpUKJg4OXhYWFSqDXUwc6kz0uklhiRu8hsiaq0oJvFAaDODFMxVCWC18+V6lJCdfdX2NBVE0MGjSI999/H1mWycjIYN++fXTt0kXJSDC6GunkpmNrkbVqBcd/EXPmzFF07CVJ4v/+7//qHBdJSEhg8eLFrF+/XuNKVGMwGOjduzcTJkygs9oFVA8RuLCwMN58802OHj3Kxo0bOXHiBGVlZURGRtKnTx8GDBigPWZzmbYTVZS214Esy8ybN0/ZjomJYfr06ZrKd0mSePjhh/nrr78oKiqioKCATZs2MXr0aI0AXE5ODoWFhXh6etLT24UQF3EcZWVl0N9xqq7q6/2y6AlgQ6fKJHPQpNtpAHDMoKyeSYQa7BdQkVWmWGfA9g4OXwGAWBoW50JpFbo35U1KiIpr0ErAz8+P3r17K310V65cSdeuXaFNR9i1GXd3N3p4CANw/PjxRn6Qi098fDzz5s3jzJkzREdHM23atDr58FevXq0Jfo4bN65O8YasrCzmzp3LqlWrNJliVWE2m9m6dStbt27lxY7N6R8aiKurS4PSAdu1a1e3eEjSWfv1bXAR2vQqTp48qQl4P/bYY1XWUHh7ezNs2DB+++03AI4dO8bo0aMJCAhAr+qdkJGRgaebGz1LsrBdUafdfAl3oNSM+hpUjwOXPOqgfwML4SrimL3Icr37g15s1D98Y4t+QOtSaulpVPL+k8tkzWzIEe9VCW9fMNfgE2ykKuaoUaOU/zdu3Cg+a3uhReLh4UlLV4lmenHxXkg3kKOZP38+cXFxzJo1i4ULFzJr1izi4uKUVMXq2LFjB2+99Zay3apVK+68885a32/dunXccccd/P7775rBX6/XExsby+DBgxkxYgTdu3ev5Ka0pCVz9NhRkdJZT13+eqH2/0e21PYEBkUzCoTLSy3lUJGwMHsxk22VI0lS5S5dB3fiZREuDlmG3W4OkE5XoW6805SJCw5HXXDr4ZjUZcdFxsxmcL0MKurKUcvQNqgTUwXUS8koN4NiABLLZE0RkMNdQCCyA6y1tOaspyqmmv79++Pt7U1+fr6ilnnNmDEQGIxLZhpGo5G+nhaW5VnZtWsXV199dYPf62JRr764KrZs2cIrr7yi5JX7+Pjw6quv1nhOlZaW8uGHHyqzYRuRkZFMmDCBIUOGVKpNsFgs7Ny5k++//57jB/YTYJCwWCycOnWKkvhTXNHaAR3mquK0alVXRfqnevavlvCoiorNcarEaoVt6xU31PZiK7k6xyQ12FAnBFSpOHupopbDrmc3tupwzAoALrvewGoD4IgqTfWKIsxFpxiAJLOobLXRJAbAvxnUdpHUQRWzOlxcXLjySrsPdvny5SInu7PoFubt7U0fDx0GRFn/5Ui9+uKW3/fll1/ywgsvKOeSu7s7b7zxhmamW5Hs7GweffRRzeDv7u7OI488wpdfflltYZper6dPnz68//77vDhtMvryc6rQKvP8O+8rmTQOpagAUlXCY9FtKj1FrYCrTt+sitOn7bUENuVYWZY1q2f/tPOQK6rPrTKszne8VIP6eqzU8OhSJlEVi2mAFHdVOM4AXGa1AOof3hEnmHopGWIAWeUCavIVQEAwGGqQYahFFbMuKJowiPL8kydPQseeYHDB18cHD51ELw8dO3bsuLwCa+XUpy/uwYMHue+++/jqq6/sgX9PT8VlVB2nT5/mvvvu01TbtmvXji+++ILrr7++TuehJEn0DQsktnVr9Ho9p0tlLBYLM2bMcHwa7qmjdtExLx+tHk056uuophhGWlqaps7A5irKzs7WzML9Tx5Q9run2Eq2xfHXjDrIXVvc5ZKhpAhU/cUbq8Vko3EGQJ2WdJnJQah/eJ0DAiq2k9hbB64SSi+AdLP2BGsSA9AsBHSu4FrFLL8GVcz6EBMTowkarly5UhQgdeyJl7c3ep2e4V46ykwmrXroZUJtfXGjoqLYtGkTTz75JA899JA2ZTEigg8//FDTTrMi27Zt48EHH9TESK655ho++OADQkND636gFgsc2YuHhwetWrXieJkYzDIzM/n222/rvp+6cFS1qmgVV6XctLq5UXVFYLIs88EHHyjXSFBQkCKXrc4c6xzgjWu5wqnZbOaPArEiU2tMxcfHa5rWqH+HuqI2Wo649i8IB3fZM3/cPSsF4xtK4z59E8oQXEgcMQuwuQ8C9RJIElarlSKrTIms3X+TZAH5BghxLhdfcG8BnYdBxwEwYCw8+CF0c4wUgXoVsG7dOvGZew1Cp9Pj5+dLgEGit4dOkY+4nKipL64kSezYsYMXX3xRqYmwMXLkSD777DNNOqMaq9XK119/zTPPPKO4OiRJ4v777+exxx7TJAjUifiDiviip7cPcTfeqjy0dOnS+vVTromiAjir8v9Xo8Cp7nuwePFipaGPjZKSEl5//XXNpGDKlCmKH15diDYm1C7UdsaiJ6l8vGvWTAgQNjRIXxH1iuNCFQg2CnMZ7FZNqjr1rBSMbyiN+/RePvbAxGXWFEZ9sTvCD2jbh7deKNPLskxuuUu5yQ2AJImGEedOiJVAWHvo2ziXT1UMHjyY2bNnYzabycnJYe/evUIvpkMPAvLzyMzKYpS3jpm7d5GWllYv/XxHIssyWVlZnDt3jvT0dHJzcykqKqKsrAyz2YzVakWWhUCfxWLBbDZTUlLCVVddxcqVKytNCNq0aVPpvvbt23PPPfdodO0rkpyczBtvvKHxzxuNRl588UX69etX/w9mtSgFeOLAOjL2ypv49qefKSoqoqSkhD179nDFFVfUf98VObhTBGRBXOeRVfv3R44cybfffktmZiZms5lnnnmGzp07ExcXR3Z2Nlu3btWkSHfr1k2TVWbr/uWvh05u9hXGuly7SzU0NLTBQfqqULtrHZEA0uTs3AS55UKTkgRdHPD7ltM4A+DXTHTqAcit3F7uUkZtAByZCeCpKz+JZZkCqxg01AamSVxAICo0z5UrNiacAhxvALy9venVq5cS6N20aZMwAP2vxPPIHlxdXfEpLWWYp8Tvv//O5MmTHX4M1WHrL7t9+3b27NmjkeWoD7169SIlJYWSkhLc3NwIDQ1VpEJcXV0ZOHAgY8aMoWvXrtUWeRUXF7NgwQIWLFigGWzCwsJ47bXXag2WVsu+bXYJaEmCvsMxGo107NiR7du3A2h6FzcYqxX2qmbynXpVm3fu4eHBCy+8wBNPPKFcR/v3768yKN2tWzdeeeUV5XvLyspSJCIGeurwLg9+W3z82ZxsX2k1b96cDz74oNYg/cyZM+v08dSrpCZJy3Yk+Tnw9x/27W79HKKHZKNxBsBfdSDpl1f+t3rp7QgDYPMluutARtxsEvYWi0V5vMlOOHVQKOG0KBVvhGxudQwcOFAxAH///bdo2efjh9RzIIFJiSQnJzPMS8+8337ltttua9IltizLbN++nSVLlijH0lg8PDyUAdrV1ZWWLVsSFxdH9+7d6dGjR426UZmZmSxdupTFixdXCsgOHTqUxx57rOHS01npsGG5fbtDT0UaQZ3R5hCf9tG92hlnebZXdXTp0oU5c+bwzjvvaALcNtzd3Rk7dix33HGH5nxYtWoVVqsVF2Cgvzue5d9NcliM8lsajUZCQ0PrFaSvDXWSQpOsyB2FLMOKH+29ENzcof9Ih75F465OdSpSyjlxwE0gCdwUqAdiR1QD2i48PYjvQZaxmRW1AWiyFUBEtGiWUWoSwaJzJxvVOKM6evfurfyfmppKSkqKSHvsM5SAfdtISUlBj8woOZ8/1q7lStVy31GYzWZWrVrFwoUL7S0Dq8Df35/Q0FD8/f3x9PTE1dUVg8GAJEn230uvx2Aw4ObmhqenJz4+PjRr1ozQ0FBCQkJqHVBzcnL466+/2LBhAzt37qzkTgwICOCBBx5g6NChDZfLLiuF3763p1q7e8LAUcr7HzhwQHlqixYtGvYeNqwW+EtVNNiua520hmJiYvjoo484ePAge/bsIS0tDS8vL1q0aMHgwYMrGU5Zllm2bBkAndwlIgIChOSziyv7LfbJWcuWLdHpdLUG6Wt7XE1TKAE3Cbs221f1AEOu0fb/cACOMwDFRZCZKppTXwaoDYAjAmfqmY0tA8g2IbVYLMqKo8l8jnq9yNM+Xj4YHD/YJAYgMDBQ0zD+8OHDwgAY3XC9egIBx4+SmZVFlKvEgUVfIl91lcP6BFgsFlatWsU333xDSkpKpccDAwPp378/ffr0oUOHDpW6Pzni/RMTEzl+/DiHDx/mwIEDnDx5ssqVh4eHh9J5q1Fqs1YLLPsOUlWunavGKcqQH3/8sbKC9ff3rzEmUSf2/GVvNVnuZqorkiTRqVOnGrOhbGzdulVpm9nPU6/UBdC2C4cP2cXn2rZtC4gg/dtvv12lG0iv1zN16tQ6H2dhoT1hpSmaATmEcye0K77YDiLt2sE0zgC4eUBIhP3kPHnksjEA6pm4I1YAtoG9VMn6kTCWTx7VJ229sz7qQ5uOdgMQfwCuvMFh0tBq2rZtqxiAU6dOMXx4+SDRKg6vK4aQueIXADqVZLHvp+/pOn5io95PlmU2btzIvHnzlPe1IUkSffv25cYbb6RHjx4NNjayLFNQUEBubi5ZWaLXcWZmprLKSUxM5Pz58xp3S1UEBwdz3XXXcf311zd+cJFlWPWLuK5sdO8vBgNgyZIlrFmzRnlo4sSJjXO5FeRpg8wdetbabL4hWK1WRUAuSA/dg/yEphFA514c+el35bk2AxAbG8vcuXMrBYL1ej2ff/55vXouVGwHe8lRkA/LvreLOnr5wMibmsS70ngHbas4uwE4fhD6DG30Li8Eat+fuhKxodhWFMVWGavViiSBR/nv5eiis2pp3UH4/ctKRXvIE4cb1UC7OtS9c9XNzwECbp7Kmb83Idlmkct/oPSKfrg2r3/hiizLbNu2jXnz5nHixAnNYzqdjlGjRnHbbbdpctGr2kdubi7nz58nJSWFtLQ0MjMzyc7OJicnh9zcXOVWXZCxNpo1a0b//v0ZMmQIXbp0ccyKx2qFVT/DQZVsc2xHGHotIALws2fPVh5q3749N9xwQ8PfT5Zh9S/2gk6jOwwe3fD91cCaNWuUquD+XnpCbHUQQaEU+ARqKobbt7dLXEyZMoUBAwbwxRdfKGJ9U6dOrdfgL8uypiWmQ/tzOwKLBZZ9a++zrjfAjf9xmPZPRRpvAGI7wlbRao6U86JZ8WWwClAvyx1RuWpbUeRaKTcAEv7lqqBqA9AUbRMVXFzFKuCQSK1jz9YmMQABAfb2g+o2mLZjCL7rCRLfeBpXCeSyUhLff4WWz86qs567Lbj71VdfVWpYIkkSo0aN4vbbb69ScsFsNnPgwAH27dvHoUOHiI+Pb3BGUFVIkkRUVBRt27alQ4cOdO7cmRYtWjj2d7VYYPkPcEyVSRMRDWNuAZ2otp4xY4biegoMDGTGjBmNm1zs/QtOqgK4g0Y1yaBTVFSkyGoYJRjTPBgP22SsS18OHjqkfC4fHx/NZAPESqCu2T5VYTKZNKu4S84A/LHMnlkJMOxahxV9VUXjDUBwuNYNtH87DLuu0bttatTBH7VPsKHYVhSZZhmrxYKk0+Gnl3BBawCaXHuka1+7AUg4LeR8wxsZGKyAevVUlUsksnM3tvcYSvSuP5AkyElJIvHdF4n4vxfFuVINJSUl/PHHH/z0009K60I1gwYNYurUqZUCnWVlZfz999+sX7+ebdu2NcqgS5KEn58fAQEBNGvWjKCgIEJDQwkPDycyMpKoqKimTR00lcCSb+CsqsI1siWMnQIurhw6dIgXXnhB8ft7eXnx5ptv2n3oDSHpLPyhEqZr2dahueZq5syZo+gHXeFloHlouYvJ1QgdurNv/pfKcx22mlKhnv3DJWYADuwQkzYbHXo02e9gwzE5ep17w5pyLfQDO2DAVeIHvYRRrwAcYQBs+8u2iDiA7bSNcJVIVQUJm1x+NryFuNmaeGxeDTff5dC3UH+G6madYx58jPfv3c+VpZlIQNqZ0xS++jget91HRN9ByoWdnZ3NgQMH2LJlC5s3b67SHdenTx+mTp1KmzZaMbL09HQWL17MypUrq22iYsPb25vw8HCCg4MJCgrC398fPz8//Pz88PX1VW7e3t4XTx4gLwd++QLSVQHu6DZww2RwcSUhIYFnnnlGSVpwd3fnzTffbHhdge09F39l1/z38ILRNzeJv3n37t0sXboUENfH7e1bYrQlRXTuDa5GTUZTXYLJ9UXt/3dzc7t0KoEzU2GtvZ8EIRFw5Y1NnlXpmE8f1w02rhD+w1KTqCLs3r/2111EHL0CsAWTrMDZUiutyn+41q4SO1Wz/gvSgKL/lbDoc/H/2Xhxa+G4xuRZWVnK/9Vl2hiNRqbMms28xx7gKmsukgSF2VkUfPQ6C96dxS6DN/kFhTV+91dccQWTJ0+uJLCWlpbGN998w++//15lDYfRaKRz58506dKFtm3b0rp1a3x9fZvW/dZYks/Dr19pm3236wKjJ4DBQFFREc8995wygNl6/NYkPlcrJUXC4Nj8zTo9XDfJYVLDapKSknjllVeU7RExEbQMKD93JB10709paSnHjh1TntPUBsDb2/Gfs0GYzSLTS631c8N/mqSOpyKOMQBGN1EtuKu8Gfb2jWLp0pQBz0bi6MbQRqMRV1dXSktLOVkqM6x81t/eTadx+1yQHqQtYoXbwOZLXLcU/vOIw34PtXumpgBscHAwU9/5iK9feoYheQkYhEwSw41mYkqz+L7ETMXh38PDgyuvvJIbb7yxkqsnPz+fb775hsWLF1ca+G1VusOGDaNHjx6XfoWnmqP7YOVCbZu/PkNFrn+50XrvvfeUdpMAzz77LN27d2/4e5pKYNE87Wpj5Ngqe/42loyMDKZPn664XwwGA/f17IiuoHwiEdsBfAOIP3RI+V2NRiOtW1fuP9BY1NffJWMAtqzS/g6jb65zn+fG4rj1T4+BIofYahHlywd3QpeaKwgvJhW7EMmy3OgZoo+PDxkZGRwqsbt8ol0lvCW7AajNVeEQJEkUjXz3kcjuyEwVxrn34EbvWpZl9u7dq2zXNgMNCQnhiU/mseXnhUirfkRfPtts6SrxdLALGwos7HP1o13XbgwYMIArrriiUrGcLMssX76cuXPnVvLhBgcHM27cOEaNGnXpXNB1RZZhy2pt4ZWkE0t/1bWzdetW1q5dq2xPmjSJoUMbnm0nm0oo/eFTzGdFP2CLxcK5sFacjj+PdCIBNzc3vLy88PX1JTAwkKCgoAbXrxw5coQXX3yRjIwM5b5X7r8b/xOq7KaeA5Xn2mjTpk2TuGfUK85Logjs/CnY8ad9u1u/JqnfqQ7HfcO+/qJQYb/oHctf66BD9ybJQ3cE6h9flmWKi4sbV7CDKMTJyMggoUymxM2+r8GBnvxlEY0t0tPTG/UedSasOXTqbf89Nq8SHZ1qCMLWhZ07dyouIJ1OR5cutWcZSZLEgHG3wLU3YFq+EPOBHVitVnQ6HV1dXDF4eSF17w1du0OFwf/06dO88847ms5TIFIv//Of/zBq1KhLx49bH0wlsHyBNvPGzR2uvx2i7DNfk8nEBx98oGx36NCBKVOm1OutZFnmyJEj7Ny5k2P799Iv6Sjhkn21sanAwuK/TwKrq91Hs2bNiIiIoHnz5kRFRREZGUlkZCQhISGVjIMtE2vFihUawwUwdepU+ulUbtCwKCVJQe3/b5RrqwbUMabGXu+NxmKBVT/ZK0YDgmDwhe2m59gr54ph5SqC5auAvX9Bz5rbxF0sKv74RUVFjT4h/Pz8lP+TAyIwSMeRZZmrmnmxNakE9O5VVrA2GYNGwYlDwsdrMcPSb2Hyw8Jl1wBkWeaHH35Qtvv06VO/alujG8ax/8HYvqtId7P5u00l8Nda2PYHtO0MHXtSFtqc7xYs4LvvvtO4e9zc3Jg0aRLjxo27vNw8ajJTRaZPpqpNZ0CwyPcOCNI8dcmSJUoPAb1ez5NPPlnnIHVKSgpLlixh3bp1pKen46WDewMNhLvYV7rbi6wszqs9My0jI4OMjAz27dtX6TFb8NxgMGAymUhNTa2U7abT6fi///s/rh9wBcx/1/5Ar0EgSciyzMGDB5W7m8L/D9oY3EXXAdqzRSvud/UtF8Tvr8axBsDXH7r1tccC/v5DzEIbOOA0JS4uLhgMBmVwcURwVp0ff9joR1dXVywmEz4uevq6S+yQ4fz58w5xN9UJd0+49jb4ca6YZeRkigrDsf8RAb96sm3bNkW9EWD8+PENO652XSCmHezaJOJFtuIjqwWO7KFo1xaOn0vAnFVAZxcrp2TIscCQIUN44IEHFH34y5Ije0SBV5kqG6xVHIy5tdJ1YjKZWLBggbJ9ww031EnrJyUlhXnz5rFu3Tolp76ZXgz+AQb7ebfbbOBvv2A6R/ni7u6OTifiVSUlJeTn55OTk0N2dnatInu2QrrqiImJ4eGHHxYyFcu+s894A4OhjRjoU1NTNckFHTt2rPVzNgS17MtFlYIuKYatKtdflyvEqv0C4/i18xXDRC1AWSkUF4q81isc05DE0bi5uSlBIUcUg6kHpuScXPy8g2luOo9Op2OMvytHcqCgpMQuoHYhiGoNfUfA1nLJgNNHYe2vcOXYeqWY5eTk8Pbbbyvb3bt3p2vXrg0/LlejOK6ufYXM8d6/sOZmk5KSSmqamPH28NDRw0OHq4sLIW3b06xTGzhzGIoiIDhMSJFcLpSVCm2XvRV6Jl8xTKRNV/Fb/P7770qhndFoZOLEmiU1LBYLP/zwA19//bWmPiPKReKuQAMhPl54e3nj6emBod9wul11E9NqOQfMZjPp6ekkJSWRkJDAuXPnSEhIUCqrqzMOBoOBnj17Mnz4cIYNGyZWLZmp2uK2viOUz632/4eHh2tW047kkukFsHMTmMrHHFejyNy7CDjeAHh4iRTQbeUa1ts3iovcwSp2jsBoNCoGwBErAHUxTkZGBmmtOtMs7RzuOgkPvY7rffR8l2Ph2LFjF84AAPQbAenJopsUiAEXCUbcUK3OuxpZlnn99dfJzBQ9HwwGAw888IBjVjHunnDFMPa4+LBi9ptEF2bRxqjDNlFt1qwZ4WHh6PWSmD0fsa9A8PASLpOA4PK/zcA/SOilX0qt/hLPwIqF9uZJIKQWrp4ArdtX+RKr1cqPP/6obI8ZMwZ/f//KT8xMgt1rMaUlsHHfEX4/mERZmd39MiSiGfdE+hLo64OLLVYy+GroPaROh24wGAgLCyMsLEz0flBhNpvJzMwkMzOTgoICzGYzrq6uBAUFERERUTk289c67ey/rV24Tm0Amsr/bztmGxctdlRcKAyAjV6Dm0zqoTaa5hvoPVjM/EtNwsrt/FPMci4x1MJstYl81YWgILv/Nj09nWHDhrFytZWxvnoknZjN7im2snv3boYMGdLo96szkiRkBH78DJLKUwn3/S1OxDG3Qi0Xwpw5czStEO+9997GFR+pSE9PZ86cOaxbZ18Ou0oW+kcEcefQ/oSbi+3a9BUpKhA3dek8CP2UgCDRKzk4vPwWAR4XOOujpEjIpOzeYh/4QATir5tUY2OPv//+m6SkJEAE0at0t+1ZB0s/BtmKERjpAcN7efP2sWJ2mL15bvQQumadU4oS0elh1HiRnOEADAYDISEhhITUQeIjI0Wku9roO1xjpNX5/01pABzdC7xB7N6q1fjvMeDiHAdNZQDcPIRV21KeVbBzs1gVXCQrVx3qGUBDhcDUqC+ElJQUYmJieLvQSk93HeE60SPgZj8987f9feHiADZcXOGmafDzPLsROH4ACvPhmtuqzTveunUrCxcuVLYHDBjA2LFjG304eXl5/Pjjj/z0008av6wkSdwwfjxTpkyxp4Pm5UDiaUhJhLRESEsSPtTqsJjFiic9GY7std/vGyAkzMOiIDxKDMRNkaVWVioG/W0b7Mt88eHEddH/ylrfd9GiRcr/AwcOrNw4PjNJGfzV6CWJJ9t5YO5yNa4njtofMLqJimJVhtEFZfPqCrN/e/aYLMscP27vP2xTAG0K1AbgohQGlpXC7s327R4DL2qMtOnWQD0GiA9aXCSs3c5NMKhp1AUbinoG4AiNHrVbx2Qy4e/vj6TX80OOmceb6bHKMj56HSNLsog/fpw2TXiiV4mbO9x8Nyz5VsQCQLgnvnoPrhovhORUyLLMJ598omzHxMTwzDPPNOrCOXv2LEuXLmXlypWV4i5t27bl0UcfrTwA+PiBTzdRcS4ODAoLICsVMtMhK01kU2SlQ162dratJjdL3Gx+aJ0eQiNEGqItHdHbt2Hl97IsDNOhXXB4j1hdqQkIEgU+ddBlOnbsmKbWYty4cZWftHttpcHfhg5wPbwZXMtjUt5+MG5qZZHGcvcROengFwTdR0BgeK3HV28STtvdjyC6WqmuvXPnzikuWEmSaNWqleOPoRz1ueuIDnL15she++TFxRW6N6A3tANpOgNgdBOznT9Xiu09W4Vr6BIK3Dl6BuDl5YWXl5cSV0hPTycmJob4+HhWFsjc4O+KxWIhzk1Hws/f0ObZ1xz6/nXCxVWkG67+xS41XFIMS76Gjr1gyNXCL4+QXFDr70dHR5ORkUFERESdlSeLi4uJj49n165dbN26tZKsM4j02WnTpnH11VfXbVkuSaIhipd35RltWakwBBmpkJEsBuXUpMoDMoiso6Rz9hURiM8eHA5BoeDfDHz8RXab0V3M2g0uYC6FokKxz/QUIeOQeNqe0qfG1SiqensMqDrFr4pB+LvvvlMebteuXZUZMcUp56gxqmYtd2mGRAghOa8Komcq95HC1iVw3f3QzYH9pGWZ/2/vvMPbKs+//z2alixZ8pT3SuzY2TtgsheEkoSREEZCwyoUQmkJtC9QCrylof39Ot62BAqEshoaRiDMhJGQSQZx9nbivadkydrSef+4fY6O5Blb8ojP57rOZVtWLMWSn/t57vH9Ysdnvq/jk/nOHw5h+2dGRkZI2zOF79tgnPovm+MCr+VRk/p9PQxtFWT81cChnbTAOB2U+8qbH9KHvBxCocyZkJCAggJScqyurkZOTg4KCgrwvcWL8TEqpHgoOMRdOApvcQEk6cHT6Ok2Uilw3TIgJYM6griWxFM/AhdPUb1m3DTePpHbKe3YsQM7duyARCKBwWBAbGws9Ho9NBoNFAoFJBIJnE4nrFYrmpqaUFVVhZqamg53WlqtFitWrMBNN90UvKEcuYIWPeHAG8sCZhPJlVe1LvjV5T6LRSG2Fp9+Um+QyYDxebT4d1R7aGcRZn/4FOEXfHIFK1eubLNRMZlM2H34BBa3UxPmkciB9Cxgyaq2KYYO0kdgvXR7am7wTgInf/R3M5u7pM0JSzjkF6r2Tw5h2jcYXuCXRXU5XRzjQ6v02R1CGwCUYcDE6b4WxCN7afCjj4cdOiLQWSgYCANAZWUlRo0axXuffmiR4G4pECmlonPD2/9A7GMvUNqhr2EYmtxOTCO/We6P1G6joHB0P6JnXY8nHn8cL61f7zdB6fV6UVVV1cYMprtkZWVh8eLFWLBgQeg8koUwTGsaSe/bfXo8QF0lUFHiCwodFZsvh8Q0+r2OGNt551sHizDDevH4CBVONruhTEhHXp5/isDtduO5555DXUEDrp+ihbSjU+yIq4Cb7mlf/6mT9BFYLwWm+as6+192D7sV2ONz90LOOPI1CEAYAEaNGtX7x+0EYeNHyJV5AzkqaAFOTANi+7ATsANC3wc1MY9OAW4X1QNOHOrXqrcQYedPsKwaExN9O6eqqipce62v+6m8vgH5k8ZhduUZyBigsawUMZ++A+a2B/tPMiMqFrhzDRUtf/jWN5TVUAN8/CYWGZIw6w/PYlP+SezavZsfZLscVCoVcnJyMGXKFOTl5fXeuDwYSKVktCE027BagNoqSh3VVQOmJqopmI3k0CWEYShdFKGnn5GYSotbJ509fnSyCEsZBoviFUi/5542Oeu//e1vfH3gz+dteCInHBIEvB7D84Bb7u+4lmHsQo7EWNv597vLrq0+pVGZHJj9kzZ3sVgsfiJ3QgewUBBsL/BuY7UA5wQtzP2c++cIfQBQhZOwFTcd/ONuSg0NAKXQUAyFCLs1qqurERcXh5SUFJSVlQEAdNkj8fHZk7hVL4XVZoP5whlEfL2ZesL7S65YKqWTWe4EYM9WKmRyi3xNBdTffoR7ouJwz+Nr4Bw+GlW1taiurkZDQwNMJhNaWlrgcrng9Xohl8uhUqmg0+lgMBiQlJSEpKSkgS3FzKHWUNokMC3HsrSB8bgBlwuQy6km0Jv/UxeLcI4hChMDdv+bN2/GV199xX/NjJ4OJkEOVF+gnL9EDoyfC1x/Z+fPTR/b8fcAQB8EH+DCcz4dKoDaPrX6Nnc7d87XqaTVajtVlw0GwvpCMIY/u82RfT61V7UGyAqN1MXl0jeTEJNnUhHY66Xd1LljVADpZ4TDX8HSlQkMAAAwefJkPgBUVVXBO3oyfjifj7xwCSorK6E9nQ8mPrn/T0YaLXWqTLwG2PO1r1MIoE6bbR9Cod6KtHFXIW3ctP5JXfUHDENpS7kCCFbGqotFOH38FL+gefDgQbz88sv81+NHjcTajGgwlcW+bp+ps4CZ13cdmCbOp4JveycQRtL7InCLGdjma2OFIYkaQtpB2P+fk5MT8o1CsL3Au4XDTvVPjknTu5y96Sv6ZhIiQg+MFAyfHPy+7ZG6j2FZ1u8IGKzOA2EAqK2thdfrxeTJk/nb8vPzsWrVKnxs8uCSwwubzYb6hgay5Ctt2yHTLxiSqG3wrkcpZy78o7RaSLjt1RdJXK70YsdtlyIdM3E+Lbbt4AUQPf9W/uuysjL8/ve/51NvhrhYrMsbA2llseDnXdO9xR+gAu+Sh9o+PiMBljzcuwKw1wt88V8KAgAN5f3ktg5P/Fy9DAht/z9HsH1AusXRH/xlH8Zf3TeP2w36LgxNne1LLTTUUi927vg+e/hAAqUfghUAhMNgHo8HjY2NGD9+PC+0ZTaboVQqMX/hQrz93TdYG8tAVlWFyMhIyD59F1j1i+7nkUONIYnkiRvrKHV3Ot9nHch66TU8f4LqCGOm0KkuBG5S/UKoe+S5RTigEOxhWTiuvQ/q1scym8146qmneB37sDAl1i+ZC1WFwDN51KR2u2s6ZcI86vY5up1y/vo4uq23/8cfvvXfyMy6HojueFJYOAAWCgOYQPo8ADjswI+7fF9PyBtQsjh9NwsdoP2BvV9TJ0Y/EXj8C1YbYlhYmJ8xSU1NDdRqNXJycvjbDh06hJ/97GfwKFV4o9EDu9tDKSK7Dfj4TXrTDCSiYoFrbwEefJqG+SIC+g8b68gS9F9/IFvDS2eox36wcnQ78NIjwL5PgNN76eNLj9DtwWTCPBzJuwcbS+3YXuvExlI79o6/Deq8GwDQKXXdunV+sxj/WHY9oisFi/+wkdTS25PUSXQidfssW0sfe7v4nzrsb24zYmyn1rAmk8mvkyyUEhAcQvlyk8kU+mGwA9sFg1/KASeP37diGHk+9T8YG9oqI/YhwgAglUqD1gUEkEsVB2cAM22az+Fp//79iI6OxurVq1HuYrHJ6IbRaITRZKLT0ecbB+YCqg6nvvb7fwPctBrIGOG/8Hi9QMFp4OO3gH+tA3Z9Sd1Eg4mueuQbKoP2UA6HA//zxrvYUGTHC2etOKTNxswbV/Dff/fdd3HggG9w6Lkb5iGrUdBHnpROct89kPYOOkXngW0f+b6OigWu7TwwCYcC9Xq9n5ZWqBAGALfbHRQ/8A6pr/YXfZs8o+/1qLqgbwNAtAEYO9X39b5vAYu54/uHkEBnoGAWn9oLAFdf7cv7nTlzBmazGcuXL8fYsWNxxMbiW7MH5WVlcLnc9Me0/bOBm1uXSEjFctm9wH2/pg6PwEnTFjMpwf77L8C7/6Q8aHvTuAON7vTIB4n33nvPz+zlscce49+HJ06cwFtvvcXf9+5JIzHTK7DDjI2nCd+BMFNTegnY8o7v96bWALfc06XGTUlJCf95ZmZmn3SK6XQ6v5kfoQdBUPG2un1xtU5dJDBtdmgeqxf0vRzeNQupEAJQYeS7T/ploRO2gAV79FwYALhOoOHDh/NyvizLIj8/HwzDYO3atZDJZNhq9uKI2YmyslLq6j623z93OFDRR9Pk8ANP0R999pi2O9LqMhoue/kFWigKTvVr+q9T+qhHvq6uzs/sZfny5fx8hNVqxbp16/j0xE+SY3BHTJhP1VMXCSy7b2DkkksvAZv/7ZuqlitoY9CNOhandgog5O2fHAzD+Bk3cRLnQefgTn+JkXlLB0awDqDvA0C41t/3suAUcOxAx/cPEaEMAO21gjIM46enfuTIEQBAamoqHnroIQDAf4wenKw38SYg2PUVjdIPBiQScvlaugp46LdUlAz0H/Z66PXe8g7wygvA9k9JR2cgnXT6okcewNtvv83PoURFRWHVKt/k7WuvvcafDGZppPj5cANk3K5VE0GCfoEnrv7g4hn/xV8mB25e3W3faf59DvRJ+odDaNwUEo/uyhKf+gFARfphoR1w6yn9I4g97iogVaD4t/3TPm+BFLaABluOQNgJxP0hA+SixSG0VrzxxhsxceJEuFjg9UY3jheX+Z7f1x/5m6AMBlTh1Ot816PA6l9R4StQCtzWQsMx//knpYn2b/c3TOkvOmnPDEqPPOg9sW2bTyJh9erVfBPCpUuX8Nlnn4EBsCRCggeyExHONShoIoAVDwyMLrETB6ngL1z8b7n7suSmhWnY8PC+y40LT+jCv8+gYDGT3zOX+tHqafc/QOmfAMAwZETC7WJYb6tJdt8VDENpDSc8AVRVVfFH+QkTJvC3l5eX8x0QDMPg8ccfh0ajQYsXWF/rwJnScnhZ8hDAl+/7W+kNJmITgDk3AD9/mlJEOePaDsE01lJX2Ot/Ajaup3pBP9WGQtoj38oHH3zA61DFx8dj0SKfTPprr70GNcPiZ1FSXBut9m0mIiJp8Y/qu51yu7AsvVZfb/ad3BRKem174TXQl9LMwg1abW2QZC8AmvT97F3A0lqrkUhoBmIAeqJz9J9vniaCZIm5xcBuA95/jbpg+gBhAAi2NZzQF8BqtaK5md4Q8fHxfjo4P/zwg9+/efzxxwEADR7gT0WNuFRZRfUA1kudQccFo/WDDYmUUkSL7wR+/gy1lSZntL1fZQnVC/71ArDpVTolmJra3i+UTJgHrPknMP1mYPR0+rjmn8CE3ntb22w2v93/ihUr+PffuXPnYD7+I34dK8OIMAmSkpIgYRgq+N75cP8v/g47yYYLWz01EcDtP/c/0XcT4a7fbO67gB+4QQsKLAt8+zH5a3DMXQKkBMc5L1T07zxyfAqwaAWpUbIsdY5s+hflOGPju/73vSAUSqAcOp0OarWaP+KWl5fz7Wd5eXl898OePXtwyy238P9u1qxZWLhwIb755hvUuIHnTlfgDzIZ0uLiwIAFvtlMssbXLOg/3aBgEKYCxk6jy9hAJhlnj/oHf5YFyi7Rtf1Tej9k5tIuMykt9AU1rkc+yOzcuZN/X4SHh+O6666jbxgbUP/G33B/NP1JqtVqREREAFmjSSeKa5wIMm63G2VlZSgrK4PX64VGo8HIkSPbzsU01lHtRnhKj4qjiXFdFHqCcCcunHUINcINmrAQ3Svy99AcBMfoKQNq4rcj+l+QImcc6dF//RH90VstwH9fBm78aY92FT0h2N6gDMMgNTWVF7oqLi7mZW6nT5+O//73vwCo1a+xsdGvK2Ht2rWorKzEqVOnUOkGnjpegv8z3IrsxHiqVez/jv4Ir1s+oI+W3UYfTW2kV80l85azxyjd1Ryw66+rpuvg9yQvkNCqwBmfQiYjEZGDIih++62vODh//nyEmRqBnfvgOfkjtFUl4BpQYw0GMHOX0CBVCP5fVVVVePfdd7Fr1642Q5EymQzTpk3DE088QRuXc8fp79Ppq5shI4dmEHrxHhRO/p46darPbFKFir01NTVwu929ywKcOw7s/NL3dXIGsPDmQfF+7P8AAJCMAMOQgBTL0lHzww2UP8sZ1/W/7yWhyD9mZmbyAaCw0De5mZubi7i4ONTW1oJlWezYscPP8k+hUOCFF17AL3/5SxQXF6PKDTxbUIcHGpuQFRkBvV4P9fFDUFaXQ7JkJS2EVwIM4zNymXU9dQddOElTxY0BnRoeN9kMCs3g5QqaM4mOo6Cii6SgoImgawC04DU0NODYsWOIkAC5YRKsklmAd/4fAKC5qQne1j76claG0Q//NmSv7fbt2/HnP/+5jRwKh9vtxr59+yCXMHh25iSqyQiZNodaf3u5cRo71qcMUFNTg8LCwpDaQXLEx8fzRkderxe1tbV+QeGyKCsEvtzkq4dERFIn3ABQO+4OAyMAAGSioQyjdJDbTS2Dn2+kFMG0OUGPpsK0TyicgYS7G6HiIcMwmDdvHn8K+PDDD7F06VK/SWSdTof169fjj3/8I/bs2QOjB/h7nRt3uU3I4XKl589Dtn8fjqtjUJIwDJHR0YiJiUF0dDSioqIQFRWFmJiYPu2uCBoMQ7v7xFTSkG+sAwrPAsUXgfJCn4OZEJeT5g2qy9r/mQoldSepNTSNGaYGVGpKR4W1flSqfB+VKkCppO6Wnr73WJZ2zU31QG0lyr/bhrUxUiTKGSjkCkTZfINdJpMJRg+Lr5o9iJ01D4tDtPgfPXoUL7zgb0UqlUqRnJwMpVKJwsJCuN1uxMmAyecOwBlmgYJ7byqUpBYbYOnYU6Kjo5Gbm4uzZ88CoJpYXwQAhUKBmJgYvgW0qqqqZwGgsY46obip/TAVzUAEdrwNYAZOAAAo33nrz4BP3iLzGIAchRrraKw8iFFV2PkjNIYJFkJdk/Pnz8PhcPCS00uXLuU7QWpra7F582bcdtttfv9erVbj+eefx/fff4933nkHJSUleL3Rg4VaFgu1UjAA3C4nRpkqEVNfgY9MHlxytj3JhIeHIyEhAUlJSUhNTUVGRgaGDRuGxMTEoBe/Q0ZULF2TZ9IAGWftWNX6sTtFYqeDrst1/ZJIaWOiUAIKBem5yBX0XgwMDl4PBSKnk9ywzM2Ay5c2URcUIFFO99dH6vnBLjY+Gf8+eAY/NLjhAfD7azrWz+ktr7/+Ov+5RqPBQw89hDlz5iAsLAwsy+KNDRtwacsm3KSTQs4ITseGJGDJyqC3oObl5fEBYPfu3X7zEKHEYDDwAaBHnUBWC81AcDo/UhlNZkcHZ06krxh4K0BSOnDHw/TL5frCT+cDLc3t+5v2kFAbQwwfPhwqlQo2mw1utxv5+fm8vZ/BYMCSJUvwySefAADeeustTJ06FZmZ/h0DDMNg7ty5mDNnDo4fP46dO3fizJkz+Fd5EW7TApEyWkIMcgYPx8hwzObFF80eNAqGbFtaWnDx4sU2ZuwymQwpKSnIzMxEVlYWsrOzMWLEiOB584YKqZTeI0JrQYedCsj11bTbNjYAzUaqI9haejdo5vXQz+iljIXD4YBFoDujTU4Fxk4BRk/GOaMFe/5N7wWpVOo3LxJshMXW8ePHY/r06aivr0d+fj62f/E5JjUU41Y9bbS0Wi2UCgUVM+fcEBLXuhkzZuCNN94AQNpA5eXlSE5ODvrjBGIwGHgz+ssOAC4n8Mnb/nMr169o1+5yoDPwAgBAu72Va6jrgMvzFhdQh9At9wRlClK40IVCEIorpO3cuRMAGaoL/V1Xr16NHTt2wGQyweFw4IknnsBf//rXdu0SGYbB+PHjMX78eACUsqopLYHn+y+gLjgJt8sJl8uFWS4Xropy46CdxWe1LWhydSy34Ha7UVRUhKKiImzfvp1/nJSUFGRlZSErKwsjRoxAdnb2wA8KyjBfyigQrwewtlCHmdVCn9taaOdma6Gdut1Gl8NGwcRuDa5fhVSGC2YjDrR4UeFiYYtLwp9/9QKfQz+w7U3+rqNGjQrp7zspKQnV1dUwGo3Yu3cv9u4lp75sJYM79FJEqOg5KeQKJA3LAm66i3SfQkRaWhoyMzP5OtmuXbtw5513huzxOHosB8GyVBCv9OkYYeaiPqlVhoKBGQAAytcuvx/Y+j5V2QHqEtm4Hlh+X697oiMifEHEZDL16md1xLx58/gAsHv3bhiNRuj1ev7xf/Ob3+Dpp58Gy7JobGzEAw88gPvuuw+LFy/u1KFMJpMhKXMYkPkopUG++wSo9u3scgH8VCqDdfhoVCZlodTYjPLychQXF6OwsLBDX1+WZVFaWorS0lK/oJCWlobs7GwMHz4cw4cPR1ZWlp+u+oBGIvUVgrsLZwHpsPsul8OXRnK7fRaRwt+jROpzDlOGkWOaJgKVxmasvftuuFoD8i9vvAVM6+LPNQJwCEUDQ8Hvfvc7PP300zAajQAAOYCfREgwU+NLr+p1OiRdPROKG+/qE9e32bNn8wFg7969fRIAOF0u4DL//vP3Uqcax9hp5HUySGHYvhzB6wksSy1Wh3f7bgvXArfeD8T0fFagvr4ey5cv57/etm1b0GwhOdxuN1asWMErDt511124++67/e6zdetW/O///q/fgqzVajFv3jyMGzcOGRkZiIuLQ1hYmF+LnNvths1mg8VigcVsBnP2KHQnD0La0gyv1wsvy4JlWbAAqqOTUJ4wDK6ISISFhUGpVKKlpQVGoxENDQ0oKSlBQUHBZZ2EEhMT+aCQkZGBjIwMvrtCxIfT6cQvfvELvhEgOjoaGzdu5N9rBw4cwJNPPgmAgu17773nN6gUCmpqavDKK6+g6OA+3K6lFGKYMgwREVpExcZCde3NwKQZfdbGePHiRdx///0AqCV769atQZ/OD+Tzzz/HX//6VwAk0fKXv/yl639UUgB8+IZP9TR1GG1GB4Icdw8ZuCcADoah/KNWB3z/Od3GDYwtv7/bwlOBREZG8q1gAIlCBTv3KJPJsHTpUrz5Jh3x33//fSxYsMDvcRYtWgS9Xo8//elP/E7EbDZjy5Yt2LJli9/P4jqFXC5Xu51LUgBXqSVYqJVAKxX88VZWIunkjzjv8GKbxYsLDv+YL5fLERcXh6SkJMhkMrjdbjQ3N/OWlu1RWVmJyspK/oQDkK8yFwzS09ORkpKCpKQkJCQkBNVvYbDQ0tKCZ555xq8LbM2aNfzib7PZsH79ev5706ZNC/niDwCG2Fg8t2gWWK0DHqcTjISBVCKhAuYNdwBxQXQ+6wYZGRm8Y57X60V1dTVSU9tJ5wURof6XUBesQ4wNZIHKLf5aPU21D+LFHxgMAYBj8gw6VnMDYzYrBYFl9/ao+CKVShEbG8sXgKqrq0NSfFq2bBm2bNmCpqYmOBwOrFu3Dn//+9/9FsSrr74ab731Ft5++21s3bq13Tek2+3usl3VA2Cf1YtDVi+mqiWYp5VALwgEI5QSjFBKUO1isbvFi3yrFy5QQKmoqGjz87g+abVaDblcDrfbDbPZDJZl292hORwOnDt3jp9/4GAYBrGxsUhISEBCQgIMBgMMBgNiY2MRFRUFnU6HiIiIKyZIsCyL/fv34+9//7tfgXHp0qWYPXs2APpdPf/883xRlmGYNqfDkGBsAL56H6goBgNAJmtdwCbPoN7+fpiXkEqliIiI4NNSITVpaUU4/NllEsTjAT5/z9fxI5MBN941qNo9O2LwBACABsZkMhJHY72Uj/1wAxWGe6C5kZSUxP+BlpWV+Zm3Bwu1Wo1f/epX+N3vfgcAOHv2LJ577jk8++yzfouoXq/Ho48+invuuQe7du3CkSNHUFBQgMrKyg534cLH0Gg00Gg0UKlUUKlUYBUK7JHJkOloxihbPfQuO7wsC6/HgwyvF6lqN5a43DhocWNfixf17dSLGYaBVCqFw+Hgg5JMJoPT6YTVaoVKpeK/b7fboVKp2m0tZVkWtbW1qK2txfHjxzv8fyiVSmg0GoSHh0OtViMsLIy/FAoFlEol/7VKpYJarUZ4eDi0Wi10Oh30ej0iIyODnsrrLg6HA7t378bHH3/cJgguWLAAa9asAUCT4evWrfMzRL/jjjuQnZ0duifHssCJQ3SKFs5RaCKogyUtK3SP3eVTY/2G0vqiPVkoBdOlEsD+7f7zJdcuo+nzK4DBFQAAIHcC9WJ/9h8qwrmcwEdvUI/ysMvzFE1NTeVlmYuKirq4d8/hcuOnTp1CWFgYrFYrmpqa8OSTTyIlxX/gR6vV4oYbbsANN5AvLLfrNpvN/AlAJpMhLCwMarUaarW66zcwp6tzaDdQ5FuYWABTPB484HSiUReLAk0MTpidKC0vR3l5OT+tLIRhGL8F1uv1Qi6XQyKRwG63w+Fw8Mdrl8sFh8MBhUIBhULRpeYSF2h6a9KhVqv5Qbi4uDjExsYiPj4e8fHxMBgMiIuLC0qQcLvduHTpEk6fPo0jR47gyJEjbVqKpVIpfvrTn2LlypWoqKjABx98gK1bt/qd5mbOnBna3X+zEfj6Q+qkE5I7Hph/Iw3C9SOXLl3yCwB9kQYTvk6dysFXFJOvL8foKcDI0LXp9jWDLwAA1JZ282oaGOM6Mj55G1i0nMwXuomw7164Gwsmb775Ju6//36/HUdZWRlMJhMuXryIxYsX48Ybb2wTCDhkMhkiIyP9uhbag2VZNDU1oa6uDg0NDWhsbITJZILZbEZLSwscDgdcLhfCnQxybU3IdjZDARYSiQQSqRSyZjPGyEsxVhMB19UTEH7VLyCLjuO7h4qKinDp0iUUFha2a6IhlUrbTB1LpVIoFAo4nU60tLRAJpNBqVSCYRh4vV64XC64XC6wLAuZTAapVMp/7E0x2Wq1wmq1diowxnnQRkZGQq/XIyIiAlqtFmq1Gkqlkn8eHo8HLpcLNpsNZrMZJpMJdXV1qK6uRnl5ud/rGsjEiROxatUqVFRU4Ne//jUOHz7c5j5Lly7FI488EnRBQgAU+I8fAHZ+5TeQhjAVsODmAdG6yLKs33Babm4utFptyB9XaAXJdea1wWH3l3nQRQFzF4f8ufUlA78LqDNKL9LCLxSpmvUTYMrMbnUwnD9/Hg8++CAAWmi//PLLoHYfFBQUIDc3t8NFYurUqXzPd2ZmJiZMmIBhw4YhPj4eer0eKpUKEokEbrcbdrsdFosFJpMJjY2NaGhoQF1dHWpqalBTU4Pa2trLkrQIY4BJKgmmh0tgkLf/uyr2SFGkiYY5IR3xyVTQTU5ORnR0NEwmE0pKSvjW0qKiIj+Hp8vB6/XC7XbD4/Hwl1QqhVwuh0wmg0wmg0Qi8QsMLMvC4/HwgcThcMDpdEIqlfKBhFvE+xKGYTB8+HAkJiaisrKyw41FXFwcHnvsMUybNi1oj82yLEwmEyoqKtBYcA4xx/ZA01QLT2v9yOP14hIrxw5ZJGR6qr1ERUXBYDAgOTkZGRkZiIqK6rNOLrfbjVdeeQUff/wxf9uzzz7L10lCybp163hhvjvvvBP33Xdf2ztt/RA41erIx0iA2x8clMNenTE4TwAcqcOB2x6kFJDVQrft+pIMRhbc3KV0xLBhw6BUKuFwOOB2u3Hu3Dk/gare8sYbb3S6Q6yuruZPIYWFhX6icaHGzlLBeJ/Vi+EKBnnhEowJk0DYPJQu9SDdVgvnpVqcPHUAX9m8OO9g4QWlWVJTU5GSkoIJEyZg8eLFiIiIgMfjQX19PcrKylDemkqqrKzstNNCIpF0Gni5xb6j3yW32KtUKr5Ybrfb+ROGVCrlfwb3tTBASKVSPsBIJBIwDMNf3ONzBXGv1wuPx8M/jtfrRXh4OJRKJdxuN5RKJQoKCjpc+NPS0rB8+XIsXLiwx0Vvu93Od2FVVVWhtLQURUVFKCkpgcNiwQKtBHM0UtgZgEusWL0stpg8OGxjAdR3+LN1Oh1ycnKQk5OD9PR0pKamIjk5OagbI5ZlcfToUbz66qu4cOECf/u0adMwa9asoD1OZwj/1trtOCou8C3+AJA3/4pb/IHBHgAAagO9/efARxt8mjAnfwSMjcCSOzut1MtkMowaNYr3583Pzw9qACguLu70+4FTkMFArVYjJiYGUVFRfGpDrVZDpVJBoVDw9QKPx8MXb1taWlDc3IzzTQ1IMdUgx2lGlMRXeFYwwCS1BJPUEli9LE7ZWZyw2XChnY4fgI7UiYmJSEhIwDXXXAODwYCwsDB+0bRYLGhsbORPMkajESaTCc3NzZ0GzK7gAklXwcTlcsHpdPLttHa73e/0wS32APhAwAUI7mSiUCig0WigVCr532lHC7rBYEBeXh5mz56NMWPGdLnD5nby1dXVqK6uRkVFBSoqKlBeXk67e0H6Qsi4MAaL42SIkvn//JM2LzabPGjuxnCzyWTCwYMHcfCgz3yIYRheSyotLQ0pKSmIj49HTEwMIiMjER4e3un/yev1oq6uDkVFRTh69Cj27NnTxoglKysLv/3tb/vk9GG1Wv3+5oTCjQCorvjNZt/X8cnAVXNC/rz6g8EfAIBW6YhHKB3EjWiXXQLe+QcVh9uTCGhl8uTJfADYv39/UItx6enpnX7/mmuuwYsvvoiysjIcPnwY58+fR3l5Oaqrq2GxWPx2zVyHDNftEhMTwxc5ubZKg8EQFBkB1uuFpeAMbId2Q1JwCu6WFjicVKCV2R2YKnFjqloCJwuct3tx2sHirN0Lc+sCYzQaYTQacebMmXZ/vlwuR2RkJN8Cmp2djYiICL8FlduJcxlKLt3D7b654GWz2WCz2WC1WmkorvVqbm5ut3uKYZgug0RvYBgGycnJyM7OxsiRIzFx4kSkpaW1GeJrbGxEbW0tampq+IW+urqaT+d1qze9lWEKBosjpEhV0GNIpVI6kYSpcS4pB9LkTNyn00Gj0fBdXCaTya+eUVpa2mHxnWVZ/jQndLHjkMlkfPcW9/qxLAun08mnLTvrZFu0aBHWrFnTZ5Ij+fn5/PtKq9UiIyPAmW7v1z7RQEYCLFw26Pv9O2Jw1wACcbtpTuDMEd9tEikVbsZf3W5doKSkBKtXr+a/3rhxY8+1wQPorAYglUpx9uxZZGV13H7H7US5xbBfcDmB4z8Ah7YCjdUAI4Wb0cDh9MDucMDR2vljdzhQ3OLAGasb5xwsSpwsgq+xSnCdSFxLqFKp5NtfuUutVvM1A2EKies04i6upbWlpQU2mw0Oh6PTVJNKpYJWq0VEBHkzREVFITY2lt8N63Q62Gw2PggajUa/0w534uktMpkMeYkxWKCVIl3qRZhKRb8PpRIyuYL6+vPmX5aTmNFoREFBAc6ePYuLFy+itLQUFRUVIZFLZxgGkydPxsqVK4N66u4Of/jDH/Ddd98BAObOnYtnnnnG982yQuD9V32F36mzqK54hXJlBQCAXrj8PdT5wAp2HdljyIe2nZa3u+++m0/XtCfX0Bva6wKSSqXYsGGDX+AZsBzdDnz2sv/vEgygSgAk/l0/LKj10+lwwO5yo0aqRKGbwVmzHacamlFV3xCSxaS3SKVSqFQqKJVKvl1VJpPxqR9h8OXqCE6nE06nkw8aoUCtJlP4xMREJCcn0xUXi3SbEbris2Bq27EzzBoFzFgUNFlij8eDyspKFBcXo7S0FCUlJSgrK0N9fT0aGxu7nFEREh0djZycHEyaNAkzZ85EdHRwpaW7g8ViwbJly/jX7Pnnn8fMmTPpmy4n8NbffCqfUXHATx8NiQrqQOHKCwAc5UVkKGPxmW7Q+PYdbYo5mzZtwquvvgqAJCLef//9oE6lFhQU4N///jeKi4uRnp6Oe+65p9Od/4ChoRJ46ZGAxb8VRgIsfQyorwMunW1r4RiIRAI2LhH2KAOMqgjUyVWoc7hham7m8/9ms5lP4bS0tPDtnDabrVe1gYGKTqfjU3fCOQXua15wz+MBSi4C54+TMKK7nbNVcgapUvZhoZJlWTS3vn5ms5kPhlxQUCgUUKvV0Ov1QZu96C0bN27Ehg0bAJAg44cffuhLB37/OXB4D33OMMCda64cx70OuHIDAABYzMBXm0jEiYORANfMB6bN5eV4TSYTli9fzhvDrF27lh/EGtJ8+w6w75OOvz/9ZjJOZ1nqvCo6T90T5UXtu3YFolQBhkQgLgmISyBxv6jYduUIuGItl/sXfrTZbHw9gAsYnFAel97hggp32Wy2kFiBhoeH89IW3IwB59DGDadxrm0dLogsS74GZYXU6lx4zr/VWUjGCHLM68Ek/FDDYrHgjjvugLnVVW/lypW499576ZvlRSQtw6d+ZpM16RXOlVEE7giNltT6Du0E9nxNO1nWC+z9hnZUP7kN0Oqh0+lw7bXX4osvvgAAvPPOO1iwYMGA2LH0K8a2A1/+32/VuWGYVj9eg79rV1khXZUl7S9gDhtQeokuDoYhX9XIaCAyFtBHARGRkEXoodHooYmM7LUXLUC7Vy5QcINyXE2A6w7i2j45s3KuE4gT5uPqD5wkRXh4eNdT2f5PgoQNm5so7VBXDdRVATUVvrbm9ghT0cDj2Km9UsQdarz55pv84q9SqXxe3NYWyhZwi39ULNVPhgBXdgAAaEHhdkhfvOdrFS0rpHzfohXA8JFYuXIltm3bBrfbjbq6Orz77rvtD4cMJfRdeC7oO8gzC127rppLpix11RQIqkqBylLa4bYHy1IHhqmxrXQBQK8n5+urCvf5+SqUrXaNcir8SyT+nRusl56Hhy7G7YLa44Ha40a029V6u5sur9fn88odEhjQ6ZFhfD9bKngc/jElvmYDr5f+Px4PpW1cTprItVlp0bFa6PG6g0wOZGQDI8aSdeoVnJcOBSdOnOAd+ADg9ttvh06no9fnq/d9qWKJhNaEfhDF6w+u7BRQIA479fdyBjMcU2YBM67Dqxs2YNOmTQCop3z9+vXIycnphyc6QOiqBrDmn0B0Dzum7DYy+KmtAGoqgYYaoL6m+wviUCAmnjYuacOB9OwhsygFm6amJjzwwAO8hElqaio2bNhAdb7dW4GD3/vuPOcGOsUOEYZWAAAo4p/OB77b4p+nTkyDbcEtuPeXj/FDKvHx8XjllVc61goZCrTXBcRIgCUPAxPmBvexvB4a4GuqB5rqgKYGOrE1N5GgmSs03Tb9TpiK0l7RBl8tJD6FTjkivcJut2Pt2rX8TIpUKsVLL71EG7vTR6hGyDFsJHDTT/vMCGcgMPQCAEdDLfDpu7Tz5AjX4vzIq/Dz//siXyDMzc3FX/7yFz8T+SFHQyUFAmMtpX0mzOv5zr83OB10VG8xUxqF8/R12Ol7LiddXArH6wXlblqRSX3pGpkMkMoEH+WU0pFKKcBxHzlYtvXy+n6+x+P7yN3O34/1pYMkEkpPyeSAQkGpK+6K0JPPhUjQcTgcePrpp5Gfn8/f9sgjj+Dmm2+mwvonb/tSfTHxwB0PDbnXYugGAIAWi++2AKcEKo1SGXaGxeD5Dz/nbxo9ejRefPHFweODKyIyxDGbzXj66adx8uRJ/ralS5fi0UcfBVN4Ftjyrm/xV6lJSUDf93MJ/c3QDgAcxw+SsXpr/zILYFsL8D+7fGJQaWlpeOGFF0LiGiYiIhI8CgsL8cwzz6Cy0jcoN2/ePDz11FOQnDoMfPsx/7cOhRJY8TNKuQ1BxADAUVZIKSEb2dGxLPCNyYk//uArGKtUKjzyyCO47rrrRPNzEZEBhtfrxebNm/H666/zMz0AcP311+OxXz4K6b5vgR93+f6BQtljS9krBTEACDE2kLR0a4siC+CAU4qnvjvgd7fx48fjoYceGhzTvCIiQ4CzZ8/iH//4h586LcMwuPfee3HHDYvAfPU+DXtxqDXALXcP2Z0/hxgAAmkxAx++Tn3rrZyLScMTH2+DxeI/nDNjxgzceuutGDVqlHgiEBHpBwoKCvCf//wHu3fv9rs9MjISTz35JCarGGD7p/6DiLHxwM33UAF+iCMGgPawW8lsvtpnKWicNg//s20X9u/f3+bumZmZuPbaazFz5sw+8TMVERnKuN1u7N+/H1u2bOGl3IXMnz8fa26/Fbofd/hPmQPkg7zwlstSSb2SEQNAR1hbgP++DDS2yiFIJMBtD+JgeQ1ee+21Dk1cMjMzMWnSJIwZMwa5ubmIjo7ul9OBw+HghdU4UTW73Q673c4rWQoNUAA6MgstFTnjE6VSyV9C+WXuc5nsyh8oF+lfXC4Xjh07hj179mDXrl1obm5uc5+srCw8fO/dGNdSBxz9wVfoBai9c8FNQM74IdXn3xViAOgMUxPw3nrfmLgmAlj1KNhwDfbv348PPvgAx48f7/RH6HQ6pKWlISkpCfHx8YiNjUVUVBQiIiIQHh7OO3XJ5XLeSIPzyOW8bh0OB7+IWywWXjXTbDbzKprNzc1+nwuLYKGGMyARXpzpCvd/E15CA3i5XO5n0ch9T+gHzF3cbYE/U/hYwktMyw1ezGYzCgoKcObMGZw4cQInTpzoUHY7KysLq1bciulqBsyhnW11p4blAvNvElM+7SAGgK6oKAY2verrGU7PApbdx+8iysrK8M0332DXrl0oKyvrv+cp0obA0wsXmDr6mvs8MHi193VHgYcLUmLw6Riv14uWlhYYjUY0NTWhvr4etbW1vP1lSUkJL9vQEQqFAtOnT8eNP7keo91mMD/ubiugp4sC5iwGho8Ud/0dIAaA7nD0BxoY45i3FJh4TZu7lZeX4/Dhwzh+/DhOnz7d5Zu4L5DJZAgPD+d9gbnFTrj7Fpqfc2khzlDd6XTyKpmc3rvdbg+JlPKVgtB2krsCAxGXPhN+7Oy29oIUdwISvoZdwb3G3AmTSwdyrzP3Wgtv4z7n3hPcxf0MzuuZu7jbhD9HKNdttVp79HtVKpW8mcz0qVMQfuE48ONuvnXbd0cVMG02/Y2K+kmdIgaA7sCywJa3gYutHrcyGXDXL7t0XTKZTCgsLERZWRmqqqpQXV3N2wM2NzejpaWlS6MThmEQFhbG2xxy3qtarZa3JuQ+6lp9X7mPnMdusOGM1blgwOnyB1otCs3XhTLL3bm4IMR97nQ6+cUlcIHhbhvKcLUbzk9ZCCdrzQX3wYJWq8WIESMwevRojB07FqNHj4bc4waO7CPXP7vN/x/I5LToT5vdrvOfSFvEANBdrBbgzb/6jpkJqcAdP++1WTS3kHH680LdeTGd0H2EQSlwB8sVvgM/D9zxcl9zPycwgAVeXOAZTIvqQEIikUCv1yM6OhqxsbEwGAxISkpCcnIyMjIyEBsb63vvW5pp4T/6Q9scv0wOTMgDpswEwrV9/x8ZxIgB4HIoOE0nAY6Zi8hrQGRIE+gTLAxEgR+Fp6XA0xP3tbBby2az+f07p9MZkvSbMFUVmLoSdoMJC/nCQj2XihJ+Ty6X+6WtVCoVVCoVfzrVaDRdb25MTSTXfPJHXx2Of9JKWvgnz6DBLpHLRgwAl8tXm0hGFqDd/8o1gCGpf5+TyJCBy+ELgw2XJvN4PHy6h7svd6LkTpXC7ituYR+Qp0xjA3BgB0m3BxrPK8OASdPpElM9vUIMAJeL3UqpIK41NDIGuOtRcbBERCQYGBuAH74Fzhxra0SkiQAmzQDGTRtyss2hQgwAPaH0IvDB6z4P0ewxwJKVYquZiEhPsTQD+7cDJw623fFr9ZRqHTOFGjBEgoYYAHpKoJXctDlUExAREek+ditwcCcVeN0BnVy6KPKUHjWJDHpEgo4YTnvK9IXkaVt0nr4++D0dS8WisIhI13g9wPFDwL6vyd1NiC4SuGYh6fb0sstOpHPEE0BvcNiBjev9bSWnzQFmXCemg0REOqL0IrDjMz/FXQDUyXP1PGDcVeKOv48QA0BvaTYC779KxSuOnHEkPCV2KIiI+LA008J//oT/7XIFDW9NnilO7vYxYgAIBhYz8JG/hwA0EcCiFaQdJCIylPF6geMHqG4WOMQ1ahLVzjQR/fPchjhiAAgWdiuw5R2ylhQyejIda4eg4bSICOqqgK83A1Wl/rcnpJKmVsLQduTqb8QAEEy8XvIc3fuN/9SiRAKMnARMnQlEG/rv+YmI9BVuF7V1HtoZoMuvAmZdD4ydKtbJBgBiAAgFNZXA1k1ti1wAkJJJb/5hI8VhFpErk7JC4JvNPjMljtzxJM8s6vUMGMQAECo8HhpjP7Cd9EwCkUiBtCzSKs/MEc0qBgsNlcCR7wBjHaCPBSbOB6IT+/tZDQzsVmDXVhrmEhIRCSy4Gcgc0T/PS6RDxAAQajwe4MwRGnSprez4fpExFBBSh9EpQRS3Gngc3Q589rK/RAEjAZY8BEyY13/Pq79hWeDMUWDnF/6mLAxD8szTrxWlUgYoYgDoK1iWCmEnDgEFp9pqmQcSGQMkZ/guXZSYM+1PGiqBlx5pq08DUBBY88+heRKoqyKzpPIi/9tj44GFy4DE1H55WiLdQwwA/YHXA5QXAxdPA5fO+s8QdIQmwj8gxMSLAaEv+fYdYN8nHX9/+s3A/FV993z6G0szsO8bkmkWLiEyOZA3n3r6xWGuAY8oBdEfSKSU6kkdBsxdApgagZKLNCFZVuhTGhViaQbOHacLAFThQNpwIGMEXWJhLbQYu7D3NNb2zfPob6wW4PAeIH9vW+2eYSOBeUvotCoyKBADwEBAF0WdQWOn0m7K1EhH6opi+hjYTQGQD6owIMQnA5m5VFSOSxRPB8FGH9vF9zu3Bx30NNWT/+7pw4Db7f+9yBjayGTm9M9zE+kxYgpoMGC1UMqovJACQm2l/7E7EK0eyB5NU5ZiMAgOQ7EG4LBTmvJUPlB2qe17Tq0BrlkAjJkqpnsGKWIAGIzYbUDpJaD4PFB4HjAbO75vTDwFgpETAY2YJuoVHXYBPQxMmNt/zytYeD1AXQ2lIksKKB0ZmOYBaOGfNJ06fMTunkGNGAAGOywL1FcDheeAi2eo06i9l5SRAOnZwOhJQNZoccfWUxoqKRAYayntM2HewNz5ez3Ugux2CT66AacTcNppE2FpBlrMQHMTUF8DNNS29d0VEhVLxd1RE6nYKzLoEQPAlYbFDFw8Rb7FlSXt30etIXelsVNFjaLBBMsCFhPQUAc01tLJz2yi19zWQikbhw1wudpPVfWEMBUwYiydIhPTxHTiFYYYAK5kGutoCO1UfvtpIoYBkjNpRH/EGFG+eqBhNgIVJUB1OV015W3VNIMNwwCGZOowS88CEtNFG8YrGDEADAVYlop4J34ELpykVEAgEin9wQ8bCQzLBbS6vn+eQx2HndqBiy9QHr6pPrg/XyqjnD13hWsBjY5qQ1FxVC+KjhXTO0MIMQAMNWwtpFF07EDnC0x0HJCQBiSl0o4wKlY06wg2Xi9QU0HF/KILQGVp91I3mgh6PfTR9LlGR2k9ZRhdcgUgl9OCz19SMX0j0gYxAAxVOGmKs8dolkCo4dIeDEOiXpEx5NmqiyIBu4hIajvVaEX/1u7QYiYf6cJz1GnTlSSILorkFOKTKRDHJYoqsiJBQwwAItT5UVZIshQXz9Ag2uXCSCgg6KPpio2nlEJs/NCuLXg8VIwvOk+pnZqKzu+vUpMoYHo2fRRVYkVCiBgARPxhWUoNVZbQVVVG7YHt1Q26S2QMdZAkZ9C06JVu/9dspGBadJ5qL50VbiUS+t2kZwHpIwBDEt0mItIHiAFApGu8Xl+vuKmRPjc10kJnNnWdPgokPgXIGgXkjLsy2lBZFqitovbbS2e73uVr9aSNn5FDelBiSkeknxADgEjvcTkpGJga6fTQVE/DaXVVXee4UzLJN3nE2MFVZGZZOh1dOElXZ2kzqQxIyaAdfno2EGMQC7IiAwIxAIiEDpal00JFMWkZFZ9v3x0NoNz3+KuBCXkDW9nU2EDmJ6fzO5fx1kdTO23GCEp9DabgJjJkEAOASN/BsnQquHiGuo8a25FQlspIamDKLGp1HAi4nLTLP3mYcvodkZhGaqzDR9FzF3f5IgMcMQCI9A9cCuXUj7Sjdjnb3idrNHD1PCqM9sfzqymn4bmzR9sv5DIM7e5HjKXneqUXt0WuOMQAINL/2K3A8YPkm9yeGU7KMGDyDEqphHpXbWkGzh0j+Yy6qvbvExXrU1gV2zRFBjFiABAZOLjdtPge2kmtp4Hooig9NGpScLuHzCYazLpwgqQY2vuTkCuB3HEkopeQKqZ3RK4IxAAgIiIiMkQRJ05EREREhihiABAREREZoogBQERERGSIIgYAERERkSGKGABEREREhihiABAREREZoogBQERERGSIIgYAERERkSGKGABEREREhihiABAREREZoogBQERERGSIIgYAERERkSGKGABEREREhihiABAREREZovx/xWz+cg2QreEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEfCAYAAABI9xEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADL20lEQVR4nOydd5hTZdrGfyfJ9N47M8ww9KH3KgICVlBRbChg211dXayfZd21riu6rLoqIip2RUTsgKBI750Bhs70XjMtyfn+eCcn50zNzCTDoLmvK9ckJ2eSk+Sc93nf57mf+5ZkWZZxwQUXXHDhDwfd+T4AF1xwwQUXzg9cAcAFF1xw4Q8KVwBwwQUXXPiDwhUAXHDBBRf+oHAFABdccMGFPyhcAcAFF1xw4Q8KVwBwwQUXXPiDwhUAXHDBBRf+oHAFABdccMGFPyhcAcAFF1xw4Q8KVwBwwQUXXPiDwhUAXHDBBRf+oHAFABdccMGFPyhcAcAFF1xw4Q8KVwBwwQUXXPiDwhUAXHDBBRf+oHAFABdccMGFPyhcAcAFF1xw4Q8KVwBwwQUXXPiDwnC+D8AFF1qEqRZKiqC2GsxmcTMYwMMT3D3ByxsMbh1/XLIM1ZVQVAAlhVBaBKXFUFUJNdXieJHA3R3c3MEvAILDISQCwiLFNhdcOI9wBQAXOh+KC+D4ITidBgW5UFYsBtvm4OEJPn7g6w++AXV/VTdvX/DyEftJkn3HYaqFSiOUl0JZiTiO0iIx2BcXir811W37jDodRMZCXBIkJENsotjmggsdCEmWW7qyXHChA1BbAwd3wt6tkJ/tvPfR6cDdA9w8xMxcb7AFBIsZTCYx8FdVimPqKHj7Qs/+0HuQCAz2BikXXGgHXAHAhfOL6irYvUncjOVN72cduPUG0OnBbBKDtMXcccfaFNw8IDAY/IPAP1AM5u4e4ibLIhVUXQ0lBVCQBwU5zQeXsCjoOxh6DgRfvw77GC788eAKAC6cH1gscGAHbFzV+MAfEgHdekNsVwgOEwOrTt9wP1MtGCvAWAblZSJdY03ZVJRCeQlUlENlRctppKbg4SnSSn4BYpAPDIaAYNt9L5/WzdgtFsjNhPSTcPo4nDkmttWHTgdJvWHACIhPdq0KXHA4XAHAhY6FLIv8/qbVkFcv1WNwg/7DYcBIMeg7EhaLKNgaK2wF2pqauoFXFn/1enEMBjcx6Ht5g6e384u1VUY4dgAO7Yb0U43vExAMfQZD74EQFOrc43HhDwNXAHChY2Axw9H9sPWXhjl+gxsMGQuDx4K3z/k5vs6Cglw4tAsO7xFF58YQGQe9+kOP/mJV4oILbYQrALjgPMiyGOyPHRDpnrKShvv0GQRjp7kGsvqwWODUUdi3DU6mNp6+kiSISYDkvpDYU6wMXGkiF1oBVwBwof2QZVHMLamjRhbmQeYZyDgtCrWNIbkvjJwIETEdeqgXJMqKxYrg8J7mGVIBwZDQHbp2hy7dRBrLBReagSsA/JEgy4Jjn5sp/hYXQmmh4LpXVYocucUibrIsZpN6vShGSrq6+3rba8kWkU+vqbavwKrTQ49+MGIChEY697P+XpGXBal74cg+EWybgk4nVgcJ3UUBOSLG1WfgQgO4AsDvHYV5cPywYJpkpzc9I3cWJAkiYqF7X+gzxEVrdBRkWfyeaQdFiqh+Qb0+PLygS5IIBkm9BKvKhT88XAHg94jSYpFzP7JXBICOgsFNpCECQyA8GmLiIaoLeHp13DH8UVFWLDqnTx2FM2ktB/qwKOjWB3r2c63G/sBwBYDfCywWQa/cswXOnWg+JRMUKjRpgkLEYO3lIwZpDy+R5pF0oJPAUkePtJjrbnX3rYVGqa45S63J4ypCnn9YLGJ1cOoonD4G2eca7zOwIjgceqRA3yHifHDhDwNXALjQUVsjZvs7NzSdEw6LhMReojAYGeuakf/RUF0lCvKnj8GJVFH/aQpdkqDfMOjeT0wGXPhdwxUALlTUVAvdnB3rG++kDQyBlKHQa4BIy7jgghWFeWK1eGQf5GQ0vo9fAAwaDf2GuyYMv2O4AsCFBlMt7N4M238V8gZqSDqxlB84SjBAXOkYF1pCSaFo0Du4UzSh1YebBwwdC0PGuWilv0O4AsCFAosZDu6CzT837BC1SigMHuOa7bvQNsiy6N3YtxVS9zUU2fPyhhEXw8DRrtTQ7wiuANDZIcuCxvnbDw0ZPQY3GDRKzM58XPRKFxyE8lKhzrpva0M2UVAoTLwKuvY4P8fmgkPhCgCdGZlnYf33DQXCdHoYOFLMyLx9z8+xufD7R3UV7PgNdv7WUL46uQ9cfJWrn+AChysAdEYU5MKGn0STjxqSJBQhR01ypXpc6DgYy2HTGrEiUA8Xbu4w+hIYPLpxqW4XOj1cAaAzobQYNq8RBbn6P0vXnjB+mmjgccGF84GcTFj7taCUqhEWBVOuhai483FULrQDrgDQGVBeClvXCeXH+sW3yFgYN0208LvgwvmGLMPh3fDLd1oWmiRB/xEwdqqLNnoBwRUAzifKSgSdc982YXGoRmCIuJh69HPROV3ofKisgPU/iCZENbx9YfylIlXpOm87PVwB4HwgPxt2bBAzqfozfl9/GDlJNHG56HYudHacOwlrvmrYQxARAxOugLjE83NcLtgFVwDoKMgynDoGuzaIlvz68PWHYRcJPr/BrcMPzwUX2gyzWXSkb1krGhXVSEgWheLo+PNzbC40C1cAcDYqykRRd9+2xrV6/AJg6Hihv+Js71kXXHAmSooEbfno/obPdekmelaSerkYQ50IrgDgDFgsYpa/fzucONy4EmNYFAwdBz0HuFI9Lvy+kHFa1Afqs4VArHT7DYPeg1zm9p0ArgDgSBTmidn+oV2C2VMfkiRUOQePFjMiV5HMhd8rZFn4EmxcDVlnG98nMha6pwg/49BI1/VwHuAKAO2FqVaYnu/d2viMB8SsJ2WYmPm4Oidd+CNBlkUn+94tcOxgQ9KDFX4Botela3chSe3p3bHH+QeFKwC0FaXFsGeToMFVGhs+r9OJfGe/4cKX1eXH6kIHoP7lLHWmWbW1HtaSub0kQWQcxHcTt+h4FzHCSXAFgNYi65xgPBw7KEzR6yM0ElKGQK+BHSbQJssyZrO5yZvFYlFu6u0mk0m5WR/X1tZqttffx/p6sixjqVfb0Ol0SJKETqdDr9ej1+sxGAy4ubmh1+txd3fHzc1Nubm7uyvbDAaD5r71r8FgUF739wZZljEajZSWllJeXk5paSllZWXKY+utoqKCiooKKisrqayspKqqiurqampqaqipqVF+n/q/B4gAoP4drN+5h4cHnp6eeHl54eXlhY+PD97e3vj4+ODj44Ovry++vr74+fkpf63Pubs7gKyQly1WziePCMey5mBws3kZJ/USK2oXHAJXALAX2edg4xo4daThcwY3UcwdMELkNe0crGprayksLKSwsJCioiJKS0uVQcB60RuNRoxGI1VVVcqFb734a2trlQH79w6DwaAMZOr71kCjfq7+rX5QcXd31wyIjQUgdeCyBjRJkpSbLMuawGsNntbfp7q6WhmwjUaj8ntaB/WysjLKy8sbzNgvBBgMBnx9ffH29lZunp6eys0aYKzfp/pvYwHITwcBRbn45mdiSD/ZuMGRFZIkvC56DRCuZd4+HfWxf5dwBYCWUFYCv34n3JPqIyBYUNv6Dm2y/b26uppTp05x6tQpzp49S0ZGBtnZ2eTm5lJSUuLkg3fBhQsL3t5e9A4JpF+gDz09dcRKJnzc3fDy9sbNYNDurNPbDJCi411F5DbAFQCagsUMuzYJFcTaau1zkXEwfAJ0690gt19WVsauXbvYt28fBw8e5OTJk40uzQFivHRcGulOpKeO7CoLP2TXkFHZjHl3O2BNBVhns+rZc0szZ/V+1tewpmWsqRnrjNg6K7ZYLJrUkXXFYjKZlPvqVYw1lfFHhbe3N/7+/vj7+zeadrGmaKyzZnd3dzw9PZV0mvU3sv4u1t/CmvazrlBqamqUFUpVVZWyQlGvUqwrlYqKCmWlUlZW1uR57EzogSQPiT4eEoMDvYn188bPzw8/f39tQIiIEY2ULumUVsEVABpDUT5892nD3GR4tNDn6dpDc5KVlZWxbt06fv31V/bt22fXsn5qhDsP9vBCr3odswwrLdEc94vXXPTe3t6ai966vFanMtRpEfUgrx6sOzuswaOmpgaz2awEjMbqFdZt6ucaq22o6xrWYFM/6NS/r/5bv46i/m0bq3VY0xseHh5Kfr2x3Lp1gLcO8vpO3gsiyzJVVVWa1KT1b/3aRFVVlZIOU3/X1r/WIGR9PaPRSHV1dcsHAcS5SQz2khjorSfa35fg4GACAwPRWSdioZFCLr17iisQ2AFXAKiPQ7tgzdfaWb+nF4y7VNA4VSfViRMn+OKLL/jll1+ora1t+Fp18PDwICEhgfj4eGJjY0kK8mbkro+RGvvqJR3c8xqERDvwQ7ngQudGTU0NJSUlFBUVkZ+fT05ODpmZmZw5c4aTJ09SUFCg2V8H9PWUGOOjo4eXG6GhIYSFh9tWBdHxwrksMrbjP8wFBFcAsMJshp+/hv3btNv7DoWLLgUvW7EpPT2dt99+mw0bNjT6UoGBgQwZMoT+/fvTu3dv4uPjtTO8NR/AphVNH8uYq2HSLe34MC648PtCfn4++/fvZ8+ePWzdupX8/HzluSgDTPbTM9DHQGR4OOHh4WJFIEmi/2b8NFdfQRNwBQCAKiOs/BDOnrBt8/CCKdeInGIdTCYTH330ER9//HGDfHVgYCCTJ0/moosuolevXs2nXJa9DIc2Nv183zFw7QNt/TQuuPC7hizLHD58mFWrVrF27VqMRtGHE2mAS/31DPb3pEt8PL4+dZM2Hz+YPAOS+57Ho+6cuDACQEEm7P4ZivMgMAwGTXJciqSsGJa9o5Wzje4Cl98EAUHKpqysLJ566inS0tI0/96tWzdmzZrF+PHjMdRnKTQF1wrABRccAqPRyDfffMNnn32msOq6u0vMCNQzIDaKiMhIlKlYz/4wabpmNf9HR+cPAHvWwjdvaJuuJB1c+WcYOLF9r11SCJ8vEiqGVvQaAFNnajoP9+/fzxNPPEFZWZmyLTw8nLvvvpuLLrqo9QXWgkx4/d7GG8lcNQAXXGg1Kioq+OCDD1i2bBmyLKMDxvvquKlLKF3ju6CzXqO+/nDp9S6HvTp07gDgzIGyuAA+WyRWAFaMnCi0y1UD+o4dO3jiiSeoqalRtl1xxRXcfffdeHu3I6/YZGD7Cwy8uO2v64ILf2Ckpqby3HPPkZGRAUCYHu7vGcOILlG2ICBJQol3zNQ/vBJv5w4AzkqVlJfCJ29o9fknXAFDxmp2O3ToEPPnz1cGf3d3dx5++GEmTmznysOKgkwRCIpzITBcrGhcM//OA4vFZtVpcHPRCi8QlJWV8fTTT7Nz504AJOCeEf2YEeqNpBaji+oCV978hxZo7NwBwBnF0qpK+OxNoUVixaTpoptQhfz8fO644w6Ki4sB8PLy4oUXXqB///6tez8XOh9kWQiTFeRAUQGUFEBxodhmLBe32pqGPg46nWCTePmAj69QsAwIEf7NIWEQEuEy9ekkMJlMPP300xqm3oO33MBlcikUqup9nl5w6SyhMfQHROcOAI5eAZhM8OU7wsfUivGXwbDxmt1kWeb+++9n/37hbGQwGFiwYMF5HfzT0tJYsmQJp0+fJiEhgXnz5pGc7MpjtojaGjHQ52ZCbhbkZQklyqpKx7+XJEFQGEREi9lldLxoHvyDpxnOF0wmE48++ii7du0CQK/X89Zrr9LtzKGGZvYjJ8KoyX841d7OHQAcWQOQZfjuE62mz/AJMG5ag12/+uorXnvtNeXxgw8+yGWXXdbao3cY3nvvPe644w7MZtvyVa/Xs3jxYubMmXPejqtTQZZFSq8gB/JzxECfmylMes7nKW4wQFQ8xHaFuK4iKLhWCR2GsrIybr/9dnJzxay/e/fuvPXWW0iHd8Pqr7Qexl17wuWz/lA9A507AIDjiqW//QjbfrE97jMIpl3fIK9bXFzMzTffTEVFBQATJkzgySefPG9SCmlpafTq1Usz+Fuh1+tJTU3946wEZFnUb4oLxK0oX/wtzBX3W6sl5O0LwWEQGAqBQeAXKLZ5+4C7p8j76/Xifc0m8fpVRjBWiDRRSaHtWPJzbPWC5qDTQ0y8cISL7yZ0pVwrBKdiz549zJ8/X3n82GOPMXnyZDFZ+PoDMUmwIigUrp4jzos/ADp/AID2F0v3b4dVX9oexyfDNXMbvfDeeOMNli1bBoCPjw8fffQRgYGB7fwAbcejjz7Kiy++2OzzL7zwgsPfV5ZlysvLKS4upqSkpIFMdWVlpUaW2qqVA2g8AawaOY3JAavvWx97eHjgYTHjVVmGZ0UJ7hVluJWXYCgrQiopbP0gD2IWHhop0jHh0eJ+aES7+eCatFx8F+ZdM4NkP0/ITofMs5CT0XJQcPeAuCThhBWfLAYgV7HZ4Xj66af55RcxAYyPj+e9994Tk7rqKvjxc0g7ZNvZwwum3yKC9O8cdnYunWeERLe9MerscVjzle1xaCRcdUujg39JSQnffPON8viWW245r4M/wOnTp9v1vBoWi4XS0lJKSkooLi6mqKhI8SMoLCwkPz+foqIiioqKKC4ubnTV4UhIQIRBCHzFuElEu0lEuUn46CSKG9tfktBJOkXgTqcXf/U6Hbo6UbZqD2+qfQMwBYZiCY1AFxmHZ1Qs/oGBisqmI1ZzjaXlFrz8ijYtZzJBTrqwRDx3CtJPYampqidWV4QpIx3zxnWYzSZKJAOnJQ9OyG6cNuuoNJkbpP4MBgMeHh54e3vj6+tLQEAAwcHBhIaGEh4eTmRkJMHBwReEAGBHYc6cOfz666/IssyZM2fYvXs3gwcPBg9PuGo2bFkLm1aLnasrRXPo1JnQZ/D5PXAn48IIAG1FYR58/aGNzeHtK2b+Hp6N7v79998rqoSBgYFMnz69gw60aSQkJDT7vI+PDxs2bFAG9fpuUlYpX+vs/XzCU4Ku7pJyi3PX4d6KMUqWZcyymVKTiXwT5Jtk8s0yuSaZnFqZPDPUtrCe1el0+Pn5ERAQoMgvWyWY1VLMvr6+ipqnVXbZYDAgSRInTpxoMPgDmM1mbr/9dsrLy/H29qakpET5XYqLiykpKiSwqoJkD4nuHhJd3XXoG/n80XW3kTIcrbZwqErmUJWFslaoMXt4eBATE0OXLl3o2rUrycnJ9OzZk6CgoJb/+XeIuLg4hg8fztatWwH46aefRAAAseIaNQlCwuGHz0VdwGIR9yvKhMz07xQXRgqoLTCWw8f/E/lZEGmAWX+CqLhGd5dlmZtvvpnMzEwAZs+e3SkKrNu3b2fkyJFNarEPGzasfQ1pLUCn0ymDpZ+fH97e3orefFP2k1Z7QneLiVi5hi7U0kUyEa6zgCwjyyAjN7wPddtkKswWcmot5Jhk8s0SBWYosEgUmqHqPJ+xJ06c4Ny5pm0Mu3TpQmJiYouv4wYkekj08JDo6aEj0q3paCgDp6ot7KuS2VdpobSN0vzh4eH07t2bXr16kZKSQvfu3Tu9FLWj8Ntvv/HUU08Bwn9h5cqVDeVbss7BV+9pXclGXAxjpvwuU3O/zxVATTUsf882+IPg+jYx+AMcOXJEGfwlSRKsH2dqEDWBsrIytm/fzs6dO9m7dy/Z2dkkJydz9OjRBvv26NGjTYO/wWBQ0gaBgYGEhIQQEhJCcHCwMkO06r0XFRWRnZ1NdnY2mZmZFBUVNel34CZBkrtETw+J7h46ot0k1JdMbSMZJVmGbJPMuVqZzLpblkmmQsQKZBksFpsev7pm4OHhodQWrLr8aoMaq7eAdVXkqLlOVVVVu54H0VcSGBgI/v6k+/iQ6+5OgA7i5Sq6mCqJqi7DHVmY7uh06CQdsTodF+l1IOkoCgjhnF84p918KCgtU1J42dnZGsmS+sjNzSU3N5dff/0VEANhSkoKAwYMoG/fvvTs2dN+TasLDMOGDcPNzY3a2lqMRiNHjx6lT58+2p2i4uCmv8AXi22NolvXCeLJmEs6/qCdjN/fL202C2VPtZnL2KkaVc/GYL0gAPr37094xoGG7KPNKx2jQVQPsiyzdetWvv/+e7Zu3dogtRAVFUVAQADZ2dlUVVXh6elJZGQk3t7emoE8MDAQf3//Bobevr6+ynZ/f38sFguFhYXk5eWRm5tLVlYWGRkZbN++nXPnztk1gIGYwca7S3TzkEh2l+jSREpDDaNF5lSNzMkamdM1Muk1Mk05KVgdx3T1uNlWk5Hy8ma8Y+tgMBgICwsjMTGRgIAA/Pz8lLSO1TCnurpaSZVZg4XaqKSqqkqj/urp2XgK0YqkpCSmTJmCv78/Op0OWZYVJzSrCUpxcTEFBQWcOHGiUSc0HdDNXaKvl46+nhKBqi9WJ0m45WQT73GcJG8fqrv1IeDSGwjr1RdJkqioqCAjI4Nz585x9uxZjh8/ztGjRxto6oMI9Nu2bWPbNiGD7uHhQUpKCikpKfTq1Yvk5OTzXgdzFDw9PenVq5fS33Po0KGGAQBEY9+Nf4Fli0XPCMCWn0Gvg5GTOvCInY/fVwrIYhFc/6P7bdsGjhLGEC0s32bPnq0s6x+7ew6Tj6x0ulibLMusW7eO999/n/T09Cb3CwsLIzk5mfj4eOLi4oiKiiIiIgJ/f39KS0spKiqipKREse9TW/tZbf1KS0uVwm9z5jXNQQd0cZfo7i7R29eDJC897no9uroUglznmGWpsyKULTLlFpkTNXC8xsIxo4nMGlu6yDpLt1oXWh231I/NZrNiZ1nfvlKv11NZWUlWVpYSGKOiolq9KvLy8iI8PJywsDBCQ0MJCgpS0l4+Pj6KG5sVp0+f5pprrmm0SC5JEjfeeCO1tbXk5eU5bNUR5yYxwEuiv6eOYEPj53KGzoOSHgPpNulSBg8Z0mAmn5+fT2pqKocPH+bQoUOkpqbaZcMZHBxMYmIisbGxREREEBwcrNRI3NzclEBd/7MaDAY8PT2VQnVnWFm89dZbfP755wBMmjSJxx9/vOmdjeXw2VtapeAp1wpjqN8Jfj8BQJYF1VPd4dejH1x+Y4vdfbm5uVx//fXK4+/uvx6fPaua/gcHyDWfO3eOF198kUOHDjV4LigoiBEjRjB48GD69+9PYGAgx44d48iRIxw/fpzTp0+TmZnpVFP5kJAQoqOj6R4WTB9vA/HUEGIswV22UFNbK2wA6+wAa2pqsJ5E1RaZtBqZtGqZY9UWchxg86v2GVbXG/Lz8xvk4iVJEiu48HCNgJ+jkZWV1WRaLioqqtWvJ0mSxvrTWnC2WlxWVVVRXl6OyWSiq7vEEC8dg7wkPHQNg0FWrcxGswexF0/j2pkzCQ8Pb/Q9q6urOXjwIHv37uXAgQMcPny4zZMDez5fWFgYSUlJDBkyhNGjRxMREeGU92oOq1at4l//+hcgfqu33nqr+X+oKBNBwNorIOng6tsgsadzD7SD8PsIALIsqJ77VG5eCd1hxm2i+NsCVq9erXDpY2Nj+fDKAU41bPn55595+eWXNakWSZIYM2YMl19+OUOGDKGiooJ169axadMm9u/fb7dnqr3Q6/WEhoYSFhZGVFQUUVFRxMbGEhcbQ7xexuvccTh5BLmogApjBSXFxZSXl2Os1Eoo1MiiOJlWI3O8Wia9VqYjrMONRiPbt29v8vnhw4cTHx9PaGioMmP18PCgoqKC3Nxc8vLyyMvLa5cRvdFobDQtVx8BAQHKCiMgIABJkpR0kNWUvbq6WgmmZrMZvV6Pp6cnPj4+BAcHEx0dTWJiIvHx8Xh6epKVlUX6qVOQuofI7FME1hgbvG96jcx35Ra6jp/M7bffTmhoaLOfp6amhsOHD7N//34OHTrEsWPHFC0sR0OSJIYPH87tt99OUlKSU96jMRw8eJB7770XEL/L119/3fI/lRQKQklFXW3FwxNm3ydSRRc4LvwAIMvCynHvFtu2mASYebvdLff/+c9/FP7/tGnTeHhgpNMMW5YtW8Ybb7yh2TZ27FjuvPNOYmNjOXHiBJ999hm//vqr3YOTv78/gSqeu6+vr2JErq4BBAQEEBQURHBwMP7+/jaeuCxD5hk4vAeOHcBSIWijJcXFlJSWao7DLMOpGgtp1WKWf1Y14Pv6+hISEkJAQAABAQGKqb3VyN6aurHy+K2wpnus3Hircbh6gLRSWq3UyqNHj7aJiRMSEkJycjLJycn06NGD2NhYqqurycnJoaCgQOmFKC0tpbS0VDE9tw7MFotFSUe5u7sr37P1MwcHBxMWFkZYWBgeHh7k5uZy8uRJTpw4walTpxRJgvYgMDCQESNGMHHiRAYPHowElB45QP73XyKdTKWktFSTjjlSZeHHajemz72DGTNm2N0fIMsyhYWFnDx5kjNnzpCRkUFBQQGFhYVUVFQo5u/W1J21XmNN45lMJqVZsCkYDAbuvPNOrr322g7pW8jKyuLGG29UHq9Zs8a+1FROBnz6ptCWAuE1fMOf7ZpgdmZc2AHAYoafvhRG7lZEx8O185rk+jeGu+66i2PHjgHwwAMPcPnIQU7xIVi5ciULFy5UHvv5+fHII48wevRoCgoKWLRoEWvWrGn0f93c3OjRowfdu3cnKSmJ2NhYpeGnzblVYwUc3AEHdlKTnUF5ed3AX1qqyW9n1cocrbZwrFrmRLWMu4+PQiVMTk4mLi6OiIiIFoujjoIsy8ycOZPly5c3uY+V7mgPwsLC6NatG127dqVLly7KzcfHvk5hk8lEeno6p06d4vTp05w4cYJjx46Rl5fX8j+3E4mJidx6662MHTtWDKB5WdT++gPFOzaSm5enDL5mGdaWm6noO4yHH3scX19foGNEBqurqykoKODcuXPs3buXDRs2KHr9VsydO5dbbnG+C57RaNToeq1YscL+InfqHvjuU9vjJrTELiRcuAHAZILvPta2cEd3gWtvb9XgbzKZmDZtmjLLffvtt8UF4GDDlv379/O3v/1N4fNHRUXx8ssvExUVxebNm3nhhRcasFoCAwOZNGkSo0ePpnfv3mRnZ3PkyBHOnj1LRkYGhYWFlJSUUFlZqRRTrV2i1vSB9Wadibu5ueFbYyQu5zRRhVmYa6qpqqyiptY2S7PUNSAdrJJJrbZQhp7+/fszZswYBgwYQEJCwnnvMm1JIuMvf/kLN9xwgzIYHzlypFEWTHPw8/MjLCyMoKAgfHx88PDwQKfTYTKZqKyspLS0lPz8fHJzc5vs02gM3t7emoJ+aGgoAQEBeHt7K+9hNpuprq5W3uPMmTMcPXqUkydPNlpYHj58OI8++iiBZqOgLmedRi4qpCi7mPSMHCWg55lkNnhHMP+V1/j666/Pi8igLMts2bKFV155RfObvPzyywwaNMhp72t974svtl2/n376KZGRkfa/wKrlsL8u1azTiVRQWOtrPp0FF2YAqK6Cr5dqTdzjEkXOvxWDP8DJkyeZN28eIE7+n376yTajdpBhS0VFBXPnzlWW/2FhYbz++uuEh4fzySefsHjxYs3+iYmJ3HLLLYwZM4YTJ06watUqNmzYQH5+fqvfW41gPUzz0zPIW0djw/fxags7K2UOVFowu7kzcuRIxo4dy7Bhw/Dz82vXezsabRHJKywsJC0tjbS0NI4dO8ahQ4coLCxs8P+ORFhYGH369CE5OZnExEQSExMJCwtrcwAtKytj586drFq1SqFuWjGzWwh/ipWRNJMWCZN3DGdPZlFSWgqIprLVlTqe+Obn8yoyWFxczD333KOsBmJjY3nvvfeczhaaPHmyMuH74IMPiItruj+oAWqq4b1XoLTORjYmAW740wXbJHbhJbDKS+HLJULu14qkXnDFTW2S2VVr6cTFxWlPvvZoEKmwdOlSZfDX6/U8/fTThIeH89lnn2kGf09PT+6++26uuOIKDhw4wL333suRI0fa/f4+OrjEV8coH30Dnn65WWaL0cI2owWvyBgGjhzIw4MHO73DuL1ITk5m8eLFjc5g33nnnUYHr+DgYIYPH87w4cMBMRvMz8/n+PHjSp77zJkznD171u5eCCt0Oh1xcXEkJCSQmJhIt27d6NGjByEhji0U+vn5MWHCBCZMmMCpU6d488032bFjBzFeOu6KNiHJ9X5gWcZgzKTr5dPJWruanJwcJODo0aNNaj2ZzWbeffddp4gMqhEYGMhTTz3FXXfdhSzLpKens3PnTkaMGOHU961ff2oV3D1g8gxY/q54nHEaTh2DxB6OO8AOxIUVAApyxeBvjb4AvQcJ0aY2trOrC4kt6e60BXl5eaxYYSsoz549m549e7J+/XoWLVqkbI+NjeXZZ58lLCyM559/nrVr1zZ4LUmSiI+Pp1u3bsTFxSmsEjUfu7a2lpqaGoxGI8aKCvzOHCX+1EH0tdU2nj1Q7u7FmfAEjPHdGRufwG1JSU3SBTsr5syZw5gxY3j33XeVHPbcuXPtnrlaqYlhYWGMHDlS2W4tfmZnZ1NYWEhRUREVFRXU1tZiNpsVfrufnx8hISGEh4cTExPT4Tz3rl278uKLL/Lll19i+vFd9E3NQmULkgdEP/Q8la89R+mZk2SWN2+I0xqRwfYgOTmZsWPH8ttvvwGwfv16pwcA9aDfppVYYk/BMjwt6oZsWiXUXC/AVcCFEwAyTguNDrWT07DxMO7Sdn3x6mJUTExMOw6wcSxbtkxZboaGhjJr1iwKCgpYsGCBsk90dDQLFy6kqqqKP/3pT5w9e1bzGn379mXq1KmMHj3a/oJVUT6sXg4V2RCuov/5BcLYKdBrIH1+B+5HycnJDp+pSpKkyGN0dkiSxMyZM0nP2AzFp5vesTgXouJI/Md/+fWfDxO9N63Z13XGZKgpjBs3TgkAu3fvdvr7qVc+9bvM7caYKbYAkJ0uXAa7dByd1VG4MAJA2kHR4WulI0oSXHR5AxP3tiA72+YNHB1tX37fXuZEVVUV33//vfL4hhtuwN3dnTfeeEMp+Hp7e/Piiy8iyzLz58/X0AR79uzJPffc03i7elOQZdi7FX79Vqud7+4BoyfDgJHC6MSF3xVi+gyETaeb3iFQrO4kdw/G/vNl1p7LRZd6GksjFUC9Xs/cuXOdc6CNQG21mpubS1FRkdNUS61kCSvUHd6tQlQcJCTD6bpAunODKwA4Bfu3i5ms9UfT6eGyWdDTMf68OTk5yn17UiCN6sAvWNAoc2Lz5s0YjaJBx9vbm2nTpnHs2DHWrVun7HPXXXcRERHBPffcoxn8b775ZubMmdO6GUp1leiGVkthAHTrDZNmCBNzF36XkAZNQt68UlsAVp7UafSrDAYDD732FhuOHmfjjp2aIKDXSbzz3D871GUuNDSUwMBApens9OnTTgsA9XsS2hwAAAaPtQWAk6lQXga+nYss0RI6dw5g6zoxoFkHfw9PuO4Ohw3+sixraGhhYc3bwKWlpTWpA3/HHXeQlqZdVm/atEm5P3bsWLy8vDTc9eTkZK644go+/vhjpQ8B4N5772XevHmtG/xzMmDpQu3g7+0LV94M0291Df6/d4REI135Z8z1Z/RW6nI99lpAQAAffPElEy66iInd4pkSH8Gc3glsuG06t0olwkK1tQXSdkDNxMnKympmz/ahfkd9u3pXuvYQKVUQY9Sx/c3u3hnROQOALIsTcMNPtm2+/oJuFdeyzrq9KCsr0wzmwcHBze6/ZMmSFpkTVsiyzK5dtga10aNHU1lZyfr165Vt119/PSUlJYo4FcCVV17J1Vdf3boPkroHPvmfTb4WhJ3drX8TekgXYHGq08FiFius6iqbYUhnw8CJrE6+nI/PVrE2t4a11QGiabGJvpX4+Hj++9rreHTvQ89evbmzXzc8q8o5duwopWtWIn/5jlYX34lQr74d0S3dFCrrSZl4eHi0/cUkCXqpJqPHDrT9tc4TOl8KSJbh1+9ETs2KoFAh7RDQ/ADdWqh1TvR6vdId2RRaY8947tw5RaxNkiQGDBjAzp07lRmIj48PY8eOZdmyZQrl0N/fn7vuusv+D2Axw/ofYedvtm2SBKMmCxOL30GR1+morqozdy+EsmLBMCsrEbovxnJxq6kR33V9uLmLVZaXD/gHivM0KFTYjoZFnReZgODkvvx7yUcAxMSYmNhC30qfPn149dVXefzxx1mYn8NtQQYiqOTEyZN4ZGTgtWsH5stmkTBqvFNZTuqCuzN7M9QBwMPDo/0Njcl9YXvdpC7jtDifWtmLdD7RuQKALMNvP2gH/7BImHkH+Dg+t6Y2zvDz82vxZGiJGaF+Xp3S6dKlC35+fuzcuVPZNmLECNzd3TXSD1dffbX93HtjOXzzMZxTNcN5eomUT3zb8rfFxcUcPXqUjIwMysrKkCQJLy8voqKiSEhIICYm5rx3ANsNWRbersYKqKwQA3pZCZSXQEmRGPRLCqGyoYia3aitsb1O9jlkUGSwZZ2EHBKBFNsVQ1JPpC7dOmRgUKcN7fV0TkpK4u233+b111/nPz+vYVagngFewiehOv0M5rde5NmXXyQjrAtd4uOJiIjQyGYHBgYSFBREYGBgm88PNbvNmSq36gDg5eXV/heMjBPXXVWlWBWePQHJrSBtnGd0rgCwZa0tmgJExIiZv5d9miythdojt6XZP8C8efNYsGBBk92TauaEejXQrVs3AFJTU5VtAwYMoLi4mDNnzijbJk+ebN+BZ50TpjdlxbZtYZEi199KhcKioiLWrFnDL7/80mLTWVBQEEOHDmXs2LEMHz4cNzcHs4lqa4SLW1kpVJSKQbu6EqqroaZKsJpMJjEbt5iF+Y/FUnffJB7X1ogZu6nGVjtyMCwWC8Y6Oeyqqiqqqqupqa6h1lTbqEyDBOgMBnIMXmT5hVIe3ZXA2C6KCmtMTIzDOq337t2r3G+NxIG/vz+PPfYYV111FZ98/DFn9m/jSn89kgR6Ca7yhd0Fp/ni5AlqmvhaDQYDMTEx9OjRg2HDhjFmzBi7Uyzqz2+P0Y8VrdUycngA0OlEutWa/kk/6QoAbcKBHbBpte1xWKQo+Ho6rxu1tSdDa7pP1fRSa3+BuuegW7duGhMYPz+/lmmosgw71sOGVdqURK8BwqiiFZ3Qp06d4pNPPuGXX36xe6ZYVFTE6tWrWb16NX5+fkyZMoUZM2bYTZ/VoKJMBLKss4JHXZinbfDrSOgNEBAkUox+geAfAL4BIr3j7YvZzZ1jJ0+xa99+9u7dy8njaWA24SWBr17CTwcheokwg7hFu0moPVtkwGwyEWoqI7SqDDnvFCe3W/jeaGF/pXBE8/f3JzY2ltjYWGJiYoiJiSEyMpLw8HCCg4Nb9O3Nz8/nu+++09STFNPzVqBPnz489/zzZGVlse+HlURuX4tUUYpFlhnkrSPGTeK9IhO5jQjVmkwmpZt69erVeHt7M3v2bGbOnNkioUFdjLW3C7s1jDwr1Ne8wzrdY7uqAsApx7xmB6FzBICM07D6K9vj4HC47k6nDv6gZQTYSwezt/tUXV8ICQlRfEjV206ePKk8brHBq7wUvv8Mzh63bZN0cNGlgo5m59L7yJEjLF26lK1btzb6fFBQEElJSQoNr7S0lIyMjAaOZWVlZXz55ZcsX76ckSNHcuONNzbfr2A2i3TVqaOidb4gp+l9HQlJEitIH1/wDQQ/fzHIBwSLvH1giCAY1Pv+jEYjW7ZsYdOmTWzfvl2zWrSiCMBknQ7bpsU6INIA8e46kj0kuntIeKuMWyQgyUNHkoeOGQEyO4wWfqso5fDhwxw+fLiRjyAplp9WXwODwYDJZFL8DeoL3QUEBDBjxoy2fGOAECuMmnc3zLoJ8zcfUZ12mKrKSiJrang+0sxaQyC7jWaKi4spLi5u1K/CaDTy1ltvsXPnTp555plmGTfq1aQ9pjQtMfLGjBnT6EpAHQAcpl6rJqbkZFxQdYDzHwDKy+DrD2wzWm9fkfbxbjkl016oT57W8IHt6T5Vn2g+Pj4N+MdWT1ormtRMtzZ2bfhRnFhW+AXAZTfYzYo6ePAgH3zwATt27GjwXGhoKFOnTmXChAl07dq10TxuaWkpu3fvZsOGDWzatEm54GVZZvPmzWzevJkBAwZw0003CY16SRLHnpsp5LpT99rHKNHpxcDs4ycGZk8vcTG5eYgGNr3e9lfSiSW43iD8WvUGcHMn7Vw6Sz5bxumMTBISE5l3+w128drLysrYuHEjv/76K7t3727Wj8HT05Pk5GSSkpKU+khoaKjiOazX6xVFz4rycipPp8HR/XicSUNXViw8D6qr0dXUMN5XYqyPnt2VFtaWmxu4qMmyTFFREUVF9q2QQkND+cc//mG3nHWz8PFDf/2deG9Yhff2X5XNSQBDxsH4aaDTK+Y4J0+eZPfu3axfv16Z8OzcuZNXXnmFxx57rMm3aa0+jz2MvMauUaesAEIjRaNlTbU457POCqmICwDnNwDIMqxaZhsYdHqYPlsMAB2AdmuC2PnaOp2uAYOitrZW03eQl5eH0WjUnpQ5mcLpLEsrDUH3FJhyTYsrJFmW2b59O59//jl79uxp8HxSUhI33HADF110UaMphsbyq08++SRGo5E1a9bw1VdfaWQr9u7dy969e+nTsyd3TRhJ3+pipOymvY7x9RcdlVFdBGsmOAz8g9rFXmo0LfDyy02mBaqrq9myZQtr1qxh+/btTQ76BoOBlJQUhg4dyuDBg0lKSmoxLQNikAkKCoK4OBh7sW2A2L8dUvcim2ox1Zqorq4iobqaS6trOCx58lOZhbScPA1RoSVEREQwceJEbrrpJscK+en0MP5S4bXx4+e2icjO3yA3A664CW9vX0XtdNKkSfzpT39iwYIFisTDmjVrmDJlil1pKXuuxdYw8tRQr8Id9h3pdBDTFU7V1dDST7sCgF04sANOqgqPF18p5FXPAxytiq1eUVRXV+Pu7o67u7sy0y8sLCQxMRE/Pz/KysqwWCysXr2a6dOni3TPpjVwYLu2kOnhKSQwUoY2m/Kpra1l3bp1LFu2jBMnTjR4vkePHtx2220MHz68yYutpfzqVVddxZVXXsm2bdv4+OOPOXjwIACDvCQuLTyOaeUJUj08CAsLEzlsnU4MJF27iwaa+GRBmXRg4G1NWiAtLY3vv/+etWvXNll09Pf3Z9SoUYwZM4ZBgwY5pmgoSWIgjY6HCVcgHdqF287fcCspUogIMcDkWAPcci3Vg8aQV1yipFoqKiqorq7GZDLh5uaGp6cnoaGhxMXFtWj52G4k94HQv8LKDyCvrsZ19gR88KrwyQ231YL8/Pz4+9//zl//+lclrfXpp582GQDUK2B7VuOtYeSp4ZQAABCbYAsAGacd97pOxvkLANVVotnLiq49YYBzVQDro12ysC1AzWooLi5GkiRiYmI4dUoUiY4fP063bt2YPHkyX30l6h+fLH2fKX46vA5st1nPWdFrAFx0RbOt5llZWfzwww989913jXq59unTh9tuu82WomkC9g6kkiQxYsQIRowYQerGX8n/dDG+xTYXrOrqatLT09l6Ngu59yB6Tr+O5L79nEYlbSkt8Pbbb3PxxRezcuXKRg3dQdRixo8fz0UXXURKSopds3w1rIXQU6dOkZ6eTl5enjJw19TUKKY9np6e+Pr6EhgYSFhILD29w0nMPYVvTSUGvV6wmrb9gkfqXmInzyC2b99Wfx9OQVAo3HQP/LQMjuwT28qKhWfuZTdAd9tx6vV67rrrLu677z5ACL01WOXWQR2E7RmYW8PIU0MdABwS0K1QT1wzz4iaVxsVijsS5y8AbFkr+NkgcrpTrunwjlX1TMOewlNroO5stDKCevfurQSAnTt3MnXqVK6//np+/P57+utrmepRwdlPl5CYmISbW91PExQKk6Y3uaQsKytj8+bNrF69ukklxREjRnDDDTeQkpJi1+DbqvyqLMPmn+m1dS0kxFBhDCI3N5fComJ2V1r4tdxMpqkWsjfDus106dKFCRMmMHbsWBITEx0aDFpKC3zyySeaXgwrPD09GTduHJMnT2bgwIGtGvQtFgupqals27aNvXv3cuTIkTafSzpgmLeOK0M8Cff2xMvbG5+SEnw+fxtDn0FCz8nbOZToVsHNHS6/UaTvfv1enAOmWrEyGDtVWCXW/a4pKSl4enpSVVWFLMucPXuWnj17NnhJdRG7pY58aJsfBGip3w6pkVgRGStWuBaz+C5y0sUqr5Pj/AQAYznssenkMHzCedGqUQeA1hqAtAS1tol10B82bJiiDrp582YqKysJNxbzxrBkik6IGamxspLUI6kERsfie8l0gsZNQVLVD6qqqjhx4gQHDhxg+/bt7N+/v9HB2t3dnUsuuYSrr76arl27turY7c6vVlXC959q0ng+3t50nXgpnr2GsHXdeop/+AFMtlnX2bNnWbp0KUuXLiU8PJxhw4YxdOhQ+vXrZ7/UdRNoKS1Qvw7Tp08fLrvsMsaPH9+qdIAsy6SmprJmzRp+++03h3WuWoCtRgu7Ko1M9q3iYt8yrOQhz+PHcVv/M1UXXUH3KVe0T8TMEZAkUQQOjoBvPxIFUBDyLcUFMPlq0OuRJImgoCBF36cxNhVo9X/s9aVoix+E0wKAm7uwpLXSQM+ecAWAJrFns02q2NsXho47L4ehvujra4S0F+qT8OjRo5hMJoYPH463tzdGoxGfmkrOLnyaHgYz8X5eGMLCyMvLwyTD2uIafk4/TvW2Bfj5LVJmRKWlpS0yQeLi4rj00ku59NJL8ff3b9Ox25VfLcwTrkjFKvphQDBMvBKSehMF/KVXX+bNm8e6detYtWoV+/drxbJyc3P57rvv+O677wBhitO7d2/F+D4hIYGAgAC7Vglms5nJkyfz0ksvNZnOi4yMxMvLi0suuYQrr7ySxMTW6UpVVlayevVqVq5cqQT1xmAwGBTP38jISIKDg/H19cXd3R1JkjCZTFRVVVFWVkZRURF5eXlkZWWRkZGB0WikVoYfyizsqrRwXaCBru6SaDjLzoTPFvHu0sUU9h/FhEmTGTZsWKvTVA5FYg+4+R746n3buXBgh0gLXXkLeHhqKKJNNQ+qGyJbY9HYWj8IdarJnubPViE+2RYATh0VciydHB0fACxmQWu0YtDoNlk5OgLqE6A13Yf2oHv37ri5uVFbW0t1dTWHDx+mX79+XDp1KoWrv2aqn56aI/sw9eyFwaAnJiaWkrhkXly3lRyjLYVQVlbWIhMkMDCQsWPHcskll9CnT592p1VazK9OvwI+fVNL6+zWGy6d1YD/7OnpqQSk7Oxs1q1bx4YNGxrtOk5PTyc9PZ3Vq20Ngd7e3kRGRhIaGoq/vz8+Pj4aimVxcTE5OTlkZGRQU1NDcnJyo/n9sWPHMn/+fC655JJWF//KyspYvnw5X331VaO/hU6no3///gwbNoz+/fvTrVu3NnVJW9VpT548SVpaGkePHuWjgwdIKSnlcn+90lw23MNCxoENvLz+F6SgUK655hquuOIKx85oW4OQCFEX+HqprQB6Og0+X0TF1Os1K6TGFHdra2s1AbW1K9bWoL78i0PRtYetmTXjDFQZnd7L1F50fAA4d1JL++zfsYVfNeq3n1sslrY7BNWDu7s7/fr1UxRBt2zZQr+ocOa6GzkW4IZFtmAymTh37iwJYy9GuvhK+kTE8PYdpSxfvpxffvlFY1ephpWDPnDgQIYOHUrv3r1bddwmk4mcnBwKCgooKSmhsrISs9mMXq/Hy8sLX19fXnzxRR555JGG+dX/LCB558+239AqPjdyYos1nMjISG688UZuvPFGCgsL2bFjBzt27GDv3r0NGpmsMBqNnDx5UtM01xyioqIICAggOzsbs9lMjx49eOihh5gyZUqrA2N1dTVffvkln3zyiaZ4aEX//v255JJLGDNmTJtXW2pIkkRoaCihoaEMGzYMEEEhIyODIxvXE7T5RwxF+VgsFmLcJB4MM/BJcQGLFi3io48+4uabb+aaa65xvESHPfD2EZ37P35hKw7nZFD+9r8J1UO+WVxvjclTHDt2TKHfuru7X7gBICJGZDSM5SBb4NhB6DfMse/hYHR8AFDr1Sckn9eiVkCAre4gyzKlpaXtzkOrMWrUKCUAFGxYg1xxBi+ziaioSDIyMykzy3xwqoC+g9yYGx6NhKAezpkzhzlz5lBUVERmZiYlJSXK4BwREUFYWJjdA35NTQ2pqakcPnyYI0eOcPLkSTIyMuyivQ4ZMoTS0lJAzMpuv3Y6l5Wchaq6Jb0kwbTroc+gVn83wcHBTJkyhSlTpiDLMtnZ2Rw+fJijR49y7NgxTp482SoOPIiZeFJSEoPrTO379evX5vTIxo0bee211xpIE1uNfa666qpWpSraCkmShETErJvg2uupXbuSig2rKSoqoqSkhDnBEuvKzHxfVsGiRYv47rvveOSRR0hJSXH6sTWAwU0Uh339FUHH8oyz3Bdm4O0CM71Gjmw0CKt7VHr16uVU1VG10Jz6+ncIdDohv75ns3h8aJcrADSA1UEHREPTeYS3t7eSpgGhdePIADBu3DjeeP11pvvrGC2XUlZUiL+/P2Hh4WwzWngz9RyVMuz9+GOqqqu56667NCd/UFBQq52RZFnm+PHjbN++nZ07d3Lw4MFmO1qbg5eXl0KV86g2ErzqCw7pJTw8PPDx8SFnyASiA8KJkeV2pZ0kSVKE0SZOnKh8jtLSUjIzM8nLy6OgoICysjKMRiMmkwmdToeHhweBgYGEhIQQExNDly5d2qfvjqDs/uc//1EamKzw9fVl5syZzJgxw/EzR3thMOA25RoC47sRuOpLaisqyMvPY7Iunxi3Wj4oMpORkcF9993H7NmzufXWWztevVWSYMIV4BtA1arllJaW4qOT+EuoAb/+vRv9FzUza9Cg1k8m7EVVVZWmHuHwAACCrm0NAOmnRErsPPU22YOODQClxVrTkjbKFjsKkiQRHBys2EIWFBQ4dPkZ6u/HP/rG4lMgaKC5eXn4h0cgXXYD40Ki+Or++xVGzZdffsnBgweZP39+q+34jEYju3btYuvWrWzbtq3JdIoaVnZGYGAgXl5eGAwGLBYLlZWVlJSUUFBQoBRT/XXwlxAD/noxmFRVV7Mku4LdBz+D9z8jICCAPn360KtXL3r06EH37t3bfXFJkkRAQAABAQH06tWrXa9lL3bt2sXzzz+vyVkbDAZmzJjBLbfccv4G/vro2R/Co3H7+gOi3QyEh4UTnJ1FqCGPdwpN5Jhkli5dysmTJ3n88cfbHRTbhKHjWL7yG3rKoJPA39ODnqlboWsX6DVQ2a2srExpIgSx6nQW6vfGOCUARMeLAd9aC9m8Bq69vdOaMnVsAFB3yFnFuM4zQkJClADgUCOK6ipY/i79g3w5XjcepxaUYhg/nYTEngQA//nPf3jwwQeVbt0jR45w5513MmrUKKZOncrAgQMbZSqUlJSQlpbGgQMH2Lt3L4cOHWpW0dPDw0MZoJOTk0lMTCQqKqrZpbbZbCYnJ4f0I4cJ/flLKC7AWFFBrcnEsmIzuyttKaSSkhJFD8iKkJAQkpKSiI+PJyEhQWHFOCJXDkBBJuz+GYrzIDAMBk1qYHtoL2RZ5pNPPmHJkiWa1Fi/fv144IEH6NKlC2lpaTz33HN2yw47HcFhcNNf4KdlGI4dIDY2lqDgYEJPn+HtrApSq2U2bNjAww8/zAsvvODYrlc7cOjQId7ZtIueHhJzgg3ER0QgWczw3adCCXaIYP5t2LBBOXeDg4Mb7RFwFNQMOj8/P+ekmiQJRkyE5UvE49NpcCJVkCQ6ITo2AGTaqF6dZVmkdiLKy8trZs9WoLYGvlwCmWfw9fXF28uLDQUVfF5sZuSXK3i6n5gBBQYG8tprr/H666/zww8/KP9uHUwlSVJohHq9nsrKSqWztDlIkkTv3r0ZOnQoQ4YMoUePHq0+2fV6PdG+3kSf2gNB/hDkjwwU9x/FBLwJPXCAAwcOaOh7ahQUFFBQUMD27ds12wMCAoiLi6NLly7K3/j4eKKiouwvZO9ZC9+8IQptVmxeCVf+WWN+bg9qamp48cUXWbdunbLNYDDwpz/9iRkzZiBJUptkhzsEHp7CAGjbL7BxFT7e3qT06MEDnqf5OL2IX8ot7N+/n4cffpiXXnrJsZ2vzcBisfDf//4XgCPVMt94R/FMdKxgxQD88p0QgRx/Kb/++qvyf+PGjRPngAODuxrqAOAs03lAyJ106WZT7l33DcR3O29sx+bQsQFALQwW3aVD37opqGlp+fn57X9BiwW++UgJdhKgHzSKj5cJf+MNGzaQmpqqpDW8vLx46KGHGDduHG+//baG7SLLMllZWXaZZPv5+TFs2DBGjBjB0KFD27+8zcuGL98RukR1kMZOJWjExVwCXHLJJYBYwltljI8cOcKxY8eaDVAlJSWUlJRolv0gVikJCQmKoFhSUhLdunVrmHYpyGw4+IN4/M0b0KWX3YNFaWkpjz/+uOZYoqKiePrppxUTn7bKDncYJEnwzd0NsOpD9KYqEmP8ud1dR+TZQr4oNnPo0CGefPJJ/vWvfzm1wGrFV199RVqardZ3/X0PIsVEivOppG4Q3rGe6oJc9qm61y+66CKHBvf6UK/wnRoAJEn0w7y/UHyOkkIRBKZc67z3bCM6LgDIMuSpBrLw9kd0R0AtoGVP7rxFbPhJK3DXbzhJk2fQfd9JxSZyyZIlLFiwQPNvw4cPZ9iwYWzfvl1RpmyOBePv70/v3r3p27cvgwcPpnv37g6jsHL6mLCbrFY1x42Z0mhji5+fH8OHD2f48OGAjct+4sQJTp8+zenTpzlz5gxnz55tsgsUBOXy6NGjDTj84eHh9OjRQ6ktpOTsxbP+4G+FbBEDyKRbWvyI6enpPPzww5rgOmjQIP7xj3+IoFNTDYW5LHnxueZlMZ58hBf+cqdQMQ2NgJDwjud+71kL39oGTQmICoJr3IIIPV3Eu0Vmdu3axcsvv8zDDz/s1MJwTk4O77zzjvJ48uTJNkbSjX8RK+O6ccC4ewu3B8K7heAZEEhKdAi88bRDgntj6LAVAAiJ6KHjwCqhvX+7oIkOGOnc920lOi4AlBRqBc7CojrsrZuDOgXU7hXA6TTbDw5CPXHyDCSdjjvuuIOHHnoIEMXGPXv2MHDgQM2/S5KkDKayLJOenk5WVhbFxcXIsoy7uzshISFER0cTEhLi+AtZlmHrWqFEas2FS5Jo6+8/3K6XUHPZrUFBvLTQtD937hznzp3j7Nmzyi07O7tJWmpubi65ubls2CBohU/28ubi8GaW0sW5TT9Xdxxr1qxh4cKFSve3uwQ3XDSGWyaNR792hVip1tltnt65rdnXO30kFbau024MCIK4JOHVEJ/sXJmTJlZEEhDsa2JYdBAB+mLeLjTx008/kZSUxLXXOm8mumjRIoVpExAQwF/+8hfbk77+cMOfhP/H2eOUlZbSzUPHvaESx/oNRLd3XcPB34pWBPemoF6Z2qM31G6MvkT0PVnl3H/+WjjNdaJ6QMcFgEJVft0/SBgodAKoA0C7VgCVFUIrXXnhcNEZWzcrHzx4MP369VPkEN5++23eeOONJgdxSZKIi4vrEK45IJpXfvxCu3oxuDVQeGwrrIyr4OBg+vfvr3muurqa06dPKw1fJ06c4Pjx442ugLKrmldt3XToOMfK3iM6OpqwsDD8/Pxwc3OjvLycw4cPs3r1ajJOniDRXaKbv44kdx3DEmKI8KpGUluS1iEhqPmidUJwI4N7SRGU7ISDdfTGmATBD+/Rv1k11zZh989NDpoSEBPuS2WVift05bxXaOatt96iV69ezbu3tRGHDx/ml19+UR7fddddDVORHp5w7Tz4aRllhw4BEOUmMchcALnN92yUnTtBe7499QrAkXTvJmEwwFW3wEeviVSqLAvdpJl3CBvJToAODACqmVmwk3XLWwH1TKCoqAi5rZz29T/Y8uU6PVx2oybISZLE3XffzZ///GdAMH52797dJt9WhyPtoLDkVEs7BIaIk7cDUnUeHh5KmscKWZbJy8vj2LFjHDt2TGkQ+yG7lOvjPNA38huZZZk3tx8j41etzISHhBjwPSSuctcRE+UmajN6PXFxcQQ1NRgY3Jg3bTILftuJuRF9Ib1Ox9w5cyHEH4oKhM1ldSOighmnxe3X7yC5LwwcJQYAR6zgipsnLkiyiYSuXak+epS7Qmr5vNjEs88+y7vvvuvwovAHH3yg3E9OTmbKlCmN76jXUzB8Ej8uWsxEPzHoh7jp4FzjhAIrDm36hYzaEK658942HZ96BdAhAQDE6u/aefDJGyKtaDLBsnfEtZXoPMaTvei4AFCkml0HNdQDOV9Q5wJra2uprKxsPWUu+5wQwLJi7BSIaDhw9urVS8nzA6xcufL8BoAqI6z7VnQsqpHUGy69XtgxnidIkkR4eDjh4eGMGTMGEEGhsLCQ078sp+vBn9CpfHjNssxLRyvJqLTgLUGih0SSu0SSu44Yd4n6Q62/nx9xcXE2VU13D0FMiIwTt/Ao8A8iWZJYHJbUtOzwLbfZXlSWoawEMk7B2ZNw5pit6AmCIHB0v7iFRQq6YI9+7QsEgS1cSz0G4pZRQNeEBNLS0rgxyMBPpbl8+MEH3HnXXW1/33ooLCzUML7uuOOOZmtSZ86e5fsyC8VmuD7UQ8hXWJq/7kbEBmNK/5mcn0KImHpjq49RvaJ0GB3ZHoRFwYzbRP3DbBJy0SveF9dYr4Et/bdT0bE1ACsCQ5rer4NRn2VSUlLS+gCwXmVsExoJQ8Y2ueuMGTOUC2XLli2UlJQ4pyGlJaQdhDUrBCfbCoObsP4bOKpTNq5IkkRISAgh194JEy4XOeHiXGoNXuTJPswIzeCarLO4lRRSU1NDbW0tZrMZWZZF57CnJ74+vgQFB+EVFAyxiSJPH5cofrcmBiy7ZYclSfS2+A8UF7YsC5Pwo/uEJ3KZTYaAvGz49mNRcxl1iagXteU7HzRJsGQaSwNJOpg4C6pN+Kx4n/DSUnJycpjqr2f76q8ouPpqQhoRZ2sLDh8+rNRxQkNDW2zostbbNhkthPhEkaLTA+7gHo65OqfRFR6AQacjdMsyGHpRqwvC5y0AAHRJgmvnwldLobZaTAa+/wyMFTB4TMceiwodFwBKVTOhACdX4FsBvV6vSDRDG1RBM8/Y+L4gBiZd07nMoUOHEhwcTGFhISaTid27dzNhwoS2HHrbYCwXxSi1JhMIX95LrxcNRp0ZsixSLefOQKUO8ipxK89BGQrqehYawNPLVpjtkiQG/FYMuK2VHQbE60fGitvYqaIhaO8WrRxKXrYwUontChdf1ejKsVmERAuKZP1CsKSDK/9iGyRv+gvhny+msKCAWpOJYZ4y2YtfJuThZ0TgbyfU9bMuXbq0mEZV+29k+gTDzHmwYikQwAPfb+H6nkGMjGu8UKuXaFNB2GleAPaiSzeYdSd8+a6oGcqyoIcWFwj5DEex+FqBjgkAsixkIKzw7zwBAMTJYA0Ajak+Ngs16yc6vkV5C71ez6BBg/j5558BoYTYIQFAlsWg//MKqFR9Rr0BRk8WlLVmAtd5RVmJ0Fc/exzOHNfWKpqCt68YVNUz/LpBSZZlTp06RWpqKlVVVeh0OsLDw4mPjycmJsY5NEmdXuT/k/sKGuTmn+HYAdvz6afgw/8KmuDYqQ1ktZvFwImCIlm3IiIwXGxTz5ADQzDMvhfd2XNKAPJKPwHL34MZt7ablKEeUHNyclqspan7EUwmkxgcr78LvnwHT3cvzpQYmwwAQItsr8ag9vzoqKa4BoiME0yoZe8oTDN2bxLn+OU3isJxB6Jj3q2mWksBPQ/uX81BfTK0yhmsvBSOp9oej5hg16wyOtp2YTpUfqIpGMtFukc94IBgp0yd2flm/bIMuZnieE8eEffrkJZXxJId+zldVEpCkD/zhvYjOSxIWGfGdBXm3DEJjRrOm0wmfvzxRz766KMGKp9WBAYGKmqiI0eOdI7+T1iUKALmZQlfbCvzSpaFkNjJVPG7dOlm/2uGRLc8I/by4figCZQdOUpvTx1mk0kE1WXvwDVz21XzUauPZmRksHHjRsaObToVqi7CKvTryFiYdTfz8opYsXlt828YaJ9rmBVms1lTwzkv+khWhIQLE50V79uaY9MOika56bM7tI+kYwKAOs+s04FXJ/A1VUFtr1dTU9PMnvVwcKdt2e0fBIn2iZapOe/1Z0lpaWksWbLEcZozZ4/b9Fes6Iy5flkWF8ORvUJHXZ0yrMN7Ow5wx/JVmC2272/Bhl0sfv015tz+p2Zf/ty5c/z9739v0e6yuLiYtWvXsnbtWgwGAyNGjGDatGkMGzbM8V20YVFi4D15FNathKK6gbCkCD5/G4aNhzFTHWYuLssya3/bwMFCMzcEwiXBdYNg5hn44m2h59/GwSciIoKhQ4eyY4cgQ7z00kt0796diIiIRvePiYlR7mdkZFBVVYWnpyeERpL818dJOnsWk8WCobG0iKRrdVdwfUXc826p6esPs+6GlR/BqboJwLmT8OlbYiXUQTL5HZN0Ug8+3r6dZ9CpQ4PlqL1Qz6j7DrH7c6mNXtSdyO+99x69evXixRdf5PPPP+fFF1+kV69evPfee/YfkxUWi0gzfLFY+/3HJcKc+cKJrTP8DiWFwkVpyUuCL71zQ6ODf1qVhTuWr9YM/lAnyXDPvRrpgfr49ddfueOOOzSDvyRJdO/endGjRzNkyBDNgGSFyWRi48aNPP7448yaNYulS5e2aMnZJiT2gNvmw8hJYnCzYvt6WLbYvpRXC5Blmddff539+/djAT4uNiOrm/tyMmDZksZprHbi3nvvVQbWsrIyHn30UcVPoj5iY2MVsoUsyxyq6wkAICSca/79JgWEYK7fIFi/tmEn6ndzO6xrvj1wcxfpN7WfRn62CMZVrUxFtxEd8y2oP0wntEhTz8Kb8pNtgLIScdFY0cM+bwOz2czevXuVx9bZfUuaM80NcA1QWyOWl5tW2zp6dXq4+EoxuzjfLKzaGji8Gz5fBG//SwQq6+zXCkkSqZyLLoe5D7KkXN8oFx/qJBnefbfBdlmW+eCDD/jnP/+p0YG/9NJL+eyzz1i0aBHPPvssL730Eh999BHffPMN//jHP7jssssa8MQLCgp4//33ue6663jhhRc4fvw4DoXBAGMuEamBYFV649xJ+OBVrYxKK5Gbm8vDDz/MV199pWwbNWoUXebep2WsZZ8TVMXaVqyCVYiLi+PBBx9UHp8+fZrHHntM891bodfr6devn/K4vmggYZFE/OUZ9P7dwS0I9L7gHQlzX4CBnd9r127o9cJUadhFtm15WWLi1o5gbC86KACoNGXOI7e8KbSp6Kdm/gQECV9UO7Bz506lIUWv1yt9AEuWLGlec6aRAa5RVFaI9IG6ozcgWEgHDx5zfmf9hXnwy7fw1nOCAnf2RMN9YrvCpBlw9+Nw459FcToknNNNqI5aUT+1U11dzfPPP69ZPfn5+fHMM8/w0EMPER7eMIfs5+fH+PHjefDBB/nyyy/517/+xfjx4xusEFevXs0dd9zB3/72NzZv3myXu5rdiIyF2X/V8sPLikUj0Tn7bDGtKC0tZfHixcyePVtjutKzZ08effRRJJ1OBNiBo2z/lHkGvv1EeHe3AZMnT+bmm29WHh86dIinnnqq0ZW11fYSYOvWrQ2eJyIGZswDj3DwjALJDzb8DM1InzeF+jN+uyd6HQFJgnHTRMrPipwM+P5TsZJ3IjquCGxFa9gNHYTWXsBpaWkseeY5Th9JFYXIG28g2c6BVS37PHLkSEXvv6XcdEvPAyLV8/kiKFAVOJswa+8wyDKcOga7ftPSH9UICoWUoWLQa8IjIiEhodm3UT+fk5PDU089pRGWi42N5fnnn7dbWkOv1yu6TEVFRXz//fd8/fXXGrrj3r172bt3L7GxsVx11VVMnTq1Uf+GVtd13NzhslkQGQO/fi++w5pqMTu/+rZmmWayLHP06FG+//57fv755wakhlGjRvHYY4/ZWDuSBBOvEoPq/jrdoxOHYc3XcMnVbZowzJ07l+LiYr777jsAtm3bxquvvsrf/vY3zWRr5MiRvPrqqwCcPXuWM2fOEB8fr32xxB7i+H5eIR5nnIaNP8H4y1p1TPXrN211yXMaJAnGXSp+h10bxbYTqYIkcFHrPmtr0PEBoBNqYqtPhpYKfY1qw2/YyWJDQIva8FlZWYqoGcC0adOU+y0NcEePHuXGG2/EbDbj6elJYGAgMTExJCYm0r9/f5K6xKFb/q528O8/AiZNPy/8YsxmkebZsV57TFYY3IR9XspQQZ9tYaCZN28eCxYsaHSVpNfrmTt3LiCa61544QVN08+AAQN4+umn28zoCQoK4uabb2bWrFn89ttvfPHFF5rgkp6ezv/+9z/eeecdJkyYwLRp00hJSWmfl4AkCdOUwFChH2OydpAuhZm3a/w0ZFkmLS2NTZs28euvv3L27NkGLxcQEMCf//xnJk+e3HDFK0kweQYYy+D4YbFt/zahbtqGJiVJkrj//vspLS1VrDW//fZbunTpohGii4yMpHv37opK7tq1a5XfUYMBIyDrDByqk47e8Rt07wdR9utk6fV6JElSJnutInt0FCRJrMiKC0UQBnH9JPdxmn+KJDt0/doENq6CLXW0rr5DYdpMp79lazBnzhxlhv3cc88xatSoRvdLS0ujV69eTQ5Cqampzc7sXnrpJWUFEB0dzYcffqgsTZt7bRDL5eY6lP8U5cOIUD+Cg4Lw8fVFGjlJ8Ps7OuVTWyOkb3es13a+WhESAQNHQu9BrV6VNDaYWiUZrr/+ehYtWsTKlSs1/zN9+nT+8pe/tJ7B04wpiSzLHDx4kGXLlrFx48ZGV5ARERH07t2bp59+us3ni4KzJ+Cr95TcvOzhSd6ka9l9NpM9e/awc+fOJunE/v7+XHfddVx99dUtc99ra0Tu2WrcJOnguttbR0dVoaamhvvvv5/UVEGV1uv1vP766xrXr88//5y33noLEF4MH3/8ceMp2doaWLrQVisKi4Rb7msVQ2ratGnKimjJkiUkJia26XM5HTXVghBhnTiFhMPs+xzSsFcfHbMCMKuWWw6itDkSVlN4aJ4eZk+evqlu0fz8fFavtqlN3njjjZq8ZHJyMo899hjPPvtsgwGlR48ezQ7+I7x1JEs1igvXfoMffonDmVZV1XENLxYzHNwlPFDrD/ySJCiyQ8aIbtw2BqWmJBlKSkqYO3cu2dnZyr4eHh7Mnz9fMa5pFVowJZEkiZSUFFJSUsjKyuKbb77hhx9+0DBecnJy2Lx5c5vPFytqamrItOjJj+tL1OYfqTZWUGE0kr1pC//NM1HVxPStX79+TJs2jQkTJtjPeXdzFzz0D18Vv6FsEfWAOfMFe6+VcHd357nnnuPuu+8mNzcXs9nM888/z+LFi5VjmjhxIosWLVLMj44ePdq4LaSbuzBU+UwEC/Kyhf7WgBF2H4+np6cSANRNYZ0O7h7is376Zl3ne67oIK+z0XQkOiYAqAsZnTAAqPOkzV0s7cnTL1u2TEk1hYWFaZQSa2tref3119mwYQNDhw4lOztb4UUPHz6cCRMmkJiYSEhICAaDgcrKSgoKCjhz5gxnDh1gerGtOHikysLSwkLk11/n/aVLmTlzJtdcc41zPWFPHhFKl/VTPTo99B0MQ8c7rNlMLcmQn5/P//73P42tIEC3bt144oknGuaT7UErHceioqK46667mDNnDhs2bOCnn35i165dyLLcYlPhF198gclkwtvbW4ihIc4Fo9FISUkJBQUFikItQIqnxG3BBiQg1CBxQ6Ce94pEgLHagI4ZM4bx48cTFdVGvw0fPxEEPnlTTNyM5fDDF3DNnDYF7qCgIB5//HHuv/9+ZFnm3LlzfPjhh9x+++2AoEGnpKQoMukbNmxo2hc4LlFkEA7WCS9uXSdSiHaOKd7e3goBo1MHABApnwEjRWMgiLTXgFEO7xTu+ADQGbjn9aC+UD09m05LtKYQqUZpaSnffPON8njmzJlKSqKsrIwnnnhCuQC8vb1JSkpiypQpXHfddXTt2oJu+PefYTrgQ2lJCdnFJXyeU6BoZJaVlfHuu++yfPlyZs+ezZVXXunYZiZjudAySd2r3a7Ti5nZsIuc0vVtMplYvnw577//vua30+v13Hjjjdxyyy3KgNpqNKOv35wpibu7OxMnTmTixIkUFBTw22+/8fzzzzfrM20ymTTsnJZwoEpmdZmZKXUSykMCvfDv15uA8VMZNGiQ40QFI+NEo+C6unP21BHYu1Wk7tqAfv36MXPmTL744gsAvvzyS66++mpFin3s2LHK+b9p0ybuuOOOpl9s1CRRW7KYBTsqdY/owbEDarmK5tzpOg1GXCzSqWaTUB04stfuz2ovOqY6qE5pdDK9GVmW7dYImTdvHvomZhvqQmR9rFixQhmo/P39ueKKKwAhPHf//fcrJz+I2evixYt55JFHWh78iwsgdQ8GvZ7g4GB63/0gb330Cdddd53mc5SUlPDaa68xZ86chnzrtiJ1L7y7QDv4SxL0GQy3PyyYG04Y/A8fPswdd9zBW2+9pRn8e/fuzaJFi5g7d27bB39oUV/fHg2akJAQZsyYwSeffNLk+QKiCGoPrL4F48aNI3bmbUQMH0tK37707tWL6YHuTBg0wPGKsoNGC1lwK377waZd0wbcdtttSm9FdXU1y5YtU54bPXq0cv/MmTNkZmbW/3cbAoK0jVOH99h9DOoA0GrRx/MBX3/tZz12sOl924jzsALokHe0GzU1NRpOcHMBIDk5mcWLFzetDd9IQc9kMvHtt98qj6+99lo8PT2pra3liSee0JjAT5kyhQcffND+WfqujbbgGhgCKUOJ1On405/+xE033cSyZcv48ssvlYEyPT2dRx55hDFjxnDvvfc2yoVvEWaz4PJbl6ZWRHeBS65xmtWnNWf+6aefamok/v7+3HHHHVx22WWOEXFrSV+/FRo0zZ0v//jHPxgzZgylpaUYjUZMJhOyLOPm5oa3tzd+fn6EhIQQFhZGeHi4NpCUl8F7C0R/TW01rF0p6KGOhCSJ3/O9U+J9aqph7TciPdQGeHl5ccMNN/Dmm28CghU0e/ZsvLy8iIqKIj4+njN1vR47duzgqquuavrFUoba/DfO1okD2lGjUFN0L4gVAAi/iP11k7Yzx0Qx3IFMyg5SA60nU9uJUP9EaEkmds6cOYzp3YN3/28+pwtLSAgJYu5bS5tkc2zZskXhjhsMBmX2//rrr7Nv3z5lv1mzZnHnnXcqg5jRaGT79u2kpaWRmZlJdXU1BoOB8PBwEhMTGdCvH9FHbP/PkHEauqe/vz/z5s1jxowZvP/++3z33XfKwLlx40Z27NjB3Llzueaaa5qdpWpgLIdvPtI2JLm5C/XKgaOcRjctKyvj73//u6aDWpIkLr/8cm6//XbHaru3pK/fSg0au70EWgNfP9HV/UOdBemJw+I3iXMwq8XXT9ASf6qbracdbNf7XH755SxduhSj0UhFRQWbN29m4kTxfQ4bNkwJALt27Wo+AETHi9mx1WYx47RQWW3p41yIASAuSbB/TLWCCpyf0yr6a0v4w7OA1CeCTqezizGR3Ls3L0xTVeSbSdV8//33yv1x48YRGBjI9u3bNTWBKVOmKIN/eno677//PuvXr2+2WSXJXeLBWF+CQ0IICQtH36t/o/sFBwczf/58rrrqKl599VUl3VRdXc2bb77J2rVrefjhh0lKSmr+Q5eXClZCscrZLSIGrrzZqdISZWVl/O1vf+PECVvXcGxsLI888gh9+za86Nstpmevvn4r0CYvgZbQe5DIy1spm7/9KDqnHV1j6ztE9ARk1vUWrPtGUBLb8D7e3t6MHz+eH38UBkpbt25VAsCAAQOUtJBGF6gxSJIIAlYtrqxzdgWACy4FBGK8DI0UMh0gZCIcGAA6ZjquHsj0Hat33RLqm0TYlUaor2fUhHBTQUGBJud++eWXU1lZycsvv6xsS05O5sEHH0SWZZYuXcqtt97K2rVrW+xU7OEhUVlVRUZGBt/sO8zKVWuabW9PSkpi4cKFPProo5p88bFjx7jrrrt4//33m35PY7mQl1AP/r0HCV1zJw7+sizz9NNPawb/iRMnsnjx4kYHf4eJ6Q2cCPe8BmOuhr5jxN97XutcGjRW+QArMs8ITwFnvM9Fl9se52ZCWgsDdDNQyz+oV3S9etmUdAsLCzUd140iXJVqrK8j1QQuyAAAoiHPCjs/q73ooE5gVdddO40nHA31idBYG3+jcHMXN6toVkW5WJLWw6ZNm5S0S0REBAMGDOCTTz5RtOgNBgP/93//h9ls5sknn2ygh+Ln58fQoUOJj4/H19eXqqoqMjMzOXjwIAnl6cp+B0qM/LJwIevWreOxxx5rUoJXkiSmTJnCyJEjefPNN/npp58AkV9funQpmzdv5vHHH9fSJ2uqRXNQoar4OXYqDLfP+6A9WLlypYYlUz9NpkZLYnpjxoxp/UqglY5THY64RNGkZdWl2vGb49NAICiJyX1FCghg8+o2W1iqBeDy8/MpKCggJCSEoKAgQkJClIH/+PHjhIQ0M7nwVnV126mceUGmgEBQc60wOva4OygAqPjQv4cAAOJHsc6IK0qBhqmBzZtthdKxY8dSXV2tUOFA0EHj4+MbDP4RERHcfvvtTJgwofH8vCxT+eJDFGZnkZ+fz+kaEWT279/PHXfcwdNPP82AAQOaPHR/f38eeeQRJk6cyIIFC8jJyQHEIHrXXXdx3333CZkKWYZVX2qVKEdfIuhprUUznbWNoba2lg8//FB5PHbs2CYHf2hfk94FjaHjbQHgZKpw3mtCT6ldGD3ZFgDysuFMGiR0b/XLBAcHawb6U6dOKQN9YmKisv3MmTMMHz68ydfRdJHbqZp5wdFArVB7A1Q69rjPgx+AExyW2oE2BwA1xbERyYOamhr27LFR1EaNGsWqVauUblEPDw+uv/56lixZogkUo0ePZsmSJUyaNKnp4mxFGV56HTExMfTu3ZtuI2x6LWVlZTz00EMNmqMaw5AhQ3j33Xe5/HLbEr+6upp///vfvPzyy5j3bQNNoXksjGxdERQQ3PnX74VNK+DQRvH39XvF9iawe/duRd7Azc2N++67r9n0nEPE9NQoyIQ1H8Cyl8XfgmaoiU0gLS2NRx99lFmzZvHoo4+2TtLbXnTtbkvDyTIc2uX49wDB7krsCZYaqMmHFa+2+Xvp0qWLcl/tjaHuoznTgvqrtq5o3zxW3Qx5QQUAvYrW3EaV1qbg/AAgy6KAaIVP61vKnYm2B4BA2/1GAsChQ4cUwSlPT09SUlI0hd/LLruM3NxcPv30U2XbqFGjePrpp1s2rFblAd0Cgvi/f/yT//u//1P47yaTiWeeecauIODt7c0DDzzA888/r2HTrP3+O1LfWoDZXFdX6JIkFBhbu+xvqbO2iQFEnR8eMWJE8+kA2t6k1yjaELDqw6HmPs1BkkS3tRX1m/IcCT8PqDwDtUVQktGm7wW0lqjW1SegUWpVB4ZGoUkr20eLvGBTQHrVMG1uvjbYWjg/AJSXCgqTFQHNGD2fB7Q5AKhz/uUNA4B69t+vXz8yMzM1nP/p06fz9ttvKzWC2NhYHn/8cfucitQrKr8AJEnikksuYeHChYripcVi4bnnnrO703TkyJEsXrxYKcZN8dNRW1bKiRPHMekNQlK6LTRPezprG0FGhs1sp0ePHi2+TVub9BqgjQFLDYea+9gDtXdAQY62WN8KNLtiKciELV81/KdWfC9WqPtP1N7MsbGxyv0WA4C6Kc3HPhrwBbsCUOs9OZhG7/wAoNaH8fbtdIYwatngVskFawJAQ9u7gwdtXXsDBgzQpHmSkpIoKyvTDM733HOP/Xo9TaTUevfuzcKFC5WZvMlk4qmnntIEnuYQHh7OwoULufSi8Yz2EYNphdHIpyezqW2rk1sbO2vVjKTm5DmssDZd1Q8CzTXpNYo2Biw1HGbuYy8CQ7SGRFZJ51agxRWLA74XK8LCbM12aqkM9QqguLi4+UG6RKV+GhBk1/tesDUAJ0rpOD8AZKpyeeHO6RJtD9ocADSVeS2lzKrPbkXv3r01g/3IkSM19nx9+vTR0ONahNphrV7QSExM5MUXX1QGTaPRyP/93/8pIlgtwd3dnQenjiciTHgVl5plPjh0itdff93+41OjjZ216nRUc3o6asyZM4fU1FTNLDY1NZXbbrvN3qN1iBSEw+sR9iBJJaB2rhGntWZg14rFAd+LFWqWmlrBNSQkRNOJ35ivgYI82//ZKzSoDgAmk6lzegI0BrMqg9IemZNG4PwAoO4ajW1B2+Y8oM0BQN16rp6RIwYsdWopPj5esyIYOHAgW7ZsUR7PnDmzdTIGalaVW0NWVc+ePfn73/+uvGZubi5PPvmkRva6OUgHdxEbG0twUBBbjRZMwDfffKOYe7QKgyY1vWxtprNWrYOkrge0BGvT1aeffsoLL7zQ+o5bB0hBOLQeYS/iVI186ae0+lstwK4ViwMlMtQaSAUFBcpALEmSpkDcZCHYVCvsRa2wU36kfm3NaOwY4/V2Qx2oHOwJ4NwAUF2lbU6J7XwGDG2uAXipZt71aGinTtk+c3h4ONnZ2YoxtsFgQJZl5eRzc3Nrnu7WGNQDeRO6ICNHjuRPf/qT8vjgwYMsWLCgZftLYwUU5iIBcV26UBhlG4gXLlzY+qWztbO2fhBoobN26NChyv2jR49qHLicijYGLDUcVo9oDdSOUVWV2hRJC7BrxeKA78WK8PBwRe9KlmXNTF8dAJpcAeRk2NJRBje7VwCenp6aGtsF0wymdlR0MI3euQHg1FEbbcnTC2LaoM/uZKhNPFqlKeOhqmXU1mjoWeoTNz4+niNHbAbt3bt3VxySAFJSUuzKcWugpoI1I61x7bXXamwnV69ereHWN4pcW/FV5+PHX5/8h2KSU1RUxCeffNK6Y4U2ddYmJiZqdOFffvllJYi2F2azmeLiYrKyssjMzCQ7O5uSkhIxC25jwFLDYfWI1sDDU9uVnZvV9L710JJvQkJCQtPfC7RaIsNgMGhWeIcP22oW6tVRk7WrLFVgiIy1W2FYkiTNJO+CCQDVqpRvW2txTcC5jWBqDnlSr04nBQ3tSAHVp57V1CgFbjWDIS4uTnMiJycnNwgArYY6ADTDzJEkib/97W9kZGQoGkDvvfceoaGhXHrppY3/U2mR7X5IODGxsdx0001KMXD58uXMnDlTkfa1G23orJ03bx4PPfQQIPLU//znP3niiSfsLpabzWZOnjxJamoqaWlpitRwYWFhoyshSZIIDg4mOjqafrEDGOdbQ6SnDt/YJHSDm29cqw+niMC1hLBIGwOosPGcvCzLnD59mm3btnH48GGOHz/eLOdep9Mxe3adAujAicIQ57ev4OA20LmBd1ibJDJSUlKUOtm2bdu48sorATSaVMePH2/8nzNVASCqS+P7NAE/Pz9l0qe+9js1KlWpKgeTaJwXAKoqhau9FT0HOO2t2gpZljWzgFatAOo3n6j4uWoKY2xsrMYIPj4+XpP/t4fi2Dyarx24ubnx7LPP8uc//5n0dCEfsWDBAjw9Pbn44kYuXLOKcVCXb7zuuutYsWIFxcXFVFdXs3LlSm699dZ2HnfLGDJkCNOnT+frr78GhLLq7bffzuzZs7nooosarJwqKio4duwYBw8eZP/+/Rw6dKhVzk+yLCu2mgcOwMd12728djBw4FFGjRrF2LFj7T5PnCIC1xz8VWyY0mLNU9XV1Xz77besXLlSOQ+scHd3p0ePHo2m2ZKTk3nqqae48847mThxIlJINFxyKxyvG4RNsrjWWzkwqYkQ27dvp6SkhICAAE2ALCgoID8/n9DQUO0/qwNAdOuyCupJnnr136mhJpm0wZqzOTgvABzZZ5upevlAvBNnPm1EeXm5ZibYqhVAgwBgm5VnZdmW39HR0ZrHYWFhGu5z+wuCLRf7/Pz8eOmll7jnnnsoKChAlmWee+45JEliwoQJ2p3V8aSOiunp6ck111zDkiVLAKHRc9NNNznWXawJ3HPPPeTm5io02qysLF588UVeeuklunTpgr+/PzU1NeTn55Of33qhLEmSWqyLVFZWsnnzZjZv3sx//vMfhg8fzpVXXsmwYcMc40HgKKibE1XU5E2bNvHqq69qzrv6iIqKIiAgQGNHGhkZibe3N3l5eTz33HOkpqZyzz33IHn7itW89fquKG11ABgwYADBwcEUFhZiMplYtWoV1113HcHBwURERCgNYgcPHuSiiy6y/WNpsbYHILr1KwArLpgVgIb2faEEgIOqBqTeAzudDDRoT4D6+cEWUf/Cr7sYLBaL5kILDw/X0BjVRSi9Xt+kcFuzUKfSmmBv1EdkZCQLFizgvvvuo7S0FIvFwjPPPIPFYlEkeQEIUs22CmxdmldccQUffPABtbW1FBUVsXHjRu2F6STo9XqeeeYZPvroI5YuXaoonlosFrvolHq9nuTkZHr06EFiYiJxcXGEh4cTFBSEl5cXkiRhsViorKykuLiY3Nxc0tPTOXXqFEePHuXYsWOangSz2awEg65du3LzzTczYcKEzhEI1AXCuubLzz77jEWLFjXYtWfPngwePJiePXsSGxtLUFAQbm5u1NTUUFhYyPHjx9m8eTObNm1SPv9XX31FcnIyU6dOBQ8PW2qiDXRKg8HAtGnT+Phjsc766aefFDZc3759lQCwf/9+7XmWrqoLBIY0KsLYHNSrt5KShg2cnQ6yrG00dbDLnnMCQEGutlDTx7E+lo6Cegno6+vbuotYksTNOnus+5ufn6+h1Lm7uzdJsQsNDbWv87c+1KuPxiSgmxBeS0hI4JVXXmH+/PmUlpYqK4GamhpbsThUZVNoLBdCcGFidnjRRRexZs0aQPgcdEQAAFseety4cXz11VesXbu2SQqfj48PvXr1IiUlhZSUFHr37t2ix4NOp8PHxwcfHx9iYmIYONDWWVtdXc3+/fvZsmUL69evV/SJQLC9nnnmGb7++mvmz5/vHHpna6BekZlq+fnnnzWDv8FgYPr06Vx77bVNTjy8vb0JDAwkMTGRSy65hOzsbJ566imOHTsGwDvvvMOkSZMwGNwBo/JebcHUqVOVAHDq1CkOHjxISkoKAwYMYO1a0Vi2e/du7T+dU7EK1cwnO6GWQr8gUkCVFVo5/QsiAFgtzEBwdCNab6LREWgzBdSKRgKAevYfEBCgWWX4+PhomCytLqRaoaZ+1tabfe1Z21DKYPNKweAYOJGkpCT+85//MH/+fEpKSpBlmX//+9/U1NQIFyYfP2H0klNXx9i9CaZcCwg/A2sA2LlzJ5mZmRpdF2cjISGB+fPnc//993PmzBnOnj1LVVUVBoOBoKAgYmNjCQsLc+hs3MPDg6FDhzJ06FDuuecedu3axcqVK9m0aZOyz4EDB7jjjjt44IEHxOz4fEFFD65F4n//+5/yOCYmhueff15Ds7QHkZGRPPPMM9xwww1YLBYKCgo4ceIEPRxg8hQbG8vAgQMV2ZTly5crAcCKM2fOUFpaapu5q5vc2iB9rQ4A9jZHnleUqEgZ7h5a9qED4HgaqNmsVSTs30qOeweizQwgK9SUuLoBt376Rz1jDAkJaWBA0yaoA4CaI2ynjk1iYiILFy7UCKwtXLjQZtQ9yGbSzcGdkCP+LyUlRTOAqL2OOxI6nY6uXbsyfvx4pkyZwsSJExk0aBDh4eFOTcXodDqGDh3Ks88+y3vvvcfYsWOV50wmEy+++CIfffSR096/Rajogln5BcoA5+HhwYIFC1o9+FthtSG1IiMjQ9uL0o7mpGuuuUa5/9tvv5Gfn09MTAxBQbaCttJEWVaiNURpQwBQT7oujABQT/Ki00tBnEmzaVbrDVqhqk4G9QqgTQFAnb6pS8WonYzCwsI0ASA4OFjDSmk1/1/5R9UsQE0Ra4VeS0JCAgsXLtTosrzxxhuC59+zv62gaLHAD5+ByYQkSQpdD0QayGo4/0dDQkICTz/9NC+88IJmUFmyZAmrV68+PwdVaBscMyps59nw4cM13bdtgfp39tLrhBm9Fe0oTI4cOZKoKNHJK8sya9euRZIk+vTpo+yj9AmcUYnTBQS1SVhSHVguiABQpOp4Dgxter82wvEB4Oh+2/3Enp1O/E0N9QqgTSkgfcNirDoABAcHU1RkW8IFBQVpUkBtDgAagwgVRayVei2xsbG89tprmsFh8eLFfPLFMpg607Zjfjb89AVYzEydOlXRaykrK9N4Hv8RMWLECN566y2NkNl///vfli0NnYE8myJnhZdtQtPeVVFxcbGG2pwQoqKb6nRNBgBZltm8eTOvvPIKDz74IK+//jq7d+/WsK50Oh2TJk1SHq9btw6g8QBwWhUA4ru3aTZ8wa0AilTnUZDj7VcdGwBkGU4fsz3u0a/pfTsB2l0DUC9963Lx9VM+zQUAewzoG4WvqhCk5nu3Qa8lIiKC//73vxop3sWLF/PRxm0wcJRtx9S98N2n+Hh6agxkPv30U4d16F6oiIiI4MUXX1RWkUajkc8//7xjD8JYLvx66+CbZOsv2bdvX7uEz7b9+DW3J3jwZC9v7usTTGSVKi/tH9RoM2JJSQkPP/wwjz/+ON9++y27du1i+fLlPPDAA/zrX//S6FKp+1GOHTtGTk6Opgv86NGjyBaLdmxJaButXB0ArDWwTg21tHenXwEU5tr4x5LUKbn/arQ7AKhpd3UBoP6Ar34cHBzsmBWAeulrLLfVAdqo12KVgY6JiVG2LVmyhM9zjdrf8Oh+WLaYWVderpjPFBQUsGLFirZ9jt8RoqKibB2ziJlshw4uJ1JthARff/qMn6j8RsXFxaxcubJNL2vZ/TOTjqzkxi6eXBzuzvRQC9L3r0JtHTWxESG28vJy7rvvvia9KFavXs2TTz6pUHrj4+M1E5CtW7fSvbvNbtJoNJJ3cK8ttSzp2jy2qGmgZrO58wvCqWseQZ09AGSrOgxDI7Spik4I9Y9vtxa/GppcvDg56+f86wcEdQ2g7SsAf+3qI7+Or98OHZuQkJAGK4G3Fi/maykQuqq6lc+dJPi7j5gzxTZr+/DDDzWf848KdSqjoKBAcy44FbIMe2x+E3Trg5+/v0bu4913323QAdwi6kgF+vqZFlmGmlxhDxne8Jx64403NPISAwcOZM6cOXTr1k3Ztm3bNqVWIkmSRhBx7969eHt7a1KTZXu32d4gJr7NqeX6tb5OTQWtrdF2AQd29hRQvkqjO6xzUj/VUAeANjFy1J4AFeKHUl/0QUFBDWoCDmEB6XRab4UcW362LcJrVoSEhPDKK69oqJ3/feMNvncPhT6DbDuWFTPTlM+Vod7oEN/jm2++2bbP8jtCYGCgRs++w4Ji+intOTBgBAC33XabMuOtqqri0UcfbVVQqtz8HbrmOs1NpQ0k3s+dO8dPP/2kPJ41axYvv/wys2fP5s0332TkyJHKc2pPDLUmllU7S11XkU6p0j+JKu+DVsLa82FFpxaEU1vNSjrwdbyfumMDgJqzaqdE6/mEhtng1YYZhdqKrqwYi8Wi6S4MDAzUyBOEhIRonm+V9lB9RNoujgYGIFbhtWsfEH9bIWIWFhbGf/7zH02j0MsL/8uvXhEw4XIl32vQ6bi5awT3hhoI1cOaNWvstp/8vcJkMjmmxtMayDKs/8H2OC5JScsEBgby4IMPKk9lZGQwf/58jTRJUzCZTBzdtqH5nWQTRMVpNv34449K6isuLo7bb79dKUIbDAbuvPNOZd+0tDRlgqQe7DMzM5FlWTkH/XTgoSY4tCMAABdOAFB3APv6O0VM07EBQC1b6tW50z9A+ymZ6iVZkeBdq/O+bm5umiATFhbWYEXQZqhzoKePaRVC24nw8HBeeeUVRYRLlmWefe45tls8YdbdigVfaGgovQJ9eCjcjRHeOv797xcvHH2VJtCsL24LOHz4sJLXNhgMCr2xNSgqKuLHH3/k5Zdf5oUXXuDVV1/lt99+azpXfWiXtut+1CTN02PHjtUMumfOnOHuu+/WCBLWhyzLvPTSSxzObEFbKTCsgR+FunP3yiuvbCCJnZCQoBF3s8721deCyWSisrJSKdj29tTZ5Dj8ArXd6m2AOt3bGrHADodR5b3hpHS6YzuB1UyD+nLJnRDtLsjW081RL/k9PDw0swt3d3f8/f01s692cbO7JNkEuaqrBEWunTMjNaKjo1mwYAF//etfKS0txWw289RTT/Hf//6X7rf+DdauRDq0iy5xcRw9dozrAvUcqCzijVcW8PDf/9E5tHFaiffee6+BNeKCBQtYvHgxc+bMafH/v/nmG+X+gAEDWiWWV1JSwtKlS/nmm28aSIesWLECHx8fZs+ezTXXXGMbVEuLYZ3tPemeIs6Lerjhhhuorq5m6dKl4t9KS3nssccYPXo0N9xwg4ZymZ6ezoIFC9i3bx8xXjquj/NA39RvmXJRg03qFa8656+G+lozqQQH1aipqVG2pXhKSmClW+92N0OpV2admsGmtn51sA+AFY5dAag1atT6FZ0Uamqce1sClpoBUVpEcbaNhhccHNygKzgrK0tjf6cuuLYa7h7iYrBi39a2v1YTiI+P59///reSHquqquKRRx4hp7gELr0erpqNV3AIUZHie0jx0jHk8GbWL/vU4cfibNjli9sMdu7cqejXAK2ShNi7dy+33XYbK1asaFI3qqKigjfffJOHH35YzFotFvjxc5sbnbsHTLiiyfe47bbbeOyxxxRmEAiV0HvuuYdrr72W+++/n3nz5nHLLbewb5/w8ciotPBFVRhyY8wy9wgYOLbBZjWbziropkZpaSmZmbbrxJrmqW9XajAYkCQJDwm6e6jev1sf2gv1tW6vTep5gVpuw8FWkFY4NgCoDYtrOn+HqPrHb1MA8A/UWEPWnrUpFTYWANTOYDExMW2ngVrRT2UkfyJViPA5GD169OCf//ynMussLi7mscceE4NQ975w23zCh43Gty6vGmyQ8Fm5lIy1PzT3sp0OdvniNoHjx4/z9NNPK48TExMbymw3gWXLljF//nxNU1JISAiXX345t956K5MmTdKkLHbv3s0///lPLBt+grOq2s+k6eJ8bAaTJ0/m7bffpm/fvprtBQUF7Nu3r4ED1/jx47nqqf8iWUkFYV3BLQi84iE+pdH3693bNin59NNPNSkWWZY1iq6BgYGKgJ768+t0Ory9vamtraWnh4RBAp0kCR2cNsg/1Ic6LdXUb94p4AC9pZbg2BRQUw1KnRRqmd+mPFybhSRBdAKcEJ2Kksr/OCQkRNM9GRkZqTE3Vy+724yE7iINVZQvioGb18AVN7X/deth6NChPPDAA/z73/8GRN72hRde4J///CeSrz/SzNuJCAyj8qO3MZtNGJAp/ugNggwS3uOntfDqnQN2+eI2gl9++YUFCxZoPJ4ff/zxFlVeTSYTr732miZt5Obmxty5c7nmmms0M/WSkhIWLlzIr7/+CkDN/u3km7MJD69r7OvRD3oPwh4kJCTw6quvsnHjRr788kvFKU6NLl26MHv2bC6++GKRyvP2hgk3wpGT4F43ZPRuXOJlxowZ/Pjjj4CoN8ydO5errroKX19f1q9fryEKXHXVVcr3pHbRCw8PR6fTUVJSQn8v8bxer4duvRwyEKrTk526EUx9DjnpOB0bANStykUtFJA6AdTRv00BAKBLohIAvPO1KSB1AIiOjtZc7IMG2XfBNgtJgtGT4bu6lMuRfULIrQ0yuS1h2rRpnD17ls8++wyADRs2sHz5cq699lqQJPwvmY7BJFH+4f/w0on0WsYni0lERj9uWuN52yZkq88HWpJyrv/84cOH+eCDD9i2zcZP1+l0PPbYYxrhtMZQUFDAc889p6hggpgg/OMf/2jUIS4gIIC///3vmEwm0rdv4oZAA7m5uYSGhaELjRBqra3Ii0uSxNixYxk7dixFRUUcOXKEoqIiPDw86Nq1K127dm1Yw0k7WE/ja0Cjr52cnMysWbOU8yQ7O7tRP4L4+Hiuu+465bF6cmS1hSzMyWaEpxgE3dzcoEc/0tLSWLJkiWKzOW/evFbbbKqv+zbJsXcU1KwfJ6XUHRsAQlRSA6q29M4KhwQAFRvHt7wYfx2UWsQKQM2I8PLy0qSEBg8e3Lb3q4+eA2DbL5BX14Oxajncer9Tlox33HEHJ06cYMeOHQAsWrSI/v37Kxdg70uvYkV2Ln6rviDEIFFeXs65ZUuJt5iRLrpcO0i1IFttFxwYQObNm8eCBQsaTQno9XrmzJlDeno6W7du5ZdfftEYmYNgljz++OOMGjWqwf9bIcsyGzdu5JVXXtGkPHr27Mlzzz3XLCtMkiQenHcrh09sxyDJ1JpMlNWaCJhxmzCEbyOCgoI03PwmoW40657SbFHSWkv56quvGv0+Bw0axFNPPaWktmRZ1timDh06FACPjFO41Z0yBh9f3vtlM3fcfXebi/RWqFO/6pVWp4NG9t05xWrHBoAIFSe4vFRYt6lt6n6PCI0UtMiSIky1tfT11LHZaCEwMFBT7FJf8HFxcRop5nZBkmDy1fDJG+JxQQ5sWQtjLnHM66ug0+l4/PHHuf3228nPz8dkMvHCCy/w9ttvK4yX6XNuZ2FmFj33byDSTaKoqAj9ik+IdfNAsh5TS7LVXXo1OZBXVVWRlpaGedca+p3eqGlUMm9cwcel/uyyBOLp6Ym3tze+vr4EBATg7++v3Hx9ffH19cXb2xt3d3cMBgORkZEsXLiQ+++/v8EM8bLLLuPJJ59s0lKxf//+PPLII83SPo8fP86SJUvYulVbrJ84cSIPP/xwyzWo4gICfvqcMD8fysrLMcuwPbonk50gD9AAOZmi2cyKQU0HORDf2Z///GemT5/ON998w+nTpykpKaFbt24MHz6c0aNHa1YYe/fuJTtbTGAkSWLMmDFUVVURXZYPnmK/0wERDQZ/sBXpx4wZY/dKQM38aVPtr6Og1v6vdk5N1cE1AD8hDlVaR4dMP9Wp5aAdAkkSzIRdG6k1mRjkJbHZKGY11hqDJEmaHLJD0j9qxCRA/xE2JtDWddC1u1NSQQEBATz22GPMnz8fEE5On3/+OTfdJGoPkiRxzyP/xz8eKWRk+iFi3CTyCwowf/oOsR6eGIaOs0+2etItgLhYDxw4wM6dO9m9ezcnTpwgygOWDvUThUEV9BLc5F/C6h3pZFQ28fotYPDgwQ18cUtLSxuVDOjTpw833XQTI0aMaJT2ajab2bFjBytWrGD79u2a5wwGA/feey9XXHFFy5TZ0mL44m0oK1EC7cdFJga7dVCvzfZfbPcj4yDKPl+B6Oho7r777hb3W758uXJ/2LBhhISEsG/Hdnp7iO9Fr9Px2dGzLRbpX3jhBbuOS12YblMDaEdBTRJxEqnG8Y5gcYk2Q5izJ37/AQDEZ9y1EVNtLYkeOoL1WpGp8PBwTb532LBhjb1K+zD+UtEQVlIoBtFvP4Fb73NKQ97AgQO56qqrFIGxDz/8kClTpigNPm5ubjzx3As88cB8JucfJ8JNoqi4mMpFL+NbXEpcC7LVldlnWb1yJVu3bmXPnj0NuNqXRno2yU3XSxLTIt1551TbLhhvb+9mc/iJiYmMHDmS8ePHNzrjtAasjRs3sn79+kYlhwcOHMjf/vY3TfdrkygpEoN/XZd9bW0tXxab2VslM6E9neT2ojBPK/E+dJxDTUn279+vcVebPn06ALmbfiG07m30Pn6cKWq+wdAef2gr1HIsbRKB7CioVwBVzmlYc3wAiO9mCwBn0kT1upM2BalnXpbGvHXtRWQs5oAQzHWvMdpHp5F88PHxUTjRBoNB4znrMHh4wuU3wqdvCI54WTF8/zlcM8cp3//tt9+uDHDV1dV88MEHyqoAxMzqmQUv8+8nH2d8xkEC9RJVlZVUvPcqWV0iGNZM2vqrdRt559TPTT4f49N83vbigX3wuXIMFRUVlJeXU1JSosziS0tLKS8vp7y8vMkmIC8vL/z9/QkNDSUyMpKYmBi6detGnz59NHl6WZbJy8sjLS2N1NRUDhw4QGpqapPc8uTkZG655RbGjBljX6NcfjYse0dR2LVYZD7LNbLZKM6zrl27NvffjsHmn20MlKBQkf93EEwmEwsXLlQeJycnK6Jwbkf3Ktur4pNJCGz++rTXj1mW5fb7gHQU1LWdmmqnjKVOCACqWVFJkWADdVJdIIfxgSUJY3IKrBeNQMO9dWzKs81y1XTTlJQU5y07o7vA2Gmwvs6k5dQR2LoWRk5q/v/aAF9fX2677TblAv7xxx+59dZbNbUNb29vnnjxJT74zwJ67F6Lt05CL4GUmYO5q3ejs3izLPNjtla73tPTk0GDBjF48GAGDBhA1+MbYPPXTR5bVK/+TJ80vcXPIMsyNTU1mM1mZFnGYDDg5uamMENqa2spLS2lqKiIgoICNm/eTG5uLpmZmWRkZHD27NkW5YQNBgOjRo3iiiuuYPDgwfZ3SJ89Dl9/qJFXSYtOZl2JoFF6enrSq1cv+16rrcjLhiN7bY9HTmxU+7+t+PDDDzl1ylZbuP/++5EkicqsdAJLC5TqTsCYScyLjGu2SD937ly73rO8vFxD/VR7BHc6GFT1CVkGU20D6Y12v4VDXw2EaFFopE0Z9Mzx338AAIpiu1Ejg7sEPnodEdm2E1u95FQbXjsFQ8dB5mlIOyQeb1oD0fFO8Wa49NJL+fDDDykoKMBkMvHjjz9y8803a/YxGAzMfehRUn8egPnTN6mtqkRnhrTsapIjtTIDZlnmpaOVZFRaiIuLY9iwYYwcOZL+/ftrZRUCPGHLN43WESxIfH40j/Q9L2E0Gqmurqa2thaz2awM9NYbiN/dYrFgMpmora2lpqaGqqoqjEZjm7tEvby8GDBgAGPHjmXMmDGtsxuVZdi9CX75zvb56gr9n69cpew2cuTIVklNtBqyDL9+a5v9h4Q7NJ27detWPvjgA+Xx5ZdfrjSRnVn5mTL4F2Kg/6jx6PR6Fi9e3KBbW6/X884779hdAK7fcNapVwD1f1+z6QIIACDSQEoASIOBdtDMzgPUFDBTO3m25bUmtlSYGe+rR6/X07s8FzegFq1EtNrowimQJJh6HeT+t64eIIs+gdn3gZ9jZztubm5ceeWVvPfeewD8/PPPDQKAFb0mTUWOi6b800WUFBVhNBrZdc5EtqeBUC8DRjcfMiN7M2juQOYOGGBrcmoERq9AzvaYSPcjazSt7CKAGFm1vmPN6sPCwujZsye9e/cmJSWFHj16tG1wrjLC6q+0OXeDG1x2A1VdurF581PK5okT7aTKthUnj2gtGMdOc9js/8SJEzz//PPK49jYWFuxuLoK3YEdynOliX3Q1U3U5syZw5gxY3j33XeVPoC5c+e2qg9ArdcVGBjYuTWr6k9wmjJ7agecEwASusOujeL+mTThl+ukVub2QB0A2mOZB4Ke+Eu5hdE+etx1OjxMNYzz1bGquIaamhqF89xSk5BD4OkFV90CH/9PzBqM5fD9p3DdnQ5dwoOQF7AGgDNnzpCdnd2kyJ3Uox9+M2bjt9rG+iAkAmbd1aKxuMViYevWrfzwww9s27YNk8lEjJeOaZHuRHrqyK6y8GN2TZvZP83B09OT4OBgQkNDCQ8PJyoqiujoaOLi4oiPj3fMLPL4YVjzlc1RD8RqesatEBnHzo0blZqFt7e3c4gEVtRUwxqVy1uXblrdqXYgPT2dhx56SMnDe3h48OyzzyoSzbXb11NZVz+rtMjETL1K8//Jycl2s30aQ33Dpk6N+lkJJzStOScAxCXalCprqiH7nFMoie2FmgPc3gBQU1NDqQU2VZi5xFPCbLEwyVfH+oJaLHWzQU9PT8LCOigdFhEj9GFWfSkenzsp+gNGT3bo20RFRRETE6N0PR8+fLh5ldP+w0VH6YY605CCHPhisQhOjUjemkwmvv/+ez7//PMGOvYZlRaF7ePu7k5sbAIjIyIICQkhICAALy8vPD09cXNzQ68XKzNrfl+SJCRJQqfTodPplPy/u7s7Xl5eeHl54ePjg5+fn3N1/UsKRbon7aB2e5ckIetRFxitzXcgjOid2sC04SdBIgAx6Fx8pUOKj0eOHOGxxx5TZuHWvpL4+HixQ001pb/8gKVu5ruj1sCfhw1v6uXahAsqAFTaUscY3JwiCOecAODmDrEJNrGqU8c6ZQBQX9jtDQDWFNLqMgvjQiQkwEMnMTPQwEflYtCJjIzs2CVnylBRTEzdKx5v+VmYaTv4t+jWrZsSANTyF01ixMWioLWlTj0zLws+fRNm3q4IjMmyzPr163n77bcbNTDx8/Nj+PDhDBo0iN69exMXF9e52/rrw1guOrj3bNGKfun0MHYqDBmrmfEdPGgLEA7rIq+HwsJCDv/4DXFbfqSyqora2lpWl5r45Zfb8ff3JyYmhsTERPr06UP//v3tLqDKssyaNWtYuHChhoP/yCOPMHasSlF05waM+aLZrkYGY+/BDg909T26OzUqVNRXH1+nsPmcV0WKT7YFgDNpTulMbS8cqQtuLSpWyvCr2ZMJiJnpAF83DssS+6rkjj/hrF3CmWdt9YDvPxNSEe2QD6gPq3EHaAvezWL0JWLg275ePC7MFd3MM+dRgIEFCxY06Jq1athcdtllDB48uO3yHecTxnKRHt21UXi+qhGTAFOuEWkxFaqrqzVsGYcICdbBYrGwceNGvv32W1J37+KhMD2FdSbAObUyPxabMFNLRUUFWVlZipibJEn06NGDYcOGMWzYMHr27Nno73HmzBmWLFmikXrQ6/U88MADXHKJakwoK0He9gsldQ13G8vNDBg52mGf0wp1EVh93nZKqNV9A5wzdjgvACQk25b5WedEK7MDBx1HQC3HrHbuagvUM/sdNTriai1089AhyzIzAw2czjWdH8aBhydcNkvMsGVZBIJfvxcDjYOgntXZXfyUJBh3qaC6bV4jtpUVU/zG8zyz5wT7imyBRK/Xc9lll3HjjTdqrCovKBTkws4NokfGXI9w4OsvZv19Bjc6y0tPT1cmGAaDoX0+EnUwmUysWrWKTz75hMzMTHTAXSF6wjx1hPgbcDPoOFdqIrLc0mhdRZZljhw5wpEjR/jggw/w8fGhV69edO3aFX9/f8rLyzl48CCHDx/W0C69vb156qmnGtYwfvmWqrJSamtrKTfLrK2QmWePRlEroe7P6dQUUIB8lZ9CiHPOe+cFgPAYoZVfaRTV7DNpDm0icQTUAaC91nBaSqmFz4rNPBIulvDeOolbgvQcPV/CUzEJMGKiSAEB7N8GPfs5jBqq1pFvlcuZVc3U2wfWriQ/L49z6enM9oQVPjo2VlgYMmQIf/3rX+3rmu1skGU4dVTQOk8dbfi8lzcMmyBYcs3Q+9QpsKioqHatfKyCdIsWLdKk667y1zE8zJ0u4e7KZOZKfwNXxHmTO/waTgUmcvbsWaXhTW1tCmLlt3PnzmZ9oVNSUnjiiScaMryOH4aj+ymrc9D7ocxCl+TuTpmhX1ABIOuM7X546+1F7YHzAoBOJ9hA1vzziSOdOgC0dwWgLiibTCaKzLC8xMzV3oAsk+ihw7u0ZTNup2HkRDh+SOTbAX76Em77W7tXZefOneP48ePK45SUNvzGA0exftcevHbvwU0SceHaQDdumjCcHvf8H1InWzm2iCojHNgJe7dAcUHD5338hGz3wFF2ff9qEbr2rIBycnJYsGBBg0F6nI+Oq+ODiQkyNViASLKFiG3LibjnNUaMGAGIIHLq1Cm2b9/Otm3bOHjwYLM0aqu/wIQJExrWaaqMgv2ECCKnqi1sNVq43kn9Mmqb1k7dA1Bl1K4AYpzT9e3EThIgqZcqABwCy9VOcbZvKxwZANTdvdaC8najhejaKsaGuiEBPcpz4fBuu807HAq9HqZdDx+9KqQiSosckgr68MMPlfsJCQl06WKfUJgaGzZs4B8ff0mcm8TcYD2hnu4kJibibamEj16Dy26AyPanPZyOnAzYvRmO7Glcvz00UhR3ew1s2OTTDNQ+u21lka1evbpBEVaSJO4eO5Sr3KvxoBRqixr/53oCfZIkkZiYSGJiIrNmzaKyspLU1FSOHDlCbm4upaWl+Pj4EBERwfDhw+nWrVvT5Iefv1aor+VGI5+XCOqjI+scalwwOkBnjtua8Lx9ndZM69wAkNjLRgetNIqicIKTG6FaAUcGALVtn7qg/GGOkUR/b2I9DKKDcdWXEBx+fga0iGjBwNmsSgUl92mzmfz27dtZs2aN8vi6665rNcspJyeHf/3rXwCcq5X5SArmv2OH4V1YN/spzIOPX4fhF4tVTGcr/JpMcGy/YPNknmn4vCSJidDgMRCX1CYmR3sCQGPOYwBDhgzhwakXEbHnN5DdoaqFrufipu1Gvby8GDRoUOtVblP3KBNEi8XCyvwqcuviptUUxtFQS3eor9lOh9PHbPfjk52mp+bcAODhCV17KI5ZHNjRqQKAI2mg6nZ/k8mEl5cXlZWVWPQG3swy8ngXPzxqa8WA8fVSuPmvQj67ozFiovAPzqnL//74Bcx5oFEOfnPIzMzkueeeUx5369aNKVOmtPpwXn75ZeWi9Pb25u8vvoRPbAxsXA3bfxWzIItF1C+OHYBJV4nGpPONsmLYt03cjOUNn/f2FTTcASNb9OptCVatfKDZDun6qKys5O9//7sm5ePn58e9997LJH8D0m8/2nZ294bKRj6HFYH2v69dKMyDVV8pD8sDw1hXLmb/Vn8GZ0A9OWu3J7ezIMuiE9uKrs4bM51PnO47xHb/2AFtp+N5hiMbwerrvVg7G93c3MipqmVpoZnqmhqhcVJWIoKAqW1aM+2CXi9YQfq62G8sh9VftspztKSkhEcffVTRyHd3d+exxx5rNQ9/3759mganv/3tbyKFpNPDuGmiOcw/yPYPBTnw+dviuytoekbqNFjMIniueB8W/Uv0MdQf/KO6wKWz4K7HxGdo5+APggWkvHwzpjNqVFRUMH/+fM3g37NnT95Z9BaT5TLt4O/jB9f8pWmpAUlnv0ubPTDVwnef2FyuPLw40WOIov8TFhbmtJ6OC8INLCfDNk5KkphEOwnODwDdetlcwSwW0fzSSaCmLLZXC8jd3V2zpLTmFz08PKitrSWtRmZFscl2AmadhTVfO83suVmERAj/ACvSDsGO9Xb9a2lpKfPnz9eYeD/88MNtkiZWG4H069evob5NlyRRqO4/Qrs97RC89zJ89b7ocHb2d5iXJRRWF70AX70nWCtqnRaDAfoOhVv+CjffA30GtSrH3xxKSko0zUv21FiMRiOPPPIIR47YZpETJkzg1Wf+QfiaZTbjIBD88hv/DN36CTvO+kFA0sGVf3GsV/O6b20rUICpM8mttl1/zuqXUYsAQjtsYJ2N4yq70ej4FmVS2gPnpoBAzOaGjoN1dTnIvVthyDhho3ieoT4B2hsAQJy46nSG9T2sgWZDhYWciATiCutO/oM7IDJGsEE6GoNG1wl+1eUaf/sRwqKanW2UlZXx4IMPamifc+bMaZMwWXFxscYI5Prrr2+8fuDhCZdcLdIpa1eKwAli0D9xWNzCIqFHP8EycwRf2mSCjFPiuzmR2vRqwz9IUDhThjrFeAfQDOIBAQEtWonW1tbyxBNPcOjQIWXbVVdeyX2TxiJ98oZGXprIWJgxx5aKHDhR2HHuWSty/oHhYpsjB//UPdoANHAUdO9L6b5UZVNH0TM7rRDccZUsSDfnFMOtcH4AAKH/smO9SH1YzLBuJUy/9bwbxaiXmbIDZpFBQUHKcl3NClLXGrb5RhLn5QYZp8WGdd9CVJyw2utISBJcfgN8+KrwbZBl+OYjMRsMa5hmqKqq4tFHHyUtzaYQOWvWLG655ZY2vf2WLVsUE56QkBCFYtgkouLgpr8IpczNa7SDcl62uG1cLSYW0fEiFRMWKQZpv8DGi8eyLJbaJYWCrpmTAdnpkJvROIsHBL25Wx/oN0wU55wsP7F7927lft++fZsdtMxmM88++6zGfW7WlEncGeWN9NMX2p0HjIQJVzRcqYREK2wfhyM/W9CPrYiMg4suB7TFWWv61NlolwmUs1BcIM5lKxwkwtcUOiYAGNxgzBRRcASxxEk7eN77Ahwx6KsRFGRb1ajzi+qL9tiJE/DXe+HD/4rBx2KGbz52uDyDXfDyEYH44/+JvGxNNSx/F2bdDYG2maYsy7zyyiscPmxbms6cOZM777yzzbOoXbt2KfdHjx5tX85XkqBnfzHbP3VUTCqsciNWlBSJm5V+bP0/d09wcxO1D7NJyDDU1DTtTVwfUV2g1wBxc+KSvD7UchjNsWxkWeZ///sfv/32GwBeEtw7rA9T3cuRztman3DzENTfXgOcdciNo7oKVn5oq3t5esGVNykBSJ2bd5ZRuyRJ6PV6xU/AEat+h+OYavYfEuF0L5WOCQAg2twP7oJzdRfs6q/EReVgjfrWQB0AHFF0UgeApsxmDh48KJbcl98Iny+yyTOsWSFm5B2N8GihOvn1UnEsZSXw2VuiAFt38v32228auucVV1zBn/70p3YtoQ8cOKDcb7VFpiQJ6mpiT8EmOXZA3NR5ZTVkWaQ+1OmPlmBwE7TNrt3F+wSFtu4YHYDTp09z9uxZ5fHIZqQRPvzwQ1asWIGHBGN9dFwdG0KPYC8ktaRwUm+hEOuAwnSrIMvw0zLxW1lx2Q0afRv1tejM1Iybm5tyPbZX/8spUKvCdu/r9LfruAAgSSKXu/Q/YnldWSGYANffed6aw9QzAEe4K6kDgDqgGAwGTCYTBoOBrKwsCgsLCY5LhFGTYdNqsVPqHsEX7+iZGYhl5qQZSkcmZSVCO+i6OyEsks8++0zZtV+/fvz1r39t10VaUFCg6W5tU/ewFcFhordhxMWCmplxRtQJss6JwGoP68zLWwxGIeEiLREZJwKjMx237MBPP/2k3E9OTm6SAfTjjz/y2fvvcYmvjnG+OkJ9fUhO6ILO+hv5+sPE6aLn43ykXXesFwHaipETG/SeqM8nR6/M1fD09FR6ftrb++NwlJdqe0mSf08BAMTFOvEqWFXH/kg/Bet/ELnI8wBHU8LU2iVVVVX4+flRVlaGu7s7Hh4eyozj0KFDQgZ3xMWi0GitB6xZIbwUfP3bfSytxoARYqb2c50RiLEcPvkfXH6jRurhlltuaXewVEsbh4eHt1jYtBt+gdAzUKSJrDDVioBWUy3u19aKeoC7h9Df8fHrdCKFIGanP/zwg/J46tSpje63fc0q0ha9wt8jDHjoJDw9PEhMTBQTEHcPGHaR6D52sJWg3Th7QhAMrEhIFhOfenCkOVNz8PHxURRBW/Jz7nCk2Qr3BASJSYiT0fEC6inDtLPcnRtEM815gHoG4AjTD3UvQFlZmaaZRa3hkppax3jQ6eDS68WFCiJF8fPX54caCoLRMu062yyxphpWvM+0QNvgsX79+nbP0LZs2aLcb9fs3x4Y3ET6JiJGiOIlJIsgGxEjJiSdcPAHMftXu2ZppJMBss+R9+5/cVv6H8b6SHjoJNwMBhKTknDz8oHhE+Cu/xOz7fM1+JcVw7cf285nv0CR+mwk3aq+/pw5M1fLP1i/306DYyor0OS+HbJa6/g1riTBlGtFPtCas/15hViCJzjeuLw5qGcAatZOW1H/5EpMTFRYM/7+tlm9mtpHYAiMv8yWfkk7KJgu6llsR6LvEDEofv+ZKJTKMtfHBBJpqeazYjPfffcdWVlZ3HXXXa3yYrWioqKC9ettPQejRzte8/1Ch8Vi4YsvbKydyy67TJxb1g7RHeupPp5K1rFjShFbr9PTtVcfPMZOFrITnudZ5sBkgpUf2Rrl9AaYfkuTdFk188eZM3P1ddipAoCxXPS0WNFBBJnzY6Hk5i68Tn3qZswWC6z8AHIzO/QwHE09UzeCGY1GjW6Luu38+PHj2ll0/+Gi4GjFzyu0bkAdjeS+cNM9SpEuIjKSgQHePBxuoK+nxK5du7jzzv9v78zjoyzPvf99ZibJzCSZTPZ9AQQMm2xC2SwiqIhaodUqniparW21Paev9W0/by2ntqdW7SnqsXWpC7VaVGz1uAEFFRCxgICCCEgggez7MslMZpKZed4/7jzPPJNMNphs5Pl+Ps9nMlvmyWTmvu77uq/r9/seP//5z9m1a1dQKq0nZFlm/fr16gwvNjaW+fOHoAdimLN9+3bKy8V3QZIkvrVypfAR+Muj8MZ6vKcLOFVYqG5mNvgh+tqbiL73t8JoZ6gHfwju2QBYtrLHUmft96/PpkJngbbHQNtgN+Qc+zywUoqxiVLmQWDoPPRi7bByTcDnUilBbKrv6VlhRSsNG44AoF1FuN3uoNy2dlO4ubk5SOALSYIrvxV4L1pdYj9gqFJBIGrob/kxjL0Qk9HI+AnjybDHcXuCiZvtRqINsHfvXtauXct1113HAw88wDvvvMOpU6dCBoSysjIefvjhoO7flStXDqzf7ghElmVefvllQHw5v/e16aRvegk2vQa1lcgynC4qwuPxUNwm82K9F/m7/5dx198ydKmezhzaK4QGFabNFc1yPaD9/mm/l+FGW6gxrALA0UDvBpNmDNpm/dCWOaRni1rgN18MNOX8/XnR8DMIsxjtB62zls/Z0NliUtvS7nQ6SUxMVI00Tp06FazsaE+ExSvEHgCIVNCR/b1+cQYUsxVW3Qaf78G0413GjB2Lo6kJS2Ul+WYX7zqEdrvL5WLHjh3s2LEDEMEuKSkJm82GJEnU1dUFmXEDZGVlsXr16iH4o4Y3e/bsofj0ab5mNXB5rIF5Fq/oa+igsrKCPbUOPmjxc7pNZs2aNVy2dOkQnnEnyk4HPsMAGTmi8KMXtOnTgQwA2klZ0CRsKKkshcqAtMpgysUPvYv2uEnCt1ahvkYEhEEQStPmAMOhDa4NAH6/Pyjf2NTUFJQzP3WqUwMTiO5MrdLlB28F104PBZIkNodv/Q+k9Bzi4uKYOHEiU8dfwF1jkvhJahRZEcGzFb/fT3V1NSdPnqSgoKDL4D958mQee+wxffbfGb+fQxte4P+lmLjBbiQ3wR5IHRoMlMWn83+OlPF8vY/TbTKLFy/mlltuGdpz1tLiEN3k/o7eA2sMXPudPpXTalMzDodjwEpBtZOumpoh/m4pHAxIopCRE7ITf6AY+gAAIgeuLQ0rLRKbkAPcqh1ud6DOpaTalFBTU1OQxrlWT0dFkkRVkLnjee1tIhh6hkG9ckKykIm47BtIkVHYYmPJy83l6hlT+OPcCfxmwTSmjRvTY4nomDFj+N73vsdjjz0WvtLP8wFZFpaIT/yaufVnSDCJgJqSkiIqZqbNxf2df+enH+yjsl0MjNnZ2dx3333DR8/G6xX7eErfhcEA193S50ZPbQDw+/0DtgrQVuNVVVX18MhBoqk+uGt95uAWRQxtCkjL/KXCpepIh3ztiS9gx7uw5NoBe8lwB4DOLezaTeGWlpYgX9vTp0+H/iWxcXDl9fC/fxXX66tFw9zKW4feTc1gEB/Q8VOEuN+JLzAYDMTZbCwEFibb8N12E2XpY6ltbMLpdOLz+bDb7WRkZPRLy35UIMtQeExoGFWX06iRfTZbrETPu1T0isQl8NKzz6q+AEajkbVr1w4fQxNZFpLi5ZpN3yXfEGW3fSQmJgZJktSZf1NTU1jSsp3RBgCHw4HL5Rra93H31sCKKdYOE6YN6ssPnwAgSXD5N0X1i2KgfeBjsRwagDy4LMthrwLqHAC0KwBZloP2BIqLi/H5fKElacdPgXlLAybuhcdh00axOhhg8bE+ERsH3/gOnC4QgaCuYybV5sH4yTZyYmzkzF8GC+YPfdAajsiyaPrZ84FaCi3LMo0NjcjAAZefMatWk3/FtwCRqnj99dfVp3/729/mgguGgSmOwp4P4cuAaB3T5orGwn4gSRJ2u13dmG1oaCArK/yueYmJiWpnPgiznbFjx4b9dfpESWHw+7Zg2aA73g2D0USD0QjX/pto0lHY+kagUzaMeDyeoDxjOGYBJpMpaECXJCkoCFgsFnXJ7vV61VK/kCxYJlr3FY59JnoFhrIyqDN542HNfwh9GbOmj6LFAVv/AevXwfFDw+uch5L2NlEhs/4PIl2i0S5yOp0cbGnjkep2NrZIfO2KgF/DG2+8oVZWJSYmnrUC64Bw/BB8/M/A9eyx4vNwFqkp7QSp875RuJAkKahBs6KiYkBep1fa24Q+kkJymtBLG2SGVwAA0RV73a0BxUW/T6RDHI1hfZnO3YbhsofTBhKn0xm06dTY2EhmZiC4aSUWuiBJQjArR9MfcHifSAcNhZNYdxiMQtP9zp/BxV8POI2B2MB+529iwPvyAGiFyUYLsiwG+u3vwFO/FYGxs7/A2AvZlDSevzT4qPIKcTwlJen1ennvvffUh954443Dx8qw7DRsfi1wPT5JrAzPcharDQBKtdxAkJERkFjocRI2UMiyqJRq7PgbJQmuuH5IVvfDLwCAUCu87pZA+sDV0mGhGD751s56I+GSoO1czqYV8CovL2fChIC/pyoJ0R0RkaIMU5tLPX5I2CKG8qEdSsxWUcZ6x/8V3cTaGWBdtahjf+4RkdYbDpvaA4nfJwbHj7fC87+Hvz4uJE+0aqSSJLo9b/l3+ObtfFxQpN41a1ZgJrh//361Wi0yMpLly5cP1l/RMzUV8I/1ge+k2SI+q+dgjJOUFFBcHcgAoP1ODskKYN+OwF4nCMOs9EH2A+lg+OwBdCYzT6iHKsukqjJhy9eHmuK+4Os0Gw2XPVx8fLz6oaqvrycrK4u9e0VTzJkzZ5g8eTIffvghEKyJ3y0RkfDN2+Htl0TOHYRi4F8fFzLO/dhoGxRsdqEndPEl8EmHkbuSAnI0iD2DjzYLqYspsyFrzJAbA50Tsiz2rarLO+q5S4XkeVs3UsMRUcIycuZ81b1MluWg1eDkyYHUn/LZAZg7d+6gmaX0SF01bHw2ENCMJrFqP0ft+sGq0R/SAHBwd7A4XmYeLAwt9DcYDN8AAGLzt6IkYCF3cLeQTAiDTvZA6Y9rZzFVVVVBG0wnTpzgxhtvVK8XFhZy4sSJoFVBSKLMsOp2IRFxeJ+4rbkJXnkaFl4uhL+G2yCalCb2c+qqxYzn6MFAWa+3XcyAjuwXbe8Tpop+kMzcoe1m9ftFbra9HbxtHaYxHrFi8bSC2w2uZjHgO5s7nMTqxeN6IyNXNPhMmtFFgK6mpobW1sDqQPuZ0Vo7zpkz59z/xnOlvgY2alagkiQE3rLPfSNV+90ZrACgVFYNCp9+JCobFeyJItMxhN7EwzsAACy5Rsx4azoi9ZaNkJIe5Fh1NnTWH5dlOSyBQJtfLC0tZeHCher1U6dOYbfbmTx5svrF3rBhA7/61a96/8VGo6iSSkwREtp+vxAC27VFVE0tv+Gc35MBITFFnNuCy0X658v9QupCocUhAvvB3SIHmpYFqVlidpyUKiqOomN7Dww+H7R7wN0KblfHZat4LbdLDOLKZZsbPB5x2dYWGOzD6RBlMIqANvZC4WCmMT/pjDYPnZiYqO4jybIcVC48cWL3fs2DQtlp0ZfS2qHVI0miZDlMxiXa/bKBTAF17gUI13e/W3w+sQf02SeB22LtcP0dg+ouF4rhHwBMEWIm+df/EV9wjxve2QA3//CcSgw7Nyz5fL6wmMLk5eWpPxcUFJCXl4fdbqexsRFZltm3bx/XX3+9GgB27tzJgQMHgvK+3SJJMPsS4aT27isipQKicW79Olh0BcxcGLSZJMsyLS0t1NfX09zcjNvtVtNfJpMJs9mMzWYjLi6O2NjYgfsi2Oxw6dWw6MoOmYtP4cypYEtGv1/UkmvryRUiIsVhNIlgKMvC2lEZ+Ifa3i/GJqrXUjJFN2f22D6vZrQdqdpBsKGhIUhXSTu5GHSOHxL7OD7N+3z5N0UaL0wMRhUQENSP0traisvlGrjUmqtFWGGWBvZ4iEuAb98lNP+HmOEfAEDkFq/4pqiAAaGbsWe7aB47SzpXUrjd7rA0g+Xn56s/FxUV0dTUxLx589i8WeT93nnnHR599FHGjx+vSkWvXbuWdevW9X2Gl5kHt/67KJH9SmiIy9522re+Sf2Of7LXlskX1fWcOXOGsrKyoPRCT0RERJCcnEx6ejrp6emkpaWRkZFBZmYmmZmZ4fmSmEwBb12XE04eETXxpUXd582hIzUzcEYhIYmIEj7CUWaIsoDZDJYYsSKJjhGG8/ZEcWjLYPuJdrDTDoKKcQkImZEhyf9728Uqc/+uwG0GI1x1A+T308qzF7SGSs3Nzd33ySjUlcPB96GxBuzJMHOpMLXvw+tovYHr6uoG5r0tKYT3XhHpWoXUTCGCOYRWuFpGRgAAMWCcLhAzRxAbjHnjz1o2tbP+v9PpDEsAyM7ODhJ927NnD8uXL1cDwKFDh/j888+57777uOeee2hra8PlcnHPPfewZs0aVq5c2aeeBJcfTuZNo76inpQv/oW/2UF7R3loNp9S4vTzicNHaz9K8Nvb2ykvL++2NM5ut5Odna0eaWlppKamkpKSQkJCQv9XD9Zo0TQ0ba6Y/ddUiEBQVyX2Dupr+l/tJEmBAdtiFQOz2SqOKHPwEREVcAaLjARTpBjwIyLFynOQ9lW06Q7tRmi4xQr7TXW5kGSp1eTJzRax4RuGnH9nOn//XC5X93/3Zx/A208GryA/eQuu/SHMuKzH15Ekifj4eHWfoaGhgZycnHM69yD8ftj7IezeFtwDM3mm0D0bLqqtjKQAAGI/oOSkUEeU/SINcut/nJWrk8lkwmq1qt3ADocjKDd4tkiSxPz583nnnXcA+PDDD3nkkUeYNm0ahw+L2foTTzzB008/zQMPPMD999+Pz+fD6/Xy3HPP8dJLLzFnzhwmTZpESkoKZrMZr9dLY2MjVVVVlJSUUFhYSHl5ubqRbZXgujgjs60i9SMBC6INTLdIvOfws9flx2gyERsbi8ViUVNd7e3ttLa2qrOt3mhsbKSxsTHI0F37fiYkJJCcnExiYiLx8fEkJCQQFxdHTEwMMTExREZGEhkZidFoRJIk/H4/Xq+XtrY23G43DoeDpqYmmpqaaG524nTKeD0mrAaZuAgTKfHxZKSlMjY3h9S0NCSjScxGIyMh0iwG8yjz8NsQ7wVtCki7EartVB9UuQKPG/ZuF5uWfs3nIjElLNU+3dG5FLtbn4m68q6DP4jrbz8JOfm9rgRsNpsaAByOPvhG9xVns8hUFGvEHg0GWHy1kFEZZp/NkRUAosyiOeqVp0RkbaoXjTVXrz6rN9Zut6tfsnDmHJcsWaIGgP3791NeXs73v/99fvjDHwIiNfS73/2OX/7ylzz00EM89NBD6izQ4/Gwa9cudu3a1e3v74xLhg2NPva7/NycFk2WNQqzxYLZbGZmVBSm9GwirliFlBvawUvZJ6itraWqqory8nIqKyupqKigvLycsrIy1c+4O7xeL9XV1UFm7wNJfHw88+bNY/ny5UyePHn4iKKdBSUlASlgbZ5fa4wyKAHA7xOVWbv+2XXlNWuh2L8ZwNmrt9M+jqG7xqiD73cd/BVkv1gdLO25W3pAHMjKTgs11BZNQIlLEOXaQ1Tn3xsjKwCAyH/PXyZElEBsTo3LPysN7eTkZDXdEc6B66KLLiIrK4vS0lJkWeaFF17g/vvvZ9WqVbzxhrB+3LFjB7Isc9999/GXv/yFF198kS1btvRLBdFqtTJ+/Hjy8/OZMmUKkyZNwh4bS8vOzci7t9He6qLJ4aC97nN8hw5QKEXxETHU+MVgaTKZ1NyyzWYjPj6epKQkMjMzmT17Nunp6URERCDLMvX19RQXF1NaWkpJSQllZWVUVlZSVVU1oA5O3dHQ0MCmTZvYtGkTWVlZXHPNNSxfvnxoUiXngNPppKgosEGoLQHVGpZo1TLDRUVFBf/6179wO52Ma29mVlsjpubG4Acp4oR5vZQqh4Gmpqag692mZBt7kXFu7P273Nm745yQZVHFtuPdYAXjidOE/e0w9Z2GkRgAQCgknikI7Kxve1PYzfVzaZqWlsahQ4eA8LaES5LE6tWreeSRRwD44IMPWLFiBT/4wQ8oLi5m/37RBbhz506OHz/OmjVruOuuu7jzzjvZv38/R44coaioiIaGBjweDyaTCZvNRlJSEllZWeTm5jJ27Fji4+MpLCzk1KlT7Nmzh1deeYUzZ87Q0tKC3QgrYo3MsgZmUQnAN6jiU5efLc0+GnvJ+kiSRGpqKllZWWRnZ5OTk0Nubi6LFi0K2rBzuVzU1NRQU1NDXV0ddXV1NDQ0qCmjlpYWnE4nHo8Hr9erzvQkScJkMhEZGUlUVBQ2m02tSLLZbERHRxMVFYXf78fpdFJeXk5BQQHFxcVBfRylpaU89dRTvPjiiyxbtoyVK1eSmzs4lnrnys6dO/F3DBqxsbGMGTNGva9Uow4ajvSkQkNDA8899xwfbdvK7Eg/l8QYiDRKHDUYsMfHk56WRoTFKqQ95i4etJy1NhAmJyd3X5Vn7+V7bu9ddVa7uew/F9l5WRYlngc+DtxmMIqKtxnzh13KpzMjMwAYDEIZ8y+PisqRNo8otfq3e/r1YdXKM2uX4eHgiiuu4M0331QrfR588EGefvppfvOb33D//ferXcBVVVU8/PDDPP3008yfP5/8/HzmzJnDFVdcQWRkJD6fD5fLRX19PTU1NZSXl7N161aKiop6DFqNPvhbo49dTj/XxRnJixQfRAmYYzUwy2Jgr8vP+y3dBwJZlqmsrKSyslINWgp2u50xY8aQk5MTdMyaNWvA0zHNzc3s2bOHzZs389lnASs9l8vFW2+9xVtvvcXcuXO59tprmTt3bti6vMON2+3mpZdeUq8vWbJEfe9kWQ7qFNeaCZ0LBw8e5NlHfseFrfX8ItFAlKaU2uf3U1tXx/sVDdiuup6rZi7EOogblp9++qn684UXXtj9A2cuFRu+odJAkqHXTWAIVgI468+Hzye0kLR6/jE2UbY+3Dr0u0GSB8p6ZzA4cUSoKipceFG/9gN27drF2rVrAcjMzFS9WMNFQUEBP/jBD9QPW15eHo8++ig2m42XX36ZF1988dxmHz1gt9vJzMwkLS2NxIQExuNhYnUR0R5X0CDjlaEsLoWj1kTOOD3U1taqqZ2zOTez2axWCWVmZpKenk5qaiqpqakkJSWF3QWssrKSd999l7fffjvI4U0hJSWFa665hqVLlwapQA41bW1trF27VpV6MBqNvPDCC2o1yu7du7n//vvVx7/66qvntArwtLay5anHad39PhPNgVWhUgzR3OJkb0s77zf7qO0YG202G7feeitXXHHFgJegOp1ObrrpJvV/eN9993HVVVd1/4RQVUCSAa69G2Ys6fX17r77bo4ePQrAL37xC5b211bT5xOTzlNHA7elZgrZluiRk4Yc2QEAYMd78OnOwPXFVwsdmj5QWloaJK373nvvhX2z7a233uLBBx+koqJCNYpft24dy5cvp7S0lA0bNrBt27YuG2B9xWq1Mm7cOPXIzc0lLy+P2NhYZFnG6XRSX1+Pw+GgxdFEdOFRUk4dIcLjQgIkgwGjwYDRaMSfO57IeUuInDAFr89HZWUlZWVllJSUUFJSwunTpzlz5kyXXG1/sNlsJCcnk5SUREJCAvHx8cTHx2Oz2dRqIavVSnR0NBaLhejo6C5Oa6FwuVxs376df/zjH0GpBC3Tpk1j2bJlLFiwIMgcfLApKiriv/7rv4Jc4W6++WbuuOMOQKxGf/zjH6t9AHPnzuWhhx46uxdztXD6nb9TseUNzG3BInwZ6RkkZ+dgmDEPd/5M/vnJHtavX9/l/2u1WlmxYgXXXnvtgGj0y7LMr3/9a9VT2mq1snHjxt6DTl25CASN1SLtM+OyPvUBgHi/lRX0ww8/3D+ZDVkW5bHHNEbueeOF/eUwzveHYuQHAL8PXn8eijvEtCRJNFqMy+/xaSA+eNdcc426ifmHP/yBmTPDa8i8fv167rjjji6z6RtuuIEnnniClJQUnE4nu3fv5ssvv6SgoICamhoaGxvxer0YDAYsFgvx8fEkJiaqjVk5OTmMGzeO9PR0WltbKS4upqioiDNnzqibtFVVVV1krwGMwFyrgaWxBuzGrqslh2TiuNlObWouCVk5av4/Oztb7WouLCzkzJkzFBcXq685UO37JpNJDQ4xMTHY7XZ1wzo1NVVtWktJScFoNHLgwAHeffddPv7445DlrZIkkZ+fz7x585g7dy7jxo3rvuIkTMiyzFdffcXrr7/O9u3bg/YwLrnkEv7zP/8Tg8HAjh07WLdunToTNplMPPfcc/3b05BlKD9D/YfvUffJdlo6lTlGRUWROXUGcYuXw5RZQWlTh8PBxo0beeONN0I2EI4bN46lS5eyePHisKyoXC4Xjz32GNu2bVNvu+222wbU61iWZS6//HJ10vX888/3zxTmo82iTFZh/GS45t+GVNPnbBn5AQBER+lL/xOQRjBFiFbrjN6bO372s5+xb58QWLvlllu47bbbwnZaBQUF5Ofnd1tjP3fuXBYtWsT8+fOZNm0aubm5XTa+FJ0Sv99PfX095eXllJSUqANvUVHRWVcwGYCZFonFMUYyIroGAr8Mxzx+9rv8fOmW8SLK55R8f25uLrm5ueTk5JCeno7b7VbPrbS0lIqKCjWdVFtbO2BG3+rfYzCQnp5Obm4uY8aMITk5meLiYvbt2xe0odoZq9XKpEmTmDRpEhMnTuSCCy4gOTn5nPcympqa+OKLLzh48CB79uwJqTy5atUq7rrrLg4fPszLL7+sFiWACFS/+MUvuOyy3nPaAHjcyEc/o/aDd3GcPI6jU0pMBnxjJjLlO3dhmTC5x1RpTU0NGzdu7LEyLT09nenTpzN9+nSmTp1KWlpan9+z5uZmtmzZwuuvvx7UBzF79mweeuihAd23qaioYPXq1er1TZs2dWkM7ZYvDwhJDIWccfDN7/bJ+H44cn4EABBdi688FZATsETDTT8QzSs98Morr/DnP/8ZEDIOTz75ZNhO6ec//zkPP/xwt/fn5OQEzTwMBgMJCQnExsaq1S8ej4fm5mYaGxvPer/AaDQSFxdHdHQ0ZrOZiIgIJEnC5/PR1tZGa6uLFHczsyQ3k80GQn2FPX6Zw26Zg61+Cjwync/EZDKRlpZGZmYmGRkZZGRkqJISqampREVFUVdXR21tLTU1NdTX16tHY2Mjzc3NarWQ0+mktbU1bAHDYrGQkJBAa2srNTU1tLW1YTabexysLBYLGRkZpKamkpycrP5foqOjiYyMVAO11+sN+h/V1dWpvRM9rYiys7NZvnw5zc3NfPTRR5SVlQXdb7FYuPfee/s2+FeX07jzn7Ts+whHXW2XskaHT6bEns6cO3/EhFn9s1dtbW1l8+bNbNq0iVOnTvX4WKvVSnZ2NhkZGWqKz2KxYDQa8Xq9OBwOKisrKSwspKCgoMvnedq0aTz44IMDvt+wY8cOHnjgAUAEsQ0bNvTtiZUl8LcnA81xialw890jLu2j5fwJACDSQK8/rzFZjhNBoAclxlOnTqm5V0mSeP3114Pa8c+FG2+8kddee63b+1NSUpg0aVJYXstsNqv5/5ycHLKyskhPTyclJQWbzdanmZnX66Wx5DSeTz8m4vhn+B2NtHk8uD2eIBE5l1/miFvmcKufEx6xMugNq9WqDqTKERcXh91uV8s+bTYbsbGxxMTEEBERgdvtxuVy4XK5aGlpoaWlBYfDQWNjI/X19UGNa3V1dX0KGLIs09raqhrWezweoqKiiIqKwmw2ExUVNSDpIBFoW0lKSiI5OVnsyXQzs54+fTo//elPg9zjOtPubKZ467u0fboLQ3UZrhDpmpMePydjUvj6HT9k3oIF57yiKSkp4f3332f79u1hrZozmUysXr2aW265ZVAqth577DHeeustAC677LKgzfZu8biFB4fi4mWJFlWHw1GBtx+cXwEAxMbMe68GNDjiEuCm7wv51RDIsszq1atVXfAf/ehHrFq1Kiyn0tsK4Pbbb+fiiy/mwIEDFBUV9UmOIS4uTq3LVwb8vLw8UlNTw1t+6feLdvajB0S1VXsbXq8Pj8etBgS3202z28Nhh5svWn0c88g4w1TUpOT9o6Ojgw5lg1jZD4iNjcVms2G1WtWZuHaW2Xlm3RmlzNbpdOJyuWhtbcXv9xMZGUlERAQRERGq17PRaMRgMCBJknooXx+/34/f78fn8+Hz+Whvb1dzzEqljc1m69F5bs6cOaxevZqLLroo6HZZlqmurubE8ePUH/qUiBOHSWmsxhiiDNLtl9nn8uO8YCpX3nwLM2bMGJCy3JqaGj7//HM+//xzDh8+3GOKrTvsdjvLly/nuuuuC1LoHEhkWeamm26iqqoKgJ/+9KesWLGitycJUTel3FOS4IbvBdu1jlDOvwAA8Pm/RHOYgj0Rbryr2yDwzDPP8OqrrwIwYcIEnnnmmbCcRk97AEajkWPHjqn13W1tbVRXV1NbW4vL5cLj8WAwGIiMjCQ6OlqdNQ+qJoxCexucOiaCa+FXwfowiMHP09aGx+OhNsLCSX8EXzjb+aK6jsrKqu41XQaIqKgodaZtt9uRJEkEq+ZmddXQ08deSeu0tbXR3t6uHj6fTx3oledLkoSho4rKaDQSERGhNraZzWZMJlO3A7DRaGTq1KksXLiQRYsWkZCQoK5oysrKcJz+iqzKo9jdjciedvwtXkzdBNjiNpkiWwrpS5azeOmysDaO9YXm5maKi4spKyujoqKCuro6mpqa1FSe0WgkJiaGxMREcnJymDhxIuPGjRt0CY8vv/ySe+65B+jHiv/wPvjn3wPX5y8V/hbnAednAADYt1NYSCr0EASKioq4/fbb1etPPfVUz40o/WD9+vXceeedXRpPnnvuOdasWROW1xhUPG5hQHPiCyg83rNEs8WKnDuelsR0KqNiqHa3q3n/hoYGGhoaaGpqwuFwqEdPwSLTYuCqtEjSzAYq3X42VbZR1tr/JYff70eSJDXd4/P5cLvdOJ1OZFkmIiICo9GozvzPFVmW8fl8xMfHk5aWRlJSEvHx8VitVhwOB1VVVVRWVlJdXY0sy6Sa4PqMKFbmmTF0Mi4qrm6j3iFWFh4MVCemY5q5kEmLLwvyotAJze9+9zu2bhUyMjNmzGDdunU9P6GuSniRdCjtkjUGvv29c/IiGU6cvwEARKmW1n8zLl4s3ULk7X70ox9x5MgRABYtWsSvf/3rsJ1GQUEBL7zwAqdPnyYvL4/bb789bJ2dQ4q3XaSJCr6EwmPBIlihiEsQMsJZY0SnZHxSl0qUtrY2mpubcTqdQZvC9tMHmXb6YwwEPq5+GV51JbCt1k9TU5NqunO2yLJMe3t70MxfKcUNtS+gTQUpj1GOzimiqKioLsHEACQYIT1CIrPjGBMpER9lID/XEnJ2LMtw0pCNNHsxuZctJ+IcfAhGG9XV1dx8881qau7+++/veZO9vQ1e/mNADtsSLdSHh4mWfzg4vwMACD/anZsC12NscMOdqiG3wscff8wvf/lL9fozzzzTu1evTgBZhuoKEQiKvhKuXt0pNipYooWGU0aOuEzLDG2RV1cOf/xR963/9zwBiRn4/SIQKHpE1dXVVFVVqTpFNTU1VFUNXkrKAMQZIc4oEWeABJNEglEi3gjJHT+HaMMgK8VMclwPM8yFq3pVu9TpyiOPPKL6ciQnJ7Nhw4aeXQC3/gMO7Q1cX3Vbn/qLRhLnfwAA4Wa0/Z3AdYsVvnWH8J/tQJZl7rzzTrXUbfLkyTzxxBMjWmZ4SPG44cxJIdpXfFKYu/SFWDukZAg/4JQMUcb72T+F9kt39GNAlGWZpqamkMGhtrZWFbFrbm7udjURbQCbAWKNUvClQSLWKC5tRrAagj87EmA0mYgwmTB1bDArewbaw9BWBd6ushYqUxbCt+7t09+rIzh27Bh33323+j+99957ufrqq7t/wpH9sHlj4PrsRXDpNQN8loPP6AgAICL5tjcC1UGRUSKia5yN9u/fz3333adeD2dF0KinuRGKC6GsCEpPi9xqX/FUDvyAKMvgaRVprBYHfkcjntpq2upraW+qR3Y0IbmaMbY6kX0+ZFkWySjl89Q5HSRJGIxGjAYDBqMRk9GEwRiix0KSRGosOV0EvLQsOPEJ7Hmn8yMD6CuAfuHxeLjzzjvV0tUxY8bw5z//ufvZf0WJ6ClS/I/TsmD13SOy07c3Rk8AAFHGtenVgGa3yQTfuBXGBrx4f/WrX7Fz586Ou0386U9/0lNBA4HbBZWlARP4qtLu7R/baqG9IfR9AJEJED9GiHAp1o+RZvH/NRrFhp0sixSSzydyu20esUpxu8TrupxdqpvChjVGpB5j48Rgb4sHe4LYA7Enis51LX1Meen0jizLPPTQQ+rGryRJPP7440ydOjX0ExyN8Lc/BvazLNHwnR8PCwP3gWB0BQAQ5YxvvwSK+JrBCNeshgniA9HY2Mhtt92mCnElJSXxpz/9adDqlEctsgwtTVBVDjXlUFMpNt8a6sDbCq1nun+uJRcMg+yzajJBtC1gEG+NDfwcrfzccf/ZyASco9qljuCvf/0r69evV6/feOON3HXXXaEf7HbBhieFHzWI9/uGO8+Lev/uGH0BAKCkEN5YH5CNkCRYcSPkzwDgs88+495771XzhVlZWaxbt47k5IHxQtXpAb8PGuvh0y2w581gk22AyFSIsIXv9QxGMWjHxokjxhZ8KAP7YHgPn4PapY6Q0Nb29EybNo0//OEPoVM/bR74+/PC1lHh8m/CRXMH/kSHkNEZAEDk+f7+HLg7WuglSdi3TRVaKW+//TaPPvqo+vDk5GR++9vfnh/lmyOVzgPi9CUQEy+MuJ0tIpXjboU2t0jv+Hwij+v3i/+vwSAGeFNER5ooCswWkaKxWAMpJH3jf0QjyzLPP/88f/vb39TbsrOz+eMf/4jNFmKy0N4mBn/FYRBg3lJYeH40e/XE6A0AADUV8NqfoVXjabtsJUyfB8CGDRt49tln1buioqK45557WLFihV4dpKMzDGlububhhx9m9+7d6m0ZGRk8+uijodO4HrfIBmgH/2lz4fJVo2IiMLoDAIhc8+vPilmkwrJVMP1rgDB0efzxx4NKAmfPns2Pf/zjIEtJHR2doWXv3r3893//N7W1tepteXl5/P73vycpKanrE1qa4Y0XoEqjFzXlYrjyW6Ni8Ac9AAjqa2Djn6FZ44R06dUwWziL7d+/n9/85jc4NMYaRqORq666itWrVw8rq0EdndFGSUkJzz77LLt27Qq6fe7cuaxduza0flZNpZj5OzTVZVNmizTwAJsDDSf0AKDQUAuvPh0sZ7DoSviaqLioq6vj97//verhqiBJEgsWLODqq69m9uzZw9aAXEfnfKOwsJDXXnuNbdu2Ba3QTSYT3/3ud/n2t78dOlV78ii8+wq0a3wTZl8Ci1eMmpm/gh4AtDTWwcZnoak+cNu8y4TyX4euy65du3jyySdVOVktcXFxqs3gjBkziIs7fzRDdHSGAw6Hg127drFlyxZVu0vLlClT+MlPfhLa4tHvh0/eh3+9H7hNksTAP7tvPuLnG3oA6Exzo9gYbgjkEbnoa7D0OnVp2N7ezubNm3n11VdD2vwp5OTkcOGFF6pm7VlZWaSmpvasP3KWKAbwinGKIqSmaNy3trbi8XjweDxBQmfdSRubTKaQMgWKaYrWRMVsNgfdpzxW3yjXOVe8Xi8FBQUcOnSIffv2cfjw4ZDy6llZWaxZs4YlS5aE/tw1NwlN/5LCwG2RUXD1TTAuPKZMIxE9AISixSH2BJSGEBCNYituDOralGWZvXv3snnzZj755BNVZbAnJEkKcsSKjY3FarWqg6hWP14xGPF6vbR16O273W5aW1tVExNlsA+nhWK4UIKIVvNGuU3RzjeZTD3epg1EnQOSEmyUwKNcWiwWzGYzFouFqKgoPRANc3w+H01NTUEOb8XFxRQWFnLq1KkexfvGjx/PDTfcwKWXXtp9+vXEF0LYrdUVuC0+CVbe2kUUcrShB4DuaHWKTaLy4sBtGbnwjVsgJrbLw1taWti7dy979uzhwIEDNDT0IF2gM2hIkqQGg86HsnrRHkpg0a5ktEFMG6CUlZL2eudDWVEpOkHDBcUaU3F2U1aJys9ut1tdMXY2x/F6varzmTJJkWVZPZTfrxzK47xeL+3t7epERmv12Z9hKD4+nq9//etceeWVTJgwofv31eWED/4Xjh8Kvj1/uqj0G8FevuFCDwA90d4Gb70k5I0VYmxi5pDWfQmoLMuUlZVx7NgxTp48SWFhIcXFxdTU1AzKLN1qtRITE6PaJ2oHPGVgUwYsRbteOW/tqkPrhqUMCG1tbUGDg9vtVv1u9Y9Sz2idw7QBo/PPvQUUSZK6zHaVwVb7/1NWjsqgq/yflNXkSMFkMpGfn8+MGTO4+OKLmTRpUs++zbIMXx4QMvBafSlTBFx2LUydM+o2e7tDDwC94fPB+28KWzgFg1FsHM1c0K8PUnt7O9XV1dTV1VFfX09TUxMtLS24XC7cbrc6u1K+zMqA0dlm0GKxYLVau/jjKr65Q1GJpMz0lMFFO+goJivKoKT8nZ1/7u5+7aH8TuV1tKkxj8ej7nXojDysVivJycmkpaWRlZVFXl4e48ePZ+zYsURERPT+C0BoSb3/JpR30o7KzIPlN4jUj46KHgD6gizDwd2w/d1gca4xF8JVN4Q2MdEZMmRZVoOBkmrQ/qxNeXROdygrGm0gU4KYMqPWmr4rs+2RTOc0mbKPokw4tPsuSgpMuyLROqYpl8qqUnu/8lztRCYmJoa4uDjsdjsWyzm4m9VVwyfb4KvDwXpRpghRzj1zwaiq7+8regDoD8UnRf2wtmvYEg1LrhFCcvqyctQiy7IaEJR8tzZH3tOhDSTan7WXyu9RTOn9HZLmsiwH7S9o00WRkZEYjUY17de5cksZhEd0xVZNBXy6E45+1lUocMJUYeJisw/JqY0E9ADQX1wtsOV1ISutZcyFQkfoPNUN19EZNrS3ie/f5/8KLutUSEwRA/+YiV3v0wlCDwBngyyLD9+O94QxukJEJMxfCrMWnZfuQTo6Q0Z7GxSfEhU9BUfE9c7EJ4mmzYnT9HRPH9EDwLnQVA9b34DTJ4Jvj0+Cy76hz0B0dM4WZ7NwjKsshZJTUHame8e21EyYtVCUdxr0iVd/0APAuSLLcPSgMJ3XNpoAjJ8MX1+hVx7o6PSE2wXlJVBRDJUlUF0erMkVisgouGCyUO3NyNX3384SPQCEC7cLPt4qUkPat9RghBnzhKaQJXrozk9HZ7jQ6oQzJ+FMAZSehvrqXp8CiEE/d7yY6Y/L7+qlrNNv9AAQbqrL4f3/DbaWA4iyCGXRGfPEXoGOzmjC44Zjn4kGrYqSrhU7oYixQWoWpGdBzgWQnq2neMKMHgAGAlmG45/DR1uC9cZBfKjnLBZeo/oMRud8p6ke9u2ELw8Gyy93xhItBvj0HEjLgpQM8V3RGVD0ADCQeNvhwMew58OAAb2CEgimzdFXBDrnH82N8MkHcGR/6M1bawyMmSBm9hm5Yp9Mz+MPOnoAGAxcLbB3O3z2L2FSrsVsER7EMxaEFJnT0RlR+P1w8GPY9c/gEmkQadAps2DyLDHD1wf8IUcPAINJcxPs2wGH9nYNBAYj5F8kgkF6jv7l0Bl51FSKJsnKkuDbbfEw91KYPFNf7Q4z9AAwFLQ4RPv6ob2hG1qS04Q5df50iNZXBTrDHFmGA7tg5+bgdI81RjRmTb1Yb4wcpugBYChxt8LhvWKfIFTds2SAvAkwabpwLdL1y3WGG64W2LQRio4H3z55ppBj0EufhzV6ABgO+Hyivf2zT6C0KPRjjCaxaTZhmqiBNp+DcqKOTjg4fQI2bwyevMTY4IpvwdgLh+68dPqMHgCGG3XVolb66EGxZxAKg0FUT4yfAhdM0svldAYXrxd2bYb9u4JvH5cPV94AVn3WP1LQA8BwRZaFBsqxz4Wnqbs19OMkSWwaT5wqRLBi7YN5ljqjjcoSsdFbUxm47SwNknSGHj0AjAR8PuFFcOILOHk02OauM5l5wpsg/yIwWwftFHXOczxu2L1VGCNph4zEVLhmNSSnD9256Zw1egAYafj9Qmai4AgUfNm101jBYBRL8ulfE/op+sxM52yQZSHh8NEW0dylZcZ8+PpVemnnCEYPACMZWRbaQ18dFkdjXejHJaYIj4JJM/Qvq07fkGUoPAa7tgSne0B07V6+SuxD6Yxo9ABwviDLUFUq9gyOfhY6TWSNgYsvETM3PRDohMLnEzpWn+7sOvAbjKKh62uX6jpW5wl6ADgf8fvgdIGQpu5sXQmiamjBMtFspjsn6QDUVorqsyMHQk8eLrxINHUlJA/+uekMGHoAON+prxEbd1982lWbJSUDllwL2WOH5tx0hg5ZhroqUVRw4guoKgv9uHH5YuBPzRzc89MZFPQAMFpwtcDeHaLZrLMO0eRZcOnVetfm+U6LQ5ioF58SZixN9aEfZzSJSrLZi4Qsic55ix4ARhuORvhos6js0GKJhiXXiC++XjE0smlvEyu/+mpxWVUu9od6s1lMy4Ips0W6R58MjAr0ADBaKTsNH7zVdemfNx6WrQJ74pCclk4nZFl4SXjc4mjruHS7RHOgywmuZrHCczSKo9XZ99+fmim8q8dPgSR9tj/a0APAaMbvE/sDnbXbTSaYvwxmX6KrOIYbWQZPq5D5UA5nxwDubBYDe2vH4O5p7WokdK7ExkHOOFHCmXMB2Ozh/f06Iwo9AOiIXPC2N6Hoq+DbE1Ng8dUwZqKeFuoPfp8Y2JsaRG9GYx001Ir3uaE2/IN6KEwmUa+fkCL+j2lZwl9X143S0aAHAB2BLMPxQ/Dh213LAPPGwyUrIDVjaM5tOOH1ipl6SxM4W8Rli0OkXpobO2b1jaJjO9yYIiAySsiCm61CEdYSLfo7omPE4G6LF0eMTS/x1ekVPQDoBON2CWOPL/YFa76AKAmcs1joDZ2vKwKPOzBrb6oXs/jmRjHAtzSJ9Ew4MJkgJk6I98XEdgzisWJgt0SD2QxRVoiKEgN9ZJRoxNLRCSN6ANAJTVUZ7HhXlAx2JjVTlI7mTxcD10hDlsWAXlcl5Lfrq8VlQ23PQnv9JToW4hIgPhHsSWBPCFxaos/fIKozYtADgE73yLLoJN69VWgOdUbxJRh7oVgdDLfKIb9fiOXVVYvBvrYq8HMoK87+YLGKNEu0rWMm33HY7B1HvC63oTPs0QOATu/Istgg/nRn6BWBQqwdMnKEP0FyGsQni8FwoGa6Pp+Ysbc4Arn3pnporIfGWmioC/ao7SumCBHM4hIgriOnrgzwMXFiZm8yhf3P0dEZbPQAoNM/6qqEXszRg703FoHoKo2xicMaE8hnR5rBaBD3K5uVMiD7xczd6xUdy+1t0N4O7R5RFul2i8tWZ/cmOX0l1g6JyULTPiFF6NzEJ4lz1dMzOqMAPQDonB1+v/AvLjwuZIPrqof6jEIjSR0DfYoY6JNSxWViiqim0dEZxegBQCc8NDdBRQlUnIHKUiFB0JcVQjiIMgfy8HHxgfRNfJI49Fy8jk5I9ACgo6OjM0rRO0V0dHR0Ril6ANDR0dEZpegBQEdHR2eUogcAHR0dnVGKHgB0dHR0Ril6ANDR0dEZpegBQEdHR2eUogcAHR0dnVGKHgB0dHR0Ril6ANDR0dEZpegBQEdHR2eUogcAHR0dnVGKHgB0dHR0Ril6ANDR0dEZpfx/A3+3tIQIe/AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1285,1006 +1285,1006 @@ "name": "stdout", "output_type": "stream", "text": [ - "Iter: 0 loss: 0.7706480622291565\n", - "Iter: 1 loss: 0.736118495464325\n", - "Iter: 2 loss: 0.7920430898666382\n", - "Iter: 3 loss: 0.7698982954025269\n", - "Iter: 4 loss: 0.7340606451034546\n", - "Iter: 5 loss: 0.7016350626945496\n", - "Iter: 6 loss: 0.7238216400146484\n", - "Iter: 7 loss: 0.6906177997589111\n", - "Iter: 8 loss: 0.6997097730636597\n", - "Iter: 9 loss: 0.7156961560249329\n", - "Iter: 10 loss: 0.7144933938980103\n", - "Iter: 11 loss: 0.6561310887336731\n", - "Iter: 12 loss: 0.6410688161849976\n", - "Iter: 13 loss: 0.6189584136009216\n", - "Iter: 14 loss: 0.6568139791488647\n", - "Iter: 15 loss: 0.645817220211029\n", - "Iter: 16 loss: 0.5667701959609985\n", - "Iter: 17 loss: 0.6131308674812317\n", - "Iter: 18 loss: 0.5397061109542847\n", - "Iter: 19 loss: 0.6070024371147156\n", - "Iter: 20 loss: 0.5265216827392578\n", - "Iter: 21 loss: 0.5710170865058899\n", - "Iter: 22 loss: 0.5219346880912781\n", - "Iter: 23 loss: 0.5215703845024109\n", - "Iter: 24 loss: 0.5373576283454895\n", - "Iter: 25 loss: 0.48215198516845703\n", - "Iter: 26 loss: 0.483035147190094\n", - "Iter: 27 loss: 0.504529595375061\n", - "Iter: 28 loss: 0.45885422825813293\n", - "Iter: 29 loss: 0.44658133387565613\n", - "Iter: 30 loss: 0.4356994926929474\n", - "Iter: 31 loss: 0.431793212890625\n", - "Iter: 32 loss: 0.4238037168979645\n", - "Iter: 33 loss: 0.4144238531589508\n", - "Iter: 34 loss: 0.3594181537628174\n", - "Iter: 35 loss: 0.4259245991706848\n", - "Iter: 36 loss: 0.40855470299720764\n", - "Iter: 37 loss: 0.35399356484413147\n", - "Iter: 38 loss: 0.3767823278903961\n", - "Iter: 39 loss: 0.3450677692890167\n", - "Iter: 40 loss: 0.35821250081062317\n", - "Iter: 41 loss: 0.34307730197906494\n", - "Iter: 42 loss: 0.3513370156288147\n", - "Iter: 43 loss: 0.3532608151435852\n", - "Iter: 44 loss: 0.3224242925643921\n", - "Iter: 45 loss: 0.3185187876224518\n", - "Iter: 46 loss: 0.30239468812942505\n", - "Iter: 47 loss: 0.30799147486686707\n", - "Iter: 48 loss: 0.31706541776657104\n", - "Iter: 49 loss: 0.26297906041145325\n", - "Iter: 50 loss: 0.275151789188385\n", - "Iter: 51 loss: 0.27035215497016907\n", - "Iter: 52 loss: 0.2395886927843094\n", - "Iter: 53 loss: 0.25543493032455444\n", - "Iter: 54 loss: 0.2604653239250183\n", - "Iter: 55 loss: 0.26993706822395325\n", - "Iter: 56 loss: 0.230190247297287\n", - "Iter: 57 loss: 0.24947766959667206\n", - "Iter: 58 loss: 0.23319749534130096\n", - "Iter: 59 loss: 0.2363385260105133\n", - "Iter: 60 loss: 0.2304648905992508\n", - "Iter: 61 loss: 0.23061516880989075\n", - "Iter: 62 loss: 0.22687280178070068\n", - "Iter: 63 loss: 0.22115550935268402\n", - "Iter: 64 loss: 0.22483867406845093\n", - "Iter: 65 loss: 0.216104194521904\n", - "Iter: 66 loss: 0.21914057433605194\n", - "Iter: 67 loss: 0.22645699977874756\n", - "Iter: 68 loss: 0.2282835841178894\n", - "Iter: 69 loss: 0.2203424870967865\n", - "Iter: 70 loss: 0.21614481508731842\n", - "Iter: 71 loss: 0.2227270007133484\n", - "Iter: 72 loss: 0.20332105457782745\n", - "Iter: 73 loss: 0.21557599306106567\n", - "Iter: 74 loss: 0.20303775370121002\n", - "Iter: 75 loss: 0.18425044417381287\n", - "Iter: 76 loss: 0.19960010051727295\n", - "Iter: 77 loss: 0.19588600099086761\n", - "Iter: 78 loss: 0.1999838650226593\n", - "Iter: 79 loss: 0.20032624900341034\n", - "Iter: 80 loss: 0.1943514198064804\n", - "Iter: 81 loss: 0.19746556878089905\n", - "Iter: 82 loss: 0.18814533948898315\n", - "Iter: 83 loss: 0.17636558413505554\n", - "Iter: 84 loss: 0.1777171492576599\n", - "Iter: 85 loss: 0.18749530613422394\n", - "Iter: 86 loss: 0.1931115984916687\n", - "Iter: 87 loss: 0.1945093423128128\n", - "Iter: 88 loss: 0.1943492442369461\n", - "Iter: 89 loss: 0.1956203728914261\n", - "Iter: 90 loss: 0.1913215070962906\n", - "Iter: 91 loss: 0.18806356191635132\n", - "Iter: 92 loss: 0.18421824276447296\n", - "Iter: 93 loss: 0.18133920431137085\n", - "Iter: 94 loss: 0.17928382754325867\n", - "Iter: 95 loss: 0.1772957444190979\n", - "Iter: 96 loss: 0.1789829134941101\n", - "Iter: 97 loss: 0.17413058876991272\n", - "Iter: 98 loss: 0.17842882871627808\n", - "Iter: 99 loss: 0.1881672739982605\n", - "Iter: 100 loss: 0.17832741141319275\n", - "Iter: 101 loss: 0.18358886241912842\n", - "Iter: 102 loss: 0.18823599815368652\n", - "Iter: 103 loss: 0.18222688138484955\n", - "Iter: 104 loss: 0.20267316699028015\n", - "Iter: 105 loss: 0.17580267786979675\n", - "Iter: 106 loss: 0.17077453434467316\n", - "Iter: 107 loss: 0.18418657779693604\n", - "Iter: 108 loss: 0.17270609736442566\n", - "Iter: 109 loss: 0.18537329137325287\n", - "Iter: 110 loss: 0.19264183938503265\n", - "Iter: 111 loss: 0.17010802030563354\n", - "Iter: 112 loss: 0.17755326628684998\n", - "Iter: 113 loss: 0.17526784539222717\n", - "Iter: 114 loss: 0.18200339376926422\n", - "Iter: 115 loss: 0.17505547404289246\n", - "Iter: 116 loss: 0.20692701637744904\n", - "Iter: 117 loss: 0.1870385706424713\n", - "Iter: 118 loss: 0.1887054294347763\n", - "Iter: 119 loss: 0.1894456297159195\n", - "Iter: 120 loss: 0.18049834668636322\n", - "Iter: 121 loss: 0.18116889894008636\n", - "Iter: 122 loss: 0.18544846773147583\n", - "Iter: 123 loss: 0.16071507334709167\n", - "Iter: 124 loss: 0.1798689216375351\n", - "Iter: 125 loss: 0.18153639137744904\n", - "Iter: 126 loss: 0.19326084852218628\n", - "Iter: 127 loss: 0.1725679636001587\n", - "Iter: 128 loss: 0.19134540855884552\n", - "Iter: 129 loss: 0.17346139252185822\n", - "Iter: 130 loss: 0.1897730529308319\n", - "Iter: 131 loss: 0.1957206428050995\n", - "Iter: 132 loss: 0.1729063242673874\n", - "Iter: 133 loss: 0.1877993494272232\n", - "Iter: 134 loss: 0.1715276688337326\n", - "Iter: 135 loss: 0.17575907707214355\n", - "Iter: 136 loss: 0.1897110939025879\n", - "Iter: 137 loss: 0.19190797209739685\n", - "Iter: 138 loss: 0.18209567666053772\n", - "Iter: 139 loss: 0.17868730425834656\n", - "Iter: 140 loss: 0.19867277145385742\n", - "Iter: 141 loss: 0.172882080078125\n", - "Iter: 142 loss: 0.16427138447761536\n", - "Iter: 143 loss: 0.16082683205604553\n", - "Iter: 144 loss: 0.19203898310661316\n", - "Iter: 145 loss: 0.1850750744342804\n", - "Iter: 146 loss: 0.17267127335071564\n", - "Iter: 147 loss: 0.17586663365364075\n", - "Iter: 148 loss: 0.17625392973423004\n", - "Iter: 149 loss: 0.18258924782276154\n", - "Iter: 150 loss: 0.17269855737686157\n", - "Iter: 151 loss: 0.19004860520362854\n", - "Iter: 152 loss: 0.16340747475624084\n", - "Iter: 153 loss: 0.19464513659477234\n", - "Iter: 154 loss: 0.1758458912372589\n", - "Iter: 155 loss: 0.20650359988212585\n", - "Iter: 156 loss: 0.16919277608394623\n", - "Iter: 157 loss: 0.15934698283672333\n", - "Iter: 158 loss: 0.171449214220047\n", - "Iter: 159 loss: 0.19092996418476105\n", - "Iter: 160 loss: 0.17050990462303162\n", - "Iter: 161 loss: 0.18857835233211517\n", - "Iter: 162 loss: 0.18028126657009125\n", - "Iter: 163 loss: 0.18504130840301514\n", - "Iter: 164 loss: 0.19607660174369812\n", - "Iter: 165 loss: 0.18544873595237732\n", - "Iter: 166 loss: 0.17725008726119995\n", - "Iter: 167 loss: 0.18404589593410492\n", - "Iter: 168 loss: 0.1754271686077118\n", - "Iter: 169 loss: 0.17174045741558075\n", - "Iter: 170 loss: 0.1831989288330078\n", - "Iter: 171 loss: 0.1693490892648697\n", - "Iter: 172 loss: 0.16749154031276703\n", - "Iter: 173 loss: 0.1678609400987625\n", - "Iter: 174 loss: 0.1725863516330719\n", - "Iter: 175 loss: 0.1766345500946045\n", - "Iter: 176 loss: 0.16393132507801056\n", - "Iter: 177 loss: 0.17161023616790771\n", - "Iter: 178 loss: 0.1671867072582245\n", - "Iter: 179 loss: 0.1607404500246048\n", - "Iter: 180 loss: 0.19197173416614532\n", - "Iter: 181 loss: 0.18442820012569427\n", - "Iter: 182 loss: 0.1661343276500702\n", - "Iter: 183 loss: 0.1774580180644989\n", - "Iter: 184 loss: 0.1803818941116333\n", - "Iter: 185 loss: 0.1652909219264984\n", - "Iter: 186 loss: 0.19633834064006805\n", - "Iter: 187 loss: 0.1783239245414734\n", - "Iter: 188 loss: 0.1758318841457367\n", - "Iter: 189 loss: 0.18266786634922028\n", - "Iter: 190 loss: 0.17836366593837738\n", - "Iter: 191 loss: 0.17876949906349182\n", - "Iter: 192 loss: 0.17966990172863007\n", - "Iter: 193 loss: 0.16672363877296448\n", - "Iter: 194 loss: 0.20135754346847534\n", - "Iter: 195 loss: 0.16800589859485626\n", - "Iter: 196 loss: 0.1921328902244568\n", - "Iter: 197 loss: 0.1915556937456131\n", - "Iter: 198 loss: 0.19165992736816406\n", - "Iter: 199 loss: 0.1739742010831833\n", - "Iter: 200 loss: 0.18165422976016998\n", - "Iter: 201 loss: 0.18325424194335938\n", - "Iter: 202 loss: 0.18702223896980286\n", - "Iter: 203 loss: 0.18042869865894318\n", - "Iter: 204 loss: 0.16894124448299408\n", - "Iter: 205 loss: 0.17713113129138947\n", - "Iter: 206 loss: 0.18438568711280823\n", - "Iter: 207 loss: 0.1598844677209854\n", - "Iter: 208 loss: 0.1836186796426773\n", - "Iter: 209 loss: 0.17410597205162048\n", - "Iter: 210 loss: 0.17761491239070892\n", - "Iter: 211 loss: 0.16862668097019196\n", - "Iter: 212 loss: 0.18215563893318176\n", - "Iter: 213 loss: 0.17315131425857544\n", - "Iter: 214 loss: 0.1688610315322876\n", - "Iter: 215 loss: 0.171007439494133\n", - "Iter: 216 loss: 0.19266138970851898\n", - "Iter: 217 loss: 0.1881292313337326\n", - "Iter: 218 loss: 0.18241003155708313\n", - "Iter: 219 loss: 0.1836443394422531\n", - "Iter: 220 loss: 0.21736744046211243\n", - "Iter: 221 loss: 0.17648781836032867\n", - "Iter: 222 loss: 0.1603902280330658\n", - "Iter: 223 loss: 0.1644800454378128\n", - "Iter: 224 loss: 0.1911897361278534\n", - "Iter: 225 loss: 0.15583252906799316\n", - "Iter: 226 loss: 0.18598024547100067\n", - "Iter: 227 loss: 0.161275714635849\n", - "Iter: 228 loss: 0.16964557766914368\n", - "Iter: 229 loss: 0.18115898966789246\n", - "Iter: 230 loss: 0.170734703540802\n", - "Iter: 231 loss: 0.1884366273880005\n", - "Iter: 232 loss: 0.17006920278072357\n", - "Iter: 233 loss: 0.15025289356708527\n", - "Iter: 234 loss: 0.1707659661769867\n", - "Iter: 235 loss: 0.17787818610668182\n", - "Iter: 236 loss: 0.16630837321281433\n", - "Iter: 237 loss: 0.15098050236701965\n", - "Iter: 238 loss: 0.17272619903087616\n", - "Iter: 239 loss: 0.1691892296075821\n", - "Iter: 240 loss: 0.1701633483171463\n", - "Iter: 241 loss: 0.2099943310022354\n", - "Iter: 242 loss: 0.17263223230838776\n", - "Iter: 243 loss: 0.17870426177978516\n", - "Iter: 244 loss: 0.18540596961975098\n", - "Iter: 245 loss: 0.15791086852550507\n", - "Iter: 246 loss: 0.16548356413841248\n", - "Iter: 247 loss: 0.18327529728412628\n", - "Iter: 248 loss: 0.1703002005815506\n", - "Iter: 249 loss: 0.17479795217514038\n", - "Iter: 250 loss: 0.18279056251049042\n", - "Iter: 251 loss: 0.16074122488498688\n", - "Iter: 252 loss: 0.16772131621837616\n", - "Iter: 253 loss: 0.18241146206855774\n", - "Iter: 254 loss: 0.19217784702777863\n", - "Iter: 255 loss: 0.17453399300575256\n", - "Iter: 256 loss: 0.1854114830493927\n", - "Iter: 257 loss: 0.17836008965969086\n", - "Iter: 258 loss: 0.17461131513118744\n", - "Iter: 259 loss: 0.17327699065208435\n", - "Iter: 260 loss: 0.18685519695281982\n", - "Iter: 261 loss: 0.18328362703323364\n", - "Iter: 262 loss: 0.19755025207996368\n", - "Iter: 263 loss: 0.18392357230186462\n", - "Iter: 264 loss: 0.1714192032814026\n", - "Iter: 265 loss: 0.18714843690395355\n", - "Iter: 266 loss: 0.15350037813186646\n", - "Iter: 267 loss: 0.17526325583457947\n", - "Iter: 268 loss: 0.17249056696891785\n", - "Iter: 269 loss: 0.17844301462173462\n", - "Iter: 270 loss: 0.16392631828784943\n", - "Iter: 271 loss: 0.1615530550479889\n", - "Iter: 272 loss: 0.17580929398536682\n", - "Iter: 273 loss: 0.16351935267448425\n", - "Iter: 274 loss: 0.1717633306980133\n", - "Iter: 275 loss: 0.18623042106628418\n", - "Iter: 276 loss: 0.1846018135547638\n", - "Iter: 277 loss: 0.17875458300113678\n", - "Iter: 278 loss: 0.1785525679588318\n", - "Iter: 279 loss: 0.1948976367712021\n", - "Iter: 280 loss: 0.168413445353508\n", - "Iter: 281 loss: 0.1796301305294037\n", - "Iter: 282 loss: 0.15416717529296875\n", - "Iter: 283 loss: 0.1699085831642151\n", - "Iter: 284 loss: 0.147703155875206\n", - "Iter: 285 loss: 0.19788597524166107\n", - "Iter: 286 loss: 0.18283036351203918\n", - "Iter: 287 loss: 0.1921413093805313\n", - "Iter: 288 loss: 0.18616552650928497\n", - "Iter: 289 loss: 0.17355795204639435\n", - "Iter: 290 loss: 0.1689458191394806\n", - "Iter: 291 loss: 0.1655619591474533\n", - "Iter: 292 loss: 0.18439264595508575\n", - "Iter: 293 loss: 0.18023882806301117\n", - "Iter: 294 loss: 0.17357642948627472\n", - "Iter: 295 loss: 0.16726154088974\n", - "Iter: 296 loss: 0.16266192495822906\n", - "Iter: 297 loss: 0.18075154721736908\n", - "Iter: 298 loss: 0.18122848868370056\n", - "Iter: 299 loss: 0.18547068536281586\n", - "Iter: 300 loss: 0.18084774911403656\n", - "Iter: 301 loss: 0.14535075426101685\n", - "Iter: 302 loss: 0.16907937824726105\n", - "Iter: 303 loss: 0.17912378907203674\n", - "Iter: 304 loss: 0.19095343351364136\n", - "Iter: 305 loss: 0.14881744980812073\n", - "Iter: 306 loss: 0.17978538572788239\n", - "Iter: 307 loss: 0.1656729131937027\n", - "Iter: 308 loss: 0.19624584913253784\n", - "Iter: 309 loss: 0.17358583211898804\n", - "Iter: 310 loss: 0.16210544109344482\n", - "Iter: 311 loss: 0.15398859977722168\n", - "Iter: 312 loss: 0.17589055001735687\n", - "Iter: 313 loss: 0.18483082950115204\n", - "Iter: 314 loss: 0.1738692820072174\n", - "Iter: 315 loss: 0.17891134321689606\n", - "Iter: 316 loss: 0.18218989670276642\n", - "Iter: 317 loss: 0.18785157799720764\n", - "Iter: 318 loss: 0.17952120304107666\n", - "Iter: 319 loss: 0.17815598845481873\n", - "Iter: 320 loss: 0.18814022839069366\n", - "Iter: 321 loss: 0.17086131870746613\n", - "Iter: 322 loss: 0.16799123585224152\n", - "Iter: 323 loss: 0.18364766240119934\n", - "Iter: 324 loss: 0.19157981872558594\n", - "Iter: 325 loss: 0.17359374463558197\n", - "Iter: 326 loss: 0.17799785733222961\n", - "Iter: 327 loss: 0.18288587033748627\n", - "Iter: 328 loss: 0.1898420751094818\n", - "Iter: 329 loss: 0.17454589903354645\n", - "Iter: 330 loss: 0.171364888548851\n", - "Iter: 331 loss: 0.17357875406742096\n", - "Iter: 332 loss: 0.18053816258907318\n", - "Iter: 333 loss: 0.17449267208576202\n", - "Iter: 334 loss: 0.15910938382148743\n", - "Iter: 335 loss: 0.17576220631599426\n", - "Iter: 336 loss: 0.16422586143016815\n", - "Iter: 337 loss: 0.17248912155628204\n", - "Iter: 338 loss: 0.17098945379257202\n", - "Iter: 339 loss: 0.17888104915618896\n", - "Iter: 340 loss: 0.1614939123392105\n", - "Iter: 341 loss: 0.17147287726402283\n", - "Iter: 342 loss: 0.17668020725250244\n", - "Iter: 343 loss: 0.1627349853515625\n", - "Iter: 344 loss: 0.18265952169895172\n", - "Iter: 345 loss: 0.16963469982147217\n", - "Iter: 346 loss: 0.16477008163928986\n", - "Iter: 347 loss: 0.18036909401416779\n", - "Iter: 348 loss: 0.16030538082122803\n", - "Iter: 349 loss: 0.16855569183826447\n", - "Iter: 350 loss: 0.18197497725486755\n", - "Iter: 351 loss: 0.16781985759735107\n", - "Iter: 352 loss: 0.1749371439218521\n", - "Iter: 353 loss: 0.1860276311635971\n", - "Iter: 354 loss: 0.1914994865655899\n", - "Iter: 355 loss: 0.18194951117038727\n", - "Iter: 356 loss: 0.18146319687366486\n", - "Iter: 357 loss: 0.16499494016170502\n", - "Iter: 358 loss: 0.2075205296278\n", - "Iter: 359 loss: 0.18424685299396515\n", - "Iter: 360 loss: 0.17050102353096008\n", - "Iter: 361 loss: 0.16065295040607452\n", - "Iter: 362 loss: 0.17597953975200653\n", - "Iter: 363 loss: 0.1871691644191742\n", - "Iter: 364 loss: 0.19009532034397125\n", - "Iter: 365 loss: 0.19278188049793243\n", - "Iter: 366 loss: 0.19038668274879456\n", - "Iter: 367 loss: 0.16787032783031464\n", - "Iter: 368 loss: 0.16792526841163635\n", - "Iter: 369 loss: 0.17699949443340302\n", - "Iter: 370 loss: 0.17018020153045654\n", - "Iter: 371 loss: 0.1746412217617035\n", - "Iter: 372 loss: 0.15521050989627838\n", - "Iter: 373 loss: 0.18213339149951935\n", - "Iter: 374 loss: 0.16678592562675476\n", - "Iter: 375 loss: 0.18177881836891174\n", - "Iter: 376 loss: 0.20491719245910645\n", - "Iter: 377 loss: 0.17007607221603394\n", - "Iter: 378 loss: 0.17575699090957642\n", - "Iter: 379 loss: 0.17493478953838348\n", - "Iter: 380 loss: 0.17354530096054077\n", - "Iter: 381 loss: 0.16835616528987885\n", - "Iter: 382 loss: 0.18304213881492615\n", - "Iter: 383 loss: 0.1854231208562851\n", - "Iter: 384 loss: 0.17619340121746063\n", - "Iter: 385 loss: 0.18495358526706696\n", - "Iter: 386 loss: 0.18614061176776886\n", - "Iter: 387 loss: 0.16291899979114532\n", - "Iter: 388 loss: 0.1752108335494995\n", - "Iter: 389 loss: 0.1870690882205963\n", - "Iter: 390 loss: 0.170988529920578\n", - "Iter: 391 loss: 0.1513921171426773\n", - "Iter: 392 loss: 0.16273443400859833\n", - "Iter: 393 loss: 0.16202019155025482\n", - "Iter: 394 loss: 0.16976593434810638\n", - "Iter: 395 loss: 0.1778002232313156\n", - "Iter: 396 loss: 0.18593373894691467\n", - "Iter: 397 loss: 0.17627233266830444\n", - "Iter: 398 loss: 0.1747410148382187\n", - "Iter: 399 loss: 0.18735365569591522\n", - "Iter: 400 loss: 0.1903005838394165\n", - "Iter: 401 loss: 0.18382084369659424\n", - "Iter: 402 loss: 0.1843181997537613\n", - "Iter: 403 loss: 0.17108413577079773\n", - "Iter: 404 loss: 0.17917019128799438\n", - "Iter: 405 loss: 0.17808669805526733\n", - "Iter: 406 loss: 0.18852241337299347\n", - "Iter: 407 loss: 0.17178967595100403\n", - "Iter: 408 loss: 0.19306553900241852\n", - "Iter: 409 loss: 0.1744348406791687\n", - "Iter: 410 loss: 0.16638731956481934\n", - "Iter: 411 loss: 0.171791672706604\n", - "Iter: 412 loss: 0.16592273116111755\n", - "Iter: 413 loss: 0.17874689400196075\n", - "Iter: 414 loss: 0.17975527048110962\n", - "Iter: 415 loss: 0.1856226772069931\n", - "Iter: 416 loss: 0.18446111679077148\n", - "Iter: 417 loss: 0.16777509450912476\n", - "Iter: 418 loss: 0.17101071774959564\n", - "Iter: 419 loss: 0.19005432724952698\n", - "Iter: 420 loss: 0.14521349966526031\n", - "Iter: 421 loss: 0.1699768453836441\n", - "Iter: 422 loss: 0.18471838533878326\n", - "Iter: 423 loss: 0.16655844449996948\n", - "Iter: 424 loss: 0.16521382331848145\n", - "Iter: 425 loss: 0.17145437002182007\n", - "Iter: 426 loss: 0.14478643238544464\n", - "Iter: 427 loss: 0.18300198018550873\n", - "Iter: 428 loss: 0.180946484208107\n", - "Iter: 429 loss: 0.18134945631027222\n", - "Iter: 430 loss: 0.1920255571603775\n", - "Iter: 431 loss: 0.19659854471683502\n", - "Iter: 432 loss: 0.16729433834552765\n", - "Iter: 433 loss: 0.15459083020687103\n", - "Iter: 434 loss: 0.18017229437828064\n", - "Iter: 435 loss: 0.15485773980617523\n", - "Iter: 436 loss: 0.17501330375671387\n", - "Iter: 437 loss: 0.18794995546340942\n", - "Iter: 438 loss: 0.17113010585308075\n", - "Iter: 439 loss: 0.16247692704200745\n", - "Iter: 440 loss: 0.18711720407009125\n", - "Iter: 441 loss: 0.16975052654743195\n", - "Iter: 442 loss: 0.18160629272460938\n", - "Iter: 443 loss: 0.1737051159143448\n", - "Iter: 444 loss: 0.16403985023498535\n", - "Iter: 445 loss: 0.16350875794887543\n", - "Iter: 446 loss: 0.19517207145690918\n", - "Iter: 447 loss: 0.16958235204219818\n", - "Iter: 448 loss: 0.1772812157869339\n", - "Iter: 449 loss: 0.1867758184671402\n", - "Iter: 450 loss: 0.1761377602815628\n", - "Iter: 451 loss: 0.19392238557338715\n", - "Iter: 452 loss: 0.16321370005607605\n", - "Iter: 453 loss: 0.17863744497299194\n", - "Iter: 454 loss: 0.1816548854112625\n", - "Iter: 455 loss: 0.19320474565029144\n", - "Iter: 456 loss: 0.16605792939662933\n", - "Iter: 457 loss: 0.1771642118692398\n", - "Iter: 458 loss: 0.14479398727416992\n", - "Iter: 459 loss: 0.17638134956359863\n", - "Iter: 460 loss: 0.19276174902915955\n", - "Iter: 461 loss: 0.1758539229631424\n", - "Iter: 462 loss: 0.16816194355487823\n", - "Iter: 463 loss: 0.16727611422538757\n", - "Iter: 464 loss: 0.18248069286346436\n", - "Iter: 465 loss: 0.18289996683597565\n", - "Iter: 466 loss: 0.1803228259086609\n", - "Iter: 467 loss: 0.18342334032058716\n", - "Iter: 468 loss: 0.1725514978170395\n", - "Iter: 469 loss: 0.1849328875541687\n", - "Iter: 470 loss: 0.17012104392051697\n", - "Iter: 471 loss: 0.18552713096141815\n", - "Iter: 472 loss: 0.16981032490730286\n", - "Iter: 473 loss: 0.1774589866399765\n", - "Iter: 474 loss: 0.17986387014389038\n", - "Iter: 475 loss: 0.17765121161937714\n", - "Iter: 476 loss: 0.15816590189933777\n", - "Iter: 477 loss: 0.18052473664283752\n", - "Iter: 478 loss: 0.15761323273181915\n", - "Iter: 479 loss: 0.18123486638069153\n", - "Iter: 480 loss: 0.1852569431066513\n", - "Iter: 481 loss: 0.14064082503318787\n", - "Iter: 482 loss: 0.1728857457637787\n", - "Iter: 483 loss: 0.1797507256269455\n", - "Iter: 484 loss: 0.17394517362117767\n", - "Iter: 485 loss: 0.17652936279773712\n", - "Iter: 486 loss: 0.17722921073436737\n", - "Iter: 487 loss: 0.1848822832107544\n", - "Iter: 488 loss: 0.1859496831893921\n", - "Iter: 489 loss: 0.18833523988723755\n", - "Iter: 490 loss: 0.16065092384815216\n", - "Iter: 491 loss: 0.160431906580925\n", - "Iter: 492 loss: 0.18154104053974152\n", - "Iter: 493 loss: 0.18415586650371552\n", - "Iter: 494 loss: 0.1660236418247223\n", - "Iter: 495 loss: 0.17081311345100403\n", - "Iter: 496 loss: 0.20050320029258728\n", - "Iter: 497 loss: 0.18805333971977234\n", - "Iter: 498 loss: 0.17453522980213165\n", - "Iter: 499 loss: 0.1618608832359314\n", - "Iter: 500 loss: 0.17909333109855652\n", - "Iter: 501 loss: 0.1758573353290558\n", - "Iter: 502 loss: 0.1602974236011505\n", - "Iter: 503 loss: 0.1755571812391281\n", - "Iter: 504 loss: 0.1758001744747162\n", - "Iter: 505 loss: 0.18448181450366974\n", - "Iter: 506 loss: 0.1618824005126953\n", - "Iter: 507 loss: 0.17612765729427338\n", - "Iter: 508 loss: 0.17716772854328156\n", - "Iter: 509 loss: 0.20092900097370148\n", - "Iter: 510 loss: 0.15526148676872253\n", - "Iter: 511 loss: 0.16092030704021454\n", - "Iter: 512 loss: 0.16660532355308533\n", - "Iter: 513 loss: 0.1799786537885666\n", - "Iter: 514 loss: 0.18509936332702637\n", - "Iter: 515 loss: 0.17463460564613342\n", - "Iter: 516 loss: 0.1650814414024353\n", - "Iter: 517 loss: 0.19810183346271515\n", - "Iter: 518 loss: 0.17440928518772125\n", - "Iter: 519 loss: 0.18253520131111145\n", - "Iter: 520 loss: 0.17606279253959656\n", - "Iter: 521 loss: 0.1773492693901062\n", - "Iter: 522 loss: 0.16665370762348175\n", - "Iter: 523 loss: 0.18784287571907043\n", - "Iter: 524 loss: 0.18317687511444092\n", - "Iter: 525 loss: 0.18077045679092407\n", - "Iter: 526 loss: 0.18599094450473785\n", - "Iter: 527 loss: 0.16452190279960632\n", - "Iter: 528 loss: 0.157412588596344\n", - "Iter: 529 loss: 0.16219837963581085\n", - "Iter: 530 loss: 0.16508327424526215\n", - "Iter: 531 loss: 0.1952412724494934\n", - "Iter: 532 loss: 0.19006669521331787\n", - "Iter: 533 loss: 0.18013763427734375\n", - "Iter: 534 loss: 0.16751009225845337\n", - "Iter: 535 loss: 0.17267435789108276\n", - "Iter: 536 loss: 0.17487971484661102\n", - "Iter: 537 loss: 0.1621076464653015\n", - "Iter: 538 loss: 0.17806215584278107\n", - "Iter: 539 loss: 0.17169377207756042\n", - "Iter: 540 loss: 0.16780813038349152\n", - "Iter: 541 loss: 0.1602066457271576\n", - "Iter: 542 loss: 0.15318003296852112\n", - "Iter: 543 loss: 0.19417329132556915\n", - "Iter: 544 loss: 0.15941689908504486\n", - "Iter: 545 loss: 0.18678730726242065\n", - "Iter: 546 loss: 0.17070956528186798\n", - "Iter: 547 loss: 0.18228906393051147\n", - "Iter: 548 loss: 0.18822884559631348\n", - "Iter: 549 loss: 0.17749549448490143\n", - "Iter: 550 loss: 0.17411865293979645\n", - "Iter: 551 loss: 0.18029987812042236\n", - "Iter: 552 loss: 0.1795482039451599\n", - "Iter: 553 loss: 0.160710409283638\n", - "Iter: 554 loss: 0.17245793342590332\n", - "Iter: 555 loss: 0.1832214742898941\n", - "Iter: 556 loss: 0.17287825047969818\n", - "Iter: 557 loss: 0.1746005266904831\n", - "Iter: 558 loss: 0.17484059929847717\n", - "Iter: 559 loss: 0.15180698037147522\n", - "Iter: 560 loss: 0.16625890135765076\n", - "Iter: 561 loss: 0.18393942713737488\n", - "Iter: 562 loss: 0.17026503384113312\n", - "Iter: 563 loss: 0.16849125921726227\n", - "Iter: 564 loss: 0.1806408166885376\n", - "Iter: 565 loss: 0.16613821685314178\n", - "Iter: 566 loss: 0.16670116782188416\n", - "Iter: 567 loss: 0.17849701642990112\n", - "Iter: 568 loss: 0.17917852103710175\n", - "Iter: 569 loss: 0.1723751574754715\n", - "Iter: 570 loss: 0.1694539338350296\n", - "Iter: 571 loss: 0.15665124356746674\n", - "Iter: 572 loss: 0.16213850677013397\n", - "Iter: 573 loss: 0.1670505702495575\n", - "Iter: 574 loss: 0.18130113184452057\n", - "Iter: 575 loss: 0.1779278665781021\n", - "Iter: 576 loss: 0.1643439531326294\n", - "Iter: 577 loss: 0.17704737186431885\n", - "Iter: 578 loss: 0.17693394422531128\n", - "Iter: 579 loss: 0.1626899093389511\n", - "Iter: 580 loss: 0.17298683524131775\n", - "Iter: 581 loss: 0.19625431299209595\n", - "Iter: 582 loss: 0.16031977534294128\n", - "Iter: 583 loss: 0.16700345277786255\n", - "Iter: 584 loss: 0.17109660804271698\n", - "Iter: 585 loss: 0.17763076722621918\n", - "Iter: 586 loss: 0.17404888570308685\n", - "Iter: 587 loss: 0.1831294298171997\n", - "Iter: 588 loss: 0.18034057319164276\n", - "Iter: 589 loss: 0.17048390209674835\n", - "Iter: 590 loss: 0.18543295562267303\n", - "Iter: 591 loss: 0.14641261100769043\n", - "Iter: 592 loss: 0.15283915400505066\n", - "Iter: 593 loss: 0.1728234887123108\n", - "Iter: 594 loss: 0.1774580180644989\n", - "Iter: 595 loss: 0.1662990152835846\n", - "Iter: 596 loss: 0.17502254247665405\n", - "Iter: 597 loss: 0.15631705522537231\n", - "Iter: 598 loss: 0.16950230300426483\n", - "Iter: 599 loss: 0.1614481508731842\n", - "Iter: 600 loss: 0.1828448623418808\n", - "Iter: 601 loss: 0.15604321658611298\n", - "Iter: 602 loss: 0.15910090506076813\n", - "Iter: 603 loss: 0.181198850274086\n", - "Iter: 604 loss: 0.17969271540641785\n", - "Iter: 605 loss: 0.17697998881340027\n", - "Iter: 606 loss: 0.17069020867347717\n", - "Iter: 607 loss: 0.19517932832241058\n", - "Iter: 608 loss: 0.1728600561618805\n", - "Iter: 609 loss: 0.17141999304294586\n", - "Iter: 610 loss: 0.1890914887189865\n", - "Iter: 611 loss: 0.17731572687625885\n", - "Iter: 612 loss: 0.17554903030395508\n", - "Iter: 613 loss: 0.1779693216085434\n", - "Iter: 614 loss: 0.17981912195682526\n", - "Iter: 615 loss: 0.1587851345539093\n", - "Iter: 616 loss: 0.18080490827560425\n", - "Iter: 617 loss: 0.1855398714542389\n", - "Iter: 618 loss: 0.19073903560638428\n", - "Iter: 619 loss: 0.17613603174686432\n", - "Iter: 620 loss: 0.1769411712884903\n", - "Iter: 621 loss: 0.17753033339977264\n", - "Iter: 622 loss: 0.16009098291397095\n", - "Iter: 623 loss: 0.1756359189748764\n", - "Iter: 624 loss: 0.16648909449577332\n", - "Iter: 625 loss: 0.17464017868041992\n", - "Iter: 626 loss: 0.15640318393707275\n", - "Iter: 627 loss: 0.17445692420005798\n", - "Iter: 628 loss: 0.16664113104343414\n", - "Iter: 629 loss: 0.18132640421390533\n", - "Iter: 630 loss: 0.18714343011379242\n", - "Iter: 631 loss: 0.1750667244195938\n", - "Iter: 632 loss: 0.15324461460113525\n", - "Iter: 633 loss: 0.1756715178489685\n", - "Iter: 634 loss: 0.1802867203950882\n", - "Iter: 635 loss: 0.1917344033718109\n", - "Iter: 636 loss: 0.18383176624774933\n", - "Iter: 637 loss: 0.19356945157051086\n", - "Iter: 638 loss: 0.18137997388839722\n", - "Iter: 639 loss: 0.16781023144721985\n", - "Iter: 640 loss: 0.19312426447868347\n", - "Iter: 641 loss: 0.17573417723178864\n", - "Iter: 642 loss: 0.16819463670253754\n", - "Iter: 643 loss: 0.17091329395771027\n", - "Iter: 644 loss: 0.1598934382200241\n", - "Iter: 645 loss: 0.18702436983585358\n", - "Iter: 646 loss: 0.16751132905483246\n", - "Iter: 647 loss: 0.18252943456172943\n", - "Iter: 648 loss: 0.18081283569335938\n", - "Iter: 649 loss: 0.1694675087928772\n", - "Iter: 650 loss: 0.16605712473392487\n", - "Iter: 651 loss: 0.16876429319381714\n", - "Iter: 652 loss: 0.17059436440467834\n", - "Iter: 653 loss: 0.1793983429670334\n", - "Iter: 654 loss: 0.1729401797056198\n", - "Iter: 655 loss: 0.17137688398361206\n", - "Iter: 656 loss: 0.17123328149318695\n", - "Iter: 657 loss: 0.16547295451164246\n", - "Iter: 658 loss: 0.1857759803533554\n", - "Iter: 659 loss: 0.17074261605739594\n", - "Iter: 660 loss: 0.15496855974197388\n", - "Iter: 661 loss: 0.18860378861427307\n", - "Iter: 662 loss: 0.16630962491035461\n", - "Iter: 663 loss: 0.18516521155834198\n", - "Iter: 664 loss: 0.18160462379455566\n", - "Iter: 665 loss: 0.17217445373535156\n", - "Iter: 666 loss: 0.182269886136055\n", - "Iter: 667 loss: 0.16703304648399353\n", - "Iter: 668 loss: 0.16749067604541779\n", - "Iter: 669 loss: 0.15743598341941833\n", - "Iter: 670 loss: 0.15541352331638336\n", - "Iter: 671 loss: 0.1794971227645874\n", - "Iter: 672 loss: 0.1532379686832428\n", - "Iter: 673 loss: 0.1642414778470993\n", - "Iter: 674 loss: 0.18200495839118958\n", - "Iter: 675 loss: 0.17865519225597382\n", - "Iter: 676 loss: 0.1677115261554718\n", - "Iter: 677 loss: 0.16231508553028107\n", - "Iter: 678 loss: 0.17747364938259125\n", - "Iter: 679 loss: 0.18002453446388245\n", - "Iter: 680 loss: 0.16977915167808533\n", - "Iter: 681 loss: 0.1648930460214615\n", - "Iter: 682 loss: 0.14815087616443634\n", - "Iter: 683 loss: 0.18796291947364807\n", - "Iter: 684 loss: 0.17781884968280792\n", - "Iter: 685 loss: 0.15376441180706024\n", - "Iter: 686 loss: 0.1844371259212494\n", - "Iter: 687 loss: 0.190031036734581\n", - "Iter: 688 loss: 0.18463104963302612\n", - "Iter: 689 loss: 0.16147202253341675\n", - "Iter: 690 loss: 0.19695691764354706\n", - "Iter: 691 loss: 0.18007045984268188\n", - "Iter: 692 loss: 0.18236568570137024\n", - "Iter: 693 loss: 0.1822049766778946\n", - "Iter: 694 loss: 0.1796584278345108\n", - "Iter: 695 loss: 0.18691322207450867\n", - "Iter: 696 loss: 0.16967132687568665\n", - "Iter: 697 loss: 0.18273252248764038\n", - "Iter: 698 loss: 0.17140540480613708\n", - "Iter: 699 loss: 0.19297677278518677\n", - "Iter: 700 loss: 0.16757503151893616\n", - "Iter: 701 loss: 0.16563236713409424\n", - "Iter: 702 loss: 0.17267176508903503\n", - "Iter: 703 loss: 0.19225648045539856\n", - "Iter: 704 loss: 0.1867416948080063\n", - "Iter: 705 loss: 0.16546973586082458\n", - "Iter: 706 loss: 0.16457776725292206\n", - "Iter: 707 loss: 0.15660713613033295\n", - "Iter: 708 loss: 0.1870090216398239\n", - "Iter: 709 loss: 0.17948557436466217\n", - "Iter: 710 loss: 0.16164341568946838\n", - "Iter: 711 loss: 0.17417383193969727\n", - "Iter: 712 loss: 0.18011926114559174\n", - "Iter: 713 loss: 0.16304151713848114\n", - "Iter: 714 loss: 0.18044985830783844\n", - "Iter: 715 loss: 0.1896452009677887\n", - "Iter: 716 loss: 0.18439361453056335\n", - "Iter: 717 loss: 0.15563295781612396\n", - "Iter: 718 loss: 0.17593970894813538\n", - "Iter: 719 loss: 0.19501961767673492\n", - "Iter: 720 loss: 0.16699723899364471\n", - "Iter: 721 loss: 0.1491423398256302\n", - "Iter: 722 loss: 0.17750009894371033\n", - "Iter: 723 loss: 0.19009964168071747\n", - "Iter: 724 loss: 0.17899750173091888\n", - "Iter: 725 loss: 0.17078225314617157\n", - "Iter: 726 loss: 0.1802501231431961\n", - "Iter: 727 loss: 0.16750399768352509\n", - "Iter: 728 loss: 0.1801363080739975\n", - "Iter: 729 loss: 0.17204347252845764\n", - "Iter: 730 loss: 0.1672719269990921\n", - "Iter: 731 loss: 0.18477630615234375\n", - "Iter: 732 loss: 0.146377831697464\n", - "Iter: 733 loss: 0.16979040205478668\n", - "Iter: 734 loss: 0.17076249420642853\n", - "Iter: 735 loss: 0.17363345623016357\n", - "Iter: 736 loss: 0.1636478155851364\n", - "Iter: 737 loss: 0.18261177837848663\n", - "Iter: 738 loss: 0.16920237243175507\n", - "Iter: 739 loss: 0.18372389674186707\n", - "Iter: 740 loss: 0.16852118074893951\n", - "Iter: 741 loss: 0.17347373068332672\n", - "Iter: 742 loss: 0.18755899369716644\n", - "Iter: 743 loss: 0.16331599652767181\n", - "Iter: 744 loss: 0.1806659698486328\n", - "Iter: 745 loss: 0.17192688584327698\n", - "Iter: 746 loss: 0.18625791370868683\n", - "Iter: 747 loss: 0.18622110784053802\n", - "Iter: 748 loss: 0.17157898843288422\n", - "Iter: 749 loss: 0.18670658767223358\n", - "Iter: 750 loss: 0.17412427067756653\n", - "Iter: 751 loss: 0.17459669709205627\n", - "Iter: 752 loss: 0.18513479828834534\n", - "Iter: 753 loss: 0.17600540816783905\n", - "Iter: 754 loss: 0.18362008035182953\n", - "Iter: 755 loss: 0.1840352863073349\n", - "Iter: 756 loss: 0.17607367038726807\n", - "Iter: 757 loss: 0.1908320188522339\n", - "Iter: 758 loss: 0.17087909579277039\n", - "Iter: 759 loss: 0.16308926045894623\n", - "Iter: 760 loss: 0.16291667520999908\n", - "Iter: 761 loss: 0.1598452627658844\n", - "Iter: 762 loss: 0.1605968028306961\n", - "Iter: 763 loss: 0.17272035777568817\n", - "Iter: 764 loss: 0.17474713921546936\n", - "Iter: 765 loss: 0.18987299501895905\n", - "Iter: 766 loss: 0.1440463662147522\n", - "Iter: 767 loss: 0.16863326728343964\n", - "Iter: 768 loss: 0.17511530220508575\n", - "Iter: 769 loss: 0.17783300578594208\n", - "Iter: 770 loss: 0.18781499564647675\n", - "Iter: 771 loss: 0.17812098562717438\n", - "Iter: 772 loss: 0.18259501457214355\n", - "Iter: 773 loss: 0.16789011657238007\n", - "Iter: 774 loss: 0.18354886770248413\n", - "Iter: 775 loss: 0.18667475879192352\n", - "Iter: 776 loss: 0.1943763941526413\n", - "Iter: 777 loss: 0.18990033864974976\n", - "Iter: 778 loss: 0.17536193132400513\n", - "Iter: 779 loss: 0.20325511693954468\n", - "Iter: 780 loss: 0.17600344121456146\n", - "Iter: 781 loss: 0.1751078963279724\n", - "Iter: 782 loss: 0.1599997580051422\n", - "Iter: 783 loss: 0.1729879379272461\n", - "Iter: 784 loss: 0.15839195251464844\n", - "Iter: 785 loss: 0.1909974217414856\n", - "Iter: 786 loss: 0.17735493183135986\n", - "Iter: 787 loss: 0.17640601098537445\n", - "Iter: 788 loss: 0.17728066444396973\n", - "Iter: 789 loss: 0.18410779535770416\n", - "Iter: 790 loss: 0.17273184657096863\n", - "Iter: 791 loss: 0.1912369728088379\n", - "Iter: 792 loss: 0.1877451092004776\n", - "Iter: 793 loss: 0.15803292393684387\n", - "Iter: 794 loss: 0.1805896759033203\n", - "Iter: 795 loss: 0.17302295565605164\n", - "Iter: 796 loss: 0.1584038883447647\n", - "Iter: 797 loss: 0.17897434532642365\n", - "Iter: 798 loss: 0.1710018664598465\n", - "Iter: 799 loss: 0.15522901713848114\n", - "Iter: 800 loss: 0.1853390783071518\n", - "Iter: 801 loss: 0.18417975306510925\n", - "Iter: 802 loss: 0.17053991556167603\n", - "Iter: 803 loss: 0.18309055268764496\n", - "Iter: 804 loss: 0.17244075238704681\n", - "Iter: 805 loss: 0.15617124736309052\n", - "Iter: 806 loss: 0.1828690767288208\n", - "Iter: 807 loss: 0.1801842302083969\n", - "Iter: 808 loss: 0.17339324951171875\n", - "Iter: 809 loss: 0.18258510529994965\n", - "Iter: 810 loss: 0.1707792729139328\n", - "Iter: 811 loss: 0.1877138912677765\n", - "Iter: 812 loss: 0.17775917053222656\n", - "Iter: 813 loss: 0.1758616417646408\n", - "Iter: 814 loss: 0.1814921647310257\n", - "Iter: 815 loss: 0.18356019258499146\n", - "Iter: 816 loss: 0.16729006171226501\n", - "Iter: 817 loss: 0.18571342527866364\n", - "Iter: 818 loss: 0.1735137552022934\n", - "Iter: 819 loss: 0.18145588040351868\n", - "Iter: 820 loss: 0.16860853135585785\n", - "Iter: 821 loss: 0.18825630843639374\n", - "Iter: 822 loss: 0.16360463201999664\n", - "Iter: 823 loss: 0.185403510928154\n", - "Iter: 824 loss: 0.16574621200561523\n", - "Iter: 825 loss: 0.18693265318870544\n", - "Iter: 826 loss: 0.1757192313671112\n", - "Iter: 827 loss: 0.1665032058954239\n", - "Iter: 828 loss: 0.15328609943389893\n", - "Iter: 829 loss: 0.18087078630924225\n", - "Iter: 830 loss: 0.19212409853935242\n", - "Iter: 831 loss: 0.20552556216716766\n", - "Iter: 832 loss: 0.16877202689647675\n", - "Iter: 833 loss: 0.1660134196281433\n", - "Iter: 834 loss: 0.1750897765159607\n", - "Iter: 835 loss: 0.164663165807724\n", - "Iter: 836 loss: 0.17409896850585938\n", - "Iter: 837 loss: 0.18225502967834473\n", - "Iter: 838 loss: 0.19250652194023132\n", - "Iter: 839 loss: 0.1794966608285904\n", - "Iter: 840 loss: 0.17869862914085388\n", - "Iter: 841 loss: 0.17846092581748962\n", - "Iter: 842 loss: 0.17487061023712158\n", - "Iter: 843 loss: 0.15241262316703796\n", - "Iter: 844 loss: 0.16238778829574585\n", - "Iter: 845 loss: 0.1715785562992096\n", - "Iter: 846 loss: 0.17838425934314728\n", - "Iter: 847 loss: 0.16846057772636414\n", - "Iter: 848 loss: 0.19829238951206207\n", - "Iter: 849 loss: 0.16694165766239166\n", - "Iter: 850 loss: 0.17287035286426544\n", - "Iter: 851 loss: 0.1518983691930771\n", - "Iter: 852 loss: 0.16516894102096558\n", - "Iter: 853 loss: 0.17582963407039642\n", - "Iter: 854 loss: 0.18362820148468018\n", - "Iter: 855 loss: 0.18034370243549347\n", - "Iter: 856 loss: 0.1823640763759613\n", - "Iter: 857 loss: 0.17775852978229523\n", - "Iter: 858 loss: 0.1653560996055603\n", - "Iter: 859 loss: 0.17219088971614838\n", - "Iter: 860 loss: 0.14792729914188385\n", - "Iter: 861 loss: 0.17591425776481628\n", - "Iter: 862 loss: 0.1706269532442093\n", - "Iter: 863 loss: 0.17832079529762268\n", - "Iter: 864 loss: 0.19759710133075714\n", - "Iter: 865 loss: 0.1629442423582077\n", - "Iter: 866 loss: 0.17338457703590393\n", - "Iter: 867 loss: 0.15896408259868622\n", - "Iter: 868 loss: 0.16193613409996033\n", - "Iter: 869 loss: 0.17848005890846252\n", - "Iter: 870 loss: 0.12644381821155548\n", - "Iter: 871 loss: 0.18687187135219574\n", - "Iter: 872 loss: 0.17077577114105225\n", - "Iter: 873 loss: 0.19065572321414948\n", - "Iter: 874 loss: 0.1517205834388733\n", - "Iter: 875 loss: 0.1753142923116684\n", - "Iter: 876 loss: 0.18485645949840546\n", - "Iter: 877 loss: 0.1787259727716446\n", - "Iter: 878 loss: 0.191288560628891\n", - "Iter: 879 loss: 0.20092782378196716\n", - "Iter: 880 loss: 0.19527222216129303\n", - "Iter: 881 loss: 0.16752679646015167\n", - "Iter: 882 loss: 0.1611422747373581\n", - "Iter: 883 loss: 0.1937289834022522\n", - "Iter: 884 loss: 0.17883506417274475\n", - "Iter: 885 loss: 0.17328418791294098\n", - "Iter: 886 loss: 0.16767944395542145\n", - "Iter: 887 loss: 0.16149622201919556\n", - "Iter: 888 loss: 0.1508828103542328\n", - "Iter: 889 loss: 0.1711615025997162\n", - "Iter: 890 loss: 0.18129748106002808\n", - "Iter: 891 loss: 0.1710636466741562\n", - "Iter: 892 loss: 0.1644182652235031\n", - "Iter: 893 loss: 0.165870800614357\n", - "Iter: 894 loss: 0.1688586175441742\n", - "Iter: 895 loss: 0.16841082274913788\n", - "Iter: 896 loss: 0.17075340449810028\n", - "Iter: 897 loss: 0.18240907788276672\n", - "Iter: 898 loss: 0.16327469050884247\n", - "Iter: 899 loss: 0.1690473109483719\n", - "Iter: 900 loss: 0.14992521703243256\n", - "Iter: 901 loss: 0.17377027869224548\n", - "Iter: 902 loss: 0.1840437650680542\n", - "Iter: 903 loss: 0.17667876183986664\n", - "Iter: 904 loss: 0.1835635006427765\n", - "Iter: 905 loss: 0.17600227892398834\n", - "Iter: 906 loss: 0.19475170969963074\n", - "Iter: 907 loss: 0.17133499681949615\n", - "Iter: 908 loss: 0.17211997509002686\n", - "Iter: 909 loss: 0.1695188283920288\n", - "Iter: 910 loss: 0.17189647257328033\n", - "Iter: 911 loss: 0.17540623247623444\n", - "Iter: 912 loss: 0.17684131860733032\n", - "Iter: 913 loss: 0.16566886007785797\n", - "Iter: 914 loss: 0.16946053504943848\n", - "Iter: 915 loss: 0.1777086853981018\n", - "Iter: 916 loss: 0.1791030615568161\n", - "Iter: 917 loss: 0.1819867491722107\n", - "Iter: 918 loss: 0.1678200513124466\n", - "Iter: 919 loss: 0.1688811182975769\n", - "Iter: 920 loss: 0.18492618203163147\n", - "Iter: 921 loss: 0.17515935003757477\n", - "Iter: 922 loss: 0.17875109612941742\n", - "Iter: 923 loss: 0.17673979699611664\n", - "Iter: 924 loss: 0.14675500988960266\n", - "Iter: 925 loss: 0.15945638716220856\n", - "Iter: 926 loss: 0.16723793745040894\n", - "Iter: 927 loss: 0.16939491033554077\n", - "Iter: 928 loss: 0.17320436239242554\n", - "Iter: 929 loss: 0.1706230491399765\n", - "Iter: 930 loss: 0.17319011688232422\n", - "Iter: 931 loss: 0.1697453111410141\n", - "Iter: 932 loss: 0.1687157154083252\n", - "Iter: 933 loss: 0.1801382303237915\n", - "Iter: 934 loss: 0.17426800727844238\n", - "Iter: 935 loss: 0.17811745405197144\n", - "Iter: 936 loss: 0.1911264806985855\n", - "Iter: 937 loss: 0.17926885187625885\n", - "Iter: 938 loss: 0.19035863876342773\n", - "Iter: 939 loss: 0.18471962213516235\n", - "Iter: 940 loss: 0.1900717169046402\n", - "Iter: 941 loss: 0.18705451488494873\n", - "Iter: 942 loss: 0.16979415714740753\n", - "Iter: 943 loss: 0.17917568981647491\n", - "Iter: 944 loss: 0.17001251876354218\n", - "Iter: 945 loss: 0.1780438870191574\n", - "Iter: 946 loss: 0.1654461920261383\n", - "Iter: 947 loss: 0.18840369582176208\n", - "Iter: 948 loss: 0.1890648752450943\n", - "Iter: 949 loss: 0.1793850064277649\n", - "Iter: 950 loss: 0.15481533110141754\n", - "Iter: 951 loss: 0.16285134851932526\n", - "Iter: 952 loss: 0.1667078286409378\n", - "Iter: 953 loss: 0.16553738713264465\n", - "Iter: 954 loss: 0.15970303118228912\n", - "Iter: 955 loss: 0.1813541054725647\n", - "Iter: 956 loss: 0.1782873421907425\n", - "Iter: 957 loss: 0.1684439331293106\n", - "Iter: 958 loss: 0.18795286118984222\n", - "Iter: 959 loss: 0.17352795600891113\n", - "Iter: 960 loss: 0.18860439956188202\n", - "Iter: 961 loss: 0.1741836965084076\n", - "Iter: 962 loss: 0.15985403954982758\n", - "Iter: 963 loss: 0.17304883897304535\n", - "Iter: 964 loss: 0.16488860547542572\n", - "Iter: 965 loss: 0.18563607335090637\n", - "Iter: 966 loss: 0.17647425830364227\n", - "Iter: 967 loss: 0.19693174958229065\n", - "Iter: 968 loss: 0.16724278032779694\n", - "Iter: 969 loss: 0.18647460639476776\n", - "Iter: 970 loss: 0.17986825108528137\n", - "Iter: 971 loss: 0.17871418595314026\n", - "Iter: 972 loss: 0.18534375727176666\n", - "Iter: 973 loss: 0.16892385482788086\n", - "Iter: 974 loss: 0.1879778951406479\n", - "Iter: 975 loss: 0.16228798031806946\n", - "Iter: 976 loss: 0.16766954958438873\n", - "Iter: 977 loss: 0.17061740159988403\n", - "Iter: 978 loss: 0.1752874255180359\n", - "Iter: 979 loss: 0.16342675685882568\n", - "Iter: 980 loss: 0.16369123756885529\n", - "Iter: 981 loss: 0.18235477805137634\n", - "Iter: 982 loss: 0.1877097636461258\n", - "Iter: 983 loss: 0.1788664013147354\n", - "Iter: 984 loss: 0.1727095991373062\n", - "Iter: 985 loss: 0.16711360216140747\n", - "Iter: 986 loss: 0.15428414940834045\n", - "Iter: 987 loss: 0.15671207010746002\n", - "Iter: 988 loss: 0.16476115584373474\n", - "Iter: 989 loss: 0.17943821847438812\n", - "Iter: 990 loss: 0.1772133708000183\n", - "Iter: 991 loss: 0.15968841314315796\n", - "Iter: 992 loss: 0.1788298487663269\n", - "Iter: 993 loss: 0.18849338591098785\n", - "Iter: 994 loss: 0.1889803260564804\n", - "Iter: 995 loss: 0.16872243583202362\n", - "Iter: 996 loss: 0.18130145967006683\n", - "Iter: 997 loss: 0.1776694655418396\n", - "Iter: 998 loss: 0.1861647218465805\n", - "Iter: 999 loss: 0.17481127381324768\n" + "Iter: 0 loss: 0.7966203093528748\n", + "Iter: 1 loss: 0.8545265197753906\n", + "Iter: 2 loss: 0.7906700968742371\n", + "Iter: 3 loss: 0.8439813256263733\n", + "Iter: 4 loss: 0.782943069934845\n", + "Iter: 5 loss: 0.7519009113311768\n", + "Iter: 6 loss: 0.7225188612937927\n", + "Iter: 7 loss: 0.7396211624145508\n", + "Iter: 8 loss: 0.63681560754776\n", + "Iter: 9 loss: 0.7366183400154114\n", + "Iter: 10 loss: 0.6683304905891418\n", + "Iter: 11 loss: 0.6812434196472168\n", + "Iter: 12 loss: 0.6497387290000916\n", + "Iter: 13 loss: 0.6841272115707397\n", + "Iter: 14 loss: 0.6746092438697815\n", + "Iter: 15 loss: 0.5912089347839355\n", + "Iter: 16 loss: 0.6000741124153137\n", + "Iter: 17 loss: 0.6499397158622742\n", + "Iter: 18 loss: 0.6284701824188232\n", + "Iter: 19 loss: 0.5641937255859375\n", + "Iter: 20 loss: 0.578584611415863\n", + "Iter: 21 loss: 0.5813372731208801\n", + "Iter: 22 loss: 0.5009423494338989\n", + "Iter: 23 loss: 0.4806818664073944\n", + "Iter: 24 loss: 0.5098072290420532\n", + "Iter: 25 loss: 0.49103206396102905\n", + "Iter: 26 loss: 0.5098634958267212\n", + "Iter: 27 loss: 0.5050938725471497\n", + "Iter: 28 loss: 0.5217817425727844\n", + "Iter: 29 loss: 0.47778090834617615\n", + "Iter: 30 loss: 0.4889221787452698\n", + "Iter: 31 loss: 0.4093836843967438\n", + "Iter: 32 loss: 0.48037850856781006\n", + "Iter: 33 loss: 0.4643719792366028\n", + "Iter: 34 loss: 0.4249560236930847\n", + "Iter: 35 loss: 0.4117046892642975\n", + "Iter: 36 loss: 0.4129740297794342\n", + "Iter: 37 loss: 0.42223459482192993\n", + "Iter: 38 loss: 0.3935459554195404\n", + "Iter: 39 loss: 0.38045814633369446\n", + "Iter: 40 loss: 0.38325804471969604\n", + "Iter: 41 loss: 0.3898666501045227\n", + "Iter: 42 loss: 0.36523380875587463\n", + "Iter: 43 loss: 0.36114010214805603\n", + "Iter: 44 loss: 0.334075003862381\n", + "Iter: 45 loss: 0.3075009882450104\n", + "Iter: 46 loss: 0.3174712657928467\n", + "Iter: 47 loss: 0.30826014280319214\n", + "Iter: 48 loss: 0.2959979772567749\n", + "Iter: 49 loss: 0.3131430745124817\n", + "Iter: 50 loss: 0.2813965082168579\n", + "Iter: 51 loss: 0.28703030943870544\n", + "Iter: 52 loss: 0.2837550938129425\n", + "Iter: 53 loss: 0.269655704498291\n", + "Iter: 54 loss: 0.26834622025489807\n", + "Iter: 55 loss: 0.24650917947292328\n", + "Iter: 56 loss: 0.26922473311424255\n", + "Iter: 57 loss: 0.24527804553508759\n", + "Iter: 58 loss: 0.2370280772447586\n", + "Iter: 59 loss: 0.23140929639339447\n", + "Iter: 60 loss: 0.23732434213161469\n", + "Iter: 61 loss: 0.21878041326999664\n", + "Iter: 62 loss: 0.2327173799276352\n", + "Iter: 63 loss: 0.23066194355487823\n", + "Iter: 64 loss: 0.2129807472229004\n", + "Iter: 65 loss: 0.22203253209590912\n", + "Iter: 66 loss: 0.22894169390201569\n", + "Iter: 67 loss: 0.21821914613246918\n", + "Iter: 68 loss: 0.223652184009552\n", + "Iter: 69 loss: 0.2133363038301468\n", + "Iter: 70 loss: 0.20273110270500183\n", + "Iter: 71 loss: 0.21355995535850525\n", + "Iter: 72 loss: 0.20676565170288086\n", + "Iter: 73 loss: 0.1916898488998413\n", + "Iter: 74 loss: 0.22167490422725677\n", + "Iter: 75 loss: 0.20523026585578918\n", + "Iter: 76 loss: 0.20074708759784698\n", + "Iter: 77 loss: 0.17011064291000366\n", + "Iter: 78 loss: 0.19532111287117004\n", + "Iter: 79 loss: 0.21191677451133728\n", + "Iter: 80 loss: 0.20761097967624664\n", + "Iter: 81 loss: 0.19125431776046753\n", + "Iter: 82 loss: 0.2080814242362976\n", + "Iter: 83 loss: 0.1887437105178833\n", + "Iter: 84 loss: 0.19951777160167694\n", + "Iter: 85 loss: 0.20182211697101593\n", + "Iter: 86 loss: 0.1802513599395752\n", + "Iter: 87 loss: 0.18244509398937225\n", + "Iter: 88 loss: 0.17140914499759674\n", + "Iter: 89 loss: 0.19563594460487366\n", + "Iter: 90 loss: 0.18101759254932404\n", + "Iter: 91 loss: 0.18412593007087708\n", + "Iter: 92 loss: 0.18222227692604065\n", + "Iter: 93 loss: 0.18013408780097961\n", + "Iter: 94 loss: 0.20153896510601044\n", + "Iter: 95 loss: 0.18532732129096985\n", + "Iter: 96 loss: 0.18137456476688385\n", + "Iter: 97 loss: 0.19056303799152374\n", + "Iter: 98 loss: 0.19354166090488434\n", + "Iter: 99 loss: 0.1907319873571396\n", + "Iter: 100 loss: 0.18723146617412567\n", + "Iter: 101 loss: 0.19841055572032928\n", + "Iter: 102 loss: 0.1995789110660553\n", + "Iter: 103 loss: 0.18778812885284424\n", + "Iter: 104 loss: 0.1975831687450409\n", + "Iter: 105 loss: 0.1856563538312912\n", + "Iter: 106 loss: 0.1671680212020874\n", + "Iter: 107 loss: 0.1781056821346283\n", + "Iter: 108 loss: 0.17497718334197998\n", + "Iter: 109 loss: 0.18234558403491974\n", + "Iter: 110 loss: 0.17847417294979095\n", + "Iter: 111 loss: 0.17627155780792236\n", + "Iter: 112 loss: 0.20133985579013824\n", + "Iter: 113 loss: 0.17547278106212616\n", + "Iter: 114 loss: 0.16546405851840973\n", + "Iter: 115 loss: 0.1886466145515442\n", + "Iter: 116 loss: 0.18062634766101837\n", + "Iter: 117 loss: 0.18329596519470215\n", + "Iter: 118 loss: 0.18026353418827057\n", + "Iter: 119 loss: 0.18983453512191772\n", + "Iter: 120 loss: 0.1951112598180771\n", + "Iter: 121 loss: 0.1806916892528534\n", + "Iter: 122 loss: 0.17867475748062134\n", + "Iter: 123 loss: 0.17529918253421783\n", + "Iter: 124 loss: 0.19614337384700775\n", + "Iter: 125 loss: 0.19294041395187378\n", + "Iter: 126 loss: 0.1637914925813675\n", + "Iter: 127 loss: 0.17804399132728577\n", + "Iter: 128 loss: 0.19201485812664032\n", + "Iter: 129 loss: 0.17149488627910614\n", + "Iter: 130 loss: 0.1758105754852295\n", + "Iter: 131 loss: 0.18877959251403809\n", + "Iter: 132 loss: 0.1688893884420395\n", + "Iter: 133 loss: 0.20173506438732147\n", + "Iter: 134 loss: 0.20833931863307953\n", + "Iter: 135 loss: 0.1786411702632904\n", + "Iter: 136 loss: 0.1943640559911728\n", + "Iter: 137 loss: 0.20037277042865753\n", + "Iter: 138 loss: 0.1890081763267517\n", + "Iter: 139 loss: 0.19023554027080536\n", + "Iter: 140 loss: 0.18791595101356506\n", + "Iter: 141 loss: 0.1815614104270935\n", + "Iter: 142 loss: 0.18354639410972595\n", + "Iter: 143 loss: 0.17944887280464172\n", + "Iter: 144 loss: 0.17370320856571198\n", + "Iter: 145 loss: 0.18070271611213684\n", + "Iter: 146 loss: 0.17869269847869873\n", + "Iter: 147 loss: 0.17846611142158508\n", + "Iter: 148 loss: 0.19113321602344513\n", + "Iter: 149 loss: 0.18061122298240662\n", + "Iter: 150 loss: 0.17555418610572815\n", + "Iter: 151 loss: 0.18232473731040955\n", + "Iter: 152 loss: 0.17632828652858734\n", + "Iter: 153 loss: 0.17373879253864288\n", + "Iter: 154 loss: 0.17720381915569305\n", + "Iter: 155 loss: 0.1784161478281021\n", + "Iter: 156 loss: 0.16994459927082062\n", + "Iter: 157 loss: 0.19384394586086273\n", + "Iter: 158 loss: 0.18862563371658325\n", + "Iter: 159 loss: 0.1808062493801117\n", + "Iter: 160 loss: 0.17149706184864044\n", + "Iter: 161 loss: 0.1791917085647583\n", + "Iter: 162 loss: 0.1775209903717041\n", + "Iter: 163 loss: 0.16668689250946045\n", + "Iter: 164 loss: 0.1687585562467575\n", + "Iter: 165 loss: 0.18383997678756714\n", + "Iter: 166 loss: 0.16835981607437134\n", + "Iter: 167 loss: 0.19230496883392334\n", + "Iter: 168 loss: 0.18323831260204315\n", + "Iter: 169 loss: 0.17547951638698578\n", + "Iter: 170 loss: 0.1653343141078949\n", + "Iter: 171 loss: 0.15945158898830414\n", + "Iter: 172 loss: 0.1737816482782364\n", + "Iter: 173 loss: 0.15696625411510468\n", + "Iter: 174 loss: 0.1729387640953064\n", + "Iter: 175 loss: 0.1802535504102707\n", + "Iter: 176 loss: 0.17034070193767548\n", + "Iter: 177 loss: 0.1895812451839447\n", + "Iter: 178 loss: 0.19792179763317108\n", + "Iter: 179 loss: 0.20155899226665497\n", + "Iter: 180 loss: 0.18214201927185059\n", + "Iter: 181 loss: 0.152727410197258\n", + "Iter: 182 loss: 0.16396182775497437\n", + "Iter: 183 loss: 0.18526607751846313\n", + "Iter: 184 loss: 0.1711217612028122\n", + "Iter: 185 loss: 0.18485501408576965\n", + "Iter: 186 loss: 0.15405794978141785\n", + "Iter: 187 loss: 0.18085826933383942\n", + "Iter: 188 loss: 0.18317629396915436\n", + "Iter: 189 loss: 0.1740649938583374\n", + "Iter: 190 loss: 0.18535947799682617\n", + "Iter: 191 loss: 0.19420181214809418\n", + "Iter: 192 loss: 0.18301041424274445\n", + "Iter: 193 loss: 0.18042294681072235\n", + "Iter: 194 loss: 0.17112182080745697\n", + "Iter: 195 loss: 0.18831831216812134\n", + "Iter: 196 loss: 0.18667180836200714\n", + "Iter: 197 loss: 0.1641533076763153\n", + "Iter: 198 loss: 0.1959598958492279\n", + "Iter: 199 loss: 0.17258836328983307\n", + "Iter: 200 loss: 0.1911821961402893\n", + "Iter: 201 loss: 0.19528432190418243\n", + "Iter: 202 loss: 0.17502769827842712\n", + "Iter: 203 loss: 0.16375136375427246\n", + "Iter: 204 loss: 0.18269018828868866\n", + "Iter: 205 loss: 0.15503045916557312\n", + "Iter: 206 loss: 0.17205919325351715\n", + "Iter: 207 loss: 0.1694454848766327\n", + "Iter: 208 loss: 0.1711723655462265\n", + "Iter: 209 loss: 0.18780899047851562\n", + "Iter: 210 loss: 0.16510942578315735\n", + "Iter: 211 loss: 0.20331300795078278\n", + "Iter: 212 loss: 0.1642763465642929\n", + "Iter: 213 loss: 0.1779203861951828\n", + "Iter: 214 loss: 0.1818036586046219\n", + "Iter: 215 loss: 0.17414651811122894\n", + "Iter: 216 loss: 0.18052057921886444\n", + "Iter: 217 loss: 0.18736588954925537\n", + "Iter: 218 loss: 0.1739175021648407\n", + "Iter: 219 loss: 0.19770127534866333\n", + "Iter: 220 loss: 0.16408535838127136\n", + "Iter: 221 loss: 0.1827351152896881\n", + "Iter: 222 loss: 0.17587310075759888\n", + "Iter: 223 loss: 0.17664355039596558\n", + "Iter: 224 loss: 0.17166009545326233\n", + "Iter: 225 loss: 0.18936899304389954\n", + "Iter: 226 loss: 0.1840597242116928\n", + "Iter: 227 loss: 0.17780528962612152\n", + "Iter: 228 loss: 0.19240516424179077\n", + "Iter: 229 loss: 0.2030719816684723\n", + "Iter: 230 loss: 0.16896004974842072\n", + "Iter: 231 loss: 0.18853463232517242\n", + "Iter: 232 loss: 0.18915875256061554\n", + "Iter: 233 loss: 0.18223556876182556\n", + "Iter: 234 loss: 0.16324792802333832\n", + "Iter: 235 loss: 0.20529992878437042\n", + "Iter: 236 loss: 0.1627952754497528\n", + "Iter: 237 loss: 0.1904793381690979\n", + "Iter: 238 loss: 0.19296211004257202\n", + "Iter: 239 loss: 0.18845312297344208\n", + "Iter: 240 loss: 0.15732426941394806\n", + "Iter: 241 loss: 0.17334969341754913\n", + "Iter: 242 loss: 0.17463211715221405\n", + "Iter: 243 loss: 0.18516592681407928\n", + "Iter: 244 loss: 0.17875677347183228\n", + "Iter: 245 loss: 0.16737551987171173\n", + "Iter: 246 loss: 0.17545506358146667\n", + "Iter: 247 loss: 0.18282835185527802\n", + "Iter: 248 loss: 0.18236131966114044\n", + "Iter: 249 loss: 0.18781910836696625\n", + "Iter: 250 loss: 0.18347807228565216\n", + "Iter: 251 loss: 0.16734519600868225\n", + "Iter: 252 loss: 0.15440522134304047\n", + "Iter: 253 loss: 0.1720581203699112\n", + "Iter: 254 loss: 0.1621105819940567\n", + "Iter: 255 loss: 0.1929413080215454\n", + "Iter: 256 loss: 0.18720220029354095\n", + "Iter: 257 loss: 0.18668462336063385\n", + "Iter: 258 loss: 0.168339341878891\n", + "Iter: 259 loss: 0.1821909248828888\n", + "Iter: 260 loss: 0.17612682282924652\n", + "Iter: 261 loss: 0.17384660243988037\n", + "Iter: 262 loss: 0.18892152607440948\n", + "Iter: 263 loss: 0.17845499515533447\n", + "Iter: 264 loss: 0.18895737826824188\n", + "Iter: 265 loss: 0.19461184740066528\n", + "Iter: 266 loss: 0.183732807636261\n", + "Iter: 267 loss: 0.17865970730781555\n", + "Iter: 268 loss: 0.1875789314508438\n", + "Iter: 269 loss: 0.18976719677448273\n", + "Iter: 270 loss: 0.17789654433727264\n", + "Iter: 271 loss: 0.20368894934654236\n", + "Iter: 272 loss: 0.16706483066082\n", + "Iter: 273 loss: 0.17263656854629517\n", + "Iter: 274 loss: 0.16506879031658173\n", + "Iter: 275 loss: 0.1788611114025116\n", + "Iter: 276 loss: 0.19985578954219818\n", + "Iter: 277 loss: 0.1896321326494217\n", + "Iter: 278 loss: 0.1838373839855194\n", + "Iter: 279 loss: 0.174460306763649\n", + "Iter: 280 loss: 0.1682475209236145\n", + "Iter: 281 loss: 0.19275560975074768\n", + "Iter: 282 loss: 0.1819186806678772\n", + "Iter: 283 loss: 0.18685735762119293\n", + "Iter: 284 loss: 0.18440277874469757\n", + "Iter: 285 loss: 0.16990990936756134\n", + "Iter: 286 loss: 0.16705696284770966\n", + "Iter: 287 loss: 0.18381603062152863\n", + "Iter: 288 loss: 0.19021806120872498\n", + "Iter: 289 loss: 0.1584872454404831\n", + "Iter: 290 loss: 0.16631293296813965\n", + "Iter: 291 loss: 0.20209956169128418\n", + "Iter: 292 loss: 0.18904627859592438\n", + "Iter: 293 loss: 0.17249014973640442\n", + "Iter: 294 loss: 0.16692999005317688\n", + "Iter: 295 loss: 0.16344504058361053\n", + "Iter: 296 loss: 0.16055777668952942\n", + "Iter: 297 loss: 0.1878623068332672\n", + "Iter: 298 loss: 0.1808778941631317\n", + "Iter: 299 loss: 0.16232523322105408\n", + "Iter: 300 loss: 0.19246813654899597\n", + "Iter: 301 loss: 0.17857028543949127\n", + "Iter: 302 loss: 0.17770493030548096\n", + "Iter: 303 loss: 0.1732175201177597\n", + "Iter: 304 loss: 0.17178583145141602\n", + "Iter: 305 loss: 0.1797257661819458\n", + "Iter: 306 loss: 0.17559723556041718\n", + "Iter: 307 loss: 0.16872994601726532\n", + "Iter: 308 loss: 0.1849292665719986\n", + "Iter: 309 loss: 0.17373549938201904\n", + "Iter: 310 loss: 0.17886872589588165\n", + "Iter: 311 loss: 0.17188692092895508\n", + "Iter: 312 loss: 0.195815771818161\n", + "Iter: 313 loss: 0.17748525738716125\n", + "Iter: 314 loss: 0.17562136054039001\n", + "Iter: 315 loss: 0.1766526699066162\n", + "Iter: 316 loss: 0.19598104059696198\n", + "Iter: 317 loss: 0.183788001537323\n", + "Iter: 318 loss: 0.14966030418872833\n", + "Iter: 319 loss: 0.15678595006465912\n", + "Iter: 320 loss: 0.17870169878005981\n", + "Iter: 321 loss: 0.19130492210388184\n", + "Iter: 322 loss: 0.1850326657295227\n", + "Iter: 323 loss: 0.18667352199554443\n", + "Iter: 324 loss: 0.1838153600692749\n", + "Iter: 325 loss: 0.1723301112651825\n", + "Iter: 326 loss: 0.16798636317253113\n", + "Iter: 327 loss: 0.19031056761741638\n", + "Iter: 328 loss: 0.1953067183494568\n", + "Iter: 329 loss: 0.17799198627471924\n", + "Iter: 330 loss: 0.19200751185417175\n", + "Iter: 331 loss: 0.16353493928909302\n", + "Iter: 332 loss: 0.15886783599853516\n", + "Iter: 333 loss: 0.18401135504245758\n", + "Iter: 334 loss: 0.19516484439373016\n", + "Iter: 335 loss: 0.15689557790756226\n", + "Iter: 336 loss: 0.1853438913822174\n", + "Iter: 337 loss: 0.1701297014951706\n", + "Iter: 338 loss: 0.1711828112602234\n", + "Iter: 339 loss: 0.17554643750190735\n", + "Iter: 340 loss: 0.18424402177333832\n", + "Iter: 341 loss: 0.19378915429115295\n", + "Iter: 342 loss: 0.16788546741008759\n", + "Iter: 343 loss: 0.1819172352552414\n", + "Iter: 344 loss: 0.18269962072372437\n", + "Iter: 345 loss: 0.1793406456708908\n", + "Iter: 346 loss: 0.17302115261554718\n", + "Iter: 347 loss: 0.17785467207431793\n", + "Iter: 348 loss: 0.15625371038913727\n", + "Iter: 349 loss: 0.15520831942558289\n", + "Iter: 350 loss: 0.18711261451244354\n", + "Iter: 351 loss: 0.16625867784023285\n", + "Iter: 352 loss: 0.17842845618724823\n", + "Iter: 353 loss: 0.18084274232387543\n", + "Iter: 354 loss: 0.18493306636810303\n", + "Iter: 355 loss: 0.17484907805919647\n", + "Iter: 356 loss: 0.1758570671081543\n", + "Iter: 357 loss: 0.17440110445022583\n", + "Iter: 358 loss: 0.16521239280700684\n", + "Iter: 359 loss: 0.15577903389930725\n", + "Iter: 360 loss: 0.1949562430381775\n", + "Iter: 361 loss: 0.17390526831150055\n", + "Iter: 362 loss: 0.16850228607654572\n", + "Iter: 363 loss: 0.18764559924602509\n", + "Iter: 364 loss: 0.17214269936084747\n", + "Iter: 365 loss: 0.1715090572834015\n", + "Iter: 366 loss: 0.18982556462287903\n", + "Iter: 367 loss: 0.18720774352550507\n", + "Iter: 368 loss: 0.17506343126296997\n", + "Iter: 369 loss: 0.1807863414287567\n", + "Iter: 370 loss: 0.19737951457500458\n", + "Iter: 371 loss: 0.16356320679187775\n", + "Iter: 372 loss: 0.17936527729034424\n", + "Iter: 373 loss: 0.17746734619140625\n", + "Iter: 374 loss: 0.17117370665073395\n", + "Iter: 375 loss: 0.18891189992427826\n", + "Iter: 376 loss: 0.1807931512594223\n", + "Iter: 377 loss: 0.16985175013542175\n", + "Iter: 378 loss: 0.1667049527168274\n", + "Iter: 379 loss: 0.17898774147033691\n", + "Iter: 380 loss: 0.18700441718101501\n", + "Iter: 381 loss: 0.18133236467838287\n", + "Iter: 382 loss: 0.18893778324127197\n", + "Iter: 383 loss: 0.15898935496807098\n", + "Iter: 384 loss: 0.18757925927639008\n", + "Iter: 385 loss: 0.17419183254241943\n", + "Iter: 386 loss: 0.16874223947525024\n", + "Iter: 387 loss: 0.1884559839963913\n", + "Iter: 388 loss: 0.20085465908050537\n", + "Iter: 389 loss: 0.1747567355632782\n", + "Iter: 390 loss: 0.18395450711250305\n", + "Iter: 391 loss: 0.18769967555999756\n", + "Iter: 392 loss: 0.1639883816242218\n", + "Iter: 393 loss: 0.1742691546678543\n", + "Iter: 394 loss: 0.16682173311710358\n", + "Iter: 395 loss: 0.16526129841804504\n", + "Iter: 396 loss: 0.17696933448314667\n", + "Iter: 397 loss: 0.16866624355316162\n", + "Iter: 398 loss: 0.19707445800304413\n", + "Iter: 399 loss: 0.1645909547805786\n", + "Iter: 400 loss: 0.1909218281507492\n", + "Iter: 401 loss: 0.1857367306947708\n", + "Iter: 402 loss: 0.18263760209083557\n", + "Iter: 403 loss: 0.20736363530158997\n", + "Iter: 404 loss: 0.2046613097190857\n", + "Iter: 405 loss: 0.18064624071121216\n", + "Iter: 406 loss: 0.19098711013793945\n", + "Iter: 407 loss: 0.16521281003952026\n", + "Iter: 408 loss: 0.17200303077697754\n", + "Iter: 409 loss: 0.186402827501297\n", + "Iter: 410 loss: 0.1915518343448639\n", + "Iter: 411 loss: 0.18787860870361328\n", + "Iter: 412 loss: 0.16576555371284485\n", + "Iter: 413 loss: 0.17778992652893066\n", + "Iter: 414 loss: 0.17033304274082184\n", + "Iter: 415 loss: 0.16790540516376495\n", + "Iter: 416 loss: 0.18085859715938568\n", + "Iter: 417 loss: 0.19404520094394684\n", + "Iter: 418 loss: 0.16997499763965607\n", + "Iter: 419 loss: 0.16220298409461975\n", + "Iter: 420 loss: 0.18549974262714386\n", + "Iter: 421 loss: 0.19635772705078125\n", + "Iter: 422 loss: 0.16063420474529266\n", + "Iter: 423 loss: 0.160678431391716\n", + "Iter: 424 loss: 0.16483135521411896\n", + "Iter: 425 loss: 0.16863228380680084\n", + "Iter: 426 loss: 0.167247012257576\n", + "Iter: 427 loss: 0.17760205268859863\n", + "Iter: 428 loss: 0.18418331444263458\n", + "Iter: 429 loss: 0.16358771920204163\n", + "Iter: 430 loss: 0.1735026240348816\n", + "Iter: 431 loss: 0.17876340448856354\n", + "Iter: 432 loss: 0.1625516563653946\n", + "Iter: 433 loss: 0.17831309139728546\n", + "Iter: 434 loss: 0.19080480933189392\n", + "Iter: 435 loss: 0.1659904569387436\n", + "Iter: 436 loss: 0.1914346069097519\n", + "Iter: 437 loss: 0.19932244718074799\n", + "Iter: 438 loss: 0.1683567315340042\n", + "Iter: 439 loss: 0.16252173483371735\n", + "Iter: 440 loss: 0.18977920711040497\n", + "Iter: 441 loss: 0.17051054537296295\n", + "Iter: 442 loss: 0.16652911901474\n", + "Iter: 443 loss: 0.17672550678253174\n", + "Iter: 444 loss: 0.2077736109495163\n", + "Iter: 445 loss: 0.18512244522571564\n", + "Iter: 446 loss: 0.19557906687259674\n", + "Iter: 447 loss: 0.17563070356845856\n", + "Iter: 448 loss: 0.1763410121202469\n", + "Iter: 449 loss: 0.18602004647254944\n", + "Iter: 450 loss: 0.1914585381746292\n", + "Iter: 451 loss: 0.19300326704978943\n", + "Iter: 452 loss: 0.18688277900218964\n", + "Iter: 453 loss: 0.18314993381500244\n", + "Iter: 454 loss: 0.16767974197864532\n", + "Iter: 455 loss: 0.1922120600938797\n", + "Iter: 456 loss: 0.19807934761047363\n", + "Iter: 457 loss: 0.19321314990520477\n", + "Iter: 458 loss: 0.17821809649467468\n", + "Iter: 459 loss: 0.17568445205688477\n", + "Iter: 460 loss: 0.17959538102149963\n", + "Iter: 461 loss: 0.16782566905021667\n", + "Iter: 462 loss: 0.17384600639343262\n", + "Iter: 463 loss: 0.19020070135593414\n", + "Iter: 464 loss: 0.16128362715244293\n", + "Iter: 465 loss: 0.18131788074970245\n", + "Iter: 466 loss: 0.17701581120491028\n", + "Iter: 467 loss: 0.17682990431785583\n", + "Iter: 468 loss: 0.16897745430469513\n", + "Iter: 469 loss: 0.16954757273197174\n", + "Iter: 470 loss: 0.16019894182682037\n", + "Iter: 471 loss: 0.1734752058982849\n", + "Iter: 472 loss: 0.16848543286323547\n", + "Iter: 473 loss: 0.16184239089488983\n", + "Iter: 474 loss: 0.17438793182373047\n", + "Iter: 475 loss: 0.18655729293823242\n", + "Iter: 476 loss: 0.16418012976646423\n", + "Iter: 477 loss: 0.18727247416973114\n", + "Iter: 478 loss: 0.1571868509054184\n", + "Iter: 479 loss: 0.1779090315103531\n", + "Iter: 480 loss: 0.16521956026554108\n", + "Iter: 481 loss: 0.20093320310115814\n", + "Iter: 482 loss: 0.17908376455307007\n", + "Iter: 483 loss: 0.18056152760982513\n", + "Iter: 484 loss: 0.17942140996456146\n", + "Iter: 485 loss: 0.19661031663417816\n", + "Iter: 486 loss: 0.17746591567993164\n", + "Iter: 487 loss: 0.1834867000579834\n", + "Iter: 488 loss: 0.16870354115962982\n", + "Iter: 489 loss: 0.17482785880565643\n", + "Iter: 490 loss: 0.19058836996555328\n", + "Iter: 491 loss: 0.14801090955734253\n", + "Iter: 492 loss: 0.16622325778007507\n", + "Iter: 493 loss: 0.17631982266902924\n", + "Iter: 494 loss: 0.17577360570430756\n", + "Iter: 495 loss: 0.1829526722431183\n", + "Iter: 496 loss: 0.20151691138744354\n", + "Iter: 497 loss: 0.1790452003479004\n", + "Iter: 498 loss: 0.18742236495018005\n", + "Iter: 499 loss: 0.19910655915737152\n", + "Iter: 500 loss: 0.1957368403673172\n", + "Iter: 501 loss: 0.1829732060432434\n", + "Iter: 502 loss: 0.1672770380973816\n", + "Iter: 503 loss: 0.19933229684829712\n", + "Iter: 504 loss: 0.15784433484077454\n", + "Iter: 505 loss: 0.19820141792297363\n", + "Iter: 506 loss: 0.18268269300460815\n", + "Iter: 507 loss: 0.16498717665672302\n", + "Iter: 508 loss: 0.1582077592611313\n", + "Iter: 509 loss: 0.18864938616752625\n", + "Iter: 510 loss: 0.19147537648677826\n", + "Iter: 511 loss: 0.16669845581054688\n", + "Iter: 512 loss: 0.17043918371200562\n", + "Iter: 513 loss: 0.16985046863555908\n", + "Iter: 514 loss: 0.18308129906654358\n", + "Iter: 515 loss: 0.17016784846782684\n", + "Iter: 516 loss: 0.16739444434642792\n", + "Iter: 517 loss: 0.15659014880657196\n", + "Iter: 518 loss: 0.1714019477367401\n", + "Iter: 519 loss: 0.16779786348342896\n", + "Iter: 520 loss: 0.18830768764019012\n", + "Iter: 521 loss: 0.16374145448207855\n", + "Iter: 522 loss: 0.162654846906662\n", + "Iter: 523 loss: 0.16837486624717712\n", + "Iter: 524 loss: 0.18659086525440216\n", + "Iter: 525 loss: 0.2008652538061142\n", + "Iter: 526 loss: 0.1658763438463211\n", + "Iter: 527 loss: 0.17643438279628754\n", + "Iter: 528 loss: 0.1724337488412857\n", + "Iter: 529 loss: 0.16272598505020142\n", + "Iter: 530 loss: 0.1645338237285614\n", + "Iter: 531 loss: 0.1697104573249817\n", + "Iter: 532 loss: 0.17474684119224548\n", + "Iter: 533 loss: 0.18709929287433624\n", + "Iter: 534 loss: 0.18981152772903442\n", + "Iter: 535 loss: 0.18308603763580322\n", + "Iter: 536 loss: 0.1809772253036499\n", + "Iter: 537 loss: 0.1666322499513626\n", + "Iter: 538 loss: 0.18103042244911194\n", + "Iter: 539 loss: 0.1624387502670288\n", + "Iter: 540 loss: 0.1639820635318756\n", + "Iter: 541 loss: 0.18448984622955322\n", + "Iter: 542 loss: 0.17131344974040985\n", + "Iter: 543 loss: 0.17528153955936432\n", + "Iter: 544 loss: 0.1850336343050003\n", + "Iter: 545 loss: 0.17646504938602448\n", + "Iter: 546 loss: 0.16483041644096375\n", + "Iter: 547 loss: 0.16043700277805328\n", + "Iter: 548 loss: 0.20668278634548187\n", + "Iter: 549 loss: 0.18059559166431427\n", + "Iter: 550 loss: 0.15520095825195312\n", + "Iter: 551 loss: 0.18440157175064087\n", + "Iter: 552 loss: 0.19210320711135864\n", + "Iter: 553 loss: 0.18960431218147278\n", + "Iter: 554 loss: 0.177604541182518\n", + "Iter: 555 loss: 0.18179045617580414\n", + "Iter: 556 loss: 0.1747003197669983\n", + "Iter: 557 loss: 0.19044525921344757\n", + "Iter: 558 loss: 0.17956878244876862\n", + "Iter: 559 loss: 0.1751774549484253\n", + "Iter: 560 loss: 0.18411697447299957\n", + "Iter: 561 loss: 0.20968124270439148\n", + "Iter: 562 loss: 0.16608171164989471\n", + "Iter: 563 loss: 0.179857537150383\n", + "Iter: 564 loss: 0.17416466772556305\n", + "Iter: 565 loss: 0.18030758202075958\n", + "Iter: 566 loss: 0.16825717687606812\n", + "Iter: 567 loss: 0.17480279505252838\n", + "Iter: 568 loss: 0.18477563560009003\n", + "Iter: 569 loss: 0.16933433711528778\n", + "Iter: 570 loss: 0.17721179127693176\n", + "Iter: 571 loss: 0.17320066690444946\n", + "Iter: 572 loss: 0.18653899431228638\n", + "Iter: 573 loss: 0.18846458196640015\n", + "Iter: 574 loss: 0.18890656530857086\n", + "Iter: 575 loss: 0.18134066462516785\n", + "Iter: 576 loss: 0.17666663229465485\n", + "Iter: 577 loss: 0.15384837985038757\n", + "Iter: 578 loss: 0.1968652307987213\n", + "Iter: 579 loss: 0.1849546879529953\n", + "Iter: 580 loss: 0.19889314472675323\n", + "Iter: 581 loss: 0.18382972478866577\n", + "Iter: 582 loss: 0.17071573436260223\n", + "Iter: 583 loss: 0.18372158706188202\n", + "Iter: 584 loss: 0.17760694026947021\n", + "Iter: 585 loss: 0.174528107047081\n", + "Iter: 586 loss: 0.208889439702034\n", + "Iter: 587 loss: 0.17397214472293854\n", + "Iter: 588 loss: 0.16236582398414612\n", + "Iter: 589 loss: 0.16783596575260162\n", + "Iter: 590 loss: 0.17487919330596924\n", + "Iter: 591 loss: 0.161190003156662\n", + "Iter: 592 loss: 0.16674686968326569\n", + "Iter: 593 loss: 0.1748173087835312\n", + "Iter: 594 loss: 0.170073002576828\n", + "Iter: 595 loss: 0.18878628313541412\n", + "Iter: 596 loss: 0.17938506603240967\n", + "Iter: 597 loss: 0.18124523758888245\n", + "Iter: 598 loss: 0.20271100103855133\n", + "Iter: 599 loss: 0.1554548293352127\n", + "Iter: 600 loss: 0.16362546384334564\n", + "Iter: 601 loss: 0.1949605941772461\n", + "Iter: 602 loss: 0.16650031507015228\n", + "Iter: 603 loss: 0.1971917748451233\n", + "Iter: 604 loss: 0.1739393174648285\n", + "Iter: 605 loss: 0.16475749015808105\n", + "Iter: 606 loss: 0.17085541784763336\n", + "Iter: 607 loss: 0.17528662085533142\n", + "Iter: 608 loss: 0.16235598921775818\n", + "Iter: 609 loss: 0.19836881756782532\n", + "Iter: 610 loss: 0.1758297085762024\n", + "Iter: 611 loss: 0.19493941962718964\n", + "Iter: 612 loss: 0.18086747825145721\n", + "Iter: 613 loss: 0.1541774570941925\n", + "Iter: 614 loss: 0.18735314905643463\n", + "Iter: 615 loss: 0.1840399205684662\n", + "Iter: 616 loss: 0.1821528822183609\n", + "Iter: 617 loss: 0.17743398249149323\n", + "Iter: 618 loss: 0.20960579812526703\n", + "Iter: 619 loss: 0.18357771635055542\n", + "Iter: 620 loss: 0.17328281700611115\n", + "Iter: 621 loss: 0.18556563556194305\n", + "Iter: 622 loss: 0.1812962293624878\n", + "Iter: 623 loss: 0.17650410532951355\n", + "Iter: 624 loss: 0.18090741336345673\n", + "Iter: 625 loss: 0.1669970154762268\n", + "Iter: 626 loss: 0.15629012882709503\n", + "Iter: 627 loss: 0.184958353638649\n", + "Iter: 628 loss: 0.1655222773551941\n", + "Iter: 629 loss: 0.19311891496181488\n", + "Iter: 630 loss: 0.17647448182106018\n", + "Iter: 631 loss: 0.1798105090856552\n", + "Iter: 632 loss: 0.1831485629081726\n", + "Iter: 633 loss: 0.18185731768608093\n", + "Iter: 634 loss: 0.18691498041152954\n", + "Iter: 635 loss: 0.16436704993247986\n", + "Iter: 636 loss: 0.19362859427928925\n", + "Iter: 637 loss: 0.18038588762283325\n", + "Iter: 638 loss: 0.1767687201499939\n", + "Iter: 639 loss: 0.19281980395317078\n", + "Iter: 640 loss: 0.1641973853111267\n", + "Iter: 641 loss: 0.18487462401390076\n", + "Iter: 642 loss: 0.16350747644901276\n", + "Iter: 643 loss: 0.1748889684677124\n", + "Iter: 644 loss: 0.16416728496551514\n", + "Iter: 645 loss: 0.17955948412418365\n", + "Iter: 646 loss: 0.1776525378227234\n", + "Iter: 647 loss: 0.17674919962882996\n", + "Iter: 648 loss: 0.18541960418224335\n", + "Iter: 649 loss: 0.18559159338474274\n", + "Iter: 650 loss: 0.17642876505851746\n", + "Iter: 651 loss: 0.16632390022277832\n", + "Iter: 652 loss: 0.19510023295879364\n", + "Iter: 653 loss: 0.19892466068267822\n", + "Iter: 654 loss: 0.17090879380702972\n", + "Iter: 655 loss: 0.15575450658798218\n", + "Iter: 656 loss: 0.19447475671768188\n", + "Iter: 657 loss: 0.17861442267894745\n", + "Iter: 658 loss: 0.14510942995548248\n", + "Iter: 659 loss: 0.15942364931106567\n", + "Iter: 660 loss: 0.17200401425361633\n", + "Iter: 661 loss: 0.18803080916404724\n", + "Iter: 662 loss: 0.15497973561286926\n", + "Iter: 663 loss: 0.17246532440185547\n", + "Iter: 664 loss: 0.16591554880142212\n", + "Iter: 665 loss: 0.17983485758304596\n", + "Iter: 666 loss: 0.1744997352361679\n", + "Iter: 667 loss: 0.18515868484973907\n", + "Iter: 668 loss: 0.16964222490787506\n", + "Iter: 669 loss: 0.17298623919487\n", + "Iter: 670 loss: 0.17296414077281952\n", + "Iter: 671 loss: 0.19559574127197266\n", + "Iter: 672 loss: 0.19058576226234436\n", + "Iter: 673 loss: 0.17331942915916443\n", + "Iter: 674 loss: 0.17928248643875122\n", + "Iter: 675 loss: 0.17013779282569885\n", + "Iter: 676 loss: 0.19191676378250122\n", + "Iter: 677 loss: 0.16350853443145752\n", + "Iter: 678 loss: 0.17838247120380402\n", + "Iter: 679 loss: 0.1926332414150238\n", + "Iter: 680 loss: 0.18973654508590698\n", + "Iter: 681 loss: 0.16437241435050964\n", + "Iter: 682 loss: 0.1917811632156372\n", + "Iter: 683 loss: 0.1978873610496521\n", + "Iter: 684 loss: 0.18849733471870422\n", + "Iter: 685 loss: 0.16218167543411255\n", + "Iter: 686 loss: 0.17860493063926697\n", + "Iter: 687 loss: 0.16813571751117706\n", + "Iter: 688 loss: 0.17236754298210144\n", + "Iter: 689 loss: 0.1709415167570114\n", + "Iter: 690 loss: 0.17939968407154083\n", + "Iter: 691 loss: 0.1722250133752823\n", + "Iter: 692 loss: 0.1762886494398117\n", + "Iter: 693 loss: 0.17120462656021118\n", + "Iter: 694 loss: 0.19305412471294403\n", + "Iter: 695 loss: 0.16003933548927307\n", + "Iter: 696 loss: 0.17753371596336365\n", + "Iter: 697 loss: 0.18868450820446014\n", + "Iter: 698 loss: 0.175289586186409\n", + "Iter: 699 loss: 0.18351571261882782\n", + "Iter: 700 loss: 0.16660185158252716\n", + "Iter: 701 loss: 0.1778227835893631\n", + "Iter: 702 loss: 0.1894976794719696\n", + "Iter: 703 loss: 0.18289214372634888\n", + "Iter: 704 loss: 0.17286786437034607\n", + "Iter: 705 loss: 0.19511865079402924\n", + "Iter: 706 loss: 0.16972500085830688\n", + "Iter: 707 loss: 0.180206298828125\n", + "Iter: 708 loss: 0.18039771914482117\n", + "Iter: 709 loss: 0.1520363688468933\n", + "Iter: 710 loss: 0.18211691081523895\n", + "Iter: 711 loss: 0.18228894472122192\n", + "Iter: 712 loss: 0.1685825139284134\n", + "Iter: 713 loss: 0.18606972694396973\n", + "Iter: 714 loss: 0.18303416669368744\n", + "Iter: 715 loss: 0.16599246859550476\n", + "Iter: 716 loss: 0.17674337327480316\n", + "Iter: 717 loss: 0.20232252776622772\n", + "Iter: 718 loss: 0.17716717720031738\n", + "Iter: 719 loss: 0.16647939383983612\n", + "Iter: 720 loss: 0.18315307796001434\n", + "Iter: 721 loss: 0.1754373461008072\n", + "Iter: 722 loss: 0.18578749895095825\n", + "Iter: 723 loss: 0.16615049540996552\n", + "Iter: 724 loss: 0.19431643187999725\n", + "Iter: 725 loss: 0.1750452220439911\n", + "Iter: 726 loss: 0.17027577757835388\n", + "Iter: 727 loss: 0.17738290131092072\n", + "Iter: 728 loss: 0.15310494601726532\n", + "Iter: 729 loss: 0.16619223356246948\n", + "Iter: 730 loss: 0.18894797563552856\n", + "Iter: 731 loss: 0.15155167877674103\n", + "Iter: 732 loss: 0.17545917630195618\n", + "Iter: 733 loss: 0.17991960048675537\n", + "Iter: 734 loss: 0.1560284048318863\n", + "Iter: 735 loss: 0.1949072927236557\n", + "Iter: 736 loss: 0.16598674654960632\n", + "Iter: 737 loss: 0.19022174179553986\n", + "Iter: 738 loss: 0.16117776930332184\n", + "Iter: 739 loss: 0.18088099360466003\n", + "Iter: 740 loss: 0.15679457783699036\n", + "Iter: 741 loss: 0.19064712524414062\n", + "Iter: 742 loss: 0.16859197616577148\n", + "Iter: 743 loss: 0.17054098844528198\n", + "Iter: 744 loss: 0.18353751301765442\n", + "Iter: 745 loss: 0.17574529349803925\n", + "Iter: 746 loss: 0.18412227928638458\n", + "Iter: 747 loss: 0.1720704287290573\n", + "Iter: 748 loss: 0.17375873029232025\n", + "Iter: 749 loss: 0.17645983397960663\n", + "Iter: 750 loss: 0.18308182060718536\n", + "Iter: 751 loss: 0.1823858767747879\n", + "Iter: 752 loss: 0.16967706382274628\n", + "Iter: 753 loss: 0.18079328536987305\n", + "Iter: 754 loss: 0.16926556825637817\n", + "Iter: 755 loss: 0.18650676310062408\n", + "Iter: 756 loss: 0.18957698345184326\n", + "Iter: 757 loss: 0.2009265273809433\n", + "Iter: 758 loss: 0.17896480858325958\n", + "Iter: 759 loss: 0.1900194138288498\n", + "Iter: 760 loss: 0.13747179508209229\n", + "Iter: 761 loss: 0.1859770119190216\n", + "Iter: 762 loss: 0.16626262664794922\n", + "Iter: 763 loss: 0.19231659173965454\n", + "Iter: 764 loss: 0.1767587661743164\n", + "Iter: 765 loss: 0.1553082913160324\n", + "Iter: 766 loss: 0.1844245046377182\n", + "Iter: 767 loss: 0.17525775730609894\n", + "Iter: 768 loss: 0.17048649489879608\n", + "Iter: 769 loss: 0.1858033537864685\n", + "Iter: 770 loss: 0.18963393568992615\n", + "Iter: 771 loss: 0.18413151800632477\n", + "Iter: 772 loss: 0.1625538319349289\n", + "Iter: 773 loss: 0.19537854194641113\n", + "Iter: 774 loss: 0.19834673404693604\n", + "Iter: 775 loss: 0.19354040920734406\n", + "Iter: 776 loss: 0.16451537609100342\n", + "Iter: 777 loss: 0.194914773106575\n", + "Iter: 778 loss: 0.1729876697063446\n", + "Iter: 779 loss: 0.16354532539844513\n", + "Iter: 780 loss: 0.18933871388435364\n", + "Iter: 781 loss: 0.15767362713813782\n", + "Iter: 782 loss: 0.18548741936683655\n", + "Iter: 783 loss: 0.17023319005966187\n", + "Iter: 784 loss: 0.1720580756664276\n", + "Iter: 785 loss: 0.19284041225910187\n", + "Iter: 786 loss: 0.16787488758563995\n", + "Iter: 787 loss: 0.17412638664245605\n", + "Iter: 788 loss: 0.18232670426368713\n", + "Iter: 789 loss: 0.16211342811584473\n", + "Iter: 790 loss: 0.17955318093299866\n", + "Iter: 791 loss: 0.18936531245708466\n", + "Iter: 792 loss: 0.19686007499694824\n", + "Iter: 793 loss: 0.19163048267364502\n", + "Iter: 794 loss: 0.18345190584659576\n", + "Iter: 795 loss: 0.17588001489639282\n", + "Iter: 796 loss: 0.1870691180229187\n", + "Iter: 797 loss: 0.1904122233390808\n", + "Iter: 798 loss: 0.17934048175811768\n", + "Iter: 799 loss: 0.1785968542098999\n", + "Iter: 800 loss: 0.17896676063537598\n", + "Iter: 801 loss: 0.1926722675561905\n", + "Iter: 802 loss: 0.1793603152036667\n", + "Iter: 803 loss: 0.1927749216556549\n", + "Iter: 804 loss: 0.1796254962682724\n", + "Iter: 805 loss: 0.18423287570476532\n", + "Iter: 806 loss: 0.18257959187030792\n", + "Iter: 807 loss: 0.15430527925491333\n", + "Iter: 808 loss: 0.1700725257396698\n", + "Iter: 809 loss: 0.15977361798286438\n", + "Iter: 810 loss: 0.15621542930603027\n", + "Iter: 811 loss: 0.17131009697914124\n", + "Iter: 812 loss: 0.17765823006629944\n", + "Iter: 813 loss: 0.1645766943693161\n", + "Iter: 814 loss: 0.20232877135276794\n", + "Iter: 815 loss: 0.18152420222759247\n", + "Iter: 816 loss: 0.17474167048931122\n", + "Iter: 817 loss: 0.18749648332595825\n", + "Iter: 818 loss: 0.17619971930980682\n", + "Iter: 819 loss: 0.18403317034244537\n", + "Iter: 820 loss: 0.19918550550937653\n", + "Iter: 821 loss: 0.16021886467933655\n", + "Iter: 822 loss: 0.18439117074012756\n", + "Iter: 823 loss: 0.18791316449642181\n", + "Iter: 824 loss: 0.16655060648918152\n", + "Iter: 825 loss: 0.17969365417957306\n", + "Iter: 826 loss: 0.1861884891986847\n", + "Iter: 827 loss: 0.16961993277072906\n", + "Iter: 828 loss: 0.15386353433132172\n", + "Iter: 829 loss: 0.1686950922012329\n", + "Iter: 830 loss: 0.1723572462797165\n", + "Iter: 831 loss: 0.17959971725940704\n", + "Iter: 832 loss: 0.15655407309532166\n", + "Iter: 833 loss: 0.1677517145872116\n", + "Iter: 834 loss: 0.1903374046087265\n", + "Iter: 835 loss: 0.19683001935482025\n", + "Iter: 836 loss: 0.19668957591056824\n", + "Iter: 837 loss: 0.16206108033657074\n", + "Iter: 838 loss: 0.1526719182729721\n", + "Iter: 839 loss: 0.16615913808345795\n", + "Iter: 840 loss: 0.16399520635604858\n", + "Iter: 841 loss: 0.192557230591774\n", + "Iter: 842 loss: 0.17747743427753448\n", + "Iter: 843 loss: 0.1764456182718277\n", + "Iter: 844 loss: 0.15946954488754272\n", + "Iter: 845 loss: 0.17571008205413818\n", + "Iter: 846 loss: 0.18468455970287323\n", + "Iter: 847 loss: 0.16662874817848206\n", + "Iter: 848 loss: 0.14333102107048035\n", + "Iter: 849 loss: 0.17584656178951263\n", + "Iter: 850 loss: 0.1710105687379837\n", + "Iter: 851 loss: 0.17651648819446564\n", + "Iter: 852 loss: 0.18610326945781708\n", + "Iter: 853 loss: 0.19767975807189941\n", + "Iter: 854 loss: 0.1769210249185562\n", + "Iter: 855 loss: 0.16984236240386963\n", + "Iter: 856 loss: 0.17814584076404572\n", + "Iter: 857 loss: 0.18733517825603485\n", + "Iter: 858 loss: 0.15476970374584198\n", + "Iter: 859 loss: 0.1933850646018982\n", + "Iter: 860 loss: 0.18068820238113403\n", + "Iter: 861 loss: 0.18735265731811523\n", + "Iter: 862 loss: 0.19520406424999237\n", + "Iter: 863 loss: 0.14748217165470123\n", + "Iter: 864 loss: 0.18778085708618164\n", + "Iter: 865 loss: 0.18424895405769348\n", + "Iter: 866 loss: 0.16608397662639618\n", + "Iter: 867 loss: 0.16601459681987762\n", + "Iter: 868 loss: 0.16835996508598328\n", + "Iter: 869 loss: 0.17748849093914032\n", + "Iter: 870 loss: 0.18335355818271637\n", + "Iter: 871 loss: 0.1751333773136139\n", + "Iter: 872 loss: 0.18232379853725433\n", + "Iter: 873 loss: 0.1749064177274704\n", + "Iter: 874 loss: 0.18048235774040222\n", + "Iter: 875 loss: 0.18013010919094086\n", + "Iter: 876 loss: 0.1866259127855301\n", + "Iter: 877 loss: 0.16318932175636292\n", + "Iter: 878 loss: 0.19520878791809082\n", + "Iter: 879 loss: 0.17829181253910065\n", + "Iter: 880 loss: 0.15471656620502472\n", + "Iter: 881 loss: 0.168939471244812\n", + "Iter: 882 loss: 0.17624637484550476\n", + "Iter: 883 loss: 0.16577965021133423\n", + "Iter: 884 loss: 0.1722550243139267\n", + "Iter: 885 loss: 0.17406155169010162\n", + "Iter: 886 loss: 0.1665090173482895\n", + "Iter: 887 loss: 0.18241918087005615\n", + "Iter: 888 loss: 0.17631684243679047\n", + "Iter: 889 loss: 0.17178623378276825\n", + "Iter: 890 loss: 0.16623277962207794\n", + "Iter: 891 loss: 0.1847844421863556\n", + "Iter: 892 loss: 0.1890868842601776\n", + "Iter: 893 loss: 0.14466528594493866\n", + "Iter: 894 loss: 0.16932031512260437\n", + "Iter: 895 loss: 0.1652737855911255\n", + "Iter: 896 loss: 0.1788354367017746\n", + "Iter: 897 loss: 0.17897140979766846\n", + "Iter: 898 loss: 0.18557621538639069\n", + "Iter: 899 loss: 0.18793757259845734\n", + "Iter: 900 loss: 0.19461296498775482\n", + "Iter: 901 loss: 0.16054697334766388\n", + "Iter: 902 loss: 0.17288248240947723\n", + "Iter: 903 loss: 0.18604515492916107\n", + "Iter: 904 loss: 0.1793082058429718\n", + "Iter: 905 loss: 0.17781341075897217\n", + "Iter: 906 loss: 0.16452698409557343\n", + "Iter: 907 loss: 0.17925962805747986\n", + "Iter: 908 loss: 0.17720720171928406\n", + "Iter: 909 loss: 0.18686513602733612\n", + "Iter: 910 loss: 0.18957802653312683\n", + "Iter: 911 loss: 0.18838229775428772\n", + "Iter: 912 loss: 0.20054174959659576\n", + "Iter: 913 loss: 0.18303245306015015\n", + "Iter: 914 loss: 0.17705628275871277\n", + "Iter: 915 loss: 0.15238218009471893\n", + "Iter: 916 loss: 0.18579933047294617\n", + "Iter: 917 loss: 0.20346452295780182\n", + "Iter: 918 loss: 0.14838199317455292\n", + "Iter: 919 loss: 0.18683359026908875\n", + "Iter: 920 loss: 0.1914939433336258\n", + "Iter: 921 loss: 0.20315369963645935\n", + "Iter: 922 loss: 0.16101710498332977\n", + "Iter: 923 loss: 0.18166399002075195\n", + "Iter: 924 loss: 0.17766237258911133\n", + "Iter: 925 loss: 0.16468758881092072\n", + "Iter: 926 loss: 0.18277142941951752\n", + "Iter: 927 loss: 0.18001799285411835\n", + "Iter: 928 loss: 0.17156162858009338\n", + "Iter: 929 loss: 0.1836542934179306\n", + "Iter: 930 loss: 0.15331299602985382\n", + "Iter: 931 loss: 0.17463018000125885\n", + "Iter: 932 loss: 0.15754306316375732\n", + "Iter: 933 loss: 0.17338456213474274\n", + "Iter: 934 loss: 0.19410119950771332\n", + "Iter: 935 loss: 0.17216373980045319\n", + "Iter: 936 loss: 0.18299344182014465\n", + "Iter: 937 loss: 0.18426646292209625\n", + "Iter: 938 loss: 0.16233612596988678\n", + "Iter: 939 loss: 0.17940674722194672\n", + "Iter: 940 loss: 0.19082742929458618\n", + "Iter: 941 loss: 0.17737191915512085\n", + "Iter: 942 loss: 0.18970783054828644\n", + "Iter: 943 loss: 0.16767898201942444\n", + "Iter: 944 loss: 0.18484367430210114\n", + "Iter: 945 loss: 0.1670399308204651\n", + "Iter: 946 loss: 0.197872132062912\n", + "Iter: 947 loss: 0.18146881461143494\n", + "Iter: 948 loss: 0.16850952804088593\n", + "Iter: 949 loss: 0.1653410643339157\n", + "Iter: 950 loss: 0.19974063336849213\n", + "Iter: 951 loss: 0.18906183540821075\n", + "Iter: 952 loss: 0.17535653710365295\n", + "Iter: 953 loss: 0.19135163724422455\n", + "Iter: 954 loss: 0.16916970908641815\n", + "Iter: 955 loss: 0.17027907073497772\n", + "Iter: 956 loss: 0.17624711990356445\n", + "Iter: 957 loss: 0.18068161606788635\n", + "Iter: 958 loss: 0.18632808327674866\n", + "Iter: 959 loss: 0.18782459199428558\n", + "Iter: 960 loss: 0.16775032877922058\n", + "Iter: 961 loss: 0.1797506958246231\n", + "Iter: 962 loss: 0.18935495615005493\n", + "Iter: 963 loss: 0.18085549771785736\n", + "Iter: 964 loss: 0.1855892539024353\n", + "Iter: 965 loss: 0.19606813788414001\n", + "Iter: 966 loss: 0.19572792947292328\n", + "Iter: 967 loss: 0.16379143297672272\n", + "Iter: 968 loss: 0.17870375514030457\n", + "Iter: 969 loss: 0.16275127232074738\n", + "Iter: 970 loss: 0.18300984799861908\n", + "Iter: 971 loss: 0.18269948661327362\n", + "Iter: 972 loss: 0.18374960124492645\n", + "Iter: 973 loss: 0.1821599006652832\n", + "Iter: 974 loss: 0.1823129951953888\n", + "Iter: 975 loss: 0.17879973351955414\n", + "Iter: 976 loss: 0.18266312777996063\n", + "Iter: 977 loss: 0.1508670300245285\n", + "Iter: 978 loss: 0.1909095048904419\n", + "Iter: 979 loss: 0.16556479036808014\n", + "Iter: 980 loss: 0.1707761436700821\n", + "Iter: 981 loss: 0.19679327309131622\n", + "Iter: 982 loss: 0.17806100845336914\n", + "Iter: 983 loss: 0.18604303896427155\n", + "Iter: 984 loss: 0.17632262408733368\n", + "Iter: 985 loss: 0.18197904527187347\n", + "Iter: 986 loss: 0.17288550734519958\n", + "Iter: 987 loss: 0.19471563398838043\n", + "Iter: 988 loss: 0.1447836309671402\n", + "Iter: 989 loss: 0.1580934077501297\n", + "Iter: 990 loss: 0.1840248852968216\n", + "Iter: 991 loss: 0.1639547348022461\n", + "Iter: 992 loss: 0.18680666387081146\n", + "Iter: 993 loss: 0.1831488013267517\n", + "Iter: 994 loss: 0.17161457240581512\n", + "Iter: 995 loss: 0.17873333394527435\n", + "Iter: 996 loss: 0.18440787494182587\n", + "Iter: 997 loss: 0.16124801337718964\n", + "Iter: 998 loss: 0.17070774734020233\n", + "Iter: 999 loss: 0.17978733777999878\n" ] }, { @@ -2325,12 +2325,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEfCAYAAABI9xEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAACXdElEQVR4nOydd3hT1RvHvzdJ0ybdey9o2XvvrYIgS1EZoiyRDaIMRRAXgoIiyN6IgIIigoIgguy9Z1s6oHuvJM26vz9OcpPbJmnaJqX+ej7Pkye9Wfcmvfe857zj+zIsy7KgUCgUSq1D8KwPgEKhUCjPBmoAKBQKpZZCDQCFQqHUUqgBoFAolFoKNQAUCoVSS6EGgEKhUGop1ABQKBRKLYUaAAqFQqmlUANAoVAotRRqACgUCqWWQg0AhUKh1FKoAaBQKJRaCjUAFAqFUkuhBoBCoVBqKdQAUCgUSi2FGgAKhUKppVADQKFQKLUUagAoFAqllkINAIVCodRSqAGgUCiUWgo1ABQKhVJLoQaAQqFQainUAFAoFEothRoACoVCqaVQA0ChUCi1FGoAKBQKpZZCDQCFQqHUUqgBoFAolFoKNQAUCoVSS6EGgEKhUGop1ABQKBRKLYUaAAqFQqmlUANAoVAotRRqACgUCqWWQg0AhUKh1FKoAaBQKJRaCjUAFAqFUkuhBoBCoVBqKdQAUCgUSi2FGgAKhUKppVADQKFQKLUUagAoFAqllkINAIVCodRSqAGgUCiUWgo1ABQKhVJLoQaAQqFQainUAFAoFEothRoACoVCqaVQA0ChUCi1FGoAKBQKpZZCDQCFQqHUUqgBoFAolFoKNQAUCoVSS6EGgEKhUGop1ABQKBRKLYUaAAqFQqmlUANAoVAotRRqACgUCqWWQg0AhUKh1FKoAaBQKJRaCjUAFAqFUkuhBoBCoVBqKdQAUCgUSi2FGgAKhUKppVADQKFQKLUUagAoFAqllkINAIVCodRSqAGgUCiUWgo1ABQKhVJLoQaAQqFQainUAFAoFEothRoACoVCqaVQA0ChUCi1FGoAKBQKpZYietYHQKHw0GoBZQm5qUoAtRpQq8jjrBZgWfI6hgEEQnITCgEHMSByIDexIyCipzaFUh70KqFUDywLFBcB+dlAXg5QlA8U5JF7WREgKyb3yhLb7E8gBBwdAbET4OgEOEoAJyfAUQpIpICTBJA4A1Jn3b0L+dtRQowLhVILYFhWP6Wi1BRUKhVycnKQl5eH/Px8yOVyyOVyqFQqaLVaAIBIJIKDgwOkUilcXFzg7u4OHx8fuLi4gHmWA5hGA+RmAlnpQHYG+Ts7A8jNAlTKZ3dc1iIQAs4ugLOrzii4EsPg7GLYdtbdJNJaZyxYloVMJkNOTg4KCgpQUFAAhUIBhUIBjUYDrVYLlmXh4OAAkUgEiUQCZ2dnuLi4wMPDA56ennBwcHjWX4OigxqAZ0hubi5iYmLw+PFjPHnyBElJSUhNTUVOTg4q+28Ri8UIDAxEaGgoQkNDERUVhaioKISGhtreMMiKgIwUICMVyEwFMlOA7ExAq7HN54tEgNCBuHiEIkDAANB9B5Yl+9FqiYtIrbbdfq1FICBGwcUNcHYzGAZnndHQryokzoCTlLz+P4JcLkd8fDzi4+ORmJiI5ORkJCcnIyMjA3K5vEqf7e7uDj8/PwQEBCA4OBhBQUEIDw9HREQE3NzcbPQNKNZADUA1wbIs4uLicPPmTdy5cwd3795FZmZmte3f1dUVzZo1Q8uWLdGuXTuEhIRYbxBYFijIBdJTgIxkIC2ZDPZFBRU/ECcJ4OENuHoAbh66wdMVkOgGSycJuTk4koG/Img0xBgoSwClAlAqyX2JAlDIdTeZ4V5eTG4y3Y3VVvz7WAvDGNxOTkZuKCepzj0l0bmqdDexoy6uISb3Drr4hp1WHGlpabh58yZu3bqF+/fvIyEhodKTkKrg7e2NevXqoX79+mjQoAEaNWoEV1fXaj+O2gI1AHYkJycHly5dwsWLF3H16lUUFhZW6P16146zszMkEgkcHBwgFArBsixUKhVUKhVkMhmKioqQm5sLlUpl9WcHBgaie/fu6NWrF6KiogzGQKMBcjJ0M/sU3aCfApRUYNbHCAAvH8DbH/D2Azx9AS9fwNObDHg1EZYlRkFWBBQX6m5FuviELkZRXGh4XqN+NscpEBJjIBQRgyAUGlZKIpHucd29/m+R7vV6IyJygEYgxKOERNx+8BDX797Dk8wsyLUs5FpAbsWIIBAI4ObmBjc3N0ilUjg6OsLBwYE7j9RqNVQqFeRyOWQyGQoKClBcXFyprxwREYFWrVqhZcuWaNWqFaTSGnoO/QehBsDGpKam4tSpUzh9+jTu3btX7us9PT0RFRWFiIgIhIaGIjg4GAEBAfD19a2Qr5RlWRQWFiIjIwPJycl48uQJ4uPjERcXh6SkJJOzOWcBECxi0DTQF90aRqO+lxscC/MqNrhJXQC/QMAnEPALIn97+v5/Z+GwLFlVcIaigNwXFZJVkdwoqC0rrn7XlBlYFigsKkRubi7y8/Oh0Zg+LhaAXMtCyQghcHGD2MMLTl4+cPYLgEtgMFyDQuASGALG05usTqxEpVIhNzcXGRkZSE9PR2pqKlJSUvDkyRMkJiZaNUESCoVo0qQJunTpgm7dusHPz8/q/VPKQg2ADcjNzcXx48dx4sQJPHjwwOzrGIZB/fr10axZMzRp0gSNGjWCt7e3fQ+OZVGcmY7Hly8g+fZ15MQ8gCg/G4EiBi5CvjuBYRh4eHjA18cHUmdnlHE2uHsB/sFkoNffu1CfrUVYlrik5MWA3MjtJJcZuaN0N6WC3BQKXQqsLrZRRVQqFbKyspGTkw2lhVWio6MjXFxc4OzsDGepFI5OTmXPgdI4uxKXnocX4K679/AmKz6Js9XHyLIscnJyEBMTg0ePHuHhw4e4d+8e8vLyLL6vcePG6Nu3L3r27AlnZ+v3RyFQA1BJNBoNzp8/j8OHD+PSpUtcdk5p/Pz80L59e3To0AHNmze330mqkJH0yrxsID+HZN5kZxB3TqnUSqVKhfy8POTm5ZlclrMsIHd2g3/Tlohs3xnCwFAy2DtJ7HPsFPNotSR7SqMGVCqDUdCoDDUSGrXuMaN7jRoZqSm4fP484h4+gIBl4cAAYgZwYABHBnASiRDs640AL094uzjDkYGhzsIWOEkALz/dzYesDD19iJGwYuXAsiySk5Nx48YNXLt2DVeuXDG7SnB0dESfPn0wdOhQ1KlTx3bf4f8cagAqSF5eHg4ePIjff/8dWVlZJl8THh6O7t27o1u3bqhTp45tsm80GuJeKMglg3zpm6JymRkKgQiP8gpxMS4JMXmFSFUDaSoW+nmnt7c3hgwZgpdeeolmaPxHiImJwY4dO3DmzJkyzwkEAnTo0AF9+vRBhw4dIJEYGXW9a0shM6xQOFdWIVBYYKjfKMyvvGuLYQAXd8Db12AgvH0BL3+SbmvmetFqtXjw4AHOnj2LU6dOITk52eTr2rRpg9GjR6Np06aVO75aBDUAVpKUlIS9e/fi2LFjJoOtvr6+eP7559GrVy9ERkZWfNBXq8iFlZ8D5OeSgb4glzxWkEsG/6r8q6QuhoCstx/gEwD4BpAlPEjQ7syZM/j1119x69atMm93dHRE7969MXjwYERHR1f+OCh2Izk5GVu2bMGJEyfKPOfr64vBgwejb9++8PLyqvrOtFpyTuZl6SYhOeTczcsGcjIrX9DnKCHGwCeQxJN8dTdHJ97LWJZFbGwsjhw5gmPHjplcGbRq1QoTJ05EvXr1KncstQBqAMrh8ePH2LlzJ06dOlUmkCoSidClSxcMGDAALVu2hMBSnrdarRvcc0hRFDe455G/ZUVVP1iRA8m0cfMyml3pBvwKZN/ExMRg3759OHHiBNQmfNCNGzdG//790bNnTzg5OZn4BEp1UlhYiO3bt+PAgQNlArt169bFyJEj0bVrV4iqKzDPsiTOoS8AzMkkt9xMYigqunJgGHIeB4YDIRFAWBTg7sk9rVKp8M8//2Dfvn2IiYkp8/bnn38eb7/9tv3jbf9BqAEwQ3JyMrZu3YoTJ06UGfi9vLwwePBgDBgwAJ6envw3yop0/vd0/gVQkGsb/6rURRdo8zEE3Dy8SQDOwvK5MuTk5OC3337DwYMHTQbjpFIp+vTpgxdeeAENGzZ8thXItRC1Wo3ffvsN27dvLzMDrlOnDsaOHYtOnTrVrP+LVkMmPXqjkKOPVWVWbBLk4Q1E1gfqNwNCIgGGAcuyuHr1Knbs2IHbt2/zXi6VSjF+/HgMHjy4Zv0ezxhqAEphaTYVHh6O4cOHo3fv3mQ2JSsCUpOAtKdAejK5VaY4Sg/DkAIpd09SJOXmpbvXbbu6VyjtzlYolUqcPHkSBw4cwP37902+JiwsDC+88AL69OlDU/PsDMuyuHTpEtasWYOkpCTec/7+/hg3bhz69Onz3xvoFDJiDLLSSWV5Rgq5L8+d5OoBNGoJNGsHeHiDZVlcuXIF69atw+PHj3kvbdKkCebOnYuQkBD7fY//ENQA6GBZFocPH8bGjRtRUMAfxCMiIvDmm2+ie4umYJ48BpLigJRE4u+sCIyADOQe3iSl0t3TUBHr6k7+rmj1azUTExODQ4cO4fjx45DJZGWeZxgGLVq0wPPPP49u3brRoh0bk5SUhDVr1uDixYu8x6VSKUaNGoWXX34ZYnHFJgkxMTHYvHkzEhISEBERgXHjxtWcOA/LklV0SiKQnAg8iSPbpmAYILoJ0LY7EBQGrVaLQ4cOYdOmTbwVkqOjIyZNmoSBAwf+94ykjaEGAMTPv3z58jKFW2EB/pj60gto7ekMQWIsUJhn3Qc6SUiQVZ/d4OFDfJgeXqSS8/8AuVyOU6dO4ciRI7h586bJ1zg6OqJr167o168fWrZsWesvtqqgX5n++uuvvJRjhmHQv39/jB07tqw70gq2bt2KCRMm8Fa7QqEQGzduxJgxY2xy7DanIA+Ifwg8ugUkxpp2rUZEA51fAILCkJeXh1WrVpUJjrdv3x7z5s2Dh4dHtRx2TaRWGwC1Wo0ffvgBP/zwA3cB+AiBVm5OGNKsAeo5iyFAOT+P1AUIDAMCQkhxlH8wyaypRYNdSkoKjh07hmPHjplNzfP390ffvn3x4osvUhdRBdBoNDh48CC2bt1axs/fsmVLTJ48GVFRUZX67JiYGDRs2NBkRbBQKMT9+/drzkrAHEUFwIMbwI0LplcGdRoAnZ8DAkJx+vRpLF++HPn5+dzT3t7eWLhwIZo1a1Z9x1yDqLUGICkpCZ999hliYmIQ6sCgqRODZhIB6vt4Ijg42LwMg6cPyUIIrQMEhRP3TS0a7C3Bsizu3buHo0eP4uTJkyZT8xiGQefOnTFkyBC6KrCA3s+/du1aJCYm8p4LDAzEO++8g65du1bp95s3bx6WLl1q8fklS5ZU+vOrFZYFYu8Cl04CKUlln49sALTtilxXbyz76itcuHCBe0ogEGDs2LEYMWJErTsfa6UBOHbkCH77/ls0EKrR1ImBm5CB2EGM0NCQssVOEikQUR+oU58M/FT6wCpUKhXOnTuHI0eO4OLFiya1iKKjozFixAh069bNcgptLSMuLg5r167F1atXeY9LJBKMHDkSw4YNq7Cf3xSvv/469u7da/H53bt3V3k/1QrLAokxwOmjQNqTss97+4Ft0REHHyZg9ZZtvDTnDh064IMPPqhV6qO1xwColFDHPcDFnZuAx/chFRgsvbe3N4KDgiEU6gYh3wAgqjFQpyFx7dDBqUpkZ2fj6NGjOHToEFJTU8s8X7duXbzzzjto06bNMzi6mkN2dja2bNmCP//8k2cwGYZBv379MG7cONsUcen4v1oBlIZlgccPgHPHSJZeaRgBsl29sP7fiziTmsMpoAYGBmLx4sU13/VlI/6/DYBCBsTdB2LuQhN7D/Exj1BYZMg1FgqFCA8Lg7uHB8kljmpEBn4PWjBiD/Rujf379+Py5ctlnu/UqRNmzJhRc2ME2SnAteNAXibg4Qu06gN4B1X5Y0tKSvDzzz9j165dUCgUvOeq6ue3xP9FDKA8WBZIeARcPQvElxVqVGs0SExKws2MXNwvYXFXoUUW44BZs2ahX79+z+CAq5f/PwNQmE98gY/uAE8eA6wWarUacXFxkBl1MnKSShHWtTecW3YA6jYizUgo1UZsbCx27dqFkydP8h6XSCSYPn06+vbt+2wOzBzX/wYOruE3jWEEwMDJQMvelfpIlmVx5swZfP/990hPT+c9FxYWhkmTJqF9+/Z29UubywLatGkT3nrrLbvt95mQkwncvAA8uMmr12EBTp4aAPI1LB6VsHBr3gZDZs6Bo4ftVl01jf8PA5CXDTy6TQb9VH4ASK3WIDY2BnKFAiVaFvdLWIgatsCr8xbC0ZX68581Dx8+xNq1a8ukkvbr1w/vvvtu9ckXWCI7BVg9zXTHMEYATF1V4ZXA06dPsXLlSly5coX3uJubG8aOHYv+/ftX23ePiYnBli1buDqAsWPH/vdn/pbQaoGn8cD9G2SyqKtALiwsREJCItRG/TAkEglC23aCc6PmpPI4KOz/JpUb+C8bgII8kv714CapwDWBVqvFrdjHOJdZgDsKLR6VsBjyyiuYPHlyrYv212RYlsXRo0exZs0aXuZQmzZt8Omnn1qnN6RW6/T1ZYYWkCVyoKSEaOsrdTeVykhrX0OkCTRqMiiABbS6y0Hff1ggALJigezH5vddrwPQ8gV+m0eJM2nrWOo8UyqV+PHHH7Fr1y5eAFIoFGLo0KEYPXo0XFxcKvDrUaoEy5IYweP7wOMHUD6JR0JCAk8mXSgQIjw8DO7u7kSULjwaqNuQGATn/3bA+L9lABRy4OEt4N41YsHN4e4FNqoxNpw8h72nL3CZ/CNGjMD48ePp4F9DycjIwBeLFyP+wT1IBIBUwKBZvShMHjMGYq2KSBMbSxUb36utb4dZYRSpgMaCTo3QBXAKLPu4SER6HTu7Ai6uSCkoxsF/TuFxRhZyNUCehkWuBmjZpg2mTZuGsLAw+30HG8KyLPLz87nOYgqFAgqFAhqNBgzDQCAQQCKRQCKRwNXVFV5eXnBzc/tvXHfFhdDEP8T5PTuhib0HN6OmSf7+/ggMCOTb9IBQEjus15SILv7HqPkGgGWJW+fmRTLbN3ehe/kRYah6TQDfQPy8bx/WrFnDPT1w4EDMnDnzv3ESloNWq4VcLkdxcTHUajVXGSoWiyEWi+Hi4vJsXScaDb/rlVwGKIr53a9K9PcK3t9atQpJiYnINRKf83B3R0RkZPndqeyFMgtQ5Zp/3sETEPuYfVqr1SI1NRUZmZn8tzk4ICQ4GO7BoWDcPYnmk7uX7l739zPSfwJIEVp8fDxiYmIQHx+P+Ph4pKWlIS0tzaRKrCVEIhGCgoIQHByMiIgIREVFoV69eggODq6x1+SJv//GD99+jQgoUd+RQV2xAB5urogIj4BIZMIN5OVLpCgatiBKADX0exlTcw2ARkNKvS//a9bFAw9vIgLVoDlpQK7j4cOHmDJlChfYatmyJb766isIa7jOjjElJSVcT98nT57gyZMnyMjIQFZWFvLz803m1RsjlUrh6ekJPz8/+Pv7IyQkBGFhYYiMjKz8RafREDmMwnzDfVGBUW/cQjLwV7I5jR6WBZKeJCEnJ4d7LDAgAAEBAeW/WSgirhhHJ3ITOxFXjNgJEIvJYOrgAIjEZIYuEBL9JYGAXLCMLuWX1RJ3EKsF8jOB4xvNqLkyQFQ3gBXyXVC61yoUCiQkJEBeKrvH19cXgQGBhtRjS0hdiFFwddfpRnmQehRXd3Lv4kakwKuIvuHKlStXcP36ddy/fx8lJZXU9bcSLy8vNGvWDG3btkXHjh0rJWdhT5KSkrBw4UIkJibCgQGixQw6+ntgSLMGcNZaMILefkCDFmR8qsFZhTXPAKhVwK1LwKVTprV3JFKgYUugUSuSo2/CxzphwgROJdHX1xcbN24k/rsajEwmw/Xr13Hjxg3cvHkTcXFxZttMVhWpVIro6Gg0a9YMzZs3R5MmTeDo6EieVJYQid7cLCA3W9fwQ9fHoLjQti0DLcAKhLgb9xhPs3Ig07KQsQx69R+AoMi65ByQOOt87lLDvZPEfrNls1lAU4CWvfiv1WoBhQyn/jyMn7dthaNGCXchA3cBEOblgR6tWsBTxNj293SSEFeTsyvg7EbuXd3I33oj4epexlBotVpcu3YNp06dwpkzZ8rtwWuMg4MD3N3d4ezsDEdHRwiFQrAsC61WC4VCAZlMhvz8fJMNlEzBMAwaNWqEPn36oGfPnjXmmpXL5Vi2bBkvY00qleCrObPRSMyS5JOMFPMfEBROxquGzSvUl6M6qDkGQKMhKVoX/zEtqRxaB2jeHohuSmZuZvj++++xb98+AOSE+uabb9C8eXN7HXWVyMrKwqlTp3D27FncunXLZD52eeh9rvoLz1oEAAIdGASJgFCJA5oF+SHKww1+Ukc42Mp9JHIgA5NECjg56wKkEtL1SR8sdXTU3TsZnnN0AhzEKC4uxoQJE7j0PD8/P2zduvXZKYxmpxBDkJcBePiR9E8T2T8ajQarV6/GgQMHeI+//PLLePvttw1VvPoVlb4pkL4TnL4rXGG+6cyjqiB1AVzdUSxyxI2EJzhz5x7isvORrmZRYGJXQqEQdevWRd26dREZGYmQkBAEBATA398fEomk3JUky7IoLi5GRkYGUlJS8OTJE8TFxeHRo0d48sREpa4OkUiEbt26YciQIWjcuPEzdxOxLIsff/wRmzdv5lbfIpEIixcvRqdOnUgmYuxd4P5N0xXIAFmd1msCNG1LVAVqgIvo2RsAliXZPKePkhPfGIGQ+NPadiNt4crh6tWreO+997jtYcOGYfLkybY93ioil8tx8uRJHDlyxGTrRWPEYjHq1KmDiIgIhIaGIigoCD4+PvDy8oKLiwukUinP16/RaFBSUoKioiLk5+cjJyeHXHjJyShMiAVSk+BckIMQEYNABwZCM+efq6srvL284O7uAYGg1IsYRhfUdDe4ILiZpwsgdSU1FVIXm8zGS7vzBg8ejBkzZlT5c+2FXC7Hxx9/jEuXLnGPubq6Yv78+ejYsWPFPkyrIX149d3jOPdbPunNW5hf4U5yMrkcGenpyMvLKyNzWKJlkalhwPr4wz2qAYJbtEFo63ZwdLePWyY/Px+3b9/GlStXcP78eWRkZJh8XcOGDfHmm2+iXbt2z9wQnD17Fp988gmUSiUAoiO0ePFidOnSxfCivGwSr7x3nTSGMoW7F5nQNm1LrpVnxLMzACxLJF3//QPITOM/JxSR5g7te5JBxgoKCwsxduxYrlF7REQE1q9fbxPNFFvw+PFj/Prrrzh+/HiZak89rq6uaN26NZo3b45mzZohPDy8cnELrQZITyHa6UmPgZQE4pcGoNFoIZfLUFwsQ1FxEYqKisqsHFQskKlmUSgSI7hxc7Ts2QcuwaG6oKRHtfcs2L59O7Zt2waArHjWrVtXI/u8ymQyzJ49Gw8eGCpO69evj08++cR+1c0ajSH+UpSvu9fHZAq4GI0iOxOpKSnIM1LC1MOA1B94eHjAzd0dotL/X3cv4m4NCCFZLwEhJK5iQ/Q9fo8fP46///4b2dlle200aNAAkyZNeubKnXfu3MHcuXO5fhgikQgrVqwo24SeZYlr6O5VUnNgylgLhCSG2bITEBha7auC6jcALEsGprPHyqZyCgRAs/ZAh15WD/zkI1ksWrQIp0+fBkD+IevWrUPdunVteeQVRt+i7scff8T169dNviYwMBA9evRA586d0bBhw8qLouVlk5L3+IekYY01TbkFQmi9/ZCmBm6nZ+PfO/dxPzMHuaU8UWKxGAMHDsTIkSOfiXa6Wq3G2LFjOZdBdHQ01q5dW6OC+iUlJXj//fd5rQi7d++O+fPnG+Irz4Di4mJs2bIFv/36K9wELDyEDDyFgLeQQaSnG1rXjUCEuyvEKtOTEpMwDEm6CAwlhVGB4SToaSPNLI1Gg3PnzuGXX37BjRs3yjzfs2dPTJky5Zn2+I2JicG7776LIp20jIeHB9avX2/e0Gs0RJbm9iVyjZoadgNCgTZdgHrNqm2SVX0GwNLADxAr2Pl5kkpVQXbv3o0NGzZw2xMnTsTrr79elaOtEizL4vz589i2bZvJJtUuLi7o3bs3+vbti/r161duWcuypEtS7F0g9j4J3FqCYUhqWpC+d0EI2TY60ViWxe3bt3HkyBGcOHGiTAaIs7MzxowZg8GDB1f74Hv9+nW8++673Pa0adMwdOjQaj0Gc7Asi4ULF+LMmTPcY4MGDcKMGTOeqcvi3LlzWLFiRZnZdFRUFEaOHMlXYVXIDf15M1OBjFQgM8X6jC6xI+mLERRGgp5BYTYJeD548ADbt2/nyTcDJJFh6tSp6Nu37zP7jW/fvo13332XS4lt0qQJvv322/KvjYI8kuhy+5LpeKeLG1kRtOhg96Cx/Q2AVkOi5JdPmVblC48GuvUjg1IluHbtGt577z0uMNOuXTt8+eWXz+ykuHnzJtavX2+yd250dDSGDh2Knj17Vm5WyLLEeD64CcTcIct8cwiE5CIMrQuERJCL09GKilodhYWFOHToEH7++Wfk5vJz4OvVq4cFCxYgNDS04t+hCixduhRHjhwBQIzoDz/8UCMyRX7++WdezcmLL76I995775mdgyUlJVi1ahUOHz7Mezw4OBjjx49H9+7drTs2liVxOX2/a33/a2tWlwCZzAVFAMFhQHAk2a7kb3Lnzh18//33PPcaAHTu3Blz5swpK+NeTfz5559YtmwZtz116lS8/PLL1r1ZoyHX8fVzpifFIgegSRugVSdemrstsZ8BUMiA21eA62dJRkNpQusCnfoAYZV306SkpGDSpElcD9+AgABs2LDhmeh5p6WlYc2aNZwbypj27dtjxIgRaNq0acUHBb0f8d61MiJWZfD2AyLqkf4FoZE2CcKWlJTgt99+w86dO7nlLgA4OTlh9uzZ6NOnT5X3YS15eXkYOXIk53sdOHAgZs2aVfEPkhURYTDjoKpcppOOUAAqJUnl1GpJFo5IBAgdyL2jkyH1VOqCbJUGC778ChkKJfI0QNv27fH5558/M/dUSkoKPvroI14zdAcHB4waNQrDhw833+jIWliWrBRSn5DGK6lJZMVgzTAikRLV3ZBIcv37BVXIIOj7dq9bt44n1eDr64tFixahcePGlflGVebzzz/H8ePHAZBV8u7duys+BqUnA1dPkywirYlswIhooHVXIj9hw4mF7Q1ARgpw/TwZsExV7YZHAx17k7TOKlBcXIzJkydz+f5isRirV6+udhErjUaDn376Cdu2beMyA/R06NCh8sJaxYXA3WskgJSVZvo1jIAM9FGNiTaJHQtO8vLysG7dOhw9epT3+MiRIzFu3Lhqm+3+9NNPWLt2LQASEF69ejUaNWpk+sUqJUkwyEght6w0MnjJyzazryzx8fFcYFUgEqFh+04Q+wWSznFefsQo+/hXS6bH7du3sWDBAm5CBJAg9AcffGBfmQllCUl9TH1CGrenJlmXnSR1ASLrkb4bEdFWuzsyMzOxbNkynpCeUCjEtGnTMGjQoMp+i0qTn5+PUaNGcROk4cOH4+23367chxUXAjfOkzFUXlz2eXdPEidt0sYmzalsYwBUSqLRc/286RxYRgA0aAa07U565lYRlmUxf/58XLx4kXtswYIF6N27crK8lSU+Ph5ffvklHj16xHu8YcOGmDJlSsVnJFotCeTeugTE3dMJlJWCEQDhUSRmEt242gtLzpw5g2XLlvFE24YOHYqpU6dWixFQq9UYP3481yYxKioK69evh0Cj1g30qeQcTHtKUvDs6OGUy+V48PAhtx0eHg4vc5WsEmedMQjQ3fxJ4yEb/f/Onj2LxYsX84quhg0bhrfffrv6ZUFYliQlpCQSg5CSAGSV879gBKR/b5PWxCCUc8wsy+Lnn3/Ghg0bePUzgwcPxtSpU6t9BbZr1y5s2rQJAFkd79u3D87OVZCYVymB+9eBa2fLZkkCJOAeaf3vZY6qGYDsdKLRc/eq6WCRxJmkc7boSErYbcTmzZvxww8/cNujR4/GmDFjbPb55cGyLH799VesW7eOd8F5enrinXfewXPPPVexwbC4ELh9mfyWBXx3mZZlUVJSgmyxM+Ic3XFbCaTkFaCwsBBFRUVQq9VgWRZCoRBSqRQuLi7w9vaGv78/goODER0djbCwMJteEGlpaZg/fz4SEhK4x0aOHInx48fbbB9mKVHgwcXzWLfkUwQ4MPAXMejTvDFCnZ0qNtg7SXS6Ox6kpkHqYihGc3AkF5hAAIAhS3K1itwUck7f6MKJ48iIfQQPIeDnIiUB/Yp+Hxc34t/11q0WvHQ3Zxerl/oX//gVj/dvhL8jgzSFFn9lajBqxhy7u+f0onD5+fkoKiqCUqkEy7JgGAYSiQTOzs7w9PSEs7MzmBI5kJxAfN1Jj4H0p+b/X04SoHkHoF33cg3k3bt3sWjRIl6gu23btvj444+rtWBQLpfjtdde4yZGNktS0CfPXDtLkj1MFQY6SYBpiyv18VUzAF/NMf14QCjQsiOZpdpAo8SYU6dO4eOPP+a2O3fujE8//bTaXBCFhYX48ssvce7cOd7j/fr1w6RJkyrm+0tJIv/Yh7c4v59Gq0VRYSGKioqRLpPjn8xCXChUIaviRcIcjo6OaN68Odq3b4+OHTsiMLD8orryKCwsxJw5c3hBufnz5+P555+37gNYlgyoKiVxIZQoyD0nFKcTkTPWGcrP4SYaiYmJyNEFp0UiERo2bFg2fx0g559fIOAbRIoJfXSDbRVdMhqNBi+//DLyde6fue/NRt8ObQ3yGdmZhqwaU0v58nB0Ajx9da4kX8DDixgsD29y7Lrz/cHu7xH94BiERuc/yzBgBk6pdKMaU5SUlODevXt48OABHj16hISEBKSmplqlFSSVShEQEIDIyEhERUWhQYMGaBgZDsfUJNK2Mf6haZeR2BFo14N4DizMcLOzs/Hhhx/iodFqrF69eli6dGm1pi2vXbsWP/30EwBSs6B3VdqMwnwyUbx1qaxMzvvLTL6lPGxnABzERKOnRUfAv+pt8kyRmpqK8ePHc0HA8PBwfP/991VbalWAhIQEfPjhh0hJMeh+eHp6Yu7cuWjfvr11H6LPirp6mhgAkLZ0+fn5yMvNRUFhEW7LNbgg0+JBCVumWtMWtG7dGgMGDEDXrl2rtDIoKirC9OnTER8fDzcB4Oskxmfz5yLA1ZkM2HpxNJkuwMoN9ApAqaySzIFKpcK9e/eh1X2Gt7c3wiLrkMCifzDJUQ8IIYOoHXo637hxgwtAi0QiHDhwwPx5KCsi8YfsDLKcz04n25UVzRM5AO6eSC/Ig2/uHQhMTX4q2ajGmNTUVPz777+4cOEC7ty5U2EFUEuIRCLUr18fHTt2RMcO7REp1IK5c5VkxZSOHfoFAS+NtJgiXlJSgiVLluDUqVPcY6GhoVi+fDl8fSueWl4ZHj9+jHHjxnHbP//8M3x8zKvEVhqtFkiKBYx/r2dmAHwDyKDfsGWF0gwrikajwYwZM3D37l0AZFaxYcMGBAdXPaZQHjExMfj0009x/PhxiEQiBAYGQiqVon379pg3b551swxlCbHcV04DhaQMv7ioCFlZWcjLz0e+WovzMi3OF2vLaLIIhUKEhoYiNDQUAQEB8PX15US4HBwcwDAMNBoNZDIZCgsLkZmZibS0NMTHk+YW5jSCwsLCMHHiRHTs2LH8FZQ+JTArnWTQ5GYBeVmQp6fi4ZWLYHV+WKlUinrR9exb0CgUAR5euJ2SgT8uXUW6msVTJYvF361Gw0bVkwlirDnVrl07i83VTcKyxEhmpZHfNDuDrBhyMq0KoBYXF6M4NxF+nhZW2N51gHqdDKsHTx+ygrBwncpkMpw4cQKHDx8uk3JpDpFIBBcXFzg5OYFhGGi1WshkMhQXF1utTxUWFobnnnsOz3XvBv/kWODSSa56HQBxc7z6tsUYIsuy+P7777F//37useDgYKxcubJaisZYlsXIkSM57aq5c+fav7VpiYIYgSZtKvX2qhmA5ARS9FEN7pcdO3Zg69at3PaiRYvQo0cPu+9369atGD9+fJkTefz48diwYUP5A6esiLh5rp0DSuQkPpaXi/T0dMgVCsSXaPFvsRa3FSz0e3B2dkarVq04pc46depUKH0vJiYGmzdvRkJCAkJDQ9GlSxekpaXhzJkzePq0bC1G27ZtMW/ePHh56XqfajQktS89mQRT9Rk0Znox5BcU8NIOQ4JD4OtbgZkPw+gkm3WyzRIpEYWTSImukF7R0tWdDGTOrgDDQK1WY+LEidy+GzZsiO+//97u7kC1Wo1hw4ZxypmzZs3CwIEDbbcDebHByOZkkoBqXjbnAlOUlCDm0SOE+Irg6Woh+GeuUY0+7uDjTwLSfoHIhAN+2r8fhw8fhlxuemUikUjQuHFj1K9fH1FRUQgODkZAQABcXFxM/ub6GEF6ejqePn2K2NhYPHr0CPfu3TMrh8IwDDp16oRXB76EpvnJYG4YFYA5SYCRUy2uBFiWxc6dO3ljRXh4OL777rtqqRVYsWIFfv/9dwDACy+8gHnz5tl9n1Xh2YvBWcGTJ08wduxYbgn6/PPPY/78+Xbf76NHj9CwYUOTsxihUIj79++bT/EszCOS1rcuAWoVWAB5ublITUuDXFGC63ItThVr8VRFfn4PDw/06NEDPXr0QOPGjSuduWGuyffGjRvx1ltv4fbt2zh48CBOnDjBFc85MkBzbzdMG9IfIVCTQV9TseV+YmIikrNzUKABFCIH9Ht5GBERM5ZqdpQYDfS6wd7Rkbg0KjloG7tigOqZGBgX/zg4OGD//v3VVnuSl56GT96dAXVOJl4Nc0KXQAsFheU0qgEAlUqNtLRUZGTn4KlSiwQlaZ0aq2ShZMnMvEePHmjfvj3q1atnk4wijUaD2NhYXLx4EefPnze70mjcuDFm9euFug8uGTLi/IOJESjHdblnzx6sX7+e227atCmWL19e9TqIcjh+/Dg+//xzAETm5ccff7Tr/qrKf8IAzJ8/nysF9/X1xdatW+3u92dZFs8//zxX4GGKefPmYcmSJfwHC/KACydIsEYX2C2WyZD89ClyiopxXkZm/Hm68blNmzYYOHAgOnbsWOWLKyYmBg0bNjQpK80zWFoNnl46i/M/boc4NQmhDgzphcIwCA8Ph6cll5a7F8lS8fQ2uBTcPZGrZjFq7DguPjNq1CieP9SeLFiwAGfPngVAzo/t27dDIpHYZV8qlQpvvvkmt8zv378/T4HWniiVSrz77rucGzRYIsDOdu5gTEWKGAboMQbQgqwc9MFp3SRKq2WRkZmB9PT0MhMcoUAID28vuDdoCvdWHUlTExvknJsjNTUVf//9N44cOYLk5LLNn0a1boI3PEUQi3WDd7d+RCiyHLZu3YodO3Zw29Xxv8rIyMBrr73Gbe/du9d+QoA24Bn2DbSOW7du8XRApk6dWi2D/8qVK3Hz5k2LrzNOg0RRAellcOMCL6MnNSUFCRlZOFmkwdliLRQsGWj79OmNkSNHIiIiwmbHvXnzZrM9BTQaDbYs+wJLBvYB4h8hpESOV0K9kS1h8TQ5GSzLgmVZJCYkQBAZCXdPL5I94x8CBASTLBpvP7MqkJ4gBTCbN28GAOzfvx+vvvpqtcyM33nnHVy8eBFqtRqZmZnYs2eP3dKC9+3bxw3+QqEQw4cPt8t+SsOyLJYtW8YN/gAwYPQEMPV9zTaqiXEJ5VyBERERGDd2LKID/BB7+Tz+3LEV4oIcBIoYBOmkwcUODvDz84OXtzeEAgFQmAOcOkwUe8OjiJ/ZDkJlgYGBGDVqFEaOHIlLly7hp59+wrVr17jnN5y+hH35mXBigHoBvhifV4zopu2Ie9ACb731FjIyMjj5kMOHD6N58+Z47rnnbHr8xvj5+SE4OJgzZFevXkW/fv3str+qUqMNAMuyWLduHbfdpEkTdO3a1e77XL16NX777Tc4OVkOakdERJAsl0ungKtneD7youJi3El4gsNZxbhYrIX+mS5duuDtt9+2i44OzyCZev7yBaCewX/KAPDx8YFEIsHduHg8KFbisZJF8vUEzF42HQ0qWMg2dOhQ/PTTTygsLIRcLsfBgwcxcuTISnyTihESEoJXX32VW27/9NNPGDJkiM1TAB8/fozt27dz24MGDaqWJAQA2LlzJ/7++29ue8CAAWSmyTBAWMMyjWq2HjyKCROe500Ivv76a4wcORJPnjzhtRT1dHfDpJcHo1eDuhAmJxA12RKjOADLAgkx5OZ+lFTyN25F9KZsCMMwaN++Pdq3b49bt25hw4YNOH78OC+9Ew/isfzfy9ioccCYL78t9/PeffddJCUl4d69ewCAb7/9Fs2bN7frrLx169acAbh48WKNNgA12gV08eJFXhBl1apVaNKkCenMdO04kJcJePgCrfpUKd3NmG3btnEXuUwmw+XLl0323xUKhbi/eyui02J56XwsgCe5+dh4Ow7nizTQX37h4eGYMWMGWrZsafgQG3+PefPmWcxGmdezPZb060Y2BEIgrA7RDQqLQkx+EWa9+y6nseLt7Y2NGzdWuEer8bLbw8MDe/furZaeDDKZDCNGjODy8m3mgtJqAXkxijLSseSjDyDPyYKUYeDtIsWkcWPhJBQQt4pGRXoIgyUDpr7XsFBEehGLnQwd0aS6xjnOriRGUk78499//8WiRYu47ZYtW2LZsmVmXYaWXIEAyVqSSqVgGAZDhw7FmDFj+KtqrZbEgR7fJ5IuprS8vPyAvq8AwRHl/YKVxmIMTsDg/vXriG5Wfre/9PR0jBs3jju327Rpg2XLltktWeDcuXP48MMPAZCq4AMHDjxTSXBL1GgDMH36dE5fvX379vjyyy8t9GadXOXCl9LKfg0aNEDz5s0xderUUkFVATYNH4i3mvEDwBpHCfY9zcGmy3egD6EKBAKMGDECo0eP5gegbP098rIRc/gXNBw9ERqtCYMlYHD/w6mI7tyNlI6HR5Vx51y/fh1z5szhgu2tW7fGV199VaELJS8vD6+99hqnizR79mwMGDCg4t+nEhiX47u6umLPnj2Wq0E1GuK6K8g1dNgqyDP8rWumwrIs4h8/Rr6Rxk7dunXhZgv3lkhEmux46GIqXHaOP+AkRUxMDKZNm8YVXIWEhGDNmjUWXWvlTQTCwsLQvXt3zJs3z7yOkh69Au3ty6TDFe98ZaBq2wMp4Q2RkZmJgoICKJVKaDQarhLY29sboaGh5a6mK/M9Zr08ECv2/WbVZ/3111+8eF2FihYriFKpxJAhQ7h42IcfflitookVoca6gO7du8drrvHGG2+QGXPpQRMg2wfXkKVwJWfQ169fx/Lly7nt8PBwLF26FG5ubujduze2bN6EhFs3EMGWYGzTaET7Gs2MxY4obtIW838+jNsPDbpAfn5+WLhwYVlNIEvf47fVgJs3ULdF+QfNskBiDHDlDJDwENEsi40vv4AJ+4/yjIBQIMCmZV8getZ7FpftLVu2xOTJk/Hdd98BIP7LPXv2VMjP7eHhgb59++LgwYMAiM+8f//+1VKpPXDgQOzatQtyuRzKokKc2LcXA3p0JQN5UYFhUC/MJ1laVjZlT09L4w3+gYGBthn8AbJ6yM0it/iHvKdKJM64duEqOohUiNEA+Y5SfPHFF+XGVcpzBXp5eWHjxo3WzUoZhgg3htYBOvVB4bHfoLh6FsVFRZDJZCi5fh1XZFrsydOg7DzdgL+/P5o1a4aWLVuiffv2hpTjKnyP+9euICfhMbwiyheWfO655/DPP/9w8cQ1a9agY8eOdolRicVidO/eHX/++ScA4ODBg9QAVJTdu3dzfzdt2pQMosd2mK8eZbVkVt3njQrvKz09HYsWLeJm+V5eXli2bBnJG2ZZRGtkWBLtC3iXWm6KRECrzsiq0xSzPviQl2Pfpk0bLFy40PQJdu245SrYnZ8Ag6ZA3qATbt26hdjYWMTGxiIjIwP5+fmQFxehpVSIro5ahIgFcHJygkQigaubG8a0bYoudcKwJTYFCSVaRDRqgrHjx1utSDp48GBcv36dk7XevHkzWrduXaEWjMOGDcPvv/9OgsqJibh8+TLatWtn9ftNwrK6quIigzSErJhsy4qB4kK4youwskkQcp8mwYEBHP/5BWz6/Yrr8xiRm5eH1LQ0qFigUMPC2dcP/u266NJanUgKq4OYuHoEDACGDJpaLYkJaTSASlcBXVJCcvz138FCqq1WyyLx5nXUYxWo5y4EAyHCGjeA150LgDzPogBYeYkFffv2rZBLIjMzE8eOHcPx48cRHx+PCAcGIzyF8BGRX7aNlFRa/5hn2uUEkGvs2LFjOHbsGAQCATp06ID+/ftbLEIs73sESsQ49+lc9PpuG6TlJIYwDIOZM2fizTffRElJCfLz87Fp06bKyYlbwcCBAzkDcPv2bdy9e/eZyVVboka6gB49eoSJEydy25999hk6d+4M/LwcuHvG/BubdAFemV2hfanVakybNo3LRRaLxVi5ciUa1K9PNHrOHQMynwLqAkCrAgQOgNgDaNYZ6NQHWSUqTJ8+ncsMAUhwcNq0aeZlFsr7HgA0LDDuugyJhXyJ6WZODF50E8JPVPaiyVSzSPIMQkDv/ug94KVKp0IWFhZi3LhxyMzMBEBWQxs2bKiQL//DDz/k9JI4950l5MUkVbEgl9z0s/SiQs4VY1InvRRKpRJ3dQE/gGjCOJcnCiZ1IUVmru7EHePmAbi4IVOhwrsLP0amTIESlkgLfP/997aZNbIsMQqFeUBeDpCfTfSDstLAZqUhKTYGOTk53MvLFNdJnElWTrN2ZQqj7t69i6ZNm5qPXVmqX+EOj8WtW7fw008/4fz582U+y4kBxnoJEeUoAAPAQSzGObEX7kq8IBKJuKr09PR0nmBiaerWrYuJEyeiTZs2ZQyBxbRmhsH+/h0R5uaM24HReOOr1VatMo3rAxiGwapVq+w2ME+dOpXL2mrZsiWWL1/+zJval6ZGGoA5c+bg8uXLAEgXrfXr15Mf7tgO4Oyv5t/YZWiFVwDGAk4AMH/ePDwfHgCcO040W1T5gLJUu0Wdr76gbltMnz6dkyYGgDFjxuCNN96w/I8u73vo2JWkwKZ4UjEZ7MDgFXchwsVlP/e+QotTRVo8Uhr+lS4uLhg0aBBef/11uLhUXPisdAvG1157De+8847V77927RpmzzYY4507dyIkJITMjLMzgIxkQ6epygqmmSEmNhZFRUVgWcAzJBSRTVsArm6koliv/unqRgZ7V3eTgoVarRbvvvsulwrs7OyMDRs2ICjIPjpXxvz800/YvWEtQh0YhIsZ9K4XiWZ+3qbz/QEiutjtRcDdE0VFRfjggw/w119/8bNnQAb/TZs24a233jK7b30f682bN5st0AoJCUG7du3QuEF9tE24BZfcDBLHFoqAN2fwuldptVqkp6fj4cOHuHbtGi5evIiMjLLtSzt16oT333+/TOaWucLGhX274yV3MsHSsEBK1wEYOGm62e+lR61WY8KECZx7qU6dOtiwYYNd5KOvXr3Kqzv4+uuv0bp1a5vvpyrUOANw69YtzJgxg9v+8ssvDUJr2SnA6mmm3SeVEL8qPchN7NkJr4d4kgEJALRKQJ5o8r0sI8An2b44edtwkVndi9jS9zDi7wwlvksC3qobiPbCEjg5OkIkEkEoFELLssjxD8NtiQ9up2Xixo0bJi8sDw8PvP3225XqnWqsd1Nu85VSsCyLMWPGIDExET5CYFyvLuhbP5IEFK1tKWgKgZBIJXOZNC4kH1zqSh5zdsHhk/9i7c5dKNYSeQjjdo3WYtx4BgA++ugj9OrVq/LHbSW3b9/GzJkzucyXZs2aYfny5RApS4DER6SxeMzdsrIcIhGKm3bAzD2/ITaOSGPIZDIIBAKEhoaibt265TYniomJwdq1a3H9+vUyzwUGBuKFF15A7969iSHXIysGtq0wtCeNiAZeGW82s0mr1eLatWs4ePBgme55np6e+Oijj/iZcrrj2rJlC1fPMHbsWET5++Le/HegzCOrJIUW8HhnLhp2Lz+B4s6dO5g2bRq3bc/+0u+++y73ezZp0gTfffddjVoF1CgDwLIsZs6ciVu3bgEw84OZzZ6ZArS0/gKVy+UYO3Ys0tLSECVmMCLYHd3r1zU0yQYAZRagMpECp8N4hv7mm29anFmV4frfYH9bbdE/nRHRBj6MMwQZKfwnohoBXfsSHRcdLMsiNjYWR48exR9//FFGz6VFixZYsGABTxTLWDMoIiIC48aN4w0QJSUlGD9+PBfbiIyMxIYNG6yrWM7LxtUdG5Fx5m8EODAQCYVo3KSJaeVKPWJHnUa/J5mpu3mQWburG0mZdHYlchLlXEDGLkShUIg//vijQu6r3NxcjBgxgtOr6dGjBxYuXGj3C7e0683Pzw/r168vW8+gkJMeHDcvcJMVlVqN2JhY3CuQYVuuBkVa0pv43XffLXd2K5PJsHnzZvz6669lXD2tWrXCq6++inbt2pn//jF3gAOGilu8OoF0/iuHhw8fYt26dbhx4wb3mEAgwNy5c63K0JHF3EPsF3Og0WWcaR3EaPTBUkjqle/SWbZsGeejt2d/6dLGZvXq1TUqFlCjDMClS5cwd+5cbltftFGG7JQyhS8Vzf5Zv349/vhpDwa6CdFaKkC9+vUh1fvMGQao3wzIjwdir5r9jL8zlPjsvgwDBgzAu+++a/UAoVAosGrVKqSd+wtfNXM2L+frUR9QGgUKPX2A54aUe3EVFxdj//79+PHHH3l67R4eHvjwww/Rpk0bi5pBxlW0t2/fxvTphqW1xabXWg0Qe490hkuKhUajwZ07d6DVnWKRkZHwcHcn383HD/ALJtouvoEVboJiCbVajf79+3OpqGvXrkWDBg2sfv/GjRu5ojI3Nzf88MMP1VLR/Mknn+Cff/4BQP4Xq1atQsOGDc2/gWWBu1ehOvE7Ym9e5wxWlppFatcBeGPK9HLPyevXr2PJkiWc0dHTsmVLTJgwwfL+jY/jpw2kgAwgApEjJlv1vzTVXIlhGHz44YdWdfhL+vsPZG35lptI+fj6IvSNSUCrzhb3X7q/9NChQ3kDtS2ZMWMGN6nt3r07r5/Js8b2QumVhGVZbNy4kdvWq2GaxDuI+PpfmU3uKzj4JyYm4tZvP2OOnwitpAL4+fsbBv/oxsBbs4j+uL/lPqppCi2aN2+OGTNmWD34p6WlYcqUKfjjjz9wLU+Nrx7KoSltgxkB4BzMH/xbdATenGnVzMrZ2RmjR4/Gjh07eJXTeXl5mDNnDjZu3Fhm8AeIXMSECRMQExPDPda0aVNeHv+2bdt47SABkKYu188Bm74CfttJtMpBBjH9rCpVxeKsUgQMmwDM+AR4613gxdeA1l2AsLqAi6vNVGVFIhHq1DGkBpb2hVtCo9Hgjz/+4LaHDx9eLYP/hQsXuMEfIGqz5Q6+DANV/eaYH5uDczmGPsdNQgLxhqgYTFGB2bdqtVosWbIEgwcPxsmTJxEXFweZTIaQkBAsW7YMK1assG7w1x0HurzAbcbcvIF5k4k7dN68ebzzqexbSTHad999xxUdsiyLJUuWmHRFlSas94tIa/cc1LpLKCszE/I/fgJ+30Wyxszg4eGB0aNHc9sHDx406UK1BcOGDeP+/vfff+22n8pQYwzAhQsXEBsby21XJOBYUc58txTjPQWQChiIxWIE+PuTLmYjpwKD3zS4Vlr1IYOxCTQsi/MKKRYtWmS1iNuDBw8wadIknnRyvEck0l5eQALYTboAnYcAoe0BVlc4wzBAv1fJzN+hYhW1fn5+WLx4MWbPns25QFiWxaeffmpZM2jLFt5j48aN4wqqioqKsHfvXvKEWkUkMDYuBY4fIKJjxnj7QdG+Fz5PV+GrTDXW3E2AOiSywt+jMhjHKvSzL2u4desWJ/MsEonQv39/Wx9aGbRaLS/e0KRJE7z66qtWvXf16tW4evsOfsjT4FCBBv7+/ggMCABTmAfs28zX1NehUCgwcOBAfPDBB0hKSkJmZiaePHmCK1euoHv37mjbtm3Fv0RwBBARja2Xb6Ph8s1Yum4j9u7di6VLl6Jhw4Y8eWZTNGjQAN988w3n7tJoNPj00095De7N8dzkmdgn8ka+hliB1JQUksG37RsiX2GGIUOGcJIQarXacF7bmE6dOnHJAyzLctpENYEaYwB++81Q0de5c2er89YrSvLR39AozWBoAkPDIHj+ZWDkFCCo1IzfO4hU5pYyAhqWxVcP5Rj3/gKrpRLu3r2Ld999lxtcAODVV1/F6tWrEdysjWFFE9ocyM4yvPGFVyrd7AEgM6wBAwbg+++/5/z/5rTY9ZQuwPHw8OAVgx349RcorpwBNi0DThw0BAAB8ls1aA4MnwSMmY3I18agQECybGQyGafJYm+aNWvG/X3nzh2r32fcUapVq1bVMvv/999/kZREusMxDINZs2bxY1FmOHfuHFdwBwDiLs8jcMTbhhdkpQF/7OEVuykUCkycOBGHDx8u83larRbvvPOOxRm7JWICo8sUIQKmV5amCA8Px5IlS7iK+dzcXHz//ffl7tfBwQEvvT0FyzPViC3RIr+gAHKFgqQS/7yRTE5UyjLvE4vFGDFiBLd95MgRq1pcVhSBQIAXX3yR2z558qTN91FZaoQBKCws5NI+AZj3MVd5R3koObSH21RJXeA5dQHpX2zugmvZG5i6CvLWL+Jklhq7khR483IhnDr0K5OtYI6EhATMmzePC8yKRCLMnTsXkyZNKrt6uG34HVCvKdC0ErMxE0RFRWHVqlXw9/e3TuSuFEOHDoWzszMaOjKY4qxC4U+byQWmR1cUhwlzifssJBJgGDg6OqJp06bcy4wDfvbEONCWkZGB3FzzwXxjjFUou3fvbvPjMsWBAwe4v3v27MlzX5lDqVRi5cqV3Hb9+vVJHKpNV9JHV0/sPeAyMWparRaLFi3iuZpKY2oFaC2bDx0xKUNSkc9t0KABJkyYwG3/9ddfePTokYV3EDp37gy/iDpYm63B4QINMo2axOP6OWDnKtLkqBTPP/88t7qVyWRlen3bCuMeFfHx8UhPT7fLfipKjTAAN27c4NLePD090aJFC7vsR3X2OAp1A0GxlkXJoDfB+FkRP/AOwranaiy+W4RN8QoUiV0xfvx4q/ZZUFCAefPmoaiItPkTiUT47LPPzLeKSzfSQ2/ewap9WEtgYCC+/fZbi75doVCIsWPHlnlcqpTjkxaRmOAtQoADg2x9kZJAqBv45wG9BwHuZVdExrGciszGq4KPjw9vdRYXF1fue5RKJa+a29hw2YucnByei8radMQ//viD8yWLRCLMnz/foDXVtS8QaRT0/vdP4Mlj7Nq1C5cuXeKtQk1RngRDZd9n7ecOHTqUZwS3bdtW7nsYhsGQIUPAAvi7SIsvkgqh9THUIyA7HfhhNXD/Bu99EokEXbp04bb1fSVsTXBwMC991pr4RnVQIwyA8cXZtGlTu6Xb5V6/yDURP6V0QPvnrZNpVSgUvCXzyJEjrS6uWrFiBWftGYbBwoULLTeQN87vLkfvvDIEBASYDfDpC4V47jeWJX2Mt65AI0fD/0UmlyM/JAoYP4cM/BYahhjPxh89emSyQtUeGK9kTDUaKU12djbv2AIDTbRTtDG3bt3i9unn52d1nYW+7SBAZAfCw8MNTwoEwIDXSTotALAs5D9vwS8/7OAqdC1R2R4V5b3P2s8VCoW8VcD58+dNtjItTc+ePbkV9cPcQtxp0QtoYyQfr1YBh34k8u1GdO7cmfv72rVrdjs/jSe2xn0dniU1wgAYL4fsoZOvpyTDsAR0adTc6tzw8+fPc1KyUqnU6sDghQsXeD7lCRMmlN/PwNnI52xiyWoLGjdujI8++gjt2rVDWFgY/Pz8MGHCBNy/f59fyyArIul9//wOqFVEc8jJCXElWizPUOEvkafJGX9pjA1Kfn4+T+LAnvj4GKQTrHEB6dNGAeJXtkX7w/Iwnvw0adLEqslPRkYGL5Fg8ODBZV/kJAUGjuLE/7ISH2OEK4u0VMvnFMMwJleA1jBu3DizNQfmVpbmaN++Pc+oWRM4dXZ25q02b9y+DfR8CXh5HKkf0XPqMEle0GH8ntzcXLtl6dSvX5/725oVaXVQIwyAfnAFUCnZAqv3IzMUR9WvW9fq9xl3JOvWrZtliWEdpdNamzVrZl2VcFiU4e+718y/roq89tpraN68OerUqYNGjRrB19eXP/PPTgd2fGfI7QYAqQviGnXA99kapKj5/nJLuLm58YpsrJnN2QJjwTNrgnvGEwKVSsXJYtuTrCxDwN/aFYexTzwgIMD8pCkwFOj1EliW9KOOchTAU2P5d2jXrl2lEzCio6OxcePGMkZAKGCwafTLiA63nFZtDMMwvImWcQ9rSxgP5lzCQZ36wBvTSJGhnn8OAU+IEXV3d+c1iDGWdrElkZGR3N/VdQ2UR40wAMYzLXtedMlKQ+pjHUfr3UzGfmtrVS2vXr3Km6VNn15+UQ4A0n9VT2IMkPrE6uOsCAKBgDcjO3funEHQLjsD2LOeCJXpqd8MGDMb/t0NFZp37961erlsrKFTXQEw4xm9Nau90hLFpYuj7IHxMVor3mdsNHiyDKZo0RH5geFQ69J+W3pYnrz07Fl+r11LjBkzBvfv38e8efPwev9+mNezPe7PHoe3GoYDf/1ilfy2qWNJTU1FfHx8ue8xVq01vv7g6UMy01w9yDarBY7uI2qt4J+f9loBBAQYKvcLCwvLzcarDmqEAXBzM/iPrcn7rSyPFAb5CJ+MJ1adjCqViqf0aa0s8tGjR7m/O3XqhLrWrjhCIklNgp5//7TufZWgffv2vNnjsWPHSN74L1uJ+wcgdQg9B5DMHqkzr6K2sLDQ6ovF19egWGk8gNmTbKNMEGvaQzo6OvJm4cZ1KfbCuEmQtSmIxjUcvCZDpmAYPI5qiUxdpdSwBhEQCkxPRCrqpjFHdHQ0lixZgt2H/sCSRQsNvTPuXycdxqzEx8eHd74ZZwqaIyzMsMrIzMzk/6au7sCgNwwFh7lZwIMbAPjnh76rnK0pLTVhz7HOWmqEATCeedlzcLipNJz4jrmZRJisHHJycnizXH9/fwuvJrAsiytXrnDbFeo8xDBAF6PXJ8VylbW2IiYmBvPmzcPw4cORm5vLlcOfOXOGGJy8bMOx9B0GtOnGXTQuLi6VWi4bZ+RYm5JZVZ48MayerFXxNPbTGjckshfGv4u1575xbUJ5GT0AwIodsSVHDRULhLs6Y+PLL5Cm70aYTACwBV1fIJMaPccPEHlvKzFWz7SmoM/X15e30i4TbwoMBRq1MmzfI9k4xqsve9QCAMTTYXxsxqu/Z0WNaAhjPDu057I7XyxFbEkxohwFJO304knS6cgCxss0awODubm5vAvTrKSFOSLqAaF1gSc6//uFf/ixgSpgSgMIIAOft4iB+to5iPQzxA69TRahhYSEcDP/lJSUMs+bwnj2Ux0zn9KrE2szUJo3b84V6lSkgriyGDeVtzZNsvR7NBqNRcE3X19fpKuBX/I1eM1DidGtm6FLRAi25LNIKCjmFDbtUnwpEAL9hwNblxMVWGUJcOoPoL8V8TDwM8isKVATiURwdnbm0q4LCwvLxlaatCZiegCQnAiwbLVkpqnVat5+qqNXdnnUOANgT50Md3d3nEhIR5SjgMQa4h+QTBtf88E344pMU82pTWH8HZydna1yP/BgGMQE1sXm9VuQkFuACE83jItuheiWVdMSj4mJMTn4A0QvZ2CQJ+TFRWSG6e4JdDQtxmW8CsrMzLSqub3xrLW8NERbYOz/Lb1qsYRxemx8fHy5g2tVMXYNxsbGQqVSlevWqVu3LoRCITQaDeRyOR4+fGgxfTQ4OBhSqRQXZTI0d2JQp6gI0b6eWNI8nFTA2xs3D6B7f+DYL4jJzMXm5d8iYctPiIiuV0aBtjTGhjszM9Oq36d0ML8Mxi5WVQlQlM+b6FWmf7E1lF6N2FR99PrfleolXiNcQMYGoLTLxZb4+PjgQQmLZBULpVJ3Ylyx3JnLOONHo9FYtTw0XtpJpVLO5WKNOBZAZukNe/fF0pOXsPfmAyw9eQkN27YrV0+lPDZv3mxWAwgAElPTDN+vZWfAzMBn7LILznxIehuc/ZV0OTv7K9m+/jfvPcbZXfrZmT0xnk3XqVPH6tqSyMhIzugrlUqeG4lHdgpp7PPzcnKfbd1KqDTR0dFctpJKpbKqUM7JyYlXpFaetIBQKESbNmQld7hQaxiIUhKBgjzudRU9TytEs3bYejee6AT9cxF7f/nVKp2g0oF5ayYPpRVuyyB25DcBUsh5fn97yX8Yr5Y9PDwq1JbTIvoe45WgRhgAY0uoVqvLaNnbCr0f+GSRBiX6piQPbpgUzNLj4eHBWwVYs0IxnqE8evQIDRs2xNKlS60SxzI3S9dotFbpqViiPBdDvlwOlT4LK8r8jFL//wqWCNC3JM50c/uDa3iDorNRz1bjtF97kZaWxv1dbqaMEWKxmBcYN5mvff1vq4yeNYhEIp6L0FopAmOZimPHjllsuwgY4lDJKhZPcvIME6BskpG1devWCp2nFSUmLg4Tdv5SYZ2g0ppI5a3CWZZFUVERgiUCTIh0QujFn0wb6FITAuPr2rh+xJYYZzEZB6urTHk9xi1QIwxA6dx/ew0Q+oHghpxFvkI3S1ergMf3zb5HKBTy0res8dPqZy0ymQw3b960SnZZj6VZelV0WoDy/eBBzhJygTk6AR7eZl+nD5i9GCCGmYQSckIaDYjGKyl7GXhjjGMwpWeR5WHslimTeqifbVlh9KzFuBL19OnTVq2Ae/fuzbk68vLyLOr7AECHDh3g7+8PAQARWKRn6FJxhUILkw7rRNyMMbeK2Lx5MzRmBm9L53XpeFF5NTg5OTl4zkeI7W1dMSLMCc7x18saaK2WJw6nYgS8TD97tf00rt+wOivQGvIqHzetEQZAJBLxLL29ovD6QgwNgMt5MkOH1QTLWTbGuiTWCFP5+flBIpHwTqrSmDvpbaWnYgpLlZoMAwyqE0RcJW4eFrX59Z8R4FTO6ZNnmFUZ+1WrwwAYz4grutQ2/n+XSQW1NNsqZfSspXPnzpyLKj093SrFVFdXV/Tp04fb3rNnj0XDIRQKMXz4cHR1FkAiYJCdlYUSpRLwCbTZpMPSKqKy57VeJRUg37k8A5By+yreqy+BsPT5a2ygFfzzLykji1tZiEQiXpDdlhj/XyvSoKhcPHzLf40ZaoQBAPi+Okt+6qpgbHXvFZVAWaKbBaRaTmWsqLY8wzBo3LhxhWWXAdvpqZjCuFIzyssZS3o3wu6X2+DLPo3xVvumCHNzhkgoKlevX3+xpCnKWXZ6GAKvxoNwdaS/GZ9PFS0ujIoyZFw9fPiQP7CWN9vKq3gSg7e3N08nxlq9eOOeAfHx8Th//rz5F7Ms+vu7YZgPWb2xAP7NKgKkzjaZdJS3ijCu9TGFufPaOBXXmiwlwc0TZQd/PXoDbSxfLhDifpwhYSAyMtIuEiCFhYU8Y2at5pNVWOhbUh41xgBUR6NkqVTKWfdkFQuZXNcxKDeLtDM0g7Hs8927d60KYnbq1KlSssu21FMxxZgxY5B8aAceTH0O87rUw+tNQjC3czQ2Pl8HXm4iODqKTWqnG6P//n+kKWFG/ZeckEZZCcb/3+pIuTPO667oisN4dpaXl8cv2y9vtuVhXbZRaYzVYf/++2+uNsMS4eHhPPfRrl27TP+2OZnAz5sgOv0ngoJIxluBhsXqW3G4ceOGTSYd5a0iGIWsUgVoZ84YkjRatWpl8jXGKDPKkVjIy+AbABc33LtvcAFb3QWtghjP/t3d3W27ytD3LakENcYAVJdCpP7izlYbxRq0Wv5JUYp69epxgU+NRoOLFy+Wu5+ePXtaDD6aO+nN6qnYqlAnOwX+F/dDWOpaFDIMwvzEkEocSGaIhf+HvlYjWa7FMUl02dkHIwAGTuGlghq7ZKpDZK0qBsDd3Z3nBuJJBFuabZUyehWhe/fuXKBcLpeTqmwrGDVqFPf3vXv3+P0WcjJJQ5gtXxNZEQAenp6AsytWZ6lRoAXWrFmDMWPGVHnSUd4qoeDBbV0BGv/Es3ReP378mBd/MJZtNkVxcTEeppdTZOjhV8oAuPJWGfZq2G6s/tm4cWPbT3gred7VSANgTTekyqL/B6sAZBcbzbIKzRcnCQQCdOrUidsuL+AGkOyhfv368SpL9ZQ3mI8ZMwb3t6/BvJ7t8XrzBpg3qG9Zpc7KYsGHzTAMHCAjWVFZ5vV6jAOjBXXbAlNXGVpadhlKtlv24r3HOJhnT8E/PcaZWJXRlzIebA4fPmw4P810iTNl9CqCo6MjXnjB0Ff34MGDVk2KGjRowKuW3bNrF/DoNumEtfkrIiho9DlMdGM4TZyPLN1kPSYmBjExMVWedJS7inCRYEzbprg/exzmTXqbCxJbOq/37dvH/V2/fn2+5LUJzp49i0MpirI9tvXoDbSRAShmBbwVXoWLNq3kvtEqw6bunypSIwrBqhPjVoHJ+UVootFCKBSQfralW0Ia0bNnT/z5J9HluXjxIgoKCsr1a77++us4ceIE3N3dkZaWhqioKLRr186qqstoRo0l/brpdv4SYKsqzfJ82FrdTP3eNaD7i2WeVqlUvOVsvXr1yKDX5w2LH2scELe2KKsqGMdfKlNx+cILL2Dnzp1gWRZPnz7FpUuXDH0cWvYGwhoSf3JeBplVtuxd6cFfz+DBg/HLL78AILPf+/fvWzVYjBwxHHm3r6GlRIAWyTch272+bLDU04c0bq/fDA0ZBr1798bff5OA9YYNG7B9+3Z06dIFW7ZsQUJCQoWrg8eNG4evv/7apBtIKGAwtg2pW4h+dTSWGGv0myEhIYGnp2VNo5wjR44gWa7F1w/leL+BlD+7NTbQNw0yLQlZhuKs4OBgq6ReKgrLsnjw4AG3XZMMQI1ZAVSm4rYy1KlThyv0SFezKCrSzQYyLDcMadWqFZdOqFarrVqiR0dHo3PnzpBKpahTpw78/f3x8ccfW3dR6fV4AMDfhv7C8nzYuv69uH7epFvs2rVr3ODq6OhodTaD8VK+vJmcLTBWHK1oGihAUgE7duzIbZdpGK43eq/MJvdVHPwB0gvDeAZqqm8vh1oFPH4I/PULWlz4A++HuaGTswBSAYN041oVb3+g36vA2NmkV7PO9TBp0iTOSBQWFuKbb75BVFQUEXHbvRtLliypkLvRohT0K30R7e8N9BrIb9BiBq1Wi+XLl3PjQFBQEHr16mXxPQkJCVyXrSPpSsT1nWl+VWp0bd1KMBT6WWzUVAWePHnCxc0YhjHpFXhW1BgDYJwlYk+ZVIZhuCVzvJJFgb6y8NEdi35voVDIE3X7/fffrVqiT5gwgTNuqamp2L59u3UHavzZlSzyMEl5PmwX3QxIVQIc2s3J5eoxHpTatWtnVYoly7K4evUqt22vQJsxxlIQlS26eeWVV7i/r1+/zhP4sxelNfB5weCCPODWReDAdmD1YmD/ZuDmBTDFhfA3WlVl5+YhL6gO8Po7wJh3iZ6TgD8we3t787punT59GocOHar8gSvkGNMsGvcXTje4LvVS0D07A6++DbS27MPXs337dl5F9JQpU8qNG/3444/c33Xr1kVU+26mDTTLAmnE5aNWq3E+xlDoV16MobIYf5eIiAir+olUFzXGABj7he2tFaPX9L+j0CI/P5/UA+RllytVO2DAAO7vxMREqxqch4eH89L19uzZY1WeN7yNlqJx5gvVKox3ENQvvg1NKdvF6pfI3QYaHkyKBX7fxRmBp0+f8rIy+vWzrqXmw4cPeZW5bdvaptG9ObKzs3l+XWslvEvTokUL3ox85cqVdk9h7datGxcMZksUuLbvR+DEQRLIXf8FcHQ/EHO3TKaWu5cXksUu2J2rxkdpKnyfkE2EDi0EGwcNGsTLcFu5cmXFm6Knp5BjWvsZcOIgoiUiLOnXDbtHvoQl/Xsiuv9gYMzsckUX9fz222/YsWMHt927d29e/M0UcXFxOH78OLf92muvmQ+yPo3nVrY5ubl4rCDntpeXl938/8bXu72CzJWlxhgA4/Jr48HCHrRv3x4MwyBXA1wuKIFcP8s6cZBkTpghODiYN3j99NNPVu3vrbfe4qoLWZbFZ599Vr4iZpTRLPnGeZu1h2RZFsuOXcWblwuwK0mBvzOUSAxrA0a/RG7RgbgK9MTcAfauB4oKsGXLFm7VExISgg4drGtab7xqaNasGby9zVcZ2wLjrB0/P79K9/ZlGAZTpkzhBpOnT59iz549NjlGk5Qo4JicgJmtG2C6jwhfBDjA9/Qh0r4w20R9gYMYiG4M9HsVzOSP4DhiEi7LWShYkkpaXgUvwzD48MMPOReZRqPBokWLytUWgryYHNP2b4Ed35JViXEva4EAaNYOGPceEYFzLF9cjWVZbN26Fd9++y33WGhoKN59912L79Nqtfjmm2+48zIsLMy8u0irBc4c1e0PuJqRi2Ld4rpv3752Sz4xrh2iBsAMxvor9m7E4eXlxf0jfi/QIKtAt+JQyIH9W/idsEoxbNgw7u8LFy7wuw6ZwdHREfPnz+cGktTUVHz00UeWK56bdzA0Wlergf1b+XGBSqDVarFixQocO3YMyXItNsUrcLvecwgf+6FhicwwxGdcx8i3n5yAgm8XQXPpFHfCvPnmm1alshUUFPDiJdb2U64KxsHDbt26VSnlLjo6mucK2rt3r20ahmi1RIfnzhXSKWvHSmDVImD/ZnQWliBCzIBhiJyIzDiN1cMbaNmJ9LmduggY/CZx8Uic0bt3by4bh2VZfPfdd+W6Kb29vfHll19yqw61Wo3Fixdj9erV/PNTrSZu0l+3AWvIbB8ZpWQvnCRAu+7AhHnAC69YlBMx5unTp5g9ezZv5u/n54cvv/yyXHfJrl27eCmWU6ZMMZ3SyrKkF7CuB0h+fh5+SyOTMIZhMHDgwLLvsQHp6ek8QUF7rTIqS40xAMZ+YWN/sb3o0aMHACBXA2xLLTK43POygd3rzK4E2rRpw6sotrZMvkmTJhg3bhy3fevWLSxYsMB8vMNBDLwwzLCEL8wDflwDpFWuRaRCocDixYt5ft4WLVpg6tSpZV8scjAMLCCG4+njWAx2F2K+nwgvRwWjd5fOZd9ngp9//pkbSDw8PLjf3ebo1DkLt36MzvLHCJaQU7tCzXjM8Oabb3KJAzKZrGKrAJYlvvuER2TWfHQ/8MNqYOVHwJblwJ8/ATcvAOnJXNxHIpHAWTfwybUsbsrUQJ8hwIS55NZnMOlza6xoCZJIMWnSJG77zp07+O2338o9xOjoaHz11Vc8Fcz9+/djwoTxuHpwP9ij+4G1nwK/7QBi75UtmgwKI42D3vmQzPjdPKz6abKzs7F+/XqMHTuWC+ACZBa/cuXKcjV5zp8/zxOr6927t+mWrSolcGQfcOU0AEDLsvgnJRsPS8jv3b17d7tk/wDAv//+y/0dEhJS6dWovWDY6qrAKoeMjAy89tpr3PaGDRvs06BCR05ODoYNG8ZlGmwYPwLRKUZLZicJ8NIoIKLsMZw+fRoLFy7ktlesWMHzpZqDZVl89dVXXDopQLKSFi5caD4z5vo50kVJj1AEvPAy0Nj63gD37t3D0qVLeaXojRs3xtKlS3kqnSYOGLh1CfFbVyMv05BVU69ePTi7ewD1m5NewaGRJuUj8vLyMHz4cM7IjRs3jle4ZDOu/11GoE3DsthV4I7R31gZdC+H3bt3Y8OGDQDIim7Pnj3wcHMFZDJAXgQUFwGp8cCji0BhDgARIHID5HIye7YWJwkQHImb2QX4+ucDSFaxcHRywr59+yz/r4z4+OOPcerUKQAkBXbdunW8huTmSEpKwqJFiyB7moDWEgFaSwTwEjGQSiTw8fWFh4eHoZOYsyvQuBWZJHhbP3hqNBpcv34dx48fx4kTJ8qomHbp0gVz584tt1bk1q1bmDNnDje5CAwMxPr168tKOSfFkhVWrqHbWlyhHFPP3IGCJbP/TZs28Qr/bAXLshg/fjznJRg5ciTGjx9v8/1UhRpjAABg6tSp3HLuhRdewLx58+y6v4ULF+L0aTIraN68Ob4dNRT4xygTgmGAzs8DHXrxgmksy2Lq1KlccCcoKAibN2+2qpGERqPB559/zismE4vFGDVqFF5++WXTS97bl8nM0TgbqElboM8gi7o9GRkZ2LVrV5mMpXbt2mHx4sVWHe/ff/+Nb774DH1dhegkFcDf3w/BpWdmAiEQHE66lgWEkAHBzQPffPstDh48CID0fd69e7ftMyCyU4jSo4lMKRYMmJGLAFdvQKMmbheNhsxgtVpyr1GTxzQa4sfWaACNClCpyLZKBahKoJbJ8Mdvv0KgUkLKAFGhwQjzN6pnUOUDShN+erEf4GCm8QfDkN8qMBQIDCMzaZ8AgGFQUlKCYcOGcQkRkydP5rkfLZGbm4uxY8dyiqghISFYu3YtGVTNNe8pKgAe3ITmzhWk3biCDBOd+TSMAPl+oXBo3g7h3fogJCys3GY5KpUKT548wf3793Hjxg1cuXLFZBtLb29vTJs2zSqX3cWLF7Fo0SJu8JdKpVi1ahV/EE99Qvz9CXzxxgJXT7zx6z8o0MlhDxgwALNnz7a4v8py9epVvPfee9z29u3bbSsDbQNqlAE4duwYvvjiCwBELmDXrl12LRq6desWZsyYwW1//fXXaO0sIsty46BWRD3gxdfIrEfHw4cPMWnSJG5gfe6553h+fktotVqsX7++TBDZzc0NgwcPxnPPPVdWRiIpFjj4A6DXLwJIcU//4WQAMfrsmzdv4q+//sKxY8fKFOa8/vrrGD9+vFVdru7evYtZs2Zxs7S2UZFY8kp/CB/eAkosyyvINFr8c+0mcjUs8jRAu1690a5rD8DJCRA7kWYzAiG512rJAK7VkgFZpSLLdpXS0EawREFuyhJAqTA8nvMYkJmvWoaDJyC2jb57ekYG19RDKBSiSZMmEDAMoFUCcguCgpJwwM0H8PIDvHwBvyDShc43wKIBX79+Pedu8vPzw65du6yW0bh48SJvAtWqVSssG94XwsPr+MaSYQD/xkCRkpd6LJfLkZqWhrz8fMSUaHFVpsUtBYsSo9FCr5zp7e0NNzc3iMViaDQaqFQq5OXlIScnBykpKRbrery9vfHqq6/ipZde4sl3mIJlWezbtw9r167lrjuxWIwvv/ySrMA1GiDuHnG1le73zTBQteqCiTv2IT6RrIS9vLywbds2uzSAYVkWM2bM4GQm2rRpg6+++srm+6kqNcoAqNVqjBw5kmvOMGjQIMycOdOu+5w1axaXzhkZGUmKWbLSgN92kupgPVIX0sc0wpBSuGnTJuzatYvbrqiL48KFC1i6dKnJGVFUVBRatmyJRo0aITw8HIGBgXAqkQGHfgRSyAnMAlBrtMiIbISrYg/cvncfV69eNdl0PTQ0FO+//z6vk5QlHj9+jJkzZ3IzUFdXV6xfv574MFVKIPYu8PAWkBhLBmIjWABxsbEo1BW/6AvGBPYQ/FOkAhoL4nxCF8DJNn5XjUaDO3fuQqsbQOtERhKNKHUOUGIhQN9xIPDCmArvLzMzEyNGjOCkLObMmWN16i0AbNu2jas7CZYIsKOdm/mgnyQcEBgZI78goGFLxDm64eCJkzhx4oTNOrmJRCK0a9cOvXv3RteuXctt8QiQZIKvvvqKl4YskUjwxeefo0WwP5G8uHcNkJk4xuAIaLu/iEXrNvPe/+WXX9qt+Ovy5cuYM2cOt71y5UqeCkFNoUYZAAA4cOAAVq5cCYAEtbZs2WLXytEHDx7wAmdvv/02hg8fDihkwJGfSc61Me26A136AkIh1Go1Zs+ezUvzmjhxouU85FIUFhbip59+wv79+8sVLZNKpZA6OaKPhEVHQQm0Wg03E0pTsfg5X4N4Jf/f6efnhxEjRqBfv35WSyI8fPgQ77//Pjf4i0QifP3116YzGDQaEphOjCUtBrPSkJOUgMREw4yYGyjtgTILUFkQAHP0AVyCDKsNU/cCAQmoCoUkxiLSSWKLHMjfYkeyahE7YtvuPTh79TrkLNCmUxfM/HABcGAV6QxmjiZdSEFSJVi2bBkXMwoMDMSOHTusXgWwLIvPP/sM9/89gSl1JegUYKFoz8ET8I0GGrQAGrUkrigjlEolrly5gqtXr+LGjRuIj4+3WsBRJBIhLCwMzZo1Q4sWLdCqVSurZ90sy+L06dNYuXIlr6duY38fLHx9MPxyUk2nyALErdaxN9jI+lj53Xe8gPjrr7+OiRMnWnUMFUWtVmP8+PHcNdCqVSssX77cLvuqKjXOAKjVaowePZrTjmnZsiWWL19uV7nor776Cn/88QcAcrKuWrWKSBywLAnC/nOIn/ngHwwMGAF4+SI/Px9Tp07lFR4NHDgQ06ZNq5DqZX5+Pg4fPowTJ06YbkNYijpiBiM8hPAS8X+XKzItjhQD9Vq3Re/evdGjR48KHce5c+fw6aefcoFbhmHw8ccfo1u3bla9Pzc3F++MeQsSWSE8hUDbBtEY3r8fGHkxSbNVyMmKQavzu7Na4oZgBGQgFgoBB0fAwQEQiQFHw+ALRydyEzsabvIC4OcvTVdLMwIiAWADmQY9xgkAEokEv/76Kxz/3Uu6Tpmjy9BytZLMkZKSgjfeeINzo8yePZtXkGiSokLgSSyQEAvt4/t4fPsmvJ2V8HS1cB7UbQmM+shi4ZgxSqUSycnJePr0KfLz81FQUAClUgmhUAiRSAQPDw94enoiICAAISEhlVKAffr0KVavXo2LFy+CARAhZtDEiUGPYF80DQ2Cg6nPFAiB+k1JqmxwBFiWxfr163lSHu3bt8cXX3xht7z/HTt2cNlJDMNg3bp1lS5GtDc1zgAARAP8o48+4rY/+uijcrVAqkJhYSHGjBmD7GyyjPf19cXatWsNBUsZKcT1YjzTEDkQbZNm7ZCRmYlZs2bxmj43aNAAH374YYX60epJTEzE1atXce/ePa6K1pSipZgBBrgJ0d3NAY6OjnCWSuHs4gJXD0+I2nQB2nY31BKUg0ajwdatW3kuLaFQiAULFlidusmyLD766COuEMvR0RHbtm3jtdS0C9f/hubAar7Etb6yuaVtz5uSkhIMHjyYM5CLFy9Gt8ZRZgPRtjBCxqsALy8v7Ny5kx9ML8gDkhOI3/tJXJkZsUarRUFmHDwtJdZUwUjZmpycHGzfvh3HDh9CPQcWjZ0EaOjEwEUoQFBgIHz9/FDGTAWFAY1aAQ1bAE7kt2FZFqtXr+YE9gCSbr58+fJy4w2VJSYmBpMmTeJiby+99FK5xWxVRiEn2WOVoEYaAJZl8cEHH+DChQsAyIC8fft2u/3TABIQnjVrFjfTio6OxjfffGNIvVMpyUrg5gX+G+s2BJ5/BTlKFT788EOe6p9YLMYbb7yBV199tVKKlHq0Wi2ysrJQWFgIhUIBlUoFJycnODk5wdvbG65PHgBHdwJFuUTMTeRG/LkCAUnTbNkJCAo3O7tLSEjAsmXLeJK1UqkUixcvRps2baw+zl9++QWrVq3itmfMmIHBgwdX+ntby+PHj7Fw6gT0CxAjwEmAFt2fg3efV2068zfms88+45Q0O3bsSBIXTKSi2soIZWZmYtSoUVAqlXBggDEvPo/hPTqTWFBKksXCRXIcDDQeHmCeXDLdw9kOK6XKkJGRgUM/bEfyv8dRX6RBHbEAQgZIKijGH0+zkKNmUdfHE+PaNkO0ryfJOKvXlJzjpYrOVCoVli5dyv2fABJXW7FihV2CvgDxXkyaNIkrZPX398eWLVvsq/2jUpLi1dffqdTba6QBAIDk5GS89dZb3Mz3lVdewZQpU+y6z9IDmL6/Ke+EibkDHN3Hz8aRSIHeg1AS2RArv/uOl+cPEAM2evRo9O3b1/bNUEwNPEDZ9EN3LyLxUL8ZCfAxDGQyGXbs2IF9+/bxsoXCwsKwePHiCrWfvHnzJmbPns19Tps2bbBs2bJq6fT2xRdfcNXG0dHRWL9+vV33e+XKFbz//vsAyBJ/9+7dpJAoO8W2EtHFhUBmGpCZimtHDiHj9nX4OTBgANSLjrZcF+DqAYTVJXUsEfUBqTM0V46BObSGFwjWsCyOSeqh85SP7DYwWoJVqxF/+gQe/vkbREkx8CmVnHY4MR0fn7vN0/gXCgXY+N13GDPZ9HhQWFiIRYsW8YrL6tevj2XLlpUr4V4V1q1bx3M1LV++3KouZpWmREGEAZPigPeXVeojaqwBAEiTaX15OMMwWLFiBa93qq1hWRZr167Fzz//zD0WGRmJJUuW8CsFiwpIqmipHGNENgD6DMLp2/fw7bff8oJWANE7Gjx4MAYMGGCboKiFHHgAZTM7dKglzrhTIMcv1+7gbl4xcozCG3379sX06dMtr7ZK5ZKnBjbGxA8Wc0Fjb29vbNy4EZ6enlX5dlaRmJiIMWPGcAHJBQsWoHfvynVHshaWZTFq1CjO5Tdq1ChelXeFUciI2yYrnchDZKYBWWm8jBatlsWDhw+43HexWIwG9esb0nndvYDgCFKUFxZFtk0YQTYrGTE/r0fynWtIkWvwZ5oSyXIt3N3dMXz4cAwcONCuK20AQGEeZHdvIPHkX1DF3oPGeDKlQyQSQSaWoPOWX6Ex0XdUKBTi/v37ZYpFExISsGDBAiQnG+TdW7VqhU8//dSuM/ELFy5g/vz53LbdMxjTnpJub3p33/+jAVAqlXj77be5aLq/vz82b95sdUVkZdBrqBw4cIB7zMPDAx9//DE/C4ZliTvo5GG+MqNQBLTvgaJGbbD9x904cOBAGf+9SCRCx44d0adPH7Rr186qgiyTHNthOfjYsAvAOgNPSCWiQqFAVlYWcnJyoTEKahdpWGSJpWjSpx+iO3UjOepuHqZdRiarboGvH8pwJF0JBwcHrFy5slokn7VaLWbNmsVlYYWEhGDbtm1W1ThUlb1792LdunUAyPmxd+9ey24+liUDenY6Geiz0oncSHa66dRFExQXF+NRTAxKtCyeqFg4hNbBoHemggmOsDrWoycmJgZLlizhdXcDSLpv//798cILL1RoBWgRlRJ4Go+iuzeQe/0ilMmJKCwshKmBR+zgAJfIKAR17YOP9v+BpWvWmf3YefPmYcmSJdz26dOnsWTJEl423fPPP4/333/frm1I8/LyMGbMGC6dOzw8HOvXr7dKKr3CFBUCF0+Q5BTjofv/0QAAwKNHjzB58mTOtdC1a1csXrzYrkt8lmWxefNmXkCUYRi89dZbGDlyJH+Ayc8B/toPJJRSXnR2BTo/j3TfUOzYtQt//fWX6UCuWIw2bdqgdevWaNmyJSIiIqz/bj8vt5h+yDbpgqS2r+DaqX+QeeZv+OamIVzM8AJoAoEAfn5+8Pfz42dFODoB3n6Alz/g7UuKzqAFflxscsWhYVm8ebkQ495fgJ49e1p3/FVk586dPC2mzz77jNck3Z4UFBRg2LBhnDw0F+9gWSILkZVKZvHZukE+O50E6yqK1IWkZPoFAQHB2PfveazZ8zM3eA4bNgyTJk2q1PWgVquxb98+bN++3aQmVZ06ddCuXTu0bt0aDRo0sL6Vp0oJNiUJhfdvoeDONbDJCSguKIDcjO6VmgXy3X0Q0LknGvYfAqEnKdx7/fXXyzbiMeL111/H7t27oVarsWnTpjKvHTt2LEaNGmX3sWL+/Plcn3CxWIwNGzbYPnU9L5sUuN26WFZapH1PoJv19SHG1HgDAJS90EeMGMFrZmEv/vzzT6xYsYI3cDdq1Ahz5szh/4NZFnhwg6wGikrJPLt7AR17IycgAr8dOoRDhw6VcQ0Z4+Ligvr16yM6OhphYWEICwuDv78/PD09y85sy1kB/JIBrLqfx3vMWQBEixk0dnVEjzqhiHB3hUhk5Yy5nJz7xx51UWf8QjJo2bGvM0CqlKdPn84F7Xv06IFFixbZdZ88WBbrV3yNq3/9CX8HBhGuUox+8Xk45Gfz40PWInYkshA+/mTA9/EnKzFnvl++dIIEQOTG33zzzUp/lStXrmDBggW4desWRCIRAgMDTbpL/P39ERoaCl9fX3h5ecHJyQmOjo4QyIshyc2AU24GnHMz4SbLh1KhsFgBnKNmkSiUwLN1R7QaPAzhdaPKvGbevHlYunSp2c+YN28eZs6ciU8//ZSnCCqVSvHhhx+W20fAFuzZswfr16/ntm2a+KDRkF4gN8+XnWACJPD9wsvE5VdJ/hMGQKvVYu7cubyOTDNnzsSgQYPsvu+HDx/i448/5vUoEIlEGDVqFIYPH85f9pcogIv/AFdPl7XSru5A667QNG6Nq3fu4q+//sKFCxdQXFxs1XEwDANXV1c4OztzLiM/oRqfBxXy0x916GfkyXL+RVinTh0MGjQIffr0IRe5vJhkkqQ+IemumalAgZlB3tqqW4YhRkDqDEj0984kPc/Jidwb5/Y7OJDCK/1N5GAxHz03Nxdvv/02srKIwFdAQAA2btxo22bzLEvqFYoLye9RkEvSLXOzuJuyuAj3793nKoN9fX0RElxO+06JMxncvf3JCsvbj/zt7Gp1Dr5MJsPMmTN5ev+vv/463n777QrPdrdu3YoJEybwkgAYhkG9evVMKlc6MUCIA4NQMYNwBwZhYgYepk7AUpRoWcQqWaQ7ucG9ZXu0fa4vmjZtajEXPyYmBg0bNjTdZ1goxI4dO7B7925ehXJERAQ+/fTTSqVfV5TY2Fi888473PF16tQJn332WdVXHJlpwJ3LwL3rpt2DUhegXQ+gZccyirAV5T9hAADi/5w+fTqnrMcwDObMmYO+fftWy76/++47/PXXX7zHAwMDMXXqVHTs2JH/Ty/IA84eA+5eLesucRADDVsCzdtD7ROAGzdu4NKlS7hx4wZiY2O5YKZMJkNqaioUCgWcnJzMzsr6+ovxXn0JhEb717Asvnoox9F04p6oW7cuunTpgh49eljn11XIdW6LDHLLySBL0PQHgNL86sWWujukIteBGAd9da7IARpGgFNnziAtKxsaAFow6DvgJfgHBpLXCQSG6l6BwND+Uv/zsKxBe0it1t1URF+oRKczJCsmCp9WqHimpaUhVTc5YECyTSQSCblIfQPJYO/laxjwpbYxUnl5eZgxYwZP4bVXr16YM2eO1b7n8gbY777+CuqnCVAkxMBXq0SoAwNvkXWDm5IF4pVaZDu5QVinAfxbtEabtu0QEhJSoQHSlIESCoV45ZVXeH2fASIgOXPmzMrH1CqASqXCO++8w41Hvr6+2Lx5c+UzqUoUZMC/c5lrWVkGL1+S0t20rUUNqYrwnzEAAMmHnjx5MjfzYxgGc+fOxQsvvFAt+z937hy++eYbbv962rRpg4kTJyIqqtRSLC8bOH+CaJSU1lAHyADRuDXQoBng6kGCfI8eYf369diwYUOZUvv69eubnJUFSwToFyBGoJMA+QInxDiHwjOqMerXr4/mzZvbTIbhxvHDaHp6I8/Y8HCNBmzYvtgUT58+RabR7x8SHAxf33Ia3dsRrcQZRy5fw+P8YqSpWDgGh2H+199AZKUmvjExMTHYvHkzEhISEBERgXHjxlmURM/NzcV7773Ha0oUFRWFRYsWWTUDLtfF0rM9lvTrBhYkIUMhl0OpVEKlUkGtVkPLshAwGrhJWDAiBsVCKZI9IqAMbwivhk0RFhFpk4SNmJgYbNmyBQkJCXB1dUV6ejqvo56TkxNmzZplk94P1lI65fPrr7/meo1XiOx04No5omWkMtEgSiAE6jUhDaLKafFZGf5TBgAgmuWzZs3i/OgMw2DBggV2rRQ2RiaTYcuWLfj11195Pk6GYfD8889jzJgxZZtLFOYD188h5thhbD5zGQm5BYjwdDMUtDAMKdSq1wQxjBMatu9kdla2b98+nkKqRCKBs7Mz3Nzc4OPjY5dsB5ZlsWfPHmzcuBEv+DmUWXHwCp70bpOiAuILlxWR2bRcZpCCUMgMap5KBckSsWK2nZefz8ta8fbyQmhYWNmqUFvCCEiGjbsnya338AY8vQFPX8DLB3CSllHeHDp0KKZNm1ah3Zib6W7cuBFjxpgXkisuLsbHH3/Mc486OTlhypQp6N+/v/nZtkqJ14cOwd5Df5j97NebN8DukS+VfcJJAvgFA6wMePgvPxuFEQADJ5MaCBuiVquxY8cO7Nq1i3fdRUdHY+HChdXi8tFz/fp1XnXv4MGDearCVpGeDJw/XlZrTE9AKNC0DdFmqmSVrzVUzQCwrM0tkjUkJSVh5syZnOqlQCDAp59+Wi1BHz3x8fFYvXo1rl3jN5IXiUQYNGgQRo0aBQ8PD+5xkxe4gMHGl1/AmLYGhc55f5zC0pOXzO63dOqbvSkuLsbXX3/N6xMb5SnFJ0N6IFAisE3BE0DcMiolccdwNzX3d1ZaGr7+8kuoS+RwYBgEBwZg4vhxcAAMmv56OWmW1WkNaQGwugFKd5ozQkDAkPNW5KATgRMZNIecJOQmcSZ+eSepVQHt5cuX87qtVUS+pDxXjKl8d2PUajXWrVuH/fv38x5v1aoVZs2aRQZHrZYMOokxJKCYnIB5h05YPtd6tseSwS8Q7auAEMO9uxeQk2pX+QtjHjx4gK+++oq30mEYBsOHD8eYMWPsmuJZGplMhnHjxnExwQqnfOZlA6f+AB7dLvucoxNpsNO0HZEKrwaqZgAO/kB08qsYiKgMCQkJmDlzJtef1dHREWvWrLFLZx9zsCyLixcvYt26dTz1S/3xvPzyy3j99deRlpZm/gIXMLg/exxZCQB4fdfv2HvzQZnX6Xn95aHY/fO+ajG8N2/exJdffskLgAcEBODzzz+v1t9Zo9Fg+vTpXAMeqVSK9evXV+usrzxKSkowdepUTgbA0dER3377LREVLAdrsl2sMfr//vsvvv76a64gz1kANJGK8Errpmjh4QxRKRdDTGYuGi7fbL7Q6sJZRLduZ/pcK68GxQbaQsXFxdi8eTMOHDjAc4cGBgZi3rx5z0Re2ViXSSAQYO3atdYJvWm1pCXl2aNlV7u+AUCrLkTHyEa+fWupmul8eIu4N4a8abPglrVERETg66+/xowZMyCTyVBSUoJPPvkEGzZsqJLuTkVgGAYdOnRA27ZtcfToUWzbtg2Zuk5KJSUl+PHHH3HgwAFotVqTgz8AaLQstsjFWNK+JxB7DxGelgt6InKSgbWfkSViQAjJD/cLIllGNjIKBQUF2LRpEw4dOsS78Fq1aoWFCxfaT9rZDHv27OEGfwB47733atTgD5ABf/HixZg4cSKKiopQUlKC+fPnY9WqVeUea0JCQpWe19OtSxc08/HA8Y2r4fA0HqH6mo+YO7gnFMLf3x8+Pj5cW8foIH9sfOdNTFi3Axojt4pQKMSmTZsQ3caCVn6e6Z7ZhufNSDRbgVqtxuHDh7Ft27YyvTIGDRqEiRMn2r9a2QR//fUXT+Zl1KhR1g3+BXlETDI5gf+4byDpOBjV6Jl4UoCqGgCAaMD/sBoY8la1LVv06ANec+fOBUBkAX766Sf79J21gFAoxIsvvog+ffrgt99+w65du7iViUwm4+UomyIhK4cUcnTrh3HNu+Lr9h2h0ZRdWgsFDMa2aUp87HH3yE2Pk0TXZSqQ5JH7BpDME0frMyJKSkpw8OBB7Ny5k5tF6r/f6NGjMWrUKLtJ6Jrj3r17vMbfzz33XLUVmlWUoKAgfPzxx5g7dy40Gg3y8vIwZ84crF69Gl5eXmbfV15mlsXniwqIWyf+IZAQAw95MV4O8kC+NBJPk5O5bm4ajQbJySm4nJwBt+Zt0HzgK3Cv1xhjhEJ0mfkBF2SNiIjA2LFjy+/H7VFO4N2j4p38NBoNjh8/jh9++IEnrw6QhkbvvffeM2uqkpCQgBUrVnDbjRo1whtvWLHCSX0C/LKVn84pdQF6vUT8+89o4NdTNRfQV4aON3AQA88NJc0kqvlLrVq1ipN8dXV1xc8//2yfMmwrkcvl+OWXX7B3714UFhYiLi4OT548Mfv60kt80/ECATaNGoK3mlTQ9eLuqSss0hkFn0CSTmZUVJaXl4fDhw9j3759ZWZcERERmDdvHurXr1+x/dqA/Px8jB8/nsu68vPzw6ZNm56JaFlF+Pvvv/HZZ59x23Xq1MG3335r9rgrFAOQFRtknxNjSRaJGTRaLZ7k5uNY3FPcLipBTAkLhe5qF4lE6NatGwYMGIDmzZtX3LBb0qGqYAygoKAAR44cwYEDB7g+IHqcnJwwcuRIvPbaa1Z1DrMHBQUFmDx5Mqcv5Orqio0bN5ZN9ihNcgKwbzO/Y17DFkDvQSTGVAOomgG4dAr49w9+FkC9psBzQ6rVJVRUVIRhw4Zx5eyffPIJunbtWm37N4dMJsMvv/yCLVu28JrAGyMQCHDlyhXS09QI49Q33qxMVkRmFWm6wq30lPLlgMvsVAiNly+eKtS4mJiM47fuIUmh5vV7lUgkeOuttzB06NBqDbLpUavVmDt3LhdkFwqF+Pbbb9GkSZNqP5bKYKwVBJAZ44oVK8xOTMxlAW1a8RXe6t6JrLSTE0gRmiUYARASAUTWB+o0AHwCkJefj7179+K3334z2XXOx8cHPXv2RJcuXdC4cWPrtZSqIIGtVCpx8eJF/PPPPzhz5gy3UuE+hmHQr18/jB071tCX4xmgUCgwe/ZszgXJMAw+//xzdOzY0fIbM1OBH9cYBn+BgEyQm7Wz8xFXjKqngcbdAw7vIYUMepwkQKfnSO5qNQ0en3zyCTfIvvbaa3jnncrpY9sDmUyG2bNnY/369SZz+0NDQ9G6dWt07NgRbdq0QVBQUMWqCRUyUj2YkUJExjJSyMzQSKROn8tdWFhIbgUFPL8vAGSqWaRohQho0QYdh74K96gG1R6UAkhw/csvv+QV3k2ePBnDhg2r9mOpChs2bMDu3bu57U6dOuGTTz4xPcAqZIi5dB5btm1DQnw8IlykGNu0DqLLiQkBANw8Sa/qyHpAeLRZt19hYSEOHjyIX3/9lWt+VBpXV1e0bNkSzZs3R7NmzRAREWF5AmClBLZKpUJcXBzu3LmDK1eu4MaNG5yyqTECgQDPPfccRo0a9czjPGq1GgsWLOB0fgBg/PjxGDlypOU3yoqA7d8aZGEEQmDwaNI7pIZhmzqA/Bwij/zkMf9xV3egTVeS1lQBX3Rl+PHHH7Fx40YARDDuk08+sev+KsO9e/fwySef4OrVq1AqlQgICDBZ3evp6YnGjRujTp06iIyMRHBwMPz9/eHq6lquYdBqtcjOzkZGejoy4x4hP+4R5EmPoUlPgZemBH4ixmRTEAeRA7y9veHj62NotScQkJhCQCgQGEq6Lnn52dXFZ0qNtVevXliwYEG19BawJWxWMq5sXIrCJ3FIU2hxPE2Jzt16YuyQQWDys4HcbFJlnZNptSIoAJKeGlqHaMCE1iFCfRX4bTQaDc6fP49Dhw7h8uXLFjV7RCIRIiMjERYWhuDgYPj5+cHLywseHh5cUyKGYcCyLJRKJYqKilBUVITMzExkZmbi6dOnSExMRGJiokkxRD0eHh7o378/XnrppfJdK9WAUqnExx9/jPPnz3OPDRw4EDNnzrR8HrIssH8rEK/L5GMYYPCbJNBbA7FdIZi+f+6/R8pWtDmISSOShi1IkwqB7eV6//rrL86P3rhxY6xevdrm+7Aljx49wtGjR3HixIkyfndziEQiuLq6wsXFBWKxGCKRiMswUigUKCwsRFFRkcVm3UIAAQ4MgkRAhFSMVqGBqOfuDA+pBAJrBhGxo8EgBISS3HBz0tEVRKvVYuXKlTh48CD3WIsWLbB06dJqy+yqNBoNUJRPZn2F+cDds8Dt44CR6DHLskjKUELq6m999bKxEQ6OAILDzWr9V4a8vDycOnUKZ86cwY0bNywO0rbGyckJnTt3Rs+ePdG+fftn4mo0hUKhwIIFC3D16lXusW7dumHRokXlx0puXiTqwHp6DQRad7HTkVYd21cC6/Wqb1wwLX8gkZIORXUbkBmMs20CepcvX8acOSQoHRAQwFt612TUajVu376N8+fP49KlS2XqCWxNWFgYWrduzUlQOzo6EuOdl000SNKe6O6fkiIsa3CSGNJRfQNJ9pGXb4VWfSqVCp9//jlOnTrFPdagQQMsX77cvi31LB6UklQwy4vJDF1WRKSeZUWArJBkYxUXknNebiTqp1UCctP/R5ZlcT9RjrDwumXF6xwlukC9LmDvH0Luq6nORiaT4caNG7hx4wZu3ryJx48f29QgODg4oF69emjatCnatm2Lpk2bPrPArjlycnLwwQcf4OHDh9xjXbt2xcKFC8s3UAV5wNblBr9/nQbA0DHPPNPHEvaTgijMB66dAW5eAkos6KB7+ZKZTUgkEBhGtivxgz158gSjR48GQAI1f/zxR7WIQtmagoIC3LlzBzExMYiPj0dCQgLS0tJM+kst4erqioCAAISHhyMiIgL16tVD/fr1rW+Jp9UQIbiUJCBVpxaanc4P+JeHsyuRTvDwAty8iEvQxY3cnKTEcIgdkZefj48++gh37tzh3tqoUSN8+eWXFcv40Qu96SuKVUr+Takkq1OlkkhQKEtI7EqpABQKcp6W6OQq5DLrDWBpypPNzlLiWg6DF14bAdewSF3fBT/A2aVGDRYqlQoJCQmIj4/H06dPkZKSomsolIOCggIoFAruvGQYBg4ODnB2doazszO8vb3h6+vLnYPh4eGIjIysMbN8U8THx2PevHnIyDDUMPTu3Rvz5s0r/7hZlmT86LsEOkqAsbMr3KinurG/FpBaRfQu7t8gucqmVgXGiB2JW8E/WDerDCYNScpxG2m1Wrz00kuQyYgW+6JFi9CjRw/bfIdnDMuyKCwsRF5eHgoKClBUVAS1Wg21Wg2GYSASiSAWi+Hq6gpXV1d4e3vbx/iVKID0p4YVQtoTIN/8QGcNshIl7sfGoVChgJIFVCzg7eeHNm3bQmQcgGZZg8SDXuZBozbcVCqDDMSzROoCyJ4CxeYLpf7OUOKz+zI0aNAAq1atqtGDYnnoh4//WnymNKdOncLSpUt5WVJDhgzB1KlTrUuRvX4eOG5UGd3vVSLrUMOpXjG4EgWxkI8fkPvSzVPMIRQZGmT4BgJ+uvtSubTGzcEjIiKwYcOGGrfE/L9DISNZR/qbXkLauE2mGfLy8pCYlMQLQnp7eSEkNNS6eER1IXY09DeQugBSV7K6cXYBnN10966AizvJeitHJmFXkgKb4knWnN17x1IsolarsWHDBl4fcIZhMGXKFLz88svWfUh6MrDrezIBAUi2z5C3atRqzhzPTg2UZUn2UHIC8DSB3OdkVGwG5+IG+AZxBiFeVoJx783jwm4vvvgi3nvvvf/87OQ/B8sSf2h+Nokt5OWQ7aICoCgfbFEBUhISkJHJlwsICgqCn5+f7dQ9GYbfaMbBwdCIxkFM/uZE4JzIst1RLwYn1TWxkVTcB19OkdRmaUv88Mff3EPTpk3D0KFDq/hlKRXl6dOn+OKLL3D//n3uMalUigULFpSf568nL5vk+xfrKuelLsCbswCXml2sqKdmyUErS4g1TX9qmFFmZZi+kMyQkJyCm8npSFaxeKpiUa9rT4ya9R5Edk5DpVhHdnY2PvvsM9y6cQMSAREsc5dIMHXi22jWsAERytJqyP+cWxnoTIK+yYtAQFaFQiFxDYocuIYxXBMZkZg8/6yMv4UiKWXjLpgxYwYePCCpggzDYNGiRejevfuzOdZaBsuyOHjwINatW8frhVynTh0sXrzY+vqD9GRg/xbD4M8IgGHjSC3Gf4SaZQBMoVYRl0JmqqFlYWaq2b6rWi2L2LhYXqtFqbMLwlq3gyQimgioBeiyK+yQjkoxz9WrV/H5559zMt4AEBkZiU8++eSZF/3YBQtFUtnZ2Zg8eTIXcBQKhfj444/RpUvNTRm0muwU4NpxIhjn4Qu06mMzaeiq8uTJE3z99de4desW7/EXX3wR06dPt05CRqshKghnj/Fjmn2HkW5d/yFqvgEwBcsSq5uRCmSmGAxDTibAslBrNIiLi+MCwgDR0gkKDoa3tzeZT4ocSNZRUBjJQAoKt2vjhdqMWq3Gtm3b8OOPP/JqFHr37o333nvvP5mtZQsSEhIwffp0TniPYRjMnj0b/fv3f8ZHVgXMrnxs3ySmIiiVSuzZswc7d+7kpba6urri/ffft046RqMBHt0Czh0nY40eRkCas//HBn/gv2oAzKFSclII6uRE3Dr2JzTpyTBuYyqVShESHFy2VR3DkPzrsLpkCRcSaffq5dpAamoqPvvsM56cs4ODA6ZOnYqXXnqp1sdnHj58iNmzZ/NWrMOGDcPEiROt1+SpKdhQIM5WsCyLc+fO4fvvvy8jNNe1a1fMnDnTolIr1Cqiw/TwNmniUrpi28WNZPxEWCELXQP5/zIApWBZFsePHsVPa1fBW61AiAODMAcGQQ4MvDzcERgYCIm52adAQFYIdRuSm7f/fyKqX1NgWRZ//vknVq9ezUutCwkJwaJFi8r2T67FPH78GO+//z7X5hQAmjRpggULFtQIWQSrqYYmMRUhJiYGa9euxfXr13mPe3t7Y8aMGfxZv96rkJsF5GYC2ZmG+hdTqesMQ2b83fv/pz0H/9cGQE9WVhbWrl2LEydOAAAcAISIGUSKBegRHY7W/t6Qlpfq6+4FRDcmaqdB4dQYWCArKwtff/01T0QLAPr164dp06Y9k2YeNZ2MjAx88MEHiIuL4x6TSqWYMmUK+vXr999YKf28HLh7xvzzTboAr8yu+n5YlszMFTJdUV8JKfBTkfah2elpOHbkCO7eugkHAEIGEDOAWCBA6xbN0K5FC4hZDXmfvJhUd8uLrctAFIqABs2A9j3JpPA/Tq0wAHpu3bqFtWvXctkXehiGwcDO7fFap7YILCkCkuIsVy+7uhNtowYtSED5v3BxVgMsy+LIkSNYs2YNiooMS2VXV1fMmjWrxjZyqSkoFAp88803PBVUAGjevDlmzZqF8PDwZ3RkVmKLFUCJgqRWFuTqUofzidSGXnZDXkwSQEzMypUqFdLS0pCTnY3Sg5qrqyuCg4PNr/gtIXIgonv1m5FJoNMzkiaxA7XKAABkkDp9+jS2bt1qstVep06d8MaokWjg4UoK1uLukXQvc3h4A41akUY4nj72O/AaTnJyMlasWMHp9+tp37493nvvPfj41N7fpqIcO3YM3333Hc+ICoVCDB48GKNHj7ZezqO6sTYGoK8TyU4ntT9Z6SSomptVMVVUHUqVCunp6cjOzi4jhChxckJQUJD1v5nUhVzTnj6kvigogqgS/NfiMVZS6wyAHq1Wi5MnT2Lnzp0mDUHr1q0xevRoNG3aFExRARB7j2QAPHlsfqkYFAY0ak1mCtKa0fHH3uh7H+/evZvX1EMqlWLy5Ml48cUX/xvuixpGVlYWvv32W5w9e5b3uLOzM4YPH44hQ4Y8O5E8S5jLAmr9IiDxMdT3GHfJqiRKpRKpGZlIycyCXKOFkgXUIHIiYqkUjZo2Q0TdKDAODoBQVx8iFJFCQEdHcu8k1VV366q5a1niR601AHpYlsW///6LH374AbGxsWWeb9KkCUaNGoV27dqRgUxWRDICHtwgrflMIRAA4fWI/HVUo//Lk8pSdkWnTp0wc+ZM6yWPKWY5e/YsVq9ejbS0NN7jbm5uGDZsGAYNGlRzWmSyLJnFP7oB3P4XyM8AlBpA6AIIKiDnLXIgTW7c3AFXDyKx4ayT35BI8TQnD/sOHcaf/5yCslQbTR8fH4waNQr9+/f/T2ssVRe13gDoYVkW58+fxw8//MArDddTt25djBgxAt27dzek5xXkAfevA3evme/NKhSRFLHoxiSbqBpbZdqLhIQErFmzBpcvX+Y97u3tjWnTpqFbt2501m9DlEolfvnlF/zwww+8dFGAaOq/+OKLGDp0KIKDg6v3wGTFJEUyJdEgDmjcGbA8XN2JEqq3P1FD9fIhrhcXd5Nxtbt372Lv3r04c+ZMGVePj48PRo4cif79+1P9rwpADUApWJbF9evXsXPnTty4caPM84GBgXj55ZfRr18/wxKcZUlR2r2rwIOb5kXuGIYonEbUA8KjSJqp+Nk1r68oOTk52Lp1Kw4fPsy7AAUCAV5++WW89dZbNdMt8X9CYWEh9u7di/379/MkDPS0adMGAwcORIcOHWw/CGq1QFaabsBPIvfl9SfWIxCQQZ5T+NXdrFgZazQanD59Gvv27cPdu3fLPO/v74+RI0eib9++dOCvBNQAWODu3bv44YcfcOHChTLPOTs748UXX8TAgQP5MgZaLfAkjhiCR7eJtrw5GIaomgaGkYvDx58Uo9Uwl1FhYSH27NmD/fv3l+lL0KpVK0yfPr3mZ6j8H5Gfn49ffvkFv/76K1dFbIyrqyt69eqFXr16oUmTJtbJGZdGpSSz+qfxRKgxOcE6vz3DkJ4egWG6rnEh5JyuoKBednY2/vzzT/z+++88fX494eHhGDFiBHr16kVdPVWAGgArePz4Mfbs2YO///7bZP/UNm3aoH///ujcuTN/FqLRkKBxzB0g9q718tdSF10TFU9yc3YxBKocJcRA6BUtRQ5khmUHl0tBQQH27duHX375pYzrISQkBBMnTkTnzp2pu+cZoVAocPToUfz6669mO8l5enqiU6dO6NixI1q1amW+BkOlJIVPSXHkZq4AqjRSF9KmMiicDPb+IZWewKjValy4cAF//fUXzp07B42m7P6bNWuG1157DR07dqTnnQ2gBqACZGRk4JdffsHvv//O0xnS4+bmht69e+O5555DgwYN+Ccoy5I4QUIMuSXH2yQTAgAZ/PXKmPp7vWomI9A9LjA8LzRSzxSLDRLJjk6ARIoceQmOnT6LQyf/RZZMAYXRGeLh4YE33ngDAwcOpDOvGgLLsrh58yYOHTqEM2fOmO0eJxKJ0KBBA7Ro0QJNGjdCEx8POGckA4kxxK1T3oDPCHSpkeEk4y2o6v2J5XI5rl69itOnT+P8+fMmVzRCoRA9evTAK6+8ggYNGlR6X5SyUANQCWQyGY4dO2Zx5hUYGIiePXuie/fuiI6OLjtb0WqJymlqIpD6lPhXs9JsZxQqCAugqKgIWVlZyM/L4xXSqFmgiBEiILo+olq2gYO3ryFX2tOH6ObT2ViNQCaT4dSpU/jnn39w7do13izaTQA0chKgviODaEcGUgEDR0dHSCQSSJwkcJI4wcnREWJHR9KQx0FMBvngCCAkosoxK5ZlkZOTg4cPH+LevXu4ceMGHjx4YHKmDwB+fn7o378/+vfvD29v70rvl2IeagCqAMuyuH37Ng4fPoyTJ09CqTTdBcvPzw+dOnVChw4d0KJFC/OSsyxLeinn5+huuUBhHsm20DclVypIpoUJV1RlKCkpQW5uLnJyclFiwvgIhUL4+frB19fHvDiZ2JH4fT19AE9fks3h5Ucec6hA+h/FphTm5+PWX38g6/IZOD59DH/G8gy/RMvisZJFnBLIdfGE1jcQPn5+8PHxgYeHB9zd3eHi4gJnZ2dIpVI4ODhwLk+WZaHRaKBQKCCXy1FQUICCggJkZWUhIyMDKSkpSExMNDnDN0YsFqNLly54/vnn0bZt28rFLyhWQw2AjSguLsbJkyfx119/ldEaN0YsFqNJkyZo0aIFWrRogfr160MsruAgqddCMe6Fq1aRPrn6nrlaraGpCnfTQKNUIjkxAY/u30Pcg/vIzUiHEwM4MgzXoMVZwMBb6oRIf194e3lBWJWL0NVDl+rnx181uHnQfgz2QCEjLsb4R8Dj+1xlLcuykMnlKCoqQnFREYqLi6FUa5Cg1OJhCYtHJSyeqFjYZlpRMZydndGhQwd06dIF7dq1o5lk1Qg1AHYgKysLJ0+exKlTp3D37t0yOcvGiEQi1KtXD/Xq1UNUVBTq1KmD0NBQuLhUvV6AZVlkZWUhLi4Ojx49wr1793D79m2T8QuAaCK1bdsWgwYNQocOHYgbQF6sa+VYQOoeCnLJLTcbyMuynOVkCYGA+I89fEjA292LGAU3TyKx6+xCDYQ1aDQk/z4xlvjykxMtd9Bz9wTqNAQbHo1UkQSPEpMQFxeHx48fIykpCcnJyRbPV1vg7e2NRo0aoVGjRmjZsiWio6PpTP8ZQQ2AncnNzcW5c+dw8eJFXL161ezgWxovLy8EBgbC398fXl5e8PDwgKurK5ycnODk5ASBQACBQACVSoWSkhJu2Z2fn4+MjAykpaUhOTnZqv1FRETgueeeQ+/evSsuPywv1knoZpGYRl420XfJzSLtHSsLwxgasXNVoM6kdF8iJff6nr6OTvzevyKH/9+YhEIGpDwhefipiWTAV5l2PQIggduQSKBOfVKI6OVn8bdR6XR1UlJSkJGRgezsbGRlZaGgoAB5eXkoKiqCTCaDXC6HSqXi3J4Mw0AkEsHR0RFOTk5wc3ODm5sbvLy84OvrC39/f4SHhyMsLAweHh42/lEolYUagGpErVZzwa8bN27g3r17ZjM27IlIJELjxo3RsWNHdOrUCaGhobbfiVZLVgo5mcQw5GSSFUNuNolr2BuB0JDpJBQaeggLRYa/RSKjbZGul7CDwZDoU20dnQypt45OOsOjMzr2MDQqJVlx5ecQg5qbbUgSsCaVWOpCig3r1Aci6/9fqVdSbAs1AM8QtVqNx48f4/79+4iNjUVsbCySkpKsXiVYi7e3N+rVq4cGDRqgUaNGaNq0qXW9T+2FSqkzDrqVg96tlJ9LguCWpLhrEoxAJyqmW4k4iAEHR4MhEYqIkRHomtPrjYVGF6PRqMlvoVQAJTptellRxTPBhCKSix8WRQZ+KlFOsRJqAGoYLMsiMzMTKSkpSEtLQ3p6OnJzc5GXl4fi4mLI5XKUlJRwBWlCobDMslu/5A4ICEBERETZ9pc1HZWSaL8X5hPtd2MteIWMPFYiJ9lQJQoyYKpV5X/u/wsSKUnJDI4g+fiBYTTbilIpqAGg/H/AssRwqJQk9mCcIcW7aQz3aqPH1bpMKrXKYFCUJYab3tAo5NZVyFYVhiGiaJ7egJsX4O0L+AQCvv5mxdIolIpCDQCFUlHUKv7qQ1+boVKSFoUqpS4tVwNoVLqUXN1lxrL8im2x2BBbcJTwA97/p01IKDUHagAoFAqllkKTbykUCqWWQg0AhUKh1FKoAaBQKJRaCjUAFAqFUkuhBoBCoVBqKdQAUCgUSi2FGgAKhUKppVADQKFQKLUUagAoFAqllkINAIVCodRSqAGgUCiUWgo1ABQKhVJLoQaAQqFQainUAFAoFEothRoACoVCqaVQA0ChUCi1FGoAKBQKpZZCDQCFQqHUUqgBoFAolFoKNQAUCoVSS6EGgEKhUGop1ABQKBRKLYUaAAqFQqmlUANAoVAotRRqACgUCqWWQg0AhUKh1FKoAaBQKJRaCjUAFAqFUkuhBoBCoVBqKdQAUCgUSi2FGgAKhUKppVADQKFQKLUUagAoFAqllkINAIVCodRSqAGgUCiUWgo1ABQKhVJLoQaAQqFQainUAFAoFEothRoACoVCqaVQA0ChUCi1FGoAKBQKpZZCDQCFQqHUUqgBoFAolFoKNQAUCoVSS6EGgEKhUGop1ABQKBRKLYUaAAqFQqmlUANAoVAotRRqACgUCqWWQg0AhUL5X3t1IAAAAAAgyN96kEsipgQAMCUAgCkBAEwJAGBKAABTAgCYEgDAlAAApgQAMCUAgCkBAEwJAGBKAABTAgCYEgDAlAAApgQAMCUAgCkBAEwJAGBKAABTAgCYCv6KcjeLTJ0xAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEfCAYAAABI9xEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAACSyUlEQVR4nO2dd3hT1RvHvzejSdO996SFsvcU2RsEQUD8yRBQBDcOxImggCgOHCB7i8hQVARlyJa9oaWFttC905Vm398fJ7nJbZM23cWcz/Pkyc69Se497znv+L4My7IsKBQKhWJ3CBp7BygUCoXSOFADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHaKqLF3gNK4JCQkYP369UhOTkZ4eDhmzpyJ6Ojoxt4tCoXSADAsy7KNvROUxmHjxo147rnnoNPpuMeEQiHWrl2L6dOnN+KeUSiUhoAaADslISEBLVu25A3+RoRCIWJjY+lKgEL5j0NjAHbK+vXrLQ7+AKDT6bBhw4YG3iMKhdLQUANgpyQnJ9fqeQqF8vBDDYCdEh4eXqvnKRTKww+NAdgpNAZAoVDoCsBOiY6Oxtq1ayEUCnmPC4VCrFu3jg7+FIodQFcAdk5CQgI2bNjA1QHMmDGDDv4Uip1ADQCFQqHYKdQFRKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKNQAUCoVip1ADQKFQKHYKbQnZRCktLUV6ejqys7ORm5sLuVyO4uJilJSUQKVSQa1WQ6/XAwAEAgEcHBwgkUjg5OQEZ2dnuLu7w8vLC97e3ggMDISbmxsYhmnkb0WhUJoS1AA0Mmq1GomJibhz5w7u3buH5ORkPHjwAIWFhXW6HUdHR4SFhSEiIgJRUVFo1aoVoqKiIBLRQ4BCsVeoFlADI5fLcfXqVdy8eRO3bt3C3bt3odVqG2VfxGIx2rZti65du6Jnz54ICwsDWBZQlQGFBUCRHCgtAkqKAUUJoFSQ55RlgEYNaDSAVgPotOR9hhUJBAJAKAQEQkDsYLpIHAGp4eLoBMicAScXQOYEOLuS22KHRvktKsCy5DtqNeR76fWAXgcwDMAIyLXQ8P1EYnKfQnnIoAagnikuLsbVq1dx5coVXL58Gffv37f5vRKJBH5+fvD29oaHhwfc3Nzg7OwMiUQCBwcHTspZp9NBo9FAqVSipKQEJSUlyM/PR35+PrKyslBaWlrhs2UM4C9m4Cti4CMCvIUMwt1dEOntAV93NziIxXX2G1QLiSPg5GxmHJwBRxkxGI4ywEEKSAwXoYgMvkKh2QDMkIFapwV0OjKIq1Wmi6oMUCmJMVMarlVKw8XwnFpFBv7qIBKb9kviaLbPTuR7OLsQI+fsBri4NR1DR7FrqAGoYzQaDW7evInLly/j4sWLuHPnDqr6iR0cHBAdHY2oqChEREQgPDwcwcHB8PT0rJ3fnmWB0mKUPkhEwd07KEq6C3VGKpj8bLCKkkr3y83VFT6+vnB2dgad29YDjjLA1QNwdTdcewBunoC7J7ktkTb2HlLsAGoAagnLskhJScHFixdx/vx5XL16FSqVqtL3eHt7o3379mjTpg1atWqFZs2aVWjMUi1USkCeDxTmAwU5QH4uuc7LIu4aC+hZFgqFAsVFxSgqKoSijP86DQvka1k4eHgiumMXBLeIAePoBEhlxIXjIAFExhm4yOQaAUzuEr1xBq4GNCqyL8oyMusuKwUUpYCiGCgtIS4migmZM+DuBXh4AR7egIeP4dqb/PYUSh1ADUANUCqVuHLlCv7991+cO3cO2dnZlb7e3d0dnTt3Rvv27dGxQwcEBQaAAQOwepPvnNUDepYMmlqNyX1hdGGoyoAyBRk8S0uAkkKguBAoKrA6yFeJ1BHw9AU8fSCHEBfvJeHgvxcQl5mNUj3/pR07dsTs2bPRvHnzmm2rKnQ6YgxKivlGQVFCvreihHxPtcFFo1IBOo0p7mAJgRAQi8mAKZaQa6nBRSNxJLelMpPbxujCcZCa3icUkYtAQC7G00WvJ24mrYbEQjQqkytJqSD7XFZKvkdpMbmUFJLr2p5yrh6Alx/g4wf4BpKLhw/ZPwqlGlADYCNFhYU4e+IYrp86ieRbN+Co18BFyMBZADgyDJwEgFQASBgGMpEQPh5u8HJzg6ebK2QSCRjjIN8YP7fMmQwYXr6At+Hay488Xs7FxLIsLl68iB07duDKlSsVPmr48OGYNWsW3N3dG2jnq0CvI8YDIL8ty5KYgHFV0tTQ64iRK5YT410kJ5dCwwqusIAYluoiEgP+wUBgGBAUDgSHE+NGoVQCNQDmsCyZVednAwV50ORkIOXGNeQnJkBXkAuHSsYTR0dHuLi4wNXVFU5OThA09OAjEhl8yN4mV4FxwHd0qtFH3r59G+vXr8fly5d5jzs5OWHGjBl4/PHHIaCzzrqFZclKoSAPKMgF5IZr48VW48AwQEAoENGCXPyDm6ZBpDQq9mkAjAN9TgaQm0l85blZQH4OoFFDqVIhNycH+fn50FlxMQgFAri4usLV1RWuLi4Q13XWjEAIODgQ14XYweSuMGaXuLiZMkrcPEmmST2c4MYVwapVq5CUlMR7rnnz5pg7dy5iYmLqfLsUC7AsWSXkZpFjNicDyE4nx21Vp7GzKxDVGohuDYQ0I6uketlFFmVlZSgtLYVSqYRKpQLLsmBZFiKRCGKxGFKpFM7OzpBKpbQ4sZH57xsAjZqcMDnpQE4mOWFyMolPvRxKpRIZmZmQy+UWP0osEsHF3QMuAUFwDwqBwNkFkLkY8tplxI/sIDEM3A78NEWBkPhoGcZwLQDAAAKGn1suEpte14TQ6XTYt28fNmzYwEsrZRgGjz32GJ599lm4uLg04h7aMRo1Oa7THwBpyeRSWVBd4gg0a0mMQUSLaqWkKhQKPHjwAA8ePEBGRgYyMzORnZ3NpR0XFxdXmfVmRCQSwdPTE15eXvDz80NISAhCQ0MRHR2NkJAQurpsAP5bBkClJCdCViq5zkwzzI4qCRQC0On0SM9IR25uLgCgSMciW8siRwsUCcQI79AJ7Xr3RUy3HhDU00z7YUEul2PlypU4dOgQ73FXV1fMnDkTo0aNoiduY8Oy5PhPukMuacnWVwgCIRAcYXAVNQe8/QGGAcuySE9PR3x8POLj45GYmIj79+8jKyurQb6Co6MjWrdujQ4dOqBLly5o3rw5XS3UAw+vAdDryTI47T6Q8QBIv08G++rg4o5sVoB9p88iIb8ImVogW8tCxQJhYWF44oknMGjQIDg6OtbPd3iIuXbtGr766qsKhW2RkZGYM2cOunTp0kh7RqmAogS4Fwsk3ASSEyzGEXR6PRQKBQqUaiQoNLicnY/bBaVI1bCoaZ26UCiERCKBQCAAwzDQarXQaDQ1qnz39fXFo48+imHDhiEqKqqGe0Qpz8NjAFiWBMGS7gD37wIp90g6oC2IxGRm4xtguA4EfALw68G/8N1330FnzCIBEBwcjJkzZ6Jv3750xlEFWq0Wu3fvxubNm6FUKnnPde3aFbNmzaIna1NDrQKS46GLu4aSaxdRWpCH0pISlCoUFl03OhZI17BI17JI17BI07DIFzjAJyQUwcHBCAgIgK+vb4VqdScnJ6s6UxqNBqWlpSgqKkJeXh5ycnKQnp6OlJQUbqVR2bDUokULjBs3DgMGDKBaVrWkaRsAlgWyM4C4K0D8TZIRURUSKeAbBPgFmq49fchS14zNmzdj06ZN3H2RSITJkyfj6aefpgdVNcnLy8OaNWvw999/V3hu4MCBmD59OoKCghphzyjmZGVl4dy5czh37hwuXboEjUqFMAcGMRIGMRIBgh2YClXfEokEMkdHODrKIHWUQiqVwsHBAYyLG5lMeflytSQktbhmGWfmlJWVIS4uDteuXcOlS5dw69YtiwbBz88PTz31FEaOHEnP2RrSNA2ARg3cvAhcO0sCttZgBGRWHxhGUt4CQ0n1ZBUz9x07dmDNmjXcfR8fHyxatIhms9SSO3fuYNWqVbh27RrvcYFAgBEjRmDq1Knw8fFppL2zT9LS0nDs2DGcOHEC8fHxlb7Wy8kR/aIj0MnPE5FSIby1ZRBVd3hwlBGD4OXLNw6uHjUuVCsoKMDJkydx8OBBxMbGVng+MDAQzz33HF2114CmZQBUSuDCCeDKaevVrT7+QHgLICyKBK+qKap1+PBhLF68mLsfFhaG5cuXw9vbuzZ7TjHAsizOnj2LdevWITExkfecWCzGmDFj8PTTTzedQrL/IHK5HIcOHcLhw4cRHx+PIEcBRvg7wF8qQKZSjz8z1Ugr00MikaBdu3bo1KkTOnTogOjoaL4kiU5H0qSz0kwppzkZ5DytLiKxqS7FO8BUwVzNFUNiYiJ2796Nv//+m+e6BYB27dph7ty5CA8Pr/7+2SlNwwDodMDVf4F/D5MS+vIEhgIxHYDmbQAX9xpv5tatW5g7dy40GqL0GBQUhG+++Qaenp41/kyKZfR6PQ4fPoxNmzYhIyOD95yjoyMmTpyIiRMnQiaj1ap1gV6vx4ULF/Dbb7/h3Llz3OA4zM8Bb7ZwhNBsZqwHcL/9KASPmlr9+hXzGpq8bFI0abyuiSSJixvgH0LO8aBwctuGGoXs7Gxs27YN+/fv5xojASTwPGnSJEydOhUODlRxtSoa3wCkJQN/7SEZPeaIJUC7rkCHnmQJWUsyMzMxZ84cLsff1dUVP/zwAwICAmr92RTraLVa7N+/H1u3bkVeHj+G4+7ujunTp2PkyJG1E8OzY0pKSrB//378+uuvyMzku0uDHAXY3NWFN/hzMALgpW8Br8C62RGWJdpHednlDEMOkbywFbGErOzDo4CIGLJqqIQHDx5g9erVOHPmDO/x0NBQvP3222jVqlVNvo3d0HgGQKMGThwALp/mPy6WAF37AJ17kwKrOkChUODll1/mXBIikQhffPEF2rVrVyefT6kalUqFffv2Ydu2bSguLuY9Fx4ejldeeQUdO3ZspL17+MjKysLPP/+MP//8s0IGFkDiWu91D0X74nvWP6T3OGDQlHrcSwMatanaPifT4E5Ks7zaL4+nDxDdhqz+/azLWfz7779YsWIFr06BYRhMnDgR06dPh0RCFVQt0TgGICUROLiLn9XDMEDbbsCjQ4lIWR2h0+nw3nvv4dy5c9xj77zzDoYMGVJn26DYTmlpKXbu3Imff/65gmx2//798dJLL1GXXCXcv38fP/74I44cOVLBBy4QCNCrVy+MHj0anTt3hmDPV8CtU9Y/rE1vYPwb9bzHVjBqHmWmAhkppI4n/UHlWkce3kCrTkCrjiTZoxxKpRIbNmzA7t27eVlDoaGhePfdd9GiRYv6+CYPNQ1rANQq4ORB4MoZfmWilx8wbDzJ5qlDWJbFl19+iT/++IN7bNKkSXj++efrdDv1jUqlQmlpKdRqNbRaLRiGgVAo5DRVHsYUuNzcXGzYsAEHDx7knaxOTk545ZVXMHjwYJrRYUZSUhK2bNmC48ePV0iJdHFxwejRozFmzBh+ltWhLcDpX6x/aEOtAGxFoyaG4P5dUu+TnW79tSHNgLZdgOZtKySC3Lp1C59++ilSU1O5xwQCAaZOnYrJkydTd6MZDWMAWJZUIh7dR+Ruua0zQLd+QK/BRM2yOuSlA5cPA/IcwN0H6DSogj9z586d+OGHH7j7jz76KBYuXNgkB5bS0lLEx8fj7t27SEpK4nRWCgoKqmwwI5VK4eXlBS8vL/j7+yMoKAghISGIjIxEUFBQkzYQd+7cwTfffIPbt2/zHu/Xrx/eeustuw8S379/H5s3b8axY8cqDPz+/v548sknMXz4cMsujrx04LuXLUuh1HUMoD4ozAcSbgHxN0is0BIOEqBFO6BNFxJENpzbKpUK69evr7AaaNmyJd59910EBwfX//4/BNS/AchOB47vJyXo5nj5AsOfBAJCqv+ZV44Av63kH9iMABj9AtBxIADgn3/+waJFi7inW7dujS+++KLJ+AJZlsXt27dx6tQpXLp0CXfv3rVZRKs6iMViNG/eHDExMWjXrh3atWvX5FIwWZbF77//jtWrV0OhMPmFg4ODsXjxYoSGhjbi3jUOWVlZ2LhxI/7+++8Kx0VYWBgmT56M/v37Vz2btXquvAh0HFAPe15PFBYAsVeAW5dJgNkS7l5Ay45Ay/bEqwDg+vXrWLp0KS9ALpFIMHv2bIwZM6ZJTgYbkvozADkZwLl/gLhrfHePQEBm/T0HVX/WD9g0q4nLKcIrr7zCpXv6+/tj1apVTWLgy8rKwm+//YbDhw9X2UnMEkKhEHq9vlbGIjIyEt26dUOPHj3Qpk2bJrMkzs7OxtKlS3H16lXuMWdnZyxatMhuAsTFxcXYunUrfvnllwqaOWFhYXjmmWeqX/CUl04MgTwbcPclk6SmPPOvDJYl2l83LgJxV63Lwfj4Ay3aA83bQOHogm+//RYHDx7kvaRLly6YN2+eXRcn1q0B0OuB5HiS2ZN0p+LzoVHAoDGcda4RVfg1y7qMwNTNf3PKni4uLvj+++8RElKDlUYdcvfuXWzZsgWnTp2yOni7uLggKioKUVFRnM6Kl5cXp6/i4ODAnfjmuuuFhYWcpkpGRgbS0tKQnJyMlJQUXo60Jdzc3NC7d2/0798fHTt2tKzkqdOZWjEaL1yvXzVpi6jVGFokag1durTkfVx/YL2h9SVr6oxmfgG5ZlkW16/fwPUb1w3fExAIhRgwcCACg4JMstoCgaFdo9Akuy12INfGPgoOElObR6mhDWQTMXbl0Wq1+PXXX7Fly5YKWVLBwcGYPn06+vXrR5VWzdGoicDdrUskbmBtKDNkEl2Sl+GTjVsglxdyTzk5OeG1117DwIED7XI1UDcGoFhOlmbXz/F9/Ea8fIG+I4DIlrWXUt71RaWZDZfUMrz5LwkeCYVCLF++HB06dKjdNmtBZmYm1q1bhyNHjlR4jmEYdOjQAY888gg6deqE8PDwOj0I1Wo1EhMTcfv2bdy+fRvXr16BsiAfTgLASUDaWcoEpJ2lTAB4OzuhdWQEokOD4SIUkJ4JKiU50RoYuVyO+/cfQG9Y6QkYAaKimsHJqZZaMw4S0lDHUQY4OgMyw7WTM2mqIzNcO7uS1zXAoGBNWdXHxwfTp0/HkCFDmswqraYkJCRg/fr1SE5ORnh4OGbOnIno6Oi620CxHIi9SjwOWWlWX6YWS3AkOR2/xyUhXsXCmEfVp08fzJ07t0l4CRqS2hmAW5fIwP/AivX1DSTunhbt6q5hdRUrgO0PlFiXRPKiX375ZYwbN65utltNtFotdu3ahc2bN1cI4gYEBGDs2LEYNGgQPDw8archliUz8mI5qdDkGpAXkWtFiaHBejFYZRlUKhWKiopQVFSEkpIS66sRZ2d4+/jAzdWt0doflJSU4F5iIreKEQqFaNGiBSQNVeEpEABOroCLq6n7mou74br2ndiKi4uxatUqHDhwgPe4TCbD5MmTMW7cuCYTs6oNGzduxHPPPcdLWxUKhVi7di2mT59e9xvMzwHuXCerAwvGgAWQn5+PxJRU3FRoca1Mj9tKFs4eHnjzzTfRq1evut+nJkrtDMDn8yx8IkO6DXXsBYRF1/0MqpIYgI5lMe1CMdLK9Bg0aBDefffdRlnWJSYmYsmSJbh3j1+EExkZienTp6NXr17VW8rrdaRxeH6OqU9sYT4gzyePa2yUxS6HVqdDUVER5AUFKCoqgqUDwcHBAb6+vvDy9CT7LHYgs2ixAyAWE1eLSEziOcbuZ0LjtdFdIzR1QeN1RWMAGDuiGbdo/n+xSEpKxvZt28DqdRAACAwMwLTJkyFgWeJiMrqatBqyUjFe1EriojKuYuor10EgBNw8DBcvwN3Yl9mLBCWtaFWdP38ey5YtQ35+PvcYwzAYOXIkZs6c+Z+ZiSYkJKBly5YVahYAYgRiY2PrdiVQHmMm0b3bQEoSb9xQqdV48OABSkpKoNKzuK5kcUmhR4shI/HiSy/9J4xvVdSdAXDzBFp3JvINtdDrsQkLmQ06Fvj8jgJ/ZakRFBSEtWvXNngjF5ZlsWfPHqxZs4YLQANE8mD27NkYPHhw1QO/SglkpgBZ6UBuBqmczMu2vRm4LYhEBjeIE9dnuAwMYpPu49y1G0jOyoZCz6JMD3LNAjJ3Tzzx1P8w6rHHGlxj5dChQ1iyZAl3f8aMGZgypRr568ZVkrIMUCqIZEGZgqyOFCXkvnGlZFxBaTVVf64tOLsSH7SHD+DlC527F7YdOIRNe/ir2OjoaLz++uv/OUXa+fPnY9myZZU+v3Tp0obZGaUCuBcH3L0FJMYBWg1YgMTO0tOhNwyFOVoWCTIvjJy/AOEtWjbMvjUStTMA3y4AmrcDWnfi5eA2CGaZDadv3cWqc/FIK9NDIBDg22+/bXANELlcjk8//ZRXcQwAo0aNwqxZsyz3yzU2+U5NIrOT9PvWU9yqQiAkrgonVzLoOLkYLs6kb7GTC/F7O7lUqqDKsixu3bqFPXv2WCw68vPzw6xZs9C/f/8GXV199tlnnKtEJBJh3bp1CAur28JBDqPBKCki1aolRcS9VlxIXG1FcnJdTfEzrU6H5ORkFBcXQ6VnkaUFsvUMWvYZgJ6jx0HoH0SM8n+ISZMmYefOnZU+v2PHjgbcIwMaNQkcx18H4m9BWVyI+/fvQ1Fm+k81EMC53zC0mjKLTJT+g9TOAOh0jZ5VceTIEXzyySfc/ZkzZ2Ly5MkNug9XrlzB4sWLeWJnnp6emD9/Prp27cp/sVoFPLhn6tdamA+bYBiysvL0Ji4GN0/ibnD1AFzd6yVgadSb+f3333krGgBo27Yt3njjjfobhMtRWlqK6dOnIyeHtP3s3LkzPv/888bN3FApiTEoMrjjCvOJe06eBxTkEdedAY1Gi7t370JpJqUslUoRHh4OR6nU9JnOroCPQS7ZP5jo37i6P7R9qJvUCsAaGjVwLxb6GxeQceZYhfRsz4AghE6dDaZtt4f2f7BG46uB1oLU1FQ8//zzXPFQu3bt8NVXXzVYqpxer8fWrVuxefNm3ky5Z8+eePvtt+Hm5kYeUCmBxFgSmEq8U7U7R+JITn7fQJLP7O1P3AhmM3edTsf1V2UYBhKJBEKhsF4GxLy8PPz444/Yt28fz5crEokwdepU/O9//2uQLJUzZ87gvffe4+5/+umn6N69e71vt0bo9WTFUJCLsvQH2LtuNURF+fAXMXAVMnB3d0doaCiEthyrjk5EJjkg2ND4KKzOhBKrS1lZGdLS0pCWloa8vDwUFhaitLQUOp0OLMvCwcEBMpkMrq6u8PPzQ1lZGYYNG9Z4MYDqUpiPxF92IPfIHxCbGXBPT0+E9OwLwWNP1b+LuwF5aA2ASqXCCy+8wCl8ymQyrF+/Hv7+/g2y/by8PHzyySe8oiWRSITnn38eTzzxBAllpiYB184BCTdIfrw1PH2A4EggOJyc4B7eYEG6OSUmJiIxMRFpaWnIyspCTk4OioqKeBWzRoRCIdzd3eHh4QFfX18EBgYiODgYzZo1Q7NmzWodE0lNTcUPP/yA06f5Cq5t27bFhx9+WO9NdViWxVtvvYVLly4BIEH1NWvWNOkUSa1WizfffJPXJW3apCcxbdQwMHnZpOFKTga52KKOCZBZqJcfEBRGNHFCmgHOFlyMdUBeXh7Onz+Pq1evIjY2FikpKdX+jMzMTNy5c4c3SRIKhVi3bh2eeeaZOtzbuiPzfjL+WDgfbcryIBGQSZWHuzvCWrQE8/gUUtP0H+ChNQDLly/H/v37ufsLFy5Enz59GmTbZ8+exaefforCQlNBSUBAABYuXIjo8DDgxgUieJefY/kDJFKSIRUZA4Q3B1zcwLIsUlJScPHiRVy5cgU3btzgfX5tYRgGkZGRaN++PTp16oTOnTtDau56qAZnzpzB119/zbljAMDDwwMff/wxWrduXVe7bJH4+HiemN9rr72GMWPG1Os2a8OGDRuwdetW7v7kyZMxc+bMii9kWRJ8zjZIJWcZLra6CL18ybEUGUP09EXVbPRiRlFREQ4dOoRDhw7hzh0LBZ01QKFQIDMzE0qlElKpFF27dsXIkSPRv3//JtvBq7S0FEvefRstUuLQ1pGs1Hy8vREcGgaMmEhkJx5yHkoD8Pfff/P8hhMmTMALL7xQ79vVarVYs2YNdu3axXu8f//+eOPFOXCKvWK9naXEkeiat2hH2lkKhWBZFrGxsThx4gSOHz9eoaFHXaNQKJCRkQGlUgknJycMHToUEyZMQO/evaud8qZQKPDVV1/h8OHD3GMODg744IMP0Lt377redR6ffvop/vrrLwCkenrr1q0md1sTIiMjA1OmTOHcH0OGDMH8+fOr56YrKzVJJmcaZJOrWimIxGSC0aItENWaTDhsIC0tDdu3b8ehQ4cqyFCYIxaLERgYCD8/P7i7u3OKtAzDQKVSQaFQID8/H9nZ2cjIyKgQPypPdHQ0hg0bhqFDh9a+0K+OUalUeP+99yCIvYIn3IQQM0Re2svLCxj0OGlY9RDz0BmA5ORkzJ49myuuiomJwbffflvvipeZmZlYuHAh4uLiuMckEglem/M8hno4grl8umI+PsOQwb5dd3IiGlwV2dnZ+Ouvv3Dw4EGkp1cieQsiAxAREYGwsDD4+/vDz88Pbm5ucHV15fz+LMtCpVKhrKwMcrkc+fn5yMzMRFpaGu7fv4+7d+8iMTHR4myuRYsWaNasGQYPHozx48fzVRL1epJHX6YwVAQbJCA0Gi7//sK5s/jj99+5Yi2GYTBhwkS0bd+eL9kgEBpqBUTkvlG2QexgqC1wIK+xgfz8fEyZMoVzgz322GN4/fXXbXpvQ/LVV1/ht99+A0CypzZu3Fj71GSWJbUgqUlAaiLwIJFkJFlDIAQiWhC1zGYtLSZtyOVyrF+/Hn/++adF6RA/Pz90794dbdu2RUxMDAIDA22Os+l0OqSmpiI+Ph7Xr1/H1atXeTLN5kilUgwZMgQTJkxoUmqdSqUSc+fOheLeHTzrKYSrSIAWMTGQSiRA/8eALo829i7WmIfKAGg0GsyePZvz+7u6umL16tX17vc/c+YMli5dipKSEu6x6IhwLH5iBHwSb1ac8RvbWXZ6hGtcwbIsLl26hF9//RVnzpyxWoHbrFkzdO3aFe3bt0fr1q0tp49Wk/j4eLRq1cpiII5hgGce7Y5oVyd4ihi0DQ9Bu8gIODN6m33SJSUlSExMgs4QNGMAREREVH9WLhQRQ+AgJcVmDhKTho9ESlLxpI6AowxHzpzF5l17UKpnUcoy+PLb75pU+z+VSoVx48ZxRuqNN97AqFGj6n5DxlTi5HiSYPDgrnXpDpkz0KYz0KEX4OYBlmVx7NgxrFixooK70cPDA0OHDsWQIUPqXKIkNTUVp06dwrFjxyxOShiGQd++fTF58mQ0a9aszrZbG3JycvDcc89BUlqIOV4iBLo6Izo6msT6+gwHuvdv7F2sEQ+VAVi3bh22b9/O3a/vLBC9Xo+NGzdi27Zt3GMCAC/27YYx3jIIy0r5b5A6Al36kCpoQ5aGVqvF0aNHsXPnTs5wmcMwDNq3b48+ffqgT58+ZGlZx1SVije9VThe7mDKxGAAeHt7wz8gACIbA6xlZWW4e/cetIYMJ4ZhEB0VVW9Lej3L4k5cHJSGlaBAIkGbbj0hdHUntQ4ubiSl0tnVJN/g7FYzBdoacPHiRbz11lsAyMz2l19+qXHMpVpotWRlcOcGST6wZMQZAbTRrbHhxj3sOHKc91RAQACmTp2KQYMGNUgfifv37+PPP//EgQMHKojgAcCAAQMwY8YMBAUF1fu+VMXp06fx/vvvw1MIvOAlQufoSLgbJzldHgX6jXro0kQfGgMQFxeHF154gZs5P/7443j11VfrbXsKhQIff/wxzp49yz3W1VWC17q0RKC0XIDNQQJ07Uv6GBv8rTqdDn///Te2bt2KjIyMCp8fGBiIESNGYMiQIfUjR8uypBdDYhwmvf42dp69ZPWlY1tG4JMerStoFolFIoSGhsLVzY18L7HEoLTpYFLiFAgAhhiJAnkBDh8+DJ1GA4YBHCUSDB4wAI4ODoBOY5Bs0JrUQzXqWkk0lJSWIiHB1GfC19cXQYFVyBzLnEnthIsbkW9wcSf3jbcdZXVyEm/ZsgUbN24EAHTv3h2ffvpprT+z2uh0QMo94OZFYhAMKzSNVoukpCSUlpbiepkeB4p1kAslmDlzJsaOHdsoDYRUKhWOHDmCn376qUKmkUgkwoQJEzBlypQGr+4vz3vvvYczZ87AXQi8HeGJ7s2bmcRLWrQDRjxZqwB8Q9N0W0WZodPpsHz5cm7wDwwMxKxZs+pte1lZWZg/fz6Sk5MBAK0kDCYGuqF7RAik5oO/UERm+z36cxWcLMvi1KlTWLNmjUVfZ/fu3TFu3Dh07dq17nP2jYO+URXR4BsOl1Y+i28RGYmWYyYiPisX+0+eQXJuHop1QJFeA0XKHYwePwHPz55dpd/XA0DzroPw5ptvGoKIChy4eNd6jIZlSZxBozJISxuu1UpApTJcK4mLTVVmJuVA5BycpY7wLSzkCndysrPh6eFR+SBhlH/ItJLOKBKTwitXd8PKwey2qzsxHJVUUht58OABd7vR8tyFQpIZFN4cGFgK3LoE5ZmjSIy9xBn7do4C9PB2gf+QMXAbMaLBVkjlkUgkGDFiBIYNG4ZTp05h8+bN3IpZq9Vix44dOHLkCN58882KxZUNyPTp03HmzBnIdcCSxHxsat0WnhrDKuvOdZLJNW66zYH3xuahWAH88ccf+OKLL7j7K1asQLt27eplW4mJiZg3bx7y8vLQRspgsLMQbXzcERYaBqHQMAAyDNE9emQIGRTM3rtixQpcv36d95kCgQBDhgzBk08+WT8pb8oyosx6/TzJKy9HQk4BWn6xHjp9xb+6fDGORqPBrl27sGnTJl72Ro8ePfDRRx/ZlC30559/4vPPP+fuT5w4EXPmzKnJN6sSlUKBl56dAUVOFlyEDFqHheDFZ6ZCUF7GQVFSd4JwUkeDS8mdXLu6GVYV7pyxmPPSS1zCwPz58zF06NDqbcOGlqfVJTc3F6+9+gq88zMx2EWIQDEDLy8vBAcHQ8Aw5Hs9OowkLTRy3wG9Xo+jR49i7dq1FSpzx40bh9mzZ0MsbpyZ9ty5c7n6nzHDh+G1CE9+x0Mff2D8c/VWm1GXNHkDoFKpMHnyZK7By5AhQ/DOO+/Uy7bi4uLw9ltvIkqnwCBnIfzFDPz8/BAQEGBa5kW3AR4dymtqo1KpsHnzZuzcuZOXRcEwDIYOHYopU6YgsCrXhI2wLAu1Wg2lUglBfjakty5BlHADjCXxMoYhhWWRLbDx7DU899bbFSR5rRXjJCUl4ZNPPuHFLdq3b49PP/3UJl/2F198gT/++MOwGwy+/vrrejPa58+fx9tvv83df+WVVzB27Fj+i3Q6k2S2UcunsAAoKjDdr6O+BywYnLx6HVkqDfJ0wMjJ0xDSoTM5Zlw9qh5cbWh5Wl3kcjleeeUVnnvl3XEjMUiqAyPP47/YPwQY+gSpRG9kVCoVtm3bhp9++omXmtqqVSssXry4atXUejCkhw8fxuLFiwGQNORf9+yB4NBeMgkz4uENTJpNYlBNmCZvAH766SesXr0aAPEFbt++Hb6+vnW+nTvXr+HXhfPRTayFu5AM96EhIaagbGQM0Hso4McPRiUkJODjjz+u4Lfs3r075syZU2OtnOLiYty+fZtL4UxPT0dOTg7y8/MR4wD0dRagucQ0kIhFYogdxHCUSqH1C4ascy/4PToIjNkBmJCQgA0bNnBNOWbMmFGpe0KpVGLJkiU4efIk73stXry4yupblUqF559/nmtyEhwcjHXr1tWbxO7SpUvx999/AyAn5Y4dO6oXgGZZ4mYqLDAYiQKT8FuRnDxWUmS5FWk5lCoVYmNjufvt2rY1/V4iMTmG/INJP+yQZvxBoh4auRvTGM1TmJ9//nlMmjSJGMbLp4Ezh/jtFRkB0PVRoNdgm1xe9U1iYiIWL17Mm5AEBwdj+fLl8POz0mGwHgwpQOKDo0eP5iZTq1atQkyLFsCJP4HzZkF1b3/gfy80aXdQkzYAZWVlmDRpEoqKigDUU8FXdjryju5H8v69EBjTGBkG4eHhJMIf3RroMZCcsGawLItffvkFq1at4s1MAgIC8Oqrr1Y7O8lYFHby5ElcuHABiYmJvFRRBwbo6ihAH2cBfEQVYwelehbnFXr8W6pHrmGS7+fnh969e+Pxxx+vkFdta4cmvV6Pzz77jCu8AoiCo3k1rjXKB+6nT5+OqVOn2vR7VJeCggI8/fTTKDOoOVZbMtoW9Hri4zWqgppfG1cRJUXIzs5BWjppRCKVStGyKolnTx+Sq9+iHXD7RKUNj9B7HDDI9u+l1+vx4Ycf8uQ7LP4PJUXAsf2k8bo5bh7AoLFkAtTIqNVqfPPNNzwFgMDAQHzzzTcVs+fqwZCa8/LLL+PmzZsAgNmzZ+PJJ58kT5w9Cpw06z0cGQOMfabRXWrWaNIGYO/evfj2228BkBPpp59+qpuKT7UKiL8BXDsHzf27iI+Ph9rg72YYBuGRkXDv0Zd0M/OuWGOgVquxfPlyHDp0iHuMYRiMHz8eM2fOrNYsNzs7G3/88QcOHjzIk1Yw4icCesoE6C4TcJok5qRpWJwo0eFKGQtrtZsMw+CRRx7BtGnTEBUVVe0OTXq9Hh999BFvJbBs2TJ069atyu/3/fffY/fu3QBIoG/79u31kuoKkM5TW7ZsAUB6MPz0008N3tSD1Wjw+nMzoMxMg5eQwfCeXfFITHMgP4sYiapON10eoKxE/qFNb2D8Gzbvz8qVK3mV62PGjMGrr75qPQEhOR74e29FCYoW7UjRk0vjVlyzLIsff/wR69at4x5r2bIlvv76a36fiio6B1bXkJZnzZo1nIx1v379sGDBAtOTx/8Ezh8z3e85COg9pMbbqk+arAFgWRZTp07lMmlqPfvX60l+9M1LZPDXqKHXs0i4m8AV65TpAa+BI9Fi0nSrvrvi4mK89957uHHjBveYl5cX3nvvPXTsaLs2SGJiIrZu3WpRc1/MAO2lDPp6OKKlqyMcHR0hlUjg4OAAkVhM3AnNWkHbsSfUPkEoLilBXl4e0tPTER8fj9jYWIsFNgKBAP369cPChQurrc6oVCoxZ84cLjPKy8sLW7ZsgUxWuU66QqHA008/DblcDgAYO3YsXnnpRUCpJBk9KqWp77BWbWgqrzc1k+c6iTGk05ixathBwjWzgcQREAhQWFiIJ598kstwmTt3LkaPHm3L31FnHDhwAJ999hkAYni3bNliWn1p1CRLKzOVXFKTiKvJHHUuoLHQV9tINQau8skTPXv2xCeffFJ1Fa9GDfx7BLhwnPwPRsQSoNdAoPOjjS4Db+4aBiykhVfRO7y6hrQ8J06c4AZ9f39/fk8DlgV+3QzcvW16bMKzJBuridFkDcDVq1cxd+5cAORE2r59OwICAqr3ISxLTrTYKyRFq6SI9/SDlBTk5eXhgZrFGYUePZ+ZjccnTLD6cYWFhXjjjTd4rR7bt2+Pjz76yOYWftnZ2VizZo3FJvFREgFGNwtCV1cJ3GWOkEilvAaJcJAAbbuS1FOPypU38/LycOrUKfzyyy+8ZuP37t2rVNGxMn32xMREPP/885zLa9y4cXj55ZdNL9DrgJJiM/dIIVBSiFsXziH2/Fk4Cxi4iQXo0qY1xHWZbsgwJA3X2RUX4+JxPjYeBToWUr9AvLHoE/JbNUCjlby8PEyfPp0raKowM7SEPI/MuuNvkipenQoou2/5tdVwXVy5cgVvvfUWZ+ijoqLwzTffVC+PPicD+HsPkP6A/7inDyl6ioxp1MKnL7/8Er///jt3n7cqrecVQHZ2tsntA+CXX37hjwEqJbDtW5MgpKMTMO3VJicl3WTrAIwaKgDQpUsX2wd/liWCWXeuk5PKik5KXokCvz3IwXmFHikaFqNHj6508FcoFHjrrbd4g//w4cPx+uuv21Q4Y4wZrF27FkqlqSmInwgYGOCJoSE+CHCWWR4YfQKA9j2AVh1tDih5eXlhzJgxGD16NM6cOYPvv/+eE4KrDOMM3xKRkZGY9vT/cPDHrfARAiWH9qHAywEeAtYUPLXgc23JsmCdHKDRagGwyMnJQWB1jXllsCyX399GJoLQyTDDLcuCcv0XJGtJ6si1ZYSXL3Ht+QbWqqk7fxdYLF++nBv8HR0dbUt9dfcigmIdehLjeesicHofUFTeCDDA8GdtGvwfPHiABQsWcIO/p6cnFi9eXP0iKp8A4H8vAjfOAycOmKqK83OAvRuB8GjiFrLgJm0IXn75ZcTGxuLu3bsASObZxo0byaq00yDgzD7rMYBaBIEBwMfHB56enlxP55s3b/JFECVSYPRkYgS0WiLq98tm4Mnnm1RQuEkaALlczvM3P/bYY5W/gWWJWuKda6Ti0Zo4lkAAhEWjOKw5Zn3yOfKLyAkSExPDn8mWQ6vV4sMPP+RVnU6cOBGzZ8+2qZirsLAQn3zyCS5evAgAkDFAZ5kAA/3c0N7fG25u7hXHIAcJENOBzPgDQmo8SBn9/126dMGaNWt4uvSW4NUplBSZ3BXZ6UBuJv4nz0enIBlUapIyWXDyEDwiIyv9TIGAgY+vLyd8l5ebB38/fwiEAnIySBxNonAiMSA0uH0YBmABsDriitBqDYJ0GhLHKVNUOMGlUilkjo5caz95YSH8pVJSK5HxgFzMkTkDvgGk85Z/CBAYWqPUvb179/KqxufMmVP9bDVnF6Ip0/lR4PQB4N/fAU0ZIBADIlfg5i2gZc9KZ5H5+fl4++23OUPk4OCAxYsX1zxzjmFIXUDztsDJv4BrZ01xjOQEYNNXQNtuxMft1LB572KxGO+++y5mzZoFrVaL7OxsbNiwAS+99BIxlKNfsJIF9GKtU0EZhkG7du1w7NgxAMCFCxcqquD6BJAA+kFDDCYrDfjpB1Io1sixFCNN0gW0Z88efPfddwDITHbnzp2W0w5Likju7c1L1nvpMgzpV9yyIzmIZU74+OOPcfToUQAkMLl+/fpKtUa+/fZb7N27l7s/YcIEzJkzp9LB35hlc/PmTdy7dw+urq5o6+6ER5wE6OgsRkhQEDw9PfkuHoYhfsJWHUm9QR2n3yUkJCAmJsai4iNAYgRx+35GtEBTqcqkXC5HktlKITo6Gs7mKZcyZ5P2jrML4OwGhUCE95Z8inylGiV6Fq+8PR99Bw2p3ezb2LtXYWjmXlIElBTh30MHkXDhHDxFDCI93dCqWeUGqgJunkBIJLmERvGK/Sxx/fp1zJ07l/tdu3Xrhk8//bT2ld6KUjJ43DPzJbt5ktRCC0ZKoVDgtdde4yYqDMNgwYIF6Nu3b+32w5ycDODob6StqQEWgIYRICuyDbKDoqHS6SAUCuHm5sY1J6rP1p3mwX+GYbB69WpTHMusdzjcfcnMv5aDv5GDBw9yGlvu7u7YvXu35XHq6G/AJbN4hMwZGPUUkexuZJrkCsA85XDIkCEVf9ScDODcMTLjtzSYMQw5eVu0A6La8Cryrl+/zg3+AMmHrmzwP3nyJG/wHzBgQJWDv6UsGwEDDO/WCv2atUJwSAjf1eMXRAb9mI71Wj24fv16q4M/AAxrHo7o2HNWnzfi5uWNspwC3M0tQK6OxcVcJZ6d9goYN08yWFrQQpEB8Ot1FlcN/+1f/xxH38HVrI4tD8MYVhBSXkzEWeKOjX+fAQA4FBZj/2fvQlRUQFwXedlAXhY5hsrFhDgKDf19b5IVG3wCiJx3dGviNjL77+VyORYtWsT9rj4+PnjnnXfqZsCTOQFjpwGnDwH/Hjbt2+71xAg4mDKcNBoNPvjgA94qdfbs2XU7+AOATwAUoyYj/sCvkJ47CkaeB2VZGfQsC1y5jDwtiz1yHeLVpnmlTCZDVFQU2rVrh969e6N58+Z1ahCefvppHD16FKmpqWBZFl9++SW+//57Euz2CqyVr78yHnnkEYhEImi1Wsjlcly8eNFy+nf/x8jK4+IJcl9RAuxaR1ZOfYY1SHzKGk3OANy/f593EPNK6IvlwPEDFXOVjYREAi3aA83bWFyOsiyLNWvWcPdjYmLw+OOPW90XuVzOy6KIiorCvHnzqpz5lx/8AUDPAp+cj8X/+vQig79RmrdNF15VcX1SmX8fAFwkFlYcLm6G5uRBgHcA4O0Hxs0TjteuYaNRg/9WIrrIFegY0aLSzx8yZAhn3C9cuICSkhI4OzvX5KtUSkxMDMRiMTQaDdRqNe5lZKFFixakU5Y5ihLi2spKMzVdsbTqMbZs/Pcw4OkLtO8GtO4MVirDZ599hrw8UkkrEomwaNEimxMCbIJhiHvFwYGkFxr3548dwONTAYEAer0en3zyCS5fvsy9bfz48ZhQSUyrumi1Wpw6dQp///03Ll68CI1GAwGAR5wEGOoigMyQouwjYjDbW4RLCj32FupQxpKVyfXr13H9+nVs27YNfn5+GDt2LB577LEqs8hswcHBAXPnzsUbb5Csnri4OOzbt69iNXgd4+Ligp49e3Lu6v3791s2AAwD9B9FgudH9pFeGiwLXD8HxF8H+owA2jVOw/kmZwCM1ZwAcS1wlbQ3LwKHfiEqkua4uBM/eetOnPa+Nc6fP49bt25x91944YVKB/NVq1ZxOukSiQQLFiyoMq98/fr1FlMsAUDHstiYkIqlz70KRFpuzlFv6HUId618puElZMB6eIMJjQJCm5EB04o/vGPHjujYsSOuXCHGePPmzVWmwXbo0AHu7u6Qy+XQarU4d+4cBg6sXTDOEmKxGFFRUVw17o0bN4gBKI/M2SSWZqRIDqQlERfYg7skS8ec/Gzgnz+AEwdxTSfGrXP/ck89//zziKmq6KumdOsHlJaYZpH3bgMnDoDtOwJff/01Tpw4wb100KBBVR7btiKXy7F7927s37+fS+U1ogdwslSPSwo9hrsK0cdVDJFQBEbAoJeERUsnLTbmqHBPzfcyZ2Vl4YcffsCWLVswadIkPPXUU7VWIO3UqRMGDRrEdahbt25dvcmrmzNixAjOAJw5cwZyudz6BKB9dxJn2r+DrEIBEpv6ew+JrQweR+J9DUiTMgBqtRoHDhzg7g8ZMoRYyuN/kpxkc3z8ge4DSNs7GzpJsSyLzZs3c/e7du2Ktm3bWn397du3ecZo5MiR+O677yqvnNWokXS2ktxjAMlSd+LfbyjUKiISd+kUZroLsFzAWBSFYxjgnsQFv/vGYPQQ23Lnn3nmGc4AXLt2Dbdv3yZNWazorwgEAvTs2ZP7j0+fPl0vBgAg6blGA3D16lWMHz/etje6ugOuHU39XvNzgLu3gIRbJLvMgFJRCsTF4T0/MQ4V66Bo3RVPPPFEHX+LcvQdQbqBGWMCF47j+KUr+P0PU0px9+7d8fbbb9d68C8qKsK2bdvw22+/VZAJB8jst1u3bmjbti1atmyJ4OBgyIoLSBGZmdJqD5ZFalQHnNWIcObMGdy4cYOre1EoFNiwYQOOHDmCefPm1bqhz4svvohz586huLgYCoUCa9asqTfdMCNdu3aFl5cX8vLyoNPpcOjQocpXXn6BwLTXSOvYU4dMXQSz0oDt35EEgD7DG2xy2KSCwOaFKw4ODti5cyfcb543+T8BUvjTZzjQpmu1yquvX7/OKxRZuXIlWrZsafG1LMvitdde41Q99Xo9Tp8+XXnlbH4OsG8rXvx+HVZeiuV9XpSnE2Z2DEO4uwz+Me3Qb+7HdRaIsoqyDLh0kui8mHUs23jhBp7b8xfPCDAMg+bNmyMgIAAikQjfffed5RmzBV555RWuKK5v3774aMyjleqvnDp1Ch988AEAg5DWr7/a3F6wOpw7dw7z588HADg7O2Pfvn213448jxjTGxdw7+Z1TqJELBKj+aP94DDuGbLMr09USmDHSiAnEwVyOZKTk/F7kQ7/lOjRunVrfPHFF7Wqftbr9fjtt9+wYcOGCg1aHBwc0K9fPwwZMgTt27e3PGvX68kq5eRfXP8BAGQF02c48vLzsXfvXuzbtw+lpaaGSkKhEHPnzsXIkSNrvO8ASR//6quvuPs//PCDzcdyTTFvVBUeHo4NGzbYZoBLioBjfxD5dnOCI0jsR1p791hVNBkDoNfrMW3aNK7yd/To0Zg7fgxJmzLiG0h0NarIyrDEggULuGVyx44d8eWXX1p9rXkRmkKhwKVLlyqvnHUAsG8rinNzcPTKdTyx/1/oDD/rMx1CsfaxDhCZDz6MABjwP0BZWqcqhQDIAHHxJBn8VeVy/hkB0LwNEtwDsOHPQ0i+fx/h4eEYO3Ysli1bxuU0h4SEYO3atTYNJMYuSQAQ7CjElu5uYCrRX1E4uuOxxx7jgqarV69G8+Z1XyGpUCh421m7di2ioqLq5LMvnTuHfR+/i8HOAjgLGUSEh5Nlv9QRGDOFZA7VJ8WFKFmzDPeuXIbe8FvfFrvgsa/WwdXDo8Yfm5aWhiVLluD27du8x93d3TFx4kSMGjXK9halGSnAvq38mErvIUQWAUBpaSnWr1+PX3/9lVcJ/8ILL9QqdqHX6zFr1iyuXqdLly48afL6IDU1lac79d1336F169a2f0BKIlk5mWcyBkcAE56r9/4MTUah6NSpU9zgzzAMqbI7YXIHwdMXeHJWjQb//Px8nhhWVe6An376ibut1+ut+/R1OmxYvgzYvQF6ZRlSUlMR6uqEie1bgGEYRHk6VRz8ATI7PrKNVCreOkWuv3uZpKvVkIS4OMyf9jQm9eqC+e+/j4RUsy5kYglpVfn8fGD0ZET3GYiln36KHTt2YOnSpejWrRs++OADbtaSkpKCTZs22bTdnj17ckV6w/3Flgd/43e+cgQymYznJzeX1KhLZDIZz7BUVf+AvHRSPbrrC3Kdl27xZSzLYvX69ThZqseSbC3uu/nBzejzVZYBu9bzJQDqAZWDFO9cu49cDTkuhUIhxkcFw/X3LSTLqQYcO3YMs2bN4g3+MpkMzz//PH766Sc89dRT1etPHRACTH6JuGqNnPqbuNIAODk54ZVXXsE333wDT09P7iUrV67kZQFWF4FAwBMqvHjxIk8FtT4IDg5Ghw4duPvmrmObCIkEpr5C4phGUpOAq/9af08d0WQMwM6dO7nbffv2RaBMwvO5Ytj4Gi+JDh8+zA3iPj4+6NGjh9XXpqWl4dw5UyqkRxUzquTzZwC9Dnm5eShRqrA5X4tMjwD89ddfWDvnyYqDvzVYPXGdWBl4rL+PxcYlC9GydSss2/Ijdl6+hWXHzqPlF+ux8Uos0GsQMPsdkoVQSQFRhw4dMHHiRO7+zz//XGXWEEBOuOHDhwMA/KVVfFc5GZzMZ0fmssl1jXn/AaNyo0WuHCEG2AaDfPPmTS5LTckCLV99H8xjT5tmanodmfneqz8jsGnTJtxMSceKXC1SNCzCw8LIai0rjRRm/XuYyDzbyI8//oiFCxdymlgACSRv3boVkyZNqrlLydkVmDiLL1ty8GeSfWWgTZs2WLlyJa/S/6uvvrLYTc9WunTpwosn/PJLJZIQdYR5tuKJEycqTbe2iNgBGP4kENPe9Nj183W0d9ZpEgbg+vXrvJnHpEmTSFqeEXcvUsxVQ8xnFEOHDq3UF2wehA4LC6sysyXcwxV6lsWDrCysytXimpLFqFGjMHjwYPRrX82gFqvHrx+9gvnz5/NSYa2SnY6ErxbhuQ8WVgjs6vQsnvv5ABJ8I2w2nNOnT+dORL1ezxPbqoxBg8iyXiaswu/pTqpRzX2y5tIadY35IGD198xLrxizAKwa5H/++Ye73bFjR/JdYtqTgc5Y4q/XAfu2kSyiOiYtLY1T9yzWAxl9x8D10cGmF+h1ZKa96UsgseqZ7+bNm7F27Vruvkwmw0cffYT33nuPNzOvMTJn4rY1FjUqy4jf2ww/Pz98+eWXcHUlGWcqlQpff/11BZFEWzEq8xo5fvw4z7jVB7179+ZiInK5nJdtaDMMA3R6xHS/SF43O1cJTcIA/Pjjj9zt9u3bk5OqpND0glrkyd+/f5/XRKKy1nwsy/JO8BEjRuDZZ5+12vxEKGAwo0tb5BWXYEVGGZI1LMRiMaZNm0Ze4F79gGBZ+n0sW7YMLVu25JqKV0CjJqmIW77B+t//tJjVAxhcVBs22LxtiUTCU1w9e/Ysp7NSGQEBAegeHYqunpX4K830VyLNpCNSUlKsuthqi/l20tPTeX0bOC4ftt7kxeC2MsfclTRgwADTE0HhwMTnTMVZOi2wdxOQllyznbfCtm3buN/L19cXzzz7HDDkCTLImqfs5ucAezaQojELbUIBEjA1d/UFBQVhzZo1dV885uVLWk0auX2F1F+Y4e/vj9eNdSUALl26xEmn1ITevXtzNSYqlQrnz9fvbNrZ2Zm34rxw4ULNPigrzXRbWk3tphrQ6AYgIyOD53KZPHkyuWF+stai9+e//5r8aFFRURUao5iTlpbG6dUARM0xOjoaa9eurWAEhAIG68YPQ7SvF7YWASkaMggPHjzYlHvcaRAZ+KpBciGZqeh0Ojz77LMVZ66pScDGL0mmBatHcoGValbj59ngxjHnkUce4aW37tu3z6b3TYh0h7CyzIeojlyQ27w9pk6ns9gHoS4w179hWbZCHjsAEoSvDLnJp86yLK/Ze4UsMv8QYPxMUyW0Rk0G4cyauzN4uyKXc3nuAGl6w7lnoloBM94konLm/0PSHeIW+nsvz/WSkJDA9doAyGr3m2++qbQqvlZ07GWayLEscLqin7xPnz7o1MnkBzfKO9QEsViMXr16cffNdZrqC/Nm9cb06GpRXEg6sxmJrkYguYY0ugEwl2UICQlB586dyR1zN011/WlmmM/YKvP9A+A1cw8PD+cGkOnTpyM2Nhbz58/HpBFDMb9/d8S+MRPPdGmDsu4D8McNk/b+iBEjTB9oFKSy0Qho9XpsuGKKe+j1erz22mvkDssSjfaffuA16wgPqHx1VN0m9OWXz//884/lmXM5gpyr0C2SmGYzEomE19jHWElb1/AahIDUmVSgqlWau8mIqNVq3m9hseAnKJyk8BlrU1RKYNdaIKuasR0LHDt2jNu+l5dXxRoKiRQYPBaY+ippNWmEZUmh0dplwKVT0GnU+Oyzz3iftXz58rpx+VhDIOCvAu7eJhXNZjAMgxkzZnD3zeMtNcG8KvfKlSs1dinZinkgOC4uzqbzhkOjBn7dYlJcFTsAXet4JWaBRjcA5pZ50KBBpvxZngGouYvA/ABq06byAixzV1H5opTo6Ggs/XgRdjz2KJYO74NoHw8gvDkuMzLuwHJ3d69YzNJxINFw7z2ONKHoPQ4YOLmCUdDq9Xj2t6u4m1/Ke/zAgQNIiI0Fft8OnPrLpMTICIDu/THzi++tu6iEQt4JZSt9+vThBs/S0lKbMnUcfK2vrADwBlIAPANgzKeva4ztIY1YbGZf2SqtnGywuNxK1KJBAUhl8ZgppmNYWUaMQA0zdIyYnysDBw60Xj3rG0gy5h6fxq+OV6uAo78hfdk7UCSbXHvvvvsuvL0r7y9RJ0S14mcFXThR4SWtW7fmnUN//PFHhdfYivmAnJ2djezs2v3+VdGsWTPuP9FqtUhKSrLtjSxLRP/MCujQ/7EaZTxWl0Y1ABqNhpeixWsxaO4XtqHS1xIqlYo3u4yIiKjk1eAdIBZdRbevkGWacZ8Gj8U9M6PRunVrywUgRkGq8W+Q60ef4IzCVZ0Llp6KR8vvj2DztQcV3sqyLDa8+zrpb2DEqAjZZziiW7W27KISCrFu3bpKm75bQyqVon17UzaCTQagxwiu9qECFvTXzQdjS5WmdUFamsmfKhaLLc/Yra3SLMgGCwQC3izZ3F1YgahWwGNPmz63rJT4483cMNWBZVleooS5u8EiDENcCDPeBAaM5lZgLICSxAS87iNGfycBBg8axHO71CsMQwrCjMRetfh7jBo1irt9+PDhGh8fnp6ePHdjjQKz1UAsFvPGGJsTHE4eBOLM0pTb9yCyEQ1AoxqA1NRUbpkkFAr5hTrmSo2ymgmGGXV8jFS1xC0pMR2MxowEHjfNglJtuwLuXjz/dUgIX8cjISGBuI0mTaqY2WMwCk5TP8B7R2MrzPzNSU5KNt0JjyY5w4Gh3EM8F5VhW7GxsXjmmWcq/b6VYT4Ls+VAdgqJwhfxZRWNgBX99fqUBzZifsJHRERYz/6ytEp76Vug44AKLzUPLJcvmKpA87bASFPXKBQVAPt/qrovsAUKCwt5lbk2F88JhUDn3sCzbwFtuqJMoYBSpYSAAR5zE+LFSJ9arbCrTYv2pmC1XgfcqBgs7devH9e8RqFQ4MyZMzXenHmcJj4+vsafYyucdhn4ExCr3LwInDMlniAsGhg4ph72zDKNqgVkPuP28/PjL2nNA2c1LK8398ExDFMtwakKA5RKya9LaEdmYObl7OaFMpYkoZcvX16h8Xp0dDSGDRvGSz8tT7inwV0S0x4YMcmiTkh0dLTVVo41wdyYZWZaziIxh2EYHC1gcP1CMYb7O2BM355wDoqwqr+u0ZhE/cq7VuoKc5eJ+YrGIjbKBrdt25bLTjl//jyvAtQiLTsCxUXA8f3kfnI86Undol3l7yuHsUobIDEUixOUypA5A8Mn4FRqNsSxd+AuZODk5AS31LvA4X3AkHGVv9+KvlO1EQqJDLJR3uXmRbIqMDvfHB0d0bdvXxw8eBAAiUP179+/+tsCOS+M7VfrM+XYiHniQZWxrdxM4JBJah7e/sR12IAikY26AjCf0fCW52WlpJTcSKDJqlYH8yAgy7K8QccS5tK05qsBAOTPMs7cHCSkg1Q5jLEAa5LQOp0Ozz33XIXA1ooVK6pMNUVQuNXBvz4wL4Arv5KqjLQyPdYlKZHbdyoZUK0MEuaGsy4kgctTXFyMS5cucfd79uxZJ59rnkhw69Yt3sBsla59gAgzldDzx62/1grmbpBqt3Y042pBKb7I0eKeSg8nmUEd9tpZIPGO9TdVo1DOJtp0Nt3OzwGyMyq8xHzAP3/+fJXnrjXMkyDMM7jqC/NJYKW1ByxLMrOMk1RHJ2DcMw3eLrLRYwBGeLPAOzdMudlOLkSPvgaYBxoBIDc3t9LXmwfCKsx6lWZ/posbN2NxMuuEZTRolUpCW8jNrzrV1BMY+kSDzgyq66Mvb2CrWm2ZB37royfAqVOnuBWgu7s7L0e7NkRHR3OzPJZluZaAlcIwwKNm9SeZKfzjyQbMf0+rwWcbKCoqQqkeWJOng9K8Qvf8P5bfUM1COZtw9+K5MHG3om++Y8eOXIqrSqWqsfvGPJaXk5NTvcycGmDuZqy0viUxll8jMnwiie01MI1qAMwHPN6PddvU2AIx7WvcKEEsFvMG9arKy83dHhXy54VmA5rZQOfjY3JPGY1GVbn3lp6v4Mef9jSXaoqg8GoXw1Uaf6gH1Go1r/y9slmqSqXiZejUaQMVA6dOmWS5+/bta3WFZZFKdIEYhuEVgJmnMVeKEIA2H1BmAOpcILV6VcLm8SuFQsFbQVUHoyHRAIj3NWuVmZlqOTZRzUI5m2lmli13v+KxKRaLeQkM5hl61cH8/GRZFgUFBTX6HFux2bV5xawuITIGaGZZmbi+aVQDYD5IcMslRQnf196qcimGqjCPylc1CDZrZsqdvnPnDl/Pw9VME6iogJNYDg01zWSMPsaqcu+tPW/04+/YsQNLpz9FUk0BIoRnAWuD/MaNG9GyZUssW7YMO3furLqy2AJKpUlJ1GL6ZDnKu8wqm9WXdylVpbdUXViW5WUumRcEVYkN7g5zA3D79m3LBWblP/P7VwBVHqArATQFwPaF1Ro8PT09eeeLLRXaljD3UWdlmM/eGcsTrWoUylUL8364makWtYv8/EyTnpoO3A4ODjxXcE0Np62Yu7WtngNaLZBi9v91frRe96kyGtUAmM/8uD8444FpJuLsatHXXh3MdWeqSgOLiYnhlnAKhYIfNPLwJr0IjCQRn6l5NkZqairkcjlmzpxZ+9x88766qrIKT1sb5D/99NNqxR+sYT6o2aICaT6oSySSSgXEzP3mzs7Ote4GVZ7c3FzeiWit70MFbHR3REVFcStLlmUrlxmoIxcKwzC872Ee36gORiVWKQOEJN00TfqDQi2/oRqFctXCJ8BkcHRaXnGjEXN3SrXF1cwwP77qS3bEiLmhsrqyLSow+f4ZAVEDbSQa1QCYt2sztglEiVkTCk+fWvfJNC/+Mu9GZAmpVMqTKuadZAxD2jgaMaSEBgQE8NxMFy9etO7Tr05uvrdZwcz9BJ40RmVB5nfffbda8QdrmGdomS+jrWFuAMrHXip7bX24fzIyTEFFd3d322WMbXR3MAzDqzI1lzKp6Wfagnnu/7Fjx2pU2dqlSxe4iwSY7SWCp16NomJDLKaHlc5s1SiUqxYiEV+7qKRiooH5MVjT44RlWV7MpL4yzoyYp4VbbUepNoupOUgatjVsORrVAJgPnCzLkiCtefl+cWGNcqbNadu2LZfSWVxcXGUqWJcuXbjZ/4IFC/j+8zZdTC9MjgdyMsEwDK+Azdh0prxPf9asWZgxYwYOHjxom08+vLlJYlhZBlw15UJXFmSualCwVRvo/n2TG84WfRjzlLeq6i2qYyxqgrk7qloDRzXcHeYG4MKFC9ZnlnXoQjEXaUtJSalRYZOrPAeftPBFqAM5J7KzsojkgLVZaDUK5aqN+Sq3XHBWrVbzikTN6y+qQ0lJCS/wWx/HmzlZWVncbXMXFg9zkTe1smKf8wakUesAHBwcuCbhALH4/mHhphcU5AIJN0lBTQ2RyWRo0aIFdzBduXKl0s5Q6enpvCX9smXLTPn7zzyDBJ0I6/86AqW6DI8nxaFz10542s8R1xwFSCvT499//0VhYSHc3Nw4n375moAoTyd4XvoD4wf3RWTH7pZzqiVSki99xTDwnzgIBIQCQeHVFngzx1ZtIHOdfvPYiDXMD/yqVgzm7qX6OCHLt+60mWq4Ozp37gyRSAStVovi4mJcv37dsnS4pIoU12q4UAICAtCxY0dOaOzXX3+tUt6EQ6slAmwXjiPMywMJBcRg/5VdjBLXAFQaaes4EAhtSVYr8myyz1bqO6qFecc6sQPvqX///ZfLPpNKpTVu65iSYkond3R0rH79RDVgWZa3avH397f8Qld3klSi05IJbk5mgzeDN9LoWkDmg0VOTg7g5sHPmT64y6qcra2Yn5jmgm/lSUhIwIIFCyo8bvSff7psGVq+/xmy5JlYPjAC/XyFcLl/DYGJZ7G5qyuG+TlAq9Xy9EvKu2ue6RCK2BcHYt4j0YhUpFeeU91rkKkKWqcFfl6LhL9+R3JyMqI8nbB0YCvseKILlg5shShPUzqqtSpbW+MP2dnZvBWALYOM+YlW1YrB3E9a1wFgALz4Q7VkBKrh7pDJZCbhQhDN+QqUFAEplRy7NXChjBljqhI9fvy4bUJ6uZnAtm+B88cAloWzszNkzi7YW6jDnkIdfli9ump3Unk5k9oO/iXFfBkIM80ilmWxZ88e7v4jjzxS46Y05quIiIiIeq1Az83N5a02rK4ABEJ+antK/ReoWaPRDYC5G4gLDvYfZVoeqpTAT6sr6IdXB/Mc8MriAFXl77/77ruIcJNabPMoZIA3WzgiyFGAvXv3cgOP+WdW2iLSUkBQ5gyMeorTQtr472W0HDEGLVUZiH1xIOb3bo5JbYIxv3dzxL44EM90CIVQKMSSJUtqFX8wVk4CZDA311OxhnlWink5vCXM6zGs+klrgfksr8oMHXOq6e4wd8mYK3UCIO7LnWsARRngYGGWX0MXyiOPPMJNmrRabeVy3SwLXPkX2PoNX3nTwxuCKS/jVCmJTcTHx1daiV4vmHdMc3HnxQMuXbrEy+IaO3ZsjTdjvpq3ebVUQ8y1odzd3Ssv2As20yVLtVE0rh5odANgPgPkZoZevsDIp0wB4LJSYMcqi/nCtmDegrCwsNBqPUBVrhWWZTGzY5jVNo9ChsFwfwfk5+dzbejMP7Oy91oNCIZFAxNmIqGwFM/t+QsR7jKLRkQkEGDtYx2wc9XXnBZQTbSByg8qAwcOrHLWVFpaysvTrmq5bh6ktTpLqgXmRqWkpKR6q4Bq6AL16dOHCyoWFhaamoBkpZMZt7HJt9gN6Dfdps+sCpFIxBsQ9+3bZ/n7aTXAgZ3A4V/4/vWOvYBpryG6dz/069ePe3jVqlVVFkrWGSwLXDH16EZ0a+5cV6lUvD4FHTt2rF6DdTPKV4Obx23qA/NK48r6jpAXmBkA8yYwDUyjxgAAvgHgzdaatwFGTjKJZ6lVRE1x0NhqK+W5uLggLCyMc2vcvHmzgnAbYJt/PNy9cp+usS/u1q1bMWTIEN5nVvVeqwHB0CisLxZCp6/cAIkEAjwRTnzqNdUG2r9/P+fPFwgEGDlyZJXvOX/+PLeqcnV1rfR3ZFmWZxSrPFFqQHm3UkFBgXV/rCVs1AVycnJCr169OPfPP0ePoqdMABzdxx90HxlC3Hl1xKhRo7B582aoVCoUFRXh0KFDPAVNlJUCv2zmV5rKnEm1aaTJvfriiy/i/PnzUCgUKCkpwZIlS7B8+fJKW6bWCTcvEr+3kXam83nlypXcQMowDObMmVPjzRw6dIhXDV6lHlQtMT+uq1oF8/TNSopIHUQjZAM1qRVABV2Vlh2JprnRHaTXA3/vAf75vdrZQW3bmgLJ1uSNK8vfN86Ck+WVl/AX6IlNVSgUWLlyJe8zq3pvZQHB5CxiHKo0IpeOEaN5/Rzx/VYjf1oul2P9+vXc/eHDh/MKh6xh7jLq0aNHpSuG1NRUrhiHYRibAszVRSQS8Ypw6qvfAGDSrPEUAs2vn4Tu4C6zHG+GTFjqcPAHyIRm2DBTc5W9e/ea3JolRWS1bD74B0cA0+byBn+AuF9feukl7v6VK1ewcuXK+m2cUpALHP3NdL9FO65HwL59+/Dbb6bnxo8fXyM5c4DUDezdaxJaGzp0aPUSAmqAuRu0yqylCqq59bBDNtDoBsB8uW6xNWBUK2DSbKIJZOTiSeC3baSLjo3YYgCs5e8DwLx58yAUCrH+yn1oKxlUvXs/xt0+cuQIcnNzuc+s6r2IsJ7tZJxVV2lEdCyR0vhrD2kdueIDYPv3wOFfiVHISLH4u7Esiy+//JIroJLJZDzVUmvk5OTw2m5W6FJVDvMleUREBE9LqS4xr142r2qua3p2bI9xXlLM9xWjmUiPQuMqVuZM2kN2rBsRuvI88cQT3O2kpCRcvXqVDP4//cBvPNO2K2lY72y5FmLYsGE8V9CePXuwatWq+jECyjKyMjHmwTtISOMTkMYvK1as4F4aExODZ599tsabOnz4MCfHzDAML3heH+j1ep5eUZWG654pyw6uHjXueVJbGt0AmAcY09LSLFf8BYQAU14mnY6MxN8wBNlsa7BhHghOTU21mj1hzN9/++23ERkZidDQUHTr1g2hoaFYu3YtkgqVeO73q5YHcgc/9FXk4JEYU5rp8uXLMXbsWMTGxmL8rJexLssBOmvn1raPuThAeZmHgQMH2mZEROXS3LQaIq1x5QwxCtu+JUZhzaekafmJA8Ctyzi2czv+PXmSe9tzzz1nU4B279693H/m5+eHLl26VPr606dNvt+qXlsbWJZFkKMAz0VIEXp+VwVNn1pTLAf++R0OG5ZjTKA7RIYZXH5+Pslim/oqqeWoJ0JCQniFYft2bAd+XkNm2EZ6DgKGjq/UtcAwDN566y3egLVr1y4sWLCgbldOKiXpj5xnShfG0PHQOjph5cqV+OKLLzij4+Pjg0WLFlVo6WnzplQq3kp24MCBCAgIqNXuV8W9e/e4iYZAIKi8X0P6fX5P5Abo/WsNhq3vRplVoFQqMWLECO7P37Rpk3X/mUoJ/P4jkGRK7YKbJ5lp2dAz4KmnnuIE29555x0MGTKk0tfv27cPX3/9NQDi2969ezeSk5OxYcMGKNMSMSbUGZ2bhcBFIAQy8wABOWAVOj0+PH0dl0pIgUfPnj2xePFik2vk3lVg6yKQ/kzlYATYE9APT74wt0I++9SpU7FlyxZMaRtUMRDMCIChMwH3ICAlEUhLAnKzbHKVlSoUSEhIgJ5lkatlAW9/DH5qChjfAFKR7OFtsSK7qKgIkyZN4oTdXnjhBUyYMMHqduRyOcaPH899rxUrVtSZSqc5LMviy6mj8FqkmN+onhGQLJ+aVq/qdGTmdvMikBjHVfiWlJYiISEBhToWvxfpMX/TDvjY4DqrLRcuXMC8efPgJABe8BKhX5sYyIyZJ48OA3rYHmQuLCzEm2++yXNjeHp64qWXXkK/fv1qlz5ZVgrs3Qikm8kx9xiAqy7++Pbbb3kJBF5eXvjiiy+q9qFXwrp167B9+3YAxB24adOm+mt2b2D37t34/vvvAZDVy6pVqyy/8NZl0gPAuAqXSEnXNmdXy6+vZxo9CCyVShEZGclV6F66dMn6ny+RAuOmkQYW1wxqeoX5wPbvSCOFUOsFXgAp3tm/nzTmOH/+fJUGYODAgVi1ahUXbDt27BgGDx5sObh6/jjX9EMmFGBeyyD8lpCCX4t0+Pfff7F7927T4Jh4HRYHfwBg9bi7a7VFmYctW7bgwIEDOHr0KN5KNjNAIc34hTkxhmCXRk3SZ7PSyHVOBjEKZpWHGo0GSYlJYFkWDIAAqRgtgrzBGBt2AKRIxyeArMCMFx9/7Nixgxv8XVxcqgwYHz58mPteXl5e9ZaWV5x8p+LgD5jSbUNb2p5+qVIS3ad7sUTCV1lRl8nJyxv/3svErxn50LDAsePHKzWEdUWXLl3QISoSQwofwF/MIDMjg/ieew2q1uAPkIK8FStWYMGCBVzDm/z8fCxatAjbtm3D//73P17Wk83k5wC/bCLXIEd9ikcAVv7xD86V01CKjIzE0qVLbYo7WSMuLg47duzg7o8fP77eB3+An25qsSBQngcc208KW40IhKTHRyMN/kATMAAAGZiNBuDEiRMYN66S7kSGXrxw9wSO/0keU5YBP68D+o4AujxqVT+oe/fuPAOg0+kqDQw5OztjwIABXI703r17+Y3rzenWlxSzHNgJqFXw8fFB/+JitJQW4s8iPVb/8AOaNWtG+q9WIQ8Q6mo5f1in0+Ho0aO2Z/eIHYiUdFC46TG9nhjN3CyoM1JwcNsmCMvU8BMxEDFARHg4HMqf5Bo1WbaaqbSqNVqEXb+Fp9yFSNWw6D5yCGRC6x5FlmV56aVDhw6tt2yTstO/w9XajNWYbmsty8fY+S0lkeRnZzywHkh39QC6PAqmXTc4OG6BxjDr/PfffxvEADD5OXg3wh2pt0gRXmFRER4ERiG01+AafZ5MJsOyZcuwZ88erF27lpM2TkxMxCeffAJnZ2f07dsXPXv2RNu2bauuqk28A+z/EbrSUigUpSgqKsKRPAU2plZsAzl69Gi88MILNS74AkjK76JFiziXpL+/P6ZNm1bjz6vOdo3V2UC53uaKEuDsUVKPYd56U+IIjH66Xt2EttAkDEDfvn3x888/AyCVutnZ2ZXPAozNpV09yICr1ZIT+9gf5MQd+gQ/aGygfPn+tWvXqmyIPXbsWM4AxMXF4dq1a+jQoYPlFzdvA/gGAL//CCYzBWGhoSgru4Px7ho8qmGx65P34bH8O0RUITmQXGg90FsbGQgAgEAAeHhD6+KO99ZswsUEQ8ongHmzZqBDp/Ykeygnk1zL8yy6kdLT0+AnZOEnE6CXSIyW8mTg2wXECPoGmlYM3v6AqzvOnTvH1V8wDMNPW6xjlFkplb/AmG6rVJDvmZ1uWCmlVu02E4mA6DZEFyo0ivyeIJMLo9vh1q1b0Gg09Ss8dvc28OdP8BYLUeDkhNLSUhwu1iHu6FmsmWQ9m60qBAIBJkyYgF69emH16tU4aRYXKikpwf79+7lJVFBQEEJCQhAYGAhnZ2c4OTlBr9dDo1IiIOk2IrOToFKqoDRIPhws0uHvEr4xbdmyJV566SVeD+qaoNPpsGjRIq7GhGEYvPPOOzZJmdeW06dPc+mmbm5uJOGktBi4dAq4fAbQlKvTCAwjBZ6N0ACmPE3CALRs2RKBgYFIT08Hy7LYv3+/TRkoiGlPBpxft5CgHEAqDDcmA/1Hk14CZjNBmUyGLl26cL1i//777yoNQHR0NE9/ZdOmTfjqq6+s+0TdvYCnXwSunIHo5EFERkQgIeEu/MR6TBRrkbTgFbg+NQVejMCiSqSOBTZcuW/hgwm2avlUhlarxaJFi7ilPgCMGTsWQyZNJr+Xeb9atYoYgqx0bqAsSU7gyTkEBAZAKBCQgbMgl1zumEluiCXQxsXjf+5C5GpZ+MW0RgC0ZHbk6FRrxdfyJMsVCKts/MtIB1Z9QrJmbMFRRlIoI1sCES0stu1r2bIlHBwcoFaroVarER8fX+MCpkpRKUng/irJvGIABAUG4ouLcfinVA8UJ2HXrl2YNGlSrTYTFBSERYsWITExETt37sTx48crFJylpaVVaHzuLQSe9hDBy4GBUfJPwwI/FmhxTUkMK8Mw6NmzJ8aOHYvOnTvXWp6BZVksX77cVIgHksxRH/ElS/z111/c7UGP9ITw9N9k8C8v8ubiDvQZRtLb61GSojo0ehDYyPbt27Fu3ToAxIr+9NNPtltvRSnw505+cBgAQpoBA0eT2aiBo0eP4uOPPwZAxOh27txZpWLklStX8Prrr3P3lyxZYluP2ZIi4MQByM/8g6QkU6BLKBQiqnkIZNpc8GIBjACZ3ccjeNQUi5IUQqEQsbGxNc6NBkjV7gcffMBbsvbv3x/vv/++TS4ZvV6PF2bPRlFSAoLEDDoF+mLSgD5gsjMqznSM21QoeClyzaOjTemfQhFpsSlzJqs2RydAKiUpgg5SUgMiFBoyWRgALDE0ej05wbQa4qJSKgFlGfTKUhz75Wf0j3CwPrA4hnEBe4tIpCR3PjiSqGT6BXEz/cp49dVXOa2pqgLi1YZliVH953e+4RKJgZFP4fN9B/Dnn8Ql6uDggHXr1lksdqwpCoUCp0+fxpkzZ3Dt2rUKDVoYAI86CTDSVQix2c+eo2WxKV+LQgcZ2rZti549e6J37951JgHCsiy+/vprXv1A3759sWDBgnrV/TGSlJSEGTNmQMoAg5wFmNW1DVyk5dxYjjKg+wCgQ48KoneNTZMxAEVFRZg4cSI3y3j22Wfx9NNP2/4BLAtcPUsCseZ57gwDtO5MqjFd3aHRaDBx4kSu6vipp57CrFmzqvz4N954A5cvk1aVAQEBWL9+ve3NuXMykbBlFUoum/LlGYZBcKAvvNzEYBwlgH8E0G88EBhZQT0UMGn52CLnYE5CQgLWr1+P5ORkuLu7Izs7m3fy9ujRAx9//LHNTVn27NmD7777jrvPZfIYZ//GYHN2OnGvFMuRlJQEuUEC2snJCc1rYcCqorS0FPEJCfB0FSHU14IRcPADxGa+a4kjKUTyDSQCXf7BpANbDQaP1atX46effgIA9OvXz6KwYLVhWRKEPvVXRckAnwDgsf8BXn4oLi7GtGnTuP82JiYG3377bZ032yG7xCItLQ3JyclITU2FKiUJbTPi4a4sAcMwYBgGQqEQeQERKOzcF5ExLREcHFznA7Jarcann36Kf/4x9TNu164dPvvss1rFEqrDRx9+CO2l0xjmKoC3zBEtYmJMNV2OTiQ22L5Hgzd7t5UmYwAA/gkkk8mwffv26jeCKMwHjvzGF5sCSPC4Y0+gxwD8+OtvWLt2LQDSIGLr1q1VatIkJibiueee4wJMw4cPx1tvvVWtg/rM77/g1qZV6CABlzcuc3REcHAwmRELhGTG2awlEuCADbt/QXJyMsLDwzFjxoxqz/wtGRKAaPUEBARg4MCBmD9/vs2DRFpaGmbOnMkZ6SFDhuCdd96p9D33E+Kx4MXZ8BMz8BECEwcPQKiLI1BYwG+MUUdkZGZyqb4ebk4ID/IAoAOkLoB/NOAXRtJaPXwAHz/A2a3my/G8dNLwRZ4DuPvggt4d8z79CgDJctq1a1fNBz21Coi7Clw8xc+dB8hx0mMA0L2/qWcEiC/6/fff5+4/+eSTmD17ds22bwuKUuDUQeD6eX7cROZMEjVqIeNeFfn5+fjwww95PRFatWqFzz77rN6KC8sTe+Qgkld/AX/Dkic8PBwe7u5k4O/aB+jQs8kO/EaalAEoLi7G008/zVWjjhs3Di+//HLNPuxeLFkNmFdFAoBIDHXbbpjxwxak5RHpiV69euGTTz6p8mRdv349tm3bxt1/+eWXK89YssCtW7ewbMGHiFLJ0UsmgJfBErg4O8PX1xcuLq6m8cjdCwiLIsHG0GYmaWgbSEhIQMuWLa2qmy5duhRvv/22zQOUVqvFK6+8wvUJcHNzw6ZNm6o00B9++CEXSIyIiMD69etN21QpSXu84kISD1CUkJxxlZIMgColyb3Xack1ywICBgBDXDIiEVlSi8RkJi+RYvWWrbiXnokiPTBi4iSMnvQ0WYLXtTvgypEKrR5ZRoDPYktwMIusQCutabEEy5LMo1uXgLjrll1q0a2BPiOs1r0sX76cC9ICwEcffcRTLa0TNGrg8mmS3VLeiLfqRNR8q3GsVpfLly9jyZIlvGLOLl26YOHChZDJqpBKqQt0OmhPHED81tXcZEgmk6F5q9ZguvcnmYgODbMCqS1NIghsxMXFBVOmTMHKlSsBAL/99hvGjh1bM8GwZi2BiObAjYvAmUMmv6lWA4crp/FVS1+suyrH8VI9zpw5gz///LPKPPZp06bhypUr3Kzj22+/hUwm4+myVEXr1q3x/cZN+O6777D4778RLmbQSSZAB10xiktKIBaJ4e7hDldXVzjr9RDI84BrhpaDnr5AcDjxTweFkyyCcgObSqXCjRs3MG/evEr7nxYWFlZrdvr999/zmsS8/vrrVQ7+N2/e5GWRTJ06lb9NiZS4McxiNLUhJSUFP90zKY2+N3g4IKuH2aCVPr8Mq8ebLWS4UaRFWpkeJ0+erNoAaLVk0E+4SS6lxZZf16wV0HNglY1DXnrpJdy6dYvLFlu6dCl8fHxqnWUDgAz8184C545VrMD39AEGjqnXtEaVSoWNGzfi559/5klVjBgxAnPnzq0Xd1cFiuTA79uQdeEsLyju+eggMOOmNmpOf01oUisAgPj1pkyZwnXW6dGjB5YsWVI7/6FGTeID549xBy4LUr6dWViEg0V6XNQI8dWKFVU2EM/Ly8MLL7zA6/zzwgsvYPz48dXex2vXrmH16tWIjY2FAEC4A4PWUgatJAL4iYkv1dHREY5SKSQSCcRiMUQiERiBAAwAtViCImd3ZDASxJeqcCU9B7fu3IFWq8WtW7csaysZmDRpEq9gpjL27t3Lk+gdMWIE3nrrrUrfw7Is5syZgzt37gAgPumVK1fWa2DOfIUWGRnJkwOoUw5tIY18rLD9gRLrkpQICAjA9u3b+d+ZZYlM9IN7QFI88OCudU0riZRkjHTqBXjZLpudmpqK2bNnc6J7zs7O+PLLL2uePFBaTPLYr54BysqlKEukRHKi0yP1qmZ5/fp1LF++nNd4SCQS4cUXX8SYMWMaJOCLnAxg1zrI01ORlEQ0/PO0LLI698fT896t/+3XA03OAAD8TB0AWLRoER599NHaf7BaRdKzLpwAVGVQazS4Yxgwc7Qsjusd8dKKHxBQRQOUlJQUvPLKKzz56uHDh+PVV1+tdvCJZVlcv34du3btwtmzZ7lZu7sQaC4RINqBQbSEgauw6gNcxwJpGhb31XpsvXkXFxMfWH3t/PnzbSooO3DgAD777DPufvPmzfHNN99U+T3LG41vvvmGJ8hX15SVlWHSpEmcfs3s2bPx5JNP1s/Gdn0B3Dpl9emj2Wp8HEsGyqWLP0GPiFBSXJaWTOpUKtOvYgRAWDOgVWdSV1LDrJHLly/j7bff5vLTZTIZPv744yrTnjlYluzz1bNA3DV+ERNA3G4dewE9+gPS+nO7FBQUYM2aNTh48CDv8ZCQEHzwwQe1yoirFpkpwK51UBbKEX/nDnR6Pc4r9LjoFoTvVq9psKBzXdMkDQDLsnjjjTe4VMWAgABs3ry57gprlGXAxRPAhRMokRfg7t27XDJmplCKLvMWwadNh0o/IjU1FW+88QZvJRAREYF333230p7DlSGXy3HixAmcPXsW165dg0Jhmm15CoFmDgyaSQSIcGDgI7JuEAQCAXK1LIbuPASdhb/X1nRScy0kAPD19cXKlSurTOG7f/8+nn/+eW6JPHDgQF5wsj5Yu3YtfvzxRwBEXmTnzp311/+1ihXADbULjt1OR4iYQbSbE1o1b155CEIkJrGe6DZE/daxbtxWJ0+exEcffcQlLjAMg9mzZ2PChAnWZ8zFhUDsFeDmpYrBZ4AYpPbdSSGmhWLLukKtVmPPnj3Ytm0b7zxgGAbjx4/HzJkzG27QzUoDdq6BVlGC+Ph4KFUq7JLrcB1SrFq1CqGhoQ2zH/VAkzQAAOmuM336dO7grXZaqC2UFAGnDyHv2EE8eGAqvnIQixE8ZDTcRj1JGjhboaCgAB988AEvE0EgEOCpp57ClClTanWA6nQ63L17F4mJiUhKSkJmZiby8/NRWFgIjUYDiU6LCKkQzRxFiHAQIEQMyMRiyJxkcHR0hIBhsPHCDTy35y/o9Ka/WChgsG7aBDwzfizgG0Ry3H0DedkKer0eq1ev5qqzASIM9s0331Spq6JWqzFnzhxO4MvWYHFtiIuLw4svvsgdK5MnT8bMmTPrbXvISALWvGmxkA8AFPDDnQRT3UdQUBB8fcoFbX0CyKAf0YLEdER1NLkpx5kzZ7Bw4UKo1SY3U8eOHfHWW2+ZFDIVJUDCLZJ1lJJouRLa2ZW4edp3r9cZv16vx+HDh7F+/Xre5AoAmjVrhtdff71u4hm2Is8Dtn8PfUkR7t67h+KSUmwp0OK6kq07z0Qj0mQNAECCrMamDhKJBBs2bLCpP221yctC/JqvUHrzMveQSChEeFQ0XPoNJ7MdqeWcf61Wi9WrV2P37t28x319fTFr1iwMGDCgYfyTOh3xUWY8ANIMuj2F+UjIKcCGizeQnF+IcE83zOjSFtE+HhXf7+YJ+AZAIXPFtgN/4/jNOCQXKZBiKK1/7LHH8Nprr1W6ajBWZBoLkgBg8eLF6NWrV51/XSMqlQrPP/881+3N398fGzdurJkEgFZL5CHKSonfu7QEKC0is+LiQlJtXphP/OCaQkBtoYOboc4g+f59LiefBYNmvfvBLaYtCd6HRNTZLN8W4uPj8cEHH/AGVB+pA+YMehSP+ntAlPHAuvxFaDOSxx7dpl59/CzL4uTJk9iwYQP3XxpxdnbGjBkzMHr06Hpv6sJDpQR+XAk2NxPJSUnIlxdiU4EWN5UsZsyYgSlTqu4a19Rp0gagpKQEU6ZM4XztHTt2xBdffFFvA+rxzWtRuv9nBBjyehmGQWhICDwDgoDu/YjP00p616VLl7B8+XIuB91IVFQUpk+fjp49ezaMITCntJg0gMl4YLquJPe+sKgIDx48IH2B76Xhk/OxPBeSUCDA2kUfYPozz5CydicX3qBQ3u9fqzReG2BZFp9//jkOHDgAMQCJAPh04UdoHRVpSiNVq/i3za9VZeSiVJKBvxoNhgAAejWgLQL0GkAgJr0YRI6Aly/K3Lzw9U+7EVtQgnQNi+CwMKxcubJh0hQtIC8owKZln0B1+ypaSwUIMhzjIpEIfr5+8PLygtAo5ufmSdI5W3ciNRP1iF6vx/Hjx7F161YusGpEJBLh8ccfx5QpU+rPnWd9x4BfNoFNjENaaipycnOxo0CLC2UsRo0ahddff73hz+d6oEkbAAA4duwYFi5cyN2fP38+hg4dWm/bO3L4MI6uWIahToCLIfDq4+ODwMBACGTOlRZ4KJVKbN68Gbt37+aCb0aioqLw5JNPol+/fg2TrmYJYwZKZqpJJjorDeqSEqSlp3GG9kFRKZ7Y/6/l+IGAQewbM02rCJkz4OSMDHkRDpw4BYUeKNOz8A4KxpRnZ0EklZpy9QUCcmHKySqwekO+vyHnX6sBNBpAqwbUapIPrzIM5GolN4in3LuLBwl3IGEYCBnA18cXQUH1sEK0hEhEBkdPX5IC6eULeAeQ2wajePHiRV62VK9evfDxxx/Xf89dI2WlQHI8qSROigerKIG8oACpaWkVjs9SRgg0b4sWoyfCp33neteqKSsrw8GDB7Fr1y5OwM0IwzAYOHAgnnnmmQaRcq4AyxLN/mvnkJmZiYzMTPxTosPvRXp0794dixcvbtiVSD3S5A0Ay7J4//33cebMGQCkVmDDhg3w9q6/mcmNGzfw8Qfvo4OuBAOcBZAIGDg5OSE8LBwODoaiow49gE69LbbaS09Pxw8//MDLgTfi5eWFkSNHYuTIkbXSPa8LCgsLsevnn3H0lz3wZtUIEDHwFzM4EHsPu+KSrb5vfv/uWDq8D3e/VKHA3bt3OR+8WCxGi+bN61UNs7S0FAl373L54E5OToiKioKgLgYukRhwcgZkLuTaxZ3oFTm7ERlyN0+y+rFhW+bNSQBgwoQJeOGFF2q/j5bQ64lxT7pDLpkpFl07Op0OWdnZiM3IwTWFBjfKWCRrTK/r2LEjBg8ejEceeaROZ94sy+LOnTv4888/cfjwYa6XhDl9+vTBtGnTqu6pW5+c+wc4cQB5+fl48OABbpTpsbFAh5iYGHzxxReNtoqrD5q8AQCA7OxsTJ8+ncsG6NSpEz7//PN6nUllZGTggw8+QEbiPQxwFqC3sxAykRBhYWGmk0IgBFp2IHna/hULdBISErBx40Zez1wjDMOgc+fOGDRoEHr37t1g5esAkZT+/fff8eeff1bol9uqVSukpKTg999/t/r+SZ3aYMek4QCAMqUSCQkJXPqqUCBAdHS07TpJNUCj0eDOnXhoDGqLYpEYLVq0gFgsIqsLiUFIznjtIAUcHIj7TiIlBtz8tlQKSGSkYthRVqeCXXq9Hh988AE3gQHqeBWrKCH1BElxZLZfPk/fHEYABIWRIslmrZDPiLBz50788ccfvEwbIwKBAG3btkXnzp3RqVMnREVFVTuxoaysDDdv3sSlS5dw/PjxCi5SgJwL/fv3x+TJkxEREVGtz69zblwADu5CYVERkhITkaxmsTJXC/+QEHz33XcN74qqZx4KAwAAf/75Jz7//HPu/pw5czBx4sR63aZKpcLXX3+NgwcPwkkA9HcS4BEnAUL8fBEQGMifbfoHE9dQi3YV4gSJiYn4+eefceTIkQpLb4CkZXbo0AG9evVCx44dER4eXuf+xdTUVJw6dQonTpzgVfQacXd3x6xZszBs2DC88847WLZsmdXPmj9/PpZ+vAgpsbfxxaIF0JcUwVnAwE0sxKTHRyPMz4+4atRKgyvHcNHpTO4ewDCDZsi1UEiUQYVCMgMXiw3XEoMyKLnoRGL8sGEj4u8/gFIPqAUCzP/wI7Ro254M+CJxk5HaNaJUKvHyyy9z7RZFIhG++uqrmnVEY1mzWX4cie1UdgrLnEmmUWQMqdK1kMxQWlqKP//8E3/88QcePLBeOyIQCBAeHo6wsDAEBgbCy8sLzs7OkEqlYFkWOp0OhYWFKCgoQFpaGpKSknD//n2rFelOTk4YPnw4nnjiCfj7+1f7p6hzbl4EDu5CaWkp7ibcRbZGhxW5Wji4eeD777+v977CjcFDYwBYlsXChQtx/PhxAOQkWr16dYMsFQ8cOIAVK1ZApVJBygC9nAQY4eeK1uGhkJafEYnEQIu2RIE0pBlPRrigoAAHDx7E77//XsHvaY67uztatmyJmJgYREZGIiQkBEFBQTbFDliWRUFBAe7fv4+kpCTExsZyTXYs4erqiokTJ2Ls2LHc0rYyHSFjDYFOp8Pbb7/NFV4xDIMPP/wQ/fr1q3Ifa8OqVat46amvvvoqHn/88XrdZl2QlZWF2bNnc3EWDw8PrF+/Hh4eFjKyyqNSAvfvEn2rpDjrchGAaZYf0YI0p/cNsNkgsiyL27dv49ChQzh16hRPa6euYBgGbdq0wciRI9GvX7+mU0B19V/g0C9QqlRIiE9AgVqDb3O1UEhk+Prrrxuu4KyBeWgMAEAko2fMmMEdmOHh4fjhhx8a5CBKTk7GokWLuEwFAYCurhLM6dEeoSIWFk8xmTNJn4tpR3K9BSRwxLIsbt68iUOHDuH48ePcIFoV7u7u8PT0hKOjI2QyGecC02g0KC0lLfdyc3O5Vn6V0bx5c4waNQqDBw+2mDJZmSR1s2bNsHjxYq7Qi2EYzJ8/v8oey7Xl5MmT+PDDD7n7I0aMwJtvvvnQZGPcunULr732GrcK7N69O5YuXVpx/43S2omxpK1iSmLFSlxznF0NA34LICzaaspydTAag0uXLuHy5cuIjY3l1RJUBycnJ7Rv3x5dunRBnz596qwXQJ3AskQi5sQBqNUaJCTEI0+pxso8LfIgwrJly2yvnn4IeagMAABcuHAB8+bN4+4/8cQTeOmllxpk2yqVCqtWreL1tgWAcY/2wqxubSFJjCVphZaQOBJxuogWZCluEI3S6/W4efMmzpw5g8uXL5Oq5Hr6SyIjI9G7d288+uijNlUrJyQkYMOGDZwk9dSpU3HixAlOshsgRuG9995D//7962WfjSQlJeGFF17gYhYRERFYtWpV05lB2kj56up58+Zh+PDhZJb/4B7x4yfHkwIkazAMaSsYGUMuPrbP8muKTqfD/fv3cffuXWRkZCA9PR2FhYUoKSlBWVkZhEIhhEIhnJ2d4enpCR8fH0RERCAiIgLh4eENl/lUHXQ64OhvwNV/odFqkZCQgGyFEt/napGrA95//30MHDiwsfeyXnnoDAAArFy5Ert27QJAZp+rVq1CixYtGmz7p0+fxrJlyzjZaoAUfr0//220dRQSOd/keOvNxAGSQhgcQS7GJiQCAYqLi3H79m3ExcXhzp07ePDgATIyMrgMG1txcXFBZGQkmjVrhjZt2qBdu3a1mnklJiZi6dKlnB8bqIG+TA0pKSnBnDlzuJ7CMpkMq1evrplKbCPDsizeeecdXD53DmEODNq6OWL2iMFwyMus/HiROpLJQzNDW8p6rMa1C5QKYN824MFdaLRa3Lt7F2klZViZp0W+DnjttdcwZsyYxt7LeuehNABqtRrPPvsspwzYEEqT5cnJycEnn3zCtQAEiDF66qmnMH36dIi0atK4O+46cD+h8iU8QGIHxibqXr6Atx/pB+DiDi3LIjc3F3l5ecjPz0dZWRkUCgX0ej0YhoFYLIaTkxOcnZ3h5eUFX19fODk51cnvUVpaii1btmDPnj08d1BYWBg+/vjjOm07aAmNRoO3336b04ViGAZLlixBjx496nW7dQrLkgrizFQg4wHK7sYh7sQRbsD39fGxnO/uE2Ca5QeG2dSWkmIDORmkj7g8D1qtDnfvJuBOURnW5mtRqif9hKdOndrYe9kgPJQGAKjYp/edd96pdx90efR6PXbs2IGNGzfyBsfIyEi89dZbiImJIQ8Yl/dJccSna2xgbwsMQ/LQXd2J28jZjVzLnABHZ3ItdSQzQom0zlwBKpUKv/32G7Zv347CwkLec6NHj8acOXNqJrdQDfR6PRYtWsQF/oGH4ORUlpFiu9xMIDeLDDZZaeQYMCMrOxvp6ekAAAEjQKvWrSB2diE+/PBoMst3cW+EL/Af5+ZF4NAvgFYDjUaDu/fu4d8CBX4q0EED4Omnn8bMmTMfmrhSbXloDQAALFy4EMeOHQNAXDDbt29vlCrbuLg4LF68mHNRAGSmOnr0aEyfPh1ubm78NxTmkyYgKYmkWCc3q/JUPlthGEPOu8TQWN1wW+xgyoUXO5geq3DbAUVKNf7+5xj2/PY7suWFMHdK+Pv74/XXX0fXrl1rv69VYC7zYGTw4MF45513Gu/kZFniOigpJhpBRQWktWWRHJDnksBtZXn4Zuj1ely9dRt3StVIULNoOWQkJrz4Gp3l1xdaLfDP7yTbB4BKrcbdu3fxa24ZDpeQo/ypp57Cc889ZzeDP/CQG4CMjAxMnTqVy6rgAmqNgFKpxA8//FAhQOzo6Ijx48djwoQJcHGxIp+rUZuaqOdnExnevGyiVtoAfw8LoLSkBHn5+SgoKOAFobUsoGUE8A8NRWizKAilMp7BgFhilrPvYLptvAhF5CISkiyoCnIQDMAYdgIswLLQ6bTYsG4dzpw5AyFIxlXbNq0x5/nnIWIYUkug15tds6YLWKCqn4zVk9fodabPMLad1GrJ/8HpCCnJoK5UkB64VbnyKsPdi8R7AsOAoHD8dPQ4Vq9dB4DENXbs2PGfKzRqEuTnAH/8SFZiABRlZbh1LxEbssoQpyIHi73N/I081AYA4PdADQkJwaZNmxo14+Dq1av46quvKhTUSCQSDBgwAKNHj0aLFi1sO9C0WsMsM5+4jUqKDf1zi8lgZN5Dt5qwIFWacrkc8oICqCyk+AkYAby9veDr5wdxA62s9HoW9+8nQ27mdnJ2ckJks2YQPiyzY7GENJz39iedvCxIbgOAQqHApEmTuGSC8ePH48UXX2yMPf7vEnsF+GsPJ/RXWFiIU/fuY12OCnKDLX/++ecxadKkRtzJxuOhNwCpqamYOnUqN2ttCqlbWq0We/bswfbt23mZQkYCAgLQt29fdO3aFW3atIGDQy2lB/R6kn5apjDNWpVKIqKmVhuqclVQFBUi88EDZNxPQnZaGrRlpZAwDBwYoqTpwAAShoFELIK3tze8vb0bbOAHAK1Oh6SkJJSUmDpmOTs7IzIysmkN/kIR0YBycQfcPABXw8XDm1xs1AkCgB07dmDNmjUASKXt6tWra9xQiGKGSgkc+RW4RSTeWZBivD130/BroQ5akN/79ddfr7IX+H+Zh94AAMAnn3yCI0eOACCxgC1btjSJ/HCFQoHdu3dj7969FQKpRhwcHNCiRQvExMSgefPmCAsLQ0hISK0CrCzLIicnB6mpqbh37x4SEhIQGxvLi1GUx6hNNGzYMPTt3RsiVmdS4jReawzqnGrD7fIXrYY8r9OYJCD0ZiqfeoMMhF7Hc/kAxCcbGxeHUoWCeGdYwMPTE63atIHQXElUICCuJEYACBhyzRivjV/GirFgWfIe8iL+5wmFgFBMVD6NsREHQ+zEUUaC7DInMrhLHOs02D59+nSuMjw4OBgrV6607i6kVE1iHPDXbuJCBUiO/4NU/JCcixtKcrzJZDIsXLgQXbp0acw9bXT+EwYgNTUV06dP52IBTz/9NJ599tlG3isTarUax48fxx9//MFLG60Md3d3+Pr6wsPDA25ubnBxcYFUKoWDgwMEAgEYhoFarYZarYZCoUBRURHkcjmys7ORk5NjUzUwwzBo3bo1+vTpg759+zaaOml8fDzeeecd5Ofnc48NHToUb775ZuNJZzcgFy9exLx587hVbExMDD777DNqBKpLSTFwYj836wcAeWEhziSnYn2mAvkGl09AQACWLFmC8PDwxtnPJsR/wgAAwOrVq7kKVYFAgBUrVtRMbKueycnJwcmTJ3H+/Hlcu3atghpnfePl5YX27duje/fu6Nq1q21aNPXIuXPnsGDBAk5WArDPgNzmzZuxadMm7n5YWBgWL17cOHr4DxtaDXDpFHD2KNfwSK3RICU1DT+l5OFoiZ7LZuvVqxfmz59PjauB2hmAvRuB0CjS29Tbv1FVGJVKJaZPn87JzXp4NH0FP61Wizt37iAuLg5xcXFISkpCSkpKjTVXyuPl5YXQ0FBERUWhefPmaN26Nfz9/ZvMwLp3715899133MxXKBRi7ty5dumTZVkWK1as4GWRSaVSvPTSSxgxYkST+c+aFDodcOsiGfgLSftNvV6P7JwcXE7NwtY8FTIN4rsSiQRz5szB6NGj6W9pRu0MwOcmTR5IHUmmg18wqWCsZuOMuuDWrVt49dVXuaKs4OBgfPPNN40+y60Oer0eubm5yM7ORlZWFgoLCyGXy1FaWgqlUsnNlFmWhUgkglQqhVQqhaurK9zc3ODj4wMfHx/4+/s32cYVLMti1apVnJwHQH2yAPldNm3ahC1btvAeb9u2LV599VU0a9askfasiaFSAjfOAxdPcUWVepZFQX4+kjIy8WuuEmcUei4buF27dnjrrbceSumQ+qbuDIA1BELSVcnRiVwkUrNmHRJT/jinAW/IJTc27DAG4Wxs0nHgwAF89tln3P2QkBB8/vnn8PPzq+m3pNQhKpUKixcv5nVL8/X1xZIlS+gAZ+DEiRNYvnw5L4OMYRgMGDAA06dPt0+3EMuSPP4bF4iPX6PiHi6QFyA9IxNH8hX4q1iPMsOI5ubmhlmzZmH48OF01m+F2hmA438CD+6SP6a+QwnGNn1OrkQWwd2L9F/1CSC51mY9On/88UesXbuWu+/l5YWlS5f+ZzW9HxbkcjneffddXkOa6OhoLF26tGlJBDcBcnJy8O2331ZoK2o0BP/73/8at21iQ1EkB+KvEwmHHFM3MWPfi/SsLJzIL8OREh0X5BWJRHjiiScwefJkODs7N85+PyTUTRBYWQZkp5Fq1sxUUnlXmE8ebwgEQiKeFhAChEQCIc2w9Zd92LBhA/cSiUSCefPmYcCAAQ2zTxQeDx48wPz583mNcLp164YFCxY0WVdVU+DcuXP44YcfkJycXOG5zp0744knnkCPHj3+OzNcYy+Eu7eAOzeIVIoZRldPcmY2juUrcEqh5wq6BAIBhg4dimnTptEVv43UbxaQSkl8dGUKUrGqKCFRepWSXDQaQKsm1xoVqXzVagzFTIaLtup0Rot4+eJGiQbfHTiMu0pTFsDYsWMxe/bs2hdfUWzm4sWL+Oijj1BaWso9NmbMGLz88ssQmq3cKJbR6/U4fPgwtmzZgrS0tArPBwQEYNSoURg+fPhDFe/i0GqINlZiHOl6ZqEXgl6vR15eHi5m5uJ4ngKXFXoYRwaGYTBw4EBMmzaN+vmrSdNPA9XpTMZDUUKKO+T5RHwr16CZU4k+S1FxMeKSknG9RIPrSj3ilCxCmzXD+++/T/OA6xmWZfHrr7/iu+++4/UzeP755/Hkk0/+d2atDYRer8fx48fx448/8voyGBEKhejZsyeGDx+Obt26Ne0aCnkeGfAT7wAp96xO9HQ6HR4UK/DnvVQczy1BjtmpLhAIMGjQIEyZMoUO/DWk6RuAqtDpiHhaZiqQlkx6p5aTW1ap1EhKTkJZWRnULHBLqcdNjQDdnpyC8ZOeatonykOKRqPBihUrOJ0mgLjh3nvvPTz66KONuGcPPyzL4saNG9i9ezdOnTplsYOcq6sr+vfvj/79+6Nt27aN35FLpyPqt4mxZOAvyK305WWunjibU4ht568hsZjvShaJRBg2bBj+97//Nek074eBh98AlMfYfCPpDnAvjgSpdVro9SzS09OQk2s68FR6FmlOHmg/YTKiBo4gMgCUWpOdnY0FCxYgLi6Oe8zb2xtLliyhgfg6JicnB/v378f+/fuRm2t5UPXw8EDv3r3Ru3dvdOzYEWKxuGF2rqyUDPYJt0hTJLXK+mtFYrChUXggdsKeKzfx58kzvB4bAJlAjBo1Ck8++SR8fHzqeeftg/+eASiPWkWMQcJN4G4sivJy8OBBCjTllpxOHl7wf3QgXLs8QppyUGNQIy5fvoyPP/4Ycrmce6xVq1ZYtGgRzfSpR/R6PS5evIgDBw7gzJkzVosJHR0d0bFjR3Tr1g2dOnVCcHBw3bri5HlkwL97i6zIKxtePH2ByBgUeQfi79sJOHjoEO7du1fhZU5OThg3bhzGjRsHd3f3uttXih0YAHM0aiA5HqrrF5F24hAKc3N4TzMAvLy94RscAknrjkBUG9LI3cYaBHtGr9dj27Zt2LRpE88l8dhjj+Hll19uuFknBQqFAsePH8exY8dw6dKlCjNpczw8PNCuXTu0bt0arVq1QrNmzaonRKjXAWn3iWvnXhxxx1pDJALCosFGxCBN4oyzt+/g1KlTuHHjhsWe176+vhg/fjxGjhxJM8XqCfsyAOZo1Eg6ehA39/wIv5J8iM0mQQyIEqWfry+kzi6kRV+zlkBkS9KOkcIjLy8Pixcv5vr2AoBYLMbcuXMbrUEPhVBcXIzTp0/j9OnTuHDhAk9zyRIMwyA4OBjh4eGcMm1gYCACAgLg4eFBYglFcuLSSY4nl0rSvfUyZxT7BiNF6oYb8lLcuZeIGzdu8IT/ytOhQwc8/vjjeOSRR2h8rp6xXwNggGVZHDl4AGe3bUBwmRytpAKeMXBxcYGPtzdcXd2IooVvIOnXGh4NBIbbvavozJkz+Pzzz3kun4CAACxcuJD6+5sYKpUKN27cwIULF3Dx4kUkJiba9D5PIRDpwCBSIkArFyl8xQKIhEIIhEIIGAaMMcDMskTKBCLEagW4VKjErbxCi7P78vj4+GDIkCEYMmQIQkNDa/M1KdXA7g2AEY1Gg/3792P3jh/hXZSLtlIBWksZSAz68WKxGF5eXvDy9IKDg8GdIRIDweFAcAQQHEna/dmJu6isrAwrV67EH3/8wXu8f//+eOONN+Dk5NRIe0axlaKiIly/fh23bt3C7du3ER9/BzKNCgEiBsEODELE5OIirDxGoGOBu2o9YpUsbin1yLOxa2ZkZCR69OiB3r17IyYmhqYFNwLUAJRDq9Xi6NGj2LlzJ5ITExEtYdBGKkBLCQNPETlAXVxc4OXpCTc3N356nUBIVggBIeTiHwx4+PznGn1funQJy5cv55RXAdLY5uWXX8bIkSPpidyU0euIbn5hPmk3WpDHNbRnc7OgKi1BWVkZVEolER9Uq6FWqaAtF0fI0bKIV7GIV+kRr2KhqmQUYRgGvr6+CA8PR/PmzREdHY327dvT/sdNAGoArGDMtd67dy9OnToFnU4HPxEQIxGghYRBM4kAUqEA7h4e8PTwgJOzMywOe2IHg0pqkKk3bDntoocFuVyONWvW4MCBA7zHo6Oj8d577yEsLKyR9syO0WqID15VRq65BvaGftEKBekhXWq8lABs1S6ZCptx9UCJuw/yHd2Q4+iCfC1L6mrUamg0Gm4iJJFIIJVK4ezsDA8PD3h6esLPz49W3jdRqAGwgfz8fBw4cAD79+/ntGyEAMIdGERJGEQ6MGjuLIWPhzs8PDzg6Oho2RgYEQgBH3++YfAJaLLuI41Gg3379mHz5s28fr1CoRD/+9//MHXqVBqsqwtYlgzaJUVksFaUkAG7rJQM6mWlhgG+jNxXKoh8Sl3j5kn6e/gHmy4yKqr2X4QagGrAsiyuX7+OgwcP4tixY7xuXgIAAWIGYWIG7Xzc0SnQByEyCaS29iZmBETQzvyk8wls1JWCRqPBX3/9hW3btiEri5/eFx0djXnz5tEG5rbAskT7qrQIKC4i1yWGS3Gh6XZpEemb3BDInE2qusZm9h4+5Bh0aPx+2pSGgRqAGqJUKnHy5EkcPnwYFy5csFiOL2aAziEBGNi6Bdr5ecGH1YDJy7L9JBcIyeogIATwN8QVPLzrvcFObm4u9u/fj99++61Cup5MJsPMmTMxZswY+xZyY1lSZGicqStKiatFUWrmbjG71FTU0FYEQlPzeqkjGeAdnchjMmeSvuzkQi4ubk12tUlpWKgBqAPy8/Nx7NgxHDlyBLdv37b6Ond3d/To2gWPtiIGwbm0kPRSyE63fYCQSIkx8AskLiTfQGIUBLUbjPPz83H27Fn8888/uHTpUgWDJhKJMHLkSDzzzDP//WpMliWDemEBCZSWFJKZevnZen24XwBD7wvDYC1zMg3mUhl/kOeuHcl7aPCdUk2oAahjMjMzcezYMfzzzz+Ij4+v9LURERFo164d2rRqhbZBfvDVqcBkpwMZKUBOBqCzcYARCAEvH+K39fAmy3p3L7LEd3KxaBzkcjlu376NGzdu4PLly1b3VSwWY+jQoXj66afh7+9v2/48LGjURE02z6Aqm59j6mVRHzN2gYA0NHJxI/+Ls+G2s6vZxY24YOhgTmkAqAGoRzIzM3Hq1CmcPHkSN2/erLIgxsXFBREREYiIiEBYcDCaucoQwGjhriiCOC+TDE42/l0sAL1OD41WAwUjRLEeyFOqkVVcivu5+cguKkGJnkWpHoYLixI9oDR8vL+/P0aNGoWRI0f+N2b8yjKiGJuVSq6z08lAX9vDnxEYZulOgMxsxs7N4F0AZ8Ng7+hEB3ZKk4IagAaiuLgYFy9exIULF3D+/Hnk5VVselEZjo6O8HZ1QZSzFCFiBgFCFj6sGu56MlNl9XroWRY6nQ56nQ5arQ76aqb7OYjFcHF3h6t/INwCgsA4uwIu7mQl4eIOuHuSDBEnl6Y9kLEskJ8NpCYDaUlA+oMq5YctInEEXN3Id3dxrzhbd3KhgzrloYYagEaAZVmkpaXh6tWruHHjBmJjY5GSklL1Gy0gAuArAvzFDPxFDLxEDLyEDLxFgExQ+cAkEong7OQEJ2dnuLi4QCqVVp6+yr1RbMoe8fYjricf/zqJRdQInY7M7FOTTIO+re1IRSJSl+HpQ9QpPX3I93DzJL51CuU/DDUATYTi4mIkJiYiMTER9+/fR1paGlJSUpCbm1upmmNliAG4iwUI9/ZEiKc7QjzdEejmAj8XJ/g4O0EGvVluuaL27hCBEPDyNRkEn0BiIFzc6m6WzLJEjCwrDci4T2b3mam2+eyljiS91s+YZhtABvr/WKU2hWIr1AA0cfR6PQoKClBQUIDi4mIUFxdDaSjT1+v1YFkWDMNALBZDLBbDyckJMpkMbm5u8PDwgKurq23pmnq9oZK0xJTKaMx+KZKTbJjCfGIsqotYQgyDuyfg6gG4eRDXibMrGZQdJMSXbjQSxn7QqjLD9gvIPuRmAbmZlTcWMcIwxBAFhQNBYUBgGBnsqbuGQuGgBoBSPVRK0vSjINeUQZObCeTn1khioM4QikidRFA4EecLCicpsxQKxSrUAFDqBq0GyMshxiA3k6Sx5mSQnPnyMILaGwsXdyAwlFwCQknBnIg2naFQqgM1AJT6RaU05NhnmwqryhREgVKlJO4mfbkYB8MADlLiGnJyIVlIrh4k8OzjT1w7NEBLodQaagAojQvLkvgDy5pWBbSqlUJpEKgBoFAoFDuF5r9RKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnUINAIVCodgp1ABQKBSKnfJ/Bov26TxZbaQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2363,7 +2363,8 @@ "ax.set_yticks([])\n", "ax.set_xlabel(\"\")\n", "ax.set_ylabel(\"\")\n", - "fig.tight_layout()" + "fig.tight_layout()\n", + "#plt.savefig(\"ws.png\")" ] }, { @@ -2375,12 +2376,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "SWD_mean: [-0.0145953 -0.00821253]\n", - "SWD_cov: [[ 0.33390158 -0.00322316]\n", - " [-0.00322316 0.33024767]]\n", - "uniform data mean: [-0.0111301 -0.00547287]\n", - "uniform data cov: [[ 0.3390873 -0.0009252]\n", - " [-0.0009252 0.3358195]]\n" + "SWD_mean: [-0.00550688 -0.01265047]\n", + "SWD_cov: [[ 0.33104274 -0.00066157]\n", + " [-0.00066157 0.32502687]]\n", + "uniform data mean: [-0.00811472 -0.00649011]\n", + "uniform data cov: [[ 0.33851945 -0.00040779]\n", + " [-0.00040779 0.33634424]]\n" ] } ], @@ -2400,12 +2401,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "SWD_mean: [-0.00720225 0.00093422]\n", - "SWD_cov: [[0.46280745 0.00430958]\n", - " [0.00430958 0.04322462]]\n", - "mixture data mean: [-0.00105415 0.00038055]\n", - "mixture data cov: [[0.5299907 0.00400946]\n", - " [0.00400946 0.03974851]]\n" + "SWD_mean: [-0.23783627 -0.00475179]\n", + "SWD_cov: [[0.4070379 0.00181778]\n", + " [0.00181778 0.0437211 ]]\n", + "mixture data mean: [-0.23401397 -0.00025131]\n", + "mixture data cov: [[0.47589296 0.00204945]\n", + " [0.00204945 0.03970049]]\n" ] } ], @@ -2418,12 +2419,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADQ/ElEQVR4nOydd3wUdf7/X7N9N9n03kggAULvTRSRIjZsqNgF5Pzd2e/OE8/unV8Oz3ae3p0iYFdERCygCIp0Qq8BAiEJ6cmmZ7N9fn+8d3Znkq3J7iYh83w8Jtt3Zzczn/fn8y6vN8OyLAsRERERkT6HpLt3QERERESkexANgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFk3b0DIiIXBTYbYDHbNwtdsja6n2UBiQSQSOlSoQKUKkAq7e69FunjiAZApGdjswHGNsDQBpiMgNFAl2YjYDLxBl0zYLUCVgu9htvA0gDMtntfBgDD2K+0g7XR81krvYfVat/sg7vZ/rkmE2Ax2W9b/P9uMhkQFgGE27foOCAmAYiNB2ITAbnC//cUEfEDhmXZ9qeGiEjwMJsAfSugb2m3tQJtLYBeD7S1OjeTsbv3uHtgJEBCMpCUBqRmAf1ygHBtd++VyEWGaABEuobZRAN4KzeQN9sHc/smuK6nmXtfgJEAUgldMgxvVWLt/HvGJQGZA4HsIUBqJrmTRES6gGgARNxjNACNdUBzA9DUSJctjUBzI9DSDLQ20XNCAcOQ71yhpE2pBGRyQK4kV4pMBkjl5Ffn/O0MI9w4WLtbqD0s63wew9B7cO8nldEmk9k/V8HbeLdlcnqOxI1/n2VpVWMykFurpYm2pgagvgaoqwF01eRi8oRaAwwYAgwcTqsDmejNFfEf0QD0dQxtgK6KBp76WtoadEBjPfneg4VSDYSFA5pwQB1Gl5pwGtg0YXSfOgxQqem5SpVwEL+YsVnJCJSXAOXFQPFZMr7uUCiBAbnAwBFA1kAxdiDiM6IB6CuYTUBNJVBTAdRWArVVNPC3Ngfm/VVqIEwrHNDVYTSYcwO7KowGfXWYmAHjDyxLhrm4ADh7AigpdO9KksnJCAwYAvQfTP8TERE3iAbgYsRoAKrK7FspUFVO7gXev9pxjWXpuv0PJcxQ1gwLFpBKYQuLgFUTDmuYFlZ1OGwaLayacNjUYbBpwmFTacDIZGAYBgzDQCKRQCqVOi65TSaTQSqVgukrM3k7LMvCbDZDr9ejra0Ner3esbW1taG1tdVxnduMRiMMBgNMJhOMRiNMJhPMZjPMZjMkFhOybEYMYkwYwJiFqXwODxZlOFUxcpyXqlEqD0OjMgwKpRJK+6ZWqztsYWFh0Gg00Gg0CAsLE9wnE91MFx2iAQgxJpMJdXV1aGhoQENDA5qamtDS0uLY+IOAwWDocPKbzWZYrVbHBpsVyRIWaVIb0mRAmoxFPDe5djXgu8BoY1FlAWosLGqtLGosLHQWQGdl0WIL/G8gkUggl8shlUohl8sdhkEmkzk2vuHgGxOJROJy4wyPu8v2z+UMUfvnchsflmVhs9kcl1arFRaLRfA/MRqNjv8V978zGAyO/6XV2oXgrwfkAAarGIxQSTBMxUApcW9c9TYWZ4wsThlZnDbY0Ojn/1ahUECj0UCtVjsu1Wo1VCoV1Go1lEolVCoVFAoFFAoFlEol5HI55HI5FAqF4Dr3XO5SNDLdg2gAgkBzczMKCwtRXFyM0tJSlJeXo6qqClVVVWhu7prLRSsBMhUMshQMMhUSpMkZyHycUJtZoMLMosLCosLMotLCotLMoikIg7xI6JEByFEyGGI3BpFSzwdGlZnFWROLM0YbzhpZtPWAkUCj0SAiIgJRUVGIi4tDbGwskpKSkJqaioyMDKSmpopGIoCIBqCLsCyLc+fO4fDhwzh27BhOnTqF6urqgL1/hIRO6gEKCQYoGcT7ONq32ViUmVlcMNNlqZlFjcXzSsBXuBkyd8kdQuKh5Bv8GTTf1cLdVqlUjo1z13AzZ/4qib+iAZy/v81mg81qhay+BpqKIoRXl0HVUAPWZgNrs8Fmo5UMbVZa1dhsKGdlOGeV4JTBhnN6E1r0tHrpSchkMmRlZWHw4MEYNmwYRo8ejfj4+O7erV6LaAA6gdVqxf79+/Hbb79h9+7daGho8Ps9tFotIiMjERkZCa1Wi7CwMISHhyNcpUSq1YDktkbEttYjzNDqdE+0c1MwgCNd0RybCEtCCiyxibDEJcMWEQ2GlyfOd21wl/wBxJWrhHO78B/z5r9nWRYsy8JqtTrcJZzLxGKx0HWjEVaDHjZDG2yGNliNRthMJtjMJtgsZlgtFrBWK6xWC6w2G2wsYLXZYAVgYQErACsjgRkMLIwEZkYCKyNxDGrcPrR323DXufs5twz/Mf734P9W/N+A77LiBma+24NzifDdI3yXSbfEQIwGoOQsUFQAFJ2hTC9PKJRAv2zYMgeiLTkTrYzUbbyC767kb5x7jHNhmkwmwcbFOYzGrtWG9O/fH1OmTMGMGTOQmZnZpffqa4gGwA90Oh3WrVuHjRs3oq6uzuNztVotMjMzHcvWpKQkJCQkID4+HjExMcJlbGszUHACOHsSuHDWu6xAeAQVAqVmAskZQGJqz8iqYVmqEWjQAU319hqCRvp+rfYCMUNbcIrBJFJ7yqiKMo6Umo4ppeow+33hzut9LCDtoEFHBqHkHKWZ6ls8Pz8hhbKKsodSdXIAfzeWZaHX69HS0oKmpiY0Njaivr4eOp0ONTU1qKioQGlpKcrKygRG2hWDBg3CjTfeiBkzZoiuIh8QDYAP6HQ6fPjhh9i4cSMsLgZnhmEwaNAgjBw5EkOHDsWgQYMQHx/veaanbwFOHQFOHwXKilwXJnFERgPp2UBGfyAtC4iM6fqX6ipVxcCub4GaMoBlAFkE0NxK6aa9BYYBVBqnMRBct9cf8C/5m7tCr94IywLVFUDRaVodlBZ5rlgOj7AXoQ0D0geEbPJhNptRVFSEM2fO4MSJEzh8+DAqKipcPjchIQH33nsv5syZA4lYMe0W0QB4wGazYe3atVixYkWHZapMJsPkyZMxbdo0TJgwAVqtD/nWZhNw5jhw8gBQfI5Ex1yhUFLJf+ZAoF82EBUbgG/TRcwmMlQl54DjO4Dqkx2fo0gA5JH+vS9XWSuTU6WtREIbI6GURhZ2cTbWKfZmtQBms/dq2WCiVDkNhiYM0GipxiFMC2ijAG0kEBFFq43etsowm4ALhcD508C5fFrJuUOlpiK0QSPpeA3xSrS0tBQ7d+7EL7/8gjNnznR4fODAgXjyySfRv3//kO5Xb0E0AG7Q6XR46aWXcPToUcH98fHxuPnmmzFnzhxERvo42FWVAUfzgPxD7qUTtFE0o8oeQuJf7U6kgoICrFixAkVFRcjMzMSiRYuQk5PTiW/mBy1NVHh0Lp/cBRYLYDMBbcXuX6PuB2hjaZUSGU3fK0xr38Jp0ORm1HJF1/RsWJYGK5PRqRhqNAAGPdBm3wx2cTl9i12TSE/XvbgSAoZURoYgMoYMeVSsXfUznu7rCa47T7AsUFcNnDsFnDvpebWqUgPZw4Aho2hlEOKZd2FhIdauXYtNmzYJVuoymQyPPPIIrrvuupDuT29ANAAuKCwsxF/+8hfodM5AWWRkJO677z5ce+21vvkWLWbg9DHg8C4q6XeFNhIYPAoYPAJIdO9XXbVqFRYvXizIJZdKpVi+fDkWLFjgz1fzTkszcPoIcOaY65PdVAuY692/fvJc4MoA71Og4fR4OCVSvsFos8cpDHq7UTEIr7tbtXUGRgJExQCxCST/HBNPctAx8TSY9kT0rUBhPq1ki87QaswV4RHA4JHA0LEUPwghVVVVeP/997F582bB/bfccgt+//vf97lCRE+IBqAdhYWFeOyxxwT5+jNmzMAjjzyCiIgI72/Q1goc2g0c2uU6sCZXOE+MtCyv7oGCggLk5ua6LCSSSqXIz8/v+krAaAAKjtMKpfis+xmeXAmwdUBjufv3GjYVmPenru1PT4UzHJyB4CuetjaTImpLI62cmhu6JpSnCSejEJtAW1wi3e5JLiWjgdxEp4+SUXCXvBCfDAwbBwwZTfsfIvbt24elS5eivt45YZk/fz4eeOCBkO1DT0c0ADx0Oh0eeOABx8yfYRg8+uijmDt3rvdZQ0sTsPdXcvW48k2nZAAjJgKDRpCP30eWLFmCZcuWeXx86dKlPr+fA6uVZnAnD5Kbx93Jy7mmBuQCaf2BXz4Fdq5z/75TbwJm3u3//vRCvLrljAbKhmqoIz96Yx1QryNZjsY6z4F/d6jUJAvNbQnJdKlUBe6LdQajgYzAyUN0XLlysUmkQM5QYMQEUjANgSHT6XR46qmnUFBQ4LjvqaeewuzZs4P+2b0B0QDYYVkWf/zjH3H48GEANPi/8MILuOyyyzy/UN8C7PkFOLKn4yAqkwGDRwNjplCqZieYP38+Vq9e7fHxzz//3Lc3Y1mg9Lw9++gIuTxcoY0CckeSsWrvmtKVA28/7NoVwkiAh/4NxIZ2yd8ddNktZ7EAjTpAV0OifLpqpxx0Z5rgRMXSMZaUZt/S/ZpoBBR9C7k/TxwAKty4P6NigZGTgBHjKS4URJqbm/HYY4+hsLAQAKBSqfDhhx8iISEhqJ/bGxANgJ3169fjzTffdNx+9NFHccMNN7h/gdUKHNgO7N7S8YRVhwFjLgFGTaYMkS7Q5RWAzUa+/DPHaGtpcv08lZoG/NzR3l1Th7YA3/5HaAQYCTD3QWD0FZ6/0EVAUN1yLEvuJM4oOLYq77n6fBiGVgYpGc6akciY0LuPdNVkCE4ccH3syeTA0DHA2Knk4goS1dXVuP/++x2u3RkzZuCZZ54J2uf1FkQDAECv1+P2229HUxMdoNOmTcPzzz/v3u1TVgT8uIZma3zCI4AJl9MSN0Ca7J0abAx64PwZoPAU+WjbWl2/uURKWUdDxlCRjz8ZKbpyMgQN1UBUAjB6RrfM/LsjOypobjlv6FucMt6ctHdNpe+FdeERlJ2TYd9CmV5sswKFp2mlfP60a/dX1mBgwjQgvX9QDNXGjRvxyiuvAKAV/scff4zU1M6tzC8WRAMA4LPPPsPy5csBkE7Lxx9/jNhYFyeH1Qrs3ATkbRUewCo1MHkGLWmD0IzDnbvh/fffx3333Ucxh/IS0osvKiAJaHf/Voah2oLc0UDOsO73HXeBkGZH8QioW66rsCzFEypLKd24shSovOCbGykymnzx/XKAzJygu2IcNNaTITia53pykpQOTJxO8YIAGgKbzYb77rsPFy5cACAGhAHRAMBqtWL+/Pmora0FANx55524//77Oz7RoAfWf0L58BwMQ4P+pVcG/eQpKCjAypUraaabkYGF18xGjoylwqzyYvfpeADlY2dkA4OGUyl/CDMxgkVIsqPc0G0rAF+x2Sh3v7wEKCsGys5TQxlPMAzJimQNotVgYmrw3UUWM5B/mFypNZUdH49PAibPpLaXAdqXr7/+Gv/+978BAMnJyfjss88C8r69lT5vAPbv348nnngCAA0cX375JWJi2kktNDcAXy4XunyiYoGrbyPfarBhWeridf40zfDLznvXC9KEO0/mrEG9eqbviu4chLvT+HSa1maq7r1QSJOGOlKsLaipx4p9R1FU34TM6AgsGj8COfHRdrmHXFolZmQHt2CNZWn1unercILFEZ8ETJ1D+9NFQ1BbW4tbbrnFcfvzzz9HUlJSl96zN9Pn1ZK2bdvmuD5x4kTXg/8X7wrVEwePBObcEtzeqzYbcOEc5Vify3cfvOWQyYG0TKDfQFrOxyf3nHzxIFBUVOT58QN5wLaN9kphE/nJbVbAYhXq3DDgNXyXk6FUqpw9i8MigHC7vIPdiObk5GD58uVu3XI9bvAHqBJ78EjaAKClCavefB2LX3sNVl7K5qvb9mH5zVdiwfjhwJG9tHEVvoNHkLso0BW+DOOUPqm8QFl1BSecj9dUAus+oBXKZXPIIHWSuLg4pKSkoLycallOnz4tGoC+CsuyyMvLc9zukPJpNABrVggH/ykzgSmzgje4NtbRSXd8v+d+vdyAnz6AgmZJ6T1fVsAVunLg4GagoQaIigfGzKRgstlESqItTUBrE9DcZC+2osvMJs89FzItrVSXEUhUasqkiY7DgpxUTP1uLVZu3Iyi6mpkZvXHwoULe+bg74KCiiosfuHvgsEfAKw2FovX/oSpmWm0EgCo8O34PtrCIyhpYNg4KlALNEnpwA33UoB712bKXOOoKAFWv0fB4suvpiynTjBgwACHAeDiAX2VPm0AuC5dHOPGjXM+yLLAd59RxgXHtKspyycY1FYCO3+milxXXjmGoZz8rIE0C0vp1zsHfA6DHtjzA/Db58Lvu3MdEJYGwLMUwqJhA/DqT1thtXX8raQSBgvHDe/a/tlMgKUJsJkBiZzUTg0ADPZeywByACxNVwMZWUBMLHB6H1BfBiSkAokplA7cQ1mxYoXbNpVWG4uVdWYsnTyEssn48aWWJkqCyNtKmURjppJrJtCrgvhk4Pq7qZ/1jh8po43j/ClSLh0+geJvfsa0+DP+mpoaD8+8+OnTBuDkSaeiZWpqqjDzJ28rHWgcE6c7Bv+Aph4a2oDtP1JWRPuBXyKlAX/gcKB/bpdrCroFo4GMW3UFXXL57S117kXlWktJVE7i3sWWEx+N5TdficVrfxIYAalEgvd/dxdyplxKbhylkgqiZHIqzJPKhFLOLCtUGDUZgAsngMI8OPqnWUH6R+7UTlmbM18//7Dz/shoMtpJaeS+SErrvuKsdnh1obUagRvvs1f4ngJOHaZL/oqh5BxtkTGUvjlsPP3GgSQxBbh5IaVe/7aBLgH6vx3dS/s1eSbVEfg4IYqOjnZcb2xsDOz+9jL6tAE4e9YZcBo8eLDzgeICGpQ5BgwBLp0DwHXq4auvvtq51MMLhcAPX1CcgU9ULDB6MukF9eBZZAdYlpbuZcVARTFlobjLPrF4iWlYmgBlPPmuwyPtlxECZdEFd2ox9ckqrFy9BkUXSpGZmdl1N4yuHNj2AVw2zzTXAlfMo7ZkddW06Wrca+c31tPGuTG44qzUTFrBpfbrnuIswGvnLMfjShWQO4o2fQsZuGP76P/M0VgH/LwO2PMrMOkKYPj4wK9OUzOB239PsiXbNjoTMkxG4LcfyBjMuJ4SHryg0Tgz9gyGLug1XQT06Sygp59+Grt27QIA3H///bjzzjuBpgbgo38585MjooF7HwVUmsBmfxzdC2xaJ6ymjY4DLruKMi96QwCXkwo+f4ZmgmXnaUXjC4YKwOqhsnXQROC2vwRXUthV/OHgZv+0jqxWoKEWqC6nVU51Gbkt3BXftUcbRa6Uftnk2gv3QXAwAHTpWGZZSj0+sINUQdvLgkTHAdOvpVVrMI5jqxU4vJtcpsZ2x1vOMOCKuSTB7YYffvgBr776KgBgzJgxeO211wK/j72EPr0C4HcTSktLo8Dj16ucJ69MBtxwjyPH36Pf1GrFypUrfUs9PLAD+OVb522JhALLEy7v+X59i5kG+7MnqLKz/erFFQol+XTjk+2qlgnA8a1A3g/uXxOfGtzB35Wcxa71QMoAz69raBd8lkrtqp2JVFwHOFtjckVZFRfcF2c1NzilEgD6jbIGUYV2Sr+gTQS6lMnEME55icY6St88ts+5EqqvBb7+gLLRZtxA8taBRColl8+Q0cCOTUL3acFxSpeeMhMYd5nL86kPz3k70KcNAD8AlBQbC3zzkXBpO+smgYibV7+pl8cBUPUjf/APj6Csh+R0H/e6GzCbKBX19FE6uTy1fWQY0n9PzSQdmqR0cmm1H8jCNMC+je5F5UbPCOhXEKAr7zj4A3S7rMD1aziifMh8YRiagUZEkZIqQL5zXTXNnMuLyZftyj1WU0Fb3lY6NgYOJ42m1MyAG4MFCxZg6tSpzgLDzrjQImOA2TdRjGzPFjIE3ABbVACseh2YNB2YeEXg4wPqMBRkDsOKb7egaP8eZKqkzjqGbRuBEweBK2/uUKvDN3h9vW9w7/z27lIH/cBisaClhVwQYRIgfe9PQB0v42fcpZTqxsNnv6k7iguATV87b0dEA7f9rme0fGyP1UqD/cmDNPh7ar+YmEoujPQBdLL5UnQWmwLM/YN7Ublg6god3OylsQvXi7L93V0wTBIJFTTFJwEjJ9J9Lc1U61FyDig+Q/ECPi1NwMGdtGmjaMY7bFxAZ9Q5OTmBKZiLjAaunEciiL985yzoslkpnfPUEXo8Lavrn2XHZTyOX8egqwI++w/93tOucRyXfL+/UtkzgvLdRe+LAbhVovyDXydnQ0MDbrzxRiTIgMUxMkwfPRJSqd3lMGgEcO0dHVwQXfKbNuiAj99y+sjDI4A7/tAzGrxzsCylOB7fTyesOz+2XEFFO9lDgMxBVCjVWYIgKuc1S2vNa8CJHe7fIDUHKD/n2jAFS+2UZWlFUGhvvXih0L2eU0o/MgSDR/bMCm+WpUKuLd8ICxgZhhRyL7uqy9lQHs9FiQT5f1rorGMAyIDOvhnoPwirVq3CRx99BACYPXs2nnrqqS7tS2+md60APC3dv/0PkJHr8+BhaGvDJRoJ5kZKIWcACTfYDx9PB4oL/3On/aYmI/DNh87BXyajFLueMvi3tVIjj3bZHQKZgLgYLLrtFuRccSXN9mXywHx2bEpAG8j4lKUV5WUGnTUcuOmx0KqdMoy9JWQ8rT71LRRnOX20Y5c2zo30y7ek7zR8gk/d5UIGw5Drq182sOMn6o7HsrQd2kUryitvpklEJ/Fcx2DDSr0cS+OSKPUYoFjL2hXAqMnQNzY4nqvVdmHychHQu1YAP38UmG5UzY1oXrMSZ7dsdNw1etQomplMuNynNo0++01tNuDbTyg4xXHNfKqm7E645jBH9lDzjnapjKv2HeuYYx8Cpc2u4PMKrbc1tWlponz34/tdi6YBNJkYOoZSh3uaS7G8hOTT+UWVAE22Lr+2U/2PfVJk/eQTkpXY84vg+D5yoQLL8ktRYQEWLlyIu+/uGx3sXNG7VgANXqr22mdotIdlaZa79XsompwFIK020Iw8e4hPu+Gz35RlgV+/Ew7+4y7r3sHfaKCB5MgeCkq6oECixuKvN3WosrVarVi8eDGmTp3aIyUPfM7S6s74Q2cIj6DjZtxl5KI7to/6N/NTbhvryNe+azO5iIaOAQaO6BnFgykZwD2P0kC89xdnMdmxfRRnmn0T1dr4gU/xOKkUuGQWrUZ++MKxutUYWvB4vBxfN1o7an/1MXqXAfC2dPeUoWHQAz9+5RiMGYZcPCcMNqxusGJy1iAENAGTZamY7OBO531Zg0lOojuoqaTl98mDrrN4NOHAsLHAsPFY8c/XYbW6DpL6le4aYvzK0ho9g1yGPaCpjV8kptJ2+TXA2ZM0iBYXuHYRbVlP4oC5o0hbvzurkGUyYOpsGox/XOOQ00BLE6WMDh1D+fs+yqovWrQIr776qtvV3sKFC513xCcDdz0M7PwJ2LcNJrMZMga4NUqKmIoCSnjo6enXQaJ3GYAxMylX29/UwZoKYO0qQc66RKXCFw1W5OnpvfR6feD8gdzgzxcjS0wF5t4Z3Nz29thsFFQ8sJ0yTVzRL4eyJLKHOk6CgKS7dgN+Z2kFOP4QUmRyp7pncwNV6B7fL1zV2WwkZ3L+FD1/QC4Zg6zBgU/J9JWEFODOh4B9v1EhF+eaOXGQYh1X3epTbMDveJxMBky7Bta0Aag/8AjC7KdhYkUhsOZ94MZ7e2ZAPcj0LgPQmaV7UQGw/iNhEU6/HEiunId9P9zsuKu5uTkwBsBqpVTP4/uc98UlAfMWhW4Gxrl5Du4UKplyqNSk2zJqElVttqPL6a6hxp4W/PQgFWJmDsXyg0U4WyfMYOowK7yY0EZR7Gr8NJpZnzxIwWN+Bo7FTPedPkr//4EjaMUXxGIzt0ilJBmRMxTY8CUVyQG0v2vepyKvy672aqQ6U8dQpY7AP6vNWBgjQ4aCgUKhoFTcL/4H3HL/RdEsyR96VxCYw9fUwYoLwBf/dTZPYRjS9LEHem+44QaHGNTbb7+NoUOHdm2/DG0U8C3mFRPFJVGufygOrNZmqjI+vKdjiTxAs6/RU2gW6KGXQa9qeOIiLdhis2Hxd4fxweESAO3aZ3aS7ug93CVsNqC0EMg/QoO+q+MBoAnAsHG0hUiGQoDNCuzfDmz/SZiIkJIBzL0b0LoQ3+sCe/bswVNPPQUZgEXpkZg/nLfaCOW52kPonQbAF/QtwIdvOmdBMjm5YHjBpkWLFqGwsBAA8MILL2DatGmd/7y6GmDdh45OSwAoNe/Ge4Pfa5Urxz++v2NrSIYhfZSxU/2qJnWVTjkoLgJrnvodhqcndboAL6B4yOaxssCfzyugSu26Tn939R4OGBYLUHSGMokKTrgu6mMk5J8fPaV7UkprKjrKr2vCaeXMq8bvKp9//jnee+89AMDECRPwjzlTyQBxxCcB83/fqcyk3sjFawA2rnG6YSQSWt616yT01FNPYc+ePQCA3//+97j11ls791mFp4DvPyPXC8fgkeTPDFS+vCsadJRZceKAUKYXIHfTiAmk1x4Z7fr1XuCnu97cPwo3K6rBdLEAL6AEKi3YA71qNeQLRgPVFxw/QK4PV6d/fDJJOwwaEdqYldlEtQ1HnU2aoFDSJKoLXcD4vPzyy9i8eTMAe1P43/2OahX2/OJ8Ur8ckqDuA4Hh3hUD8BVdldAHf9nVLg8gfmMIfmMYvzi0myoe+SdSsLuGtTZTut/RvR0H/vAImu2PnNTloJYj3dXdTLsTBXgBpatpwT4QMAHAnoJSRbUCQ8eS9MSJAzTg8kX9aipoQrNzEzB5BonchcIQyBUkF5GUTvLSrI1id2tXAbc9QG6hLsKt+AGgf//+dI5OvZLcT3m/0QPFBSQxfcXcLn9eT+fiNAD8GURsAjD2EpdP4xsAvjKoT7AsCU7lbXXeJ1dQo/iBXexG5Q6LmZare37pmMoZGU2CW0PHBj7Dw5N2DmsjP3x3ZNN0JS3YR3prRpRPREbTZGXSFVSde2iXMH5VXwtsWE0ZO9Ovo5lxKBg5EQiPQMGKt7Bi90GqRN/wGxb943XkjJ3Q6be1WCwoKSlx3B4wwK78yjA0SWxqIAkUgGJpaVnBO5d7CBenAeAXXo2+RNgBigffAFRWuqmwdAXLUo71oV3O+7SRwE0LKNAaDErOAZvWdlSQjIymjkhDxgRvyRqCmXan6GxasB/wM56yY8KwaHQ/ZEZpUNSgx4pDxT0vI6ozSCSUkZMzlGb/e3+lgZBb1dZUAl8up0LJGTd41NoPFKu27cHiV5YLJT0mTMbyd9/Fgvvv79R7lpWVwWJPCJFIJMjI4K0oGAaYcwt5D7hq65++ok5uAQ5E9yRC6OALEc0NQlVFD9W9iYmJjut+uYB2bRYO/vFJlNscjMHfYqZq4tXvCgd/tYaWqAufCE4HJj4hmGl3Ci4tmGl3GAewonfRokWQSqW4b1QG8h+cgSVTB2L+sDQsmToQ+Q/OwGPTLrIZYnwyCSEu/LOzvwHH2ZPAqtco2SCIocOCgoIOQXeANH4WP/AACgq8SHa7obS01HE9JSWloxS0XEGZR3J7urahjSZdF2mYFLgYVwC1vIFcG+nReickOAcuvV6PtrY2qNVeov8FJ4BdPztvJ2cA8xYGJ9NH3wKsXUmNRTgYhjI1LpkdukyFEMy0O01XKnpZloKiJiO51PjZMQwDKJTISU/F6ndex/VlWyBr5weXSSRI3LsWGH95z68g9peYeODa24FxU0nemevFazICG78kl9GcW4JSPOVV6O3f/8LSt972+33Ly8sd11NS3Py/YuKBK66j2T9ACR5njlFA3BcCIFUfSi4+A9BQ57zuosiJT2RkJBiGcXQIamho8GwADG3Azzw9/5h4SlMLxkDcWA+sWS6c9ccmUIwhKcTNY3qQdo7bfPz2MQibFWhuohTZJntv3uYG6tTV2gS0tgBtei99AYibTbXug6DdGQMJBUnp1Iv3xAFye3IFlWeOUdXxTfcFXHzOa9xlv70DmJ9JFrW1znOJP/nrwPDxVFnN9TT49Xug/2CPtTMA3HeZ685MOS9cfAagtdl5Pdyz704qlSIsLMzRGKa5uRnJycnuX5C31fn+Mhl18grw4F9QUIAV772Hot82IzNM4exwNHIS9Vn1dhAGix6gneNW6vmlZ7FgxmVk/BvrKD22uaFjhlRnsXlohgMApw8B/cdT0LA79XaCBcNQoVhGNs3+uYGRa7hyy/3kOgoQXivRVTIqbhs80q/35Yo+ASA62kNqNMMAs26kbmY2Kx1Le3+lbCF3BFCqPpRcfDEAg955Xe3dLaPROJ/T1uahobnNSr5PjolX0Iw8gKxatQq5ublY9uqrWL3vMJZtzUPuayuwqhF0QHbX4M/BaefM+xNdhuqANptQsP1XLF58f0e/sNWKxc++iIK1n1FabHEBGQF/B3+JlNwZKjVdynkDucRLLUdDA7nq3n4RWP8xzY49tc3srURE0WA/cbrzvtZmklGo8TOLzgNc3MUVUgmDheOGA1t/8Ps35p/f/PPeJVxfBo6831zLqnD4kinXA7n4VgAmXjGWD/5JfiDIbPYw06updMz+C3SNWLF2I4reej9gsgDuA18sFv/jdUy9d3HvKjjqCmYTVa4WngYqSoDaKqz44Vf3CqU2Fiv3H8PSqy7r+GCYljKlIqJpAAu3x4U04bSpNYBC5TqIbrPR8VR+Hvj4OfcnuMwuoWC10OB/5hitBAaPAkZNQkGTvnfJSHhCIqG+GdFx5CdnWXKNfrUCuOPBThcd8vEo9DbvSloRNzcA+7ZRGquP2HiTAncGRsCkK0hXqaWJ/re/bQCud+Pq66mZcl64+AyAwT8DwPD8iB6Lou0l6tQoZROsvIOpQ8epTnDRFRz5i9VK6bsnD1F/XE6/yU5RfZObF9ofN4EK4CJjyCcdFUODfldWTRIJBff7D3UfAxl1JcCqyC3CrwQ3GYGje7FqxftBOV66neHj6bf9/jMyAi1NwLoPgDsfDMhK1a3QW+lpYP82etLeX6nuxUejwx/03Z1rApQqMnYb7I1nzhyjVp3p/Ts+t6dmynnh4jMAfNVPhXcD4POswGJBQU19hy5ZQGAapVzUBUeesJipcG/vr0L1ynZkxno+yTMvnR7cyk1vMRCrlVYt+YdJasFsCurx0m20z3KZcjmw0y57XlNBGUNX3uzxLXzFZeOljHSaletb7CnS31Iszgf4DeA9unv5DBkDHNzlVCz99Tvg7kc6BqB7cqacBy6+GABf9dCHFYDJ5PQjyuUefL0KJVbsO9rhZObgZumdpddJMAeCojPAytcou6T94K9QUpDvynnAfY9j0X9WuvcLh0rq2VMMRColvf1rbwcefA64+jasyC/yfLysWBH8fQ4kh7aQJMjOdcCJHXT58/tAqrOeBkf30v81WChV1AyHo+AE1Sf4QHi4U+WzubnZwzN5MAylhXJUlVFGVHtCUJMSDC4+A9DG04FXe2+Hx58JeEwBTUz17obowizdY+DrYtOyt1lJRmPN+xSw5ZBIacZ1y/3AQy8A191JgnbxycgZNBjLly/v8Bu5bQDSncgVwNCxKArznB5ZtP0Xt205exyeslwKdgExvBXaz+toRRQshoyhjCvH530tdL+5ISoqynG9oaHB989LzRRmHG3bKPQ0cIyeQf2kp94EDJtKlw/9Gxh9he+fFWIuLgPAspTfzRHmWdebZVmBAQgL82AwomKRmeTZj9eVWToX+JK2yzfvkQNcVzCbgDUrhN3SGAkVt/3uSeCa+dQRyoUxXLBgAfLz87FkyRLMnz8fS5YsQX5+fpd0/oOJ11WdUgJ88AYFM3t6tam3LJe4KOfst0FHPaeDBcNQH2FO4qWlibKCvMBP/ayrq/PwTBfwG9S0NguPXz7dlSnXSS4uA9DaImwq4aUOoKWlRRD45S8RO8AwWLRgAaQS18UngZilL1iwAPlbN2PJ9ImYP3IwlkyfiPy9u3rsAOc3ZhP1f+XyyAEgJgG45xFg5g3U2coLnF/4888/x9KlSzsYxoKCAoGB6KxsQCDwKZ3RZgW2fg98vUqYwtzT8JblYtYDI8Y7b+/fFrg6DFfEJgozgI7upT7Inl4S61yR+W0AIqOp4xrH/u0eY1a9hYvLADS008rxEgPgCsAAygbyuAIAkHPdPCy/9ZoORiCQs/ScqZdj6R034fM7r8PSqy5DTlMnZap7GixLzcD5g/+gEcDdDwdMQ8lRR7FsGVavXo1ly5YhNzcXq1atCsj7+4tjVefKbfV/LyEnq5/zzsJTwOr3hC7MnoQvWS6TZjhXAY31wY0FANTZL84p6Igt6z2upGJiYhzX/TYA3Odx3cIsZvergF7ExWUAqp1aH4j2csBCWBkYHh4OiTfNc004Fjz0CPL/tIhm6aNyseTRhwPrhuC0fjgO7wH0PXRQ8Ie8rU6pXYCExq69I2CVs27rKOwZN92xEigoKMDp06dx5ZVXYtKkSbjmmmucbqsnnwHue5wCxxzV5RQXcdWxq7sZM7NjgJODy3KJiAKyed+n4ERw90kqpQJJjspSqhB2A98AtLa2ChJAfEKhpNoAjqN7hcoDvZCLywCUnHNeT0rz+vSmJucSLiLCx36oE6Yhp38Wll51GT6/41osnTQUOdmB6VbkYMQEZwDbYqbm7r2Z6nLqusTRLwe4+taANhnxpY4ilPBXIxs2bMCePXvw448/YuDAgc6VojoMuPE+YByvgK2qDNj+Y0j31Sd8zXLJ5vXVLj0f/P1Ky6KWpxx7f3W7CuAHgQE/A8EcIybwVgEW4Mhe/9+jB3HxGACzCSjizfKyBnl9SacMgFwhzDe/cI6KlwKJXCFsYnNoZ++VFmBZYPM3Tn+wNop6M7vp0dBZelIdhV+rEYahtMaRk5z37d8u7I0bIrzGT3zJcknmCRXW1wY3G4jjktnO69Xlbg2PXC4XuHnr6+tdPs8jcgUwhrdCP7InuLGOIHPxGIDTRwGzPTVLoXRdrdcOvgvIZwMAUOMMXnN5bNvgOi2sK4yeItQlP3EwsO8fKooLnFLCADBnXlCks7uljkJXTn2J17xGlzpyQfq9GmEYEvrjq9ceDmIWjQt8jp94y3LhJ16wNuc5GUzik4Tdys4cc/vUyEjn/vHPf78YOcm5em1pAkoLPT+/B3NxGACWdfbzBIDcUT6Vo/MPAP6B4RWuOIRLC2tpCvxSUKUBho113j6W5/65PZnDu53XM3MoxTMI/L9b5mLZzKH4/OZxWDpjCLJjnDO9oNRRuCqKevth4NCWzq1G5AqhK+hcfkB31xNBjZ+EanbM1+u/cM7t0/huoE4bAE040I93HJ871bn36QFcHAYg/5BzycwwwBjXPYDbw/cBtvcPeiUqVvg5B3YEPpeb7xaoLO09RUMcJqPw5BjrQqwtEBzagszvX8NfLskRdOu6b1RGcOoovEj/js3ynNXkdjWSydvHxrqQuf0CGj/hN5fntJRCAd/1pKtxa3j4E71OxQA4sngGQFwBdCMmI6n0cQwcLkwN80CXDAAAjL3UqQnS3ABUXPD/PTwRnyTUWT/nW8l7j6G63FmXoVACmQEOlgNuB2OZRIL3547B2b3bAl9H4aUoatHozM5VdYdphbd9qG4NBAGNn/DPgei4gAb6PcL/7WxWUu90QUBWAACQwkvhra3q+YV8buj9BmDrD86CDImU1Pt8hJ8L7LFBhDvCI6hMnCMYMwF+VkVx9xU1dQq+fnpsYmACv+397ju/cTsYSxkgs969O6DTeCmKipGYe49sBQIcPynkrfhSs9w/L9C0U4911y2MbwA6FQTm4MdrLOaeW7/hhd6tBlp4SlhyPnG6X+3p+AcAP0fYL5LSnVkHOi/Vkp0hoz/AudHLSzrVCq/b4M+K2jfg7gyuWu55Ixg67D4URS2Yd7drOWNPg39bu0rgELlPFi1ahFdffdWlG8iv+IlBDxTyYhfZQ9w/N9Dws6bCIwCZa2FH/nmu03lo8OINpYrOQ+4YNxqc6aG9iN5rAPSt1J6OIyEFmOy75CrLsoIDoNMGQMOrHg5GxgO//6/JSL7hAPdgDRp8Mb6mhq69lzu/uzeCocPuo/SvSzljT/ClBZTqwBhNH/DYgMWfFcvx/c6ZuFoTtIC/S/grj8RUt0+Li3PO3Pk9grtMb5mUtaP3GoAt35AmOABIZSQi5kuXHzt6vR5Go3PA5h8YfsEP1EmD8HMqlKRD0mhfrdTV9B4DEMeTCW6so+/Q2Y5Rnvzu7giWDjtXFOWqQUxXpH9beD7pCD+y0gKA2wYsvg7+VitwgFewOHyCX+djlzAaqEcAh4eVR3y8c/XWJQNgMgpXuL20F3TvNAAFJ4SyApfN8Tnwy8Gf/UulUv/SQPnU8paeUZ1cRXgjMtZpABq74LcMNZEx5Cutt59o+YeEpfT+4E2MrD3B1mH31iCmMzTzDEB4VJd30V/8XrHwOX0EaLIfmxKJUM4k2Ozb5gyYK5TAIPfN4vkGoLGxEUajUdAoxmeaeOehVOaT9HxPpPcZALOJZv8cqZmUjeMn7d0/TGeWcDabMOc4wf3Ss0toeUVqvUl7hGGoL+7uzXT70C7Kde+Ma8Ob333sbEAdHrjB2Be4oqhAwXcBtc8I6smwLA3CHLmjSBcoFNTVkM4Ux+gpHkUguXOdUwGura1FamonzluB7lic6AIKGQd2OGdKEim1n+vEj8/PAOLLxPpF6Xmq0gVo1pMxoHPv4w01L7ik92IA2rfsGzOzezXJR00mfRablQa4w7uEBU++4s3vPuX6Hq+97pVWngEI70UGoPiscEAcf3loPtdqpZ7EXMpneAQlgnhAJpMhJibGMQHstAEo40lPe4g59HR6Vxqo2QTs41X8jptK6YWdgJ8B1KkUUEAoz9Avx6cWlJ1CzcsGMbS5f56H6tRuI1wLjJzovL3z584FhHtpyz2/aOYbgNDGALoE/5zMGkT1K6Hgl29JPI9j5o0+nYNd6gsA0IqHn5Ltg+xMT6V3rQBOH3UOgHKFV2vviU7LQHAYDcCpw87bQ8d0el+8ouS1qjS6MQBeqlORkdt9g+SUmRSkMxooeLZxNXDLYv+LhILhd29HQUEBVqxY4QiELlq0KHR5+/y6ic4Gy0ONrkqo+z8+SNXe7Tm2TygzMnIiaXT5AH/C16laAF2V8H/Vr2fVdfhD7zIAZ447r+eO7lKeNL8ptFbbieX2qSNO3Xa1RihJG2hUvFmNwU11qLeWfYe2BNZf7Q+acGDG9cCG1XS75BywewtwySz/3yvQfnceq1at6pAK+eqrr2L58uVYsGBBUD7Tgb5VGFiM8d7Pokewf7vzenwykBGEau/2lJcAm7523k5KEyr0eoF/vvObQvnMKV7PgcTU0MU7gkDvcQGxrLDSdmDXBlx+L2CNphOGJP+w83ruaLeFJwGBb+jctQ30liUTjIIofxgyRijYtXtzSAXPvNHtDWWKebPoMC1lUPV0WpuFbtBxlwY/GNrSDKz/yCkxogkHrr/Hr/NPrXauqPnjgE+wLGWzcfCP6V5I7zEAxjahNkqi94YvnjDwZtIqlZ++e6NBqDk+2H3aWUDgVxjq3cxYfGnZ150wDHDlPGcNA8sC334i7OHQjXRrQxmWBQ7uct7OGtQ7skoO7HAGYMO0lPEVTKxWFLz3GpZ8+R3mf/odlmzchoLhl/g9A5fLncbCbPaz+1pZkdP9w2W59WJ6kQFoV2Xr76DdDgtPO0Tmb1piWbHT3aJSA8kZXdoXr/BTAk1G1yJhvrTs626UKuCGe519DixmYO1KoWuvm+jWhjInDwkbmvNVYHsqBj2l9XKMnRr0yuVVT/8ZuU+8hGVb87D6yCks+3Uvcq+4MrQ9n/l9GtIH9J5YjRt6jwFQqYW3A5gPz/qr5FfDS3lL7hd8xcMwrfDk4gegOHpLlkx8EnDTvc4lu80KfPsxsGNTaLpHuaFbGsoApJ75M8+fnTUYSAnyhCIQ5P3mbIKkVFO6bxAp2LYFi//5L1htwnO1My46/qzfr8lfS7Ow5zA/u62X0nsMgEJJeb4c/P6/nYD/j3e39HcLP40xppMSEv7AMEL1wdpK18/zpWVfTyAjG7h1sTO7iWUpJvDBG0JNlxCyaNGizkk4d4XS88BX7zvlRORKYNYNgf+cQNOgEwZ/x10avBRoADCbsGLp3zoM/hz+uuj0emccza/43+FdzthDeERwEz9CRO8xAAwj7PN7eHeXNLj55d/G9u4lb/ADserOZyL5RQJvBu+p74C3ln09hdRM4M4/CHWN6qrJJfT5f0lYLER6+IBTEC0kEs4sS99v9Xu8QkIpcMPdPT/4y7LAj2uExVfBTv3cvQVFFZ57JPvjouNnAIaH+6jgaTIKXV5jLgmd1lEQ6V1poCMnUf4vQKlgp492OgDLt/ytrX5qeQsCdCEK1qVkOjMuurj66THEJgL3PEoNfY7udRr00vO0/fw1td7L6A+kZQFxyUH1M3dZEM0XWpuBn9cBBby4h0QKXHdHaNUzO8ueX4ALvGy86df51H610+iqgH2/ITPac89uf1x0nSoCPbqXV4OkvCjcP0BvMwDJ6bQKOH+abm/+BkjtB2ij/H4rvuX3OxdYwc/Ld5OWGWj68fKruUKU3qIK6gmlCph9Exn3rd8JjZvFQl3QuE5oDEMZH9FxQEQMVRmHR9JlmBYIi6CMqS7MzLokiOYJq5UGkR0/Cau51WHADfeQgevpnMsHdm5y3h44PLhpkCxL1b42GxaNH4FXt+1z6Qby10XHVwH1SQbGYhFqHY2aFLpWl0GmdxkAAJh5A7DqdWcXnm8+Bm7/f37n4fOrf/1uDcdPO6sLQhMYV0TH0YyZa3xx4gBwyezQfHYoSEwBbv0dUFECHD9A6pLtZS9YltRQPSmiMgy5JSKi7cYinuI0MQmkGBvqZbvNBpw5RgN/fa3wsYwBwJxbe0cmSXkxpe1yq7TImE7rcPnM+dOONOGc+Ggsf/lFLH7mxS71LLBYLIJWsHx1ULcc3+8U6pPKOqdl1UPpfQYgKhaYMRf4aS3drrxAjWGuvcOvg7FLBoCv+lleTIGhQLQ79MbQMcC2jXT9aB5JYQSzAC3UMAz1Wk3pR5XDJWfJ3XDhHFBZ5gzAeYJlSSywuREoa/eYREpZSElpFINIzaSBLBiDmNFAA8ehXR0HfoWSWpeOmtw78v3Li4E17zsr3xVKWrUEcxZstQJbv3fezhiABbf+DlNvnt8lF51OpxNk/XldAVitJGbIMWxc7xLq80LvMwAAMGIiUFFKS2qAZBnCtOSP9PGE4vv+/BaESu1Hg4nNSrPU4rPCAHWwGDaO0iU5Zc1j+0Krux5KpFL6Tbnf1WqlpjINOhpQWxpJPK2liVQ0W5u9B41tVhIPqyoDjtiPHXUYuRZT+tH/NTGt8xktRgPNWs/l06zf0q7IiGGoUcols4QZbT2ZwlM08+cylSRSGvwTgpxccHg3oLNXrzMMcPm1AMN02UXHd/9ERUVBofASvziWJ+xzMPHyTn92T6R3GgCAXEFNdc5K0gM7KCNn8kyfXt4lQSiligYmzjedtzU0BiBMC4yY4BTB2rmJtNcvEn+kR6RS0sfxpJFjNtln/w2UqttYRy66umrq1+xqBdHWSoMcP/00KpYGuOg4uyspmo4tuZxWXFYrVaYbDECjjpoC1VSQ+8rmSq6aIV/5lJmdVq8NOSxLRU9bvnG6fSRS4Pq7gy9+1tJELjOO4RMCJrnsVxtYkxHYtZm3H+N7fpaWn/ReAyCVAnPvBla/65SE3bHJPkh6j9DzDYDBYPC/M9DYS5wGoOQcrUKCLQkBUEetEwdosGvTU5Ds6vnB/9zegFzh3khYrVQ/UVUKlJUAZec7umY4GnSui+38RaUGho0HRk/uXQF7swnYvB44vs95n1xJaaqhyFTast5ZZKZSA5deGbC35vv/vWYA7fnFWXAqk/nVc7y30HsNAEAz8Xn3A5+94zyZN30NqMK8isW1l4BubGxEQoIfejkZ2RTE47JWfv6aZin8gq1goI2kmeRvG+j2iYM0Ixs6Nrif29uRSun/k5jqnCAY9ED5BaCimPzcFaXu5bZ9Ra0B+g8G+udSb9reFqOpqQC++8yZbACQu+rmhcF3+wC0EjtzzHn7squFWlhdxGcV4LoaYebP2Es7lW3Y0+ndBgAANGHALfcDn/2Hlo4sC3z3KXDzAo+zFZlMBrVa7VADbGpq8s8AcOJmH7xBMyZDGwXKbv89DdLBZNyl1BeZ04/58StyU/TixhTdgkoD9B9EG2DPMqoDKkvJrdNUBzQ1kg/YZKT/s8VMvmCVhiYgYVrKLopLJOOSlB58aRA+geoAx7LkRt220VnkBVBs5Pq7QxOzMBqATWudt1MzyeUZQHxSAeaK3TiXoTbyopz9AxeDAQDILzdvEfDF/2ggtlmBbz4CbnuAAnxu0Gg0jgOCXx7uM1GxlMP+wxd0u7EO+PRtmi3FJ3fmm/iGRApcezvwydukDmqzAmtXAbcsopNGpHMwDP1PPblrOH94T8jeObSlYxOgXetJE8of8b+6GhrwyoqE94+7lGbgoUidZVkqkOO3e511U8B/Z5PJ5LjuNgC85xfhb3HF9cEtdutGeo8UhDfik4GbFzmX3GYT6axUtc8FdMKXgeYfGH4xZAxlKHA0N9JqhL+MDQaRMZSNIbXbcLMRWLOiR2nsX5QwTGAHJV058PNHwJrX6FJX7v013Os8dYDz5X2qS4GP/g7898/A+f2AzX4OaMJpQjX9utDVTRzbJ9TZnzwjKK0lbbwgvcTVSq2oQFjsNnhkl3uP9GQuHgMAkIriDfc4c/INbcCX77nVzuHrvvgtCMdn/GWUlcQNDCYjsP5jCmaZO2lYfCE1k+SV+UZg3QfUd9dVNopIz6IrPZx96QDniV/XAP95GCg8AJibAHM90FYMxEUCC/4Umqw2jspSqurnSMsCJnW+3asn+IN+BxXgupqOxW6zbgrKfvQULi4DANCBe+3tTllkQxuJbrloPOK3DLQnRk+hzkQKXibRwZ3Ax/+mwFqw6D8IuOk+5xKVZYFdP5OgWqiqlEX8p6sz+M52gDMagO8+An77zPXjJQeBNj8LI7tCYx1NWri4gyaczt8gFVbym8EIVv0tTeQx4JIAZHKKfbSXob/IuPgMAEA513PvcgbjzEZSmeSKf+zwm8LwD4xOkzMUuPsRYbaEroqMQN7W4M3KMwcCdz0k9F2XFwOrXqOZVQB7J4gEiK7O4P3tAMeylKq84p/A0a3uX+fLZweKxjrgy+VOmQWGIVG8IGbb8N2+jq6A+hZK4OBLjFx9W8BqD3oyF6cBAMhvd+MCYeORTWuBjWscbhl+RoDfbSHdERMP3PkgBdA4rBZK21z9rrCXQCCJSyJlzaFjnPfZbCRFsHwZ1Qvo3MwKRUJPV3s4+9MBrqkB+HoVZce1NgM2L20QQ9E/WldFsTJ+vcXsm4LeVD4sLMxxvbm5mQb/L98T9tiYfl2v7/XrKxevAQDIPXLbA8I84uP7gA/eAFtWJFAB5R8YXUYmp4Po5kXC9LnS85Q2eupI4D6Lj1JFRWE33CMUGDObKMVv5avAF++SRk17oTURIZ0NzvpKV3s4+9IBjmWBQ7uBla8JK52lXgoeg90/+txJymDjZv4AMO1qnwo4u0pUVJTjurleR5mDNbzBf/IM4eTtIodhA+oI76G0NFFQltd31Wqz4e1dh7Cx2QYjC3z99de+a4P7g0FP6W3tB/1h44GZQUwvs1iAI3uA3VtI7qA9Egn1NO0/iDT34xJ7RmpjT8BVeiUj8T+90hO6cgr4unIDMRLq5OZLPr+unPa3oZoG7tEz6HUNOhJJLD0vfH5GNjD+EuDj57r+2f5isQDbfwQObBc2c5p1Y9BbSnIcOXIEjz32GGKkwCPJGkwbMdT54MTpwKVz+tR50DcMAEBSADs3kS+eZWE0mXDy5Ek0W1l812TF0vU/QRaIOIArWJbkGzavp3gER2wicP1dwdWHMRmpWvjIbuFMpz3hEVRIlppFomhxSaEtaOopBGpg9gW3hubBzrfxZFnSitr6g1CMTqWmVenQsTTABeOzPVFdTrUG/LRsuYJWrCFMs6yoqMCf77kDD8TKoJUyGDlyJCQMQxpil8zqU4M/0JcMAEdZEbDxS+jLSnD6zBkAlA46YuYckugNptZJgw744XPqZsYhk9MMaNi44H0uQANDeTEZg4Lj5Pv0hFwJJKcByRlUDZqUflHJ4Lrl548oHdMdU2+iVpuBwt0MvjM06GiQ5XfsAqhxy8wbqGo5WJ/tDrOJhN0O7BQam5gEStQIQq6/JyxnT+LAc49BYR/ncwcPhurKm4AJl4d0P3oKfc8AAIDFjMLVq6D74SvIGECpUGDIkCH0WMYAYOqVwauotVqp3H7/NuH9wXYJ8bHZyBgUngKKztDszJfDQBtFldXJ6WQYktIuvgrJNa9RTr47hk2lfss9CS7Yv/1HYd2JWgPMvDE0IoXtYVng5EE61vm+foDcPZdfE/pj59BuYMt6nDx5AkajESwA+bW3Y/jtC0K7Hz2Ii0MKwl9kcpSkDsRb1WZcFyHFFDUv57jkHGUnZA0Gps6mQS6QSKXA9GvJ3bJxtTMYe3wfiZJdd2dwZSQAcu2kZdF22VWAvpWar5QX0wqpqty1C6S5gTauypmRAAnJZAxS+5HRjIju3cvorgZnQ01NBQkg8uJbANzP+kNByVngt43UrIlPVCztUyiLzACKPfyy3pEGrlap0Gww4sM6C8YbgOGh3ZseRd80AKAU0Hor8FG9FRVpKfgrX9kTAM6foi1nGBmCuAAvVbOHAPc+Dnz3idMlpKummoHL5pD6YKgGUk0YzRK5maLZRNWZFSW0bxUlHWdxABkJrsEK16MgPMLZbSutPxmI3mQQxswkPR13MYBABYG7itFAMa2Du4T7qtZQN7XBo0L/u1deoFVI+6JLiZSq5afMDL06alMDJYDwjJEkIgr/PqtDmZlF9Nmzod2fHkafNQD8KsB6ZTj1oy0uoJ4CFTwffcFx4OwJYMho4JIrA9u/NSIKmP97YMePQN5vdJ/VAvz6Pal9XjnPcwOUYCFX0AqFry7a3EiSGhUldFlZKgxoc7Q0AaeP0gYASjWtNDL6U9ZRfHLPDi5z6ZXuAqTByI7xBy67a88vHeM4uaOAK+YGVD7ZJyovUOMUVzpUA4dTimd39EMoOAH8tIb6ZnAkZ6B63JUo2/t3AMDp06dDv189iD5rAPhIJBKaLWUOJG39wlM0u+IyFliWgqf5R4BxU4FJMzrfNrA9Uikw7RpKz9v4pbNqt/Q8sOp1mjlNnB64z+ss2kjauIwNm42KecrsWvrlxa4brBjbKO+ba56jVNHKoCcbhNEzgIzc4AdI/cFsokyyPb+SG45PVCzN+vsPDu0+lRUBu3+hlXJ7OPdid6jTmk2UBcWtSjlGTgSumIvsZqfh1Ol00Ol03nsDX6T0WQMgkzm/utnMS5djGGBALp1MBccpg4GroLVZaaZ+/AAFioePD9zglTUIuO+PwOZ1ztmzzd6Q+tg+SlEbPiF06ozekEho8I5PBkZNovtam8kglJ0HSovIgLZ3pRgNQoOgUFLqaVomifklpQv1lLqL2JTAZvt0lgYdtWY8ltexeE8mp8nBhGmhc62wLE2Q9v7aUT4aIPmEqXOArIHd4/orK6JMKL4OVrtMu+joaMTHx6Omhp5z5swZTJ4cmjqEnkafNQD8yt/WVheFUgxDy9fsITT73/GT0w+ubyFZiSN7aOYVqFmOJoxS484cp16s/M/7eR0t+8dPoyYZPTH7JkxLKwRulWA0kEG4cI5SEytLOxoEk9EZbwHI1RKXACTYu3fFJwExiUBYeO+KJXSFBh0dA2eOCd2RHBIpGd2JV4QuNddiBk4eouw1V5IiSWnk4++f2z3/J7OJ4g8Hdwoz2hJTgWvv6OBKzc7OdhiAwsJC0QD0NfgtIevq6tw/USKlmf7gkdQibu+vzgKbqjLKGBo2jpa7gcq4GDgMyMyh1ca+35yf19xImj67fiYjMHJSz+41q1QJO24ZDeQqKrEbhKrSjgJ5rI0K1moqyeXBf6+oWMoyiowGwiPJYGrCKfCpUNFzFEqa8fUWY2G1Ag21QGUZuf1KC92ruMqVwLCxNAkIZCzKE/oWWoEc2uW6diQti1YhWYO67zc/f5omSI2885hhyH06dY7LVXO/fv2weze5iMrK3PcMudjpswYgMdFZfavT6WAymdx3CAJoxj1lJhmD3zYIm1cc30+ztUtmkyx0INw0CiVlH42cSAG24/udLeoMbWQc8n4jQzFsPK1UeuKqgI9SRQMFlwZoMlKWUel5e0/eEmcz8PYYDc6MI1+QSAG5nC6lUrqUSHiXvOtS3nOkMrouk9N1Oe9SrgCkcrrOPS6TOV8jlQq1eaxWCupbLfQ/MxkoINncSNkpTXWArsb5f3VHTALN+IeNC10sqKaSJBtOHhK2iOQYMASYeHn3dqBraQJ+/a6jzEpMAjBnnsd945//tbUuYld9hD5tAGQyGSwWC1iWRXFxMXJycry/UBtJeuUjJ5KbhpNXMBnpYDy8m7IesocGZkakjQSuvBmYMgPYv51ymfnFPkUFtClVwKCRQO5ICrL2tMCqKxRKMmCZ9t/dZgPqqp0DfVUZzYa9VS27wmYFjF1o8tPdxCQAg4aTGzI+RKm0Nhv59w/soFz+9shkJCUx7rLuyU7jsFrpPNu5iSYGHIyE4iE+pJuGhzszpTrVDvYioc8aAKlUiv79++OMXQ7i5MmTvhkAjvT+JL98eA+ljnKNJOprqR9xWhYFitP7o6CgACtWrEBRUREyMzOxaNEi/z4LoCrc6deRZsmJA3QC8F0FRgNwdC9tYVqSsx08kmQceos7RCKxN1hPooGGo62VvmtTPWm2N9VTwFnfSpfGNsBodK+v39NhJEBMHBXUpWXRsRVK157RQCvMgzuF8swcmnBa2Y6aFPoU0/YUFVBRV/s4RHIGyUkn+JapZRM75gHowwYAAIYPH+4wAPv27cP111/v3xtIpMCYS2ig3f4TZWpwAajS88AX/8OqwiosXv6poOXkq6++iuXLl2PBgk6UoKvUwNip9Lml5+nEPX1UuCpobaaT+eBOKswaOJwK2tKyesfKoD3qMCA1zLO7gWUpVmI2AWYzXbdYaCVgs7tibLZ2m5VmkzYr3bZanG4bi8X+Hu02/ntbzM7ncp/DsgAXg5RyLiYZ/d+UKqqL4FJqtVFAbALN9mXdcCrW1ZBv/9h+1zUdCSkkjTxoZPfsH5+qMgrynm+Xt69QUuP6UZP8mug0NDQ4rmu1fUDjyg19UwvITl5eHp588kkAgEKhwLp166DRaDr/hrWVwNYNjoyWgpp65L62AlZbx59YKpUiPz/f/5WAK0xGSlnNPwIUn3HfeUwTTq6pnKGkeRTqqkyR7sdmo0H00K6OgylAg2j2UJpkpGV1/+qxupyy37jUaA6GoXjcpXM6tSp5+eWXsXnzZgDAvHnz8OCDDwZib3sdfXoFMGbMGGi1WjQ3N8NkMmHz5s2YO3du598wLgmYt5D8pzs2YcWG31wO/gA1oV+5ciWWLl3a+c/jUCjJZTJ0LLlLzhynwNiFc8KUOH2L000kk1Mwtv9gutRGun9/kd6PvoVWi4f3CLNlOJRqYOQEEmqLjAn9/vFhWarK37/dtZFKzaSK507qdFksFuTl5TluDx061MOzL276tAGQyWSYNWsWvv76awDAmjVrcM0110Da1SyejGzg9gEo+vwHj08ryttFPtdA+nvVYRSgHjmRTvqCE7Q6KD4rzDaxmOn+guN0Oz6JqqAzBlAQmZ9toiunHrYNNSSWNmZm90siiHjHZqPJyJG9wNmTrrONYhOAMVOplWh3Z5G1NJGROrbPdSwiPgm49CqatHRhZbJ582Y0NVGNjVwux/jx4zv9Xr2dPm0AAODGG2/EunXrwLIsSktLsX79etx0001df2OGQebQ4cD3G9w+JZM1Au+/QimcYy4haYRALrk14U5jYLBLMhScIAlofswAcObe799O+xBvV/k01QMHNggDrLvWB7Y7lkjgYFlym+QfplRlVyJ+nJtnzJTAH3P+0txIKdQFxymm5cojnZhKev2DRnR5X/V6PVauXOm4PXPmzMC2g+1l9OkYAMcrr7yCjRs3AqDm8MuXL0daWtdloAsKCpCbmysIAHNIJQzy/7QIOfG8gp74JEqxyx0dXMkHi5mKsc7l0xLblUsAAGwmoK3Y9WOMBFi4FEjL6X4/cV+HZamG4uxJGkjdFZKFR5CcyIgJJETYHdisJCZ4/gwde+0lozkYhmb6Y6YC/bIDcoyxLIuXXnoJW7duBUAegA8//BApKX13NSsaAFBGwD333IPmZhJi69evH/79738HJDtg1apVWLx4scAISKVSvP/MX3BfWpRrATVtJGVfjJgYfF0clqV9KDpDRqG00KmeaKoFzPXuXyuPBsJTKSc8Oo62qDggOpbcWuow0TgEA5alVNiSc+QrLz7rvlaCkdBAOmICVWRLQqwlxbJU21F8lvb1QqEwd789kdFU2DhsXECNFMuy+O9//4s1a9Y47luwYAHuueeegH1Gb0Q0AHa2bduG559/3nF70KBBWLZsmUAyorMUFBRg5cqVjjqAhQsXUvYPy9Is6MAOGoDbowkHJl1Bkg+hSsNjWaC2iprTbP0MqHOhRcMhDQdUHprXKJRkCCJjaIuyX0ZEkaRDTxB96+mwLLlxaipo43o0cKqx7kjpRxLmg0aEPne/sZ4G+5KzZKS87WtkDBW95QynbnMBnjSYzWa88cYbjlU+AIwdOxavvPIKKQH3YUQDwGPlypX4+OOPHbeTk5Px4osvBiZV0xu6KiBvG7XRax+si4im6uIA+ED9wlt/XHk0oIjr/PurNfTdIqIoJ14bZb9uz5EP14Z+xhpqWJYK2Vpb7B3XGml2X6+jQGh9TUcVUFcw9i5v2UMozTeUmTxGAw3050/TwO8qgMtHIiX1V04WJC4paMd1SUkJXn75ZUe9DwDk5OTg9ddfF1QD91VEA8CDZVm8/fbbjqwggPyEd955J26//XYolSGYsbY0USD20C6nCBxHvxxqqReqMnxdOfD2w+67Yy3+JwAZDVJ1NfYBq5Y2d5o+/sAwVNUcpiXxt3Ct8zZ/04SHLoPFZrMXm5noO5rNgIVXfGY2CS9N9ueajfR8k5EGdEMbDfz6Fvd1G96IjqOMs8yB1F9B1YUaFn9p0FHM4dxJkv72pmcUn0zHb78cID0r6P+vtrY2fPHFF/j8888Fcu/Dhw/Hyy+/3KeLv/iIBqAdLMvi888/x/vvvw/+TxMXF4e77roLc+bMCZEhaAb2bCHJaf4AIZVRb4Dxl4Vmdnxoi/vuWKOvcP0alqU4QoMOaNSRS6CxDmioo9ltU4P3AcNf5AqKOag1NBAqVVR9K1dQzQNfGI6R0PexsXRpsQu2cQO3yeh+a2+UQ0V4BA2iCSnk3knJCK1rh2Wp0PG0PWOnttLz86Pj7AN+NqUVa0KTaaPX6/Htt99i9erVgmpfAJg7dy4eeughyOViASSHaADccOjQISxdutShGc6h1Woxe/ZszJo1CwMHDgQTbJdMXQ1JQLcviElKA+bcSplDwUZXHtjuWDYb+YWb6p0GwaGQWU+roDYXPRouZiQSICzC6QKLjHEG1mMTyLiFGpaluMOpI1SJ68m1o1STqF/WIBr4Q5hlxLIsTp06hR9//BGbN2/uIO4WGxuLP/7xj5gyZUrI9qm3IBoAD+j1enz00UdYu3YtLJaOkriJiYmYNGkSxowZgxEjRiAqKio4O8KylL/PbxID0Iz2klmkD99TOoUFCrOJvit/a222X9qv61uE/V5DDSNxykTLXF1y0tEKQKkkPX+F0q4LpKZLTTg1u1Gqe0bGFDfonzlGs/06F81fOGITqJ5gQC4Fb0MYrzGZTDh+/Dj27NmDHTt2oKKiosNzlEol5s2bhzvuuKNrEi8XMaIB8IHq6mqsXr0aGzZsgMHgPoUtMTEROTk56N+/P9LS0pCSkoKkpCRER0cHJtvAoKeG8cf3C++PTQA7/ToYk/uhra0NbW1tMBgMMBgMMBqNjkuz2Qyz2QyLxQKLxQKbzQaWZR2uLoZhwDAMJBIJpFIppFIpZDIZ5HK549LdplAoHM+RSqWO1wR9hWS10mpB30LqoAa9079uNDj99RazUAhOwtAAzjB2TX85XcoVNEhzl1yTGbmCms4oeI9LZT1j0O4qViv1YziXT+4dTzP9pHR7xs4wWp2EAJZlUVFRgXPnzuHUqVM4fvw4Tp06BZPJ5PL54eHhuO666zBv3jzExHSzrEUPRzQAftDa2ootW7Zg8+bNOHbsmM+vk0gkiI6ORmRkJLRaLcLCwqDRaKBSqRwDpVQqBcMwjsHYarXCarU6Bm2TyQSj0Qij0YhEfQMuN9ZCY7XAZrPCarPBZrPhhMGGLS02FJl6zr+UYRjIZDLHd5RKpQ4Dwzc0Eomkw23uuqeNe2/u/bnfs73h8nTZ/vnt37P9be5/1atp0FFuftEZujR6yDRKzgAGjwAGjgi4a8dms6G1tRWNjY1obGxEXV0damtrUV1djYqKCpSVleHChQswGr0nFYwYMQJz5szB9OnToVKFqHFOL0c0AJ1Ep9MhLy8P+/fvx5EjR6DTeUl9CzAqBrguQopJYRK0H4rKzCy2t9pwtM0Gg/jfDQqcYWi/UmpvMLwZH4VC4XFlxT3HlYFqbwwlEoljFccZKJZlAZMRUl0VZDUVkNWUQ1FTAYm+mVZ/9uewvNUgy7Jo1kajJjoZVVEJaJUqHKtGbmJitVodq0juNv86/7n8SYzJZHKsTvV6Pdra2tDZIUipVGLUqFGYPHkyLrnkEsTFhWZFcjEhGoAAwLIsampqcPr0aRQWFqK4uBilpaWorKx0VBcHi1Q5g5sjpchUCM2ARCIBI5GgDHIUSVSokalRr9AACqVjAOFm2fzvwbmFuJOYv/FPZO46t4kNNrqfMAkQJ2UQLwMSZAwSZQxS5AxiZd5XK1YWKDDacMLA4oTRhoYe2EwtOTkZAwcOxODBgzF8+HAMGjQIsu7uU9DLEQ1AkNHr9airq0NdXR0aGxvR0tKClpYWtLW1wWg0wmQyCWZQ3OyNP7PkZolKpRJKpRIqlQpqtdqxqZRKRNaUIbzgCOQVJTT4u9oZhqHK3Kg4KrmPjHY2VVdpnL5tzr8ttffI9SF+YbPZYDabYbVaHd+Jbzz4M0f+9+U2/n3czJK7n7uv/XX+ZXtD5cpwtX/M1X38raedGhoGiJYxiJEC0VK6jJExiLVfV0r8c0tVW1icNthwxsiiwMSiOz2HDMMgMjISMTExiImJQXx8PJKSkpCSkoL09HRkZGRArVZ33w5epIgG4GKjpgI4uAs4e6JzvXRdwTD2BupSCpTKZM5sFy5QqlSTIVGHkVHhul5FRIeukXmA4YyNK0Pj6+32gXf+ffzNajJC0dYKpVEPpbENKrMRaosRGosRYVYLNDYzpKzQTeMI4LMAC95lOxgARpZBuRW4YJWgzCZFOWRok8g6xDz4rit+TKW9a4tbPXLX+TEc7j7++3CTGIVCAaVSCbVaDY1Gg7CwMEdcrNfHVXohogG4WGFZUl0sPAWUnaeWep5EuIKJOsy+8ogFYuOpBWJMAmWR9JUlPMsCLY1UDOcoiqtz3m5tdi2F7C8KJf2uMQn0W8cmUvFYZMzFkbEkElBEA9BXYFnK/KippIGnsZ60Z9r0lEbZpnemS4bqkGAkNFjFJ9m3FCAusfcOVmaTc3BvrLNLY+iAhlr6vQNR/SxXOMX0IqKcQnuRMaTC2lPqCUR6BaIBEBHCNVd3NEjnNVXnbvMbpJsMtLIwtPHy8Vuclb2dGfTkCioyik20N023rxqiYruv4M1qtReiNdJ3cwi3NTirmbvqcmMY0jyKjOYJ40XZXWn22+IALxJARAMgEjxYlgbN+lqnUFxdDVWX1uv8Nw4MQ5o4kTE0MIZp6bYmjKpquUC2TE6bVEYOcG7AtNnsRsyu/WO2i7gZ7UbMZBCuiPQtgL6ZlDrbWgOzMtKE22fs0cLZe5T9O11sFd0iPRrRAIh0D1YruUZqKklYrKaCrrvrTtZbkEhpph4V42yOExnr7IUg9kAQ6UGIBkCkZ2E00CqhthLQVTtXDA11rmWpQ41cAthaAcYGhEcDWaOB5CynPz48wqe0WRGRnoBoAER6B1Yr+d25AGtLI0lmtzaRu4bT/+Ekm70d1h1SWdV0ydVEqDWARktCbZpwGtjP7gd+eM+FNPYfSCFVRKSXIRoAkYsPlrX7+y1OQ8Cy5F+XSGmG7m8g1VtznIf+3TWJbBGRbkBcq4pcfDAMDfaOIjVecxiptHNZNAc3u3dBsTbqlyAi0ssQDYCIiC801Hh53INuvohID0U0ACIivhDlpQ9zVEJo9kNEJICIBkBExBfGzCRfvysYiRgEFumViAZARMQXYlMo26e9EWAkwNwHxQCwSK9EzAISEfEHXTkFfBuqye0zeoY4+Iv0WkQDICIiItJHEV1AIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0U0QCIiIiI9FFEAyAiIiLSRxENgIiIiEgfRTQAIiIiIn0UWXfvQF/GYrGgpqYGVVVV0Ol0qK2tRUNDAxobG9HU1AS9Xo/W1laYTCaYzWZYLBawLAsAkEqlkEqlUCgUUKvVUKvViIiIgFarRXR0NGJjYxEbG4vExEQkJSVBo9F087cV6U2wLIv6+npUV1ejtrYWdXV1qKurQ2NjI5qbm9HS0oK2tja0tbXBZDLBYrHAarXCZrMBEB6fSqUSKpUKYWFhCAsLQ0REBCIjIxEZGYmYmBhER0cjLi4OMTExkEql3fzN+xaiAQgBzc3NOH/+PM6fP4/i4mJcuHABFy5cQHV1tWNADzaxsbHIyMhAVlYWsrOzkZ2djaysLMhk4iHQlzGbzSgqKkJhYSGKiopw4cIFlJWVoby8HCaTKaT7wjAM4uPjkZycjOTkZKSmpiItLQ0ZGRlIT0+HXC4P6f70BRg2VCNQH6GlpQWnTp1ybGfPnkVVVVV375ZLlEolBg0ahBEjRmD06NEYOnQolEpld++WSJBgWRZlZWU4duwYTp48iZMnT6K4uBhWq7W7d80rEokE6enpGDBgALKzszF48GAMGjRIXNl2EdEAdJHq6mocOXIER48exbFjx1BSUuL3rD42Nhbx8fGIiYlBTEwMIiMjERERgbCwMGg0GiiVSigUCkilUkgkFLaxWq2wWCwwGo0wGo1obW1FS0sLGhsbUVdXB51O53AvWSwWn/ZDLpdj5MiRGD9+PCZOnIiMjAwwDOP3byLSc2hsbMS+ffuQl5eHgwcPQqfT+fV6jUaD+Ph4xMbGIjo6GtHR0dBqtQgPD0dYWBhUKhUUCgXkcjmkUqnjeLHZbLBYLDCbzTAYDGhra4Ner0dLSwuamprQ2NiIhoYG1NfXo66uDs3NzX5/N4ZhkJWVhVGjRmHUqFEYPXo0wsPD/X6fvoxoAPxEr9fjwIED2L9/Pw4cOICysjKfXqfVapGZmYnMzEykp6cjIyMDqampSExMDOrSlmVZ1NTU4MKFCyguLsa5c+dw9uxZFBYWejUMiYmJmDhxIiZOnIgxY8ZApVIFbT9FAkdNTQ22bduGbdu24dixY14nJHK53HFs9uvXD+np6UhNTUVycnLIZthGoxE1NTWorKxEeXm5Y7tw4QJKS0t9msRIJBIMHToUU6ZMwaWXXorU1NQQ7HnvRjQAPlBdXY0dO3Zgx44dOHbsmNeDUavVYsiQIRg8eDAGDhyIAQMGICEhoUfNpk0mEwoKCnDs2DEcPnwYR44cgcFgcPt8mUyG4cOHY9y4cRg/fjyys7N71Pfp6zQ3N2Pr1q3YvHkzjh496vG5mZmZGDZsGIYMGYJBgwYhIyOjR8eCLBYLysrKUFhYiLNnz+LMmTPIz89Ha2urx9dlZ2dj1qxZmDlzJmJiYkK0t70L0QC4QafT4ZdffsEvv/yCU6dOeXxuSkoKRo4cieHDh2P48OFITU3tdYOjxWLByZMnkZeXh7y8PBQUFHh8vlardSy7R44ciaysrMB9Z6sVMBkAkxEwmQAz79JsAsxm+3Uz3baY6bqFv1kAq4Xey2alS9YGsKxzAwCGsW8SQCoBJFJAKgNkMkAqp0uZHJArALmcriuUdFsmBxQKQGZ/jLvPsdlfK5UBUil9TgCxWq3Yv38/fvzxR+zcuRNms9nl82JjYzFhwgRMmDABo0aNQlRUVED3oztgWRYlJSU4evQoDh8+jIMHD6KhocHlcyUSCSZPnowbbrgBY8eO7XXnZjARDQAPk8mE7du348cff8SBAwfcLp21Wi0mTJiAsWPHYuzYsUhISAjxngYfnU7nMAb79u3zOtvSarUYPnw4RowYgZEjRiA7PRUykxEw6IG2VsDQZt/0gNFA100Gut5+s/X8oGSn4BsZCe+SkQASuxGSSMhQcI8zEjIeEqnjtQ3NLThTeB75Z8+hsbUVRhYwsYCRBQw2Fm0soI2Nx4iJkzD2kkuRPXwEGLnC7W4VFBRgxYoVKCoqQmZmJhYtWoScnJwQ/jBdh2VZnD59Grt378b27dtx/vx5l89LT0/HLbfcgtmzZ4sJDxANAACgtLQU3377LX788Ue3wai0tDRMnToVU6dORW5uriMY2xewGgwoOHYYJ/bvw9mjh6ErKYaGYREmAcIkDMIlcFznLqUSCcLCwxAeFobw8HBowsIgEWdencZitToCpnq93uVzZDIZoqOiEB0TA41GA8GvLVcCmjAgTOvctJFY9fNWLH7x/wSZQFKpFMuXL8eCBQuC+6WCSElJCX7++Wds2rQJ1dXVHR6PjIzEzTffjBtvvLFPB477rAFgWRaHDx/G6tWrsXfvXpfPSUpKwowZM3DFFVcE1sXRnZhNNAvX22fmgk3vvDToAb39fovQtWC12tDS2oKW5ma0tLa6HZD4MAxDxkCrRYRWC3X7AcodfJeLQkEDmZzncuHcLg73C8/tIpPRpWPGbd/AwPHhfJeQ1UpuI85lZLHY3Usm56Vjs7uhuPtNJnot91gAVjE2lkVzc7OjAMvVqcowDCIjIhATEwNtRIRfRragph65r62A1dbxfaUSCfJXvo2coUOBiBggMgaIjAZU6i59p1Bjs9mwf/9+fPPNN9izZ0+H31Cj0WDevHmYN28etFptN+1l99HnDADLssjLy8OHH36I/Pz8Do8rlUpMnz4dV111FYYPH97zB32WJbdJaxPQ2gy0ttgvm2kAb222D+otdNsc+OIeq9VqT0NtRUtrC/R6PViWBcsCrTYWehbQ2wC9jUWbDWhjAUalRnr2QGQPHYaBw0dAHq4FFCpAqaQBX6GiQb23rrRsNnsMwkKGhH/bZrNvVvr/2WwUn7DZwFqtKL1wAfv27sGB/fuhb2mBlAGkDAMZAClD1ZtpyYkYNWwYcrOzoZZJ7PES+2ZsAwwGMuIe/t9LNvyGZVvz3D8+fSKWXnWZ8E6VGoiKJYMQHUdbVCwQEw+owwIe5wgkZWVlWLt2LTZs2ACj0Sh4TKPR4Oabb8Ytt9zSpwxBnzIAJ0+exH//+18cP368w2P9+vXDDTfcgFmzZiEsLKwb9s4FLEsncVMDbc3c1khbSxNtFtfBv4CjUAKacHIlqMMAdTig0divc5sGRqkcBaVlOHTyFI4cPYrjx493OOH4hIWFYdq0abjmmmuQm5vbc42urhw4uBloqAGi4oExM4HYlMC8tU6Hn3/+GT/99BOKiopcPicqKgqzZs3CnDlz0L9/f9/e2GKmFZ2+xbm1NgMtTZj//P9h9Q7Xq18AmD9yMD6/8zrfv4RKTYYgJgGITaDLuEQyFj3of9rU1IS1a9di7dq1HWJbGo0Gt956K+bNm9dzxoEg0icMQFNTE/73v/9h48aNHR4bO3Ys5s+f333ZAUYD0FAHNNq3Bh3QWA801dFlsAZ3hRJQ8wZvlcY+sGva3bZfV4eRS6UTWCwWnDp1ylE/cfLkSYdmTHsGDhyI22+/HdOmTRP+P1i2nQvG1M41Y3adDcS5dSwWYTaQY9bN0iUfhgHACAOyumKgaD8A/unCAEOnA/2Gk6uJnynEuacc7iv7ykYqcwyGFosFu3fvxg8//IC8vDyXLh6ZTIZLLrkEV155JcaPHx/QdM0lS5Zg2bJl7h+/7SYsnXcNHZdNXTgWZXIgLomMQlwSEJ9El+ER3WoYWltbsXbtWnz11VcdYn/h4eG49dZbcfPNN1/U1cYXvQHIy8vD0qVLO6SITZgwAQsWLMDgwYODvxNmE1BfC9TV0GW9/bKhjmZkgUAiBcLCKbinaX/JzdbD6D6VptODuVdsVrsbwmhP3zR2SOc0NDei8MxpnD99GqXnCyGxWqBgwNsYxESEY+jAHESFaewDvW/VzMH5Tiagrdj94+p+gMR9lo0AiRQGlkVpdS3Ol1egyWBEGwtyjfHcZQnp/TBy0mSMmXwJwuLiaXatVFNGUIAoKChAbm6uSykIqVSK/Px8ZzYQy5J7sVFHk5QGnfMYrq+hrC5/UarJKMTaVwrcykEbFVLXn16vx1dffYU1a9agpUV4Pmq1Wtx222248cYbL0pDcNEaAJZl8dFHH+GDDz4Q3N+/f388/PDDGDVqVOA/1GwCdFVALW+rq6bZU1d+ZpkciIgGIiKB8ChAG2m/HkmzqPBImrkHajZls9EJ3T5AbNC3S+XUk6+Zn87p5yzRarOhsbERutpatLhINY2NjUVqaiqk3RkLMNUC5nr3j8ujAUWcx7dgATQ3NaGmthZNTU0un6OQK+xyINHuUxTlCjIGnEFQqoW3VWpAqRJeV2noulzR4RhZtWoVFi9e3CEL6P3338d9990neK7FYumgVqvX60k0rq0VypYmaAwtCDO0IMyoR7ixFSqTAVKpFDKpFDKZHDKZzPthKpEC0bFAVJwwzhAVQ8YhSIqhLS0tWLNmDb766qsOiQ0RERGYP38+brzxxouqIv6iNAAWiwVLly7FL7/84rhPoVBg4cKFmDdvXmAkZw16oLIMqCoFqsuB6gqaCXXm55TJ7FkWMfYAWzQQEQNzmBY1BhNqW/TQ8aR4W1tbYTAYYDKZBBK8MpkMMpnMIQ/Nl96Ni4tDbFQUohVSMC1NwjiCI2hs9xG3tXbNYHWStrY2VFZVdVitqVQq9O/fH0oFb5btyA7iXC5KYdEWv5BLai/uksqE2UBcDj4gHBgdhWL2AO3BDUClh8K4qDQgfbTT7eTIEjLBZjSgvroK1VVVMLiIgzAMg6ioKMTGxiI8PNy3zKjOIpHSREGlodWiJhxQh6GgrhErN/2KoqoapPXrhyuvuho2mRwXSksdyqDV1dWor/dgBN2gYIBEGYNkOYNkGZAsl6BfmBKxSjlJRatUUKlUUKvVUCgU3r8/wwARUbxzxZ6dxN0OQCC6ubkZX375JdauXYu2NuHKJjo6Gvfeey+uueaaHl097SsXnQEwGo14/vnnBamdaWlpePHFF30PnLXHbAKqyoCKC0BFCVB5gfzz/sDNamISnLMa+9YKCc7Zy9yLi4tRXFyM0tJSv4W7AEDFAPEyBvEyIE7KIE7GIFYKxMgYREgZSBiGTjz+yadSQaVWB36W3T6Fk8vscZvSSQN6cXkFPvnyS5y/UAYTC5hYFmptJJ558UUMGJxL7xtK3/HPHwE717l/fOpNwMy7BXdZLBZs3LgRn376KaqqqqBk4NhUEgb9khMx45JLMGHUCGgkcGbtcAVzRr2weM5NzKQrsKDzpbWlBa32dN42uxyI0caiwQrUWVnorIDOwkJnZVFjYVFnAboamdIwQKKcQaKMQZKMjESaWoHkcJq4dLp2RKEUZiZFxwHR8eRaUvo3c29qanIYgvYyKWlpaXjkkUcwfvx4//avh3FRGQC9Xo+nn34ahw8fdtw3duxYvPDCC/4Ve+hbgNLzQFkRUFoEVJf5fgLKZEBsIvk0ucBXTALNUCQSsCyL0tJSHD58GCdOnMDJkydx4cIFf74mABpIku0zqxQ5g0T7SaSVdn5gVClVCAvTICw8HOHh4VCqVMKAMOdKUGt47ge7u0GpsqdxquwBTwUZvU5isViwYsUKfPHFF477wsLC8Nprr2HQoEGdft9OoSsH3n64Y7AYoBXEQ/92ZAOxLIvdu3fjv//9L0pLS4VPZRhMnjwZN998M0aPHu170gHL2uMqPCNhbONdGtrdbrO75OzXeamgVpsNzc3NaGpsRFNzs1v5CE8wEgnaJHI0yxRokavQLFehVaFBs0yJZokcFpaF2WyG0WhEW1ubQ6XWUyYYh5wB4qU0iUlRKzA8PQWDE+OQGq6GwmTo2so0PILOyYRkID4ZSEghI+HlOG1oaMAXX3yBdevWdeiRMH36dDz66KOIjIzs/H51IxeNAWhsbMSTTz6J06dPO+679NJL8dxzz3lfqrU0AxfOAiWFNPDXdawcdIlaAySmAgmpdDAlJNOMo90BxUny7tu3D/v370ddXZ3P34thGCRGR2FITAT6axRIlQGJMCPCaoZEwtgHEQYA5d3bWBtYmw1Wmw1WqxVWiwVmuywv5ypqsbJotAGNVhaNVqDJxqLZftliBVpsLFpsQHRSEiZOnISpU6di5MiR3bLk/fHHH/Hqq686fNQRERH417/+hczMTN/fxGZ1Fr5x8QtjG09fyCzUDeKfEgxDrqPKAuD0to6PXTYfGDkdUGmg07fhtddfx+7duwUfL5VKMXv2bNxxxx1IS0vrwq/ROSxGI/Zt/w27f/0Fp48cgsJqRri9glsrAbRSBpESIELKIFLKQC5hoFapoFSpoFQqSY5cLodcoYBcJvNcBc8wFK/i+/CjYoHoWLTJ1dA1NaGqqgqVlZUoLS1FSUkJzp8/j4qKCo/fgWEYjBk5EtdcOgWTcwdCZdDbM+Z42XMm7wamAzI5kJQGpGQAyf2AtExyjbmgtrYWH3zwATZs2CDI2IqNjcXzzz+P4cOH+//53cxFYQCKi4vx17/+FeXl5Y77Zs+ejb/85S+u/f1GA1BaCBQVAMUFgM6HAV+uoAMlOR1Ism8RUW5dEVVVVfjtt9+wY8cOHD9+3Kskr0ajQXZ2NvpnZWFQUjwGqKRItLQhvKkOkrpq/2Y+/GUwt0VGo02uQkVrGypralFaWori4mIUFRXh3LlzXmdnERERuOKKK3DNNdcgOzvb930JALt27cLzzz/vUGGNjo7G22+/jZSEBCqA42IaLY1AcxOvKM6+dSZDxRU2E2BpAmxmQCIHZBGO7J/GpiYUFRejwWRBsw1oshvZzGEjMGnWHERnZNHxoo2kYykEVFdXY/369diwYYNboTSAamBGjhyJ3NxcDB40CBnxsZC0NNnrT+oo06ehDmiopcG2K+6o8AjhcWk/TpvlKhQUl+D48eM4duwYjh075vaY1Gg0mDVrFubNm+c0qFzNTL2O9rO+1pl5V1dLht5XYhOBjAFAvxwgM6fD/+vs2bN44403cPLkScd9UqkUf/nLXzB79my/f5LupNcbgLy8PLz44ouCqP1NN92Ehx56yLnEZlkK0p4/BZw/DZQXez+IwyOAtCwgNZO2+CSvS8Wmpib88ssv+PnnnwUHhyv69++PESNGYEhuLoYnJyDR1AKGczu1+tgcQ6GkJW1ckt3llEgHb5jWLx+5zWZDaWkp8vPzcfz4cRw5csSjW2ro0KG48847MWnSpMDWTthslFHUZndztOmpgrmtFacOHcD2DT9Aa5+pJoSpMWpgdo8IxOl0OpS0+7204eFITUuD2lXGiCacZsmR0fbsrijhbT991e0pLS3Fxx9/jC1btrhM8QwPD8fEiRMxefJkjB071j91UJuVDAOXBupIbbYbh64MJ2FaMgixCTBHxeNMfRO2nTqLrbt2u9TzYRgGU6ZMwV133eU5nZtlaYJQWwXUVtBYUFNBEz9Xbj0+UhkZg0EjgIHDHf8blmXx1Vdf4b333hPIwz/11FO9ygj0WgPAsiw++eQTrFq1SjC7Xrx4MW6//XYwFjPN8AvzgcJTNEv0hDaK/tHp/WnzsXqRZVkcO3YM69evx7Zt29z2CnBI8o4fj9GZ6YhsqAaKzwIXzvk2Q1UoaQWSlAYkppHrKSo2aMHQmpoa5OXlYefOndi3b5/L7zVo0CA8+OCDzqWv2eTUE+L7qo1GntvFfp2rEXCogBq9ztJ0dXUoKSlx3NZoNMgekA2p1MfgtUxGcQwuTZILUHNZQxJpR9lmvkYQpw1ksu+rwYCa0mKUnD4Nif0lEkaC1LRUxMbGdj6jR6EkQxAeQSsGR7pvBBCuBcIiyIi0W902NDRg1apV+P777zsU2snlclx22WWYOXMmxo0bFxzDabWSEaiv5dUJ2C+b6ju9cmCj41AlU2NnSQW+2ncYlS0dz5fJkydj0aJFGDBggO9vbDZRBl9FCVBeQpMvT+OETAbkDAfGX0bnH4ATJ07gmWeecaywZDIZ3nzzTQwdOtSPb9h99EoD0NbWhqVLl2L79u2O+5RKJZ5/4s+YHK8FCk7Q4Gr1UDykVAP9smmZ1y/b78HUYrHgl19+wZo1a3D27FmXz0lLS8Pll1+Oy8aNQbacBcO5nLwZI4CCxyn9aPWRkgHEJFAueXMzmpqaYDQaYTAYHDM8hmEc/tqIiAhotdqAneSt9XXYu2UT8jb/jMYLRYiQAJFSBhFSQCthMCg9BTmpKZCGQMa5sqpK4C8ODw/HgGHDIeEGzPBI5yAZHuGUrgjTBtz1UlZWhkWLFsFoNELFAOmx0XjuT48jLSrCKdPBSXc0NdBtbzNOf1CpAU04WClQd+E0GuqqUdtmwd4aMy60WdFqA1TRMZh+9bWYNudqRMTFd1/lrWPlwFW763juGp3P9SNWmw2lZuDbc6X4qaQKrbyfk2EYzJo1C/fffz/i4+P930eWpX0rOQeUnCVvgdFNk6QBQ4Dp1wLRcSgtLcXDDz/sMAIJCQlYtWpVrygc63UGoKKiAn/9618deikREuDylFgsuGQcolo8FFwxDPntswbRlpTWqWpDi8WCDRs24LPPPnPZ7D0qKgqzZs7ENWOGI8OiB1N0hlJIPf3MDENB5PT+MCWmo8jM4lx5JS5cuICysjJUV1c78rD9+XdFRkYiKSkJKSkpyMrKcjTTjo6OFj6RZe0np/1kbNQJ5Sl4K5RWvR5VlZVobFfMpFQq0b9/f6gCobHOMM4CJq6KWR0GhGvBasLx9abN+H7rNjRaWTRZgctnzMDTTz8dcimPp59+Grt27QJAhujtt99Gv3793L/AZqWEA05aobGeLpsanJeeJi0uMLfpILPWtVu0sCjXWaHWJiIqOtqZSimROuU+NFpntbhjdWFfcbgotjIajSgpKUF5eTkqKipQU1Pj6Onb1taGtrY2xyqRsacaKxQKhIeHIzIyElFRUUhISEBiYiLS0tKQlpbmLHZjWTKO9TWAroaKKavLyU3jJrDLAmhoacGGikZ8crYcBt5poVQqcdddd+G2227rWrtVqxUoOw+cPgacPkKrWz5SGXDlzcDQsTh27Bgef/xxx4Rs/vz5eOCBBzr/2SGiVxmAs2fP4oknnoCpsQGj1BKMUTMYGReFzMx+kLkK9ipVNNj3HwxkDaaDvxMUFBTg/fffx969e1FdXQ2tVtvBuo8fPQp3ThmPYWoJpEVnvEs8xCcB/XKgC4vGwep6HDl1GidOnEBxcbHfTeXbo9frUVFRAYPBAJVK5ejtKgWQIANGpSVjbGY6hiXHI0EuAdNQ67fUQmtrKy5cuODIGwcoEDZgwACERUU7C444dwuXHupIE7Urf8rt93H3cxWtHgZzlmXxj3/8A5s2bXLcN3fuXDz22GMhMwJnz57F4sWLHbefffZZXHHFFV17U5Yl9xlnDNoHtlua6bbJCBZAfV01ohUNLr8zC4DxR6Ki3WubIUGVwYzixhacrqnDqeo6VJptqA3QIo9hGCQlJSEnJwcDBw7EkCFDMGTIEGEFNMuSsSwrJldpyTm63W5fa802vHKmEvuLhf2509LS8MQTT2DEiBFd32GrFSg4DuRtpQkdn6vnA0PHYNWqVfjoo48AkBH68ssvERER0fXPDiK9xgAcP3oEHz33FEZITRislEDK0FIrJTlFOFZoI4HsobSl9+9y2birUnmA/N/Z6Wm4a/IYzMlKQVRDjedlbHgEkDkQ1vQBONFixG/7DiAvL69DrrgvMAwDtVoNpVLpcPPYbDaYTCacO3euQwBawgCPjh2Cu3JSO4yrCoUCcbGxiIuL9+xLl0jIvaKNpKBlWASsmnD8tGMn1m/agmYbi1YbwKo1eP3NfwU9U8hiseDJJ5/EwYMHHffdd999uPfee4P6uRz82X9OTg7efffdkBmfloZ6/PfVV5BbeRjXpnkIGGtTSKLC6D1/3my2oLGJJB5ampthdeOvN7NAuZlFqZnFeZMNhSYqGAsEUqkUubm5mDBhAiZNmuS673RNJXDyAHD8gGCSxarU2JKUi3c+Wy3IeGIYBvPmzcPvfve7wLhEWRY4fRTYvM65IpDJgUVPwKBQ4fbbb3d8/h/+8AfccsstXf/MINLzDYCuGtWbv0Phd2ugtPtPGQAZGRnORs+R0fYo/Qhy7QToRNy/fz8mTJjgckYuYRgcffw+DE1yowHDSCiLqP8gsJkDkV9Tj00//4xff/3VrRYMh1KpRFZWFjIyMpCWlobk5GQkJCQgJiYGUVFRCAsLE54Y9krlgr27kXvr3S5PXinDYP31lyFF43pGKJVKEZ2WgdShIyCJSSDdlagYe5ZKNLkL3LjMtm7dipdfftnhAoiNjcW7776L2NhYj9+zq7S1teGJJ57AiRMnHPc9/fTTmDlzZlA/96effsI//vEPx+0XXngB06ZNC+pncpw5cwYvvPACKioq8GyuBlckuJ/hN/cbiZdPG1B0/jwy09Kw6LZ5yElOpIGrtRnGulqcPXYYZafzYdLVIMJeE+AOR5zJ7t6RyUnbx6rRQp+cAUNKf+jjkmGTSGAymWAwGBxFYHV1daiyx2/KysrcJkvwSU5OxhVXXIHZs2cjIyND+KDZBOz9Fdjzi9O4pWSgZe69WPXBB1i3bp3gvB08eDD+9re/IS7Os2aTz9TXAp++7TQCIyYCV96M999/H59++ikAYMCAAXj//fcD83lBomcaAJsVOJsPHNoJ87lTOH36DMz22TXDMMjKzERkShqQOwoYPCqggz5ALoaff/4ZDz74oNsAL+CiYYZCSe6m7KFA1iAYwOCnn37CunXrUFzcUU0yVS3B1UkK9I8OBxOTCNPQS5ExehLS09M9F9sYDcCFQvJPlp4nTSKb1WuDjyenT8QLMyej2swiv6YOh0rKUWW2ocYK1FhYmFhKT3366af9ls3YtWsXnn32WUf2yYgRI/DGG28EvXVmc3MzHnzwQUfaqlQqxbJlyzB27NigfN7Ro0fx5z//2VFBO2rUKLz++ushmf3/8MMPePPNNx2D5+IsFe7IcL8CWLazAEs2O40j1+px2rRp+Oqrr/DLL790yLWXAYiSAglKGUb0S0NuUjz6acMQL7FBbWrzntmkVANDRgOjJlF6sgtsNhsqKytx7tw5nDlzBvn5+Th58mQH3R0OrsFQZGQkxowZg/vvv9+pUpp/CPj+c+eTr70dyB2NU6dO4R//+IfgvIuNjcWyZcv8yxTyxJG9wKa1dF0iBRb8ESUtbYJV6P/+97/QV677Qc8yACYjcDQPOLgDaKyHjWVxtqAArfYcfwsLJF06E+mXTKXKzMbagDfmaGhowD//+U/k7dqFolMncbbSfZHY/JGD8fn984GcoZQjnJENSKVobm7GV199hXXr1rnsMSyTyfC7Cdm4WV4FCV9fnpEAc/8AjJ4hfAEXjCoqoOymqlKXS/r5n36H1UdOud/fG2/A52u+crjFamtrsX79enz99deCOgqFQoE//elPfuczr1+/Hm+++abj9qJFi3DXXXf59R6doX0WhlarxfLly5GYmBjQz9m+fTtefvllx6AZERGB9957L+Cf0x6TyYQ333xT0M+CYRg8etctmHthMxgXmUUWmw2572zB2TqhwirDMBg/frzLDJWEhARMnToVEydOxIgRIzqqXppN5IKpLqNamtKiDj55AQOHA5fOIbkFL1itVhQUFGDfvn3Yu3cvTp48CZZlUVFRIajuB1z0LF7/MXDmGF2PjAYW/AmQK2A0GvH222/j+++/d7w2PDwc//znPwMjA2+xAO+/QpleAGUS3nQfHnr+b45V6axZs/DXv/61658VJHqGATDogQM7gIM7BRknZXYVwgozi12tNkxa+Htc2z8a+PY/wnQ6dwOnnxzdvw9rX30Z/UwtGKJk8O7Rs/jgZJHb5y/5/e+w9O3/OArEjEYjVq9ejdWrV7vskzty5EjMmTMHlw3LgWbFX9ynBN79PJCcDZzLB86dBIrOeq9klCuw5Nd9WPbtJrdPWbJkCZYuXdrh/qamJqxYsQLffvut4P777rsP99xzj8+zW5Zl8fLLL2PLli0A6ER95513QjIDOn36NB599FHH4Dxy5Ei8/vrrAVmBsCyLL774Au+9957jPoVCgX/+85+BCTB6oLq6Gs8995xgEIyKisJzzz2H0aNHA4e2dDgfrCywaP1BfHikxNVbIiMjw7HCi4iIwMyZMzFr1iwMGjTIr5WMyWRCbVEhjKePQXr+NDTVF8BYrWBZFhKGgUQigUSugGn8NIRNvwZqP9IidTodPv30Uzz22GNueyHv27ePVnp1NcCq15x1BqOnADNvcDz3u+++wxtvvOF4n7CwMLzxxhvOVURXOHMcWP+R87ZEitOaGCxZuwENVtrPFStWICsrq+ufFQS61wAY9MC+bTTwt0v3am5pxZpjp7G91YYiE4urr74aTyy802dRLp9paQJ79iRO//A1Wk4cBt8FqrMxmLP6Z2RFa7BodD9kRmlQ1KDHikPFON9ocDTMYFkW27dvxzvvvNOhYlGtVuPqq6/GDTfc4Cxb96YuCQDKREAWAZtdWMtkMsFiscBms8Fms8EqV6I1OgHWlAyos4cgNncYyioqfW/w4YK8vDy8/PLLghjFddddh8cee8zngbSlpQWLFi1y/A79+vXDe++9B4UisDn4rmjvm3/ggQcwf/78Lr1nW1sbXnnlFWzdutVxX1hYGF588cWguZk4Dh48iBdffFHw/xg6dCheeOEFoS9bV06GoKEaiErAYx9+h399ssbt+yYkJOD666/HvHnzMH36dJ9SJWtqanD06FEUFBQ4VGtra2sFz1EywGi1BJeFSZAkFxqS4wYbfpTFILVfJnJzczFq1KiOWT/t8NaxLCcnBx9//DEmTpwIbP0B2Peb88FLZgOTZzhcw9u3b8dLL73kcJ9FRkbirbfe6hhb6Ax5W4HfNjhusiyLk6dOIa+hDbtbbVBk5+Jfb70VGBn6ANM9BsBsokF/768dCy3kSrRkD8PDH6xGkY4kl/v164d3330Xym2r/Zbl7QDLUp5xwQng7EmwFSUoLS1FLU96mWEYpKakIC4lFTvKSjBZ3QgZbwC02GzYEz8GUx9+Hg0NDXjttdewY8cOwcdotVrccsstuPHGGzsqka55DTghfL6r3SystKK5xQAW5P46a7ThtJFFgdGGchcxtOTkZOj1enz33XeCSlB3DT5cUVFRgSVLlggqbmfMmIElS5b4nEVx5MgRPP74444Z15133on777/fp9d2BZZl8be//Q2//vorAAqmf/755x3rHry/EWA2oam6CstefB6VJcVQMYBKAiTFxOC+u+9EfGQkr8G7lVpLShiaiDCMvS+BvU+BQkl1DFxBmibca5rrV199hf/+97+C2e/111+Phx56yOv/4c9//jNee+01t4/fd999WLlypcfZvtFoxMGDB7F7927s37/fq1hbe0apGFwfKUUkb0Z12mjDcp0V3JGpVCoxefJkzJw5ExMnTuzwvebPn4/Vq1e7/YyEhAQMGTIE99xzD+67604wn/9XmKI5cDgw60aHuNvOnTvx/PPPOyZIcXFxeOutt5CcnOzXd3PJ2ZPA5m8c7qDGpiYUFhYCAOosLGwjJmDW40+5FZrrLkJrAFgWOHEA2P5jx2pYlRoYeynMw8fj8aeedvjQZDIZ3nnnHQwcOND7wDlsKjDvT64fa9ABJw8Bpw47xN9sNhZFRecFRU02uQLp069EwpTpQIQW+N8f3a44jly2GC+89a4g7Uwmk2HevHm488473UtQ+7ICAFCiM+HbC0acNNhw1sj6rMGu1+tRWVkJqVSKkSNH4plnnnE5Wy0oKMCKFStQVFSEzMxMLFq0CDk5OWhubsZTTz0lyK7xWVnVzttvv421aylAJpFI8O6774ZERK65uRl33303GhsbAQB33303Ft57L+XX61sAfSvpC7W2CLudtbXSYwY90KaH2WjA2XPnBDrw2vBw9MvMhLyr6YQyubPDVWwiFQGm9AMiomA2m/Hqq68Kahx8jclwK9H/+7//w08//eTyOZ5WghaLBfv27cOWLVuwc+fODhr4rpBIJIiOjkZkZCQ0Gg1kdrVQs9kMtk2PKwzVyLIZHJGuPa02fNnYcYWakJCAW265Bdddd51jVeBtBcB3ZV1++eX46yMPQb52BWXocCjVwJQZwKjJgEyOLVu24OWXX3YY1pSUFLz99tv+TxJcYTZRDPPAdqCxHsXFxajjNdHp178/YqbOBMZP8ykuEgpCZwBqKil3tvS88H6lirQ1xkwFlCq8+eabWL9+vePhxx9/HHPnzqUb/jbmYFmg6AywfxsFT3lf1WZjcf58IZqam1FnYXHcYENbShb+39+XIYpLX/TyeZ+VGLD8vPMkGT16NP74xz96lvxlWeDANrDfv+k1o2JLtQl/z6dYQmxsLGJiYhAWFgalUgmLxQKj0Yj6+npUV1d71HWXyWSYMWMG7rrrLse+uWsFyAXXDAYDnn32Wezfv9/x+OWXX45nn33WJ3eQwWDAwoULHTPH3NxcvPPOO4HLljGbhIqfrc00qLc24/i+vThz5BDCJUCMWomxQ4f4pctjtdlQcOaMoMgtPi4OqalpQVVSsGjCsfHkWWw4V4ozRhY20MD497//3au/WqfT4Y033sDOnTsBwG3w1NVKsLq6Gt9++y02bNjgsetXcnIyhg4dipycHPTv3x9paWmIj4/v4NoQTCz6ZWBhZgIy68pgMLRB39aGHy0qrD5d4tLAxMXF4ZFHHsGll17qtWfxtdde6zD0ADBu3Dj8/a9LoNz0FRWN8QmPAMZOBUZMxHc/b8brr7/ueGjgwIF48803oVar3X53v7BnMVoO7UbBpu8c31MqkWDw4FwoVEqKU1w6J2TKsO4IvgGw2YC9vwC7ttAPwyGV0Y8waTotj0HBGv4/5uqrr8af//xn56DhR2MO1FQCP39NAk/tYFngQGkFNp0vx3GDDRUWYMqUKXjuueeEPkkvKw5ugFYoFPj973+P66+/3vMAZ9CD3fgl6vN2oK25CimxUo/PL0wZDWbW3UhLS/Pop2VZFpWVlSgoKMDx48exZ88el2qenFbKjBkzMGXKFK+xApPJhOeffx579uxxPH7TTTfh4Ycfdv8deezfvx9PPPGE47Zf1bIWs1MrpqHOKSjGaeoY3Qvomc0WHD9x3HF70KBB0Phxcl8oLXX4t402Fonp/ZA5aDAYJa+jmVxO2VQSqbO1JGuDvSkDYDXb+w2Y7AqnrWSg3BQLWq02nDt31pHx1mpjUR6TgiuffplSnj2we/duLF26VJBxJpPJcPnll6OhoQGlpaXIzMzEwoULBYZk69ateP7553Hq1CkolUpHxTiHRqPB+PHjMWnSJIwdO9YnfR23E4uF87Egx35uSiQw33gf9lXWYfPmzdi+fXuHuoDZs2fj8ccfx+eff+62Z/Ett9yCF154QTBJmTRpEv7+t79BenQveRraS0nIFcCwcVh/oRZvfvSp4+5LL70UL774YsDTeSvPnMLnf30cY2QWREgZaMPDMSA7myYkMQnAjfd262oguAbAbALWf0IyzHxyhpGQUmSM467CwkI88MADjgNh0KBBeOuttzoGD11kPVAW0IPAaPvgkn8Y2PhlR12V6Dhg2Dh8sPcwPvzmO8fdl19+OZ5++umO7g0vK4BPSwzYaIrFSy+95D1vvqUJ9f/9B6pOn3DkO4erJchOVbk+6Dob1LZTWlqKH3/8ET/++GOH1pIlJSUO/6Qr+NlCZrMZzzzzDPLynPUFf/nLX3DVVVf5tB/PPfecQ7QvMzPTte/ZaKDU1ooL5MOtqaABvwuH5pmCArTam8wnJCQgNSWFXC+cD16tcfTEdVxXaVDd0opHlzyFZosNbTZg3q234ve//32n96MDhjahYmZNBdiKCyg8tF8Q7I2OjkZGRgYkcjkw7jJg0hUdZossy+Kzzz7rUGzkbSXa1NSExYsX48svv+zw2JAhQ3DrrbdixowZmDBhgl/Be28z9vxnH0aOxj6RUSiBWxYDKRmora3F6tWr8c033wgMweDBg/HKK6+gsrISK1eudLgq+YbMVf/vW7n/mb4F2LWZ3DLtxgIWwMG6Frx36BTOGOk4e+SRR3DjjTf6/H19ZdOmTVi2dCnGqhlcqZVizIBMp8tJGwXc9RCtULqB4BkAmw1Yu5JcMBzaKGDWDaSkx4NlWTz66KM4doxyeaOjo/Hee++5r9prl/WA0TOcA2V5CfD5f4TSs5k5wMQrgPT+2JuXhyVLljgemjx5Ml566SXXvm0PKw4ry2JZazoefv7/oNVqPf4UZpMJp55/BJYS56B71mjD180s7rhkOK5lS8AIOk21M2hdgFMt/fjjjx2yEydOnEBNTY3b18yfPx+ff+4srjEYDHj00Udx5gz9L5VKJVatWuVT8Ky4uBgLFixw+Fxff/11jB42FLhwnpRRL5wj4a/OHIYMQwN4WDgN7NymDsfOQ4fx6br1aLEBqphYvPvRJ2AU3oXqXnvtNUfeeHJyMj766KOg9xxYv349Vr71JgYqGQxXSTAtPREZaalCt1VULDD3LocMMQB89NFHWLVqleO2UqnEQw89hGuuucbtTHbPnj149tlnsXnzZpeP+5It5g5vPvslD/0BS/tHOVdBciVwzW00IQRNWv7xj38IYk/Dhg3Da6+95tEQWa1WvPjiiwJ14DfeeAOjRo2iGy3NVFt0ZI8gzZxlgcLCczipa8LGZiuKJEp8+ulngYkH8GBZFs888wx27doFGYD5GbFYOKy/8/87cDhwvZfklSARPAOQ9xvw2w/O29lDSDTJRbOLU6dOCWZZy5Ytw4QJEzr3ues+oIg8QIPD1bdRdS5oMLz33nsdncP69++Pd955p2PBCx+XedYs1rNpuO7ZN7ym0DU0NOC/S/6EOc1Ol8xPzVZYxl+OhYsWISUlxbNBCxA2mw0//PAD3n33XRw9etRjwxdX9QLV1dW4//77HW6GSy65BH//+999+uwnn3wSJ/bnYbhKguuHDMCk5DjfVC8lUrskBdfVzC5NoY10Sj27Sa2rr6/HzTff7DA877//vtcKUJZlMXfuXLS0kMaMPyudztLW1obbbrvN8btOnjwZLz/7DJhjeZQizRcVlMqAa+8ABg7D7t27BQVGqampePnllz2qkX7//fd4/fXXcfjwYY++fnf1It7wlrUzf/58fP7y88C6D4Xu4HGXApdeBchksFqt+Pe//y2IA95www149NFHPX620WjE//t//8+hEjxgwAAsX768o2TKiYPAoV1AbSXdZbEgPz8fVqsV+QYbzNPn4t6HHvH7u3ujtLQU99xzj/N4/H/3YkAJT7Nr8ZN0jIeY4E1tjjv9csgZCsy9262WDN/HPHz48M4P/gBQ5WwLienXOgZ/gHKBucFfIpHgmWee8Tz4A8DoGajTJuHnZU8iTs6i0mBDcUw2/vKPN7zODJuamvD4448jq7YEiKCBqk4ZhrlPv4whQ3iroNgU7+mrXUQikeC6667DlClTsGTJErcaJVKpFAsXLuxwf0JCAh555BG8/PLLACil7syZM5Sd5Q6jATh9BA/GyVCbJAcDQFZ1AWxCVMegrFJF7TYT0ygrJj6Z+sp2srF8dHQ0Bg0ahFOnyP144sQJrwagurraMfgDCIm+z65duxyDv1qtxhNPPAFGrQEmXE6ZK7s3kyFgWTKa334M21W34e2333a8R0ZGBv71r3957Ox16NAhvP7662htbfU4+ANwDKL+4q1Pc2ZmJp2PN90HfPuJ0z+/fzslaVx9G6QJKXj00UdhMpkclc/ffPMNZsyYgWHDhrl9b6VSiSeffNIxkTx37hwOHDiAcePGOZ8kV5BExciJpPe/bxvk508jMTER5eXlyFVJYMr7EdaSayDNCJBchJ20tDRMnjzZISC4rqQGf46Oc2YsFZ2h/3eICZ5QCz9IF5PgUXufPxsdPXp01z5Xzas2rBf6vrdt2+a4PmPGDJ+r89Zs2YH/nW3F3/P1WFOnxB+e+ZvXwZ9lWbz00ksoKiqC3r54iI2NxeWjR2LIAP90dgIJJ9R2++23d3iMC665W/7PmDFDUNX7zTffuP6Q8hLghy+A/7wE/LQWqVaDY8C3WK0wtLXR8n/AEOCKucB9jwMPv0g+4cuuAgaPpIY4nRz8OfgDkquWgu3h6+JIpdLAZYV4gO/uuOyyy4TuB4USmHYNcMv9lM4IACwL/ZoVSKqn7CqJRIKXXnrJ4+DPsizeeusth7SCN7wN5O5YtGiR22InwcQiaxBw18OUAstRUwF8/Bawi6QtHn/8cUFc7X//+59XmfTBgwdj0qRJjtvu3FxgGGoENW8RcNfDiB4x1rFSUFgtaPv4HdqfAHP55Zc7rh88dIg6EHL40pc8CATPAGTwcr73/gr88i0twVzAL1rqUgMHwOFPBEAVejWVjpt8YbepU6f6/JZcYREA3HXXXT71UP3pp59w4MABAMAJgw0JSclIT0+H1KAHflzTtd6pXeTcuXNIT0/HkCFDEBERgZiYGGRkZGD9+vUei8U4aV0OQQtMliWtos/+QyqJJw86egxwg2mjlcX2FisODZwAPPwCzQTHTqXZfhDyK/nBSF9SV/kxJ6vV2impbn/hpzGmpqa6flK/HOD2/+coImpra8Od0TJM0EgwbNgwz01oQEF/blbvLbefYRiXK0BfyMnJwfLlyzsYAZcTi9gE4O6HKROQw2YDdm4CVr8HudkocPucOHFCYCzdwa+V2L9/v/feGsnpUNz1EHaFJ8Nif6qhuRH48auAn6OO1qmgNF2TitefxNc+4AEmeAZg2tUUkOM4sIP0Os4c7/BUfnpZZWVlh8f9YuxU5+daLaTTYa825i/vfZWFbWxsFHT+4ltxT/AzLEZNmYqUm+92uj3OHCOj2A2sWrUKubm5eOWVV3Dy5Ek0NTWhrq4OarVaIHfgjqlTpzpWP62trRQYvnAG+M9fgI9fAs7vB2w8Q6/WAKOn4LfUoXixyoJ1TTacbDF2uU+DL5w758wF9yVgrdFoBLNO/ooxWPDTLvkFhR2ITwZu/Z0jZZoBMD9KignWZq8DFT/g702i+6qrruqSRs6CBQuQn5+PJUuWYP78+ViyZAny8/MdE4uCggLnY88+h4J+Q2mFo41yvknpeeDTdzAiK0PgEdiwYQO84Qj8gmoj+AbWLQyDurRsfFhHExaz2QxUXiDBuwCSmJgoiEm0WHjJJW2tLl4RfIIXAwiPAO74A/D1KufyprGeBuShY4BZNznS2vh6HOfPn3f1br6jVAFzbgXWrqDb9bXAT18B190pyPF3JdbmivZVvr5o3Ot0OsH3mD17Np5a/z2KdvyKTIUEi8aPQM6OTcCAXDqxXeCuSrcrFBQUuGxuA5CYWmRkJGpraz0aR5VKhcGDB+P4cTLk1q1rgOrDzidYAZjrgcQhwPRbaUUmlUJeUgdgNwB4zEAKFHV1dYJUV1+bdE+bNs3xui1btuDOO+90/URdOXBwM9BQ0yVFWr4b8vDhw56fHJ8EzH8A8vf+CdhXJ8MaymHc8i2UM693+zJH3wyQkJxUKnV5DEgkEqSmpmL+/PldOuZycnJcBpFd1Qi8+uqr9uLDP1LdTv5heqBBB6xdhWuvugqHDh0CAEEqsjuio6Oh0Wgc53dNTY1PK3aZTIYTRhZnjTYkcQa15Cz15A4QZrNZuCLRRjqvN3qOy3jl0JZOiWEGV6w9Kha4+xEKaPGX4CcOAl+tcLiE+CdBIFoiov8gYDKvKcjpo8CpwwLZXl+X9/z0M6vV6vLEaQ/fz9rY2Ijp06dj2SuvYPWu/Vi2NQ+5r63AqrwjQvEqHtwsfdmyZVi9ejWWLVuG3NxcQcpfZ1ixYoXH/a+srHScbJ7gJB0GqCUYVnXY9ZOqTwHx8Y6ZPt9wthcRCwb8TmEJCQlIT0/36XX8QrXz58+7NlaHtlB68M51VCi4cx3dPrTF7/0cP36843phYSEKCgo8vyAuCWG/+wsaGHsnONaGuo1rnZlvLsjKynKsslUqFW666aYObhqJRAKWZbF8+fKAHnMc7iYfVqsVixcvRkHJBeCa26k6lqOmAhN4ORo6nc6lvHp7FAoFUtUSLM5SIWHbx1TPoyv3+BpupXDBzEIqtc+Luzoot4Pfm0AmkyFyAC+BorGOWoB2Bl05ZSp2guAaAIBm+dOuBu77o9Calp4Hdv4MQOj7bG1t9Xl27pEpM4VBlt82YCAv+Jqfn+/T28TFxTn8xyzLumzs0h7u5NLr9Th8+HDHg97GYvHan1Bw6GCH13o9UbwNEB7gZ3dkx4Rh6Ywh+PzmcVg6YwiyY8JgMBh8MoycO2VRhtK96561CQZE/izUWxZKIOBqFgByC/ha4ZmamipwF/GrTAE4T7b2tSGsje73MtC0Jz09Hbm5uY7bn332mdfXyOMSUTL1OtTYndbVVVVo/u1Ht89nGAa33Xab43ZNTQ0++ugjhyvmd7/7HX2FdhOvzhxzAhfPkiWO13qafFitVqxcuZLiQJOuAIY7jaK6VCjp0L6BTXssFgumqNvw4Xgt7shQIfLCMZ8MNLfqa7MBSqV90uepxWsn4B9L2dnZkEbHCYphcbLjeOATBze7l5b3QvANAEdsAjD/AXL/cBzNA+ydfvh4a5noExIJcOU8ZyZJcyOmJEQ5Hj5w4IBPKw25XC4QMdu7d6/X16SlpYFhGFRUVLj9DKuNxcpdBzrc79OJ0km47I77RmUg/8EZWDJ1IOYPS8OSqQOR/+AM3D0sBSaT60A9H67wLVXl5fBpcGY28P/HAfn/eoFvZFJSfHfNMAwjSEPu4HbwdLK1M3q+wh+ct27dKjBe7rhl7nVQ2lenNpbFoT27PLZZvP766wXunE8++QT333+/Qy3V5qYHsD/HnKeVq7fUUsHjmc6ZcXOVczUtlUq9unOKDuzCH3NUkLY3+B4MdLm97whAFcKOuIyb36Sz8GNKEyZMIIM3hDce7t/uNlHGIw2dd6mGzgAANBgP5+X4G9sA1gaGYQTZP74MQj4RFUu9gu0MVjm1d3Q6ncd2j3ymTHFmKmzcuNGr4dBqtRg6dKjXjIsiQ8cT1q8TxU8WLVqEQXERWH7dKIG8NQDIJBIsu6QfMsK8h4U4A9Vs8nKCRCU4rvJTKt21/gsk/Kwfd4ObO/humby8POGs09vJ1uB/Ot9ll10mCD5zKZsdaGulFohfrYTms39jZD+n1MPOynqsWLHC7WfIZDI899xzjsGtra0NS5YsQW1tbUCOOW8r14gIz1IHjtRTlgVOHXHcn1/hTMAYMmSI1/Trxq1fdxz8OdwYaP7AHBkX7xyLAjUOgdzCXE0KwKsxGU0qpQCo6G9/JxIPojqvJRRaA8CyQr93YmqXc729ku48sdStjYLl9m+/ufbBt2f27NkOw1FaWiooOXfHvHnzvBaZZY7qKNHsUzFNJ8nJycGXT/2uw+DPIZUwGCfzPjvniuk2VprdJ6AwErdBqVD0z+UPOP6uOMaNG+cwWHq9XtgpzdvJxjN6vsIwjKAS/sSJEyRH0dZKHeG2baTU2ndeov63508BLIuoyEjExsYi32DDlhYbvvjii44uKx5paWl47rnnHL9/bW0tnnrqKffpp3Z8Oea8rVwZhvFeI8CywI6fgAJKMNC3teGr485Jmreq7JaWFrSUute4AtDBQLMsK6gXyBkxiveGnfTJu4CfSt6vXz9n3DNMC4y5xPnEfds69kjxxpiZdL51gtAagIIT1OaQY7yz0pI/4wloI/Eono+tqV6Qxvnzzz/75AZKTk7GpZde6ri9YsUKj8ttgGZ106dPd/u4VCrFwv/XUWTM52KaTjIi3XWjbo44mefZMsuyDjfYxnoLqhhXWVEMMPkmIMoZdOen0vqSldFV+Blf3vzGrl7LH2xWrFjhTE/2dLJ5MHoeYVmMGzwIt08eixnhEtwTLUXYF/+B+c1nga8/oJTh8pKO6Z5RsUi67xFs0qaCG3r/7//+z2M66cSJEwX59WfPnkVtbW2Xjzlvq4SmpibPNQLRWuDL5cAeEnWzWCzYXliKQ3r6ZikpKZg1a5bHz/j4449R1urFb9/OQJ88eVKQLjzict7/r65GKFnRBfgp1tOnTxdOgiZeTkV/AA3+BR1T5T0Sm0ItcTtB6AwAywK7eP1qM7Kp4tMF/i7ZPRLNm7G1NGHmmJGOH7+6utqn1DIAuPfeex2vKykpwbp1nhu6MAyDpUuXCoo/OKQSiduKW7+KaTqDlxks42UGu3fvXkfAzAbActeTwIBpgDwakIbTpToDOHIE+NezwCdvA5u/ge6XDchRMIiTAgOzMoNeCMevJ2kfY/KFu+++27GKMBqN+Pvf/0754dzJ1t4IcAJ+nlJBLRYaVM6dpJneT2upcO7tF4D//g0Lwq2YGyXHKLUE0bCiotxFQDlMCwwbB9z2O+D+v0AxZjKee+55h9uivr4e//znPz1ObK6//nrceuutjtslJSWYPn16l445X1auHWoEnnwS+Vt+xH3RUuCDNyjtEoDJbMbes0V4+0KDo5HMn/70J4/un1OnTuGrr77ChkoTrO6+uwsD/cknnziujxgxAinDRjqLEq2WgGQCVVRUCALpHWqJVBqBqxqVnShA7GQ/9ODKHPJpaRRU5WLGXEH1p0ajcSzVORnfgKCNpAC0vRYhes/PmDZ5IrbuIv2hr776inqKeqF///645pprHEqRK1euxKWXXoqkJPcz6pSUFPznP//Bn//8Z/RvqkKdvg1p2nD87smnMOGu+9y+bsGCBZg6dapbCdwuMWYm2F3rwbgIZLKMBIyHA6m5uRlvvPGG4/b48eORlp0D9H+EBLbytgo7vVktQEUJzBcKkVlwEr+Po8Mtw1IJvP5X6gKn0gAKhb2FohKQyWiTyiiFVMrdlvMes1+XK4StF+06/WZGgkP7nIa9M03po6Ki8PDDDzu0j06cOIG///3veO655yAdPQPI+P/tnXl8lNXZ97/37JNkksm+QhYQCEiQRZBNcENwa6vUIla0VdTXKlrFisv7UKt1Q61v7aKtVXx8bKs+YpFSQaVSCLKvkhAIQtiyb5NlMvv9/nFmJplkJgmrQM7385nPPZkkk5nMfZ/rnOtc1++X3y7gF5cMQyeCyQJHDohcbkuTOOebbcLDwFYvuj27GZj1ej3p6ekcPSZsDevq67FmZBGbP1w4hmUPgpSuXdN5eXnce++9vP7664DQF/roo49CBvnO3HvvvTQ1NbFihage8ng8zJgxg5SUFOx2+3Gfc3feeScvv/xyRCnowCrigrw8nv8/d4kguHcXbGqfFKqIvpsvy8p5p6KVNrX9uUeNGtXleQPU1dWxcOFCfD4fx9rgrSoDd6d7Q8/xMAF669atITpkt9xyiziHDMb2NIzj5PerOkpVZ2dnh+/c7tgIdgZSpAHOXADobMxgCM2Pp6SkBAPAoUOHQsXSTgZFEVLQ//q7+Lr8EA/EafhWr3DErbJlyxZKSkoYMmRI988D3HXXXaxZs4ampiYcDgcvvPACr776arcpq0mTJrFgwQLs7/2OfH/VjGvlxxTHJzD02sja45GaaU6WsmYXaxpjuDXWFrJZpioalG5msG63m4ULFwarJbRaLffee6/4pkYjOrBHXAIH9gjrzQMlQcXPY8eOBVd1ukAlh8/rt2hsCffnTorGmhqeinGgxujxoDBq179h34b2gKHTiWPHIBMwddEogAKqjytUFd24oezfuxedArrd69jx5P2MHj5MVGs4ncJC8mAV7DjOZXs4oi0k5gxied2X7Cyv5ohbxWpu4M1f/LhHQ/Ef/OAHbNq0KZiee+ONN8jKygopYOiIoihCeE5RgqJrLS0ttLS0cOWVV3Lrrbce135TYOUa1rzllUVc0FQFS9YJpy536FigqtDU3MTemnreO1TLbkd7kJw9e3bkZjxESeujjz4aPC8VRWH8fU+hZCZ1q7Brt9tDfJOHDRsmJoL7vgnNwcd0L/XeE6qq8sUXXwS/7mKIpKoixdexj6PfqRWi644zZwnp88Ifnm2PdLHxQqrZv0n76quvsmyZMGkZO3Zst7rix42qwucfi7JTxExj3759rKppYWWzlwEjRvLKK6/0anNy1apVITLIs2fPZu7cuT3+3pfvvkXC5x+GqGA6+w9k6F0PEjvg+Geox0tDQwN//etf+eSTT/B6vWSaNcxIMzAkNZ4LJ1+BcdyMiIO/y+Xi6aefDioZAtx9991hBeWCeDxQU8HOz5ez4R//S7JOIUELw7L7kdxLGY7jwucCTxM+r4vaehu1jS6cbpWkxMReN4GFfVpV5eDBgyEbyf379yexQ19D59eAzw0aPehiQdNJx15RxLmfkOy/pYgVamKqMI0HvvnmG+bNa5ckvu+++/jhD3/Y42u12WzcfffdwcFQr9fz9NNPM358ZJVJVVV5//33eeedd7qkXkePHs0VV1zBpEmTevS8CFC6p5i3f/c6ZaV7yYkx89OhuVwQF9Xl51QV7PZWGm1NbKtrYmV1M8VONZjyMRgM3H///Vx//fUR/9aOHTt45plnqK+vDz72wAMPcOONN3b7Gn0+HwsXLqSwULj9aTQa3nz9twysOyIG48CQmJkj1AxOgg0bNvD4448Hv/6f//mf9k33+hpY9Q+hoRUgrR/cet/pL47xc2ZN4b/ZLITQOjJgKFxyGdsq63jkkXZD91deeaXbZd9xE6gw8H/ATU1NfHvgAG4VClu9XDT3QS6/7oZePI3Ks88+G7Ks681JB7D1vbdg5UdoOm54Kxrc/QeQdt0PybzkUpRTuAHu8/nYvXs3y5cv59///neXjevrrruOefPmdSvAZ7PZ+K//+i927doVfOzKK6/kiSee6DFg7tu3j3nz5gU3YYcOHcrr/+81NI42UQLs8N/cLtF043aJwOH1+I9u/9Hrf8ztv3W473ZBUzk0hkqIqKrK0Ro3aVmD0etPbqHr8/ko3b8/2KCoURQGDR6MuWOVl9sGrs4loAoMnQpDxomGn7gEoXnTCx2kl156KTgzN5lMvPPOO92mGwMcOHCAefPmBdOoGo2Ghx56qH0gjSBhUVJSwssvvxyyIRpAq9UyePBgCgoKyM/PJycnh8zMTLEqaWkStqvlh+DYIeHo1mnj1KequFwunA4HbW0Omux2dje2sq3JyQ6Hj9ZO2cixY8fywAMPRHQ0a2lp4e233+Yf//hHyF7HT37yE+bMmdPt/8fr9fLiiy8GZ+WxGnh02mQmxehCV6N6I9z6MyG/cYI4HA7mzp0bbK4cN24cL7zwgkgJbloNOzeG/q+sifCjeyDWesJ/83g5swEARJ3r6uVdcqFqen9+u3YLy/YdwosQiPvLX/7S65lHrzlyAD5fglpfzYFvv6XJ31ruUTTkfH8WydfMDKouRsJut3PfffeFdAXPnj2bO++8s8cKpsNbNrD/j4uId3RtaW8xRtE8sIC48VMZUjCChISE4yqZ9Hg8HD58mOLiYnbv3s3GjRvDVoSkpaXx4IMPhkjnhqOoqIhf/epXIVLKkyZNYuHChT3WY1dVVXHfffcFZ2cWi4U333yzV6Jsx0U3rm0+FDS3LoSoOHC7Q4NGIND4vOK+6hNLw44XpEYDKKDVYmtp5Y0//YlGexsuVSU5I4tfPPkUmqhosNvgv/9v77yqe4nNZmPOnDnBlUdBQQG/+c1velUhV1RUxC9+8YuQjvqrr76ahy8bgWHFW2HsVO+DkVfg8/lYtWoVf//738NahmqBTL1CjkEh16hhUIyRRIMOrVaLVqNBURRURPD1+WVT3G4PLo+bIy6Vb10+9jpVDjpVOtfqKIrCpEmTuOmmmxgxInxxiMPhYOnSpbz//vtd/I8ffPBBrrvuum7/Ly0tLTz77LPs3ryRC00aLjIrXJxsJS83LzTtHpcg3NfSuvdi7g5VVXnxxRdZuXJl8P29/dzT5NQeEXsfnQtdBgyF6T2PPaeaMx8AQJS0rfpHl91ue1sb20r2sb7FQ2Grj0GjxvD888+feks+rxd2bsDx1XL27dwezFnqdXoG5udjGn+ZKFHt5sOorq5m3rx5IeWNBQUFzJ8/v8eUg8ftZu1f/oCn8HOS1K5la06fyia7j60+I8b0LJKSkrBarcTExKDX69FqtbjdblwuFzabjYaGBqqrqykvL++2giohIYGbb76Z73//+yFlkp1xOBy8++67fPDBByEzrKuvvpr58+f3+Hk0NjYyb968oM+DVqvlxRdfZPTorn0PJ00Pvs1MuvGUme1s2rSJxx57LPj1k08+yZVXXnnaXkPndOOcOXP4yU9+0qvfLS0t5fHHHw/6QWeaNbx7cSzacPOJTkFKVVW+2bWLTZ9/xuFNX5PoaiXboCFLr4T//U64VTjk8nHApXLQpVLmUnGGGWU0Gg0FBQVMnDiRqVOnRhQhrK2tZdmyZSxdurSLumd2djZPPPFE98ZEPh8H1q9lxZuvk9ZmI8egoACWmBjy8vLag6pOL9zJxk4N61x4PHz00Uf84Q9/IFoDI80aZl84kPzEMNVoFitMvVZUAZ3Bzd8A300AAL8h5x7YuFosIf1U+Qcyrwqb7T4coyby0P/95elpHnK7KP3ov6le9iFRgXNApyMvL4/oOKto0Bg7RVSqhKGqqorHHnssZCWg1Wq54YYbmD17do+S006Hgw0fvIdj3ZektIYvN9vn9LGu1UeRQyXS0J5p1nBNmoE0k4ZKh49/Vbo41uYLvp6RI0cyffp0pkyZ0u3g7fF4+Pzzz3n77bdDjOQ1Gg133303N998c4+fQ0NDAw8//HBIXfijjz7KNddc0+3vnTAfvSIE2SJx4SSY+Ujk7x8nzzzzTDD9l5WVxeLFi9Euee20vIbO6UZFUXj22Wcjbux2pra2ll/+8pcUFRUxN9fE7P7dDGqjroaBY6G6AqqOilSO04GqQlubnZbWVlpbWmhzOLr0VTR6VQ44VQ65xWB/zN31XFUUhYyMDLKzsxk0aBDDhg1j6NChIXLYHXG5XGzcuJEVK1awYcOGLhMbs9nMrbfeys0339w1hen1itd/rAzvof0c27iW+vJjdBzorHFxZGdni8E/Ll4UMAwfG9yHORmWLVnCqj//jlFmDUNNGmJjohk4cCCajteOxQrjLoPhY9o7gb8DvrsA0JGqY7DtayjZjurxUFZWFkxdeFRoyh/F5Y8/i3KazLk/+3Qpm//8Wy6L1hCjVVAUhcyMTJKSk1CMJhhzqahyCTMrsNvtvPrqq6xaFdpirtPpuOyyy7j++uu58MILexw4q0qKqPjXx0QfKMbZ0ixqzjvQ5BWrgs12HzUdshTTUw3MH2wOqejxqrAqajDaMVcxbtw4YmJ6TmmtWLGCjz76qIsfQ0ZGBk888USv5JSPHj3KY489FuwUBvjpT3/KbbedRrvLM7gCAOFed/vttwdXRg8//DDXmxpO22uw2+3cc889wTyyyWTilVde6XWVnMfj4d133yV36xIuT4lsrI42Bky9SM9pdXiT07BFx1NrjKYCPTavisPhwO12o9Vq0Wg0REVFERMTQ3x8PMnJySQnJ/do9uR0Otm6dStr165l7dq1wX0Mu91ORUUFDoeDmJgY7rjjDh544AHhnqaqotS28ghUHBbZhcqjqB43TU1NHDt6FGcnSYf0tDRSB1yAMmi46EXKzDn52bfXC2V7Kfr4bzRv34BR43cY0xsYNGhQ+z5UVq4wwRl04Rnb6O2OsyMABHDYYddmvFvWcHDndpo7GLhEZQ9g0PxfoSScuO5Fd6xcuZLXXl7EBJPK5TEaojQKMTEx9MvKEpIORrNYEYyaGHaWUFhYyO9///uwhjbp6elMnTqViRMnkp+f330e1+WEom24N/8HV8VRXE4nbo8Hj8eDz+vFp6o06ExUWBJxxFi4oXUnGsJ8hD3knr1eLzt37uSLL77gq6++6jKr0+v13Hzzzdx2221d00VhNhI3fXuUZ599NiQ3O2fOHO64447TK/1QV47v9ftP6H9wonTcoLVYLLz32kvEvffkKd0D6EhZWRk/+9nPgjn9qKgoXnrppchB2esVevr11aLSpK4Kx66vMDki6xQ51WgM0Rmh46CiiEbKtCzh15zeX/g1nyIzH1VVOXz4MFu3bmXTpk3s2LGjy3lYUVHB3r17Qx7TarX8+dEH+cnoYWK10qmUuK2tjWPl5SHnok+FGr2Zodd8n/5TrhIyNCd7Xvq8oqx1z07U/bupPHiQyqr269/gF5I0JiZD/kihcpp4/FIhp5OzKwAE8Hpxbimk6M+voXRokIhPTSN77sMo+Redlj+7c+dOnn76aeyNDVwareGyGA1mjUJiYiKpaWkY9P4a8vyRIoqnhmqouN1uPv30Uz788MOIHrQWi4WRI0cyYsQIhg8fTm5ubvi0jKoKyewd64WLWriWdFetMF+JRKeZZ2NjI1u3bmXLli18/fXXYTVytFot06ZNY86cOeGrTrav6iKH7ENhUUkrK6raZ1r33HMPs2bNivzaThHLli2j+P3fdVkFBRt/Rl4e+ZdPkNraWubMmRMUtbviiit46trxXWWiT+Fr2Lp1KwsWLAhWchkMBp58+OdcOmywGOgbaqGuBhpqxODfeS/I50JtO0S4IU9VVYrL2qj06jBk5ZCQfyFZo8cRd8HQk86Fd8Rut7N//36Ki4spLi7mm2++iShboQFiVQ+frlmHL8wQpdUo7HnkTi5IbvdQdjidVFZW0tDQgFeFw26VA04fBz0KBdd8j9vvmtujPlePqCpUHBGifCU7wd6CqqocOXKEug7lqOgNDJzxfSxjJwtLz1Mpb3MKOTsDgJ/G6ir+9dj95LvaN36sViuZl8/AcNUPTku5VENDA6+++iqFhYWYFZgSo2FKtAaTVkNCQgIpKSmYAjPi1EwYNlosIzvYX3o8HgoLC1m2bBnbt2/vti1fr9eTl5dHbm4uOTk59OvXj4yMDNLT09tn3vYWoRW+e0toN7WjAryRG6maLRlstuRTXFXDln3fcujosYg/a7FYmD59OjfddFOIcU4I3VTceFWV2zc3U+vTs2DBgl5bZ54oqqry3nvvBQ1LMs0abhmcwvRLRqFNTOvS+HOqWbJkSbDzFmDBggVcPWZ4t81HJ0SH2XzphnWs+cfHJGpUknUQpVFISkoiMyOjd/pZYUpVvarK60U2Xtv0LXaHA5PJRHp6OlFRUaSnpwfPzYyMDFJTU0lMTMRisRAdHY3BYBCVP6qK1+ulra2NlpYWbDYbNTU11NbWUl5ezpEjRzh06FBEu1eTAhl6hUy9QrbZwEWZKeTGmHmhcBuL/rM54ttZcNk4np9xKQ6nkwO1DWw6UkGZ08cht8pRl4oHGDlyJPfff3+I2uoJ0VgnjKyKt4n7fnw+H2WHDmGz2fCowv+7IjaFu55/meT003f+nSrO6gAAYtb61qPzmNRSEcyrGQ1GsgcMIHrcFLho/EnV6kZi3bp1/P73v6eiogKTApOjNUz27xFYLBaSk5KIjY0V6Q1FEd17g4bDwKEhVm91dXWsXr2adevWsWvXrl45ioGYLdXV1eH1eklISGDs2LFkZWWRqPjIdjWTaW8gR9NIrCmyKF1lvYuKOrGXoAI2r0qdR6XRCw1elWY0pA/KZ8SkSxkz9XIMcfHdL4t7yLf/s9HI0HnPnfzF1gMej4fXXnuN5cuXBx9LSkrit7/97akvM42Az+dj3rx5QaNynU7HCy+8cOKVTm4XpZs38pe3/0LZwYPkxMVw5+hhXGDUhATc5pYWDh48GHIeGQwG+mVlhUouK4ooZ0xMhcQODWeKT2xYN1bji03i1dW7+MULv+kySRk8eHCv/peBANAb9ECKXiFNB+k6hTS9QoZeIT0mCovFQmxsLNHR0cHN0lnvL+ODnSURn+/7k8dz7aWTWLp+Cy2+0NeQm5vLXXfdxfjx4088Bel0wN6dYuA/erDLt71eL6UHDrClrpntbaJQY/DwAn7961/3uO92tnDWBwAQ2kCv/teTDD20mzyjmOkoQGpqGqlpqWjSsoT37AXDxAl/inLOHo+HZcuW8de//lUoJgIjzQoTo7VkGxT0Oh0JCQkkJCSELi1TM4WpRd4QyOgf3OzZtWsXixYtYs+ePXi9XqKiokIsJwOEy3tC14tygFnDmxdbwuqfq6rKnkNtON2hH69erxcXm/+CC5EY0GhE6WtMLETHilVN8BaDun4JysEdEf9f3vwJaH/0aMTvnwoaGxt56qmnggMviGqcl1566YwN/gGqqqq45557gqWJZrOZRYsWdb9h7nRAXZXQpqqvhpoqqK/inS/XMPfjlXg7DGRajcKfb7qan1wcKijodDo5WFZGW1sbdp9KtQdqPCox/XKY9L0b6X/RaIhLFOnKbigtLSU/Pz/ipGTs2LERq3QChKtAa3T6SNEpJOsUUnWQolNI1Skk6hR0/g3iqKhooqOjiI6JQRdhT2HBZ2t48avIBkz9+/fvMtnIzMzk9ttv54orrjgxVWGvFw6Vipl+6W7RIxIGZ0omf1q3hc/2Hw1qFo0fP56FCxd2W2J9tnFOBAAQM653Fy9m38fvM92iIdZfkGw2meifnU1UwHAkJlbMxvsPEDvu8UknHRDcbjdffvklH374YbC8MVUHY6M0jDRrsGoVosxm4uMTiI+3hlY7GIyQlcs7O/cx97mXu+ikPPPMM4wYMYKysjLKysooKSkJSmKEo/NFGb4KSGXVYQetbj05liiSjTqio6KICizbj/P9q0BzUxPu1goSY7u5qLIvguGXgTlaBJKoGP/96FNS6hauymjYsGH8+te/PiHFz1NBcXExDz/8cHDz0mQysXDBY1wyZJAQgGusE/n5hhqxIdvatQGwtKaB/Ff+EjL4B9BqFPbM95uzJ6QEZ/NuSzzv/2sF7338SZcSyTFjxjBr1ixGjRrV7ex3wYIF3Uqu3HrrrUybNo3Dhw9TWVlJVVUVjY2N+DwerFq4Ic3AjweEnnuiA9tDi0OD3qDHYDBgNBoxGY2YzObI55/RBMnpYpM5OQ1SMiltaCJ/eEGvAlRWVha33XYbV1xxRY+6SV3w+UQpeslO0aTVUZitI4kpMHQUdWnZPLzwVxw+fDj4rWuvvZaf//znx/+3v2POmQAQYPv27bzy4gv0a65lYrSGTL0o28xIzyA5JbnryWWOEtULGdmikiGtn1ChPAFUVWXnzp0sXbqUwsLC4IZcjkGhwKRQYNKQoBPVQ/FWK3FWK3qdrvsLXKtlT3ExF/gbWXq6KGfMmBGij6LX60nWuBnSdow4XKixyagXXUbioOHtMxGvF5obxWBkaxD3mxrFsaUJmpu6CHSBGPibbDaqqqtpbW3FqFfIzzZHHlTM2V21b4Iv1CD6KUxm8ZmYosRFb44SFVZGM5hMQiTQYBTfMxjFTW+gaO8+Hn/iiZDKjhkzZvDzn/+8x/LCk0ZV/eJvfumKtlawt0KbHVqbOVJSxLqVnxGnqMRrwagRNe8pKSm9CrYL/vUfXlwdWZZ8wS9+wfMRzokDBw7wu9/9ju3bt3f5Xv/+/bnuuuu46qqrwnowzJo1iw8++CDi3511w3X87blftp83TQ2ojfWoTQ143W3o3Mciv79I54JGK4JYUpq4JadBcoZIm4Y5r15//XUeeuihLkEusBrOy8vjxz/+MVOmTDm+Gb/bBUcOiln+/qLIooQmsyj6GDYa0rKorKrikUceCZmE3HTTTfzsZz87I0ZHp5pzLgCAyI//6U9/YunSpaTqYLhJwwizhhFpSWT169fzRZeQ7C9r8weF5PTjLm1rbGzkyy+/ZOXKlSHWkqk6yDdqyDcp5Bk0WC0x/Hbnfl7f+E3E51pw1SSen3s7JKcz68X/xwcrvoj4s7NmzeJvf/vbcb3WXuF0iNlpSxMtVeV8s2E9e7ZswtvUiEULsRqFGA30j9eTnRLGDN6QCvrubf9OlOaWFr49cACHx4tbBZcKeYMGkTPwApSAuqdWJwYXrbaDsqemXbdfQQwwqioiG6qY+fm84uj1tmsPeTwiILpc4uh09mi63dzcLHLzHQaq2NhY+vfvj75zKkZv9AvAJUNiKrOeWcQHyz+L+Nw9feYBk5533nknrJ+wRqPh4osv5vLLL2f8+PFCXkVVWTD/EV589TdhnlEQ2GQNS08VaKZkyCqAhKRQwTtrQo/17y6Xi6+//prPP/+cjRs30tLSQmVlJQ7/JnVaWhoTJ07klltuYcyYMb0beH0+qKmAI9/Cwb0ipx/J1EmrE+nboaNgQH5wbAgY3ncUn7vjjjuYM2fOOTn4w5mUgz6FREVF8dBDD3HppZfywgsv8GVNDV+2+Iiuq+RneRcxY+hA8QHXRah7rvcvx4u2ia91elHrnOFfKWRkh1T1hMNqtTJz5kxmzpxJWVkZX375JatWrRJLZY+P1a2gx0tufSMbj1R1+1xl1bVQtg/K9pHj6N6GLic1Wcxe9N009ZwAjW0O1m/cwn/+8x+2bNkSdtl98cUXc9edP0WJ1oo+gIYqMEZD2iBQ9P5ZcSu0tUBri7jfWQb8OKlvaODw4cOoqopRo2BSFLKzs4mPjYbqMIYp3xEWi4ULBg3iwIEDuFwuPCqU1tnY2VzKmCum0f+iMWIwjE/uMtvNuXAldBMAepJlVhSFSy65hHHjxrF9+3Y+/PBDNm3aFNycjcFHw45NrNu9mQN/1DA0LZG8uBhmux28rFEipp5+OqarmVEQtXtHPAYOhpn3d/8zHWhqamLLli0UFhayYcOGEN/oqKgo8vLy0Ol0XH755fzwhz9k4MCB3T9ha7OQmqk8KoTqyg91fy5qNCJtPOQisZ/YKUuwdu1annvuuRCf73vvvZcf/ehHvX6PZyPn5AqgIzabjSeffDK4KagoCosXL6Z///5iuV5xWKgUBjoFe2vwEJcgOgQzsiEzWyxXe1hiqqrKnj17+Oqrr1i9ejW1tbUAfPvtt0FdnHDMnzyal66/HIVe5IMDtc/RFtHCHhsvymFj40V7ucUKcVaRUokwK1FVlZqaGvbs2UNRURHbtm0LqwIJ7SJds2bNOjGPBo/HHxRaRaNfm118BsF0ih1cjnZlUJcTXA5Up4OKw4dCtJY0iobcvFxiT7VA4PGg07fva5ijOmySx0KslWa0/OYv7/DVplBv3htvvJF77703bLqqu81YrVbLnj17ejZmUVUx6NVVQW0VTQdLObJ9C21Hy9B6ItskLjtYwa82FIW4aGk1Cm/NnM4dk/0qptaEdjXTwDm3ZTl8vTTy6+mm+1lVVaqqqigpKaGoqIidO3eyf//+iNVEKSkpXH/99Vx77bWi+7cjXq+YzNVWihl+dQXUlIcaE0VCb4ScgWLAH5AfVvLF5XLx5ptvsmTJkuBjGo2GRx555PTJm5xBzvkAAKJKaO7cuVRUVADCzi+sj6mqig25iiMiIJQfFrPI3vh+6o2QntW+n5DWr1uzCFVVKSoqYs2aNfzzn/8Mdo52RgF+NGkcI1MTGJaSSE60kS+K9jF/RWH4i3LMhT2/VkDV6fGYo2nVGmhSFaodLsqb7ZRW17LnaAVl9Ta6e9eJiYlMnz6da6+99oxX15SXl/Pcc89RVFSEQQGjAklxsTw+fz4X5PRvV/MMSEN73eD1p3O8Hn9qx39D9ad9/P/LQNkuigjogVvAHEan97uMGdpvRpOYERpMPVbWgPjslyxZwrLFbzItWRuskCk2pnPvk78KK3P8zjvvhDdTeest7rjjjvYfdLv8m8r+W31Ne0VRmBmuqkJLawuNDQ002mxdJMHtPpUdDXaWHThGeWsbRqOJgQMHkDlkGGn9s0lPTw/W/yckJBAbGytECZtqIvaEqIqGptt+TaPWTH19PTU1NVRXV3Ps2DGOHDlCWVlZj65/JpOJSy+9lGnTpjFy5Eg0blf7yr2+WrznOn8DXA/puSAaDaRmiZl+7mBxHXeT+i0pKWHRokUhyqhRUVH88pe/5OKLL+7d3zzLOS8CAMD777/PW2+9BXTQ3e4NHrfQIgroiBwr693sAcRSPq2fSB+lZopbGAXRgDTsk08+GXEzqyMKoHfaqamsxO10kGGJ5gdDcrgoMQ6rFnQajT+lrfjT2apoxvH58Hl9eL0ePF5vj/XZTV6Vei/Ue1TqvSqe6Fj6F4ykYPIUhl0yAc0ZFqnyeDz87//+L4sXLw6RBMjOzub5558/44HopNi+CvXTP4TYEnpVld8e9DDu3ifCCrqV7t3L2396k7IDB8hJTeanM67kAmuM2LBvrIemhhN3UIu2oCamUuVRKaqsZeO3ZWwoPUCz58T8t3U6HddkmJiXo+1SgbZobxsrO3SF95aUhHguG1nAxKGDGZKahL7F1j7on8j7jra0X59ZOWLy1ovUaWtrK2+//TaffPJJyDWUl5fHwoULRXbhPOG8CQDr1q3jqaeeAkQtcEez5+MiIC4VNLkoE8vK3s4yLFZRyha8pYuls6JQWlrK22+/zb59+zAYDOTk5FBRURGiJtoTGiBOCwla4bAVr1WI1ynE++9btQr6Xu5HGQwGoqOiiI6OxmKxYDSZ2jfQFY1ILcUn+tMAHY/xERVSTwRVVdmwYQN//OMfu6TKrrrqKh566KEe69HPKnromH6jqJWxY8czZthQFHuz2C8J2GOe7OUYFQNJqf4GsFRxPylVpK06Ybfb2bNnD7t376akpITS0tIQFdjeEHCWC6xyPuugRBsOiwYStQoJOhiQaGVwajLZVgvpJj1Rqve4S5QBMbOPTxLFHMFS0vSQhsze4PV6+ec//8nixYu7SFTceOON3HPPPWH7ds5lzpsAUFFRwezZs4Nfv/HGGydkBh4Wt0tsJgVWCRWHe79KAJE+SvaXvSWltt/3rxZaW1vZv38/paWlHDlyhCNHjlBeXk5tbW2vO4c7EqWA1R8Qkow6smJjyIqLIc1sJNGow6pVMJlMXatTjgejyb//4N+DsMSJY3Ssv5HMIko4e6iOKCkp4Y033mDnzp0hj1utVh588MHTLikRFlUV6RS3K/Tocoij03/f2enm8O9v1JaCPfLGf6BDOyE+nn79+4fKBPcGrU7k5eOT2m0lE5JFpc1JBuaGhgYOHTrEoUOHKC8vD9b/19fX09DQ0CWF1JlYjX9yooNEvY5Mi5m0KBMpRh1Jei1mgz7YExCpASwieoN4n/FJIrglJIvrKT75pATqfD4fq1evZvHixV0mIFlZWcyfPz+iSc25znkTAADmzp0bLMlMTEzkueee694o4mRoaWrfS6gqD6tK2CPmKP9MLSX0Qo6NB40Gn89HQ0MDNpsNm81Ga2srbW1tOJ1OvH7HJUVR0Gq16HQ6TCYTJpMp2FYfHx+PxWLpWqIW6AtoauiQXqgXR1v98QW37tDq/Jul0e11/0YzGI1UN9pYXbiOon2leFTwIGbHKgrjJ0zgmuuuIyqoutohj6/6QnP8IaWcnvavvQErycC+gLeT3aS/7NPtFo+53eBxtTuHnQw9aDQ1NHsoqxQpruioKHJyc4XQYACDUQTRWGv7xr41QZwX1gQRZL8DcTHV58NRW42jqhx3TZU4V5ob0bU2oW1tRu9oRYPYrNfqhCz0cc/oNdr24BafBNYkUS4bnyz+J6ew3NLj8fDVV1/x/vvvd1mFG41Gbr31VmbNmnX6+0y+Q86rALBt2zbmz58fzNtptVpmzpzJ7NmzQ3VSTgeqKgbOqmNiYzlws9X3/Lud0WhFqiU+MTT1EhgETnEJaBfcLhEcGuvag0LwWHdSA2RbWxuV/o7SzlgsFjIzMjCbzV1/8Vyihxr5A616Piutp8Wn0uwFr8nMzDl3MHryFDHIGb5DKYFACjQgJd1Q6z8P/OdCbwomfC7wNIHPDRo96GJDm8JM5vaqImuHczw+SawkT3Nwa25uZvny5XzyySddVHsVRWH69OnceeedJCYmntbXcTZwXgUAgOXLl/PKK6+EbN6YTCauueYafvCDH0Q0mj5tBLRfqitEqVpdlVD0jNRu3hvMUSIQxMSFT7+czkFEVcVKp6lRBIRAR3Fzoxg4WppETrtT/rvVbqeqqqqLpR9AlNlMekbGd1veGQlF8Xckm8BgEEejUaT1jKbQm8nf1exsgY9fiugP4Pk/r/Haf38QImYHwm/5vvvuOzOb3aoqPr+aymDpaLC65mRWQGEUR1EUGPd9GHmlmMScQonp3qKqKnv37uXTTz9l1apVuDqZxCiKwtSpU7n99tvJzs4+46/vu+K8CwAg5CJefPHFkBryAAUFBVx99dVceuml361in71FXGy1VeICbKiB+lox8z4V6A0iDx/IxweO0Rax9xC8H33qnYl8PmhrRbW3Urx1M2s+W87h/aWYNWBWwKRRMCiQmhDP6BEFZKWloXRM4QRSPj5fh7JN/N29iv+oFY8HOn+DXcDa9vtarb9DWCNKOwNfa3WinFOnA62/k1hv8Jd/+stAAwO+VndiaYcwvgmd/QFWrFjBa6+9FlLxpNPp+N73vsctt9xyamagqirOqbpqMQGprfSfcycx0EfFtKejAvtAcfFi5v/+06fNGOdECHTsf/bZZ+GN7rVarrzySm655ZY+NfAHOC8DAAhj8yVLlvD3v/89RD8mgE6nY+zYsUyZMoUJEyacPfKtbpdfQKwOGmvFMZCfb2roavRxsiiKyNFHx3RS/+ykBhpYVfRiMHS73axatYqPPvoo7EWXl5fHbbfdxpQpU87ZFvpeUVfeoz/A0aNHWbRoEbt27Qp5XK/XM23aNGbOnNljJzAgVpoB4bnO9fInMtDHxLZvuMYnt6cg4xIiry7PsD1nJOx2O+vXr+eLL75g8+bNXUqvAeLi4rj++uu54YYbSE4+PS6D5wLnbQAI4HA4WLlyJUuXLuXgwa6a3iCCwahRo5g8eTITJ07s2m14tuDzQWuTSLs0NYiUS7Otx/TLKUOnDw0KwZWEONY73Xy+bj2frPic6sauqZ78/Hx+/OMfn5xG+3mIqqp88cUXvPXWW9TU1HT5/kXDh/O9q65gQsGFGFxt/s+/UXzutgaw1YmO6hMhLqG9Oi3Rr9kTn3xiaZqPXhFeA5G4cBLMfOTEXmcPOBwONmzYwOrVq1m/fn2XFE+A4cOHc8MNNzBlypTzenO3t5z3ASBAIAe4cuVKVq9eHdGKTlEUhg0bxuTJk5k8efK51XwEIkjYW0Wg8Iu70drc9WZvOWmdHvDvGTY3UVdXh81mCzrzulVo8aq0+sCSls6gESNJzxuIYo7yVwWZ29VBTeb2PPpZYJR9yvF6/d3L7k5lpf5yUocDXA7czU0Ub9vKvl3b0TjaiNEKAb4ovxGSRqPBarUSb7USY7EcX/moxervCUhr7xNISj21BQVneAXQ0tLChg0bWLNmDZs2beriJxwgOTmZq666iunTp9OvX79T9vfPB/pMAOiI1+tlx44drF69msLCwojBAES6YtKkSUyaNImBAweeXzNXtyt8cOgSNLquKpwuF/V19dTX1+Fyd00xaBSF+IQEUpKTj8+HVadvl4E2mkJlGTrm6HUB9U+/hENA/TOgAKrQfuyIir/Zyq8Kqvp6Li/1+ctJw5WXBo4BSYqAmmiwtNR93Csyn6rS2NBATU0N9g6iaB3RarXExcYSGxdHrMUidOh1epGqCaRuEpLb6+XPxMZrNw1wp2oPoLq6mvXr11NYWMiOHTsi9iXExMQwefJkrrrqKkaMGHFi5jB9gD4ZADri8/n45ptvWLNmDYWFhRHN3EHMJMaPH88ll1zCqFGjzinnn5NCVaGtldbqKnasW8POr9dRe/ggsRqwaBQs2vZjvMlIUmISiYmJ6HTn4Wz+DKLitwatraWxsZFmj5cmL9h8Kg0eYevZ4FVpVDUkDhzM0DFjGTV6NIMHD/7u0hu92Pw+HrxeL8XFxWzcuJENGzZEFC0EiI6OZuLEiUydOpWLL74Y3ck0OvYR+nwA6IiqqpSWlrJ27VrWrl3brUSDXq9nxIgRjBkzhjFjxpCXl3d+rQ78tLa2sn79er766is2bdoUdsal0WiYMGEC1113HRePHoXG6WiXNrC3imNACTRgpuJsa3/sFKSizhmCZaUdS0mN7aY45oBpTkBxNAaionHqjHy9eTP//ve/2bRpU8QcNwiJj/z8fIYOHUp+fj6DBw8mOTn5zJ2fvdj8joSqqhw5coTt27ezdetWtm/fTktL5KY6q9UaXKGPHj1aDvrHiQwA3XD06FEKCwspLCykuLi4W3G12NhYRowYwYgRIxg+fDgDBgw45+zhAgSW2evXr2fr1q0Rl9n9+vVjxowZTJs27eRKFgPSC462drmFwM3t7851OzsogLpF6sXjaU/LqKr/fqCM1AddJLXV0LSQom1PFWk0YnAOpJCCJaUd1EI1mtBS0s7lpTp9aIlpQFlUpxclpTqDP111cgNxW1sbGzdu5Ouvv2bjxo00NfXcuR0bG8uAAQPIzc0lOzubfv36kZmZeWYDQxgaGxvZv38/e/fupaSkhN27d3ebkgWh9TVhwgQmT57MsGHDZHrnJJABoJc0Njayfv16Nm7cyObNm7Hbu6+6MBqNDBkyJDgDGzRoEOnp6WflKsFms7F79262bdvG1q1bu135WK1Wpk6dyrRp0xgyZMhZ+X76Ej6fj3379rFlyxa2bdtGUVFRt6uDzuh0OlJTU0lJSSElJYWkpCQSEhKIj48nLi4Oi8WCxWIhOjoas9nc6xm2qqo4nU6am5tpbm6moaGB2tpaampqKC8v59ixYxw+fLjHwT7wGgsKChg3bhwTJkw4882c5zEyAJwAHo+H4uJiNm/ezJYtW9i7d2+P0ssgtMQHDhxIbm4uOTk5ZGdnk5WVRVJS0hkbSG02G2VlZezfv599+/ZRUlISYm4djtjYWCZNmsRll13GyJEjz9mVTV/A4/Gwd+9edu/ezZ49e9izZ0+3+1rHi06nw2g0YjAY0Gq1aLXa4Lnr9Xpxu924XC7a2tp6dU2EQ1EUcnNzGTVqFGPGjKGgoODclwc5S5EB4BTQ2trKzp072bVrF9988w379u3rUTWxI0ajkbS0NNLS0khOTiYpSWyiWq1WrFYrMTExREVFYTab0ev16PX64LI3IArncrmw2+3Y7Xaampqw2WzU1dVRW1tLVVUVFRUVlJeX92rGBUIFcfz48YwfP56CggI56J/DNDU1sX//fg4ePEhZWRmHDx/m6NGjId623yVxcXEMGjQouGK+8MILhW+x5LQjA8BpwOl0UlpaSnFxcTC3WV5+9vjXhiM+Pp6CgoLgrCsj48y27EvOPHa/PlPgFkjRNDY2Ul9fT1NTE83NzT2mO3vCaDQSFxcXnNykp6eTkZFBVlYWubm5WK3WU/OGJMeNDABnCLvdzrfffsv+/fs5dOgQBw8e/M5mYRaLhdzcXAYPHswFF1xAfn4+mZmZMp8vCYvX68XhcNDa2orT6cThcOB2u/F4PF0sLPV6PTqdLrhijYmJOe9MVM4nZAD4jrHb7Rw7dozKykoqKyupra2ltrY22Flrs9mw2+0Ruxw7YzQaiY2NJS4uDqvVSnJyMsnJySGzrvj4eDnYSyQSGQDOFTweD06nM7jJBqICJDDr0uv1mM1mWRInkUh6jQwAEolE0keR00WJRCLpo8gAIJFIJH0UGQAkEomkjyIDgEQikfRRZACQSCSSPooMABKJRNJHkQFAIpFI+igyAEgkEkkfRQYAiUQi6aPIACCRSCR9FBkAJBKJpI8iA4BEIpH0UWQAkEgkkj6KDAASiUTSR5EBQCKRSPooMgBIJBJJH0UGAIlEIumjyAAgkUgkfRQZACQSiaSPIgOARCKR9FFkAJBIJJI+igwAEolE0keRAUAikUj6KDIASCQSSR9FBgCJRCLpo8gAIJFIJH0UGQAkEomkjyIDgEQikfRRZACQSCSSPooMABKJRNJHkQFAIpFI+igyAEgkEkkfRQYAiUQi6aPIACCRSCR9FBkAJBKJpI8iA4BEIpH0UWQAkEgkkj6KDAASiUTSR5EBQCKRSPooMgBIJBJJH0UGAIlEIumjyAAgkUgkfRQZACQSiaSPIgOARCKR9FFkAJBIJJI+igwAEolE0keRAUAikUj6KDIASCQSSR9FBgCJRCLpo8gAIJFIJH0UGQAkEomkjyIDgEQikfRR/j9CdvS+nQICSAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADJJklEQVR4nOydd5xU5fm3rzMz23uvbAEWWHoVREREVIy9o7EhoommaoyY+MYUDdHoL5rYETA2LLF3wQ7Y6IiUpS/LLtv7Tj/vH/fU3ZmtM1vYc332fKbPnJ0557mf5y7fW1FVVUVDQ0NDY9Ch6+sd0NDQ0NDoGzQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUjQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUjQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUjQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUjQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUjQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUjQDoKGhoTFI0QyAhoaGxiBFMwAaGhoagxTNAGhoaGgMUgx9vQMaGr2OxQzGZmhpBpMRzCYwG8Fqlc1mAbsdVFU2RZFNpwN9CISEgCEEQsMhPEK2yCgIi5DnaWgMEDQDoHF8YbNBXTXUVkFdDdRXQ30tNNbL1tQgBiAY6PQQFQMxcRCXALEJEJ8EiSmQkAyR0ZqB0OhXKKqqqn29ExoaXcJuk0G9ugKqy6GmSq7XVEJjncza+yNh4ZCUColpcpmcBsnpYjA0w6DRB2gGQKN/YjLKYF5X45jRV0NtpQzyNVViBHpKSBiEh0NomFwPCQWDAfR6mc07XT8gLiGbDWxWsFpkFWEygqkFjEZQ7d3fj9AwMQaJaZDkWC0kpkBckuyPhkaQ0AyARu9gtToGyxbxv5uM0NIEzU3Q3AhNDvdMYwM01Mlzu4uiQGw8xCVCbKK4Y2LixD0TFQtR0RAeGbjBVVXlf3Ltf63b/VRTKasTYzf+H0WB6DhxI8UlQnyC+/+JTYDoGDFUGhrdRDMAGl1DVR0DdoNszU0ykLc0uQd3Y7PMis1Guc8ZYA0kigIx8ZCYDImpMkgmpEBCkgyO+n42MLY0iSGoOgZV5VB5DCrLJC7RXVwGIrFVvCFFvpeQ0MDtv8ZxiWYANLxRVWhqhJoKCaTWVkFdNWpdDTTUojbWuzNkfOFwmSgoOP66j04ng3ycY9abkOwe5OKTjo8BztjiMAoOw+BYMdhrq1CtVux2O3a7il21Y7fbUVUV1XnpuYHXb6KiYIqMpiU6DmNMIi0JqZgSU1HCwgkJCcFgMBAaGuq1hYWFER4eTlhYGPr+ZkA1goJmAPoIu91OU1MTDQ0NNDY20tTUREtLi2szmUwYjUbMZrNrs1qtWCwW16XNZvPa7HY7NpsNVVVdg4UMIHaftw12G8l2MylYScFGqmIjWWcnDBlUUEF1Xu8BiqKgoKAooCoKRnSY0GFUdLQoeoyKnha9gWadAaPOQIshlCZ9KCZ9CDq9Hr1j0+l0rs3fbV+X/jaDweC6dF7X+/k8nU6H0ipQ6/l9On8D52/j3MxmMyaTybUZjUbX1tLS4nXduRmNRuxWKwl6SDIopOgVEg2QoFdI0isk6CFa33XTqgKlFpU9Jjt7TCr7zCoWPz+twWBwGYOIiAjXdeel5+Y0IJ6GxfN79fxuDQZDGwPkfN/IyEgiIyMxaHGPXkMzAEFAVVUqKiooLi7m6NGjlJaWUl5eTlVVFdXV1dTW1tLQ0EBmuMJP0kNJD9dRZrTzfpmZkpYeBBPbQQdkhSjkhyrkhCgMCVVIMXR/fm5RocGm0mCHRrtKkx2a7SrNdmixQ4uqyqXndRW/A45G1wgB4vWQYBCjkKSHZIP8pikGhc78tFYV9pjsbDeq/GC00xScQ6/LhIeHExsbS0JCAklJSaSkpJCRkUF2djY5OTlkZWWh02k1rIFAMwABoLq6mq1bt7Jjxw527drF/v37aWlpP+g3Py2U342MQO8xq7SpKg/sbuHDYz3PUw9VYGio4tpyQnWdGhScNNpUKm1QZVWpsqlU26DWplJrU6mzgUk7anoNRVG8ZsvOGXRISIjXikVRFFmpqCqxqpVku5lEm5k0u4k01Uyo6uE6squoqh27w6VkU1WKTHa2tKhsbbHT0o9/37CwMIYNG8bo0aOZMGECEydOJDo6uq93a0CiGYBusn//fj777DPWr1/P/v37u/TarAgd/50W4zX4O7GpcF9TNo2hMX6X2M5LL7cFENtUS0J9JXF1lUTXV6PD8dMqivjiXf55GVRQFOwhoZjjkrDEJ2NNSMEWn4yakAQRURgMBp9uFkVRXIONE09/tKe7yemaslqtWB0+bavV6nKXOC9bP+a87uli8bxsfX9rV0zrz2593fPzW++Lr8/0/P+criDXgKsobVwczs35+zl/y/DwcK/N6V6JiIjwuu68dP72rd1PXUZVpWbi0F44WATF+6QC2vkwoDrjDQq0ZORRP2Q4tQlptFisLleV2WzGaDR6ubWcri5P15fzN/X1W3u6MU0mk8tN1l10Oh3jx4/nlFNOYe7cucTGxvbsuxpEDAwDUHUUNq2B2gqIT4HJ8yAps9d3w2QysWbNGt544w327dvX4fOTkpLIysoiMzOT1NRUUlJSSExMZMThb0ne9aX/F866COZd3f6bO0/oA3vkhD6yv+MKV70B0rIgMxcyhkB6tgRYB3MRkqpKSqqxWb4/i1ny/D0D3Xq9fHeGEAk8h0dK/cBATsG02aB4P+zdAUU/+M9GCguHkRNgzGTIygvasWK322lpaXHFxerq6qipqaGyspLy8nJKSko4cuQIR48ebTcmZTAYmD17NpdeeimjRo0Kyr4eT/R/A7D5E3j7Me9CG0UH590Mk07rlV2wWq28++67PPfcc1RXV/t8TkpKChMmTGD06NGMGDGC/Px8IiMjfb/hqw/CjrX+P3DsLLjktrb3N9TB4b1wqEhmch2lEIZFQHY+ZOfJyZuWPbgKi2w2ycmvr3Hk5dc6ZCHqHHUHjaIH1N0irvAIqS2IjpM6g9gEyVaKS5RMpYEi/aCqUHIQdm2F3dskzdcXcQlQOAlGT5ZK5j7AZDKxf/9+du7cyfbt29m8eTN1dXU+nztjxgxuvPFG8vPze3kvBw792wBUHYVHfun7BFV08Iv/BH0lsGvXLu6//34OHDjQ5rFRo0Zx6qmnMnPmTLKysjq/TF/9LKx7w//jzhVAU4PM0or3w+F9MuNvD4MBsvIhdzjkDJfZ/vEcLLNaZTCvdwzudTWOwd5ROdzXshChYWIIElMdEhAO+Yf4xP67erDbZHLx42ZZGfhbVaZlwehJMGoiRPedy0VVVXbt2sXnn3/OmjVr2kzQ9Ho9CxYs4LrrrtOyi3zQvw1AZwfKIKCqKv/73/944oknsNvdBig0NJSzzjqLCy+8kNzc3O69ebuGTYFJ50NlheSFOyiqqGH599s4WFNPXkIsi6aNpyAlAVIzIW8E5BXILN8Q0r196m9YzLLiaayDhnq5bKyX+xpqZcD3N1PtLiFhbqVPnc5bBsJqkc1s6rlR0elF8iE5HZLSxCgkpUltQ38y2BYz7PkBftwoRsHX/60oMuEonAQFY8Vl1EfYbDbWrVvHSy+9xM6dO70eGzVqFPfccw9JSUl9tHf9k/5tALrrKukhqqry8MMP89Zbb3ndf/bZZ7Nw4cLAHES+XFsAoWkQ4j2jWvn9dha/9hE2u/un0uv1LHvkPyz82c97vi99gbHZoe8jhWbinpFiMxrquied4AtFETdNbILIQ8TGi8smOla2iCiRcg4N79zgq6piBIzN4kJqqhf5h3rH6qO2GuqqxLXUVQwGx2ohDVLS3WJxsQl970pqrIedW+DHTVB+1PdzDCFQMAbGTIHcgj4zZqqqsm7dOh599FHKyspc96enp/Ovf/2L9PT0Ptmv/kj/NgB9sAJQVZVHHnmE119/3XVfamoqf/zjHxk/fnzPP6C2CvbtlODb4d1grgW7BXQhYIgFnXd1a1GLhcK//Bubve1qQa/Xs3PnTgoKCnq+X8HAZhMBtyqHame1o9K1prJ7A6QvWg/wcYnevvjYhL6JexibHWqljpVcVblU+9ZVd30FERomhiA1E1IyxP2Skt53q72KMti5WQxCfY3v50THioto3AniBusDjEYjjzzyCO+9957rvqysLB5//HFiYmL6ZJ/6G/3bAPRBDOCdd97h//7v/1y3R40axdKlS4mPj+/+mzY3umdPZUfaf250rPjvc4bBkKEsWXo/991/v9+nL1myhKVLl3Z/3wKB3S6GrfIYVJU5dG6OyeDXE9VO5+AeHQcxsSILEeOYvTuvx8T3me5PUVERy5cv5+DBg+Tl5bFo0aKOjbHFDNWV3t9TdwyDTucwBtmQmSPuv4Tk3l0pqCocOSDGYPc2/6u2rDwYNw1GTegT+Y5XX32Vxx57zHV75syZ3HPPPT1PrT0O6N8GANrJAroFJs0N6EcdPnyYG264AYvFAsDIkSP5v//7P//ZPO3hPDk2rZPZvo8ZPCCZJDnDxY+fO7xNWuaCBQt4+eWX/X7MggULWLVqVdf3rzuoqrhnKss8NscA1h2xt5BQh5CZQ+snLsExsMc71Duj+22wdOXKlSxevBibzW3g9Ho9y5YtY+HChV1/Q4tZDKbze61wiMU11Hb+PSKjZeKQM1yOpfhe9HdbrbB/l8QL9u30fbyHhkkG0fgTZBXTizz//PMsX77cdfsvf/kLs2fP7tV96I/0fwMAshLY/AnUlkN8qqR/Bnjmr6oqv/vd79i0aRMA8fHxrHjgXhL2b+ha/YGqSvbEN5/CsRLfz0lMheGFMHwMZOS06ytdsmQJ9913X7uPB2UFYGyBilIZhModl1XHJGe+Kyg6GeSdWTBOIbeEFBngB+AsrKioiMLCQq/B30nA3XImo/s3qDjqvuyMwU1IhmGFsmXn954xbW6SVcH278Rd5Iu0LJgwQ1YFvRA4VlWV22+/nY0bNwKQm5vLypUrB/0qYGAYgF5gw4YN3H777a7bT/78ckbsXN35+gNVhQO74asPfQfJomNl9jN6svhvO0mvDDYmIxw7AqXFYrTKjohLoisoiqxeXAFMRxAzISWoPvhuuWF6SJ8ZZSd2m8QUSouh9LDk8Fd1kCIcGS0TjsKJMGRo7xheVZXjadt3YhDMPqp9Q8KgcILECjKGBHW/Dh06xMKFC12FZA8//HBg4noDGC0x1sELL7zgun7GlHFtB3+Q228/BjmF3iuBijL49G0p0mpNzjCYcjIMHdWtrIiCggKWLVvm093w9NNPd2+wa6yX2oIjB2SrOtY1/3NMnGOAT3cP9okpve7f9eWGeeCBB7rvhukkBw8e7NHjPUanF/9/Soa4U0CCzs56kUNFbQ1CcyNs+1a2uAQYPQXGTgmum0hRpNo8PRtOPUcKzbZ9C0cPu59jMYmB2PadHEfjpkpKaVTgg7S5ublMmTKFDRs2APDVV19pBqCvd6A/cPjwYbZs2eK6vWhyLuwp9v1k1S7uqHlXy4xm3WrYuLatsSgYCyfOg7Seu6oWLlzIrFmzWLFihWume/3113d+8LeYofgAHNoj0hFVxzr3urBwGWQ8B/rkNJFC6GOKioraDP4gueCLFy9m1qxZQVsJ5OXl9ejxoBAeKcdcwVi5XV8rvvh9P0oOv2cwvq4Gvl4jW94ImDSz2xOUThMSKoHgcdNkwrTtW9ix0dulWFkGn70Ln78PQ0fKanlYYUAnFrNmzXIZgG3btgXsfQcqmgsIWLFiBc899xwAw4YNY9mZo1B2rPP/grGzYPLZ8PHrbYN0uQVwyk96PcjVhuZGh87LDpkVWi3tPz8sXJbgaY4ZW2pmv9YJ6ks3TK/GAAKBsUUMwc4tcHCP12rPVWDY2ELe6HEs+v2dFIwZ2zv7ZTHDnu2w/XtZvfgiNAxGjJNVQc6wHhupPXv2cNNNN8lbh4by4YcfDuo4gLYCQJaCTk4//XSU+A6UCauq4LUV3vfFJcLc82TG0lcHVHOjnFC7t8sJ1Z7GTUw85AyF7KGSppeY0m8He1/0pRsmKG65QOFPOHHMFNka6yUdefv3rPzoU+8Cww3beeD5VSy7/Vcs/OOf5RgJJiGh7v2qrpAVwY6NkmnmxGyCHzbIFh0rQePRU7q9ss7MdL/ObDZTX19PXFxcT/+TAcugNwDl5eVeg8XJJ58MYcD6t/wPoLXN7oItnQ5OmAMz5vZNi0KLGfb+KCf1gT3+9zk0TFIDcx2yEQnJvbufASbobhhVlVWTscUhA2EFmyPzRtGx8Jz5zPp2PStWvczB4iPk5edzfS8EoNvFV8r0+re8ExeiY+GEORTFZ7L4pju9qssBbHaVxf/8N7NooeCUeTB9Tu8UciWmwMnz4aQzZMX64yaRobB4TMYa62HDV7KlZIg7aczkLrkko6KiUBTFFQhubGzUDMBgZvPmza7rTulmQE4af1INzsE/fQjMv0QOxt5EVSVTZ+s3sGub90niSXSs+ISHj5HMj+Ooz+uiRYt44IEH/Lphrr/++rYvUlWpQG5qcKiBNsig4mpw3+hQCG2SoKq/2g0HBcDSND2k5YJBD5/9D76Nke/dKTsRlyQpsHGJwf3+q476Pl79JC4sX7HC53cHYgRWfLeVpUlxsGODuGCmzw1IPKtDdDqZoOQVwOkXihtz5xbJsPP8PSpKJfHiy/fFPTRlVqfOQ0VRCAkJwWwWkTtrd+pXjiMGvQHYsWOH6/qECRPcD0w6TU6aNatg/w9gV1xSDUU19SwvqefghkPk7SjpldRDQAJmOzZKAM1ffnV0LIwcL1tm7sBx6zg1dlqa5P80GeW21SIzb6tVApl2O9jtFKh2li25lcVLH/SSydDrdDz9q5so2PUdbP0KTC2ytTTLewcr5GW1SHC1zo80gk4nqy5POYeMnMDlwG9a43/155m44KBDF1q1ww2jqlLlu3ubBIpnzBWXYW8QEiqDe+EkqS3YvU0KzTyziKxWiSFs/17cryfOk1hWO7R22w1mBr0BKCoqcl0vLCx0P9DSBOs/g8PHwOBeAq/cW8ri5at6N/Wwqhw2r4cfNvqe7TsDZWMmi0+/PylKOrHb3OJvngJwjXXi821q7LJsxMI4mHXb9azYsJ2D1XXkJcZx/dRxFKREScphoFAUaQijN0g7NYcRwmbtvEGx292aQDu3uO9PTBVDnTNMYjLd9bvXVnTwuHdaaIcutKnTxS1T7fG++3fJNmSYGILc4b03wYiMgkknylZVDj98D9s3yHnqZN9O2UaOh9ln+UxxdXYmcxIa2gdu237EoM4CUlWVs88+29W/99FHH2X06NFykH/4qrgFnBhCKMobS+GlV/dO9oeqik9/45fS8csX2fkwYbq4efoi/uCPxnophis/6qgmDoAuUCDRGyTPPCoGomMgKtZ9OzJaBpuIKJmdh4X7F11TVYnBOFcuTQ1iyBrr3L0Jaiq7pvOTmCIz7aGjxJh3dobaReHETmUyDR/eflV7+hCYcaq4GPtipWm1wu6tEhNoXXxpMMCs+eIa8pgQNTQ0cN5557luv/POO4O6n/CgXgHU1tZ6NW8fkpEOq9+ALV97PzErD866jOX3+fY5gywrV6xY0fPUQ4tZmnFs/Mp3dWdYhAS/xp/QZ12ZvLDbZXAo3gdHD0l1akedytpDUUSaOTRMtpBQOZn1BimA0ulAp0hVtlOzX6eXgVKnl+eGhMqgHRom31dYOEREOqSfo+V2IAYsRXHvZ3Ssfx+01SqqqBWlIuVQ7qi29iWe5lQQ3fCV7Kezejd3ePtSDpPn+U9cUHRtqtc7nck0YpxMMA7sFkNQctD9JmXF8OazUh8y41RpHdmbq0+DQTKIRk+G/TulJsdpqKxW+PxdiSGcfYXEYxAD4ERRlO7pfB1HDGoDcOyYuyAqLyaCmDdWehdJ6Q2SmeCYRQQ19bCxAbasF+PjSyo5JR0mnSQSu309229qkLzy/bskY6Oz+kCKIi6O+ESIT3YHSmPiZPYdES3ieP3RhdUTDAZ35XThJLlPVWV1UHoYDu8XA9pafsMZ89mxUQzX2Kli+H1lcCVl+k5ccAon+tCw6nSBoaK4VyXF++GbT7xXpZVl8O4qGYBPPE0MVi/pDnlJgeTmsuiUmRQc3O5evR85AM/9Gy64BrLyqK93T06io6PRHW/HWhcZ1AagtrYWgCkRCtck670H/9RMOHuBnLQOgpJ6eKxEZnu7tvp2kQwrhKkni9+1LwO6VisUbYdt38tg1ZFLIzoWUjIh1SFZkJwmA9fx0rGspyiKo11kisxiQQzA/t3ixy7e6y341twI330uW14BTDtFig49jwln4kIXhBMLCgq6tmodMlS2smL45jNxETmpqYT3X4b1a2DmPDF2QRxgfUqBPKhn2WOPsHDUUHccqLkRXnoSzrmChgZ3DE3rCTDIYwBrPv6YHx69j1Oi9URFRjJixAh5YOrJcPJZbUTMAlYBardL7v7Gr2SG0hpDiMz2pszqs2YaLozNsGGtpJz6a8Go00lGS3a+BDTTh4hvvY/oC4G4gGM2yQpr11aHvLKPyUFqptSgjBzfd6umyjIxBLu2tJ0UJKZIXv/I8QGfvHTqXDTWSrW+87tTFDalj+C25c8D0uvj8ccfD+h+DTQG7wrAZCR/8+ckRctSVafTiZ/4JwtkqeuDHleAWsySrrZxrWTCtCY6FiafJIHdvtbbsVopevNllj/xGAcrq737EIO4cgrGQP5IGfhDw/p0d530lUBcwAkNk6rXURPECO/YJEbYMy5UfhTefRG+/gRmnSG++t5eJSanwzlXyIz/m08lfuV0QVVXwDsvyKpl9lmiOxQgli9f3rl4XGIKvL5S4i2qSvb2dYwOU/jRpA7qAjAng3MF0FgPrz5N1e4dHC4W0TdTbCIz/vGYFOx0QFFRUdeE2YwtsHmdDPy+/PsZObLqKBjbP4q1Sg6y8q7fs/jZ/3n3IdYpLPvVTSz83R39ssZgwGn0dBVVFffbd1/CgV1tH0/LgjnnSEppX1FdIQZp5+a2K4L8kaKTFYDCyS41SqoohVeWQXMjpaVlFJeV8UillcJTT+fOO+/s8b4MZAbfCqC6Av73NNTVuESgtrbY2Z6UwoxODP7QBb+pyQjffymuntZa6IoiGRZTZvVeYU1H2Gyw9iOK3n+jzeAPDpmA/yxj1s23UtDPBn/owqxwoKIojnahw2VQ++ZTKY5yDrTHSuDlJ2HYaJhzdt+4DxNTJHY241T46iPvGMGB3SJGN24azDqzR5LPXYrHpWTAJYvgpSew2qyEKHB9op59URHd/vzjhcEVAi8/Cqsed1Vr6nQ61jTY+G+NjbpmP/1Mu4PNBpu/hqfvF8ldz8E/JFQG/cV3wHlX9Z/Bv64GXnocvvuc5d9tazP4O3EOpP2RPtfp701SMuDcn8K1vxFXnCf7foSVD4pUgtHHirM3SEqTzJuf/kKCxk5UVbT/n74fvv2se61EESkQf1W8PqVA0rLggmuwWOTz4vQKs6oP9p/alD5i8BiA8qMyO/IIZNZMOpn3G8RfWVdX5++VXaO0GJ57GNa84R00DYuQMvWb7hTV0E6uNnqFoh/gvw+5SuwP1rSfx99fB9J+qdMfbFIy4IJr4cqbxS3nxG4Xl+Oy+6SKvK8GuswcuPwmuPA67xWJ2QRffiCGau+PXZbocMbjWhuBduNxuQWsUd2xtWRTo6xSBjGDIwZQUSqDv9P/rujgrEspjk3lmmuuAWQ18PHHH3dfG8RqhbUfwYYvvQ9mQwhMmy1pe73Q+7RLWMzw+XttCt+WfL+H+159y+/Lgt7ysJsc9zGAjlBVkQP/4v22NQVJqTLxCGAgtsvYbHKsrV/dtggur0D2LymtS2/Z1Xjc5ZdfxunmaqZE6hg2bBixMTHiHsof2Z3/aMBz/BuAijLH4O/QDFF0cO6VMHI8JpOJ+fPnu566atUq0tM736/XRU0lvPWcGBpPxk6Dk8+U7J7+xqEiSZHzzEYKCYXTL6IoNGbADqS+soCcs8Lrrruu2+87oFJLrRaZ/X/9aVvtqGGFEijuy/RiY7MUjW3+2rtoTaeTLLiZpwdlsmSz2TjjjDPQq3ZuTTYwZ/xowsPCpMju2t/2aepyX3F8G4DaKnjxMXdVoKKTlLVRbtXPSy65hKoqGQT/+c9/MnXq1K59RvF+ePO/3jOahGQ48xJv32d/obZKZv2ewTkQV8J5V7kGhmANpAHDX+MTupGl1QH+vot+n1raWC8ujh0bvFelOh1MPFFSNyOi+m7/Ksvg03dkMuJJWAikxINBkWI2j9+2J5SVlXHFFVcAkGGA5+dPR+dUks0ZBpfe0GsVzP2F49cANDfK4F9TKbcVRTRBCid6Pe3WW2919QT41a9+xYUXXtj5z9i5RSofPf2rk2ZKqltfyzW0prZKgm4/bPTeX0UHJ5wisy4fhW+BHEgDhq/GJ4rOu/FJgBgwbqV2DCJlRyQg7KnjAzLLnjFXZt19VaGtqqLX89m74ray1IG5lQZWgH7bTZs2cdtttwGQlJTE//54m8TqnJxwCpxydo8+Y6BxfKaBmk3w2kr34A9wxsVtBn+AnJwclwE4dOhQ5z9jxyb44GX3zEpvgLMudWu99BeOHoZNa6VxTGuhsMwcOO0C6QHsgy7LBPQGXWx80lMGRGppR53A0rPhip9LyuiXH7jjAyajxAs2fw2z58Ooib1f26EoUv+SNwI+ewvWv9j2OQH6bY8edSuGZmZmwsQZcGS/WzLiuy+kurq/ncNB5PgzAKoKH7wiWiVOTp4vIlo+yMnJcV0/fPiwz+e0Yd9O+Qzn4B8RBRdd552F0Zc4m21vWu/9PTiJiZfYxOjJ/a6Yq0O62Pikp/T71NLOGkRFEdfn8DGwaZ0IujlF/OprRMxtw1o49Ryp7O5tQkJBaScVW7XT8uzfiLjm/3XbCJSUuCWtMzMd38mZl0ic0KkD9sGrcn70xXfQBxx/aaDffS6Dn5NJM2H6qX6f7mkAiot9DJatKT8Kbz/vPuEio2HBTf1j8K+ugM/egSfuFddU68E/LlEO+MV3iADZQBv8ocuNT3pKv08t7YxB9MRgEFfH4jvaaOVTVix1Mm8/3zaLqDfo4LeNqCvD/u9bYNPqbr19WZm7i56r9WtomEzewh1FYTYrvP6M7/4HxyHHlwEoOSipmE7yRkhqWTsDXVZWlut6ZWUlFovF//sbW0T/3Op4TmgYXHKDl2Jor2O3SfPsl56E5f8UZdHWKXZZeVI0dMPtshLqD3IT3SW+g+yV+MD2SOhywVFv012DGBEl58bC28QF48nubbD8ATmXLObA7Gdn6Oi3RVpBqG8/Bod9SGF0gKf8u1e2X3yS1FLoHQ4RUwu88hQca9Vk5jjk+DEAFrO4ZZxR/Zh4SffsQCUxJSXFJQkBUFHRzgn16VvumZGiwPlX906jbF+YTVJzsOx+eOtZ0YjxJCRUBvtrfi1FQqMmHB8ZDpPnSVDQFz4an/SUbhUc9SY9NYiJKVKxe8XPRcXVic0qmj4rHoSiHf5fH0ja+209UABW/UvUUruAM9sP5Lz3YshQGS+cn29skfTxo12ICw5Ajh8D8O3n3hk/517ZKUVNg8HgpQpYXe1n6bt/twR+nZx0et8U1VgtMvA/9Q/JnKhv1YQ8JR3mXQg/v0vcPWlZvt9ngFJU3cSr5lRsrXPX2ml80lMWLlzIzh9/ZMntv2PBJZew5NbfsvO7r7nu4gtloPATJO4VAmUQs/Phql/AWZd5163U10ia85vP9qzTW2dwNLVp89v6wtwMr62Q3gOdTGR09v8AiI+Pb/uEgrHeRsDUAi8/JdIaxynHRxC4qUEGRSddFFiLjY11HRyNjT407+02+Pwd9+3MHJg+t3v72gHtFhwd2A0fvQYNtd4v0ulEWG7ySf1SpTNQeObjD0+M4vpJueQnRDH6xFMYf+1vez74Nzc6Grcfkwb2dY6tuZGC5iaWpiiQ4ggOfvIqeLrXQ8Nk1RkbL3UgKenSECc5Lbgpwd3oBOYXRZE+FCPGiYbVhq/cK+qiHyRff+558pxgHWOTTuP/XnmPWeUbOXFIO3IpOkfa6rqPpZ7grMva/Z6tVitms9ud5bcP8Mjx8t2984Kc91YLvPFfOP0ikWk/zjg+6gDWfiwHLIhvc/EdXaokvOmmm9izZw8Ad999N3PmzPF+ws4torsOcuBf/euguH78Fhw98QQLcxJg67feLwgJhUknysAfEx/w/elPBDQfX1WlLqLsiPTnLT8qvXr9NbzpCTo9ZAwRF0PeCJmYBKN5S9XRLnUC69x7HpNq8dZNi/JHwfxLglbhXlRUxLkzp/LDz+dg8PFdqYqCkjoBGpvcd2bmit5QpO/CtubmZs4+253j/+abb7bfD+BgkbhWPYUcT5wnK//jaII18FcAdjts/859e+rJXS4jN3gUQPnM+d60zn191ASK6ptY/q8lAZUFKCoqajP4O/dn8U03Meu2693NWHR6GfhnzJUspEFAj/LxG+tFpK/0MBw7AqVHZHnfG9htFG3ZzPJl/+VgTT15qcksuvIKCk6bL26XQA0mSZkBTX+V90yDBT8T9c4v3nOnjR7YJeKBZ13mt3lSTygoKOCO+x/ipkf+ypNnj/cyAnYUdOf9AgpPhHeed/cmPnoIXnoCLr+xRzLTLvIKJC7y2gq36+vrNdBQB2dedHzE0zgeDEDpYfcPpOj85vu3R7uLoNoqr0DQyr2lLL6gMOAdp9od4Ox2VmzYztKzZotP/6zLAtJUYyDR6Xx8i1lm9s4Bv7S4rcusPcIjJKsrPBTqj4LVJDPqCXMgw9H5TKeXWbzdLlo7ZrO4IRvqoL5a3EjlpVBZxsqvN7H4tY+85LUf+GQdyy4+k4VnnS6rt9GT+l/luBNFEdfH0FHifnQ2omlulMHxhFOkfWqAVzXOhvUPrXyCgoZD5MVHMmTcVBJPu8S9srn4elj9JmxzrIyrjkng9sqb28T/DK2q3K2dkaFOzYQrb4HXlrs7sf3wvUwezv3pwM6mczDwDYBzBgCyzO7GjNgz9TMkpFVJ/IE9rqtFVoXFd97he5a+eDGzZs3q9kqgwwGuug7GTIYzLz0uDryu0mE+vt0Iz/wLKo/5z4tvTUKyVMmmZkJqlvjtI6Nhy6fePvXiHfDDF23lCPR60EfKYBMbL64eD4p27WLx7ff5bqzz2kfMysumoLIMvvpQGqhMOqn//rYxcXDxQnFDfva2W8f/uy/EhXbuTwPexrSgoIDf/f1B/0/Q6eGMiyAqWjKWQAbq11bKSsBD3iIkJASdTofdEdNoaenkCjAuQQzKG/91u8KKfpAYwXFgBAZ+FpBnwUY3xdeMRqPrelhYq962pe7Z//Jtezt0Q3SXDge4ESPhrMsH/AHXXRYtXOg/H1+ncH1usqix+hv8o2Mly2P2WTI4/OqvcMPv4ZwrpbF6XoG4DqpL26+srep8bvjyZ55pZ1WnsmKDo2CxpUkyulY8INr4/RVFEfmEq3/lLdt8sAheeNRbeqU392nWmXCih2E+ekgED72ephAV5Y4PNDQ0dP4zwiNFMnpYofu+oh8kPjLAQ6gD3wDUe6RtJnWvCMgz86dNdkCNO3f4YG37B01PZAHaLTjS6bj+z/ceV8GndrHbpDz/hw3wyVvw4mMUvP8syy46Hb3O+zvQ6xSevmS+Oz4CEBIGQ4bJwH7+NZIS+/O7JN99+qnSUtFfnKirlbXt0OGqTg3xFmGrrYI3npF6lt4swOoqyemSMjpyvPu+6goxAn1VPHXSGd7u383r4fBer6d4Bn273AAqJBTOu9rbCPzwvbR7HcAMfBeQZ9VrN9w/qqp6GYCYmFYBpBZ3pkFebvtyDz2RBXAWHLXJAtIpPP23P1Ewekw7rx7gNDXIrO3oISg5JKs6q6XN0xZOG8esvGxWbNjOweo68hLjuP6E8fLdpA8RF0z6EJkIdNcnHUCpiQ5XdTNmSYe4dath6zfu2eQPGyR+ccG1favb3x6hYeICSU6XVEyQc+WVJ+GyG3u//kRRRNiw9LBMHkBca1fe4po4JSQkcOTIEQBqamr8vFE7GAwimf7KMrey6hcfyIQitY8KQnvIwDcAPVyCNTc3ewWEYmNbpbZ5vP+iyy/lgadX+k1F7KksgDPwteKh/+Pgus9lgDtxMgW//0OP3rffYTJKTcOhvaLGWN3BoOtE0VEwejRLTz0D0rMgLVv89h4B1KKiIpY/+FD3M7QCKDWxaNEiHnjggfaPl8hoOP1C0ef/+DV3wkFVObzwiEiNtIot9BsURXoKxCfC+6/ICsnYAq8+LRk03VyRdxuDQfL1X3xMbh91ZH05KpwTEtyrRL8Fnx1+RogY5v/+S5JP7DZY/YbECQbgCn3gG4DQcMCRBWQ2tvtUX3jOBBRFaWsAPAaXgqwM37P0AMoCFBQUsPSGayDPsRLJzu87rfZAYjKK33T3NvEZd9SjVtFBcqoM8mlZsqVmtpst46uOossZWpPniZSyLzdQF6Um/K7qfB0vKemScrnuY+nbADKYvvKUDC79Oetr9GQwhEpapt0uK4HXlosMSYADwx2SlSc1AU5Dum+nywAkJSW5ntZtAwBSa3DmpfI/gnxW0Q4YMbb91/VDBr4BiIqGaseyvL7rjd09DUB8fDy61q6DqGhwTlAb6tyz9GA2SvFMW4xPDtz79gW1VfD9l7B1HZiqwW6RKk5DLOg8BvPoWPfJmzGkw8G+Ne3WUXQlQyuAlbVFRUXs3r2bM888k+rqapKSkhg3bpz/40WvlyB1aia895IYSbMJ/rdcAq/9sbWokxFj4SeXy36rKtTVSCzjgmt7f2acV+C9knLguQLolgvIk6EjYdhot0zExq80A9AnxCdJW0aAmk66EjzwnAl4HiAu4jzK0R39c4PeKMWz+jC8nzWS7yxNDdJs5MdNYK717vJkAyw1kD8Nppwhq5y4xB4NFAFt3DLpNIhNgs9WQUM1xCTCqVfAsImd3h9/Vd0XX3xxx4Zo1AQxBm89J4NpYz28twouXRycKuKu0F7nscJJMvB/9aHc3vujrPpGjOvdffQsBGtpdl0NqAEAKcR0GoAjB0Q2xHO8GAAM/CwgTynm1k3ZO4GnQqDnEtFFoocfs6rzAcAe4eke6esTvjvs3yU5+Ts2gs3UtsWfk4MbISNTjHgPZ4kBbdyy+RN4/m9wZA/UVcrl83/rdAZQR6uRoqIiP6/0oGCs6O44ObwPtnzd+f+hGxQVFbFkyRIWLFjAkiVL2u7n5k/gkV/Cujdgx1q5fOSX3t+LM8vKyWfv9r5YnsnDFeyR7RVwA5CZ4x2k37+75+/ZywzA0aUVntH3Y0e7HBT2XAEkJ/twt3gGspxdg4KNp7rjQEsz3rhWKkSdujrWdhQku5hW2R4Ba9zSUYetTtQBdGY10ikmzfROtVz3sffgFkBWrlxJYWEh9913Hy+//DL33XcfhYWFrFy5Up7Q2e9FUSSo7Zy41NfAnm1B2We/eNYGxbsndZ4KoJ7KoD3CUxG47Ehg3rMXOb4MgKmlrTxyB1RWuotXEhN9LN88C14a64N2AnrhWQ9g60TJen+heL/M+JwYDJDSQSZIgDp4BaxxSwDqAAK2GlEUmHu+1DWABIU9da8CRKdWLF35XhJTvPtv79wS8H32i83mrQ6Q5U7d9lwB1NfXu6qCe4RncL66lzwEAWTgG4DwCIj18N07c4A7iacLyOcKICZOBjIntb3QKs9zIOuMZkl/4fP33INETLwELvNHt/+aAHXwCljjlgDUAQS0jWR0jAj/OdkWeAPQqRVLV7+X0VPc1w/t7T030IHdbqE/g8HLHeW5AlBVNTCrAM/AvEfN0EBh4BsA8J6ld9FN49kBzGcMQFG8DUxXhMW6i94j7bOjdMn+QnOTdw/in1wm8Zle7OC1cOFCdu7c6eXH3rlzJ9ddd13n3yQAdQABbyPpqUNfVQ71tV17fQd0asXS1e8lO88d17Faeq/H8JZv3NeHjfaKAURERHhJvfQoFdSJZ4xuAMpCHCcGwOPgq+6aHomnC6hNmzgnnla+qQsaIt1F7/GzDBQXkLHZ+3aqoxLUmVbZ2ggEqYOXM0Nr1apVLF26tOvpuQEwWAFvIxmfJKJkTioCK7fQqRVLV78XQ4j3eRPsbmIgBYVOtVJo08BFURSvVb7n6r/beCoRtBaSHAAM/DRQgASPmXtt5w2A0Wikqcm9bPNrADyLWVoPdMFA6eGsor1UvWARnwRhEe7l9xfvi1KjosjgkFMY+IYlwSBAdQABrxeJTZQUSwj4JKRTFcvd+V70HsNLb6xkPft2JKV5ZyM5SE5OpqREgsTt9v/uLLUeRiR2YKWAwvFiADwi/V1ZanrO/nU6ne86APAWDuuNIHBP2PxJ25N0/VttpYwDjU4HY6dIFhCIRrvFJKX5YeHBaVgSLAJksAJaL2LxqA0JcO+ATlcsd/V78ZwshQa5nsXYIhpKTqbM8pla7DnJC4gBOHLQfT21H1dr++H4MwCN9aKk2ImTxPMASExMbFsF7MTTAHgWaQULz1l/V/LjO0rVyykM7qx79lki5uaMBezcIg1ZTr/QO11uINCfDJaxRTT3nQSh2KjTK5bOfi/Njd7ukdj4gO5vG7Z961ZQDY+QJjs+SEtzxwvLyrqWMNIGk1H6JDvJ7p4cfV9yfBiA2ARpDmG3yeBZXdEpNcIOM4CchHr0COiNFYCX26cLBqAzqXrBHNQMIdI05K3n3M0zaqtEHKxwIsw5V7JaNLrGRo/m7JHRLm2bQBPQFcvRw+7rkdGBadPoD6vVvfIEmDDD7wQwPd1dONpjA7Bjo9u1FRHV7X4kfcnxYQB0Oll+OQsxjh7usgHwmQHkJMKj0XRzLwSBPenKCiCAUsbdJjJaGq6s/wS++cRtzHZuEWGuk86QNogDscK5Lyg7At997r49blrvf3fdiSnt9wjGBrL3sS9+3OQOMuv0cnz5wdMAlJZ2XTnAhc0GGzx6AYyZPCCbNR0fBgBERMxpAA7s8s6d9oNnGpjPIjAn0e5GEt0RnOsynid4V4JnAZQy7hE6Pcw6Q+QMPn7N7RIym+Czd0QR9KzL+q/WfX+holSqqp21IJHRIrXQm3QnpmSzeVf/ejZRCTQ2G3zzqfv22CntiuZ5GoDKykqsVmubfsGdYvv37nijopOq7QHI8TMN8zzIDuzuVNqZpx6I3wAwtMoyqgp+cZbn8rUrMYdezLnvFGmZ8NNbYN4F4pd1cvSQ6KlvXDsgc6d7hYNFomvvlNRQdHDOFf47mQWD7spiFP3gFmHTG2QiECx2bvYeiDswkKmp7kmQqqrdSwU1Gd1NcADGTfWOQw4gjh8DkDNMqnZB/KXff9HhSzzbwnm2i2tDYqo7pc1ug/IS/88NBJ7+0q4UnvVyzn2n0DlmR4t+7y0PYLXCp29LvKAfZVZ1KIgWbGw2WPsR/O9pt/FXFDjrUsgNoOR4Z+iuLIZnOuao8cEzWnabuxk8iBumg4E4NDTUq+dHtwzA+jVuw2wIkaY4A5TjxwXk9P198b7c3vw1TDm53ewDz8bQbRrBeKLXi0a9M7B5sEhcTsEiwcM1UlXR6awmoP/m3EdGSQP2keOlmbbzBCr6Qaq3L7yuz11CAWko0xPKjsCHr3qr2hpCpPXi8A4kNYJBd2JKJQfd7RIBJvn3x/eYHze78/AVpdPusfj4eOrrxUPQ5d7AFWXeAecT5ojsyQDl+FkBgMw0nf4/mxU+favdpzc3u/OUo6Ki2nkmkD/SfX13kNUNk9PcA77dBgf2dO31zlS9S26Ty74e/D0pGAsLb5OmHU6qK6T9odPA9gEBkXDuLs1NsOZNeP4R78E/Pkm6gfXF4A/diymtX+O+np0fvHaWNpv3Z42e1OkJhOe57jkGdIiqwurX3auiuEQ44ZTOv74fcnwZgJBQOHm++3bRDvER+qGlxZ2nHBER4fd5gLcsb2WZ5LcHC73e+6Tf+NXx5SuPjIKLF8GEqWCuBGMp1BfDS4/Kb9YHBEzCuStYLdIt7en7YPN6b3fL+Olw7W96v7m6J12NKRXvh4Mek5UTAx9zcrnofnImS1a9QVFFjezLzNM7/R6hoe7VtNls7vyH/7jZe3Vz2vkBL8rrbY4fF5CTMVOkItDZJezj1yEjx6dv0PPH9zwofJKQLC0LnQfApnVw9oLA7LMvJsxwy+geOQC7tnr70Ac6Wz+Dr192D3rOLmH/+w/8ZGEbHRefBFDyIqANZTrCYoat30qcqnWyQnwSnHmxTxmDXqcr8g+qKmqwTjJzAx6z8Omi+/J7lv3m5ywMdhDWYoYv33ffLhgT3OymXuL4MwCKIimGz/xLgmhmE7zzIvz0ZokTeOB5IHUqFWzSTLcB2LlFUh2D1QJuyFCpnnXOqD5+TWaDx0PqpL/sEgDTMfhwFTTUwUmn+88fD7DkRUAlnP3RWA9bvxHFSmcMxElYOJw4T46x7qQlBovOxpR+3OStBjv7rIDm/vt10dlVFj/8JLN+9ptO6yxZLBbX9ZDOCrhtWuc21noDzDmnc6/r5xxfLiAncYlw5iXu22XFstRuherhVlE6c7COHOce8FW7d/5xMDj9QncVstkErywLuBRwn9BedglIF7Gv18C7L7rL+z0JQNeu1gRcwtmJzSYFcG8/D0/+3TuDBGQwmXwS3HAHTJvdvwZ/Jx3FlExGd/IFSA/gAFfFBtJF5ykAGRkZ2c4zHZhN3sV4k08asGmfrTk+DQBIY+2xU923137c856+Or13psH2DcFtExmf5G3IGmolN7y3ehMHi46yS+yOGdqurRIcbv0dB6BrV2sCKuHs7Er18evw+N/g9ZWSOODZgcoQAlNPhhuXiC85soMkhP7MF++7FUoNBjjlJwH/iEC66DwLQD2bxPhl27duXaOQMJg+p9Of1d/ph9ONAHLqueJCaayXbJrVr8PlN7mWpp4nu7/ZRRvGTpXZQG2VDDafvgOXLApeqfuoCdJpaM2bcruhFlY9BudfMyC1R4DOZZc4SwMqyuDZh0VCYurJYoSDJHnRIwnnpgY51vbvcnSl8lPbEBMvVerjpkll70Dn4B5xazmZPjcos+NAuehMJpNX+ne7GmAgRtuzrmHiDG9pmAHO8W0AwiOkCvXNZ+V28X7Ys92V0ePp9+90NoBeD6ecDW853vPgHpndjZoQwB1vxaSZEmT79G25bGkWd9AZF8lAMtCYPE/89b5m8YoOLv8t7Njs1lqxWmWWuWsrzDk7qJIXnRZEs9mkovnAbjkGPBuRt0ZvkIDhmCkwdNTxo4PUWA/vveS+nZIeNKmKRddfzwP//Cc2H318u+Ki8xSA0+v17WuAgRh0Zx8GRdeuztBA5Pg2ACB558MKxQ8L8NWH4qNUFMLD3RWKXUoHKxgjeezO5tOfvCWVyMGc0U0+SWYe778sqxm7TYqGKo/JknsgDSodZZekZsuWWwAfvOL2mR8rgZefgvR0ea4/AxIMyQtVhZpKkf89sBsO7/Mdn3CiN0gQf8RYOQZ7U8KhN7CY4Y3/un8bvQF+siBogmgF1UdYdvEZLH7tI2x2d+yuqy46ZzMYEGlof3EfF1u+9tiJMcGXte5ljn8DABKx37/LfRIf2A1DR3kZAM+agA5RFGl0svJBmZ02N8L7r4gUcjBVDwsnygH45rPuE2/Dl1BTAWf3sk5MT+lMdsnQUbDod/DZu97NPsrKICQZzK1cPYGWvGhpkoH+YBEc2uOeCfojJg7yR8l+5xUM+Bxxv9htMhHxzPo57XxIDVLB4eG9sPZjFk4bx6y8bFbsP8bBkKhudVnzNABZWR3UWFRXyFjhpBMCkwONwWEAElOksMpZZLTtOxg6yqsisLGx0c+L/RCfJK6gTxzVxgd2wfrV4qsOJll5cPWvJLDorBrdtxNeegIuvr5dJcR+R2eai4RHSlrv+BPgq4+geJ/cHxIH+gjJGFKtEJcC406B7EIZoHRdnImqqoiKlR6WIr/D+7yrcn1hMEgTkLwRsiWnBXcC0Bt0VFtht8NHr4kr1cmEGfL7BIOKUpnwOFZ7BcOGsvSvD3u3ae0Cni6gzMwODNY3HskESakwZFi3PrM/MzgMAEhlpdMA7NsJxmYvA+CZGtZpJs2U2eG+H+X2+jUQnyyiVMEkNl4kAt5bBXsdn11+VDKELlt83KSoeZGVJ30GDu2V9NvifaALhVBHEM8IfL9WNkOI1EwkpUrQNSZOZuM6vbjKLCYwGmWGX1spq8KqCnc/4/ZIShNZkPwRInVgGHiNwP3SUW2FzQYfvOwuUARZ8Zx2fnAMX0WpuPycAXVDCJx3VbcHf/A2ABkZ7bRwLN4POza5b08/deAbdx8MHgOQVyA++uZGmSEW7SAmxq262eUVAMgBcfYCeO7fMogAfPgKhIRInCGYhIZJJtAX74sbCGQG++JjMlAmpbX/+oGIosjvmFcgy/Ot30oBUuuiKqulrShZd4mKkarc/BESkxhIK6yu0FFtRVo+rPvEHfcCyUI7/6rg+P1Li+G15W5ZaUUROeweagt5toH17A/sRevgdnL68VWF78HgMQA6vQTjnClre7YTHe0O2nqmhnWJsHBJA33hUYdxscPbL8jBGszMIJDZ7KnnyKD0+btyX1MDrHpC0l1T0tt//UAmMUX+91N+IgP9/l0SoC0vbb/IrDPvmzEEMnIhZ6hIgR+HM782dFRb8dL/gc1j5p1XABdcG5w4x4Hd8NbzslID90QrAH0FPHuA+GwC1dQA/1vulmFXdCLF3VWX4gBh8BgAEG1ypwE4WER8bL7roW65gJzEJ4kReOUpKRhR7VLFajJ2TtOmp0ybLSmvH/3PkSbaJPty+Y0yezme0elkJuqsibCYxR1WfhTqa6RyurFegvV2mxhoQ4h8X+ER4k5LSJGBPzmtR+6FAU1HtRVNde7vZtQEOOvy4FQtb/tOCuicxkinkwSHAE2mPFf6bSTgK0rh9WfkuHFy6jlB68HcHxhcBiA738sNlNfi/qGNxh42JUnLgstu9DACquj3NNRKYDjYs8hx0+SEfO8l+ezmRvGfLrjp+HQH+SMkVOIFWXl9vScDi45qK3SOWMeJ89rXaOouqiop2t9+5r7PECJuzqEj/b+uSx+hYjK5O+y5FIBVVRR3v/xQZOSdnHAKTJkVkM/urwyg5PEAoNOLbriDnCp3SliX6gD8kZYlwVlPP/HXn0jgrLOVxj2hcBL85HL3ydncCC892XE2i4ZGe9LPAJEp0rRnVhAmMxYzvPOC9+AfFSPnUoAGfyee+l86nU5qS158TFKNnYO/ooiKwOzAS1r0NwaXAQBJWXMQaWxkbLgczHYfFYbdIikNfvoLyUBxsmOTpG12pb9vdxk9WZbnXkbgCTh6OPifrTFwScqEOVcCPgb3tNGw8PfBaUzT3CRV7Z5NlpznUBB6IThFHyMUCF/3kSRwHD3kfkJ0rKRTTz15UMR+Bp8BSEyRij4AVeXsGD06OqkG2lli4+HKW7y1eg7ukQPd2IUORN1lTCsjYGyBl5+U9osaGq2pqZQZ+HffQkQOhCSAPhrCkmD2NXDT34KTWlxbBS8+6j0A5xXAT2+BuISAf5yiKISFhnJSpI4/phkI/eF770ZLoybAdb/17v53nDO4YgBOTjwd9v6IXVVJC1GYF63D2FFDmK4SHgGX3ADvv+Se3ZQeltn4ZTcGXwhszGRJR33nRQl+Wi3SgH3GadLEeiBJR2gEh6OHJYV4z3b3QOisrcgfBfPOD15NybESybbxTOEdPx1OvyB4GTcVpfw2JYQUx2rfJQCZkCyaYXkjgvO5/ZjBaQDSMmHCDGwfvA7AmbF6tugD5ALyxGCQht4RUW5NkYoy8csvuCn4RmDEOLh0kVRSmoxykn+9BkoOyArhONM10egEZpNMSLZ95z3zdpKcLm1VhxUGzwVyeK/oCHm6RE+eH7xiK7tdYnHffEJumI5mR72fSYXo2WfBlJP7Zx+GXkBR1eOp2WwXMBnZ9Yef0VImzUPiMrIYeve/pHI00PjKcEjJECPQG2mHVcfkhHMWq4EUks0+S2Ii2mrg+MZul8rpH7fI4G/xEYuKT5K+uoUTg3s87PlB3E12x+zbmWc/ZkpwPq+5SVKyD0kB2/79+6mrr2dTs52EC6/iomuuC87nDhAGp9kDCAvno9BkTlKPolcgSlFlkFzwM3cXrkChKDLDURR3F7GKUokJXHajuIuCSVKa6Ad9/JpIKoPMvta8KdW0c8/tHz1oNQKHzSYrvT0/yKDfulraSXa+BDyHjQ7+ROCHDaJg65xzGkLg/KtFPC8Y1FXLOVZb5brLGhXLUweq2WVSObeyup0XDw4GrwEAdtc1U1Zn47J4PSEGg/gl334BLrw28OXtigKzzpSZz3dfyH3HSuDVp8VNE+yVQFg4nHOlBLg+e8fd4cipt5IzXGIDA7XJjIakUx7cI5pX+350/8atCQ2TlOHxJ0B6du/s28a10s/CSViEqOcGq16jtgpWPe7u4wswcjx7hoaza+OjABw65MMFNsgY1AagqqqKnc120g1wvbM59IFdMkvxzKcPFIoiucU2m5wQIJK6Lz0Jl94guc/BRFGko1n+SPjiPW+xq8N7ZcvMlcri4aOP2/L34wpjswz4RTtEstpq9f08nV4ybAoniqRCb0lVq6qo5K5f474vKkaO95R2xNh6gsUMb/7Xe/B3xBiGbHOnm+7fvx9VVQObATjAGLQxAFVVOfPMM7FYLCjAa9deSELFEfcTpp4sfQSCcXCoqshIb17vvi82AS66LngnhS+OHhZDcORA28di4iQrY9w0ua7Rf2hulAF/zzY4tM+/ho9z0C8YK41pelvmwtnFzrOlYmyCKNYmdNCKsSesedP73Dr9QpgoWv6NjY2ce+65rodefPHF9lVBj3MG7QrAZDJhsUjzcRVEb+TT10UHHqQdYViEuEUCjaKIhG5IiNsdVF8jgnJzz4VxJ/ROEUpmjsQ8ivfB+k/cWvsADXWw7mOZveWNkLTS4WOO3yYn/R1ji9Rx7NrS/qAfGiYZPMPHyEqvr5oE2Rwd6370WGUmpcKli4M7oTh62LuL19STXYM/QHR0NJmZmRw9Kskfu3fv1gzAYKS1+FtUXJyoG778pLu/67qPJT3shDmB3wGnOygqBj5/T2ZLFrM029i7U/KSeyNNU1HE/58zXE6eTWslaOisjFZVUWc8sBtCwmDEGBg5QYxCkNr/aTiwmKV3xc7NsH+3O3OmNVExMssvGCNNS/r6dzEZ4e3nvKWj07Ph4kUQGeSG6l994A4yJ6X6lHMYOXKklwGYM2dOcPepHzNoDUBr7Z+QkBAZDC9ZJMGjaoc64hfvS3bE1NmB3wlFkfdNTJXmLs6g3b4fJW3thDkiSNVbs+7MHMi8EuacC9u/k82zDaLFJHGDHZtkZjl8NIwYD7nDtZVBoLBaZODctRX27vDfdzg6Vuo8RoyTQGp/SeWtqxHZk0p34xVyhsnkKtirkaOH3Ct4kFW2D2M4YsQIPvtMUrKLioraPD6YGLQGwG/oIzJaUjNfesKdPvbZuxJcC1ahytBRcN2t0kzGOWuyWsT9suVrmD5H8vV7a5CNjoETT4MZcx2dkTZKtahn4Y7J6DYGIaGyIigYIxWkwZ7lHW+0NMkKa99O2LfLd54+yLE5YpxIFmTn9z+tmoNFMpHxTDkNpnR0azZ7uH6y8vymNnv2EN67d++gDgQP2iBwZWUll156qev2Rx99RKinHER9rRiBOo9c4UkzxUcfrOwYVZVc6S8/aJu3HREpnz9pZvAriH3hdEfs3ibNV6wW389TFMjIERXHvJEi6NVfZqf9BYtZmtgc3icGtvSwtyaNJ6Fh4t4pnCgrrf6YmWUxS6Xtd597/x/TT3XXvwQDz/7FMQmw/Udc8mbn/tRvD4Ha2louvPBC1+033niD+Pj44OxjP2fQGgCTycT8+fNdt//3v/+RlNRK96S+VvT9PStoc4bDeQ55h6DtnFEKxjatazvQ6vRQOAEmn9R3jSqcxmDPdvFN+5uxghS55QwXN0B2vkgNDJbZlqpKh6nqcqgqh7ISOFYMleXtdy0LCZVV4agJEsjtz+61w3ulgYvnOWIwwOkXScpxsPDVvxggNBXisuBnf/QbC1FVlfPPP9/VBfCRRx5hzJgxwdvXfsygdQGFhYURFRXlCgYfO3asrQFwNl9/bQWUOVJED++FZ/4ldQK5BQSFsHBpdTjlZBHr2vK12xdst7ldL+lDpONY4cTeHSRCQmVwGjVBXGOH90pa4v6d3rnXIHGNPdtlA5nRpmfLKiE1U9pWJiT3n5mtqsqgYnde2uU7tzkvrfI/Wy1i+MxmMdjGZlm1NTdJBlVDrWR2dVYCPCpGBv1hheJO68+DPoi/fd3H3oFeEEmJ864KipSzC3/9iwHM5TD0lHYD4YqikJaW5jIAnn2CBxuD1gAAZGdns3v3bkCqAkeP9qF3HhktqZIfvuqWUWislxLzCTNg9vzg5VdHx8CcsyUGsOUbMQSeA2xZsWyfvSN9AMZPF6G73sRgkIFr6CgZPI+VSDHdwSIZJFr3WTCbxPXhGazT6SE+UXLE4xIlwBkZLVtYmGQfhYS6T2qdzntgtprBYpFB2WyUz3BuJqMM0majGFGzyTF4W+S2zSopizaPlpG9QWiYrIiGDBPXTmpm/18ZWa0SmN76jffvB7LvU06WhjHBNl7t9S8GsPmRvfAgLs6diurZJnKwMagNwLBhw1wG4Mcff+Sss87y/cSQUJFRSMsWUTdnOt7Wb6QYZ9aZkrsfrPS7iCgJyp4wR2bSm9Z5KzmaTWIctnwts+tx02DUxOBrDLVGUeTz07OldaDJKD7uw3ul2Kz8qG9ft90mWVfVx+lMLDLa0XM4XRrOp2dL5tdAiI3Y7XKs7dkuOf0tPvpZZObC3PPkf+sNOupfbGzo8C30HueqrTe69fVTBrUBGDt2LO+//z4AW7Zsaf/JiiIpmbnDpe9u1TG5v6UZVr8B33/pV02xqKiI5cuXc/DgQfLy8li0aJFXJkKn0evl/QsnymC69Vs5KT3dDGVHZPvsHUnRHDNZfPB9Mdg4U0WdnaRMRtnv0sOyjxVlUFPhPwDaH1EUETHT62VlEhYus/nwCMeqJQqiYmU1ExsnK5pgxouCgdkEh/ZKsH/vDv9Cchk5MuPPLejd1UtH/YvjU9t/HO86oPDwPiqW6wcM2iAwiN9/wYIFrtvPPPMMubm5Hb/QZpMm0uvXtM3TTkyRmXrhJDAYWLlyJYsXL/aaZej1epYtW8bChQt7/k+YTeKa2vadDKy+iIoRozFyvJy0/cnVYLVIALG2WnzmddUy4DQ1QkujuG+crhu73WEsVPkfdHoxbCGhMiiHhEJoqAzIoeGyhYU5bjtcSaGh7ucbQsSFpTfIgO58P9elzvtznM853rDboLRYBv1DRVIQ6K/ozBACI8fJirevUlGrjsIjv/TtBlJ08Iv/SIvLdrjooouoqZEalwcffJDJkycHY0/7PYPaAADceOONrmKQBQsWcNNNN3X+xU65hB82tj0Yo2MpSsmncMG1PpeYer2enTt3dm8l4I+KUtj+vf+lumO/GDZafPZDhvadVIBG36GqUqh1qMiditpesFqnkyyugnEykejrY0ZV4eWHYdcX3vcrOjjvFpg0t92XHz16lJ/+9Keu24M5DXRQu4AAzjjjDJcBePfdd7n66quJjOxkUDcmDuZfKjP+9atlJu60p431LH/l3379izabjRUrVrB06dIA/BcOUjLEF3vK2VJN/MNGCch6BjYb6yV2sfUbObEzcyUQmZ0nq4O+Prk1gkN9rUhFOwd9f24dJ2ERkD/CnZnU20Jy/mhqkDarxUchIhes9RCih3EnwgnzO5z5A3z66aeu63l5eYN28AfNADB//nxWrlxJc3MzjY2NvPzyy113zSSmSJB45ukSC/hhA9htHKypb/dlBw8e7P6Ot4de75YJaGmS4q3d26D4gPdKxW6X4KxTDVRRICFFUvjSsyQzJTmj/1T2ehb+xKfA5HmdOuEHLD35fy1m+b0P7paBv6q8/efr9DIJyBkuPv307P4VpLbbxM351YduyRRdKGSOFXXRTkqpt7S08Prrr7tun3rqqcHY2wHDoDcA0dHRXHLJJTz77LMArFq1irlz53YuFtCaxBQ482I46XTYtI68j9a1+/S8vLxu7HEXiYgSNcSJJ4ox2LdTtkN7wdSqYYiqStFSdbkIkDmJipGuYslpksmSlCpbbwY3fRX+rH8LzrsZJp3We/vRW3T1/1VViaXs3yWrvuIDktrqD0URQ58zXBIbsvL6Z+2BzSbH4refy3HpScFYWYF3IdvtmWeecfn+Q0NDOeeccwK4swOPQR8DAGhubuaaa66hqkq0f/Ly8nj00Uc77wryQ9GOHRROGI/N1jZYpdcp7PzX3yi45GoRYett7HbJxDm8F44chNJD/jtI+cOZ3piYCkkpkJgml7EJgQ0OBiDoN6Do7P/b3CS/36EiMeiesiW+iE+SIrPcAsgZ2n/cOr6orhANqu3fi9vHk9AwUfmcOKNLx9n69eu56667XDpgV111FYsWLQrkXg84NAPg4JtvvuHOO+903Z4yZQr33nsvYWE96w/sMwtIp/D0JfO5bupYuWPEONFMSewgvS2YOGeQxxxppMeOQmWp/2ByexhCHIbBY0tIkYrf7sQYVj8L697w//isi2De1V1/3/5KR/9v1hjQx3fs1gkJk+Bt/kjx58cntf/8vkRV5bjbt1PiV+VH2z5HUaTgcfZZkszQBbZu3codd9yBySTB7iFDhrBs2bIen98DHc0AePDUU0+xatUq1+3x48fz17/+1atqsDsUFRWxYsUKqQOIj+H6oWkU0CrrQtGJrMNJZ/Qfn7tTy6ayzLEdk/qHqnLJ6e8OUTFiCBIdBiE+GRKSZHDy54J49UHYsdb/e46dBZfc1r396U/Y7RKcfeNh2LfJ//P00RDup4lJSoZjwB8pbp2+7g3gD7sNKo7Bkf2ShXTkgLgofaHTw9gp0twlKa3LH/XZZ5/xj3/8wyUBHxERwaOPPkp+fn5P/oPjAs0AeKCqKvfcc49XlkBKSgp33nknkyZNCuQHSWBu7UdujSEnYeHShWzSSf335PUSOatwxw2qKkQDp7tERoshiHNIQsQ7DMPWNbDhA/+v68sVgKpKLYPJ6JCdMLk1gtpcemxmk1u2oqVZBj+TUd7PXAmWGv+fGZIAoY6WitGx4sPPLZCtizPjXkFVJWW67IhIlxw9LJf+eh04SUmH0VNk8O+GAm5LSwtPPvkkb731luu+0NBQ/vGPfwT2fB7AaAagFTabjQcffJAPPvAecObNm8cNN9xAWlrXZyB+UVXJzvnqQ3fvAScJyZLOOXx0/yrc6gizSfy3NRUexqFC3Ev+JKQ7wm6GlkO+H1MUuPgOyBwqq4vQsO5/X3YbGB3Cbi1N4mNvafK+bmz2HrCNLf6LprpLe/8vwPizoWCCzPATkvvf8dHY4NCpcroTj3Scdgryf2TlSdrpsNGSaNANVFXliy++4PHHH6e83O0mi4mJ4Z577mH8+PHdet/jEc0A+EBVVV555RWWLVvWpoJ33rx5XHzxxYEt4LLZYPM6qSxu7VrJzhefZ1Ze4D6vL1BVaKwTQ+A0CDVVjirgqo4HUUudKD22JjQNQjxmvTqd5LCHR4gx0BskJuGs6kXxVvV0zs7Nxu67tQJNWAQoLVC1F0fHaqGThU69itUqA/zRw6IZVFrc+VWgTiepxtlDpSgxO69HgWmbzcZXX33Fiy++2KbTV0FBAX/605/Izs7u9vsfj2gGoB2Kioq4//772bt3b5vHhg0bxty5cznppJPIyckJTEeh5kZY+zFs+7atPk5eAcw4rX92guopdrsUqNVVizGoqxZpiLoqaTHozAKxm6Xwx24BXQgYYiUXvL+g0zukJ8I9JCdC3RIVIWEQEuKWpnBu4ZGSUhsRKa6OUEdgsuqopIPWlou+zaTT+j7byWpxt14s3i8Dfnvppp7EJYiEeXq2FCCmZQUk9fTAgQN88sknfPjhh65MPid6vZ6f/vSnXHXVVdL2VcMLzQB0gN1u56OPPuKZZ57xWk56kpqaysSJExk7diwjR44kLy/Pu7tYV6kogy/ekzaBrUnLEtnn/lCS31tYzOJDrq+Ritb6WllNNDZAY624Z5qb2pcI7gqKzj0YRzgH5ygJzkdEOQbsSFllOFcbYRG90/awL6iukF4PB/ZIsLYzrrzoWIcyrGPAT8sOWHJDc3Mz27dvZ+PGjXzzzTcUFxf7fN6sWbO48cYbGTKkjxonDQA0A9BJrFYrn3/+OW+++SY7duxo97mKopCVlcWQIUPIyMggPT2d5ORkEhMTiY+PJyYmhpiYmI5nJIeKZEVwtK0/WDWEYMsZhjl7GE3pObQoeoxGo2szmUyuzWw2YzabsVgsWCwWbDaba2v98yuKgl6v99oMBgMhISFtLp3XQ0NDvR7ztbV+T+cWsF6sqiq+eWOz+OWNLd59AlxyGKoM8AaDW9HTNROPkAG+J3GE4wFVlTTM3duk0U/rAqzWGAwy0GfmQEauyELH9CxzDuScO3bsGEeOHOHw4cPs3buXPXv2cOjQIb89vQ0GA6eccgoLFixg+HDfPYE13GgGoBsUFxfz2WefsXbt2ja+xq5gMBgIDw8nLCzMNXjqdDrXoKiqKna7jRzVzImKkVydFdWuYlftXieACpRZVA6aVQ6a7Ry1QrlFpZsh115Hp9Oh1+tdl7621sbEn1EKDQ1tc9l687zfeb09Q+a5D56/z/GGWlWO7YcN8ONm1NoqVFV1b3Y7Ko5jUqfHmJxBc0omzYlpGOOSUBWd67mu9/N4vd1ud006rFara1JiNBppbm6mqamJhoYG6urqqKmpoaqqiurqar8DfWtGjhzJ3LlzOeOMMwa1tk9X0QxAD6mpqWHLli1s27aNXbt2sW/fPiyW4Ay9aQaYGaljSqSOSF37g5AK1FhVqm0qtTaotak02qHRLpctdmixq7SoYLJDJ724GojB8jRarW87V1GKong97nzM+VzP6/7ey/O28/mKorg28B5oQYKhzgHXarW6Lp0rQOdmNpvRW8yMUkxMNNgYYvA/FBy1qPxotLPbJBONvm6hEhMTw/jx45k2bRrTp08nPT29j/doYKIZgABjs9lcS9aSkhLKyso4duyYa0ZTV1eH1dqz4VYPjAhTGB2uY0y4Qrxe8TnY6HQ6dIqC4rx0XFcQVw+KgtOMqIqCVafHouiwoMOiKJjRYQKMqoJRVWiyqxhVhXqbnQabSp3VTo3VjtFqc7mYrFar16Bj760WixpdYmiowoxIHRMidIT4mUscMKtsbbGz3Winpo9GfEVRSElJIScnh/z8fIYPH86oUaMYMmTIcbsS6000A9DLqKqKyWSisbGR5uZmTCYTRqPRNXDa7XbXbM5zNhkSEoJer3e5LsLCwmQLDSWsqR79sSPuNLzqis5nZgQCZwGXUxMoySEaFxuPCl4zUbvd7vo/nZdO14Cv657Pdb6Hp6FxXm89s3Ve+ts8n+e87vl+xyMJepgWoeOESB2JBt+DZ6lFZUOznU0tduoctru1683XisY5GOscCqKeg7Oz/aKnK815HIeHhxMREUF0dDTR0dHExsYSHx9PUlISKSkppKamatk7QUQzAMcjdrtkzFRXSMZMQ62kWTY3uguaTC3uytNgERom0gSpmdJrICtXKnz7+cxNVVUvf7XT8HgaJKeRan299eb0f7e3tfdeztvOfQJct5376hxsPQdjp9so0moita6c1OpSYhpr5TGP1aBOUVDDIzENH4Nt1ER0aVmEeMRHAhqo1+h3aAZgMKOqDukCpzRBq+tmk0PiwJFV46yCbW5wtGxs6roBiYwWY5AxRLa0rIHXM7c/09ggrUEP7xW5kWo/DdQVRSQkxp0Aw8ccvymsGu2iGQCN7mO3yYBT66jorS4XobjKY13TBEpIllzxlAzZElMgNv747L/bU1RVDHFjAzTVS8FcTaVIbxwrkZVeeyQkw9ipMGYyxMT3yi5r9F80A6ARHIwtoiBaUSp6MCUHZaDqLDqd9BWIjZec8ug40fpxFmOFRUghXGiYu8m7S+6hkziF3Jy1AlaLewVksYhMhOu2WVZDzuc4N6tF5BBsNofEhM3RvN7ednWkKFKDoOBuPu+6T3Hvu/N1drvEcmw2x344xOO6esompkjzlJETIDWj37vgNHoPzQBo9B7NTW41yNLDMmP1JwHcHRSdFHfpdA5j4GhpqCgyINtVx6VdBtVAVQ73N6JjRTsqt0AkROIS+3qPNPopmgHQ6DtUVXR/Sg+L/EV5qTShaajr6z3r/+gNsiKKjRe3TkKyZF+lZ/dPSWiNfolmADT6H1aLWxDOmcHUUOedxeRU7wxknYFOJ+4k5+Z0L4WEucXcQj0eDwkBfYjjUi+Dsk7vdkU51Uedip6qKpvd7nHd5nDpqB7/i+JwE+ll0+vl85wur4hIh2Ko5srR6BmaAdAYuDh9+C7/vUUGVLvdMbB6PE9RZGBGAYNzYDU4NIEcktH9tQGPhkaQ0AyAhoaGxiBF19c7oKGhoaHRN2gGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpGgGQENDQ2OQohkADQ0NjUGKZgA0NDQ0BimaAdDQ0NAYpBj6egc0uo6qqlitVux2OwCKohASEoKiKH28ZxoaGgMJzQD0A5qbmyktLeXYsWNUVFRQUVFBTU0NNTU11NfX09DQQFNTEy0tLRiNRtfA3xqdTkd4eDhhYWFERUURHR1NbGws8fHxJCYmkpycTGpqKunp6WRlZREZGdnL/6mGhkZ/QlFVVe3rnRgM2O12SktLOXToEAcPHuTw4cMcOXKEkpISamtr+2SfEhMTycvLY9iwYYwYMYLCwkIyMzO1lYSGxiBBMwABRlVVKisrOXDgAPv372f//v0cOHCAw4cPYzab+3r3OiQhIYHJkyczZcoUZsyYQUJCQl/vkoaGRpDQDEAPMJlMHDhwgH379rF//3727dvHvn37aGxs7PJ7hYSEkJ6eTmpqKsnJySQmJpKQkEBcXByxsbFERUURERFBeHg4ISEhGAwGdDqJ4dvtdmw2G2azGZPJhNFopLGxkcbGRurq6qitraW6upqKigqOHTtGaWlpp4yRoiiMGTOGU045hVNPPZWkpKQu/18aGhr9F80AdBKz2UxRURG7d+9m9+7d7Nmzh8OHD/v1x/tCURTS09PJz88nJyeH7OxssrOzycrKIikpqddcL85VyuHDh9m/fz979+5l586dFBcXt7vvU6ZM4Sc/+QmzZs0iJCSkV/ZVQ0MjeGgGwA/Nzc1s27aNzZs388MPP7Bnzx6sVmunX5+cnEx+fj7Dhg0jPz/fNeiHhYUFca97Rn19PVu2bGHjxo188803lJeX+3xeTEwM8+fP55xzziEnJ6eX91JDQyNQaAbAg+rqar744gu++uortm3bhs1m6/A1YWFhroF+6NChrsuYmJhe2OPgoaoqe/fu5YsvvmDNmjUcO3bM5/PGjx/POeecw+zZs/u1cdMIDM3NzVRWVlJVVUV1dTV1dXXU1dW5XI7OTDWz2YzFYsFqtaKqKqqqotPpMBgMhISEEB4eTkREBNHR0URHRxMfH09SUhJJSUlkZmaSkpLicnFqBI9BbwBUVWXTpk288cYbrF+/nva+jrCwMEaMGMGoUaMoKCigoKCAIUOGoNfre3GPex9VVdm+fTvvv/8+n3/+OSaTqc1zYqKjOP3UUzlz7qkU5Oai2K1gsYDVsdmsYHVsdhvYbHJpt4FdBVRQHZvTFaYooOhApwOdHvQ60BtkM4SAwQAhobKFhrkvDSHu99DoEiaTidLSUkpKSjhy5AilpaWUlZVRVlZGZWUlTU1NvbIfer2e7Oxs8vLyGDp0KKNGjaKwsHDAT6z6G4PaAGzbto2nnnqKHTt2+Hw8OjqaSZMmMXHiRMaOHcvQoUMxGAZo6YSqykBsNoHJCBazXLeYPTaLXFo9Lq3e91mamyk5dJCjhw5ibmokRIFQRcHgMd6GhYWRmCBB7LCw0N7/X3U6CAuH0HAIj5DrYeEQFuG4HQERkXI9PFK2CMdlWPigMB5Go5EDBw5w4MABDh486EpNLi8vb3cS1JcoisKwYcOYNGkSM2bMYPz48QP3fOwnDEoD0NzczCOPPMIHH3zQ5rHU1FTmzp3LrFmzKCws7L/LUFWFlmZoqodGx9bUAC1N0NwEzY1gbAFTi/uyCwHrDj8e+R6rKiupqa31GwyPjIwkIT6B+IR4QgdC4FhRHEbBYSTCIiEy0sNQRLmNRYTjdniErD76qeFobm5m9+7d7Nq1iz179rB3715KSkq6PdDr9XqSkpJISEggPj6euLg4YmJiXJlqERERhIaGEhoail6vd62QbTabK1vNaDTS0tJCY2MjDQ0N1NTUUFVVRUVFBVVVVZ3aj+joaGbOnMlpp53GlClTjvuVeDAYdAagqKiIu+++m9LSUq/7p06dyqWXXsq0adP6RyGU3S6Del011NdAreOyvgbqa6GxTtwp/QCbzU5tXS3VVVU0OlwEVhXMqopFletWIDYhkfTsIWQOGUJ4ZCQoDreOznHiKop7EFU9XEJ2u7iQnK4jm8O9ZLN6r2D68lDW6SEyytswRERCZLRcj4yS65HREBEtt4M0uSgvL2fLli1s376dH3/8kQMHDnRpsDcYDKSnp5OdnU1mZiYZGRmkpaV5pSgH8xwxmUyUlJRw+PBhDhw44DJedXV1fl+TkJDAmWeeyTnnnENWVlbQ9u14Y1AZgPfff5+HHnoIi8Xium/48OH86le/Yty4cb2/QxazDPC11VBb6bh0XK+rkQEvGCiKt8/c6UcPCRX/uesyxH07JAQMoa3uc9wOCXU8FkpZdTVrPvucTz79lIMHD/r5eEkpnTdvHieffHJgJCmcLi6TCcxGcXOZWtyXRqP3asjYIisoo2MzGXvXgCiKGIboWIiKkcvoOIhxbvEQGy8uqQ5oaGhg48aNrq315MYfzgSG3Nxc8vPzycvLY8iQIaSlpfW72bSqqhw+fJhNmzbx/fffs2HDBq/z2JOpU6dy8cUXM3369P4xmevHDAoDYLFY+Pe//827777ruk9RFK699lquuuqq4B7sJiPUVkFNpeOyCuqq5HqD/xlNpzEYICrWPZB4zjidLoxwh+87NBzCeidIqqoqBw4c4NNPP+XTTz/lWGkpoQqEKmBQRIZWr0BYaBjTp5/AnLlzKSwcjaLXewR4w2SW3Bsnsd0uhqGlWYyDsdnbQDivtzTJdedtc9uAeEAJixBDEJ8IcbKpcYmUNBn5atsO1n/7LTt27Ohwhh8VFcWoUaMYOXIkw4cPp6CggKysrAE7QLa0tPDtt9/yySef8M033/hM0c7Ozuaiiy5i/vz5RERE9MFe9n+OewNQUlLCX/7yF4qKilz3xcfHc9dddzFlypTAfIjVIgN8TSVUV7iv11SKL74nREZDbALEObbYRIiNk/ti4mSA6O2T2GKWeINra5T/s6XJHYNwzr6NzahmEy2NjdTU1FJTW+N35hYWFkZycjJJiUno9Q73iDOg2zqAGxHV1r0SFSNbaFjvfSc2m8NwOA2Dx2VzE7Q0QrPz/kb5rqy+///2cMZc6mprqa2rw2QyoQI1VpUKm0qlFSqtqmw2lfC0TEaPn8DYsWMZM2YMOTk5A3aw74iGhgZWr17N22+/zaFDh9o8Hh0dzXnnncdFF12kVbO34rg2AF999RX/+Mc/aG5udt1XWFjIX/7yF1JSUrr+hiYjVJZBVTlUHYOqCqguF798d79GnQ5bdBz1uhCqbXDMbKW02Uxpi5nihibqmltobm7GZDJhtVqx2WwoioJOpyM0NJSwsDCvfOqEhAQSEhJcyp9paWmkp6d3LltCVWWgqq+V1UljncdlvTvgbDJ2739FBrKmxkaqa2qora31WWuh1+lJTkkmNSUVg6EbqzODASJj3CsiT/97ZCvDER4pLqzexGwSg+kZvG+sd3zX9dBQC/W1qHYbzU1N1NbWUltbi9mP4QTx28fGxBATE0N0TIwE3KNiHKuGBMckItHhWnK4mDrhXhpIqKrK1q1bef3111m7dm2bVZHBYGDevHlcfvnl5OXl9c1O9jOOSwNgtVp5/PHHef31173uP//887nllls6ljGw2WRgLy+FylKoKIPKY3JidgdDCMQnQUISalwix0w2dh+rYMuhI2zau5/iI93PyOgMiqKQlpZG3pAhjMxKpyAlibzEONIiwjA0uQcc6muDF3dojU6HXYXaujoqKipoqK9HAXQek1S9TkdqWhqpwS4KMoT4zuwJj/QI7EZ5rzaCmPVz4MAB1qxezbeffYKlqoIkAyTpFRL0Cske16MiI4h1aEVFRkbS5b0JDXPHHKLjfMQh4uR/HoArh9LSUt544w3ee+89rwmgkxNOOIFLL72UKVOmHLcro85w3BmA+vp6/vznP7N582bXfREREfz+979nzpw5bV9gMkL5UThWAuUlcr2qvOspkzq9DPKJyZCYAvHJkJAECcnYIqLZtHkzX3zxBd98802n09y6Q4QCyQb3QJFsUEjUy31xesVrkFAUhYiICCIjI4mOiiIqKprQ0E6majqDmFEO14szs8U5UIZ7uGzCwr2DxXp9m0GltLSUt956i3feeRtTcwuhCoQoEKZAbkYaN117DcOzsxy+d4ebxel2ampwp7721uFsCHG7nJxB3Nh4d/A2LlHu7+TgUl9fz+rVq/nwww/Zu3evz+coisL48eOZPXs2s048kdQwQ9v4Uk1FYA253iD/j9MNmZDs3uKTZbXVj2lqauK9997jf//7HxUVFW0eHzp0KJdffjlz584dlDUFx5UBOHLkCHfccQdHjx513Td8+HDuvvtusrOzxfd6rATKjji2YvHZd4XQMEhKc2wpkJQKialycui83RUlJSW88847fPTRRx1q/hsMBrKzs8nIyCA1NdWlBhodHU1kZCTh4eEYDAb0Oh20NKNvqEGpq4aaKpTaKnT11YQ01oGxBYvVisViwWI2t+s28PnvhYYSHhNHZGo6ibn5hCWluGeIMXEQHSNB56joNv9vIGhubuaNN97g5ZdfpqGhwXW/oihcc801XHvttf5nbHa7BGadcYmmBocPvskRp2jwNhzBDuAaDBCX5Fj9Jcux4tzCI1FVlR9++IG33nqLL774wmcgU1EUJkyYwJw5c5g9e3bn5LmdKcS1VZJlVlcD9dWOVV6NuPMCYSAUHSSnQVo2pGdDZg6kZvbLFYPVauXTTz/llVdeYd++fW0eT0pK4qKLLuLcc88dVNXGx40B2LdvH7fffjs1NTWu+86dczK/uPBcQiuOwtHDMrvv7IGv08sAn5IJKemQ7Nhi4to9wFVVZcuWLbz00kt89913Pp+jKAoFBQWMHTuW0aNHExISwrvvvsvhw4fJy8tj0fXXU5CeKidw662msksDl11VvWSijUYjlS0miuubqLTYqbGp1NpwXKrU2MCouvdz9OjRnHjiicyePZshQ4Z0+nN7SkNDA88++yyvvfaal3ts7ty53HnnnYGZrVmtrTJ7mhzpoU3ubCBnYNu5GVt6/LGqChXNLWw5UsaPFdWUWqHUolJmlboJgJEjR3L66aczZ86cwAcuVVWMYEOtGIPWsR7nbUs3+ldERkPeCBg6CoaP7v34Sgc4pV9effVVvv322zaPh4eHc+6553LZZZeRnJzcB3vYuxwXBmDbtm388c4lJFqM5IUq5IUqzB05jJzEuM75RcPCITUL0jJlBpOaKbP6LqSHqqrK2rVref7559mzZ0+bxw0GA9OnT+eUU05h2rRpxMfFQUMdK598gsV3/hGbze1y0usUll18JgundbM2ISRU0gbjk2X2GZfoTiOMTQCDAavVyoEDB9i5cyc7duxg+/btHeaP5+fnM2/ePObNm0dqamr39q2L7Ny5k3vvvZeSkhLXfSeffDJ/+tOf+mbJbrM5jEWjO3jb1CADZkOtXNbXyHNaoQJ1dXWUHj2K0YeeksFgIDw9i5TCccQPG+GYdKR1+VgMCKoq7tGGWscKokZWE85Mt7rqjt2kIaEwYhxMmgkZvTd56CwHDhzg1VdfZfXq1W1WXwaDgbPPPpurr776uM4cGpgGQFXlACw9zP51X/DD6g/I0KsuPZrcnBwSExN9v9ZgkCVrxhBZtqZly/K8m8tWm83GZ599xgsvvOCz8CkvN4dLz5jHnDEjiWxukOyh6gqoKqeotJzCB5djs7f9CfQ6hZ23LaIgxc+SPyzc7VpIcAz08Uky6EdFd+v/qaqqYtOmTa5iG3+xCkVRmDZtGhdccAHTp08PulxGU1MTd999Nxs3bnTdd9ZZZ3H77bf33wCeyShFfXWyaqs/uI9tn61BX1dFuM57n2Oio0lOTiY2Lg6dr/9H0Uk8KSlN4ktJaQ7XY4q4JPsCZ6KE06VaWgzHjviPwaQPgamzYMT43jdmHVBTU8Mbb7zBW2+9RX19vddjoaGhXHrppVx11VWEhx9fWVMwUAxAcyOUHoZSh9++rBhamqmoqORIyRHX03SKQl5eHnFxce7XxiVCZq74JzNzISUjIAeg1Wpl9erVvPDCC67ZqQ7IDFHIDlE4cWgOM4YOIQUbip+87yXvf8F9n/t2EwH8ft5J/PGSc6jDQA06qqxQYbVTZYM6kwWrzYbdbkdRFAwGA6GhoURGRhIVFUVcXBwJCQkkJSWRnp7e5fJ9pxz0119/zRdffMH+/ft9Pi8rK4srFizgzDNOx6AoMiu029xKniC5/D0sPjObzdx999188803rvtuuukmFixY0O337C0++eQTHnjgAYxGSZ+N1UFGiI7TJ41jzthRJNktkl7cjfoAYuIdsag0t2FITpcAfACwWCwcPHiQAwcOUFJSQmlpKdXV1VRXV1NfX++Sf1ZVlXBUCiMNjIs0MC5CR1SIQY7LkBBCHCnLIfFJhM84hZDJsySe1I8wGo289957vPTSS1RWVno9lpqayu9+9zumTZvWR3sXHPqfAVBVWWYe3gslh+DoIfF9t3rK0aMllHtE9fU6HfnDC4gpKISsXMjIlQE/wAeZyWTigw8+YNWqVTRUlDMsTCE/VCEvRGFIqI7k+DjS0tOJ7ETl4YIX3uHlrbv8Pp6amsro0aMDst/OIHNeXh75+fmMGDGCkSNH+g4qqqoETT18w9XFh9m3fQtH9uyG5kbCFQjXQbgCYTqFsNBQsjIziYuP9+92MxjcMhLO7CCnYqdn+mWER9qlU1MnJBSz2cztt9/Otm3bXG951113cdpppwXkOwoGr776Ko899pjXfdOnT+dnP/uZdy66qspxXlEmxqDSkXpcU9E9Eb+YeIldpWTI7DtjiMSvOqC5uZnNmzezadMmtm3bxoEDBzrVF6M1IcC4CIWTInXkh7VdIYaFh1OblIE6Zio5c04nOye336zmLBYL7733Hs899xzV1dVej11++eXceOON/Vcksov0DwNgtcLBPVC0Aw4VtZtvb7fbOXjoEHV1dVRYVQ6bVWoiYljwm9sZMmV60JaXJpOJd994ne9ff5kMUwPDwnRkhrjTKhMSEkhPS/O9TFQUWYkkyyzNGB3HrvIq7vy///Dh6tV+PzMnJ4ehQ4cG5f8JVSBZD6PSU5mQN4RRGankxscQ1tIoPl+bb6E5FWhsbKSyooJaH+JcMdHRDMnJISw0wME/QwhERGHSG1i9dh0mUzN5CSFEhepJHz6K+FFToaYEWuohLgXGnwLpeeIi0Rv6JDPlu+++44477nDdjomJ4bbbbuOUU07p/JvYbKINVVUuBsHpQqyu6PqKITpWJkVDhkLucIktKAoWi4W1a9eyZs0avvvuuy51vusMmQY4JVrP5Agdeh8/Q7NdZa8uAlvBWHJPOpUTZszoF5k4RqOR559/npdeesnLCM6cOZO7776b0EAf431A3xqAYyWw5RvYtaXjzJbIaCwpGbz42VrWHyim2KzSokJBQQFLly4NTqBGVTGVHmHjq89T+d1aMlWL1wGsKAqJCQmkpaW5u2Hp9JCa4Qgqy6YmpbL30GG+/vprNmzYwI4dO7Db7TQ3N/vNFAIpVomNjSUlJYWkpCSX9G5kZCQRERFejeEtFgtms5nm5mZpBl9bi7mmErW6kjBTM0kGxVUXkKSHGB9nogKuauL4+AS3HIMfTGYzx44do7qqCs+DSKfTkZ2dLW6nzn7XXcDSUoXBVuU1Y/TsI+MiNBVC4sQFFRLmEL7zELtzag45G8zo9Y7rBnfjmZAQjwY0jteGOoTwwsLdPQRaubisVitXX301ZWVlAGRkZPDggw+SkZERmC9BVSUwW1XuUZnuuOxkpbYlLIKt9UZe37aLDRX1+DMnBoOB/Px8hgwZ4urWlZiY6CpACw8Pd+lpWa1WTCYTTU1N1NfXU11dzbFjxygrK6Pq8CGyqo5wQpidOF+WAGi0qewwQXPOcIadeganzDmV+Pj4bnxBgWP//v3cc889HDhwwHXfjBkzuOeee/qdaF5X6X0DoKoyy1+/BkoO+n9ecrrMVLLEldOgGPj9HXewa5fbZXLiiSdy1113BUZN0onNBsX7sBXtoHTtJ9Qe3I+l1YxIpygkJSWRmppGaHwCZOc73E45MugbQlxdtJwtJn0VoYAUQO3evdv7/XU6/t//+3/cfPPNpKSk+F4aW63ionHKQ9c5Ll353rWulFebzY7Z7EwDNdHS0kxzcwsWq4XD9U28uf8oRxtbyIyO4IKhmeTERqFTdMQkJZM2vICo9Ex37r9Tgyc8UgbUsHCOVlay/L/P8v3GTVhVsCPG5MwzTufmn99MqF4PVrNbvtlslkHKbHQIr7W40zGdKp3OtMvWEwO7GVra6r34JSwT7C1gt4AuBAyxoAvCzE1vcOsRRcew71glL773AdVWlVp0/On//k1+YWDcee2iquK2qyiVrdyRAu2xqrbbVSoqKjh27Bg2xzFiUWGX0c5Wo51DhijGTZnqaoSUm5sbsIwru91O8eFDlH39Jfbt3xNzrBiLn9TaRpvKFhOYh41h2rkXMvOkk/qsWMtoNPK3v/2N9evXu+675pprWLhwYZ/sT6DoXQNwrAQ+exeK2xZiYAiBYYWSO5xT4OW7N5lM3HbbbV6du84++2xuvfXWwPjiTEbYv1NcUAd2U19ZwZGSkjatD3WKjrjUNNKmzSRi1HjIGepaRjs5dOgQH374IWvWrGkTSPIkJiaG8ePHM3HiRKKjo/n0008pLi4mLy+P66+/noLhwyW90FnlWVftuHSk5DU19Ljq9alvt3Lz66uxebyPosAJhSOJT8vApMoqZ+7cudxwww2kp6f7fS9VVfn888/517/+5VXANWbMGP7+978TGxvbvZ30TLtsaYKv34Sd67r3Xk6cK4MgUlxcTKUjiyohPl78/ZHR7sLBlAzHSjGzd3LlGxug9DAl335F0ScfEmf2TlNVFIWE+HgSEhOJjo9HN2w0jJog+fzB3D+Tkaat31G57lPUA7tpqKvz6YI6ZlHZrkSQNf8Czr3k0j5xEdlsNv785z+zdu1aQCZqTz31FMOGDev1fQkUvWMALGb46kPYtK7toJWZCxOmw8jxPg80VVW59957+eSTT1z3XXjhhfzyl7/sWdDIYoa9O2DnVok/2KyYLRaOHDnSpvFEqU0hYvREplx6FbEjR7epgLVarXzxxRe8+eab/PDDDz4/TlEUCgsLOfHEE5k2bRoFBQVu49XcJDO18qNusbnq8jazXxWw22zYVRXVkToqyTY69Hq9b3dLRJR3HUB8EsQnUlRVR+G06T4DfM40T8+VVWhoKNdddx2XX355u0a3srKSv/zlL17fQ25uLv/61786V8XaEa8+CDvW9uw9FAXO/DlExLbqV2xxN5yx2cBmcfcxdrbGdG7O1pp+YiW7du+mpUVmtjlDhvh3USoKJKRARrasIDOGSPFhgF0LZrOZp59+mldffRWAKB2MDFOYFBPOnNx00hLiCfE1uw4Jk0lZ4UQp8Aqmy8PYgrp3B5XrPsO4ayt1NW2VY012lS1WA3FnnM9F1yx0u157iebmZm644QZXzcwJJ5zAfffd16v7EEiCbwAqSuHt59tKLuQVwMzTISuv3Ze//PLLPPHEE67b55xzDrfeemv3Bn9Vlayibd/B7m2uSkcVqKmu5siRI9jsdqwq7DbZ+dGkkjHrNK644UafVYEtLS28++67vPzyyz5z5nU6HZMnT+aUU05h1qxZ4st0ylGUHJR9KTvi1RfAYrW6UutMRiNmsxmz2YLFamkzWKtAvaN6t8amYgwJR42NJyQ5jfgheWSPHsvIceN9Dj5Llixp98C99NJLiYiI4PDhw173T5w4kbvvvrtdv6zVauWhhx7ivffec92Xm5vLww8/7J2i2x1WPwvr3ujZewDMugjmXd3z97E43FktzSI10dRAfelRnvnPQ8TrIMmgcOrkCUR2EE/xwlmrkpXn2HLFkHeTI0eO8Je//MVLY0hRFC644AIWLlxITGSkuGV3b4eiHyg6cpTl32/jYE09eQmxLJo2XupRwiOgYKysDHKGBUUKxIWxGXXXNiq//JimPTuora31qgi3qbBNF8nEm3/H5JmzgrcfPvjmm2+48847XbefeeYZcnNze3UfAkVwDUDRDnj3Re9shYRkOO18yB/Z4ct37drFLbfc4uo3O3HiRP75z3923Q9os8HOzbDhS0mz83zIbqe4uJiSqmp+MKpsb7Gzx6RSOH48v/rVr3wu76xWK2+//TbPPfecT42fgoIC5s+fz9y5c6Xi99gROFgkJ1nJIa9Zo8lkoqGhgYbGRpqbmtpo9zTZVaqcWu82lWobVFtVqh0SDp1JEBw2bBgnnngi8+bNcx2oCxYs4OWXX/b7mgULFvDCCy+wZs0annjiCS+JjYyMDB544AEyMzP9vl5VVVauXMlzzz3num/MmDH861//6liNtT2qjsIjvwS1h/2Nk7MhLQ/iU2DyPEjy/790lfvvv9/VbzojI4MXnn8epbkJqo+5s3mcK77OZvIkpUJWvsSbhgwVgbZO4EsSPTc3lyVLljBq1Kg2z1+5fDmLb7rJa7LhszI9IkqqfEdNkP0JZpZVbRXNX39G1WcfUFN21GvfWuwqjZNO5vTb/ijNhHoBVVW54YYbXLUxV199Nddff32vfHagCZ4B2LVVBn/n2ysKTJsNJ50h/v4OsFqt3Hjjja7Ie2pqKk899VTXZpB2G2zfAF9/4jO11KjC27sO8MnRKvaaVOxI56Sbb76Zs846y+cqY/PmzfzrX/+iuLjY636n1vgFF1zAyILhcHifzKj2/Sj+eg9ajEZqamqoq611SQI02VWOWFSHJgyUW1SOWSXTKZBMmTKFK6+8kldeeaXdFcCSJUtYunQpILo8Dz30EJ9++qnr8ZSUFP7973+3GxcAWLlyJc8++6zr9vnnn89vfvObnv0Tmz+Btx9r1wjYVdV3Va0vFB2cdzNM6nk9Qeu8/1/+8pdcdNFFfnbSLjGeY45K2tJiWR12Rq8qNgGG5MOQYTIAx3uv8mw2G08//TQvvfSS1/0XXnghN910k0/XSVFREYWFhX56NLRTmR4dK4Zg9OTgisFZzJg2rKXk9ReoLz3itSKwpGQy+c6/Y0gLnCFvD0/PRF5eHitXruyVzw00wTEAB/fAayvcBSxh4XDuTzs163fS+kR6+OGHGT9+fNf24dO3ZcbVmpzhHE0Zwm8eeYqKmlrX3RMmTOAPf/iDT50bk8nE448/zltvveV1f1hYGBdccAGXXnopSVhh67ewc0ubTmB2VaWutpaKykpqG5s4bLZzwKxyyKxSbFGp9xjLkpKSyMvLIzc3l8zMTFcz7ri4OKKjo6WiMkQyjWw2G0ajkYaGBmpraykrK6OkpIS9e/eye/duyst9/P/IKmXFihW+T3a9np07d1JQUOC6T1VVXn75ZZ588knXfdnZ2Tz22GPtBuRUVeXBBx/0cgfde++9zJw50+9rOkXVUTEEteUQnwr541D3b2frl6vZUVLBphor94+PQt8VI/CL/3R9JVB1FDatQa0t58ejlSz96HtKWuTHHDFiBI8++mjXVqxWq8iSlxwSN2HJwc51lYtNgJzhkFdAdUwSf33gQbZu3ep6ODIykjvuuIPZs2f7fYuO3IJLbriOpWedAgd2g91GUUVNW1fRqJEwZops0d0M/HeE1cKxD9+g7PUXsJvcGUSxcfHk/XQx+hPnBtc9BRw9epSf/vSnrtsD1Q0UeANw9DC8sgwsjgBmRCRcdqPMDDpJZWUlV199tat0/ic/+Qm33357517cUAefvysrEE90ehg7BaaezN6aBm699VavbJUFCxZwww03+MzrLS0t5a677vKSQ1AUhXPOOYfrrr2WxJpjsOErn9lNKqI18v3RCjZVNbDHLMVrnnPXvLw8pkyZwoQJEygsLAyoCmFxcTHr16/n448/biPnUFlZyY8//uhysYEM/k8//TTXXXedz/d76623eOihh1y3J0+ezP33399uPrTFYuGWW25xteVMSkri2WefDWz6roOqqiquuuoqjEYj89NCuX1UFDo6eYh3NS7gYyViU1Ue2N3CVl0S//73v3v+Wzor40sOwpGDcGR/m8p4T+obGjh06BD7my38YLSzw2gnfEgef/3r30QSvR064xZctWoVGFt47f4/s++r98iJi+BgbTPLNx/iQG0zT118JtdNHYui06EMHwMTZ0BuQVBWBc0Vx/jqL7eTWuN26yYkJJA7/SSUn1wu0hhB5MYbb3Qd0xdccAG//vWvg/p5wSCwBmDvj/DeKnf2SkgoLLhJStG7wD/+8Q8++ugjAGJjY3nuuec6TiO02STLaN1qt/EBOfDGTIWZ8yAugdLSUm6++WaX716n03H77bczf/58n2+7Z88e7rjjDi9f/7Bhw/j97b9jhN0IX6/xvcrQ6alJSOW5b7fwYdHhNq6cgoICTj/9dE4++eQO3SiBQFVVtm3bxsqVK71mhs3NzRgMBjIyMigoKJAUVI+Zvy+effZZryXvpZdeys0339zua4qLi1m0aJErq+PKK69k8eLFPfiP/PPUU0/JQAVMzc/i/ivORKkrh7KDUHnE/wvHzoJLbuvch7QTi7CpUPvTv5I0optqrh3RWC+TjeL9slVXYFdVSo8e9ZJHARkQs8dNwjBuKoye1MZV5EmHK4AlS7j33nvZ8/LjDN/5MQaPbDCr3c7id7bw3NZiXjv7RFctiV6voyE0kv1J2dgLJzJiVCGFhYXdTwtuhcVi4ek//I7C4h9dxWVJSUkMyctDOfksmHpy0FxSnpMhg8HAf//733bjYv2RwBiA+lr48gMJtDrR6eGi67rk9gHYu3cvN954o8u/d+utt3Luuef6f4Gqwv5d8Pl7kjrpSWYOzLtIZJ4RN84tt9ziagih0+n405/+5Lc0v6ioiN/+9rc0NTW57rvk4ou5ae4sDN98IlWXrUnNRB0/nTd27ufxlc945TTrdDrmzZvHxRdfzIgRIzrzdXSLoqIili9fzsGDB6W/wKJFrkFdVVU+++wz/vOf/3gZtYyMDO65555OSU+oqso999zjFRP485//3KHEwX//+1+eeeYZQFxnL730UlCqPMvKyrjiiitct5ctW8bw4cM7ziDqygogkO/VQ4p37uDVB5cSXVXGyDCFWL2CoihkZ2eTlJTkTg9WFBhaCCecIsHkVrQXA9DpdCxatAi1soTHx4Zg0LUdVK12O4WPfsK0tBRun9R2ElFtVfmwwcZGI4waNYqZM2dy2mmn9bg62mw28+c77yB3/3ZOiBSjlJqSQmZWFkpuAZxzhdRgBBiz2czVV1/tcrPOnDmTe++9N+CfE0x6ZgCqK8T1sf1778BVSCicd5UUkXQBu93Or3/9a1cOeW5uLsuXL/ftXlBVKd5a/4mog3oSHgGzfwLjT/Cy/v/85z95//33XbfvuOMOvzP/1isFvV7PvYuuYrqlTgJ1niiK5EpPOwVzcgb3//OfXnULAHPmzOGGG24gKyvL7//f3sDdWVauXMnixYu9szj0epYtW+ZVtVhbW8vf//53vv/+e9d9ERER3HXXXZ3yz5tMJm6++WaXWykqKooVK1a02yfAaDRyxRVX0FBbS7QOrr74Qi6ef4YUeDlbOjqrgU1GqR42mz3y8q3ewmiKIpuXdIMIzb29eg2HjpXTYFMZP3MW5yy4EqwmePEvvoPHXYwBmF74O2FF3/t/QldWEx3Q3nHxwQcf8PDDD3sVLU7NzeL2i84mta6y7bnhZNhomHdBm2wiX8cPSIOajIwMFueHc2WOf1nkpWv38ND2Si6eNIaTonQUhuva1KccNKusqrFSYRNX6gknnMDll1/OpEmTOvuVtMFoNPK73/0O9v7IZfF6YvQKmRkZpKWlSXzkkkWSSRVgPvnkE+655x7X7X/84x9Mnz494J8TLHpmAB64o21hV1oWnL2gW/63F198kWXLlrlu+/wyLWZZaWxa1yalE0WRQf/k+W3yptevX88f//hH1+1LLrmEW265xed+tB7cRkfouWvudDLUVil7iiIFbDPnQVIaJpOJP/zhD2zatMn1lOTkZH7/+993KCPb2YG7PdrN4vAT2H3xxRdZvny5a8WlKAq33nor55xzToefV1JSwo033uhKMTxx8kTuvfMOlKYG77aMjfXQJI1TjuzeRcURqS0w6A2MGTum89k6XaCispIjR460/RxLHZhbrRQVHZz7c0kH7QRGo5HP71rE/Oi2TV9cBGgF4O+4eOKJJ2hoaODtt9/2ev4FF1zAz372M3eWT121JCX8sEFiCZ6ERcC5V7pW6TabjS+++IIVK1bw1VdfYTQaCQ8PJz093RWv+X+FkcxN9V8ZvGr7Eb7Jnskf/vAHmpubaSk5jGHTWqIP7cbY3ExTc7PoBdlVnq2xsdPkHj9mzJjBb3/72243G2psbOTWW2+lZG8Rl8frGRehIz8/X1KxI6Phip9LD4UAoqoqv/3tb11u1ezsbFasWNGzVOdepGcG4J+/d1+PiYMT58G4aSK+1UV2797NLbfc4jrQTzvtNO666y73EypKJcNmx0bfwnH5o2Tg95EG1tLSwjXXXOOSZhg1ahT/+c9//GZnPPLII7z22msUhCqcFavnlOG5bRvMFIyRlNYUWb7abDb+8Ic/eIm7TZ48mbvvvrtDf2dXB25/dMaH60zt9OSbb77hb3/7m1eu+G9/+1vOO+887yfabbLqqyh1yVIc3LaFvRu/I1avEKJAXm5uuxW/VpuNHT/8gN1x2LlO0ADT7ufYzWCt99YHioyTLJoRY2H4mHblD/72t7+x++vP+e+0GN9ZRt3NKGpFe8dF62rt2NhYlixZwoknnuj7zVQVDuyB9ault4YTnR71ouv4eM9Bnn32Wa9+2p4UFBRwwgkncE54Del71/t8DsB964q46LE32h6vtVXw5Qeou7fR0tJCfV0dlTU1PHikiYMW9xAUGRnJH//4x25nidXW1vKLX/yCkpIS5kTpuCAhhMJRo0S5MyUdrvl1wDOE9u3bx+LFi12TqJ/97GdcfvnlAf2MYNFzZaWkVJhysqR9dVOoyWQy8fe//911oKempkquuLEZdmySQb+128XJsNEwY674+/3g2eDBYDC021N2165dfP/O69ycpGd4mM6lfOgifxScdHqbFnfLli3zGvxPO+00lixZ0qkUwOXLl/vVXLfZbKxYscLnwN0aXx3JOvP4jBkzeOSRR/j973/v+p4eeughEuLiODk/S4L7pYehvLRN4VKuArbEOFcnpdLSUuLjE/zG3Qx6PXHx8dTU1GCyqxQ3NBNfOB4iHSJzEVEeQnNhYAh1qHE6lDpbn7x2m4eUg1USAIwtGExGSqtbKN27hzgdGOobiU9MkufqQiG0VXaOsQX2bJctPAImzJC6lVYryW+//dYV+3hgdwu3j4rEa7qj6OC8WwJSWNbecaGqKmVlZQwdOpRRo0bx17/+lZSUdma3igJDR0L+CDmf1rwJFjPG5ib2LL2TR/fV0NDKMzZ8+HDOOOMMZs+eLa4UcAS/v/HpRrPa7Qy/7Ge+JyvxSXDeVShFPxD5/stERkSQlp7OPwsN/K24kW3btwOSlHDXXXfx5z//ud2UVX/Ex8ezdOlSfvazn/F5UzONdjM/P3JEYlsVZVKcOrIL6eSdYNiwYZx//vm8+eabAKxatYrzzz9/QHQQ65kBuPSGgKR4Pf744y7JAUVR+PPNNxL91fsiE+1Lmzw0TIpOJp0oqqHtUFtb65Xadvnll5OT48dYtDSx9z9/5zfJ8rWEh4WTmeE4kfMKZMaf2TbXd9u2bV6fMXv2bP7whz90WqiuqwO3p0/Yubqor6/v8H28GpC0Ij8/n3//+9/8+te/Rl9TwUlROvTLlmIuHNWu7rmCdAVrqK9HBZpNZqosVpJz8kUZ07lFx8oWFUPptu3c/Y9/YgHijY28/tDNQWkGEksk9zncftGmet5+6B6UpnpxhVSVSyVuabFU5noOaMYW+PYz2PoNnHmJVLw6eO2111zXj6aNgltuh62fuesRJp0WsKrijn5Po9HI7Nmz+eMf/9h5bXpFgbFTITGFysf+TsnBg9hVlXNi9ayqtaHT6TjttNO45JJLfCcqJGVK0Vyb9FeonLmAi+df0fY1nhSMhYsi4eUnUVSVZKw8dNcSVm/5gYcffpjm5maX/pczM62rDBkyhF//+tcsXbqUDS0qXxyrJS2tiaioKCnQDLABALj22mv58MMPMRqN1NXV8fHHH7ddQfdDemYA8nqeybJ7925XcVWGAe44YTSF333k+8npQ0Q4btSETvdCfeedd1wBsvj4eK688krfTzy4h6ZXlpNV644rZGdnocsbDrPO9KtZpKoqjz76qOt2Xl5elwZ/52s6+7i/IF1H6PX6DsvVM2KjefKC0zj8wRtSG6DaKSkpIT/fI2NEUUTNMilVBOZiEwmPjeeLlf9l9dff0mSH00YnctfVv/T7OWOj47HwT0AMdHl5uXuGGUA8CwcbGxuprqkRXaSYeHH3ODEZJZ2yaAfs3urSiMLYAm89B6f8BE6Y40qldXLdddehS8kOWrZPR8fF8OHD+dOf/tQtTfo3vt3Exs17uTheXjs1UkfDuOksuOnmdhMVADFyOYVehXj6SaeR3lnD56xcdsQklIY6zjjjDIYNG8Zvf/tbGhoaMJvN/PWvf2X58uXdarxy+umn89Zbb/Hjjz9SYxP566ioKN8TygAQHx/PT37yE15//XVAgvPHvwEIAM587VOidFyeFsXIuFatFCOjpYBr7NRuBZY///xz1/ULL7zQd/HRtu/g49doOOYe/JsjY4he+Bsxcp6zU0flJ7UVEJ/Cvrh89uzZ43r49ttv77JC4aJFi3jggQf8xgCcA3dRUVG3B/+nn37aazbllVmSm8uiU2ZQsHcLCaYW1OxsDjlWZFW1dSQmZRA3aboY4OQ0n/7xyWeezZvrvgVELqM9YmJiSE5OdrmbSkpKgmIAWi/BWytLuggLlyyu4aPh1HNgy9fwzWfuepIv3gebDcuUk72ybYYM6Vp9S1dp77hQFIXHH3+884O/x3Fb0mzhtZdXU9pi55RoHenhIeTk5DD51BnQ0eDvJCmzZ4bPs2mNYzI3bNgw/vznP/O73/0OVVU5cuQIL730Etdcc02X315RFBYsWMCf/vQn8kN11NbVYbXZMCQGrsiyNWeffbbLAOzatYuKior23XL9gD41AEajkXXr1nFCpI7z4/RkZmS4M0LSh8DUWVAwrtuxBaPR6NXFx2ee+v5d8PFroKq0tDRjVeH9ehv5p5/DSa1rGHxUfg5FYX5aKB8eMzN+/Phu9fAtKChg2bJl3Pf733DdhGzy4iM5WNvMM1uPsOSfD7sG7vZ8wq2ZMWMGeXl57v4CHoO/r1XEAw+4Bb8SEhP5sbya98rq2Npi5xLiuH5S+0G5MWPGuK5XV1fT0NDQrkREQkKCywB4VmQHEs9GO3q9vm0g3xfhERJTGjFO5EycVbdrPyJEbyA6OprGRpFm2Lt3b0CrtlvjPC58Gf3f/va3nZdGaXXcZgH/nRbDA7tb2KKP4lcjHC08d2yS9Olgi6rZbd7yFh69iidPnszFF1/M//73P0AyA88666xuDaQnnngiyfFx5IaIW6m+ro7E3K67lDpLfn4+mZmZrkD6hg0bOOuss4L2eYGgTzsb79mzB6vVyvwYHXqdTvzZMfFw0UK46hdQOKnbgz+IBINnklObGZvVCh/9z5XKWm+HhyutfN5kJzm11Yy06qhPATIdKr8bGUFWhI4JEyZ0fSerjsLqZ1lo3cnOW+ayZNYIFozNZsmsEez8xTyum+De5458wp7k5eWxatUqli5d2mbm72tAsdlVFr/2EUV1TSjzLuDIvEv5ptlOiwrbHQG69khISPAKeHuqh/YVnimSY8eO7ZorITGlTdqg8sV7XFrodoe9++67AdnP9li4cCE7d+7klltuITU1lZycHKZPn87f/va3zr2Bn+NWryj8bmQEV/72NsIiHKviliYoOeDjTYKA56q6VU+FhQsXugoETSaTl5hgVzAYDMydcYLro+rr64NSC+BEURQmT57suu0pv91f6VMDUF5ejg6I1yuEhYdLIHDeBdIZLABBwdYZOG1cAPt3SY46gE7P6vhcShwpac6sFheb1vhVn9QrCmelh3bdV7n5E5ETWPcGlBS1KZhRVLucvFUyo+jQJ5wYxdLTRrPq4qncNCzS9TpP2s04squsaA6FSTMZ7mE0nM0v2kNRFC93REcrFc+mO9HRga/SLC4uZvXq1a7bZ599dtffJDpWdKzi3CuH88Kt5IXIL7Vu3TqXFkwwKSgo4JZbbmH06NEMHTqUtLS0zusodXDcZtXuF21/J0cO9nyHO0Kn987H/2GD18ORkZFe8aoPP/yw26vEcdNPxOaYAzY2NokkfBDxrGr21SOkv9GnBsBqtWIHKqwe0r3ffR6wQE1iYqLXoNzGIh/z0IUZPpqYfPeg59XZq+oo7PbfvB0gPVxHSYmfVFVf+JmZtUG1i6FAfML+fL7XTcxh5y2nuVYQcwzV2P59C4/fdClLlixxDVQdZhyVShzEc4Bp3RrTF85m4E7aG6BsNptXu8xguFFeeOEF1+ovKyuLuXPndu+NYuLgssUuKYG4mGhuHBLnOnGWL18egL3tGM/vs7GxEbPZ3LkX1vruRe1+vNxVywJIu9HeYMwU9/Xvv2rTH/yss85yrQKsVqtXinVXKBw3no0OdVaL1YL1iw9g7cc9bqfqD89stt5ut94d+tQAREVJjvXHDTaszhljyUF4/yXvkv9uotfrvXzyX3/9tfcTPA1NeKRXKfqGDRukMMo5S69sf3AvM9r5/vvv3cqaDtcOrz4ol61n4+3MzNpQK5WrTp9wayMwPDGKZedO9BLnAtArsDjNzGvLHqGwsJCVK1d2OuPIsyisM/nMrV0+7Wn8lJeXeymQBloMz2q18uWX7pnetdde261MGRfxSXDBNaAoKMDojFQKw+RE//bbbzvnmuvoeOiArKwsV3KB3W7n22+/7eS+d+A7j0/1LqwMsoyyi8kniUQDyHnw9vPSt9iBwWBg4sSJrttdmlx5kJiYyPvNOqqtMhhbLBYRcHzjv5LlFWA8z4NACd4Fkz41AM4Tf2OLytd1JrdR3r0NVr8RECvtWVG4evVqb6vsqYNSfpTJkye7Apcmk4n177zWqVm6qqrEGhTCm2vEyHi6dnaslctHfumayQMdz8w8iXf7LZ0+4SVLlrBgwQJuvPFG/rPw/DaDvxODTsf1k3Kx2WwsXryY02afjN6HkBfI7GXbtm0sWbLEa4DpTGm+Z9+BmJiYdjOhysrc2VZJSUkB7+u6f/9+Vz9eg8HQrYKiNmTluWbKsXFxjMt2Gy3P2gCfdOZ46ACDweB1LD///PNeRtQvk+dJcZoPbKrKDjVBzjcnXZBt7xEhoSLS5jxuG+vhw1e8znnPSUiXuwB6YFJ0PFJlpdyqut9/34/w4qM+G0X1BKf8CNBjkbveoE8NQE5OjmvJ9EKVmcZkjy9s27dStt5D5s6d6/qM8vJyNm7c6H5wiIfyZVkxhspSzjzzTNddLevf6dQsXVEUzs0M47/TYih99VFUX0ajlT+/w5mZ6811bTpVFRQUsHTpUlatWsWTTz7J/OmT/bxYyIsT94HNZuPT/73MsovP9GkEVFXl/fff57777uOXv/yly/c/fPjwNs9tjWfv4I7yyD0NQDCksD3dS54z525jMYvabLn8dgowcfaproc/+ugjqqurfb/Wn6uv9fHQCS677DLX9T179rTRAfKJs3CrlRGwqSoP7m5hzzNPYK6vlTsNIV5Fb0EnKw/meuTKH9gNRyQIXVJS4nWujhzZNVVhJ9XV1ZhMJmpt8FCFFWW4R5ZeVTm8uty3tEw38XQzd7Ta7g/0qQEICwtz6Wfbga1DJ3oXXK1f4z076QZJSUle+igffvih+8GUDBGvc/L+K1x09k9cBiPK4paB7gx6ReGiuGYJ3vrCw5/f3szMRWdlBTowJrFh7tnTwb1FLJw2jp23LWLJgos5++yzfVbhqqrK7t27aW5u5oQTTmj/85G8ZydehWM+CLYBCBhWR4e35Q/A91+4709KZfJlV0tRGeJWePHFF32/R3uuPs/joROMGjWK005zTwaeeuopr+/SL5NOE22iWRfB2FnUjJnLzzc3k2O1kYeZA/v3Y7PZRdQwsvvN57vFxBO9YxCH9mK1WrnvvvtciQTp6ele7qCu4On2jU1JJfyKn4lmmZOqY/DdFz5e2XXq6+up8OjH0J0q5t6mTw0A4CXLUFxaJj0EPFO1Pvof1PUsMOUp+bx27VqXewBFgTke2SFVx8j45iPOmCP1AmXGrschOlS2dPjz/c3MQIGsAjlZf/EfmNSJ4GUHxuTM4akMT5QTOy9eXFwFKQks/eMSxo4d226wqr6+nqlTp7b78Xa73etEGzeu/Vmkp8+8w6rTbuAcmAGOHTvW9WBcc6P4iZ/8u9SIeLoJElPgkhsICQ/3Evx66623fGdLdSYI2wVuueUWl5uypaWF+++/v3P/n7Nw65LbSDj9Su6aOoaRYXLMNLe0sPpQKc1jOzb0AUVV4cfNXg2V7CGh3HfffV6pxzfeeGO3Yjg2m81VTwAwa9YsOednnSGNYpx49jHpATt37nRdj4uLC2qNSKDocwPg2UGntLRUhMAuvM4t9WAy9jgoPGPGDFeqoclkYt26de4Hc4bDCXPct4v384tEHckGhffLzNgCHMn/bMuP7tTBVjMzZl0Ev3wEFt8vJ2tnS+uTMmHYRL8PO+MAer2e6+d7uJP27ewwgJmamtrhyffll1+6Zj46nY4ZM2b4fa6qql4nd2fcS13Fs/Wh0WjsfDpeWTF88Ao88XfJFPEsVtLpYepsUZN0xI7OP/98V3zEarW6mt140ZkgbBdISEjgV7/6lev25s2bO+cKcrL3R3j23+REhLiKq7a02PnnrqP8+je/6dyKoqcYm6XaeuX/Oc5tmelbdXru+d87rFmzxvXUM844gzlz5nTrY15//XUOHToEiJvWS5ohy2OVamxH1rsLbNmyxXV9zJgxQdG3CjT9ygC4AigJyVIP4HrgAHz1Id0lJCTEKxDomR8OwOyzvNLSolsa+EdhOvk6eHB3iyuP2ElHNsHu5wlWu50bH3/ZlZEDeM3MujTotyas/bzw/IQokYOY7WEA9mwnz1jv/0XgX17YgdFo5KmnnnLdnj17drty0Bs3bnRlSuh0um4v7dsjKirKqwrZMybQBotZGho99x/ZftjgXZikN4j+1A2/F5kIDxmM0NBQr14Nq1ev9pIFAdpfnfmI73SG0047TWazDp544omOB26rBT55C954BhyN1LOysijPLeTZGht2xH99/fXX8/rrr3t1sgsIxhZRIX3zv/DYPZLk4eiopwJVDY38v+/38NkGdy+NSZMmcdttt3VrIN21a5dXb5H58+e7m7YX74c1Ht3c0tvvldxZPFfBngVh/Zk+NwCe/uI9e/a4C4hGT4bCie4nfve5+GO7yemnn+66/v3333sPCooCZ10G09xSEUPS07gkPoTRdjt/3tLA92FDXLP0e4sNWP2sSKx2O/d+e6jNysFqt3PD21vYW93kysgJaBFRBzPNMy69Shq9j57sFWdZNCLLb1aQXq9n0aJF7b7vo48+6nJ96HQ6v83knTi1nwCmT5/erlxET/Cs/2iTM6+qcPQQfPw6PH4PfPhq285ZUTGi/vqzP8AZF0Ocb6N2xhlnuIJ9TmFAL5eMP1dfD2SjnU17nN+d0Whk6dKl/ovvKsvg+UekiZKTkFCUc67gjHsf8gout7S08J///Ierr76aV199tWcyHY31sPlreHUZPPoXeP9lEdxzGFi73U51TQ3v7jnEjet38s0xdyB99uzZLF26tFtCcEePHuWPf/yjq/AzISGBm268UX7jt56Dl56QRkUg5/7M09t5t86xf/9+12oD6HY/g96mZ1pAdTV+T4zOMmrUKAwGA1arlaamJjZs2CBdwBRFTrzyUnfv3dWvy8k70b+LwR8TJkwgPT2dsrIyVFXlnXfe8e605YwHZAyBj18jFEhPT8NeWspFIQoHN+0k9YSzyJ07n8Y1O1j8zqo2uffOQd48+iSu+76cGWGNJOpsHKxrZsXmQ+ytdgeVu6Lz3ykmz4P1b/ltd5h42iVyXaeDi6+Hd16EA7vIS4jhnlkTueurLV5GS6/T8fTf/0ZBlv9Utg8//NBLDuGKK65wz7J88N1333l1S7v00ku78A92HovF4tXvOC4uTgK6Rw/Cvp2w43uoO+LdEEbnGGgyc2HyTBgxvlOaODqdjptvvpnf/16aI23bto1vv/3W2w3mQz2zp7LRCQkJ/PrXv3a1I9y2bRtPP/00N910k/tJVqtMnL7+xLtla0o6nPtTSEpDAX7+858zYsQIHn74YdeAX1ZWxmOPPcZTTz3FlClTmDlzJhMmTPDK3PNJc6N0INu1VYysByry2zQ2NFDR1MKnpdV8UWvkmMdiw2AwsGjRIi6//PJuzfyLi4v53e9+58rKSg3Rcd/l5xL3xgoxhJ4oOph/iV+l367wzjvvuK6PGjVqQKSAQk87gj25VHR7UnqWyfH//t//Y+3atQCMHj2aRx55xP3j1/3/9t48POry6v9/fWYmk8lkmSxkhwRCIGyGfbEstdWCimutwNXSWqGtLYpLbfnRDbc+tVb7+L2q0gdRcGsraKXt4y6PgKCgYYeQQPZAhiRkX2Yyycx8fn/csyaTPVFg7td1fa7JPklm5j73fc77vE8d/H2j17IBYOYCYVrVT23w3/72N1544QVANGls27YtcJOTpQV2v43z5CFO5+fT5upwNYQaGD9nHsUj0pi44oeMMRlYNT2d0SajZ5EvaWwjLy+PyspKbr/9dqqqAgyOd7FixQq/HfGgCWBW59lpdi4mqyqn//MGVW++TKSzg/KmVv5dbKa6rYNJo1L48ZypjIt3BffIaKEPj42H2BEQE0/u+Wru/83vPKmC3qasWSwWVq1a5fl/TJ06laeffnpY8qRHDh/mkV8+SGqIQoYxhAeW3YrmfLlrYEyAkZAAY6+EJSsHrINft26dZ77y9OnT+e///u/B/Al9wu2b7zt/+he/+AVLr79e5Pp3vgl1Zf6BbuZVYqOj6zqysKGhgRdeeIH33nuv2x6DyMhIxo4dS1paGikpKcTFxRFtiiK2oZrostMYzGWoTgcOpxOH3U5Hh532dhs2m40aSxuHmmycaHNyxqbS+R4WLFjAXXfd5VfD6Q8HDx7kycceIbG9lXGhGiaEKszISCcukAlgfLJY/JMG7+haW1vL9773PU8n/IMPPtinkaoXA4MfCanTwYJrYeb8AXcRnjx5krVrvf7xv/rVr1i8eLH3C+ouwLZN/kEgLlHUCXx9THqhubmZZcuW0dYmrGjvvPPOnq1mz5/lwj9f4dx+r0wsLjaWUWlpvHTwJD9+8wMcPi8Ut+2yOw2yatUqb64/AN2NaBwUteZed5rNzc28+OKLnjkME0IVZoVpWDQqkbGpKWi6SQm5aWtr40xBAW12B/UOFasulGtuvY2IpFSIiIQIk/+EL30of3rySd577z1A7Jo3b94spjQNBFUV2m1rKzQ3CvuCRtdVf4GinP00VYtAE+VasAAxCtJaFvhnDnKMY+fn8Ouvvz4sFtedsVqt3H333R7X20kGDb+6ajYjHfUBZh8rrs1Az3WH6upqduzYwfvvv+93kuqMDphr1PCNCA2xusDPmTq7yok2J8fbVErbVTovNkajka9//evceuutA5NNtjZjLy3gi7e20XDiMEkhisdTa+TIkcTHRvmP/0yZCPOvFYNphmjz8dRTT/HOO+8A4mT2j3/8Y8ibG4eLoZsJHJsgRiWOv2JAM4F/+9vfetQ5RqORTZs2+e8EGutEAavzIPjR44V+OSW9Tw/opk2beP311wFRHH7uued6feL9489/pP3TnVwRpkEBkpOSSUpKpOBCPVsOnqC0oYnRYzJY9aMfM+6bS4S/PL3PdN25c+fAPWoGgM1m4+233+bll1/2y+3qdDrWrFnDLTfdhFJVAaVnwFwuvJJ8lTCArb2dgoICT35VURTGZWZ6bD0CUd/UxKnCItqcYFUhI2sik7KvELtQXYhItSgaQAGNIhRfDrv3tr1dLPgdNqEKs7T6pzR8cDqdnDyZi8P1+bS0NO8O0F4Hth4UQYMY5K6qKj/4wQ88QoYvcy5s1dlyXlp3L1MdrSSGKISGKExMNwZ+OfQj0DkcDo4fP85nn33G4cOHyc3NxWw2Y2trY2xkGHdPGMmk6K6Pe6ND5bDVySGLE3OAWnJiYiKzZs1i9uzZzJ07t3+jEzvaoawQygqgrJCm0kIqzp3znNJBSLHT0tOJCVcCBEGNqMkMoPgeiP379/PrX//a8/7atWv59re/PSQ/+8tgcAHguUe7LBCYYrwzgg1hgb8vANXV1dx5552e9u+RI0eyceNG/yJhRzt88p5/MctNYipkz4UJ2UJK2g2tra3ccccdHmlgQkICzz33XI+aXbvdzv333485P5d5Rg2zjRrGJyeSkpzS9UWm0YpTybjJkDmZrW/8M6D9clZWFsnJyWRnZ3Pttddy5ZVX9uifM1BUVaWkpIQPP/yQd999t0tRLyMjg9/85jeBd+OqCi2NUFkBddU0lhRy4N3/JaLDitF1Shg9ejQxPfzetvZ2Tp8+7fn7jUYj48aN671fYoDU1NZy9qwo6LagYd7NtxGSnik2CPv/Cae6H2jOlAVCjTVAtmzZwquvvgrA+PHj2bRp04B/Vq84HGIRPHUECk5gbWmhsKAQu8NOSlwIibE9FE8HEOgCzZDQKgqPLpzKzRmpOJxOTtpUctq1lKk6Qg1hREdHYzKZSEpKIiUlhfT0dMaPH9+jSqzbv7UoT4yILcoDewcWi4XzlZVdXHtDQ0NJy5pIREYGnOrG9G2Qpz03+fn5/PznP/f0FWVkZLBp06ZB2VZ82QwuAFhbxbSkkwe7/qN1ITBhGlwxSxRZ+vCC/+STT3jooYc878+cOZM//vGPXf+h5nLY9R9x2xmNVthJZ10BGRM9u3FfDh06xC9/+UuPWmPkyJE8+eSTPXalNjQ0sHbtWs6dO4cCjNUr3JCRypKMFAxdDrY+JI2iwGBiy6cHOZJ3mvOVlRgMhi5umYqikJWVxdSpU5k8eTJjx44lOTm53zly97DwU6dOkZuby4EDBwI2KIWFhfG9732PZcuWERLSNR/cmZMnT/K73/3OkxIwKPDg6h9yzZxZIgXT0uS6GoWpl7UFR0sLBQVnsLpSbhqNhqysLAxDeTw2RghTMVMMjggTT299hbzqWqrsKtfceDP333+/92s/ekX48HTHIE4AACUlJX42xhs3bmTixIkD/nldsNuhvBAKTorh9Z3MzKxWK4VFRUTGaBgd3cNj2k2g85sSN3o0q1evZty4cT2eZLUahbwXn2XcrSv8bLOHBIdDbPZy9kBrMyrCCbW6qoomn41Mo0OluF0lfsY8vrXqJxiSR8HOV4f1sc7Pz2fdunWeDZXBYOB//ud/ehRBXIwMLgC4qa0SSoP844FVKLHx4kQweYYoKPbAq6++ypYtWzzvL168mPXr13ddCFVVpCo+3yV0vYFw78YzJ4lg4KNY2rFjB3/5y18875tMJjZs2NCjfre2tpZ169ZRXOy9P4Nez5ql32LJmBT0ZQUiKHZHdBzOsZP4vLaZrR98TEFRUfdfi9jNJCcnk5CQQFxcHBERERiNRrRaLRqNBrvdTllZGbt376ayspKQkBCioqJ63IEYDAaWLl3Kd7/73T5NyHI6nWzfvp0XXnjBbwHo7ahrt9v57a9/zclDORgVMGgU7v7RKuZOzRYnuY4OcHSIW6fTtYFQxdsarUgjarXiCgkFvV40B+oNor4QFi5OmD51p7feeotnnnkGEMHmlVde8e80rjULE7ZulFJDsSu85557yM3NBUQz0DPPPDO4QndLk5hbUZwPpQXeMZWdCTPC5JlUJmeQ89dHuDGmm/GXEHDxC7jD12rZvHEjp3d/xBP/eLPzT/EwLLWsKjO8/Xeoq8bhcFBXX09NTQ1tbW3YnCr5NpUzNpUCm5PkiVO4Z+1a/yH2b/xZGO91xyBOe3v27OHxxx/3FH11Oh1/+MMfmD179oB+3lfJ0AQAN00NImKfzAFrgO46RYFRY8WM33FTAg52V1WV3//+93z88ceej91+++2sWbOm+/u9UCnM4/KPdU1J+RKfJALB2ImQnMbfX3/dr1lEURSWLVvGnXfe2W0Rx2q18uc//9lPeQFCHXH7bd/m5tnTiaosg8LcHi0s1FADNRGx7K2o4Z2T+RRX9394xPnz5/3GHrpxp5d8mTBhAt/61rdYsmRJj/l6XwoLC3n66ac5deqU52M6nY5169b59VV0xmaz8fDDD3PgwAHPx5YvX85Pf/rTPt3vQDh16hQPPPCAR/N//fXX88tf/rLrF/ZHKTUADh486He/q1evZuXKlX3/AdZWqChz5bgL/GwSuqDVQcYEmDRdPK9dgb+l7AxhW/4/tAHijqooKPc86xfoetvhLxk/hnfzu9lkMQxqtuJ81H+9QktjA3W1tTQ0NNLhdHK8TdQVzthU7Ig02x133MGVV17ZNcgOw2nP6XTy8ssv+00o02q1PPTQQyxcuLCH77x4GdoA4MbeIY6px3PEkTUQbufByTOEHYNP4bi9vZ3169f7DRdfs2ZN77pxd1709Akoyg0chNwYI2DsRD6vb+XhrX+nzWdaWHJyMmvXrmXevHndGqXt3r2bZ599tosLpE6n45vf/CbXXXstU1MTUQpPiWBQ1b2fuQq0hBgosms4XtvEgXIzeebu5aMgZJU9DckYO3YsN998M9/4xjeYN29ev3xJqqureemll3j//ff9mppGjBjBww8/7Df/tzMNDQ389re/9eyCQcxifuihh4atNT43N5d169Z56kcmk4mtW7d2n2vug1JqMDzyyCPs3r3b8/7dd9/Nd77zna5f2G6DmirhMnr+rOhTqOvFO0gXAmOyxAYqc1LAFCeA8/BO+M9GND7pSYeq8uRpK+dGjOOWW25h0aJF6PV61q9fzxNPPNHtXc5LS+ZAefdT4YbqBKCqKqX796J7YzON9XV0dHSgAp+1Onm/2UGrK2bPmTOH22+/nZkzZ3b/nKo1oz67NrAx4wBOe7W1tTz22GMcO3bM87Hw8HAeeeQRZs6c2cN3XtwMTwDwpbFODJvOPeQdsN2ZiCgx/3fyDI8zoMVi4b777vOzV73vvvu45ZZb+na/TofYSRWeEt7f9d3bAbR22HnvTCm7KxvI89Enz5w5k7vuuqtblZDFYmHbtm288cYbXoM5H5KTk/nGN77BVVddRWbCCJQi1+9SXtytisWNQ2+gMSySWq2eyg6otKtUdThpbrPhcDj44IMPPL0T3aHVatm8ebN/w1sPlJSUsH37dnbu3NnFCuDqq6/mvvvu67Fzt6CggA0bNvjZEixcuJANGzYMW2Hs008/5bHHHvM7jv/pT3/yG+7zZdPU1MTPfvYzzGYzRgWitLDs2sXcctVClMY6aKgTTUmN3VhId8YUA2MmiJPrqAw/O4oeqTXTsOufFB/+nLzKWt6rbKfC6l0QjUYjCxcu5P/+7//8/Hc6s3TiWN4/XeIneXaj1WrJy8sbsPOl0+kkLy+PvXv3cvCT3XzXUUuMS1Jqc6psrXdwxqYSGRnJ4sWLuemmm/wMJLtj69at7Hv2UTYtzfZr1nSioLn5nn6d9g4cOMATTzzhJ4kdOXIkjz/++IB7Fi4Whj8AuHG33588BKePCTlfIOKTXDYQ06ltt/v50oOr0WUg813rLkBxHhTmicHXnZ7MTqeT85WVlFVWc9Tq5LDVSVG7+NcsWrSIH/7wh93aHDc3N7Njxw7+/e9/d+sLn5CQwJVXXsncuXOZOnECxgsVIq9bVtB3t1NFETWU6FhW/PUVtu3pQdHiorcXaGtrK5988gnvvvuu/xhMF+np6dx999095jdVVeXtt9/mmWee8Zu7fMMNN3D//fcPbhpXD/f52muv+dWLdDodjz32WI9mdL3idLpqFC7pqcMu3ra76hV+b9uERLXDJr62zSqMxWxtWOtqKDh6BEeH14YiKjKS9PT03oOhMQJGjoH0cTB6nCiuDuL0pKoqBw8e5JVXXunyGEdpoLG8mD2FAQQVLtb//AHGT7kiYI3At++lr9TW1nLkyBFycnL4/PPPaWxsJEYLP4rVkeyat6wCf61zEDd1NkuWLGHBggV9EiuAf0orMzbcr1nz5WPn+N/PDvYpYNntdjZt2uTnKApixsiDDz7Y97nMFzFfXgDwxd7hask/DCX5gZ0+FQXSM6lLHsO9zzxPRbX3aPyzn/3Mz7+k37RZRTAoyBWLsN27aFmtVioqKmhuaemiZ160aBErV67s9sljt9vZt28f7733Hjk5Od3a9Gq1WiZMmEB2djZTpkxh8shkTA0X4FyxUDb1cFpxs/7dPTyxu/c5qZmx4Wz+wfVcNWUcmOJRpyykwh7C4bx8Ps05yOEjRwIafyUkJLBy5Uquv/76HhfwhoYGnnrqKT+HVUVRuOuuu1i2bNmwpH1sNhtPPfWU367VaDTy2GOPiSK+0yHSf5YWkVO3tIr321pdi3SbMESzWcVGxNYmFvD2tiGbRw3C9qCwqMjTeAjCo2jMmDEYw1wSaV0IjEgShmQp6ZCaPugFvyfy8/N59187qNq/h2ydnYkGDWebWrntnf0BnW81Gg2bNm1i/vz5WK1Wtm/fTllZGaNHj2bVqlU9LqSqqtLY2EhZWRklJSXk5eWRl5fnkemCMCObH67h+kgNoS5pcUR4OPXT5jP+uz8akDS6t5RWX1JW586d49FHH/Xz69Lr9axdu7bbGRqXIl9NAPDF7R1y6jBUngv4JW0OJ2+eOMOumhaKXbvylStXsmrVqsE/EB3tUHLGpTE+BXY7KtDc1ITZbPZIGGvtKsfbnOS2qSRMm813V67s0fe+traWPXv2sGvXroA7684kJCQwbtw4Ro8ezdjUFEYbtCTiIKy1EaW2ShQDfVwqCy7UM/HPL+Jwdv/w/XBaWhe/IlVVKa9up65J/J1Wp0qbEyxOaFNVwqJjycrOJmPiZLSGMJFj1od6FTh6PYSEooaEsOezA2zaupULDU2494XR0dFs2LBh6FIwToffgt1YVcWW5/5CvbmCCA1EaBSSo6O4+mvziNJqwNoiFvmLZCC3w+GkpLycstp6ahwqtXZoQMviFd9l1rU3DOti70djnVARFeVB6RkcHe00NTXRUF9PU3MzOwrO8tgXeV2cbDsLCoxGI7GxscTExHhGf+r1elRVxel0YrFYaG1tpb6+nurqar/g54tBgZlhoos4TqcQERGBydU3oF+wGBZeO+D/y4oVK9i2bVuPn++uaK2qKh999BFPP/203++ekZHBhg0bLjmZZ2989QHAl7oLorHl1KEuaRGbzUZhURFmi40vLE6+sDi56oabuO+++9AMoPM4ILY2UbA9dQTKCsQOpqGByspKTyAAsWgWtat0JI5i1i3f4Yqrl6Bouz/W19fXc+DAAQ4cOMCRI0f65bAYGhpKbGwssdHRpIQbSDSEEKuoRGNn1+Fj/OHdXQF3bpmx4eTdfXXAWcGqqpJXZsXWIb5Pp9URHW0iLi6OMKOR3l52La2tmM1mWlu9klcVMEZGkZE1AX2YUShStDqXlFMnXswaretWAadL9gmieO9wiADncLhSMDaXVNQb9KxWK8XFJbT7pFUiIiIYM2YMumFIM6EooNNDiKtj2X3rftstTw1xBUhDmGhCNIQJWWZ4JIRHouoNbNu+neeff97vVDjok2x3qKo4RZrLRB2svLD7+hvgjDBRGpPM9vwytv/nf6moqMBgMJCUlDSkaQ4tkBWqMD1Mw2yTgZjICCKjooiMjBSPX6hB2LtMGpyV8kBPAM3NzTz99NPs2rXL7+M33XQTa9asuWTsHfrDxRUA3KiqmAFw6rCQdrpmdvoeqVUVTrY5sWfP4c4Nv0cZqiDgprVZ3Hf+UVRzOY2NjVRVVmIJUOzVhxkxjZtAyrRZaJJGiUJ2XEJAhYbT6aSgoIDjx49z4sQJTp486fHHHwgWi4WzZ892afZ6/OpJrF8wvpvvgtomlTZnOFEmExHh4b2epFTEC6S6urpLANMoGlJSUhgRP6LX4DFQGhobKSstw+mj6ogfMYKU1NTuu4p1OgiLcPUNGF2Ls1E8LgYjGAziVGMI855yfBd1rXZId+eHDh3i0Ucf9eteveuuu1ixYsXAf6iqit199Xlhd1xVISw8elLAAYSGCRXRpBmQnun3d9psNs6cOUN+fj7FxcWUlJRQXl4eUOjQGyYNzIgJZ86IKLLCtJjCDIQbw9GH6r3PFY0GpswSu35jRL/vozM9ylq7qYkdPHiQJ598kupqr+w2MjKSdevW+c1euNy4OAOALx3tQslzMkfMC+2wU1xcRKvF+wQPSxlF1rI7UK6Y1aMNxIBpboAzJ1GL8mjOPUrVeTMtPrtfN3q9noT4BGLjYtFqNELdFJcoBtz4XqZYj9WwqqrU1NRw+vRpSkpKKC0tpby8HLPZ7JE19oXOPQH/uG0WK6b0oFCYMA+WrBbpEptV3La3gc3lt+N629JYT3nBGc4VF9HR2kKoAqEa0CsKOgWiTSZSU0ei1/etQNdfnKpK5flKKqurPOmqVhXGT53BhOkzRENYuMt0Lizcu/M2Rgi1zEWWqzWbzfziF7/wC9gPPfRQ36ZedbSLnpcL5/2v7gQVnYmNF4XlzEmiH6cfpyZVVWlqaqKyspKGhgbq6uqwWCy0tbXR3t6ORiN8smK0kGi3kmBrIba1AaPNglanC7wxCDOKADRzwZB3EXfX2Na5aN3S0sLGjRs9RoVusrOz+c1vfuOZ+Ha5cvEHAF+aGuBEDo5jByg5doTmFm/TV2pqKgnJycJ+IntOn83h+k27Dc6VYP58H6Wf7kZfV92l4Uar1RIbGytSKoGMrhSNGCsYHQfRsRDtCgyxruCgC0FVVZqbm6mpqaGmpobGxkaam5tpbW2lvb3dI3sEUagLDQ2loaGBzz77jPr6eh7Mjue6qB4Whh4aYaqrq/n000/Zu3cvR48eDVjMnjx5Mj9atYppkyeJ/4m9w6uOsbd70zr2DpHHV11dvu6uX0VBrAqKWIg0Wm/KKEQPIXrMNbU8/exznCgoxOb6FYxGIxs2bBAzIy5RampquO+++zCbzYCw5di8ebO3a9npFCmbmiq4YPYu+o11/attxCWI18HIMaLXxjXKcsiwd4gTx/lykWoyl/k79gZCF+KyasmGsZP6beneHwoKCtiyZYvH2sK3aK2qKh9//DHPPfec3wlcp9OxatUqli9fPnSp5YuYSysAuHE6acs7xu7/9zgJlgYUxFoybvx4wt05y9h40SE5cbpYaIeJ4oIzfPDqS1Qc/oIUHaSGKCSFKOhdQSEszGuKZTAYek+RKIo4OUTHQUy8K0DEicsU23eDvX7YHjQ1NXH8+HGOHj3KwYMH/SYbdWbu3LksX76cadOmDZsSwm638/e//53XXnvNT1Y6atQofv/73/dJB36xU1FRwU9+8mP0NiuJOoXpo1JYfdP16BpqxMLvo0zrE6ZYYYiYmCoURUkjh/Y0rKrCetvsWujN5WLx76WfBRDP3TFZ4kob2/c+hmGioKCAjRs3+s3wBRg3bhzr168fuE35JcilGQBc1NfXs/5nP2G8pY45Rg2xYaFkZWV1LQgmjRLmcGMnicAwDAtXVVUVb775Ju+88w5Wq5VoLSTqFBJ1CvE6hRE6SDUaGBUVTnh4OEajkTCDof+7DH2oMD+LjBY7OlehUVwR3jy3wQDHdnexPVAVDWen30hORySnT58mLy/PO4u5GxISEli8eDHXX3/9sE86ysnJ4S9/+UuX32np0qXcc889/bMOvhiwd4hdcVO9aABrqBU7+foa6grzKfPxg4o2mRg9enTPgdUtG01IFrUm99UP590+4XSKk0dFCVSUiqu5sW/fGzNCDF1PyxCppqE+eQyQyspKXnrpJT788EO/U61er+cHP/gBy5cvv6ScPIeCSzoAgHCpvPfee9GoKlPDFG4cncyi0SndFwZNsWInkj4ORo0ReeMhxGKxsHPnTt5+++2AM3+1QKwWRrgCQ0ZcNOlR4SSF6ojRqOhDQgjR6dDpdGh1OmH81oeApSIKzA67A7vDjr2jgzanSrujHT0WFNVOg7WD/AtWamwqHSq0q2BXvW93qGBXoQOIjhvBxCuyuWLGDDLGZ6HoQsRx3a2C8X17CALquXPn+Otf/8pnn/k3t8XFxfHAAw8wf/78Qd/HoFFVkYd310isFlE7sbr6DKwt0Noi+g5am8SC2ZM5IOLvvuAznzoqKoq0tDTR9BQdJxb3EUmuhT5JfGw4Tl5Op7CkKC8UAoxzJX2rLehCXD0MaZAyWvQxDEEhdygpLy9n27ZtfPDBB10Kw/PmzePee++9ZEY4DjWXfAAAeO2113jxxRc97y+eO5tfLL2akIITPZtpgXhxjcoQT+DktCF9gZWXl7N792727dvXpwHwGiDaFRxGaBXida63Q7QkhGjQaxTX7lDkz1VVFZfTGbBNvz/odDoiIiKIiIggKjKK0NB+HNM1WiGL1Oq8A150OtCGeGWgWp3rY1rvxzRa2jo62P9FDoePHqXD6cShggMR0GbOnsO3Fi8hNCxMKEUUxXuraFz+UT61BN/Hze0uquKqQTiF9NTZSXLqdiR12L31C093r+vWZvMWyAOl1AaBU1XJLS0nt7qWyg6V83ZoNURw3fd/yJIbbhy+HamqQl216A0ocy36tj6ofEyxrsU+XdzGp/SrmPxl4XQ6ycnJYceOHXz++eddPp+ens6aNWuYM2fOV/DbXTxcFgEg0GzUcePGseF3v2OkQSe80wtPiR1ObxjCRMooMVXMh01IEUfaQQaFxsZGjhw5wokTJ8jLy6OoqMjjXNlXIjQQo1WI0YrbaC1EahSiXLcRWjBqlF7rDFqtlrCwMMLCwgg3GjEajehDQ4dNwhkIp0v9VFlZ2WVXFhEeTurIkd5u2UsdRREpOlOsqOmYXIX/uHiIiceGwn/913+xd+9ev29LTEzktttu49prr+3Rg6lPqKroszlbDGeLoLyoZ+dcEEE2MRVGjhYpnZR0MfLzIqa8vJyPPvqIDz74gAsXuhrrJSUl8f3vf58lS5YMi0XJpcZlEQBAFA4ffvhhP0uC0NBQVq9eza233ip2Ui1NUHJaXGeLe38BuNGFwIhEcVqISxRvx8aLXPwAlQJOpxOz2UxpaSlmsxmz2UxVVRU1NTXU1tbS1NQUUMfcF2KMYSTHRJMYYyLBFEVSXCyJ0SYSYqJJiIkmIjQUxa3acSt3HL4qng5hieDwed+9Q3bYB9Vl6+6yrqgw09YpxaDX60lJSSE6OvpLDUYDQqsTMsZQV9NXmFH0HIRHiBSIMQIiTaJWEx7Z6y5ZVVV27NjB888/76fwAjG6dP78+Xzzm99k7ty56PV9OJ1ZWqG6wuUyWiaUOr31Bmg0YvMzKsN1Kk7v1m30YsJsNrN79252797d7Uk7PT2dFStWcM011wRdnr8nLpsAAGKG6caNG3nrrbf8Pp6ens5Pf/pT5s6d6y2wubslzxaLQtf5s71b8XZGq3PJN+Ndqh2XWsddpB3EDkNVVaxWK62trVgsFmw2Gx0dHcIi1/WQabVadDoder1eFJXDwkRX5XA+wVXVm0JxBwrfgOF+351isXd4vr668jw733+f8tIStIBWEYPFDXo9s2ZMJ3vyZHTumcBOp0jXOJ2u9I3TX0aqOr3SUndHsVP1ntTcEcSdKlJcqSOtDrQaTwqqSz3DJUElRO8aQmOAUFeDWKi7acwwbPLFmpoatmzZwocffhhwA2AwGJgzZw7z589nzuzZRIdoxfO4vkakO2urhGS0NzkmiP9HfLKoh6Vlip1+gBkdFxuqqlJWVsbevXv55JNP/ByDfdFqtXzta1/j5ptvZsaMGZeNf89QclkFADf79u3jqaeeorHRX7UwefJk7rjjDmbNmhX4ydBmFd2UlefEi6jaLF5YA/kXKQpEmISVb6RJXBEmIfE0RniblUINF12z0lBTV1fH1q1beeedd/zUF4qisHTpUlavXj0s85AvZaorK3l/xz/Zv/NDaG3GpFUwacDkSgHG6RRitApR4UYiIyOJjIwk3BiORtPDc0lRxOl11FhxpWUMT+PkMKCqKnl5eezbt4+9e/f2qFzLzMxk8eLFXHPNNf2fPxxkXJYBAETOffPmzbz77rtdGpnGjx/P8uXLWbRoUe+75Xab2FnVVAp9dk2leL+5YWh+UY3W30PGz3wt1F91426U0mhcvjoasdPtXPz0u1zFT1X1NmT57qDd/xv3rWcH7VNodd+fp4jr3jUH2Dm739ZosFitbNu2je3bt3cxBZs+fTpr1qwhMzNzaP6PFzOqKp5H1lZhF221iFu3S6m1tZNzqetSVZyqSnNTE/UNDTQ2NuLsodivKArh4eGimB8ejnFEAtrkUULckJoubgcgF+1uVvBw097ezpEjR/j000/57LPPqK3t3s8oPT3dM3vjcjNsG04u2wDgprCwkOeff56cnJwun4uLi+OGG27guuuuIzExsX8/uKMd6mqg/oI4JTTUem9b+272djnidDq5UFPL2coqWjs6sLnkpe0qhIZHcMX06aSmpwtpqTuYeNRBIT4pGp9Ujfvzvh3DPmoib4DspDgaCpmq0+GdBdBu815uOWiby1a6zbWwt7W5Fnurd8EfAvWQ06nS0tJMQ2MjTU1NniY5i1Ol2g7VdpUqu0plh0pFh0oLGjIyMpg4cSITJ04kKyuL9PT0fhU/u50V3I9BQ/3h/PnzHDx4kM8//5yDBw92qYf4kpWVxYIFC1i0aNFl0Rz4VXDZBwA3ubm5vPrqqwElYYqiMG3aNK655hoWLlw4eMWFvUPYVjTVC1fTlkaRk21uEm9bXFrxIZYUftU4nU5qamupqqrqMmNAp9WRlJRE3Ii4PvU1DCmKxidY+Jxq3Cco8UV4htI7XLJRu6uG8VU+TroQkS6MdKUPI6IgMhrVFMPZJgs5pwv44thxjh071uNi6Uav15Oenk5mZiZjxowhPT2dUaNGkZiY2KUpcSCmav3B4XBQXl5Ofn4+x4+Lv6GzqaEviqIwdepUFixYwIIFC/q/aZN0IWgCgJuCggLefPNNPv7444CDUHQ6HdOmTWPBggVceeWVw2cGpare5iH3TrHN6r+79J0+5S66uguj7kv8MO+NonS9fIugnqJop6/x/b3ct36FV4er0OsuALsmZTnsONqs1FSep7q6usv/VKPRkBCfQEJCAlrt5e+t0ivudF9YuLg1Gr1GdsZwr3upu0bUx6Ks3W7n9OnTHDlyhOPHj5Obm9svM0GdTkdycjLJyckkJSURHx/Pf/7zH954441uv6e3wSqqqmKz2aivr6fWtTGorKzk7NmzlJaWUlpa2mvQMhgMzJ49m/nz5zNv3jxMJlOf/yZJ7wRdAHDT0NDAO++8w/vvv99jQSk9PZ3Zs2czY8YMpk6delmMgRsq6uvr2bFjB//6179obm5GC+gVcYWH6ln6rWu44dolRBlCfSSn7a6A5tOE5XS6VEM+AcbzMZcayGH3NnE5XcHIt6nL7vM1w4mi8dZnQg3+l8eGI8zHfjrMu9gbwgYsG+4vTqeT0tJSzxSu06dPU1xc3GMNoTO5ubkBtfRu3Hl3rVbrqbO5lWpuBVugTVZvpKWlMWvWLObNm8e0adP6PApS0n+CNgC4UVWV3NxcPv74Y3bt2uU3+LkzGo2GCRMmMG3aNKZOncqUKVOCMiAUFhby1ltvsXPnTj+zNhC9FzfeeCMrVqwgLm74TPi6RVW9MlTfE4sneHSSl3ZG8Sl6u2sI7kuv9w63uQSx2WyUlZVRVFREUVERZWVllJWVdbvIFxUV+Y1v7ExaWtqgjdM0Gg1jxoxh4sSJZGdnM3Xq1MvegvliIugDgC8Oh4Pc3Fz27dvH/v37ezVJUxSFzMxMsrOzueKKK5gyZcpXs+h9CVgsFvbs2cPbb7/NqVOnunzeaDRy8803s2zZMinpvMSw2WxUVFRgNpuprKz0NCQWFhbyt7/9rdvZ1nPmzOnTBkhRFEwmE/Hx8SQlJZGSkkJ6ejqjR48mIyPjspy0dakgA0APnD9/ni+++IJDhw5x9OjRPo1yTEpKYvLkyUyaNInJkyczduzYS7bzsLW1lZycHPbs2cP+/fsD5mtjY2O57bbbuOmmm4iIuLhMwCSDpzsV0IYNG7juuuuw2+3Y7XYURfhUuRsTQ0NDPZLU6OhoabtwkSIDQB9xOp0UFhZy7Ngxjh49yokTJ/oUEHQ6HZmZmWRlZZGZmekZ/H4x7nosFotHkXHkyBFyc3O7taOYMGECt912G1ddddUlG+AkfaOnwSqSSxsZAAaIqqqUlJRw4sQJz+U7T7QnFEVh1KhRpKenk5aWxsiRI0lNTSUlJYXY2NhhbVl3TxqrrKykoqKCs2fPUlJSQmFhIRUVFd0e90EMYL/66qtZunSpXAAkkssAGQCGkAsXLpCbm8upU6fIzc3lzJkz/VZB6HQ6RowYQVxcHLGxsZhMJkwmExERER4Hz5CQEDEvwOdY7T6K22w22tvbaW1tpbW1lebmZhobG2loaKC2tpba2touXbk9ERUVxbx58/j617/O7NmzpSJDIrmMkAFgGLHb7RQXF5Ofn09BQQEFBQWUlJT02wb6y8RoNDJ58mSys7OZOXMmWVlZQTEbVSIJRmQA+JJxOBxUVFRQXFzM2bNnKS8v59y5c1RUVPSppjBUGAwGkpOTGTVqFGlpaYwdO5bMzExSU1Ola6JEEiTIAHARYbFYuHDhAtXV1Z7uyaamJhobG7FYLFgsFqxWK3a7nfb2dr98vTslFBoaSmhoKEbXoBe3CsNkMnnSSvHx8ZhMJrnQSyRBjgwAEolEEqTI5K5EIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKTIASCQSSZAiA4BEIpEEKf8/krWU3tCI6PsAAAAASUVORK5CYII=", "text/plain": [ "
" ]