From 93606958840d9725266d9932eb2c07eb0eb475ea Mon Sep 17 00:00:00 2001 From: Matthijs Pals Date: Thu, 22 Feb 2024 18:31:04 +0100 Subject: [PATCH] fix training C2ST --- docs/notebooks/mode_comparison.ipynb | 6508 ++++++++++++++++++++++---- 1 file changed, 5468 insertions(+), 1040 deletions(-) diff --git a/docs/notebooks/mode_comparison.ipynb b/docs/notebooks/mode_comparison.ipynb index b99e7ca..b3ae6a3 100644 --- a/docs/notebooks/mode_comparison.ipynb +++ b/docs/notebooks/mode_comparison.ipynb @@ -91,7 +91,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_107960/39751654.py:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + "/tmp/ipykernel_172762/39751654.py:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", " mixture_samples = torch.tensor(mixture_samples, dtype=torch.float32)\n" ] } @@ -222,18 +222,23 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, + "outputs": [], + "source": [ + "gauss_model_C2ST = Gauss(2)\n", + "\n", + "model_toy_opt = torch.optim.Adam(gauss_model_C2ST.parameters(), lr=0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iter: 0 loss: -0.08224739879369736 c2st: 0.9706500172615051\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Iter: 0 loss: -0.08224739879369736 c2st: 0.9706500172615051\n", "Iter: 5 loss: -0.10545195639133453 c2st: 0.9611499905586243\n", "Iter: 10 loss: -0.12152279168367386 c2st: 0.95455002784729\n", "Iter: 15 loss: -0.14192883670330048 c2st: 0.9445499777793884\n", @@ -332,16 +337,413 @@ "Iter: 480 loss: -0.5583092570304871 c2st: 0.6912999749183655\n", "Iter: 485 loss: -0.5603684782981873 c2st: 0.6859999895095825\n", "Iter: 490 loss: -0.5652537941932678 c2st: 0.6848999857902527\n", - "Iter: 495 loss: -0.5592193007469177 c2st: 0.6929500102996826\n" + "Iter: 495 loss: -0.5592193007469177 c2st: 0.6929500102996826\n", + "Iter: 500 loss: -0.557348906993866 c2st: 0.6883000135421753\n", + "Iter: 505 loss: -0.5571341514587402 c2st: 0.6897000074386597\n", + "Iter: 510 loss: -0.5611537098884583 c2st: 0.6881499886512756\n", + "Iter: 515 loss: -0.5632707476615906 c2st: 0.6819999814033508\n", + "Iter: 520 loss: -0.5649777054786682 c2st: 0.682200014591217\n", + "Iter: 525 loss: -0.5657998919487 c2st: 0.6789000034332275\n", + "Iter: 530 loss: -0.5629676580429077 c2st: 0.6802999973297119\n", + "Iter: 535 loss: -0.5648066401481628 c2st: 0.6805499792098999\n", + "Iter: 540 loss: -0.5621806383132935 c2st: 0.6834499835968018\n", + "Iter: 545 loss: -0.5685943365097046 c2st: 0.6744499802589417\n", + "Iter: 550 loss: -0.5627847909927368 c2st: 0.6771000027656555\n", + "Iter: 555 loss: -0.5700665712356567 c2st: 0.6697999835014343\n", + "Iter: 560 loss: -0.5687541365623474 c2st: 0.6705499887466431\n", + "Iter: 565 loss: -0.568402886390686 c2st: 0.6677500009536743\n", + "Iter: 570 loss: -0.5700252652168274 c2st: 0.6690000295639038\n", + "Iter: 575 loss: -0.5763471126556396 c2st: 0.6608499884605408\n", + "Iter: 580 loss: -0.5724758505821228 c2st: 0.6660000085830688\n", + "Iter: 585 loss: -0.5776257514953613 c2st: 0.658050000667572\n", + "Iter: 590 loss: -0.5745834708213806 c2st: 0.661300003528595\n", + "Iter: 595 loss: -0.5764253735542297 c2st: 0.6499000191688538\n", + "Iter: 600 loss: -0.5850268006324768 c2st: 0.6422500014305115\n", + "Iter: 605 loss: -0.5821359157562256 c2st: 0.6484000086784363\n", + "Iter: 610 loss: -0.5868839025497437 c2st: 0.6370000243186951\n", + "Iter: 615 loss: -0.5897546410560608 c2st: 0.6311500072479248\n", + "Iter: 620 loss: -0.5943652391433716 c2st: 0.6256999969482422\n", + "Iter: 625 loss: -0.5968323945999146 c2st: 0.6191499829292297\n", + "Iter: 630 loss: -0.6017879247665405 c2st: 0.6159999966621399\n", + "Iter: 635 loss: -0.6027063727378845 c2st: 0.6095499992370605\n", + "Iter: 640 loss: -0.606418788433075 c2st: 0.6035000085830688\n", + "Iter: 645 loss: -0.6073569059371948 c2st: 0.6025000214576721\n", + "Iter: 650 loss: -0.6147437691688538 c2st: 0.5978500247001648\n", + "Iter: 655 loss: -0.6150580644607544 c2st: 0.5999000072479248\n", + "Iter: 660 loss: -0.6162443161010742 c2st: 0.6004999876022339\n", + "Iter: 665 loss: -0.621001124382019 c2st: 0.5954999923706055\n", + "Iter: 670 loss: -0.6191572546958923 c2st: 0.5992500185966492\n", + "Iter: 675 loss: -0.6196388006210327 c2st: 0.5983999967575073\n", + "Iter: 680 loss: -0.620761513710022 c2st: 0.5971999764442444\n", + "Iter: 685 loss: -0.6180939078330994 c2st: 0.6005499958992004\n", + "Iter: 690 loss: -0.6189011931419373 c2st: 0.5994499921798706\n", + "Iter: 695 loss: -0.6198391914367676 c2st: 0.5983999967575073\n", + "Iter: 700 loss: -0.618873655796051 c2st: 0.5996500253677368\n", + "Iter: 705 loss: -0.6180221438407898 c2st: 0.6007999777793884\n", + "Iter: 710 loss: -0.6167941093444824 c2st: 0.602150022983551\n", + "Iter: 715 loss: -0.6191325783729553 c2st: 0.5989500284194946\n", + "Iter: 720 loss: -0.6179917454719543 c2st: 0.6003999710083008\n", + "Iter: 725 loss: -0.6199382543563843 c2st: 0.5982000231742859\n", + "Iter: 730 loss: -0.6176512837409973 c2st: 0.6011999845504761\n", + "Iter: 735 loss: -0.6196349263191223 c2st: 0.5982999801635742\n", + "Iter: 740 loss: -0.6218701601028442 c2st: 0.5960500240325928\n", + "Iter: 745 loss: -0.6206508874893188 c2st: 0.5975499749183655\n", + "Iter: 750 loss: -0.6202008128166199 c2st: 0.5978000164031982\n", + "Iter: 755 loss: -0.6194232702255249 c2st: 0.5989000201225281\n", + "Iter: 760 loss: -0.6174840927124023 c2st: 0.6014999747276306\n", + "Iter: 765 loss: -0.6168724894523621 c2st: 0.6019499897956848\n", + "Iter: 770 loss: -0.6182457208633423 c2st: 0.5996999740600586\n", + "Iter: 775 loss: -0.620505154132843 c2st: 0.5979999899864197\n", + "Iter: 780 loss: -0.619896411895752 c2st: 0.5982000231742859\n", + "Iter: 785 loss: -0.6190088391304016 c2st: 0.5995500087738037\n", + "Iter: 790 loss: -0.616251528263092 c2st: 0.6026999950408936\n", + "Iter: 795 loss: -0.6188668012619019 c2st: 0.5994499921798706\n", + "Iter: 800 loss: -0.618127167224884 c2st: 0.6007500290870667\n", + "Iter: 805 loss: -0.6183002591133118 c2st: 0.6002500057220459\n", + "Iter: 810 loss: -0.6193693280220032 c2st: 0.5986499786376953\n", + "Iter: 815 loss: -0.6187047958374023 c2st: 0.5997999906539917\n", + "Iter: 820 loss: -0.6192792654037476 c2st: 0.5986999869346619\n", + "Iter: 825 loss: -0.6178394556045532 c2st: 0.6012499928474426\n", + "Iter: 830 loss: -0.6198294162750244 c2st: 0.5988500118255615\n", + "Iter: 835 loss: -0.6207081079483032 c2st: 0.5971500277519226\n", + "Iter: 840 loss: -0.6218900680541992 c2st: 0.5957499742507935\n", + "Iter: 845 loss: -0.6217259168624878 c2st: 0.5960999727249146\n", + "Iter: 850 loss: -0.6199380159378052 c2st: 0.5983499884605408\n", + "Iter: 855 loss: -0.6157983541488647 c2st: 0.6035500168800354\n", + "Iter: 860 loss: -0.6186090111732483 c2st: 0.5997499823570251\n", + "Iter: 865 loss: -0.6181833744049072 c2st: 0.6002500057220459\n", + "Iter: 870 loss: -0.6163890957832336 c2st: 0.6027500033378601\n", + "Iter: 875 loss: -0.6199183464050293 c2st: 0.5981500148773193\n", + "Iter: 880 loss: -0.6181795001029968 c2st: 0.6004999876022339\n", + "Iter: 885 loss: -0.6185576915740967 c2st: 0.5995500087738037\n", + "Iter: 890 loss: -0.6181417107582092 c2st: 0.6004499793052673\n", + "Iter: 895 loss: -0.6188904643058777 c2st: 0.5996999740600586\n", + "Iter: 900 loss: -0.6187009811401367 c2st: 0.5996999740600586\n", + "Iter: 905 loss: -0.6178815364837646 c2st: 0.600849986076355\n", + "Iter: 910 loss: -0.6181507706642151 c2st: 0.600350022315979\n", + "Iter: 915 loss: -0.6212984919548035 c2st: 0.5964499711990356\n", + "Iter: 920 loss: -0.6190558671951294 c2st: 0.5992500185966492\n", + "Iter: 925 loss: -0.6183862686157227 c2st: 0.600350022315979\n", + "Iter: 930 loss: -0.6155072450637817 c2st: 0.6039000153541565\n", + "Iter: 935 loss: -0.6180238127708435 c2st: 0.6007999777793884\n", + "Iter: 940 loss: -0.6176334023475647 c2st: 0.6007000207901001\n", + "Iter: 945 loss: -0.6156870126724243 c2st: 0.6037999987602234\n", + "Iter: 950 loss: -0.6197711825370789 c2st: 0.5984500050544739\n", + "Iter: 955 loss: -0.620919406414032 c2st: 0.597100019454956\n", + "Iter: 960 loss: -0.6209592819213867 c2st: 0.597000002861023\n", + "Iter: 965 loss: -0.6193853616714478 c2st: 0.5987499952316284\n", + "Iter: 970 loss: -0.6188403964042664 c2st: 0.5995500087738037\n", + "Iter: 975 loss: -0.6188053488731384 c2st: 0.5998499989509583\n", + "Iter: 980 loss: -0.6149618625640869 c2st: 0.6040999889373779\n", + "Iter: 985 loss: -0.6193304061889648 c2st: 0.5991500020027161\n", + "Iter: 990 loss: -0.6185633540153503 c2st: 0.5999000072479248\n", + "Iter: 995 loss: -0.6182580590248108 c2st: 0.6004499793052673\n", + "Iter: 1000 loss: -0.616919755935669 c2st: 0.6020500063896179\n", + "Iter: 1005 loss: -0.6226739883422852 c2st: 0.5947499871253967\n", + "Iter: 1010 loss: -0.6175087690353394 c2st: 0.6010000109672546\n", + "Iter: 1015 loss: -0.6175544261932373 c2st: 0.6012499928474426\n", + "Iter: 1020 loss: -0.6172126531600952 c2st: 0.6015999913215637\n", + "Iter: 1025 loss: -0.6149986386299133 c2st: 0.6044999957084656\n", + "Iter: 1030 loss: -0.6182976961135864 c2st: 0.6005499958992004\n", + "Iter: 1035 loss: -0.6157757639884949 c2st: 0.6031000018119812\n", + "Iter: 1040 loss: -0.6200653910636902 c2st: 0.5982999801635742\n", + "Iter: 1045 loss: -0.6171883940696716 c2st: 0.6019999980926514\n", + "Iter: 1050 loss: -0.6167992949485779 c2st: 0.6016499996185303\n", + "Iter: 1055 loss: -0.6190491318702698 c2st: 0.5992500185966492\n", + "Iter: 1060 loss: -0.6182716488838196 c2st: 0.6004499793052673\n", + "Iter: 1065 loss: -0.6192963123321533 c2st: 0.5994499921798706\n", + "Iter: 1070 loss: -0.6182167530059814 c2st: 0.600350022315979\n", + "Iter: 1075 loss: -0.6209564208984375 c2st: 0.597000002861023\n", + "Iter: 1080 loss: -0.6170573830604553 c2st: 0.6015999913215637\n", + "Iter: 1085 loss: -0.6185322999954224 c2st: 0.6001999974250793\n", + "Iter: 1090 loss: -0.6203361749649048 c2st: 0.5975499749183655\n", + "Iter: 1095 loss: -0.6192856431007385 c2st: 0.5989500284194946\n", + "Iter: 1100 loss: -0.6169424653053284 c2st: 0.6014999747276306\n", + "Iter: 1105 loss: -0.6195172071456909 c2st: 0.5986499786376953\n", + "Iter: 1110 loss: -0.6178023219108582 c2st: 0.6007999777793884\n", + "Iter: 1115 loss: -0.6182652115821838 c2st: 0.6000000238418579\n", + "Iter: 1120 loss: -0.6194433569908142 c2st: 0.5988500118255615\n", + "Iter: 1125 loss: -0.6192431449890137 c2st: 0.5989000201225281\n", + "Iter: 1130 loss: -0.6201349496841431 c2st: 0.5979999899864197\n", + "Iter: 1135 loss: -0.6190787553787231 c2st: 0.5993499755859375\n", + "Iter: 1140 loss: -0.6163465976715088 c2st: 0.6025999784469604\n", + "Iter: 1145 loss: -0.6185206770896912 c2st: 0.6000999808311462\n", + "Iter: 1150 loss: -0.6172595024108887 c2st: 0.6015499830245972\n", + "Iter: 1155 loss: -0.6208481192588806 c2st: 0.5968999862670898\n", + "Iter: 1160 loss: -0.6199867725372314 c2st: 0.5983999967575073\n", + "Iter: 1165 loss: -0.6171348690986633 c2st: 0.6015499830245972\n", + "Iter: 1170 loss: -0.6212764978408813 c2st: 0.5965499877929688\n", + "Iter: 1175 loss: -0.6182056069374084 c2st: 0.6001999974250793\n", + "Iter: 1180 loss: -0.6154465675354004 c2st: 0.6033999919891357\n", + "Iter: 1185 loss: -0.6200091242790222 c2st: 0.5981500148773193\n", + "Iter: 1190 loss: -0.6223636865615845 c2st: 0.5952500104904175\n", + "Iter: 1195 loss: -0.6201711893081665 c2st: 0.5976499915122986\n", + "Iter: 1200 loss: -0.6172890067100525 c2st: 0.6013000011444092\n", + "Iter: 1205 loss: -0.6165046095848083 c2st: 0.6025999784469604\n", + "Iter: 1210 loss: -0.6221207976341248 c2st: 0.595300018787384\n", + "Iter: 1215 loss: -0.6193118691444397 c2st: 0.5991500020027161\n", + "Iter: 1220 loss: -0.6193395853042603 c2st: 0.5989999771118164\n", + "Iter: 1225 loss: -0.617689847946167 c2st: 0.6013000011444092\n", + "Iter: 1230 loss: -0.6196746826171875 c2st: 0.5983999967575073\n", + "Iter: 1235 loss: -0.623148500919342 c2st: 0.5943999886512756\n", + "Iter: 1240 loss: -0.6202859878540039 c2st: 0.5977500081062317\n", + "Iter: 1245 loss: -0.618160605430603 c2st: 0.6004999876022339\n", + "Iter: 1250 loss: -0.6172745227813721 c2st: 0.6015999913215637\n", + "Iter: 1255 loss: -0.6184254884719849 c2st: 0.6000999808311462\n", + "Iter: 1260 loss: -0.6193497180938721 c2st: 0.599049985408783\n", + "Iter: 1265 loss: -0.6170746684074402 c2st: 0.6018000245094299\n", + "Iter: 1270 loss: -0.6144106388092041 c2st: 0.6049500107765198\n", + "Iter: 1275 loss: -0.616348147392273 c2st: 0.6025999784469604\n", + "Iter: 1280 loss: -0.6197404265403748 c2st: 0.5982000231742859\n", + "Iter: 1285 loss: -0.6198277473449707 c2st: 0.5983499884605408\n", + "Iter: 1290 loss: -0.620553195476532 c2st: 0.5976999998092651\n", + "Iter: 1295 loss: -0.6189544796943665 c2st: 0.599399983882904\n", + "Iter: 1300 loss: -0.6187482476234436 c2st: 0.5995000004768372\n", + "Iter: 1305 loss: -0.61721271276474 c2st: 0.6014500260353088\n", + "Iter: 1310 loss: -0.6192058324813843 c2st: 0.5993000268936157\n", + "Iter: 1315 loss: -0.6172168254852295 c2st: 0.6013500094413757\n", + "Iter: 1320 loss: -0.6198019981384277 c2st: 0.5983999967575073\n", + "Iter: 1325 loss: -0.6182621121406555 c2st: 0.6003000140190125\n", + "Iter: 1330 loss: -0.6186315417289734 c2st: 0.6000999808311462\n", + "Iter: 1335 loss: -0.6176475882530212 c2st: 0.6014000177383423\n", + "Iter: 1340 loss: -0.6200034618377686 c2st: 0.5980499982833862\n", + "Iter: 1345 loss: -0.6198906898498535 c2st: 0.5981500148773193\n", + "Iter: 1350 loss: -0.6202604174613953 c2st: 0.5978500247001648\n", + "Iter: 1355 loss: -0.6189680695533752 c2st: 0.5997999906539917\n", + "Iter: 1360 loss: -0.620553195476532 c2st: 0.5974500179290771\n", + "Iter: 1365 loss: -0.6179081797599792 c2st: 0.600600004196167\n", + "Iter: 1370 loss: -0.6155511736869812 c2st: 0.6038500070571899\n", + "Iter: 1375 loss: -0.6179578304290771 c2st: 0.6007500290870667\n", + "Iter: 1380 loss: -0.6171466708183289 c2st: 0.6017500162124634\n", + "Iter: 1385 loss: -0.6184096932411194 c2st: 0.6004499793052673\n", + "Iter: 1390 loss: -0.6194556355476379 c2st: 0.5986999869346619\n", + "Iter: 1395 loss: -0.6173257827758789 c2st: 0.6013000011444092\n", + "Iter: 1400 loss: -0.6215621829032898 c2st: 0.5963000059127808\n", + "Iter: 1405 loss: -0.6218156814575195 c2st: 0.5958499908447266\n", + "Iter: 1410 loss: -0.6182065010070801 c2st: 0.6001999974250793\n", + "Iter: 1415 loss: -0.6199288368225098 c2st: 0.5983499884605408\n", + "Iter: 1420 loss: -0.6196118593215942 c2st: 0.5987499952316284\n", + "Iter: 1425 loss: -0.62009197473526 c2st: 0.5981000065803528\n", + "Iter: 1430 loss: -0.6176005005836487 c2st: 0.6013500094413757\n", + "Iter: 1435 loss: -0.6182388067245483 c2st: 0.6002500057220459\n", + "Iter: 1440 loss: -0.6194486021995544 c2st: 0.598800003528595\n", + "Iter: 1445 loss: -0.6174426674842834 c2st: 0.6013500094413757\n", + "Iter: 1450 loss: -0.6184781193733215 c2st: 0.6001499891281128\n", + "Iter: 1455 loss: -0.620819628238678 c2st: 0.597100019454956\n", + "Iter: 1460 loss: -0.6173653602600098 c2st: 0.6016499996185303\n", + "Iter: 1465 loss: -0.6198772192001343 c2st: 0.5979999899864197\n", + "Iter: 1470 loss: -0.6192620992660522 c2st: 0.5988500118255615\n", + "Iter: 1475 loss: -0.6196452975273132 c2st: 0.5984500050544739\n", + "Iter: 1480 loss: -0.6173966526985168 c2st: 0.6009500026702881\n", + "Iter: 1485 loss: -0.6184281706809998 c2st: 0.5998499989509583\n", + "Iter: 1490 loss: -0.6169424653053284 c2st: 0.6015999913215637\n", + "Iter: 1495 loss: -0.6172785758972168 c2st: 0.6014999747276306\n", + "Iter: 1500 loss: -0.6212173700332642 c2st: 0.5965999960899353\n", + "Iter: 1505 loss: -0.6179980635643005 c2st: 0.6005499958992004\n", + "Iter: 1510 loss: -0.6179988384246826 c2st: 0.6005499958992004\n", + "Iter: 1515 loss: -0.6180117726325989 c2st: 0.6005499958992004\n", + "Iter: 1520 loss: -0.617567777633667 c2st: 0.6011000275611877\n", + "Iter: 1525 loss: -0.6173338294029236 c2st: 0.6015999913215637\n", + "Iter: 1530 loss: -0.6174731254577637 c2st: 0.6011499762535095\n", + "Iter: 1535 loss: -0.6177924871444702 c2st: 0.6007000207901001\n", + "Iter: 1540 loss: -0.6158369183540344 c2st: 0.6032000184059143\n", + "Iter: 1545 loss: -0.6189630031585693 c2st: 0.5995500087738037\n", + "Iter: 1550 loss: -0.6194722056388855 c2st: 0.5986499786376953\n", + "Iter: 1555 loss: -0.6196293830871582 c2st: 0.598550021648407\n", + "Iter: 1560 loss: -0.6197776794433594 c2st: 0.5982499718666077\n", + "Iter: 1565 loss: -0.617957592010498 c2st: 0.6007000207901001\n", + "Iter: 1570 loss: -0.6198217272758484 c2st: 0.5984500050544739\n", + "Iter: 1575 loss: -0.6189644932746887 c2st: 0.5993000268936157\n", + "Iter: 1580 loss: -0.6202735900878906 c2st: 0.5982499718666077\n", + "Iter: 1585 loss: -0.6201862096786499 c2st: 0.5976999998092651\n", + "Iter: 1590 loss: -0.6200886964797974 c2st: 0.5980499982833862\n", + "Iter: 1595 loss: -0.6197633743286133 c2st: 0.5986499786376953\n", + "Iter: 1600 loss: -0.6181470155715942 c2st: 0.6005499958992004\n", + "Iter: 1605 loss: -0.616684079170227 c2st: 0.6025000214576721\n", + "Iter: 1610 loss: -0.6151019334793091 c2st: 0.6043999791145325\n", + "Iter: 1615 loss: -0.6215740442276001 c2st: 0.5961999893188477\n", + "Iter: 1620 loss: -0.6184802651405334 c2st: 0.6000000238418579\n", + "Iter: 1625 loss: -0.6173826456069946 c2st: 0.6012499928474426\n", + "Iter: 1630 loss: -0.6210145354270935 c2st: 0.5968999862670898\n", + "Iter: 1635 loss: -0.6191996335983276 c2st: 0.5989500284194946\n", + "Iter: 1640 loss: -0.6192101836204529 c2st: 0.5993000268936157\n", + "Iter: 1645 loss: -0.6198793053627014 c2st: 0.5984500050544739\n", + "Iter: 1650 loss: -0.6178261637687683 c2st: 0.600600004196167\n", + "Iter: 1655 loss: -0.617153525352478 c2st: 0.6016499996185303\n", + "Iter: 1660 loss: -0.6197729110717773 c2st: 0.5985000133514404\n", + "Iter: 1665 loss: -0.6179728507995605 c2st: 0.6004499793052673\n", + "Iter: 1670 loss: -0.6187618374824524 c2st: 0.5999000072479248\n", + "Iter: 1675 loss: -0.6205615401268005 c2st: 0.5976999998092651\n", + "Iter: 1680 loss: -0.6201775670051575 c2st: 0.5979499816894531\n", + "Iter: 1685 loss: -0.6179571747779846 c2st: 0.6005499958992004\n", + "Iter: 1690 loss: -0.6188905835151672 c2st: 0.5997499823570251\n", + "Iter: 1695 loss: -0.620720624923706 c2st: 0.5971999764442444\n", + "Iter: 1700 loss: -0.620267391204834 c2st: 0.5982000231742859\n", + "Iter: 1705 loss: -0.6213396787643433 c2st: 0.5967000126838684\n", + "Iter: 1710 loss: -0.6208070516586304 c2st: 0.5971500277519226\n", + "Iter: 1715 loss: -0.6191047430038452 c2st: 0.5992500185966492\n", + "Iter: 1720 loss: -0.6219591498374939 c2st: 0.5953999757766724\n", + "Iter: 1725 loss: -0.6176038980484009 c2st: 0.6010500192642212\n", + "Iter: 1730 loss: -0.6170132756233215 c2st: 0.6019499897956848\n", + "Iter: 1735 loss: -0.6186572909355164 c2st: 0.6003000140190125\n", + "Iter: 1740 loss: -0.6202334761619568 c2st: 0.5980499982833862\n", + "Iter: 1745 loss: -0.6188625693321228 c2st: 0.5995500087738037\n", + "Iter: 1750 loss: -0.6213284134864807 c2st: 0.5962499976158142\n", + "Iter: 1755 loss: -0.6186030507087708 c2st: 0.5996500253677368\n", + "Iter: 1760 loss: -0.6190254092216492 c2st: 0.599399983882904\n", + "Iter: 1765 loss: -0.6186383962631226 c2st: 0.5999500155448914\n", + "Iter: 1770 loss: -0.6182922124862671 c2st: 0.6007999777793884\n", + "Iter: 1775 loss: -0.6181656122207642 c2st: 0.6002500057220459\n", + "Iter: 1780 loss: -0.6189230680465698 c2st: 0.5993499755859375\n", + "Iter: 1785 loss: -0.6172605156898499 c2st: 0.6015499830245972\n", + "Iter: 1790 loss: -0.6175057888031006 c2st: 0.6012499928474426\n", + "Iter: 1795 loss: -0.6182215213775635 c2st: 0.6003999710083008\n", + "Iter: 1800 loss: -0.6161562204360962 c2st: 0.6026999950408936\n", + "Iter: 1805 loss: -0.6180568337440491 c2st: 0.6004499793052673\n", + "Iter: 1810 loss: -0.6205332279205322 c2st: 0.597599983215332\n", + "Iter: 1815 loss: -0.6163040995597839 c2st: 0.6025500297546387\n", + "Iter: 1820 loss: -0.6199609637260437 c2st: 0.5983499884605408\n", + "Iter: 1825 loss: -0.6198911666870117 c2st: 0.5978999733924866\n", + "Iter: 1830 loss: -0.620290219783783 c2st: 0.5978500247001648\n", + "Iter: 1835 loss: -0.6184350848197937 c2st: 0.5997999906539917\n", + "Iter: 1840 loss: -0.620343029499054 c2st: 0.5982000231742859\n", + "Iter: 1845 loss: -0.6187055110931396 c2st: 0.5998499989509583\n", + "Iter: 1850 loss: -0.6179800629615784 c2st: 0.6003999710083008\n", + "Iter: 1855 loss: -0.6196507811546326 c2st: 0.5987499952316284\n", + "Iter: 1860 loss: -0.6194504499435425 c2st: 0.5989500284194946\n", + "Iter: 1865 loss: -0.6174485683441162 c2st: 0.6014500260353088\n", + "Iter: 1870 loss: -0.621494472026825 c2st: 0.5959500074386597\n", + "Iter: 1875 loss: -0.6177120208740234 c2st: 0.6012499928474426\n", + "Iter: 1880 loss: -0.6220514178276062 c2st: 0.5960000157356262\n", + "Iter: 1885 loss: -0.619389533996582 c2st: 0.5992500185966492\n", + "Iter: 1890 loss: -0.6170373558998108 c2st: 0.6017500162124634\n", + "Iter: 1895 loss: -0.6214593052864075 c2st: 0.5964499711990356\n", + "Iter: 1900 loss: -0.616989254951477 c2st: 0.602150022983551\n", + "Iter: 1905 loss: -0.6203736066818237 c2st: 0.5977500081062317\n", + "Iter: 1910 loss: -0.618008553981781 c2st: 0.6006500124931335\n", + "Iter: 1915 loss: -0.6207523345947266 c2st: 0.5972999930381775\n", + "Iter: 1920 loss: -0.6176109313964844 c2st: 0.6007999777793884\n", + "Iter: 1925 loss: -0.6175388693809509 c2st: 0.6011999845504761\n", + "Iter: 1930 loss: -0.6179701089859009 c2st: 0.6005499958992004\n", + "Iter: 1935 loss: -0.6185967922210693 c2st: 0.5997999906539917\n", + "Iter: 1940 loss: -0.6182857751846313 c2st: 0.6000000238418579\n", + "Iter: 1945 loss: -0.6184766888618469 c2st: 0.600350022315979\n", + "Iter: 1950 loss: -0.6165481209754944 c2st: 0.6023499965667725\n", + "Iter: 1955 loss: -0.6179415583610535 c2st: 0.6004499793052673\n", + "Iter: 1960 loss: -0.6203224658966064 c2st: 0.5978999733924866\n", + "Iter: 1965 loss: -0.6199612021446228 c2st: 0.5983999967575073\n", + "Iter: 1970 loss: -0.6164470314979553 c2st: 0.602400004863739\n", + "Iter: 1975 loss: -0.6180115938186646 c2st: 0.6003999710083008\n", + "Iter: 1980 loss: -0.6175373792648315 c2st: 0.6010000109672546\n", + "Iter: 1985 loss: -0.6190100312232971 c2st: 0.599399983882904\n", + "Iter: 1990 loss: -0.6179408431053162 c2st: 0.6008999943733215\n", + "Iter: 1995 loss: -0.6148406863212585 c2st: 0.6046000123023987\n", + "Iter: 2000 loss: -0.62095707654953 c2st: 0.597000002861023\n", + "Iter: 2005 loss: -0.618209183216095 c2st: 0.6004499793052673\n", + "Iter: 2010 loss: -0.6174066662788391 c2st: 0.6014000177383423\n", + "Iter: 2015 loss: -0.6178025007247925 c2st: 0.600600004196167\n", + "Iter: 2020 loss: -0.6182594895362854 c2st: 0.6001499891281128\n", + "Iter: 2025 loss: -0.6208759546279907 c2st: 0.5970500111579895\n", + "Iter: 2030 loss: -0.6196939945220947 c2st: 0.5982999801635742\n", + "Iter: 2035 loss: -0.6188115477561951 c2st: 0.5996000170707703\n", + "Iter: 2040 loss: -0.6188920140266418 c2st: 0.5993499755859375\n", + "Iter: 2045 loss: -0.6177331209182739 c2st: 0.6010500192642212\n", + "Iter: 2050 loss: -0.6215634346008301 c2st: 0.5964499711990356\n", + "Iter: 2055 loss: -0.6174084544181824 c2st: 0.6013000011444092\n", + "Iter: 2060 loss: -0.6192595958709717 c2st: 0.599049985408783\n", + "Iter: 2065 loss: -0.6184070706367493 c2st: 0.6000499725341797\n", + "Iter: 2070 loss: -0.6203914284706116 c2st: 0.5978999733924866\n", + "Iter: 2075 loss: -0.6198918223381042 c2st: 0.5985000133514404\n", + "Iter: 2080 loss: -0.6189374327659607 c2st: 0.5996500253677368\n", + "Iter: 2085 loss: -0.6165207028388977 c2st: 0.6021999716758728\n", + "Iter: 2090 loss: -0.6208372116088867 c2st: 0.5969499945640564\n", + "Iter: 2095 loss: -0.6216310262680054 c2st: 0.5968999862670898\n", + "Iter: 2100 loss: -0.6180210709571838 c2st: 0.6007500290870667\n", + "Iter: 2105 loss: -0.619331955909729 c2st: 0.5990999937057495\n", + "Iter: 2110 loss: -0.618979811668396 c2st: 0.5994499921798706\n", + "Iter: 2115 loss: -0.618797242641449 c2st: 0.5996999740600586\n", + "Iter: 2120 loss: -0.6214762330055237 c2st: 0.5961999893188477\n", + "Iter: 2125 loss: -0.6204823851585388 c2st: 0.5975000262260437\n", + "Iter: 2130 loss: -0.6191584467887878 c2st: 0.599049985408783\n", + "Iter: 2135 loss: -0.6232314705848694 c2st: 0.5942000150680542\n", + "Iter: 2140 loss: -0.6207746863365173 c2st: 0.597100019454956\n", + "Iter: 2145 loss: -0.6192428469657898 c2st: 0.5993000268936157\n", + "Iter: 2150 loss: -0.6192546486854553 c2st: 0.5991500020027161\n", + "Iter: 2155 loss: -0.6204375624656677 c2st: 0.5975499749183655\n", + "Iter: 2160 loss: -0.6180942058563232 c2st: 0.6001999974250793\n", + "Iter: 2165 loss: -0.6200460195541382 c2st: 0.5981500148773193\n", + "Iter: 2170 loss: -0.6185932159423828 c2st: 0.599399983882904\n", + "Iter: 2175 loss: -0.6184731721878052 c2st: 0.6003999710083008\n", + "Iter: 2180 loss: -0.6171244382858276 c2st: 0.6014500260353088\n", + "Iter: 2185 loss: -0.6175640225410461 c2st: 0.6014000177383423\n", + "Iter: 2190 loss: -0.619648814201355 c2st: 0.5983999967575073\n", + "Iter: 2195 loss: -0.6194908618927002 c2st: 0.5987499952316284\n", + "Iter: 2200 loss: -0.618282675743103 c2st: 0.6001499891281128\n", + "Iter: 2205 loss: -0.6183747053146362 c2st: 0.6000000238418579\n", + "Iter: 2210 loss: -0.6207738518714905 c2st: 0.5971500277519226\n", + "Iter: 2215 loss: -0.6174677014350891 c2st: 0.6011999845504761\n", + "Iter: 2220 loss: -0.6208269000053406 c2st: 0.5970500111579895\n", + "Iter: 2225 loss: -0.6169129610061646 c2st: 0.6022999882698059\n", + "Iter: 2230 loss: -0.6155892610549927 c2st: 0.6035000085830688\n", + "Iter: 2235 loss: -0.6182668209075928 c2st: 0.6001999974250793\n", + "Iter: 2240 loss: -0.6197999715805054 c2st: 0.5989000201225281\n", + "Iter: 2245 loss: -0.6198830008506775 c2st: 0.5981000065803528\n", + "Iter: 2250 loss: -0.6203122138977051 c2st: 0.5979499816894531\n", + "Iter: 2255 loss: -0.6206740736961365 c2st: 0.597100019454956\n", + "Iter: 2260 loss: -0.6185599565505981 c2st: 0.5999000072479248\n", + "Iter: 2265 loss: -0.62041175365448 c2st: 0.5976999998092651\n", + "Iter: 2270 loss: -0.6188910603523254 c2st: 0.599399983882904\n", + "Iter: 2275 loss: -0.6146090626716614 c2st: 0.6047000288963318\n", + "Iter: 2280 loss: -0.6183300018310547 c2st: 0.6002500057220459\n", + "Iter: 2285 loss: -0.6192919611930847 c2st: 0.5989000201225281\n", + "Iter: 2290 loss: -0.6220893263816833 c2st: 0.5961999893188477\n", + "Iter: 2295 loss: -0.6187349557876587 c2st: 0.6000000238418579\n", + "Iter: 2300 loss: -0.6173949837684631 c2st: 0.6011999845504761\n", + "Iter: 2305 loss: -0.6178432703018188 c2st: 0.6008999943733215\n", + "Iter: 2310 loss: -0.621432900428772 c2st: 0.5963000059127808\n", + "Iter: 2315 loss: -0.6184016466140747 c2st: 0.6000000238418579\n", + "Iter: 2320 loss: -0.6201689839363098 c2st: 0.5980499982833862\n", + "Iter: 2325 loss: -0.6175022721290588 c2st: 0.6011000275611877\n", + "Iter: 2330 loss: -0.6185252666473389 c2st: 0.5999500155448914\n", + "Iter: 2335 loss: -0.620674729347229 c2st: 0.5972499847412109\n", + "Iter: 2340 loss: -0.6197201013565063 c2st: 0.5982999801635742\n", + "Iter: 2345 loss: -0.62059485912323 c2st: 0.5972999930381775\n", + "Iter: 2350 loss: -0.6192253828048706 c2st: 0.599049985408783\n", + "Iter: 2355 loss: -0.6185383200645447 c2st: 0.5997499823570251\n", + "Iter: 2360 loss: -0.6174823641777039 c2st: 0.6014500260353088\n", + "Iter: 2365 loss: -0.6200562715530396 c2st: 0.5982000231742859\n", + "Iter: 2370 loss: -0.6176278591156006 c2st: 0.6011000275611877\n", + "Iter: 2375 loss: -0.6194196939468384 c2st: 0.5992000102996826\n", + "Iter: 2380 loss: -0.6194421052932739 c2st: 0.5986999869346619\n", + "Iter: 2385 loss: -0.6185922026634216 c2st: 0.5997499823570251\n", + "Iter: 2390 loss: -0.6180707812309265 c2st: 0.6006500124931335\n", + "Iter: 2395 loss: -0.6172458529472351 c2st: 0.6016499996185303\n", + "Iter: 2400 loss: -0.6167193055152893 c2st: 0.602150022983551\n", + "Iter: 2405 loss: -0.6150957345962524 c2st: 0.6039999723434448\n", + "Iter: 2410 loss: -0.6177734136581421 c2st: 0.600600004196167\n", + "Iter: 2415 loss: -0.6190250515937805 c2st: 0.5992000102996826\n", + "Iter: 2420 loss: -0.6191740036010742 c2st: 0.5992000102996826\n", + "Iter: 2425 loss: -0.6204228401184082 c2st: 0.597350001335144\n", + "Iter: 2430 loss: -0.6196173429489136 c2st: 0.5986999869346619\n", + "Iter: 2435 loss: -0.6187497973442078 c2st: 0.5994499921798706\n", + "Iter: 2440 loss: -0.6237017512321472 c2st: 0.5936499834060669\n", + "Iter: 2445 loss: -0.620772659778595 c2st: 0.5971500277519226\n", + "Iter: 2450 loss: -0.6181834936141968 c2st: 0.600600004196167\n", + "Iter: 2455 loss: -0.6184377074241638 c2st: 0.6001999974250793\n", + "Iter: 2460 loss: -0.6189398169517517 c2st: 0.5995500087738037\n", + "Iter: 2465 loss: -0.6218021512031555 c2st: 0.5968499779701233\n", + "Iter: 2470 loss: -0.6187366843223572 c2st: 0.5997499823570251\n", + "Iter: 2475 loss: -0.619182288646698 c2st: 0.5992000102996826\n", + "Iter: 2480 loss: -0.6184156537055969 c2st: 0.600350022315979\n", + "Iter: 2485 loss: -0.6177342534065247 c2st: 0.6011000275611877\n", + "Iter: 2490 loss: -0.6180091500282288 c2st: 0.6007000207901001\n", + "Iter: 2495 loss: -0.6203287839889526 c2st: 0.5978999733924866\n" ] } ], "source": [ - "n_iters =500\n", + "n_iters =2500\n", "num_samples = 10000\n", - "gauss_model_C2ST = Gauss(2)\n", - "\n", - "model_toy_opt = torch.optim.Adam(gauss_model_C2ST.parameters(), lr=0.01)\n", "\n", "for epoch in range(n_iters):\n", " model_toy_opt.zero_grad()\n", @@ -359,14 +761,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "bandwidth: tensor(2.2765)\n" + "bandwidth: tensor(2.2888)\n" ] } ], @@ -382,513 +784,2519 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iter: 0 loss: 0.45519524812698364\n", - "Iter: 1 loss: 0.45078498125076294\n", - "Iter: 2 loss: 0.4469403028488159\n", - "Iter: 3 loss: 0.43820884823799133\n", - "Iter: 4 loss: 0.43495211005210876\n", - "Iter: 5 loss: 0.42624229192733765\n", - "Iter: 6 loss: 0.4188424050807953\n", - "Iter: 7 loss: 0.4177173376083374\n", - "Iter: 8 loss: 0.4145834445953369\n", - "Iter: 9 loss: 0.4064328670501709\n", - "Iter: 10 loss: 0.4102313816547394\n", - "Iter: 11 loss: 0.4002833962440491\n", - "Iter: 12 loss: 0.395648717880249\n", - "Iter: 13 loss: 0.3921594023704529\n", - "Iter: 14 loss: 0.3872637152671814\n", - "Iter: 15 loss: 0.3914651870727539\n", - "Iter: 16 loss: 0.37969154119491577\n", - "Iter: 17 loss: 0.3774113059043884\n", - "Iter: 18 loss: 0.36558035016059875\n", - "Iter: 19 loss: 0.3619534969329834\n", - "Iter: 20 loss: 0.3744296133518219\n", - "Iter: 21 loss: 0.3626626431941986\n", - "Iter: 22 loss: 0.35876375436782837\n", - "Iter: 23 loss: 0.35218846797943115\n", - "Iter: 24 loss: 0.3480914831161499\n", - "Iter: 25 loss: 0.3417472839355469\n", - "Iter: 26 loss: 0.3454816937446594\n", - "Iter: 27 loss: 0.33421194553375244\n", - "Iter: 28 loss: 0.3241797983646393\n", - "Iter: 29 loss: 0.33131134510040283\n", - "Iter: 30 loss: 0.32663142681121826\n", - "Iter: 31 loss: 0.31895512342453003\n", - "Iter: 32 loss: 0.32014453411102295\n", - "Iter: 33 loss: 0.3107997179031372\n", - "Iter: 34 loss: 0.30951860547065735\n", - "Iter: 35 loss: 0.30062335729599\n", - "Iter: 36 loss: 0.30198103189468384\n", - "Iter: 37 loss: 0.29325684905052185\n", - "Iter: 38 loss: 0.28937509655952454\n", - "Iter: 39 loss: 0.2832806706428528\n", - "Iter: 40 loss: 0.27872195839881897\n", - "Iter: 41 loss: 0.27881595492362976\n", - "Iter: 42 loss: 0.27056682109832764\n", - "Iter: 43 loss: 0.2748660445213318\n", - "Iter: 44 loss: 0.262276828289032\n", - "Iter: 45 loss: 0.2565692067146301\n", - "Iter: 46 loss: 0.2562626600265503\n", - "Iter: 47 loss: 0.25410282611846924\n", - "Iter: 48 loss: 0.25027573108673096\n", - "Iter: 49 loss: 0.24907642602920532\n", - "Iter: 50 loss: 0.23473845422267914\n", - "Iter: 51 loss: 0.24369847774505615\n", - "Iter: 52 loss: 0.23539631068706512\n", - "Iter: 53 loss: 0.23346713185310364\n", - "Iter: 54 loss: 0.22721347212791443\n", - "Iter: 55 loss: 0.2220672219991684\n", - "Iter: 56 loss: 0.2179817110300064\n", - "Iter: 57 loss: 0.21617309749126434\n", - "Iter: 58 loss: 0.21955564618110657\n", - "Iter: 59 loss: 0.21329577267169952\n", - "Iter: 60 loss: 0.20890752971172333\n", - "Iter: 61 loss: 0.20710352063179016\n", - "Iter: 62 loss: 0.20194993913173676\n", - "Iter: 63 loss: 0.20545773208141327\n", - "Iter: 64 loss: 0.1997375637292862\n", - "Iter: 65 loss: 0.1958613097667694\n", - "Iter: 66 loss: 0.19053904712200165\n", - "Iter: 67 loss: 0.18529267609119415\n", - "Iter: 68 loss: 0.18440082669258118\n", - "Iter: 69 loss: 0.18730022013187408\n", - "Iter: 70 loss: 0.181126207113266\n", - "Iter: 71 loss: 0.17619329690933228\n", - "Iter: 72 loss: 0.18172234296798706\n", - "Iter: 73 loss: 0.1735943853855133\n", - "Iter: 74 loss: 0.1792670637369156\n", - "Iter: 75 loss: 0.1683024913072586\n", - "Iter: 76 loss: 0.17448724806308746\n", - "Iter: 77 loss: 0.1637558788061142\n", - "Iter: 78 loss: 0.1602364480495453\n", - "Iter: 79 loss: 0.16326595842838287\n", - "Iter: 80 loss: 0.16046379506587982\n", - "Iter: 81 loss: 0.16440163552761078\n", - "Iter: 82 loss: 0.15376566350460052\n", - "Iter: 83 loss: 0.1552104353904724\n", - "Iter: 84 loss: 0.16042542457580566\n", - "Iter: 85 loss: 0.15865936875343323\n", - "Iter: 86 loss: 0.1516791433095932\n", - "Iter: 87 loss: 0.15229646861553192\n", - "Iter: 88 loss: 0.14970450103282928\n", - "Iter: 89 loss: 0.1506226509809494\n", - "Iter: 90 loss: 0.14778423309326172\n", - "Iter: 91 loss: 0.14435236155986786\n", - "Iter: 92 loss: 0.14554856717586517\n", - "Iter: 93 loss: 0.14322946965694427\n", - "Iter: 94 loss: 0.13952313363552094\n", - "Iter: 95 loss: 0.13771480321884155\n", - "Iter: 96 loss: 0.13872021436691284\n", - "Iter: 97 loss: 0.13956701755523682\n", - "Iter: 98 loss: 0.13872115314006805\n", - "Iter: 99 loss: 0.13632629811763763\n", - "Iter: 100 loss: 0.1323421448469162\n", - "Iter: 101 loss: 0.1328093409538269\n", - "Iter: 102 loss: 0.13343758881092072\n", - "Iter: 103 loss: 0.13928133249282837\n", - "Iter: 104 loss: 0.13554063439369202\n", - "Iter: 105 loss: 0.13170412182807922\n", - "Iter: 106 loss: 0.13008880615234375\n", - "Iter: 107 loss: 0.12024170160293579\n", - "Iter: 108 loss: 0.12998022139072418\n", - "Iter: 109 loss: 0.12840594351291656\n", - "Iter: 110 loss: 0.1247217059135437\n", - "Iter: 111 loss: 0.12880973517894745\n", - "Iter: 112 loss: 0.12166151404380798\n", - "Iter: 113 loss: 0.11819282174110413\n", - "Iter: 114 loss: 0.1225791871547699\n", - "Iter: 115 loss: 0.1218191534280777\n", - "Iter: 116 loss: 0.11917562782764435\n", - "Iter: 117 loss: 0.11515329778194427\n", - "Iter: 118 loss: 0.11929553747177124\n", - "Iter: 119 loss: 0.12039783596992493\n", - "Iter: 120 loss: 0.11816361546516418\n", - "Iter: 121 loss: 0.11420337855815887\n", - "Iter: 122 loss: 0.11252963542938232\n", - "Iter: 123 loss: 0.11587062478065491\n", - "Iter: 124 loss: 0.11253765225410461\n", - "Iter: 125 loss: 0.11273998022079468\n", - "Iter: 126 loss: 0.11740787327289581\n", - "Iter: 127 loss: 0.10582128167152405\n", - "Iter: 128 loss: 0.11154545843601227\n", - "Iter: 129 loss: 0.11538156867027283\n", - "Iter: 130 loss: 0.10817402601242065\n", - "Iter: 131 loss: 0.1083008348941803\n", - "Iter: 132 loss: 0.10580724477767944\n", - "Iter: 133 loss: 0.11306515336036682\n", - "Iter: 134 loss: 0.10584807395935059\n", - "Iter: 135 loss: 0.11089053750038147\n", - "Iter: 136 loss: 0.104869544506073\n", - "Iter: 137 loss: 0.10563516616821289\n", - "Iter: 138 loss: 0.1049295961856842\n", - "Iter: 139 loss: 0.10466113686561584\n", - "Iter: 140 loss: 0.10392886400222778\n", - "Iter: 141 loss: 0.1059429943561554\n", - "Iter: 142 loss: 0.10283616185188293\n", - "Iter: 143 loss: 0.1014527678489685\n", - "Iter: 144 loss: 0.10355693101882935\n", - "Iter: 145 loss: 0.10255125164985657\n", - "Iter: 146 loss: 0.09819823503494263\n", - "Iter: 147 loss: 0.10009914636611938\n", - "Iter: 148 loss: 0.09963348507881165\n", - "Iter: 149 loss: 0.09662127494812012\n", - "Iter: 150 loss: 0.10060787200927734\n", - "Iter: 151 loss: 0.09978336095809937\n", - "Iter: 152 loss: 0.09733206033706665\n", - "Iter: 153 loss: 0.09952086210250854\n", - "Iter: 154 loss: 0.09039860963821411\n", - "Iter: 155 loss: 0.0980340838432312\n", - "Iter: 156 loss: 0.09490647912025452\n", - "Iter: 157 loss: 0.0937143862247467\n", - "Iter: 158 loss: 0.09069955348968506\n", - "Iter: 159 loss: 0.09310054779052734\n", - "Iter: 160 loss: 0.09537550806999207\n", - "Iter: 161 loss: 0.08872002363204956\n", - "Iter: 162 loss: 0.09361818432807922\n", - "Iter: 163 loss: 0.088713139295578\n", - "Iter: 164 loss: 0.08602523803710938\n", - "Iter: 165 loss: 0.08957138657569885\n", - "Iter: 166 loss: 0.09183502197265625\n", - "Iter: 167 loss: 0.09671074151992798\n", - "Iter: 168 loss: 0.08681496977806091\n", - "Iter: 169 loss: 0.08598396182060242\n", - "Iter: 170 loss: 0.08352348208427429\n", - "Iter: 171 loss: 0.08509916067123413\n", - "Iter: 172 loss: 0.0890321433544159\n", - "Iter: 173 loss: 0.08505871891975403\n", - "Iter: 174 loss: 0.08792689442634583\n", - "Iter: 175 loss: 0.0853966474533081\n", - "Iter: 176 loss: 0.08449414372444153\n", - "Iter: 177 loss: 0.08106836676597595\n", - "Iter: 178 loss: 0.08735117316246033\n", - "Iter: 179 loss: 0.08540371060371399\n", - "Iter: 180 loss: 0.08414351940155029\n", - "Iter: 181 loss: 0.08352208137512207\n", - "Iter: 182 loss: 0.08164045214653015\n", - "Iter: 183 loss: 0.08540523052215576\n", - "Iter: 184 loss: 0.07766696810722351\n", - "Iter: 185 loss: 0.08096176385879517\n", - "Iter: 186 loss: 0.0803687572479248\n", - "Iter: 187 loss: 0.08159187436103821\n", - "Iter: 188 loss: 0.07941681146621704\n", - "Iter: 189 loss: 0.07911252975463867\n", - "Iter: 190 loss: 0.07821837067604065\n", - "Iter: 191 loss: 0.0784912109375\n", - "Iter: 192 loss: 0.07887682318687439\n", - "Iter: 193 loss: 0.08016452193260193\n", - "Iter: 194 loss: 0.0778939425945282\n", - "Iter: 195 loss: 0.07692119479179382\n", - "Iter: 196 loss: 0.07306376099586487\n", - "Iter: 197 loss: 0.07670983672142029\n", - "Iter: 198 loss: 0.07366287708282471\n", - "Iter: 199 loss: 0.07609334588050842\n", - "Iter: 200 loss: 0.07529067993164062\n", - "Iter: 201 loss: 0.07222872972488403\n", - "Iter: 202 loss: 0.07370349764823914\n", - "Iter: 203 loss: 0.07170513272285461\n", - "Iter: 204 loss: 0.07299834489822388\n", - "Iter: 205 loss: 0.07613399624824524\n", - "Iter: 206 loss: 0.07333481311798096\n", - "Iter: 207 loss: 0.07392749190330505\n", - "Iter: 208 loss: 0.07557487487792969\n", - "Iter: 209 loss: 0.07425516843795776\n", - "Iter: 210 loss: 0.07137009501457214\n", - "Iter: 211 loss: 0.0708138644695282\n", - "Iter: 212 loss: 0.06964024901390076\n", - "Iter: 213 loss: 0.07117313146591187\n", - "Iter: 214 loss: 0.07017597556114197\n", - "Iter: 215 loss: 0.07419911026954651\n", - "Iter: 216 loss: 0.06622594594955444\n", - "Iter: 217 loss: 0.06923070549964905\n", - "Iter: 218 loss: 0.06694063544273376\n", - "Iter: 219 loss: 0.06879207491874695\n", - "Iter: 220 loss: 0.06713896989822388\n", - "Iter: 221 loss: 0.06906947493553162\n", - "Iter: 222 loss: 0.06689301133155823\n", - "Iter: 223 loss: 0.06258463859558105\n", - "Iter: 224 loss: 0.06965464353561401\n", - "Iter: 225 loss: 0.0695115327835083\n", - "Iter: 226 loss: 0.06854283809661865\n", - "Iter: 227 loss: 0.06727573275566101\n", - "Iter: 228 loss: 0.06221264600753784\n", - "Iter: 229 loss: 0.06197458505630493\n", - "Iter: 230 loss: 0.06398019194602966\n", - "Iter: 231 loss: 0.06354627013206482\n", - "Iter: 232 loss: 0.062334924936294556\n", - "Iter: 233 loss: 0.061604976654052734\n", - "Iter: 234 loss: 0.06445467472076416\n", - "Iter: 235 loss: 0.06533282995223999\n", - "Iter: 236 loss: 0.060871660709381104\n", - "Iter: 237 loss: 0.05923601984977722\n", - "Iter: 238 loss: 0.060790449380874634\n", - "Iter: 239 loss: 0.05890679359436035\n", - "Iter: 240 loss: 0.06257879734039307\n", - "Iter: 241 loss: 0.05809217691421509\n", - "Iter: 242 loss: 0.058893412351608276\n", - "Iter: 243 loss: 0.058339595794677734\n", - "Iter: 244 loss: 0.0588836669921875\n", - "Iter: 245 loss: 0.06028488278388977\n", - "Iter: 246 loss: 0.05717286467552185\n", - "Iter: 247 loss: 0.05631834268569946\n", - "Iter: 248 loss: 0.059402912855148315\n", - "Iter: 249 loss: 0.057748615741729736\n", - "Iter: 250 loss: 0.0594506561756134\n", - "Iter: 251 loss: 0.05602601170539856\n", - "Iter: 252 loss: 0.05604678392410278\n", - "Iter: 253 loss: 0.055382728576660156\n", - "Iter: 254 loss: 0.0552290678024292\n", - "Iter: 255 loss: 0.05708768963813782\n", - "Iter: 256 loss: 0.052467674016952515\n", - "Iter: 257 loss: 0.05470484495162964\n", - "Iter: 258 loss: 0.052076876163482666\n", - "Iter: 259 loss: 0.05195823311805725\n", - "Iter: 260 loss: 0.0556735098361969\n", - "Iter: 261 loss: 0.054369449615478516\n", - "Iter: 262 loss: 0.05068331956863403\n", - "Iter: 263 loss: 0.05396577715873718\n", - "Iter: 264 loss: 0.055849045515060425\n", - "Iter: 265 loss: 0.0470404326915741\n", - "Iter: 266 loss: 0.05279377102851868\n", - "Iter: 267 loss: 0.051145464181900024\n", - "Iter: 268 loss: 0.05194440484046936\n", - "Iter: 269 loss: 0.053883761167526245\n", - "Iter: 270 loss: 0.0535525381565094\n", - "Iter: 271 loss: 0.05165836215019226\n", - "Iter: 272 loss: 0.052077025175094604\n", - "Iter: 273 loss: 0.052883028984069824\n", - "Iter: 274 loss: 0.050727516412734985\n", - "Iter: 275 loss: 0.049676477909088135\n", - "Iter: 276 loss: 0.05270996689796448\n", - "Iter: 277 loss: 0.05069968104362488\n", - "Iter: 278 loss: 0.048232465982437134\n", - "Iter: 279 loss: 0.04919159412384033\n", - "Iter: 280 loss: 0.04719799757003784\n", - "Iter: 281 loss: 0.04930427670478821\n", - "Iter: 282 loss: 0.0481492280960083\n", - "Iter: 283 loss: 0.04672887921333313\n", - "Iter: 284 loss: 0.04674479365348816\n", - "Iter: 285 loss: 0.049877285957336426\n", - "Iter: 286 loss: 0.04757285118103027\n", - "Iter: 287 loss: 0.047833770513534546\n", - "Iter: 288 loss: 0.04450693726539612\n", - "Iter: 289 loss: 0.044367700815200806\n", - "Iter: 290 loss: 0.04539957642555237\n", - "Iter: 291 loss: 0.04586079716682434\n", - "Iter: 292 loss: 0.044182926416397095\n", - "Iter: 293 loss: 0.04346546530723572\n", - "Iter: 294 loss: 0.04467803239822388\n", - "Iter: 295 loss: 0.0464310348033905\n", - "Iter: 296 loss: 0.046001434326171875\n", - "Iter: 297 loss: 0.04238054156303406\n", - "Iter: 298 loss: 0.044171273708343506\n", - "Iter: 299 loss: 0.04150962829589844\n", - "Iter: 300 loss: 0.043462663888931274\n", - "Iter: 301 loss: 0.04223188757896423\n", - "Iter: 302 loss: 0.04507172107696533\n", - "Iter: 303 loss: 0.04055163264274597\n", - "Iter: 304 loss: 0.043676674365997314\n", - "Iter: 305 loss: 0.03898662328720093\n", - "Iter: 306 loss: 0.03997194766998291\n", - "Iter: 307 loss: 0.041816651821136475\n", - "Iter: 308 loss: 0.04172468185424805\n", - "Iter: 309 loss: 0.04088640213012695\n", - "Iter: 310 loss: 0.041917890310287476\n", - "Iter: 311 loss: 0.0371016263961792\n", - "Iter: 312 loss: 0.04206100106239319\n", - "Iter: 313 loss: 0.03937125205993652\n", - "Iter: 314 loss: 0.0407242476940155\n", - "Iter: 315 loss: 0.04024115204811096\n", - "Iter: 316 loss: 0.037756651639938354\n", - "Iter: 317 loss: 0.038556188344955444\n", - "Iter: 318 loss: 0.03728523850440979\n", - "Iter: 319 loss: 0.03972315788269043\n", - "Iter: 320 loss: 0.03853285312652588\n", - "Iter: 321 loss: 0.03997105360031128\n", - "Iter: 322 loss: 0.035472095012664795\n", - "Iter: 323 loss: 0.03531733155250549\n", - "Iter: 324 loss: 0.039327651262283325\n", - "Iter: 325 loss: 0.03872475028038025\n", - "Iter: 326 loss: 0.03761190176010132\n", - "Iter: 327 loss: 0.037466078996658325\n", - "Iter: 328 loss: 0.03652361035346985\n", - "Iter: 329 loss: 0.03619101643562317\n", - "Iter: 330 loss: 0.035405874252319336\n", - "Iter: 331 loss: 0.03617170453071594\n", - "Iter: 332 loss: 0.036013901233673096\n", - "Iter: 333 loss: 0.036839962005615234\n", - "Iter: 334 loss: 0.03734692931175232\n", - "Iter: 335 loss: 0.0352628231048584\n", - "Iter: 336 loss: 0.033967792987823486\n", - "Iter: 337 loss: 0.03372979164123535\n", - "Iter: 338 loss: 0.03584066033363342\n", - "Iter: 339 loss: 0.03292208909988403\n", - "Iter: 340 loss: 0.03430736064910889\n", - "Iter: 341 loss: 0.03236520290374756\n", - "Iter: 342 loss: 0.033391714096069336\n", - "Iter: 343 loss: 0.033580511808395386\n", - "Iter: 344 loss: 0.030996322631835938\n", - "Iter: 345 loss: 0.032331764698028564\n", - "Iter: 346 loss: 0.034298211336135864\n", - "Iter: 347 loss: 0.03238976001739502\n", - "Iter: 348 loss: 0.03239014744758606\n", - "Iter: 349 loss: 0.03178834915161133\n", - "Iter: 350 loss: 0.03267255425453186\n", - "Iter: 351 loss: 0.03164660930633545\n", - "Iter: 352 loss: 0.032489627599716187\n", - "Iter: 353 loss: 0.032841384410858154\n", - "Iter: 354 loss: 0.03191089630126953\n", - "Iter: 355 loss: 0.03239220380783081\n", - "Iter: 356 loss: 0.030943334102630615\n", - "Iter: 357 loss: 0.03147152066230774\n", - "Iter: 358 loss: 0.030812233686447144\n", - "Iter: 359 loss: 0.030320674180984497\n", - "Iter: 360 loss: 0.030432939529418945\n", - "Iter: 361 loss: 0.031981974840164185\n", - "Iter: 362 loss: 0.03194701671600342\n", - "Iter: 363 loss: 0.027991533279418945\n", - "Iter: 364 loss: 0.028559625148773193\n", - "Iter: 365 loss: 0.030961275100708008\n", - "Iter: 366 loss: 0.03039953112602234\n", - "Iter: 367 loss: 0.02952653169631958\n", - "Iter: 368 loss: 0.030865490436553955\n", - "Iter: 369 loss: 0.02979046106338501\n", - "Iter: 370 loss: 0.030716419219970703\n", - "Iter: 371 loss: 0.028212040662765503\n", - "Iter: 372 loss: 0.030199438333511353\n", - "Iter: 373 loss: 0.028416574001312256\n", - "Iter: 374 loss: 0.027402758598327637\n", - "Iter: 375 loss: 0.029569774866104126\n", - "Iter: 376 loss: 0.0269719660282135\n", - "Iter: 377 loss: 0.025926858186721802\n", - "Iter: 378 loss: 0.027880609035491943\n", - "Iter: 379 loss: 0.02847158908843994\n", - "Iter: 380 loss: 0.02682289481163025\n", - "Iter: 381 loss: 0.027504801750183105\n", - "Iter: 382 loss: 0.02723550796508789\n", - "Iter: 383 loss: 0.027873605489730835\n", - "Iter: 384 loss: 0.027044326066970825\n", - "Iter: 385 loss: 0.025544315576553345\n", - "Iter: 386 loss: 0.025613933801651\n", - "Iter: 387 loss: 0.02515244483947754\n", - "Iter: 388 loss: 0.024764537811279297\n", - "Iter: 389 loss: 0.02574324607849121\n", - "Iter: 390 loss: 0.025191664695739746\n", - "Iter: 391 loss: 0.025477081537246704\n", - "Iter: 392 loss: 0.02494606375694275\n", - "Iter: 393 loss: 0.025279313325881958\n", - "Iter: 394 loss: 0.025307655334472656\n", - "Iter: 395 loss: 0.02469313144683838\n", - "Iter: 396 loss: 0.025278300046920776\n", - "Iter: 397 loss: 0.02437528967857361\n", - "Iter: 398 loss: 0.025956809520721436\n", - "Iter: 399 loss: 0.02508571743965149\n", - "Iter: 400 loss: 0.02375847101211548\n", - "Iter: 401 loss: 0.026004940271377563\n", - "Iter: 402 loss: 0.02520686388015747\n", - "Iter: 403 loss: 0.024346977472305298\n", - "Iter: 404 loss: 0.023589342832565308\n", - "Iter: 405 loss: 0.023165404796600342\n", - "Iter: 406 loss: 0.023003578186035156\n", - "Iter: 407 loss: 0.02182382345199585\n", - "Iter: 408 loss: 0.023298531770706177\n", - "Iter: 409 loss: 0.023395001888275146\n", - "Iter: 410 loss: 0.02446538209915161\n", - "Iter: 411 loss: 0.02376893162727356\n", - "Iter: 412 loss: 0.022242754697799683\n", - "Iter: 413 loss: 0.023642152547836304\n", - "Iter: 414 loss: 0.0223691463470459\n", - "Iter: 415 loss: 0.024912536144256592\n", - "Iter: 416 loss: 0.02336135506629944\n", - "Iter: 417 loss: 0.020691663026809692\n", - "Iter: 418 loss: 0.020412147045135498\n", - "Iter: 419 loss: 0.021946877241134644\n", - "Iter: 420 loss: 0.02310273051261902\n", - "Iter: 421 loss: 0.022970646619796753\n", - "Iter: 422 loss: 0.022354841232299805\n", - "Iter: 423 loss: 0.02242860198020935\n", - "Iter: 424 loss: 0.022026658058166504\n", - "Iter: 425 loss: 0.021336883306503296\n", - "Iter: 426 loss: 0.02161353826522827\n", - "Iter: 427 loss: 0.02183777093887329\n", - "Iter: 428 loss: 0.022169798612594604\n", - "Iter: 429 loss: 0.02344951033592224\n", - "Iter: 430 loss: 0.021261870861053467\n", - "Iter: 431 loss: 0.02160140872001648\n", - "Iter: 432 loss: 0.01978224515914917\n", - "Iter: 433 loss: 0.020966023206710815\n", - "Iter: 434 loss: 0.021705269813537598\n", - "Iter: 435 loss: 0.020233064889907837\n", - "Iter: 436 loss: 0.02100113034248352\n", - "Iter: 437 loss: 0.02302137017250061\n", - "Iter: 438 loss: 0.02064579725265503\n", - "Iter: 439 loss: 0.02187332510948181\n", - "Iter: 440 loss: 0.020333796739578247\n", - "Iter: 441 loss: 0.021138489246368408\n", - "Iter: 442 loss: 0.02182590961456299\n", - "Iter: 443 loss: 0.02031683921813965\n", - "Iter: 444 loss: 0.021629542112350464\n", - "Iter: 445 loss: 0.020421117544174194\n", - "Iter: 446 loss: 0.020064949989318848\n", - "Iter: 447 loss: 0.021659523248672485\n", - "Iter: 448 loss: 0.02059343457221985\n", - "Iter: 449 loss: 0.019864529371261597\n", - "Iter: 450 loss: 0.02082347869873047\n", - "Iter: 451 loss: 0.020734548568725586\n", - "Iter: 452 loss: 0.020685166120529175\n", - "Iter: 453 loss: 0.020850181579589844\n", - "Iter: 454 loss: 0.01969471573829651\n", - "Iter: 455 loss: 0.020175695419311523\n", - "Iter: 456 loss: 0.02158653736114502\n", - "Iter: 457 loss: 0.020408540964126587\n", - "Iter: 458 loss: 0.020729631185531616\n", - "Iter: 459 loss: 0.019496828317642212\n", - "Iter: 460 loss: 0.020047783851623535\n", - "Iter: 461 loss: 0.020070582628250122\n", - "Iter: 462 loss: 0.019426435232162476\n", - "Iter: 463 loss: 0.020235180854797363\n", - "Iter: 464 loss: 0.02007955312728882\n", - "Iter: 465 loss: 0.017941802740097046\n", - "Iter: 466 loss: 0.01958286762237549\n", - "Iter: 467 loss: 0.019482940435409546\n", - "Iter: 468 loss: 0.02032381296157837\n", - "Iter: 469 loss: 0.019543379545211792\n", - "Iter: 470 loss: 0.020692527294158936\n", - "Iter: 471 loss: 0.020238429307937622\n", - "Iter: 472 loss: 0.018847554922103882\n", - "Iter: 473 loss: 0.019299179315567017\n", - "Iter: 474 loss: 0.01976880431175232\n", - "Iter: 475 loss: 0.01951777935028076\n", - "Iter: 476 loss: 0.0211009681224823\n", - "Iter: 477 loss: 0.018854260444641113\n", - "Iter: 478 loss: 0.01936390995979309\n", - "Iter: 479 loss: 0.021017402410507202\n", - "Iter: 480 loss: 0.01953992247581482\n", - "Iter: 481 loss: 0.021517843008041382\n", - "Iter: 482 loss: 0.02023947238922119\n", - "Iter: 483 loss: 0.019968628883361816\n", - "Iter: 484 loss: 0.019135206937789917\n", - "Iter: 485 loss: 0.01855650544166565\n", - "Iter: 486 loss: 0.018735527992248535\n", - "Iter: 487 loss: 0.019445687532424927\n", - "Iter: 488 loss: 0.01950320601463318\n", - "Iter: 489 loss: 0.01989954710006714\n", - "Iter: 490 loss: 0.020185530185699463\n", - "Iter: 491 loss: 0.02009943127632141\n", - "Iter: 492 loss: 0.018908172845840454\n", - "Iter: 493 loss: 0.020407408475875854\n", - "Iter: 494 loss: 0.019628018140792847\n", - "Iter: 495 loss: 0.018289506435394287\n", - "Iter: 496 loss: 0.02073100209236145\n", - "Iter: 497 loss: 0.018935859203338623\n", - "Iter: 498 loss: 0.018940389156341553\n", - "Iter: 499 loss: 0.020217478275299072\n" + "Iter: 0 loss: 0.4496729373931885\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iter: 1 loss: 0.4451999068260193\n", + "Iter: 2 loss: 0.44188782572746277\n", + "Iter: 3 loss: 0.43756312131881714\n", + "Iter: 4 loss: 0.4393022656440735\n", + "Iter: 5 loss: 0.42359933257102966\n", + "Iter: 6 loss: 0.4275501072406769\n", + "Iter: 7 loss: 0.4198361039161682\n", + "Iter: 8 loss: 0.41872817277908325\n", + "Iter: 9 loss: 0.4192970395088196\n", + "Iter: 10 loss: 0.4064967930316925\n", + "Iter: 11 loss: 0.4023510813713074\n", + "Iter: 12 loss: 0.4011698067188263\n", + "Iter: 13 loss: 0.3993815779685974\n", + "Iter: 14 loss: 0.3897513151168823\n", + "Iter: 15 loss: 0.38918381929397583\n", + "Iter: 16 loss: 0.37855637073516846\n", + "Iter: 17 loss: 0.37639474868774414\n", + "Iter: 18 loss: 0.37560713291168213\n", + "Iter: 19 loss: 0.3692959249019623\n", + "Iter: 20 loss: 0.3607851266860962\n", + "Iter: 21 loss: 0.3593204915523529\n", + "Iter: 22 loss: 0.3562641739845276\n", + "Iter: 23 loss: 0.34850746393203735\n", + "Iter: 24 loss: 0.34767934679985046\n", + "Iter: 25 loss: 0.34617868065834045\n", + "Iter: 26 loss: 0.3355754315853119\n", + "Iter: 27 loss: 0.33246368169784546\n", + "Iter: 28 loss: 0.328023761510849\n", + "Iter: 29 loss: 0.3297092616558075\n", + "Iter: 30 loss: 0.3208579123020172\n", + "Iter: 31 loss: 0.32324039936065674\n", + "Iter: 32 loss: 0.3177262842655182\n", + "Iter: 33 loss: 0.3082793653011322\n", + "Iter: 34 loss: 0.30888253450393677\n", + "Iter: 35 loss: 0.306333988904953\n", + "Iter: 36 loss: 0.295831561088562\n", + "Iter: 37 loss: 0.2900165617465973\n", + "Iter: 38 loss: 0.28929173946380615\n", + "Iter: 39 loss: 0.2894023060798645\n", + "Iter: 40 loss: 0.2788490951061249\n", + "Iter: 41 loss: 0.27633845806121826\n", + "Iter: 42 loss: 0.2731468677520752\n", + "Iter: 43 loss: 0.27292633056640625\n", + "Iter: 44 loss: 0.2661840319633484\n", + "Iter: 45 loss: 0.26193416118621826\n", + "Iter: 46 loss: 0.25657153129577637\n", + "Iter: 47 loss: 0.25826871395111084\n", + "Iter: 48 loss: 0.24974478781223297\n", + "Iter: 49 loss: 0.2443685382604599\n", + "Iter: 50 loss: 0.2371019870042801\n", + "Iter: 51 loss: 0.24269922077655792\n", + "Iter: 52 loss: 0.2345854938030243\n", + "Iter: 53 loss: 0.23029330372810364\n", + "Iter: 54 loss: 0.22643090784549713\n", + "Iter: 55 loss: 0.22689680755138397\n", + "Iter: 56 loss: 0.22337450087070465\n", + "Iter: 57 loss: 0.22495868802070618\n", + "Iter: 58 loss: 0.2174992859363556\n", + "Iter: 59 loss: 0.21446733176708221\n", + "Iter: 60 loss: 0.20953086018562317\n", + "Iter: 61 loss: 0.20855304598808289\n", + "Iter: 62 loss: 0.20349165797233582\n", + "Iter: 63 loss: 0.2065720409154892\n", + "Iter: 64 loss: 0.1998126059770584\n", + "Iter: 65 loss: 0.1935868114233017\n", + "Iter: 66 loss: 0.1935187429189682\n", + "Iter: 67 loss: 0.19215624034404755\n", + "Iter: 68 loss: 0.19562603533267975\n", + "Iter: 69 loss: 0.18561126291751862\n", + "Iter: 70 loss: 0.18040414154529572\n", + "Iter: 71 loss: 0.18112051486968994\n", + "Iter: 72 loss: 0.1790187954902649\n", + "Iter: 73 loss: 0.1772668957710266\n", + "Iter: 74 loss: 0.1720217913389206\n", + "Iter: 75 loss: 0.17109893262386322\n", + "Iter: 76 loss: 0.16976900398731232\n", + "Iter: 77 loss: 0.1694180816411972\n", + "Iter: 78 loss: 0.17022739350795746\n", + "Iter: 79 loss: 0.1662636399269104\n", + "Iter: 80 loss: 0.16720707714557648\n", + "Iter: 81 loss: 0.1625797301530838\n", + "Iter: 82 loss: 0.15651457011699677\n", + "Iter: 83 loss: 0.15582288801670074\n", + "Iter: 84 loss: 0.1550646275281906\n", + "Iter: 85 loss: 0.15769076347351074\n", + "Iter: 86 loss: 0.14926080405712128\n", + "Iter: 87 loss: 0.151881605386734\n", + "Iter: 88 loss: 0.14559601247310638\n", + "Iter: 89 loss: 0.1489439457654953\n", + "Iter: 90 loss: 0.1453743427991867\n", + "Iter: 91 loss: 0.15025879442691803\n", + "Iter: 92 loss: 0.1446385532617569\n", + "Iter: 93 loss: 0.14544352889060974\n", + "Iter: 94 loss: 0.14479254186153412\n", + "Iter: 95 loss: 0.1367882639169693\n", + "Iter: 96 loss: 0.14009638130664825\n", + "Iter: 97 loss: 0.13851481676101685\n", + "Iter: 98 loss: 0.13308757543563843\n", + "Iter: 99 loss: 0.13586553931236267\n", + "Iter: 100 loss: 0.1395355612039566\n", + "Iter: 101 loss: 0.13110420107841492\n", + "Iter: 102 loss: 0.13274408876895905\n", + "Iter: 103 loss: 0.133186474442482\n", + "Iter: 104 loss: 0.1339809149503708\n", + "Iter: 105 loss: 0.1304280161857605\n", + "Iter: 106 loss: 0.13086971640586853\n", + "Iter: 107 loss: 0.12699367105960846\n", + "Iter: 108 loss: 0.12793974578380585\n", + "Iter: 109 loss: 0.12186253070831299\n", + "Iter: 110 loss: 0.12528225779533386\n", + "Iter: 111 loss: 0.12227536737918854\n", + "Iter: 112 loss: 0.12368886172771454\n", + "Iter: 113 loss: 0.12087276577949524\n", + "Iter: 114 loss: 0.11949573457241058\n", + "Iter: 115 loss: 0.12200669944286346\n", + "Iter: 116 loss: 0.1218862235546112\n", + "Iter: 117 loss: 0.1225544810295105\n", + "Iter: 118 loss: 0.11967375874519348\n", + "Iter: 119 loss: 0.12054620683193207\n", + "Iter: 120 loss: 0.12310270965099335\n", + "Iter: 121 loss: 0.11309802532196045\n", + "Iter: 122 loss: 0.11429131031036377\n", + "Iter: 123 loss: 0.1140475869178772\n", + "Iter: 124 loss: 0.11379262804985046\n", + "Iter: 125 loss: 0.11121851205825806\n", + "Iter: 126 loss: 0.11177870631217957\n", + "Iter: 127 loss: 0.10995796322822571\n", + "Iter: 128 loss: 0.11453458666801453\n", + "Iter: 129 loss: 0.11268463730812073\n", + "Iter: 130 loss: 0.11034330725669861\n", + "Iter: 131 loss: 0.11416350305080414\n", + "Iter: 132 loss: 0.10874974727630615\n", + "Iter: 133 loss: 0.10880190134048462\n", + "Iter: 134 loss: 0.10443532466888428\n", + "Iter: 135 loss: 0.10451516509056091\n", + "Iter: 136 loss: 0.1065850555896759\n", + "Iter: 137 loss: 0.10230514407157898\n", + "Iter: 138 loss: 0.10694459080696106\n", + "Iter: 139 loss: 0.1002320945262909\n", + "Iter: 140 loss: 0.10242593288421631\n", + "Iter: 141 loss: 0.10189211368560791\n", + "Iter: 142 loss: 0.10430240631103516\n", + "Iter: 143 loss: 0.10016196966171265\n", + "Iter: 144 loss: 0.10728931427001953\n", + "Iter: 145 loss: 0.09722235798835754\n", + "Iter: 146 loss: 0.09896382689476013\n", + "Iter: 147 loss: 0.0993259847164154\n", + "Iter: 148 loss: 0.09497568011283875\n", + "Iter: 149 loss: 0.1044202446937561\n", + "Iter: 150 loss: 0.09754431247711182\n", + "Iter: 151 loss: 0.0954357385635376\n", + "Iter: 152 loss: 0.09959873557090759\n", + "Iter: 153 loss: 0.09840273857116699\n", + "Iter: 154 loss: 0.09916120767593384\n", + "Iter: 155 loss: 0.09794434905052185\n", + "Iter: 156 loss: 0.09466218948364258\n", + "Iter: 157 loss: 0.09303539991378784\n", + "Iter: 158 loss: 0.09190112352371216\n", + "Iter: 159 loss: 0.09640291333198547\n", + "Iter: 160 loss: 0.09544670581817627\n", + "Iter: 161 loss: 0.0958106517791748\n", + "Iter: 162 loss: 0.09043139219284058\n", + "Iter: 163 loss: 0.09096497297286987\n", + "Iter: 164 loss: 0.08926188945770264\n", + "Iter: 165 loss: 0.09447011351585388\n", + "Iter: 166 loss: 0.08623725175857544\n", + "Iter: 167 loss: 0.0879514217376709\n", + "Iter: 168 loss: 0.09150916337966919\n", + "Iter: 169 loss: 0.0874609649181366\n", + "Iter: 170 loss: 0.08892822265625\n", + "Iter: 171 loss: 0.08688217401504517\n", + "Iter: 172 loss: 0.0854174792766571\n", + "Iter: 173 loss: 0.08686080574989319\n", + "Iter: 174 loss: 0.08869621157646179\n", + "Iter: 175 loss: 0.08638060092926025\n", + "Iter: 176 loss: 0.08518841862678528\n", + "Iter: 177 loss: 0.08813068270683289\n", + "Iter: 178 loss: 0.08514729142189026\n", + "Iter: 179 loss: 0.08443200588226318\n", + "Iter: 180 loss: 0.08435013890266418\n", + "Iter: 181 loss: 0.080176442861557\n", + "Iter: 182 loss: 0.08272713422775269\n", + "Iter: 183 loss: 0.0816839337348938\n", + "Iter: 184 loss: 0.08014446496963501\n", + "Iter: 185 loss: 0.07911783456802368\n", + "Iter: 186 loss: 0.08396688103675842\n", + "Iter: 187 loss: 0.08098423480987549\n", + "Iter: 188 loss: 0.08471402525901794\n", + "Iter: 189 loss: 0.07656946778297424\n", + "Iter: 190 loss: 0.08130434155464172\n", + "Iter: 191 loss: 0.0809289813041687\n", + "Iter: 192 loss: 0.07053515315055847\n", + "Iter: 193 loss: 0.08172115683555603\n", + "Iter: 194 loss: 0.07724887132644653\n", + "Iter: 195 loss: 0.07595407962799072\n", + "Iter: 196 loss: 0.0739876925945282\n", + "Iter: 197 loss: 0.07837614417076111\n", + "Iter: 198 loss: 0.07773107290267944\n", + "Iter: 199 loss: 0.07562255859375\n", + "Iter: 200 loss: 0.07282030582427979\n", + "Iter: 201 loss: 0.07671678066253662\n", + "Iter: 202 loss: 0.07129725813865662\n", + "Iter: 203 loss: 0.07043421268463135\n", + "Iter: 204 loss: 0.07069948315620422\n", + "Iter: 205 loss: 0.07499241828918457\n", + "Iter: 206 loss: 0.07882943749427795\n", + "Iter: 207 loss: 0.073577880859375\n", + "Iter: 208 loss: 0.07207724452018738\n", + "Iter: 209 loss: 0.06851372122764587\n", + "Iter: 210 loss: 0.0769287645816803\n", + "Iter: 211 loss: 0.07067421078681946\n", + "Iter: 212 loss: 0.07102212309837341\n", + "Iter: 213 loss: 0.07185575366020203\n", + "Iter: 214 loss: 0.0713689923286438\n", + "Iter: 215 loss: 0.06815475225448608\n", + "Iter: 216 loss: 0.0666138231754303\n", + "Iter: 217 loss: 0.0744500458240509\n", + "Iter: 218 loss: 0.07072043418884277\n", + "Iter: 219 loss: 0.06666150689125061\n", + "Iter: 220 loss: 0.06788215041160583\n", + "Iter: 221 loss: 0.06459969282150269\n", + "Iter: 222 loss: 0.06558859348297119\n", + "Iter: 223 loss: 0.06933802366256714\n", + "Iter: 224 loss: 0.06467372179031372\n", + "Iter: 225 loss: 0.0672147274017334\n", + "Iter: 226 loss: 0.06421735882759094\n", + "Iter: 227 loss: 0.06667962670326233\n", + "Iter: 228 loss: 0.06637483835220337\n", + "Iter: 229 loss: 0.06315112113952637\n", + "Iter: 230 loss: 0.06489118933677673\n", + "Iter: 231 loss: 0.06169429421424866\n", + "Iter: 232 loss: 0.06524989008903503\n", + "Iter: 233 loss: 0.06066903471946716\n", + "Iter: 234 loss: 0.06474211812019348\n", + "Iter: 235 loss: 0.06140676140785217\n", + "Iter: 236 loss: 0.061390072107315063\n", + "Iter: 237 loss: 0.06123897433280945\n", + "Iter: 238 loss: 0.06117019057273865\n", + "Iter: 239 loss: 0.059750139713287354\n", + "Iter: 240 loss: 0.05988699197769165\n", + "Iter: 241 loss: 0.059156835079193115\n", + "Iter: 242 loss: 0.06255531311035156\n", + "Iter: 243 loss: 0.06113174557685852\n", + "Iter: 244 loss: 0.06000244617462158\n", + "Iter: 245 loss: 0.05805906653404236\n", + "Iter: 246 loss: 0.06066593527793884\n", + "Iter: 247 loss: 0.05745461583137512\n", + "Iter: 248 loss: 0.05853584408760071\n", + "Iter: 249 loss: 0.05964696407318115\n", + "Iter: 250 loss: 0.0571516752243042\n", + "Iter: 251 loss: 0.05800703167915344\n", + "Iter: 252 loss: 0.05747544765472412\n", + "Iter: 253 loss: 0.0555766224861145\n", + "Iter: 254 loss: 0.060129135847091675\n", + "Iter: 255 loss: 0.05244743824005127\n", + "Iter: 256 loss: 0.057081639766693115\n", + "Iter: 257 loss: 0.05105563998222351\n", + "Iter: 258 loss: 0.053806841373443604\n", + "Iter: 259 loss: 0.055248409509658813\n", + "Iter: 260 loss: 0.05389595031738281\n", + "Iter: 261 loss: 0.054520875215530396\n", + "Iter: 262 loss: 0.051559507846832275\n", + "Iter: 263 loss: 0.05566087365150452\n", + "Iter: 264 loss: 0.05445730686187744\n", + "Iter: 265 loss: 0.05456811189651489\n", + "Iter: 266 loss: 0.049726784229278564\n", + "Iter: 267 loss: 0.05545350909233093\n", + "Iter: 268 loss: 0.05250692367553711\n", + "Iter: 269 loss: 0.05321013927459717\n", + "Iter: 270 loss: 0.05214044451713562\n", + "Iter: 271 loss: 0.05145639181137085\n", + "Iter: 272 loss: 0.05151808261871338\n", + "Iter: 273 loss: 0.04948732256889343\n", + "Iter: 274 loss: 0.0516638457775116\n", + "Iter: 275 loss: 0.0500032901763916\n", + "Iter: 276 loss: 0.048897236585617065\n", + "Iter: 277 loss: 0.05402529239654541\n", + "Iter: 278 loss: 0.04994410276412964\n", + "Iter: 279 loss: 0.04933452606201172\n", + "Iter: 280 loss: 0.04980248212814331\n", + "Iter: 281 loss: 0.04881477355957031\n", + "Iter: 282 loss: 0.04746934771537781\n", + "Iter: 283 loss: 0.04367119073867798\n", + "Iter: 284 loss: 0.04666954278945923\n", + "Iter: 285 loss: 0.04562199115753174\n", + "Iter: 286 loss: 0.047421425580978394\n", + "Iter: 287 loss: 0.04552280902862549\n", + "Iter: 288 loss: 0.047207266092300415\n", + "Iter: 289 loss: 0.0474855899810791\n", + "Iter: 290 loss: 0.04500097036361694\n", + "Iter: 291 loss: 0.046677201986312866\n", + "Iter: 292 loss: 0.045404523611068726\n", + "Iter: 293 loss: 0.045503854751586914\n", + "Iter: 294 loss: 0.04482182860374451\n", + "Iter: 295 loss: 0.04442518949508667\n", + "Iter: 296 loss: 0.04446971416473389\n", + "Iter: 297 loss: 0.04401978850364685\n", + "Iter: 298 loss: 0.045271873474121094\n", + "Iter: 299 loss: 0.041949182748794556\n", + "Iter: 300 loss: 0.04158732295036316\n", + "Iter: 301 loss: 0.0457514226436615\n", + "Iter: 302 loss: 0.042229026556015015\n", + "Iter: 303 loss: 0.04346567392349243\n", + "Iter: 304 loss: 0.03954008221626282\n", + "Iter: 305 loss: 0.04416593909263611\n", + "Iter: 306 loss: 0.040461450815200806\n", + "Iter: 307 loss: 0.041659027338027954\n", + "Iter: 308 loss: 0.04303067922592163\n", + "Iter: 309 loss: 0.04048645496368408\n", + "Iter: 310 loss: 0.03959465026855469\n", + "Iter: 311 loss: 0.042920440435409546\n", + "Iter: 312 loss: 0.04250943660736084\n", + "Iter: 313 loss: 0.03630867600440979\n", + "Iter: 314 loss: 0.039939284324645996\n", + "Iter: 315 loss: 0.04009583592414856\n", + "Iter: 316 loss: 0.0396803617477417\n", + "Iter: 317 loss: 0.03747156262397766\n", + "Iter: 318 loss: 0.03923770785331726\n", + "Iter: 319 loss: 0.036986738443374634\n", + "Iter: 320 loss: 0.03790131211280823\n", + "Iter: 321 loss: 0.03819975256919861\n", + "Iter: 322 loss: 0.037955135107040405\n", + "Iter: 323 loss: 0.03760918974876404\n", + "Iter: 324 loss: 0.03500008583068848\n", + "Iter: 325 loss: 0.03512775897979736\n", + "Iter: 326 loss: 0.03613719344139099\n", + "Iter: 327 loss: 0.03625890612602234\n", + "Iter: 328 loss: 0.035879552364349365\n", + "Iter: 329 loss: 0.03618812561035156\n", + "Iter: 330 loss: 0.03661829233169556\n", + "Iter: 331 loss: 0.03727099299430847\n", + "Iter: 332 loss: 0.035426557064056396\n", + "Iter: 333 loss: 0.03633621335029602\n", + "Iter: 334 loss: 0.03716054558753967\n", + "Iter: 335 loss: 0.03552725911140442\n", + "Iter: 336 loss: 0.03384190797805786\n", + "Iter: 337 loss: 0.03557866811752319\n", + "Iter: 338 loss: 0.035080909729003906\n", + "Iter: 339 loss: 0.03339332342147827\n", + "Iter: 340 loss: 0.034171849489212036\n", + "Iter: 341 loss: 0.03569215536117554\n", + "Iter: 342 loss: 0.0328652560710907\n", + "Iter: 343 loss: 0.03519582748413086\n", + "Iter: 344 loss: 0.031869709491729736\n", + "Iter: 345 loss: 0.03350386023521423\n", + "Iter: 346 loss: 0.03275403380393982\n", + "Iter: 347 loss: 0.03127637505531311\n", + "Iter: 348 loss: 0.03363808989524841\n", + "Iter: 349 loss: 0.032689452171325684\n", + "Iter: 350 loss: 0.03239709138870239\n", + "Iter: 351 loss: 0.03015965223312378\n", + "Iter: 352 loss: 0.03271302580833435\n", + "Iter: 353 loss: 0.03207096457481384\n", + "Iter: 354 loss: 0.03162086009979248\n", + "Iter: 355 loss: 0.03110361099243164\n", + "Iter: 356 loss: 0.03170686960220337\n", + "Iter: 357 loss: 0.030152440071105957\n", + "Iter: 358 loss: 0.03131920099258423\n", + "Iter: 359 loss: 0.03052276372909546\n", + "Iter: 360 loss: 0.02929610013961792\n", + "Iter: 361 loss: 0.032048046588897705\n", + "Iter: 362 loss: 0.030439019203186035\n", + "Iter: 363 loss: 0.028581708669662476\n", + "Iter: 364 loss: 0.028078049421310425\n", + "Iter: 365 loss: 0.028841018676757812\n", + "Iter: 366 loss: 0.02848684787750244\n", + "Iter: 367 loss: 0.03152811527252197\n", + "Iter: 368 loss: 0.028850555419921875\n", + "Iter: 369 loss: 0.029390603303909302\n", + "Iter: 370 loss: 0.027633637189865112\n", + "Iter: 371 loss: 0.029650717973709106\n", + "Iter: 372 loss: 0.028395891189575195\n", + "Iter: 373 loss: 0.02668115496635437\n", + "Iter: 374 loss: 0.02756062150001526\n", + "Iter: 375 loss: 0.02801525592803955\n", + "Iter: 376 loss: 0.02770856022834778\n", + "Iter: 377 loss: 0.02690523862838745\n", + "Iter: 378 loss: 0.027250230312347412\n", + "Iter: 379 loss: 0.026497334241867065\n", + "Iter: 380 loss: 0.02713373303413391\n", + "Iter: 381 loss: 0.027697086334228516\n", + "Iter: 382 loss: 0.027164757251739502\n", + "Iter: 383 loss: 0.02486366033554077\n", + "Iter: 384 loss: 0.025483518838882446\n", + "Iter: 385 loss: 0.02591496706008911\n", + "Iter: 386 loss: 0.027258187532424927\n", + "Iter: 387 loss: 0.025916844606399536\n", + "Iter: 388 loss: 0.027638494968414307\n", + "Iter: 389 loss: 0.025364160537719727\n", + "Iter: 390 loss: 0.02409672737121582\n", + "Iter: 391 loss: 0.026063770055770874\n", + "Iter: 392 loss: 0.026751071214675903\n", + "Iter: 393 loss: 0.02549639344215393\n", + "Iter: 394 loss: 0.025247305631637573\n", + "Iter: 395 loss: 0.02486354112625122\n", + "Iter: 396 loss: 0.026295572519302368\n", + "Iter: 397 loss: 0.02337929606437683\n", + "Iter: 398 loss: 0.024504125118255615\n", + "Iter: 399 loss: 0.023812979459762573\n", + "Iter: 400 loss: 0.02349284291267395\n", + "Iter: 401 loss: 0.02403467893600464\n", + "Iter: 402 loss: 0.02543860673904419\n", + "Iter: 403 loss: 0.022913485765457153\n", + "Iter: 404 loss: 0.024120420217514038\n", + "Iter: 405 loss: 0.026116222143173218\n", + "Iter: 406 loss: 0.024881422519683838\n", + "Iter: 407 loss: 0.024232566356658936\n", + "Iter: 408 loss: 0.02362653613090515\n", + "Iter: 409 loss: 0.02367579936981201\n", + "Iter: 410 loss: 0.021001964807510376\n", + "Iter: 411 loss: 0.024472087621688843\n", + "Iter: 412 loss: 0.02304050326347351\n", + "Iter: 413 loss: 0.02282080054283142\n", + "Iter: 414 loss: 0.022123068571090698\n", + "Iter: 415 loss: 0.023085832595825195\n", + "Iter: 416 loss: 0.02368474006652832\n", + "Iter: 417 loss: 0.021786600351333618\n", + "Iter: 418 loss: 0.02263200283050537\n", + "Iter: 419 loss: 0.022865861654281616\n", + "Iter: 420 loss: 0.02262192964553833\n", + "Iter: 421 loss: 0.02110767364501953\n", + "Iter: 422 loss: 0.02172982692718506\n", + "Iter: 423 loss: 0.023205071687698364\n", + "Iter: 424 loss: 0.022056996822357178\n", + "Iter: 425 loss: 0.021543443202972412\n", + "Iter: 426 loss: 0.02204832434654236\n", + "Iter: 427 loss: 0.021268516778945923\n", + "Iter: 428 loss: 0.021279454231262207\n", + "Iter: 429 loss: 0.02151593565940857\n", + "Iter: 430 loss: 0.020671218633651733\n", + "Iter: 431 loss: 0.02242356538772583\n", + "Iter: 432 loss: 0.020970821380615234\n", + "Iter: 433 loss: 0.01959294080734253\n", + "Iter: 434 loss: 0.02144196629524231\n", + "Iter: 435 loss: 0.021182209253311157\n", + "Iter: 436 loss: 0.021326899528503418\n", + "Iter: 437 loss: 0.021464139223098755\n", + "Iter: 438 loss: 0.02121812105178833\n", + "Iter: 439 loss: 0.02136436104774475\n", + "Iter: 440 loss: 0.021014899015426636\n", + "Iter: 441 loss: 0.020911604166030884\n", + "Iter: 442 loss: 0.02019524574279785\n", + "Iter: 443 loss: 0.02181422710418701\n", + "Iter: 444 loss: 0.01920732855796814\n", + "Iter: 445 loss: 0.021558821201324463\n", + "Iter: 446 loss: 0.019795894622802734\n", + "Iter: 447 loss: 0.01982957124710083\n", + "Iter: 448 loss: 0.02092108130455017\n", + "Iter: 449 loss: 0.021098226308822632\n", + "Iter: 450 loss: 0.01978200674057007\n", + "Iter: 451 loss: 0.021598756313323975\n", + "Iter: 452 loss: 0.020446807146072388\n", + "Iter: 453 loss: 0.020904451608657837\n", + "Iter: 454 loss: 0.01878449320793152\n", + "Iter: 455 loss: 0.02132582664489746\n", + "Iter: 456 loss: 0.02129921317100525\n", + "Iter: 457 loss: 0.019604980945587158\n", + "Iter: 458 loss: 0.020999640226364136\n", + "Iter: 459 loss: 0.020472288131713867\n", + "Iter: 460 loss: 0.02013537287712097\n", + "Iter: 461 loss: 0.019786030054092407\n", + "Iter: 462 loss: 0.02050018310546875\n", + "Iter: 463 loss: 0.02043411135673523\n", + "Iter: 464 loss: 0.019143134355545044\n", + "Iter: 465 loss: 0.02011200785636902\n", + "Iter: 466 loss: 0.019162684679031372\n", + "Iter: 467 loss: 0.02197086811065674\n", + "Iter: 468 loss: 0.020723074674606323\n", + "Iter: 469 loss: 0.01988723874092102\n", + "Iter: 470 loss: 0.01956087350845337\n", + "Iter: 471 loss: 0.01977398991584778\n", + "Iter: 472 loss: 0.02006739377975464\n", + "Iter: 473 loss: 0.019349902868270874\n", + "Iter: 474 loss: 0.018790453672409058\n", + "Iter: 475 loss: 0.0215131938457489\n", + "Iter: 476 loss: 0.020336240530014038\n", + "Iter: 477 loss: 0.019731611013412476\n", + "Iter: 478 loss: 0.020038753747940063\n", + "Iter: 479 loss: 0.019382983446121216\n", + "Iter: 480 loss: 0.019375771284103394\n", + "Iter: 481 loss: 0.019539088010787964\n", + "Iter: 482 loss: 0.019057542085647583\n", + "Iter: 483 loss: 0.0190066397190094\n", + "Iter: 484 loss: 0.01838579773902893\n", + "Iter: 485 loss: 0.02095004916191101\n", + "Iter: 486 loss: 0.01933532953262329\n", + "Iter: 487 loss: 0.01869601011276245\n", + "Iter: 488 loss: 0.019112586975097656\n", + "Iter: 489 loss: 0.01865541934967041\n", + "Iter: 490 loss: 0.018987268209457397\n", + "Iter: 491 loss: 0.01897856593132019\n", + "Iter: 492 loss: 0.02027648687362671\n", + "Iter: 493 loss: 0.019268155097961426\n", + "Iter: 494 loss: 0.020608335733413696\n", + "Iter: 495 loss: 0.019157052040100098\n", + "Iter: 496 loss: 0.01946359872817993\n", + "Iter: 497 loss: 0.019624173641204834\n", + "Iter: 498 loss: 0.01748967170715332\n", + "Iter: 499 loss: 0.018586069345474243\n", + "Iter: 500 loss: 0.01976841688156128\n", + "Iter: 501 loss: 0.019291013479232788\n", + "Iter: 502 loss: 0.020559072494506836\n", + "Iter: 503 loss: 0.019178301095962524\n", + "Iter: 504 loss: 0.018630295991897583\n", + "Iter: 505 loss: 0.019900888204574585\n", + "Iter: 506 loss: 0.019205719232559204\n", + "Iter: 507 loss: 0.01961502432823181\n", + "Iter: 508 loss: 0.020049333572387695\n", + "Iter: 509 loss: 0.019123315811157227\n", + "Iter: 510 loss: 0.019478708505630493\n", + "Iter: 511 loss: 0.019352823495864868\n", + "Iter: 512 loss: 0.02060532569885254\n", + "Iter: 513 loss: 0.0206337571144104\n", + "Iter: 514 loss: 0.018913835287094116\n", + "Iter: 515 loss: 0.019134968519210815\n", + "Iter: 516 loss: 0.019730031490325928\n", + "Iter: 517 loss: 0.018759340047836304\n", + "Iter: 518 loss: 0.019255101680755615\n", + "Iter: 519 loss: 0.019174426794052124\n", + "Iter: 520 loss: 0.018981575965881348\n", + "Iter: 521 loss: 0.018278151750564575\n", + "Iter: 522 loss: 0.019353479146957397\n", + "Iter: 523 loss: 0.019464701414108276\n", + "Iter: 524 loss: 0.019415974617004395\n", + "Iter: 525 loss: 0.019433915615081787\n", + "Iter: 526 loss: 0.019318610429763794\n", + "Iter: 527 loss: 0.018605470657348633\n", + "Iter: 528 loss: 0.017994433641433716\n", + "Iter: 529 loss: 0.01941072940826416\n", + "Iter: 530 loss: 0.019761979579925537\n", + "Iter: 531 loss: 0.018856942653656006\n", + "Iter: 532 loss: 0.019337445497512817\n", + "Iter: 533 loss: 0.0193311870098114\n", + "Iter: 534 loss: 0.01870313286781311\n", + "Iter: 535 loss: 0.01773586869239807\n", + "Iter: 536 loss: 0.018199563026428223\n", + "Iter: 537 loss: 0.018378883600234985\n", + "Iter: 538 loss: 0.019421696662902832\n", + "Iter: 539 loss: 0.017274916172027588\n", + "Iter: 540 loss: 0.019169270992279053\n", + "Iter: 541 loss: 0.019131630659103394\n", + "Iter: 542 loss: 0.01917707920074463\n", + "Iter: 543 loss: 0.018183797597885132\n", + "Iter: 544 loss: 0.0185566246509552\n", + "Iter: 545 loss: 0.018847614526748657\n", + "Iter: 546 loss: 0.018297553062438965\n", + "Iter: 547 loss: 0.01833769679069519\n", + "Iter: 548 loss: 0.0198819637298584\n", + "Iter: 549 loss: 0.019047856330871582\n", + "Iter: 550 loss: 0.018488317728042603\n", + "Iter: 551 loss: 0.018710285425186157\n", + "Iter: 552 loss: 0.017969340085983276\n", + "Iter: 553 loss: 0.017748653888702393\n", + "Iter: 554 loss: 0.019579321146011353\n", + "Iter: 555 loss: 0.018958568572998047\n", + "Iter: 556 loss: 0.019635766744613647\n", + "Iter: 557 loss: 0.020076125860214233\n", + "Iter: 558 loss: 0.02076283097267151\n", + "Iter: 559 loss: 0.019081175327301025\n", + "Iter: 560 loss: 0.018558770418167114\n", + "Iter: 561 loss: 0.01930508017539978\n", + "Iter: 562 loss: 0.01852557063102722\n", + "Iter: 563 loss: 0.017961829900741577\n", + "Iter: 564 loss: 0.018456757068634033\n", + "Iter: 565 loss: 0.020103871822357178\n", + "Iter: 566 loss: 0.017981678247451782\n", + "Iter: 567 loss: 0.018539786338806152\n", + "Iter: 568 loss: 0.019337713718414307\n", + "Iter: 569 loss: 0.019991695880889893\n", + "Iter: 570 loss: 0.018614232540130615\n", + "Iter: 571 loss: 0.0184173583984375\n", + "Iter: 572 loss: 0.018724828958511353\n", + "Iter: 573 loss: 0.019518017768859863\n", + "Iter: 574 loss: 0.017901062965393066\n", + "Iter: 575 loss: 0.017810732126235962\n", + "Iter: 576 loss: 0.018839210271835327\n", + "Iter: 577 loss: 0.0164492130279541\n", + "Iter: 578 loss: 0.019847631454467773\n", + "Iter: 579 loss: 0.019725292921066284\n", + "Iter: 580 loss: 0.01869511604309082\n", + "Iter: 581 loss: 0.0184725821018219\n", + "Iter: 582 loss: 0.02028551697731018\n", + "Iter: 583 loss: 0.01909908652305603\n", + "Iter: 584 loss: 0.018993794918060303\n", + "Iter: 585 loss: 0.01828080415725708\n", + "Iter: 586 loss: 0.01920226216316223\n", + "Iter: 587 loss: 0.019728660583496094\n", + "Iter: 588 loss: 0.01817244291305542\n", + "Iter: 589 loss: 0.018644660711288452\n", + "Iter: 590 loss: 0.018636226654052734\n", + "Iter: 591 loss: 0.018140554428100586\n", + "Iter: 592 loss: 0.018183976411819458\n", + "Iter: 593 loss: 0.02002522349357605\n", + "Iter: 594 loss: 0.01874956488609314\n", + "Iter: 595 loss: 0.021231025457382202\n", + "Iter: 596 loss: 0.020097315311431885\n", + "Iter: 597 loss: 0.01999366283416748\n", + "Iter: 598 loss: 0.01720491051673889\n", + "Iter: 599 loss: 0.018737316131591797\n", + "Iter: 600 loss: 0.018861114978790283\n", + "Iter: 601 loss: 0.01855182647705078\n", + "Iter: 602 loss: 0.019837915897369385\n", + "Iter: 603 loss: 0.020447254180908203\n", + "Iter: 604 loss: 0.018404275178909302\n", + "Iter: 605 loss: 0.01862090826034546\n", + "Iter: 606 loss: 0.019333600997924805\n", + "Iter: 607 loss: 0.018502801656723022\n", + "Iter: 608 loss: 0.019529730081558228\n", + "Iter: 609 loss: 0.018752336502075195\n", + "Iter: 610 loss: 0.018282562494277954\n", + "Iter: 611 loss: 0.019089877605438232\n", + "Iter: 612 loss: 0.018409132957458496\n", + "Iter: 613 loss: 0.019206851720809937\n", + "Iter: 614 loss: 0.01812499761581421\n", + "Iter: 615 loss: 0.017894119024276733\n", + "Iter: 616 loss: 0.019660472869873047\n", + "Iter: 617 loss: 0.0192643404006958\n", + "Iter: 618 loss: 0.019287288188934326\n", + "Iter: 619 loss: 0.018683701753616333\n", + "Iter: 620 loss: 0.019079536199569702\n", + "Iter: 621 loss: 0.018455177545547485\n", + "Iter: 622 loss: 0.01917669177055359\n", + "Iter: 623 loss: 0.018983840942382812\n", + "Iter: 624 loss: 0.01829153299331665\n", + "Iter: 625 loss: 0.017905503511428833\n", + "Iter: 626 loss: 0.020086586475372314\n", + "Iter: 627 loss: 0.019473552703857422\n", + "Iter: 628 loss: 0.019633948802947998\n", + "Iter: 629 loss: 0.01795479655265808\n", + "Iter: 630 loss: 0.019534707069396973\n", + "Iter: 631 loss: 0.018612265586853027\n", + "Iter: 632 loss: 0.019105464220046997\n", + "Iter: 633 loss: 0.01946127414703369\n", + "Iter: 634 loss: 0.020567238330841064\n", + "Iter: 635 loss: 0.01834249496459961\n", + "Iter: 636 loss: 0.019797921180725098\n", + "Iter: 637 loss: 0.019720762968063354\n", + "Iter: 638 loss: 0.01792055368423462\n", + "Iter: 639 loss: 0.018451064825057983\n", + "Iter: 640 loss: 0.01931479573249817\n", + "Iter: 641 loss: 0.018407106399536133\n", + "Iter: 642 loss: 0.020423144102096558\n", + "Iter: 643 loss: 0.01930120587348938\n", + "Iter: 644 loss: 0.01976114511489868\n", + "Iter: 645 loss: 0.018009811639785767\n", + "Iter: 646 loss: 0.0197887122631073\n", + "Iter: 647 loss: 0.018508881330490112\n", + "Iter: 648 loss: 0.018887102603912354\n", + "Iter: 649 loss: 0.01770070195198059\n", + "Iter: 650 loss: 0.018215060234069824\n", + "Iter: 651 loss: 0.019186317920684814\n", + "Iter: 652 loss: 0.019630491733551025\n", + "Iter: 653 loss: 0.020288944244384766\n", + "Iter: 654 loss: 0.01921248435974121\n", + "Iter: 655 loss: 0.020103633403778076\n", + "Iter: 656 loss: 0.019504189491271973\n", + "Iter: 657 loss: 0.019090205430984497\n", + "Iter: 658 loss: 0.019294947385787964\n", + "Iter: 659 loss: 0.01940426230430603\n", + "Iter: 660 loss: 0.020336508750915527\n", + "Iter: 661 loss: 0.019846588373184204\n", + "Iter: 662 loss: 0.02037876844406128\n", + "Iter: 663 loss: 0.017891108989715576\n", + "Iter: 664 loss: 0.01853802800178528\n", + "Iter: 665 loss: 0.019699007272720337\n", + "Iter: 666 loss: 0.019154340028762817\n", + "Iter: 667 loss: 0.019447386264801025\n", + "Iter: 668 loss: 0.017797917127609253\n", + "Iter: 669 loss: 0.018753021955490112\n", + "Iter: 670 loss: 0.018761754035949707\n", + "Iter: 671 loss: 0.0195448100566864\n", + "Iter: 672 loss: 0.018984347581863403\n", + "Iter: 673 loss: 0.01898479461669922\n", + "Iter: 674 loss: 0.018670648336410522\n", + "Iter: 675 loss: 0.019037514925003052\n", + "Iter: 676 loss: 0.019262701272964478\n", + "Iter: 677 loss: 0.01885908842086792\n", + "Iter: 678 loss: 0.018284767866134644\n", + "Iter: 679 loss: 0.019537806510925293\n", + "Iter: 680 loss: 0.0201166570186615\n", + "Iter: 681 loss: 0.01937699317932129\n", + "Iter: 682 loss: 0.018129467964172363\n", + "Iter: 683 loss: 0.019863426685333252\n", + "Iter: 684 loss: 0.02006077766418457\n", + "Iter: 685 loss: 0.018000096082687378\n", + "Iter: 686 loss: 0.019750893115997314\n", + "Iter: 687 loss: 0.01964712142944336\n", + "Iter: 688 loss: 0.018980294466018677\n", + "Iter: 689 loss: 0.019518792629241943\n", + "Iter: 690 loss: 0.019715338945388794\n", + "Iter: 691 loss: 0.019336938858032227\n", + "Iter: 692 loss: 0.01899862289428711\n", + "Iter: 693 loss: 0.01904800534248352\n", + "Iter: 694 loss: 0.01800629496574402\n", + "Iter: 695 loss: 0.019890576601028442\n", + "Iter: 696 loss: 0.019788384437561035\n", + "Iter: 697 loss: 0.01989161968231201\n", + "Iter: 698 loss: 0.01985272765159607\n", + "Iter: 699 loss: 0.01929512619972229\n", + "Iter: 700 loss: 0.018383949995040894\n", + "Iter: 701 loss: 0.019781768321990967\n", + "Iter: 702 loss: 0.019672662019729614\n", + "Iter: 703 loss: 0.018285423517227173\n", + "Iter: 704 loss: 0.01759442687034607\n", + "Iter: 705 loss: 0.01914125680923462\n", + "Iter: 706 loss: 0.018546104431152344\n", + "Iter: 707 loss: 0.018490076065063477\n", + "Iter: 708 loss: 0.019984722137451172\n", + "Iter: 709 loss: 0.01884835958480835\n", + "Iter: 710 loss: 0.01925140619277954\n", + "Iter: 711 loss: 0.019399315118789673\n", + "Iter: 712 loss: 0.01834753155708313\n", + "Iter: 713 loss: 0.019003748893737793\n", + "Iter: 714 loss: 0.018364906311035156\n", + "Iter: 715 loss: 0.01986214518547058\n", + "Iter: 716 loss: 0.01860669255256653\n", + "Iter: 717 loss: 0.02106913924217224\n", + "Iter: 718 loss: 0.019020885229110718\n", + "Iter: 719 loss: 0.018682658672332764\n", + "Iter: 720 loss: 0.018804103136062622\n", + "Iter: 721 loss: 0.0182475745677948\n", + "Iter: 722 loss: 0.019870102405548096\n", + "Iter: 723 loss: 0.01743599772453308\n", + "Iter: 724 loss: 0.019755959510803223\n", + "Iter: 725 loss: 0.018584221601486206\n", + "Iter: 726 loss: 0.018988817930221558\n", + "Iter: 727 loss: 0.019367456436157227\n", + "Iter: 728 loss: 0.01847955584526062\n", + "Iter: 729 loss: 0.019789189100265503\n", + "Iter: 730 loss: 0.020305216312408447\n", + "Iter: 731 loss: 0.019344478845596313\n", + "Iter: 732 loss: 0.020704954862594604\n", + "Iter: 733 loss: 0.01918146014213562\n", + "Iter: 734 loss: 0.017760545015335083\n", + "Iter: 735 loss: 0.018940895795822144\n", + "Iter: 736 loss: 0.019757896661758423\n", + "Iter: 737 loss: 0.01792854070663452\n", + "Iter: 738 loss: 0.019305318593978882\n", + "Iter: 739 loss: 0.021361976861953735\n", + "Iter: 740 loss: 0.02026265859603882\n", + "Iter: 741 loss: 0.01924249529838562\n", + "Iter: 742 loss: 0.019042611122131348\n", + "Iter: 743 loss: 0.0184156596660614\n", + "Iter: 744 loss: 0.017721951007843018\n", + "Iter: 745 loss: 0.019662439823150635\n", + "Iter: 746 loss: 0.018479764461517334\n", + "Iter: 747 loss: 0.01961490511894226\n", + "Iter: 748 loss: 0.018178671598434448\n", + "Iter: 749 loss: 0.01903712749481201\n", + "Iter: 750 loss: 0.0194624662399292\n", + "Iter: 751 loss: 0.018412470817565918\n", + "Iter: 752 loss: 0.019268810749053955\n", + "Iter: 753 loss: 0.019493281841278076\n", + "Iter: 754 loss: 0.019572585821151733\n", + "Iter: 755 loss: 0.018749147653579712\n", + "Iter: 756 loss: 0.019520998001098633\n", + "Iter: 757 loss: 0.019530415534973145\n", + "Iter: 758 loss: 0.01880475878715515\n", + "Iter: 759 loss: 0.01902836561203003\n", + "Iter: 760 loss: 0.019911855459213257\n", + "Iter: 761 loss: 0.018772631883621216\n", + "Iter: 762 loss: 0.017329812049865723\n", + "Iter: 763 loss: 0.018986642360687256\n", + "Iter: 764 loss: 0.02023133635520935\n", + "Iter: 765 loss: 0.019406378269195557\n", + "Iter: 766 loss: 0.019321203231811523\n", + "Iter: 767 loss: 0.018374234437942505\n", + "Iter: 768 loss: 0.01767641305923462\n", + "Iter: 769 loss: 0.01882663369178772\n", + "Iter: 770 loss: 0.01988011598587036\n", + "Iter: 771 loss: 0.01784929633140564\n", + "Iter: 772 loss: 0.018349289894104004\n", + "Iter: 773 loss: 0.01748785376548767\n", + "Iter: 774 loss: 0.02067062258720398\n", + "Iter: 775 loss: 0.018307477235794067\n", + "Iter: 776 loss: 0.01968783140182495\n", + "Iter: 777 loss: 0.019025325775146484\n", + "Iter: 778 loss: 0.01949334144592285\n", + "Iter: 779 loss: 0.019538789987564087\n", + "Iter: 780 loss: 0.01918688416481018\n", + "Iter: 781 loss: 0.019685477018356323\n", + "Iter: 782 loss: 0.018893897533416748\n", + "Iter: 783 loss: 0.019831061363220215\n", + "Iter: 784 loss: 0.02012944221496582\n", + "Iter: 785 loss: 0.019681870937347412\n", + "Iter: 786 loss: 0.021389514207839966\n", + "Iter: 787 loss: 0.019876807928085327\n", + "Iter: 788 loss: 0.019307434558868408\n", + "Iter: 789 loss: 0.01965850591659546\n", + "Iter: 790 loss: 0.01858726143836975\n", + "Iter: 791 loss: 0.018428027629852295\n", + "Iter: 792 loss: 0.020348072052001953\n", + "Iter: 793 loss: 0.021342933177947998\n", + "Iter: 794 loss: 0.018541604280471802\n", + "Iter: 795 loss: 0.019486159086227417\n", + "Iter: 796 loss: 0.019179940223693848\n", + "Iter: 797 loss: 0.01902949810028076\n", + "Iter: 798 loss: 0.01915961503982544\n", + "Iter: 799 loss: 0.018495261669158936\n", + "Iter: 800 loss: 0.020211607217788696\n", + "Iter: 801 loss: 0.019334852695465088\n", + "Iter: 802 loss: 0.019626200199127197\n", + "Iter: 803 loss: 0.017528653144836426\n", + "Iter: 804 loss: 0.018570363521575928\n", + "Iter: 805 loss: 0.019025951623916626\n", + "Iter: 806 loss: 0.019734740257263184\n", + "Iter: 807 loss: 0.020437896251678467\n", + "Iter: 808 loss: 0.019664138555526733\n", + "Iter: 809 loss: 0.018283993005752563\n", + "Iter: 810 loss: 0.02073994278907776\n", + "Iter: 811 loss: 0.018152624368667603\n", + "Iter: 812 loss: 0.020172446966171265\n", + "Iter: 813 loss: 0.019948512315750122\n", + "Iter: 814 loss: 0.019075512886047363\n", + "Iter: 815 loss: 0.018632948398590088\n", + "Iter: 816 loss: 0.020497411489486694\n", + "Iter: 817 loss: 0.018808752298355103\n", + "Iter: 818 loss: 0.019710063934326172\n", + "Iter: 819 loss: 0.018248021602630615\n", + "Iter: 820 loss: 0.019155532121658325\n", + "Iter: 821 loss: 0.02039051055908203\n", + "Iter: 822 loss: 0.01917847990989685\n", + "Iter: 823 loss: 0.0187799334526062\n", + "Iter: 824 loss: 0.01810583472251892\n", + "Iter: 825 loss: 0.01904761791229248\n", + "Iter: 826 loss: 0.01834443211555481\n", + "Iter: 827 loss: 0.018952012062072754\n", + "Iter: 828 loss: 0.019571930170059204\n", + "Iter: 829 loss: 0.019837230443954468\n", + "Iter: 830 loss: 0.019837617874145508\n", + "Iter: 831 loss: 0.019177347421646118\n", + "Iter: 832 loss: 0.019307315349578857\n", + "Iter: 833 loss: 0.01919880509376526\n", + "Iter: 834 loss: 0.02045503258705139\n", + "Iter: 835 loss: 0.018306463956832886\n", + "Iter: 836 loss: 0.018684595823287964\n", + "Iter: 837 loss: 0.019731134176254272\n", + "Iter: 838 loss: 0.019141823053359985\n", + "Iter: 839 loss: 0.018745094537734985\n", + "Iter: 840 loss: 0.019217729568481445\n", + "Iter: 841 loss: 0.02011170983314514\n", + "Iter: 842 loss: 0.01840105652809143\n", + "Iter: 843 loss: 0.017287909984588623\n", + "Iter: 844 loss: 0.021060079336166382\n", + "Iter: 845 loss: 0.017978280782699585\n", + "Iter: 846 loss: 0.019802242517471313\n", + "Iter: 847 loss: 0.0202333927154541\n", + "Iter: 848 loss: 0.019498586654663086\n", + "Iter: 849 loss: 0.020142555236816406\n", + "Iter: 850 loss: 0.01913437247276306\n", + "Iter: 851 loss: 0.01899057626724243\n", + "Iter: 852 loss: 0.01934260129928589\n", + "Iter: 853 loss: 0.02033868432044983\n", + "Iter: 854 loss: 0.018212050199508667\n", + "Iter: 855 loss: 0.0176544189453125\n", + "Iter: 856 loss: 0.01977682113647461\n", + "Iter: 857 loss: 0.018533527851104736\n", + "Iter: 858 loss: 0.01895853877067566\n", + "Iter: 859 loss: 0.019349396228790283\n", + "Iter: 860 loss: 0.019758999347686768\n", + "Iter: 861 loss: 0.019531726837158203\n", + "Iter: 862 loss: 0.018227964639663696\n", + "Iter: 863 loss: 0.018955200910568237\n", + "Iter: 864 loss: 0.019555509090423584\n", + "Iter: 865 loss: 0.018600255250930786\n", + "Iter: 866 loss: 0.01908820867538452\n", + "Iter: 867 loss: 0.020978689193725586\n", + "Iter: 868 loss: 0.019310563802719116\n", + "Iter: 869 loss: 0.02080366015434265\n", + "Iter: 870 loss: 0.018034309148788452\n", + "Iter: 871 loss: 0.019051194190979004\n", + "Iter: 872 loss: 0.017665743827819824\n", + "Iter: 873 loss: 0.01861056685447693\n", + "Iter: 874 loss: 0.020772159099578857\n", + "Iter: 875 loss: 0.01736333966255188\n", + "Iter: 876 loss: 0.01987472176551819\n", + "Iter: 877 loss: 0.019516825675964355\n", + "Iter: 878 loss: 0.019018948078155518\n", + "Iter: 879 loss: 0.01904749870300293\n", + "Iter: 880 loss: 0.01878151297569275\n", + "Iter: 881 loss: 0.01985219120979309\n", + "Iter: 882 loss: 0.018610328435897827\n", + "Iter: 883 loss: 0.01789182424545288\n", + "Iter: 884 loss: 0.018878459930419922\n", + "Iter: 885 loss: 0.018898069858551025\n", + "Iter: 886 loss: 0.01938006281852722\n", + "Iter: 887 loss: 0.02038949728012085\n", + "Iter: 888 loss: 0.019587457180023193\n", + "Iter: 889 loss: 0.01878342032432556\n", + "Iter: 890 loss: 0.01999831199645996\n", + "Iter: 891 loss: 0.02033218741416931\n", + "Iter: 892 loss: 0.01891586184501648\n", + "Iter: 893 loss: 0.018528640270233154\n", + "Iter: 894 loss: 0.020224183797836304\n", + "Iter: 895 loss: 0.019839107990264893\n", + "Iter: 896 loss: 0.019465506076812744\n", + "Iter: 897 loss: 0.019235342741012573\n", + "Iter: 898 loss: 0.019181370735168457\n", + "Iter: 899 loss: 0.018295496702194214\n", + "Iter: 900 loss: 0.019247353076934814\n", + "Iter: 901 loss: 0.02019926905632019\n", + "Iter: 902 loss: 0.018848776817321777\n", + "Iter: 903 loss: 0.0188809335231781\n", + "Iter: 904 loss: 0.01975598931312561\n", + "Iter: 905 loss: 0.01915934681892395\n", + "Iter: 906 loss: 0.019762933254241943\n", + "Iter: 907 loss: 0.020229041576385498\n", + "Iter: 908 loss: 0.018826931715011597\n", + "Iter: 909 loss: 0.01980653405189514\n", + "Iter: 910 loss: 0.019708573818206787\n", + "Iter: 911 loss: 0.01759159564971924\n", + "Iter: 912 loss: 0.020863085985183716\n", + "Iter: 913 loss: 0.019782155752182007\n", + "Iter: 914 loss: 0.019980698823928833\n", + "Iter: 915 loss: 0.018386155366897583\n", + "Iter: 916 loss: 0.019254475831985474\n", + "Iter: 917 loss: 0.019629746675491333\n", + "Iter: 918 loss: 0.01861649751663208\n", + "Iter: 919 loss: 0.018882542848587036\n", + "Iter: 920 loss: 0.018494755029678345\n", + "Iter: 921 loss: 0.019250452518463135\n", + "Iter: 922 loss: 0.020075976848602295\n", + "Iter: 923 loss: 0.01909700036048889\n", + "Iter: 924 loss: 0.01866006851196289\n", + "Iter: 925 loss: 0.018498480319976807\n", + "Iter: 926 loss: 0.018846571445465088\n", + "Iter: 927 loss: 0.019927680492401123\n", + "Iter: 928 loss: 0.01911965012550354\n", + "Iter: 929 loss: 0.018947362899780273\n", + "Iter: 930 loss: 0.019465982913970947\n", + "Iter: 931 loss: 0.018003761768341064\n", + "Iter: 932 loss: 0.017466306686401367\n", + "Iter: 933 loss: 0.017587393522262573\n", + "Iter: 934 loss: 0.01801726222038269\n", + "Iter: 935 loss: 0.01952993869781494\n", + "Iter: 936 loss: 0.01979118585586548\n", + "Iter: 937 loss: 0.01915067434310913\n", + "Iter: 938 loss: 0.0207158625125885\n", + "Iter: 939 loss: 0.019430547952651978\n", + "Iter: 940 loss: 0.018095821142196655\n", + "Iter: 941 loss: 0.018701016902923584\n", + "Iter: 942 loss: 0.019568145275115967\n", + "Iter: 943 loss: 0.019028276205062866\n", + "Iter: 944 loss: 0.019705384969711304\n", + "Iter: 945 loss: 0.01861998438835144\n", + "Iter: 946 loss: 0.019766777753829956\n", + "Iter: 947 loss: 0.01897752285003662\n", + "Iter: 948 loss: 0.020454585552215576\n", + "Iter: 949 loss: 0.019652217626571655\n", + "Iter: 950 loss: 0.019989341497421265\n", + "Iter: 951 loss: 0.018589437007904053\n", + "Iter: 952 loss: 0.019694030284881592\n", + "Iter: 953 loss: 0.019581347703933716\n", + "Iter: 954 loss: 0.018609672784805298\n", + "Iter: 955 loss: 0.01807856559753418\n", + "Iter: 956 loss: 0.01927316188812256\n", + "Iter: 957 loss: 0.01967117190361023\n", + "Iter: 958 loss: 0.020187169313430786\n", + "Iter: 959 loss: 0.018279075622558594\n", + "Iter: 960 loss: 0.02129080891609192\n", + "Iter: 961 loss: 0.020025014877319336\n", + "Iter: 962 loss: 0.019507557153701782\n", + "Iter: 963 loss: 0.020636320114135742\n", + "Iter: 964 loss: 0.018905550241470337\n", + "Iter: 965 loss: 0.020048677921295166\n", + "Iter: 966 loss: 0.020188748836517334\n", + "Iter: 967 loss: 0.018747985363006592\n", + "Iter: 968 loss: 0.01968669891357422\n", + "Iter: 969 loss: 0.01950123906135559\n", + "Iter: 970 loss: 0.01930484175682068\n", + "Iter: 971 loss: 0.018834620714187622\n", + "Iter: 972 loss: 0.020265847444534302\n", + "Iter: 973 loss: 0.01924806833267212\n", + "Iter: 974 loss: 0.018712610006332397\n", + "Iter: 975 loss: 0.01839345693588257\n", + "Iter: 976 loss: 0.019427001476287842\n", + "Iter: 977 loss: 0.018916040658950806\n", + "Iter: 978 loss: 0.01933455467224121\n", + "Iter: 979 loss: 0.020030319690704346\n", + "Iter: 980 loss: 0.019412875175476074\n", + "Iter: 981 loss: 0.019473910331726074\n", + "Iter: 982 loss: 0.01891028881072998\n", + "Iter: 983 loss: 0.01818901300430298\n", + "Iter: 984 loss: 0.018780946731567383\n", + "Iter: 985 loss: 0.01978793740272522\n", + "Iter: 986 loss: 0.020553767681121826\n", + "Iter: 987 loss: 0.01918932795524597\n", + "Iter: 988 loss: 0.019124537706375122\n", + "Iter: 989 loss: 0.01909962296485901\n", + "Iter: 990 loss: 0.01927924156188965\n", + "Iter: 991 loss: 0.018852144479751587\n", + "Iter: 992 loss: 0.019291162490844727\n", + "Iter: 993 loss: 0.01842626929283142\n", + "Iter: 994 loss: 0.019443213939666748\n", + "Iter: 995 loss: 0.01934868097305298\n", + "Iter: 996 loss: 0.02058541774749756\n", + "Iter: 997 loss: 0.019149422645568848\n", + "Iter: 998 loss: 0.01967737078666687\n", + "Iter: 999 loss: 0.018331527709960938\n", + "Iter: 1000 loss: 0.017814069986343384\n", + "Iter: 1001 loss: 0.019328057765960693\n", + "Iter: 1002 loss: 0.018952757120132446\n", + "Iter: 1003 loss: 0.02011999487876892\n", + "Iter: 1004 loss: 0.020134657621383667\n", + "Iter: 1005 loss: 0.018834829330444336\n", + "Iter: 1006 loss: 0.018902748823165894\n", + "Iter: 1007 loss: 0.018799662590026855\n", + "Iter: 1008 loss: 0.019440829753875732\n", + "Iter: 1009 loss: 0.020173221826553345\n", + "Iter: 1010 loss: 0.018780916929244995\n", + "Iter: 1011 loss: 0.01888740062713623\n", + "Iter: 1012 loss: 0.01869642734527588\n", + "Iter: 1013 loss: 0.018950432538986206\n", + "Iter: 1014 loss: 0.018130451440811157\n", + "Iter: 1015 loss: 0.019915640354156494\n", + "Iter: 1016 loss: 0.018716871738433838\n", + "Iter: 1017 loss: 0.0186731219291687\n", + "Iter: 1018 loss: 0.019508063793182373\n", + "Iter: 1019 loss: 0.0193825364112854\n", + "Iter: 1020 loss: 0.01968500018119812\n", + "Iter: 1021 loss: 0.02046564221382141\n", + "Iter: 1022 loss: 0.017721176147460938\n", + "Iter: 1023 loss: 0.018916308879852295\n", + "Iter: 1024 loss: 0.018588602542877197\n", + "Iter: 1025 loss: 0.01967179775238037\n", + "Iter: 1026 loss: 0.019031822681427002\n", + "Iter: 1027 loss: 0.019558191299438477\n", + "Iter: 1028 loss: 0.018776684999465942\n", + "Iter: 1029 loss: 0.017774522304534912\n", + "Iter: 1030 loss: 0.020237833261489868\n", + "Iter: 1031 loss: 0.019201040267944336\n", + "Iter: 1032 loss: 0.019620507955551147\n", + "Iter: 1033 loss: 0.018993735313415527\n", + "Iter: 1034 loss: 0.01806822419166565\n", + "Iter: 1035 loss: 0.01998773217201233\n", + "Iter: 1036 loss: 0.018187254667282104\n", + "Iter: 1037 loss: 0.020517736673355103\n", + "Iter: 1038 loss: 0.01916325092315674\n", + "Iter: 1039 loss: 0.020126521587371826\n", + "Iter: 1040 loss: 0.01811996102333069\n", + "Iter: 1041 loss: 0.020042240619659424\n", + "Iter: 1042 loss: 0.01827588677406311\n", + "Iter: 1043 loss: 0.018521547317504883\n", + "Iter: 1044 loss: 0.01927533745765686\n", + "Iter: 1045 loss: 0.01831156015396118\n", + "Iter: 1046 loss: 0.021334469318389893\n", + "Iter: 1047 loss: 0.01909083127975464\n", + "Iter: 1048 loss: 0.019404232501983643\n", + "Iter: 1049 loss: 0.01841375231742859\n", + "Iter: 1050 loss: 0.01833254098892212\n", + "Iter: 1051 loss: 0.01796799898147583\n", + "Iter: 1052 loss: 0.018931418657302856\n", + "Iter: 1053 loss: 0.018973737955093384\n", + "Iter: 1054 loss: 0.019559741020202637\n", + "Iter: 1055 loss: 0.01839923858642578\n", + "Iter: 1056 loss: 0.018532514572143555\n", + "Iter: 1057 loss: 0.019729167222976685\n", + "Iter: 1058 loss: 0.01871955394744873\n", + "Iter: 1059 loss: 0.01955658197402954\n", + "Iter: 1060 loss: 0.01940631866455078\n", + "Iter: 1061 loss: 0.019378334283828735\n", + "Iter: 1062 loss: 0.019441723823547363\n", + "Iter: 1063 loss: 0.01843586564064026\n", + "Iter: 1064 loss: 0.018382877111434937\n", + "Iter: 1065 loss: 0.019454002380371094\n", + "Iter: 1066 loss: 0.019845962524414062\n", + "Iter: 1067 loss: 0.019343674182891846\n", + "Iter: 1068 loss: 0.019905179738998413\n", + "Iter: 1069 loss: 0.019886314868927002\n", + "Iter: 1070 loss: 0.01944422721862793\n", + "Iter: 1071 loss: 0.019641995429992676\n", + "Iter: 1072 loss: 0.0194704532623291\n", + "Iter: 1073 loss: 0.01834869384765625\n", + "Iter: 1074 loss: 0.019333213567733765\n", + "Iter: 1075 loss: 0.02038833498954773\n", + "Iter: 1076 loss: 0.01947575807571411\n", + "Iter: 1077 loss: 0.019138753414154053\n", + "Iter: 1078 loss: 0.019285887479782104\n", + "Iter: 1079 loss: 0.0196191668510437\n", + "Iter: 1080 loss: 0.018828898668289185\n", + "Iter: 1081 loss: 0.018800944089889526\n", + "Iter: 1082 loss: 0.018755048513412476\n", + "Iter: 1083 loss: 0.02005508542060852\n", + "Iter: 1084 loss: 0.019466519355773926\n", + "Iter: 1085 loss: 0.020500153303146362\n", + "Iter: 1086 loss: 0.01715385913848877\n", + "Iter: 1087 loss: 0.01866772770881653\n", + "Iter: 1088 loss: 0.019020259380340576\n", + "Iter: 1089 loss: 0.019307106733322144\n", + "Iter: 1090 loss: 0.020043402910232544\n", + "Iter: 1091 loss: 0.019596397876739502\n", + "Iter: 1092 loss: 0.018412619829177856\n", + "Iter: 1093 loss: 0.01915687322616577\n", + "Iter: 1094 loss: 0.019339710474014282\n", + "Iter: 1095 loss: 0.018811523914337158\n", + "Iter: 1096 loss: 0.020027637481689453\n", + "Iter: 1097 loss: 0.01856166124343872\n", + "Iter: 1098 loss: 0.01928737759590149\n", + "Iter: 1099 loss: 0.019035637378692627\n", + "Iter: 1100 loss: 0.019633561372756958\n", + "Iter: 1101 loss: 0.01901504397392273\n", + "Iter: 1102 loss: 0.018814951181411743\n", + "Iter: 1103 loss: 0.018972128629684448\n", + "Iter: 1104 loss: 0.01913386583328247\n", + "Iter: 1105 loss: 0.018910914659500122\n", + "Iter: 1106 loss: 0.020404160022735596\n", + "Iter: 1107 loss: 0.019643634557724\n", + "Iter: 1108 loss: 0.01929524540901184\n", + "Iter: 1109 loss: 0.019514620304107666\n", + "Iter: 1110 loss: 0.019383162260055542\n", + "Iter: 1111 loss: 0.01935446262359619\n", + "Iter: 1112 loss: 0.01962140202522278\n", + "Iter: 1113 loss: 0.01824989914894104\n", + "Iter: 1114 loss: 0.01866850256919861\n", + "Iter: 1115 loss: 0.020341157913208008\n", + "Iter: 1116 loss: 0.020472615957260132\n", + "Iter: 1117 loss: 0.01936545968055725\n", + "Iter: 1118 loss: 0.019805938005447388\n", + "Iter: 1119 loss: 0.019059330224990845\n", + "Iter: 1120 loss: 0.01746964454650879\n", + "Iter: 1121 loss: 0.019208163022994995\n", + "Iter: 1122 loss: 0.0193328857421875\n", + "Iter: 1123 loss: 0.019295573234558105\n", + "Iter: 1124 loss: 0.019007831811904907\n", + "Iter: 1125 loss: 0.01841685175895691\n", + "Iter: 1126 loss: 0.01928982138633728\n", + "Iter: 1127 loss: 0.01945975422859192\n", + "Iter: 1128 loss: 0.019281357526779175\n", + "Iter: 1129 loss: 0.018315047025680542\n", + "Iter: 1130 loss: 0.019343674182891846\n", + "Iter: 1131 loss: 0.018539398908615112\n", + "Iter: 1132 loss: 0.019603580236434937\n", + "Iter: 1133 loss: 0.019004613161087036\n", + "Iter: 1134 loss: 0.019120395183563232\n", + "Iter: 1135 loss: 0.019532203674316406\n", + "Iter: 1136 loss: 0.01894119381904602\n", + "Iter: 1137 loss: 0.01894858479499817\n", + "Iter: 1138 loss: 0.01865839958190918\n", + "Iter: 1139 loss: 0.018969088792800903\n", + "Iter: 1140 loss: 0.018282830715179443\n", + "Iter: 1141 loss: 0.018862247467041016\n", + "Iter: 1142 loss: 0.02022305130958557\n", + "Iter: 1143 loss: 0.019829094409942627\n", + "Iter: 1144 loss: 0.0194108784198761\n", + "Iter: 1145 loss: 0.020399391651153564\n", + "Iter: 1146 loss: 0.018906325101852417\n", + "Iter: 1147 loss: 0.019249826669692993\n", + "Iter: 1148 loss: 0.018440693616867065\n", + "Iter: 1149 loss: 0.019921809434890747\n", + "Iter: 1150 loss: 0.01929008960723877\n", + "Iter: 1151 loss: 0.01926589012145996\n", + "Iter: 1152 loss: 0.018507450819015503\n", + "Iter: 1153 loss: 0.01846414804458618\n", + "Iter: 1154 loss: 0.021250426769256592\n", + "Iter: 1155 loss: 0.018973112106323242\n", + "Iter: 1156 loss: 0.01981508731842041\n", + "Iter: 1157 loss: 0.018995434045791626\n", + "Iter: 1158 loss: 0.0198286771774292\n", + "Iter: 1159 loss: 0.018916070461273193\n", + "Iter: 1160 loss: 0.01878422498703003\n", + "Iter: 1161 loss: 0.018847495317459106\n", + "Iter: 1162 loss: 0.01858118176460266\n", + "Iter: 1163 loss: 0.01864531636238098\n", + "Iter: 1164 loss: 0.01918661594390869\n", + "Iter: 1165 loss: 0.01848343014717102\n", + "Iter: 1166 loss: 0.017508506774902344\n", + "Iter: 1167 loss: 0.018134713172912598\n", + "Iter: 1168 loss: 0.01866111159324646\n", + "Iter: 1169 loss: 0.018604040145874023\n", + "Iter: 1170 loss: 0.020427852869033813\n", + "Iter: 1171 loss: 0.01832205057144165\n", + "Iter: 1172 loss: 0.018337011337280273\n", + "Iter: 1173 loss: 0.019364923238754272\n", + "Iter: 1174 loss: 0.018979042768478394\n", + "Iter: 1175 loss: 0.01850232481956482\n", + "Iter: 1176 loss: 0.020530283451080322\n", + "Iter: 1177 loss: 0.01872977614402771\n", + "Iter: 1178 loss: 0.017708122730255127\n", + "Iter: 1179 loss: 0.019435644149780273\n", + "Iter: 1180 loss: 0.01874542236328125\n", + "Iter: 1181 loss: 0.018691271543502808\n", + "Iter: 1182 loss: 0.019104421138763428\n", + "Iter: 1183 loss: 0.018331378698349\n", + "Iter: 1184 loss: 0.01833459734916687\n", + "Iter: 1185 loss: 0.018193870782852173\n", + "Iter: 1186 loss: 0.019904494285583496\n", + "Iter: 1187 loss: 0.020388692617416382\n", + "Iter: 1188 loss: 0.01811477541923523\n", + "Iter: 1189 loss: 0.01943346858024597\n", + "Iter: 1190 loss: 0.019238829612731934\n", + "Iter: 1191 loss: 0.01983848214149475\n", + "Iter: 1192 loss: 0.01906558871269226\n", + "Iter: 1193 loss: 0.019552022218704224\n", + "Iter: 1194 loss: 0.01862579584121704\n", + "Iter: 1195 loss: 0.01882016658782959\n", + "Iter: 1196 loss: 0.01966649293899536\n", + "Iter: 1197 loss: 0.01901260018348694\n", + "Iter: 1198 loss: 0.020210295915603638\n", + "Iter: 1199 loss: 0.01976761221885681\n", + "Iter: 1200 loss: 0.019309520721435547\n", + "Iter: 1201 loss: 0.019947975873947144\n", + "Iter: 1202 loss: 0.019994258880615234\n", + "Iter: 1203 loss: 0.01891535520553589\n", + "Iter: 1204 loss: 0.01841762661933899\n", + "Iter: 1205 loss: 0.01966041326522827\n", + "Iter: 1206 loss: 0.021269261837005615\n", + "Iter: 1207 loss: 0.018901705741882324\n", + "Iter: 1208 loss: 0.0207938551902771\n", + "Iter: 1209 loss: 0.02022230625152588\n", + "Iter: 1210 loss: 0.019875556230545044\n", + "Iter: 1211 loss: 0.01936599612236023\n", + "Iter: 1212 loss: 0.018154442310333252\n", + "Iter: 1213 loss: 0.018489480018615723\n", + "Iter: 1214 loss: 0.01926398277282715\n", + "Iter: 1215 loss: 0.018604576587677002\n", + "Iter: 1216 loss: 0.019978046417236328\n", + "Iter: 1217 loss: 0.020015239715576172\n", + "Iter: 1218 loss: 0.01955077052116394\n", + "Iter: 1219 loss: 0.019072353839874268\n", + "Iter: 1220 loss: 0.018574386835098267\n", + "Iter: 1221 loss: 0.020260781049728394\n", + "Iter: 1222 loss: 0.019091427326202393\n", + "Iter: 1223 loss: 0.01886501908302307\n", + "Iter: 1224 loss: 0.018151909112930298\n", + "Iter: 1225 loss: 0.019461095333099365\n", + "Iter: 1226 loss: 0.019669413566589355\n", + "Iter: 1227 loss: 0.018931925296783447\n", + "Iter: 1228 loss: 0.018953323364257812\n", + "Iter: 1229 loss: 0.020446062088012695\n", + "Iter: 1230 loss: 0.01971536874771118\n", + "Iter: 1231 loss: 0.019030600786209106\n", + "Iter: 1232 loss: 0.018271148204803467\n", + "Iter: 1233 loss: 0.01893901824951172\n", + "Iter: 1234 loss: 0.01988750696182251\n", + "Iter: 1235 loss: 0.017400503158569336\n", + "Iter: 1236 loss: 0.01860940456390381\n", + "Iter: 1237 loss: 0.019285142421722412\n", + "Iter: 1238 loss: 0.01884368062019348\n", + "Iter: 1239 loss: 0.021287202835083008\n", + "Iter: 1240 loss: 0.018877625465393066\n", + "Iter: 1241 loss: 0.018839776515960693\n", + "Iter: 1242 loss: 0.017809033393859863\n", + "Iter: 1243 loss: 0.019073843955993652\n", + "Iter: 1244 loss: 0.019110441207885742\n", + "Iter: 1245 loss: 0.01813441514968872\n", + "Iter: 1246 loss: 0.018972337245941162\n", + "Iter: 1247 loss: 0.018851906061172485\n", + "Iter: 1248 loss: 0.018986284732818604\n", + "Iter: 1249 loss: 0.018195748329162598\n", + "Iter: 1250 loss: 0.019467085599899292\n", + "Iter: 1251 loss: 0.01818355917930603\n", + "Iter: 1252 loss: 0.01934117078781128\n", + "Iter: 1253 loss: 0.019890159368515015\n", + "Iter: 1254 loss: 0.01937749981880188\n", + "Iter: 1255 loss: 0.018417328596115112\n", + "Iter: 1256 loss: 0.018410921096801758\n", + "Iter: 1257 loss: 0.018407315015792847\n", + "Iter: 1258 loss: 0.017778456211090088\n", + "Iter: 1259 loss: 0.019625931978225708\n", + "Iter: 1260 loss: 0.019015848636627197\n", + "Iter: 1261 loss: 0.017471343278884888\n", + "Iter: 1262 loss: 0.020227700471878052\n", + "Iter: 1263 loss: 0.018288224935531616\n", + "Iter: 1264 loss: 0.01913967728614807\n", + "Iter: 1265 loss: 0.01913851499557495\n", + "Iter: 1266 loss: 0.01865324378013611\n", + "Iter: 1267 loss: 0.019673585891723633\n", + "Iter: 1268 loss: 0.018691331148147583\n", + "Iter: 1269 loss: 0.01753157377243042\n", + "Iter: 1270 loss: 0.02003750205039978\n", + "Iter: 1271 loss: 0.019176065921783447\n", + "Iter: 1272 loss: 0.01925411820411682\n", + "Iter: 1273 loss: 0.02101936936378479\n", + "Iter: 1274 loss: 0.019136518239974976\n", + "Iter: 1275 loss: 0.019083231687545776\n", + "Iter: 1276 loss: 0.01872354745864868\n", + "Iter: 1277 loss: 0.018863707780838013\n", + "Iter: 1278 loss: 0.019709020853042603\n", + "Iter: 1279 loss: 0.01811116933822632\n", + "Iter: 1280 loss: 0.01988658308982849\n", + "Iter: 1281 loss: 0.0182417631149292\n", + "Iter: 1282 loss: 0.017678678035736084\n", + "Iter: 1283 loss: 0.019913285970687866\n", + "Iter: 1284 loss: 0.01957303285598755\n", + "Iter: 1285 loss: 0.019056648015975952\n", + "Iter: 1286 loss: 0.019208699464797974\n", + "Iter: 1287 loss: 0.019600093364715576\n", + "Iter: 1288 loss: 0.017743676900863647\n", + "Iter: 1289 loss: 0.018198668956756592\n", + "Iter: 1290 loss: 0.019252687692642212\n", + "Iter: 1291 loss: 0.02009299397468567\n", + "Iter: 1292 loss: 0.018697768449783325\n", + "Iter: 1293 loss: 0.01925167441368103\n", + "Iter: 1294 loss: 0.019281387329101562\n", + "Iter: 1295 loss: 0.0182914137840271\n", + "Iter: 1296 loss: 0.018688738346099854\n", + "Iter: 1297 loss: 0.01969870924949646\n", + "Iter: 1298 loss: 0.019696533679962158\n", + "Iter: 1299 loss: 0.017743676900863647\n", + "Iter: 1300 loss: 0.019979089498519897\n", + "Iter: 1301 loss: 0.018794715404510498\n", + "Iter: 1302 loss: 0.018846333026885986\n", + "Iter: 1303 loss: 0.019376009702682495\n", + "Iter: 1304 loss: 0.018541544675827026\n", + "Iter: 1305 loss: 0.018797636032104492\n", + "Iter: 1306 loss: 0.018965482711791992\n", + "Iter: 1307 loss: 0.02031591534614563\n", + "Iter: 1308 loss: 0.01920187473297119\n", + "Iter: 1309 loss: 0.020744770765304565\n", + "Iter: 1310 loss: 0.018486231565475464\n", + "Iter: 1311 loss: 0.020318210124969482\n", + "Iter: 1312 loss: 0.019308745861053467\n", + "Iter: 1313 loss: 0.01920950412750244\n", + "Iter: 1314 loss: 0.019904613494873047\n", + "Iter: 1315 loss: 0.019337862730026245\n", + "Iter: 1316 loss: 0.019251883029937744\n", + "Iter: 1317 loss: 0.019100338220596313\n", + "Iter: 1318 loss: 0.018777310848236084\n", + "Iter: 1319 loss: 0.01844051480293274\n", + "Iter: 1320 loss: 0.01949980854988098\n", + "Iter: 1321 loss: 0.01961180567741394\n", + "Iter: 1322 loss: 0.020272165536880493\n", + "Iter: 1323 loss: 0.019576579332351685\n", + "Iter: 1324 loss: 0.019524306058883667\n", + "Iter: 1325 loss: 0.019432425498962402\n", + "Iter: 1326 loss: 0.020130783319473267\n", + "Iter: 1327 loss: 0.019377142190933228\n", + "Iter: 1328 loss: 0.018407583236694336\n", + "Iter: 1329 loss: 0.018170207738876343\n", + "Iter: 1330 loss: 0.01823827624320984\n", + "Iter: 1331 loss: 0.019563376903533936\n", + "Iter: 1332 loss: 0.019792556762695312\n", + "Iter: 1333 loss: 0.01963365077972412\n", + "Iter: 1334 loss: 0.019095808267593384\n", + "Iter: 1335 loss: 0.01918235421180725\n", + "Iter: 1336 loss: 0.01989203691482544\n", + "Iter: 1337 loss: 0.019101738929748535\n", + "Iter: 1338 loss: 0.018855661153793335\n", + "Iter: 1339 loss: 0.020856022834777832\n", + "Iter: 1340 loss: 0.01969316601753235\n", + "Iter: 1341 loss: 0.01871645450592041\n", + "Iter: 1342 loss: 0.018136650323867798\n", + "Iter: 1343 loss: 0.01874944567680359\n", + "Iter: 1344 loss: 0.019329190254211426\n", + "Iter: 1345 loss: 0.019307345151901245\n", + "Iter: 1346 loss: 0.019094794988632202\n", + "Iter: 1347 loss: 0.018703550100326538\n", + "Iter: 1348 loss: 0.01977396011352539\n", + "Iter: 1349 loss: 0.017761409282684326\n", + "Iter: 1350 loss: 0.01917073130607605\n", + "Iter: 1351 loss: 0.018895119428634644\n", + "Iter: 1352 loss: 0.020035594701766968\n", + "Iter: 1353 loss: 0.018620222806930542\n", + "Iter: 1354 loss: 0.018940001726150513\n", + "Iter: 1355 loss: 0.01776185631752014\n", + "Iter: 1356 loss: 0.018655717372894287\n", + "Iter: 1357 loss: 0.019926100969314575\n", + "Iter: 1358 loss: 0.01975339651107788\n", + "Iter: 1359 loss: 0.019903838634490967\n", + "Iter: 1360 loss: 0.01795896887779236\n", + "Iter: 1361 loss: 0.02048441767692566\n", + "Iter: 1362 loss: 0.018739759922027588\n", + "Iter: 1363 loss: 0.018472790718078613\n", + "Iter: 1364 loss: 0.019255012273788452\n", + "Iter: 1365 loss: 0.01964348554611206\n", + "Iter: 1366 loss: 0.020341992378234863\n", + "Iter: 1367 loss: 0.020035743713378906\n", + "Iter: 1368 loss: 0.018574118614196777\n", + "Iter: 1369 loss: 0.0182342529296875\n", + "Iter: 1370 loss: 0.0194149911403656\n", + "Iter: 1371 loss: 0.019045531749725342\n", + "Iter: 1372 loss: 0.019242852926254272\n", + "Iter: 1373 loss: 0.020215719938278198\n", + "Iter: 1374 loss: 0.017778456211090088\n", + "Iter: 1375 loss: 0.019200801849365234\n", + "Iter: 1376 loss: 0.019805848598480225\n", + "Iter: 1377 loss: 0.019255727529525757\n", + "Iter: 1378 loss: 0.01956614851951599\n", + "Iter: 1379 loss: 0.018643617630004883\n", + "Iter: 1380 loss: 0.019776344299316406\n", + "Iter: 1381 loss: 0.018476754426956177\n", + "Iter: 1382 loss: 0.019357532262802124\n", + "Iter: 1383 loss: 0.018455713987350464\n", + "Iter: 1384 loss: 0.018761038780212402\n", + "Iter: 1385 loss: 0.019025176763534546\n", + "Iter: 1386 loss: 0.01940736174583435\n", + "Iter: 1387 loss: 0.019265174865722656\n", + "Iter: 1388 loss: 0.018901407718658447\n", + "Iter: 1389 loss: 0.020560652017593384\n", + "Iter: 1390 loss: 0.01953175663948059\n", + "Iter: 1391 loss: 0.020159423351287842\n", + "Iter: 1392 loss: 0.019757568836212158\n", + "Iter: 1393 loss: 0.019542604684829712\n", + "Iter: 1394 loss: 0.01911824941635132\n", + "Iter: 1395 loss: 0.01895657181739807\n", + "Iter: 1396 loss: 0.018452048301696777\n", + "Iter: 1397 loss: 0.020413488149642944\n", + "Iter: 1398 loss: 0.018860191106796265\n", + "Iter: 1399 loss: 0.018566936254501343\n", + "Iter: 1400 loss: 0.02027183771133423\n", + "Iter: 1401 loss: 0.018658101558685303\n", + "Iter: 1402 loss: 0.021426230669021606\n", + "Iter: 1403 loss: 0.018430262804031372\n", + "Iter: 1404 loss: 0.020055443048477173\n", + "Iter: 1405 loss: 0.020211756229400635\n", + "Iter: 1406 loss: 0.019279837608337402\n", + "Iter: 1407 loss: 0.01993235945701599\n", + "Iter: 1408 loss: 0.019339650869369507\n", + "Iter: 1409 loss: 0.01860654354095459\n", + "Iter: 1410 loss: 0.020228683948516846\n", + "Iter: 1411 loss: 0.01920267939567566\n", + "Iter: 1412 loss: 0.019762933254241943\n", + "Iter: 1413 loss: 0.017382115125656128\n", + "Iter: 1414 loss: 0.020034730434417725\n", + "Iter: 1415 loss: 0.018379122018814087\n", + "Iter: 1416 loss: 0.01947176456451416\n", + "Iter: 1417 loss: 0.019750773906707764\n", + "Iter: 1418 loss: 0.01982399821281433\n", + "Iter: 1419 loss: 0.01920279860496521\n", + "Iter: 1420 loss: 0.019448131322860718\n", + "Iter: 1421 loss: 0.018517255783081055\n", + "Iter: 1422 loss: 0.018440306186676025\n", + "Iter: 1423 loss: 0.019833028316497803\n", + "Iter: 1424 loss: 0.018328815698623657\n", + "Iter: 1425 loss: 0.019793301820755005\n", + "Iter: 1426 loss: 0.020100504159927368\n", + "Iter: 1427 loss: 0.01856929063796997\n", + "Iter: 1428 loss: 0.02023443579673767\n", + "Iter: 1429 loss: 0.019807934761047363\n", + "Iter: 1430 loss: 0.019672274589538574\n", + "Iter: 1431 loss: 0.019419491291046143\n", + "Iter: 1432 loss: 0.02036839723587036\n", + "Iter: 1433 loss: 0.01952490210533142\n", + "Iter: 1434 loss: 0.020063787698745728\n", + "Iter: 1435 loss: 0.019748449325561523\n", + "Iter: 1436 loss: 0.01914730668067932\n", + "Iter: 1437 loss: 0.019836902618408203\n", + "Iter: 1438 loss: 0.017752647399902344\n", + "Iter: 1439 loss: 0.019835442304611206\n", + "Iter: 1440 loss: 0.019043534994125366\n", + "Iter: 1441 loss: 0.020196467638015747\n", + "Iter: 1442 loss: 0.019963473081588745\n", + "Iter: 1443 loss: 0.0201990008354187\n", + "Iter: 1444 loss: 0.019219815731048584\n", + "Iter: 1445 loss: 0.019493669271469116\n", + "Iter: 1446 loss: 0.018572300672531128\n", + "Iter: 1447 loss: 0.020774662494659424\n", + "Iter: 1448 loss: 0.01840454339981079\n", + "Iter: 1449 loss: 0.019740015268325806\n", + "Iter: 1450 loss: 0.01873716711997986\n", + "Iter: 1451 loss: 0.019284039735794067\n", + "Iter: 1452 loss: 0.018630802631378174\n", + "Iter: 1453 loss: 0.019745200872421265\n", + "Iter: 1454 loss: 0.01829025149345398\n", + "Iter: 1455 loss: 0.02039545774459839\n", + "Iter: 1456 loss: 0.019139260053634644\n", + "Iter: 1457 loss: 0.019089847803115845\n", + "Iter: 1458 loss: 0.019871503114700317\n", + "Iter: 1459 loss: 0.01905885338783264\n", + "Iter: 1460 loss: 0.017151743173599243\n", + "Iter: 1461 loss: 0.019893944263458252\n", + "Iter: 1462 loss: 0.019467681646347046\n", + "Iter: 1463 loss: 0.01853540539741516\n", + "Iter: 1464 loss: 0.02058178186416626\n", + "Iter: 1465 loss: 0.019321054220199585\n", + "Iter: 1466 loss: 0.01954057812690735\n", + "Iter: 1467 loss: 0.019166499376296997\n", + "Iter: 1468 loss: 0.017944037914276123\n", + "Iter: 1469 loss: 0.018015027046203613\n", + "Iter: 1470 loss: 0.019077926874160767\n", + "Iter: 1471 loss: 0.018503516912460327\n", + "Iter: 1472 loss: 0.019486308097839355\n", + "Iter: 1473 loss: 0.01790955662727356\n", + "Iter: 1474 loss: 0.019115179777145386\n", + "Iter: 1475 loss: 0.019280046224594116\n", + "Iter: 1476 loss: 0.021131843328475952\n", + "Iter: 1477 loss: 0.019736886024475098\n", + "Iter: 1478 loss: 0.018976181745529175\n", + "Iter: 1479 loss: 0.018647700548171997\n", + "Iter: 1480 loss: 0.01970905065536499\n", + "Iter: 1481 loss: 0.01833060383796692\n", + "Iter: 1482 loss: 0.0193803608417511\n", + "Iter: 1483 loss: 0.019833922386169434\n", + "Iter: 1484 loss: 0.01856893301010132\n", + "Iter: 1485 loss: 0.01939144730567932\n", + "Iter: 1486 loss: 0.018900543451309204\n", + "Iter: 1487 loss: 0.018712282180786133\n", + "Iter: 1488 loss: 0.018375247716903687\n", + "Iter: 1489 loss: 0.019147098064422607\n", + "Iter: 1490 loss: 0.019851267337799072\n", + "Iter: 1491 loss: 0.019198834896087646\n", + "Iter: 1492 loss: 0.018238484859466553\n", + "Iter: 1493 loss: 0.019101619720458984\n", + "Iter: 1494 loss: 0.02005922794342041\n", + "Iter: 1495 loss: 0.01840275526046753\n", + "Iter: 1496 loss: 0.02050614356994629\n", + "Iter: 1497 loss: 0.01880425214767456\n", + "Iter: 1498 loss: 0.018893510103225708\n", + "Iter: 1499 loss: 0.018675267696380615\n", + "Iter: 1500 loss: 0.01878821849822998\n", + "Iter: 1501 loss: 0.01821112632751465\n", + "Iter: 1502 loss: 0.01964336633682251\n", + "Iter: 1503 loss: 0.018905341625213623\n", + "Iter: 1504 loss: 0.0191686749458313\n", + "Iter: 1505 loss: 0.019047021865844727\n", + "Iter: 1506 loss: 0.020577043294906616\n", + "Iter: 1507 loss: 0.019779950380325317\n", + "Iter: 1508 loss: 0.01844349503517151\n", + "Iter: 1509 loss: 0.019489556550979614\n", + "Iter: 1510 loss: 0.019404709339141846\n", + "Iter: 1511 loss: 0.02012181282043457\n", + "Iter: 1512 loss: 0.02003854513168335\n", + "Iter: 1513 loss: 0.01864519715309143\n", + "Iter: 1514 loss: 0.018316596746444702\n", + "Iter: 1515 loss: 0.018736183643341064\n", + "Iter: 1516 loss: 0.019019007682800293\n", + "Iter: 1517 loss: 0.018871605396270752\n", + "Iter: 1518 loss: 0.019866198301315308\n", + "Iter: 1519 loss: 0.02038031816482544\n", + "Iter: 1520 loss: 0.0196133553981781\n", + "Iter: 1521 loss: 0.019072264432907104\n", + "Iter: 1522 loss: 0.019246578216552734\n", + "Iter: 1523 loss: 0.0179634690284729\n", + "Iter: 1524 loss: 0.018933147192001343\n", + "Iter: 1525 loss: 0.018981605768203735\n", + "Iter: 1526 loss: 0.01827031373977661\n", + "Iter: 1527 loss: 0.018686354160308838\n", + "Iter: 1528 loss: 0.01851475238800049\n", + "Iter: 1529 loss: 0.020120948553085327\n", + "Iter: 1530 loss: 0.018320411443710327\n", + "Iter: 1531 loss: 0.020035535097122192\n", + "Iter: 1532 loss: 0.019291669130325317\n", + "Iter: 1533 loss: 0.017986446619033813\n", + "Iter: 1534 loss: 0.01917332410812378\n", + "Iter: 1535 loss: 0.01832479238510132\n", + "Iter: 1536 loss: 0.018435031175613403\n", + "Iter: 1537 loss: 0.017617911100387573\n", + "Iter: 1538 loss: 0.019232720136642456\n", + "Iter: 1539 loss: 0.018600046634674072\n", + "Iter: 1540 loss: 0.019330888986587524\n", + "Iter: 1541 loss: 0.017923831939697266\n", + "Iter: 1542 loss: 0.019207119941711426\n", + "Iter: 1543 loss: 0.018851161003112793\n", + "Iter: 1544 loss: 0.018966376781463623\n", + "Iter: 1545 loss: 0.01924687623977661\n", + "Iter: 1546 loss: 0.018542736768722534\n", + "Iter: 1547 loss: 0.019847899675369263\n", + "Iter: 1548 loss: 0.019914567470550537\n", + "Iter: 1549 loss: 0.019217640161514282\n", + "Iter: 1550 loss: 0.01874527335166931\n", + "Iter: 1551 loss: 0.01877915859222412\n", + "Iter: 1552 loss: 0.0176999568939209\n", + "Iter: 1553 loss: 0.020641297101974487\n", + "Iter: 1554 loss: 0.020135462284088135\n", + "Iter: 1555 loss: 0.01921403408050537\n", + "Iter: 1556 loss: 0.02055451273918152\n", + "Iter: 1557 loss: 0.019614338874816895\n", + "Iter: 1558 loss: 0.019353240728378296\n", + "Iter: 1559 loss: 0.020582377910614014\n", + "Iter: 1560 loss: 0.018712490797042847\n", + "Iter: 1561 loss: 0.018417447805404663\n", + "Iter: 1562 loss: 0.020221084356307983\n", + "Iter: 1563 loss: 0.018103688955307007\n", + "Iter: 1564 loss: 0.01973620057106018\n", + "Iter: 1565 loss: 0.02031683921813965\n", + "Iter: 1566 loss: 0.018741488456726074\n", + "Iter: 1567 loss: 0.018724709749221802\n", + "Iter: 1568 loss: 0.019738703966140747\n", + "Iter: 1569 loss: 0.020231157541275024\n", + "Iter: 1570 loss: 0.020950675010681152\n", + "Iter: 1571 loss: 0.01945638656616211\n", + "Iter: 1572 loss: 0.021069854497909546\n", + "Iter: 1573 loss: 0.019101738929748535\n", + "Iter: 1574 loss: 0.019695371389389038\n", + "Iter: 1575 loss: 0.02075892686843872\n", + "Iter: 1576 loss: 0.01999795436859131\n", + "Iter: 1577 loss: 0.020020663738250732\n", + "Iter: 1578 loss: 0.018238931894302368\n", + "Iter: 1579 loss: 0.01844865083694458\n", + "Iter: 1580 loss: 0.01736631989479065\n", + "Iter: 1581 loss: 0.018451392650604248\n", + "Iter: 1582 loss: 0.019246220588684082\n", + "Iter: 1583 loss: 0.01723155379295349\n", + "Iter: 1584 loss: 0.019530445337295532\n", + "Iter: 1585 loss: 0.018673628568649292\n", + "Iter: 1586 loss: 0.018333464860916138\n", + "Iter: 1587 loss: 0.020138144493103027\n", + "Iter: 1588 loss: 0.019444197416305542\n", + "Iter: 1589 loss: 0.01977097988128662\n", + "Iter: 1590 loss: 0.019033581018447876\n", + "Iter: 1591 loss: 0.018591195344924927\n", + "Iter: 1592 loss: 0.018694132566452026\n", + "Iter: 1593 loss: 0.01923087239265442\n", + "Iter: 1594 loss: 0.018717706203460693\n", + "Iter: 1595 loss: 0.02054116129875183\n", + "Iter: 1596 loss: 0.02038675546646118\n", + "Iter: 1597 loss: 0.019886106252670288\n", + "Iter: 1598 loss: 0.020163744688034058\n", + "Iter: 1599 loss: 0.020346909761428833\n", + "Iter: 1600 loss: 0.01954185962677002\n", + "Iter: 1601 loss: 0.01859128475189209\n", + "Iter: 1602 loss: 0.01878511905670166\n", + "Iter: 1603 loss: 0.018308043479919434\n", + "Iter: 1604 loss: 0.019919872283935547\n", + "Iter: 1605 loss: 0.018976718187332153\n", + "Iter: 1606 loss: 0.019069373607635498\n", + "Iter: 1607 loss: 0.018207073211669922\n", + "Iter: 1608 loss: 0.018908530473709106\n", + "Iter: 1609 loss: 0.019736558198928833\n", + "Iter: 1610 loss: 0.019153475761413574\n", + "Iter: 1611 loss: 0.018259376287460327\n", + "Iter: 1612 loss: 0.017757922410964966\n", + "Iter: 1613 loss: 0.018135756254196167\n", + "Iter: 1614 loss: 0.01875057816505432\n", + "Iter: 1615 loss: 0.019241899251937866\n", + "Iter: 1616 loss: 0.018752068281173706\n", + "Iter: 1617 loss: 0.01907631754875183\n", + "Iter: 1618 loss: 0.019187122583389282\n", + "Iter: 1619 loss: 0.018968164920806885\n", + "Iter: 1620 loss: 0.020111441612243652\n", + "Iter: 1621 loss: 0.018829375505447388\n", + "Iter: 1622 loss: 0.01755458116531372\n", + "Iter: 1623 loss: 0.01911991834640503\n", + "Iter: 1624 loss: 0.019429504871368408\n", + "Iter: 1625 loss: 0.02102363109588623\n", + "Iter: 1626 loss: 0.019591301679611206\n", + "Iter: 1627 loss: 0.01800510287284851\n", + "Iter: 1628 loss: 0.018365859985351562\n", + "Iter: 1629 loss: 0.01952582597732544\n", + "Iter: 1630 loss: 0.0187530517578125\n", + "Iter: 1631 loss: 0.020127207040786743\n", + "Iter: 1632 loss: 0.018848389387130737\n", + "Iter: 1633 loss: 0.018316656351089478\n", + "Iter: 1634 loss: 0.018036752939224243\n", + "Iter: 1635 loss: 0.01945441961288452\n", + "Iter: 1636 loss: 0.019380241632461548\n", + "Iter: 1637 loss: 0.018970996141433716\n", + "Iter: 1638 loss: 0.021174520254135132\n", + "Iter: 1639 loss: 0.01914072036743164\n", + "Iter: 1640 loss: 0.020289212465286255\n", + "Iter: 1641 loss: 0.020772665739059448\n", + "Iter: 1642 loss: 0.018605560064315796\n", + "Iter: 1643 loss: 0.01865437626838684\n", + "Iter: 1644 loss: 0.01962357759475708\n", + "Iter: 1645 loss: 0.019033372402191162\n", + "Iter: 1646 loss: 0.018931567668914795\n", + "Iter: 1647 loss: 0.018237262964248657\n", + "Iter: 1648 loss: 0.020476609468460083\n", + "Iter: 1649 loss: 0.020207226276397705\n", + "Iter: 1650 loss: 0.017892926931381226\n", + "Iter: 1651 loss: 0.019705921411514282\n", + "Iter: 1652 loss: 0.02053806185722351\n", + "Iter: 1653 loss: 0.018177896738052368\n", + "Iter: 1654 loss: 0.0206928551197052\n", + "Iter: 1655 loss: 0.019510328769683838\n", + "Iter: 1656 loss: 0.01955220103263855\n", + "Iter: 1657 loss: 0.019449561834335327\n", + "Iter: 1658 loss: 0.02121025323867798\n", + "Iter: 1659 loss: 0.019206225872039795\n", + "Iter: 1660 loss: 0.019512414932250977\n", + "Iter: 1661 loss: 0.01917511224746704\n", + "Iter: 1662 loss: 0.018260061740875244\n", + "Iter: 1663 loss: 0.020404309034347534\n", + "Iter: 1664 loss: 0.017735540866851807\n", + "Iter: 1665 loss: 0.01826333999633789\n", + "Iter: 1666 loss: 0.019299030303955078\n", + "Iter: 1667 loss: 0.020067960023880005\n", + "Iter: 1668 loss: 0.018676936626434326\n", + "Iter: 1669 loss: 0.019581735134124756\n", + "Iter: 1670 loss: 0.019804954528808594\n", + "Iter: 1671 loss: 0.020067065954208374\n", + "Iter: 1672 loss: 0.019481152296066284\n", + "Iter: 1673 loss: 0.01981380581855774\n", + "Iter: 1674 loss: 0.019733577966690063\n", + "Iter: 1675 loss: 0.018396377563476562\n", + "Iter: 1676 loss: 0.018601804971694946\n", + "Iter: 1677 loss: 0.020800232887268066\n", + "Iter: 1678 loss: 0.01867392659187317\n", + "Iter: 1679 loss: 0.0187680721282959\n", + "Iter: 1680 loss: 0.018473953008651733\n", + "Iter: 1681 loss: 0.019140630960464478\n", + "Iter: 1682 loss: 0.01919272541999817\n", + "Iter: 1683 loss: 0.01971110701560974\n", + "Iter: 1684 loss: 0.018719762563705444\n", + "Iter: 1685 loss: 0.019534200429916382\n", + "Iter: 1686 loss: 0.018454134464263916\n", + "Iter: 1687 loss: 0.018474847078323364\n", + "Iter: 1688 loss: 0.019390612840652466\n", + "Iter: 1689 loss: 0.018085002899169922\n", + "Iter: 1690 loss: 0.01944109797477722\n", + "Iter: 1691 loss: 0.017869144678115845\n", + "Iter: 1692 loss: 0.01865851879119873\n", + "Iter: 1693 loss: 0.019360870122909546\n", + "Iter: 1694 loss: 0.019529491662979126\n", + "Iter: 1695 loss: 0.018845438957214355\n", + "Iter: 1696 loss: 0.019597530364990234\n", + "Iter: 1697 loss: 0.01971486210823059\n", + "Iter: 1698 loss: 0.018573373556137085\n", + "Iter: 1699 loss: 0.01958450675010681\n", + "Iter: 1700 loss: 0.018967270851135254\n", + "Iter: 1701 loss: 0.02031150460243225\n", + "Iter: 1702 loss: 0.018641024827957153\n", + "Iter: 1703 loss: 0.01915639638900757\n", + "Iter: 1704 loss: 0.019614696502685547\n", + "Iter: 1705 loss: 0.01944592595100403\n", + "Iter: 1706 loss: 0.01746627688407898\n", + "Iter: 1707 loss: 0.019532620906829834\n", + "Iter: 1708 loss: 0.019710898399353027\n", + "Iter: 1709 loss: 0.019166260957717896\n", + "Iter: 1710 loss: 0.019400835037231445\n", + "Iter: 1711 loss: 0.019826024770736694\n", + "Iter: 1712 loss: 0.020572662353515625\n", + "Iter: 1713 loss: 0.01895904541015625\n", + "Iter: 1714 loss: 0.018158137798309326\n", + "Iter: 1715 loss: 0.019301682710647583\n", + "Iter: 1716 loss: 0.020481586456298828\n", + "Iter: 1717 loss: 0.018111854791641235\n", + "Iter: 1718 loss: 0.020119428634643555\n", + "Iter: 1719 loss: 0.019252300262451172\n", + "Iter: 1720 loss: 0.01998630166053772\n", + "Iter: 1721 loss: 0.020352810621261597\n", + "Iter: 1722 loss: 0.018345177173614502\n", + "Iter: 1723 loss: 0.01983371376991272\n", + "Iter: 1724 loss: 0.019588202238082886\n", + "Iter: 1725 loss: 0.020586103200912476\n", + "Iter: 1726 loss: 0.019536077976226807\n", + "Iter: 1727 loss: 0.01933187246322632\n", + "Iter: 1728 loss: 0.01909497380256653\n", + "Iter: 1729 loss: 0.02100306749343872\n", + "Iter: 1730 loss: 0.019295454025268555\n", + "Iter: 1731 loss: 0.019272029399871826\n", + "Iter: 1732 loss: 0.020262181758880615\n", + "Iter: 1733 loss: 0.01988685131072998\n", + "Iter: 1734 loss: 0.019597381353378296\n", + "Iter: 1735 loss: 0.019989967346191406\n", + "Iter: 1736 loss: 0.018365055322647095\n", + "Iter: 1737 loss: 0.01839950680732727\n", + "Iter: 1738 loss: 0.017968803644180298\n", + "Iter: 1739 loss: 0.020159751176834106\n", + "Iter: 1740 loss: 0.01918885111808777\n", + "Iter: 1741 loss: 0.019540756940841675\n", + "Iter: 1742 loss: 0.01898166537284851\n", + "Iter: 1743 loss: 0.018422812223434448\n", + "Iter: 1744 loss: 0.01953822374343872\n", + "Iter: 1745 loss: 0.018083006143569946\n", + "Iter: 1746 loss: 0.019254982471466064\n", + "Iter: 1747 loss: 0.01748088002204895\n", + "Iter: 1748 loss: 0.02002859115600586\n", + "Iter: 1749 loss: 0.01920124888420105\n", + "Iter: 1750 loss: 0.018531858921051025\n", + "Iter: 1751 loss: 0.018723279237747192\n", + "Iter: 1752 loss: 0.01891276240348816\n", + "Iter: 1753 loss: 0.018673986196517944\n", + "Iter: 1754 loss: 0.018192917108535767\n", + "Iter: 1755 loss: 0.019847601652145386\n", + "Iter: 1756 loss: 0.019163042306900024\n", + "Iter: 1757 loss: 0.018409013748168945\n", + "Iter: 1758 loss: 0.02051880955696106\n", + "Iter: 1759 loss: 0.01978924870491028\n", + "Iter: 1760 loss: 0.019230127334594727\n", + "Iter: 1761 loss: 0.019114822149276733\n", + "Iter: 1762 loss: 0.018794775009155273\n", + "Iter: 1763 loss: 0.019345402717590332\n", + "Iter: 1764 loss: 0.01957803964614868\n", + "Iter: 1765 loss: 0.020144164562225342\n", + "Iter: 1766 loss: 0.019101202487945557\n", + "Iter: 1767 loss: 0.019467860460281372\n", + "Iter: 1768 loss: 0.019187331199645996\n", + "Iter: 1769 loss: 0.01957663893699646\n", + "Iter: 1770 loss: 0.018749326467514038\n", + "Iter: 1771 loss: 0.019189119338989258\n", + "Iter: 1772 loss: 0.01788190007209778\n", + "Iter: 1773 loss: 0.019001662731170654\n", + "Iter: 1774 loss: 0.01921936869621277\n", + "Iter: 1775 loss: 0.01882326602935791\n", + "Iter: 1776 loss: 0.01890704035758972\n", + "Iter: 1777 loss: 0.020746201276779175\n", + "Iter: 1778 loss: 0.017773568630218506\n", + "Iter: 1779 loss: 0.019890248775482178\n", + "Iter: 1780 loss: 0.019302308559417725\n", + "Iter: 1781 loss: 0.018252074718475342\n", + "Iter: 1782 loss: 0.019989192485809326\n", + "Iter: 1783 loss: 0.01831302046775818\n", + "Iter: 1784 loss: 0.017461448907852173\n", + "Iter: 1785 loss: 0.019934654235839844\n", + "Iter: 1786 loss: 0.019800186157226562\n", + "Iter: 1787 loss: 0.019231975078582764\n", + "Iter: 1788 loss: 0.01998603343963623\n", + "Iter: 1789 loss: 0.01836511492729187\n", + "Iter: 1790 loss: 0.018479615449905396\n", + "Iter: 1791 loss: 0.01942119002342224\n", + "Iter: 1792 loss: 0.019191831350326538\n", + "Iter: 1793 loss: 0.0185280442237854\n", + "Iter: 1794 loss: 0.018974989652633667\n", + "Iter: 1795 loss: 0.018596023321151733\n", + "Iter: 1796 loss: 0.019489705562591553\n", + "Iter: 1797 loss: 0.01888677477836609\n", + "Iter: 1798 loss: 0.0190889835357666\n", + "Iter: 1799 loss: 0.018949806690216064\n", + "Iter: 1800 loss: 0.018688589334487915\n", + "Iter: 1801 loss: 0.01833885908126831\n", + "Iter: 1802 loss: 0.019588708877563477\n", + "Iter: 1803 loss: 0.018087059259414673\n", + "Iter: 1804 loss: 0.01869717240333557\n", + "Iter: 1805 loss: 0.01988619565963745\n", + "Iter: 1806 loss: 0.01807674765586853\n", + "Iter: 1807 loss: 0.01956409215927124\n", + "Iter: 1808 loss: 0.019365131855010986\n", + "Iter: 1809 loss: 0.019610553979873657\n", + "Iter: 1810 loss: 0.019221961498260498\n", + "Iter: 1811 loss: 0.019306033849716187\n", + "Iter: 1812 loss: 0.01865684986114502\n", + "Iter: 1813 loss: 0.018560141324996948\n", + "Iter: 1814 loss: 0.018810182809829712\n", + "Iter: 1815 loss: 0.01902949810028076\n", + "Iter: 1816 loss: 0.019403696060180664\n", + "Iter: 1817 loss: 0.02019360661506653\n", + "Iter: 1818 loss: 0.01875564455986023\n", + "Iter: 1819 loss: 0.019687682390213013\n", + "Iter: 1820 loss: 0.019415348768234253\n", + "Iter: 1821 loss: 0.01980617642402649\n", + "Iter: 1822 loss: 0.020003825426101685\n", + "Iter: 1823 loss: 0.01883205771446228\n", + "Iter: 1824 loss: 0.01764965057373047\n", + "Iter: 1825 loss: 0.01820206642150879\n", + "Iter: 1826 loss: 0.01873764395713806\n", + "Iter: 1827 loss: 0.019703835248947144\n", + "Iter: 1828 loss: 0.018886417150497437\n", + "Iter: 1829 loss: 0.017291486263275146\n", + "Iter: 1830 loss: 0.01898851990699768\n", + "Iter: 1831 loss: 0.02022320032119751\n", + "Iter: 1832 loss: 0.020182311534881592\n", + "Iter: 1833 loss: 0.018051594495773315\n", + "Iter: 1834 loss: 0.019145935773849487\n", + "Iter: 1835 loss: 0.018285512924194336\n", + "Iter: 1836 loss: 0.01918700337409973\n", + "Iter: 1837 loss: 0.02021607756614685\n", + "Iter: 1838 loss: 0.019267797470092773\n", + "Iter: 1839 loss: 0.018695741891860962\n", + "Iter: 1840 loss: 0.01911821961402893\n", + "Iter: 1841 loss: 0.019337236881256104\n", + "Iter: 1842 loss: 0.01910841464996338\n", + "Iter: 1843 loss: 0.01972121000289917\n", + "Iter: 1844 loss: 0.01980060338973999\n", + "Iter: 1845 loss: 0.01978287100791931\n", + "Iter: 1846 loss: 0.018687397241592407\n", + "Iter: 1847 loss: 0.018631279468536377\n", + "Iter: 1848 loss: 0.018258392810821533\n", + "Iter: 1849 loss: 0.019511640071868896\n", + "Iter: 1850 loss: 0.01847892999649048\n", + "Iter: 1851 loss: 0.019597738981246948\n", + "Iter: 1852 loss: 0.020442724227905273\n", + "Iter: 1853 loss: 0.019628465175628662\n", + "Iter: 1854 loss: 0.02016851305961609\n", + "Iter: 1855 loss: 0.019862622022628784\n", + "Iter: 1856 loss: 0.018516868352890015\n", + "Iter: 1857 loss: 0.019345492124557495\n", + "Iter: 1858 loss: 0.019034266471862793\n", + "Iter: 1859 loss: 0.01991140842437744\n", + "Iter: 1860 loss: 0.020580321550369263\n", + "Iter: 1861 loss: 0.018947601318359375\n", + "Iter: 1862 loss: 0.01876768469810486\n", + "Iter: 1863 loss: 0.01863744854927063\n", + "Iter: 1864 loss: 0.01796543598175049\n", + "Iter: 1865 loss: 0.018056124448776245\n", + "Iter: 1866 loss: 0.020067274570465088\n", + "Iter: 1867 loss: 0.0188884437084198\n", + "Iter: 1868 loss: 0.019702941179275513\n", + "Iter: 1869 loss: 0.018589168787002563\n", + "Iter: 1870 loss: 0.019879251718521118\n", + "Iter: 1871 loss: 0.019614607095718384\n", + "Iter: 1872 loss: 0.019003957509994507\n", + "Iter: 1873 loss: 0.020400315523147583\n", + "Iter: 1874 loss: 0.018577605485916138\n", + "Iter: 1875 loss: 0.021066665649414062\n", + "Iter: 1876 loss: 0.018075555562973022\n", + "Iter: 1877 loss: 0.01780182123184204\n", + "Iter: 1878 loss: 0.020802468061447144\n", + "Iter: 1879 loss: 0.01937389373779297\n", + "Iter: 1880 loss: 0.020067870616912842\n", + "Iter: 1881 loss: 0.020316392183303833\n", + "Iter: 1882 loss: 0.0184345543384552\n", + "Iter: 1883 loss: 0.017509430646896362\n", + "Iter: 1884 loss: 0.01843830943107605\n", + "Iter: 1885 loss: 0.018072575330734253\n", + "Iter: 1886 loss: 0.019209563732147217\n", + "Iter: 1887 loss: 0.01861882209777832\n", + "Iter: 1888 loss: 0.019500643014907837\n", + "Iter: 1889 loss: 0.01806071400642395\n", + "Iter: 1890 loss: 0.018092095851898193\n", + "Iter: 1891 loss: 0.01942792534828186\n", + "Iter: 1892 loss: 0.019069015979766846\n", + "Iter: 1893 loss: 0.019594639539718628\n", + "Iter: 1894 loss: 0.018205106258392334\n", + "Iter: 1895 loss: 0.01973685622215271\n", + "Iter: 1896 loss: 0.019274801015853882\n", + "Iter: 1897 loss: 0.0200270414352417\n", + "Iter: 1898 loss: 0.020045161247253418\n", + "Iter: 1899 loss: 0.01957911252975464\n", + "Iter: 1900 loss: 0.018605589866638184\n", + "Iter: 1901 loss: 0.019926607608795166\n", + "Iter: 1902 loss: 0.01803097128868103\n", + "Iter: 1903 loss: 0.02027076482772827\n", + "Iter: 1904 loss: 0.019645094871520996\n", + "Iter: 1905 loss: 0.018653154373168945\n", + "Iter: 1906 loss: 0.018510013818740845\n", + "Iter: 1907 loss: 0.016898512840270996\n", + "Iter: 1908 loss: 0.01848319172859192\n", + "Iter: 1909 loss: 0.019002795219421387\n", + "Iter: 1910 loss: 0.01973852515220642\n", + "Iter: 1911 loss: 0.01872578263282776\n", + "Iter: 1912 loss: 0.018297672271728516\n", + "Iter: 1913 loss: 0.01888805627822876\n", + "Iter: 1914 loss: 0.018329918384552002\n", + "Iter: 1915 loss: 0.018783777952194214\n", + "Iter: 1916 loss: 0.019794315099716187\n", + "Iter: 1917 loss: 0.019295543432235718\n", + "Iter: 1918 loss: 0.01920291781425476\n", + "Iter: 1919 loss: 0.020456820726394653\n", + "Iter: 1920 loss: 0.019400715827941895\n", + "Iter: 1921 loss: 0.01984962821006775\n", + "Iter: 1922 loss: 0.018637925386428833\n", + "Iter: 1923 loss: 0.01847800612449646\n", + "Iter: 1924 loss: 0.02066996693611145\n", + "Iter: 1925 loss: 0.019333988428115845\n", + "Iter: 1926 loss: 0.019526958465576172\n", + "Iter: 1927 loss: 0.020208686590194702\n", + "Iter: 1928 loss: 0.02059003710746765\n", + "Iter: 1929 loss: 0.01837068796157837\n", + "Iter: 1930 loss: 0.01926514506340027\n", + "Iter: 1931 loss: 0.019780725240707397\n", + "Iter: 1932 loss: 0.019932597875595093\n", + "Iter: 1933 loss: 0.01857641339302063\n", + "Iter: 1934 loss: 0.019431859254837036\n", + "Iter: 1935 loss: 0.019930392503738403\n", + "Iter: 1936 loss: 0.017704635858535767\n", + "Iter: 1937 loss: 0.01882261037826538\n", + "Iter: 1938 loss: 0.01952531933784485\n", + "Iter: 1939 loss: 0.018645554780960083\n", + "Iter: 1940 loss: 0.018734067678451538\n", + "Iter: 1941 loss: 0.01914915442466736\n", + "Iter: 1942 loss: 0.01993653178215027\n", + "Iter: 1943 loss: 0.01927390694618225\n", + "Iter: 1944 loss: 0.018923133611679077\n", + "Iter: 1945 loss: 0.01863652467727661\n", + "Iter: 1946 loss: 0.018328428268432617\n", + "Iter: 1947 loss: 0.019733786582946777\n", + "Iter: 1948 loss: 0.017156153917312622\n", + "Iter: 1949 loss: 0.019768089056015015\n", + "Iter: 1950 loss: 0.020154953002929688\n", + "Iter: 1951 loss: 0.018011152744293213\n", + "Iter: 1952 loss: 0.019622892141342163\n", + "Iter: 1953 loss: 0.01781010627746582\n", + "Iter: 1954 loss: 0.01985567808151245\n", + "Iter: 1955 loss: 0.020175963640213013\n", + "Iter: 1956 loss: 0.01929435133934021\n", + "Iter: 1957 loss: 0.01849818229675293\n", + "Iter: 1958 loss: 0.018618673086166382\n", + "Iter: 1959 loss: 0.018871307373046875\n", + "Iter: 1960 loss: 0.019540488719940186\n", + "Iter: 1961 loss: 0.018127888441085815\n", + "Iter: 1962 loss: 0.01844567060470581\n", + "Iter: 1963 loss: 0.01811361312866211\n", + "Iter: 1964 loss: 0.01907333731651306\n", + "Iter: 1965 loss: 0.018947988748550415\n", + "Iter: 1966 loss: 0.019744426012039185\n", + "Iter: 1967 loss: 0.019468575716018677\n", + "Iter: 1968 loss: 0.018674612045288086\n", + "Iter: 1969 loss: 0.019565850496292114\n", + "Iter: 1970 loss: 0.019279181957244873\n", + "Iter: 1971 loss: 0.02021735906600952\n", + "Iter: 1972 loss: 0.017730295658111572\n", + "Iter: 1973 loss: 0.019676923751831055\n", + "Iter: 1974 loss: 0.01887163519859314\n", + "Iter: 1975 loss: 0.01954665780067444\n", + "Iter: 1976 loss: 0.019496887922286987\n", + "Iter: 1977 loss: 0.018463313579559326\n", + "Iter: 1978 loss: 0.018710047006607056\n", + "Iter: 1979 loss: 0.01910075545310974\n", + "Iter: 1980 loss: 0.018918007612228394\n", + "Iter: 1981 loss: 0.019103646278381348\n", + "Iter: 1982 loss: 0.018713295459747314\n", + "Iter: 1983 loss: 0.018092334270477295\n", + "Iter: 1984 loss: 0.020833760499954224\n", + "Iter: 1985 loss: 0.017947465181350708\n", + "Iter: 1986 loss: 0.01930636167526245\n", + "Iter: 1987 loss: 0.01941254734992981\n", + "Iter: 1988 loss: 0.018734514713287354\n", + "Iter: 1989 loss: 0.01869538426399231\n", + "Iter: 1990 loss: 0.019256561994552612\n", + "Iter: 1991 loss: 0.017776399850845337\n", + "Iter: 1992 loss: 0.01883864402770996\n", + "Iter: 1993 loss: 0.01942560076713562\n", + "Iter: 1994 loss: 0.018670767545700073\n", + "Iter: 1995 loss: 0.01920461654663086\n", + "Iter: 1996 loss: 0.019091546535491943\n", + "Iter: 1997 loss: 0.0199354887008667\n", + "Iter: 1998 loss: 0.01835089921951294\n", + "Iter: 1999 loss: 0.018784314393997192\n", + "Iter: 2000 loss: 0.01875174045562744\n", + "Iter: 2001 loss: 0.01879367232322693\n", + "Iter: 2002 loss: 0.018983513116836548\n", + "Iter: 2003 loss: 0.019363582134246826\n", + "Iter: 2004 loss: 0.020526856184005737\n", + "Iter: 2005 loss: 0.019542038440704346\n", + "Iter: 2006 loss: 0.018243521451950073\n", + "Iter: 2007 loss: 0.020284175872802734\n", + "Iter: 2008 loss: 0.020491749048233032\n", + "Iter: 2009 loss: 0.02028009295463562\n", + "Iter: 2010 loss: 0.021272331476211548\n", + "Iter: 2011 loss: 0.018774181604385376\n", + "Iter: 2012 loss: 0.018799901008605957\n", + "Iter: 2013 loss: 0.02059274911880493\n", + "Iter: 2014 loss: 0.018906891345977783\n", + "Iter: 2015 loss: 0.020545363426208496\n", + "Iter: 2016 loss: 0.017538100481033325\n", + "Iter: 2017 loss: 0.01863458752632141\n", + "Iter: 2018 loss: 0.01976880431175232\n", + "Iter: 2019 loss: 0.019773155450820923\n", + "Iter: 2020 loss: 0.019129633903503418\n", + "Iter: 2021 loss: 0.01872888207435608\n", + "Iter: 2022 loss: 0.019164055585861206\n", + "Iter: 2023 loss: 0.01877748966217041\n", + "Iter: 2024 loss: 0.018229752779006958\n", + "Iter: 2025 loss: 0.018725037574768066\n", + "Iter: 2026 loss: 0.018030613660812378\n", + "Iter: 2027 loss: 0.020288407802581787\n", + "Iter: 2028 loss: 0.01839640736579895\n", + "Iter: 2029 loss: 0.018934905529022217\n", + "Iter: 2030 loss: 0.018879979848861694\n", + "Iter: 2031 loss: 0.018920302391052246\n", + "Iter: 2032 loss: 0.018275976181030273\n", + "Iter: 2033 loss: 0.02011924982070923\n", + "Iter: 2034 loss: 0.01952260732650757\n", + "Iter: 2035 loss: 0.020671367645263672\n", + "Iter: 2036 loss: 0.01822221279144287\n", + "Iter: 2037 loss: 0.01882338523864746\n", + "Iter: 2038 loss: 0.01950553059577942\n", + "Iter: 2039 loss: 0.018783926963806152\n", + "Iter: 2040 loss: 0.0189344584941864\n", + "Iter: 2041 loss: 0.01636648178100586\n", + "Iter: 2042 loss: 0.018953263759613037\n", + "Iter: 2043 loss: 0.019802600145339966\n", + "Iter: 2044 loss: 0.019564777612686157\n", + "Iter: 2045 loss: 0.020621120929718018\n", + "Iter: 2046 loss: 0.020195811986923218\n", + "Iter: 2047 loss: 0.018592804670333862\n", + "Iter: 2048 loss: 0.019104957580566406\n", + "Iter: 2049 loss: 0.01836910843849182\n", + "Iter: 2050 loss: 0.0193709135055542\n", + "Iter: 2051 loss: 0.018909096717834473\n", + "Iter: 2052 loss: 0.018961429595947266\n", + "Iter: 2053 loss: 0.020497888326644897\n", + "Iter: 2054 loss: 0.018137484788894653\n", + "Iter: 2055 loss: 0.019436269998550415\n", + "Iter: 2056 loss: 0.01941227912902832\n", + "Iter: 2057 loss: 0.02012491226196289\n", + "Iter: 2058 loss: 0.019563227891921997\n", + "Iter: 2059 loss: 0.018835246562957764\n", + "Iter: 2060 loss: 0.018642455339431763\n", + "Iter: 2061 loss: 0.01844644546508789\n", + "Iter: 2062 loss: 0.019147217273712158\n", + "Iter: 2063 loss: 0.019340872764587402\n", + "Iter: 2064 loss: 0.019961804151535034\n", + "Iter: 2065 loss: 0.01862192153930664\n", + "Iter: 2066 loss: 0.018542975187301636\n", + "Iter: 2067 loss: 0.019440799951553345\n", + "Iter: 2068 loss: 0.02061140537261963\n", + "Iter: 2069 loss: 0.01937118172645569\n", + "Iter: 2070 loss: 0.02022668719291687\n", + "Iter: 2071 loss: 0.01856255531311035\n", + "Iter: 2072 loss: 0.020268291234970093\n", + "Iter: 2073 loss: 0.01804637908935547\n", + "Iter: 2074 loss: 0.019905269145965576\n", + "Iter: 2075 loss: 0.018333643674850464\n", + "Iter: 2076 loss: 0.01914539933204651\n", + "Iter: 2077 loss: 0.01852130889892578\n", + "Iter: 2078 loss: 0.01892375946044922\n", + "Iter: 2079 loss: 0.018691986799240112\n", + "Iter: 2080 loss: 0.019870251417160034\n", + "Iter: 2081 loss: 0.018715590238571167\n", + "Iter: 2082 loss: 0.018769145011901855\n", + "Iter: 2083 loss: 0.019244998693466187\n", + "Iter: 2084 loss: 0.01900455355644226\n", + "Iter: 2085 loss: 0.01995787024497986\n", + "Iter: 2086 loss: 0.018221616744995117\n", + "Iter: 2087 loss: 0.0189683735370636\n", + "Iter: 2088 loss: 0.018829554319381714\n", + "Iter: 2089 loss: 0.01947420835494995\n", + "Iter: 2090 loss: 0.019711434841156006\n", + "Iter: 2091 loss: 0.01881524920463562\n", + "Iter: 2092 loss: 0.019089937210083008\n", + "Iter: 2093 loss: 0.01826077699661255\n", + "Iter: 2094 loss: 0.018414437770843506\n", + "Iter: 2095 loss: 0.01974308490753174\n", + "Iter: 2096 loss: 0.020334184169769287\n", + "Iter: 2097 loss: 0.018361955881118774\n", + "Iter: 2098 loss: 0.019946008920669556\n", + "Iter: 2099 loss: 0.0200955867767334\n", + "Iter: 2100 loss: 0.02005288004875183\n", + "Iter: 2101 loss: 0.01960131525993347\n", + "Iter: 2102 loss: 0.01983049511909485\n", + "Iter: 2103 loss: 0.01794496178627014\n", + "Iter: 2104 loss: 0.019777655601501465\n", + "Iter: 2105 loss: 0.017529547214508057\n", + "Iter: 2106 loss: 0.018818825483322144\n", + "Iter: 2107 loss: 0.019602060317993164\n", + "Iter: 2108 loss: 0.01922592520713806\n", + "Iter: 2109 loss: 0.018733590841293335\n", + "Iter: 2110 loss: 0.0190640389919281\n", + "Iter: 2111 loss: 0.01920241117477417\n", + "Iter: 2112 loss: 0.020594269037246704\n", + "Iter: 2113 loss: 0.017933040857315063\n", + "Iter: 2114 loss: 0.020442098379135132\n", + "Iter: 2115 loss: 0.01723507046699524\n", + "Iter: 2116 loss: 0.018376946449279785\n", + "Iter: 2117 loss: 0.0191478431224823\n", + "Iter: 2118 loss: 0.0194166898727417\n", + "Iter: 2119 loss: 0.019865810871124268\n", + "Iter: 2120 loss: 0.01897495985031128\n", + "Iter: 2121 loss: 0.01897016167640686\n", + "Iter: 2122 loss: 0.020428091287612915\n", + "Iter: 2123 loss: 0.018882542848587036\n", + "Iter: 2124 loss: 0.020020246505737305\n", + "Iter: 2125 loss: 0.018543988466262817\n", + "Iter: 2126 loss: 0.018202990293502808\n", + "Iter: 2127 loss: 0.018029838800430298\n", + "Iter: 2128 loss: 0.020832210779190063\n", + "Iter: 2129 loss: 0.01930314302444458\n", + "Iter: 2130 loss: 0.019456535577774048\n", + "Iter: 2131 loss: 0.01866203546524048\n", + "Iter: 2132 loss: 0.019158214330673218\n", + "Iter: 2133 loss: 0.019829124212265015\n", + "Iter: 2134 loss: 0.01915496587753296\n", + "Iter: 2135 loss: 0.019901156425476074\n", + "Iter: 2136 loss: 0.0200364887714386\n", + "Iter: 2137 loss: 0.020574629306793213\n", + "Iter: 2138 loss: 0.01958325505256653\n", + "Iter: 2139 loss: 0.017928391695022583\n", + "Iter: 2140 loss: 0.021258831024169922\n", + "Iter: 2141 loss: 0.018375277519226074\n", + "Iter: 2142 loss: 0.019058972597122192\n", + "Iter: 2143 loss: 0.019005388021469116\n", + "Iter: 2144 loss: 0.019601494073867798\n", + "Iter: 2145 loss: 0.018816441297531128\n", + "Iter: 2146 loss: 0.01929304003715515\n", + "Iter: 2147 loss: 0.019241750240325928\n", + "Iter: 2148 loss: 0.019802838563919067\n", + "Iter: 2149 loss: 0.018558800220489502\n", + "Iter: 2150 loss: 0.01785263419151306\n", + "Iter: 2151 loss: 0.019024521112442017\n", + "Iter: 2152 loss: 0.01898282766342163\n", + "Iter: 2153 loss: 0.019689708948135376\n", + "Iter: 2154 loss: 0.020013362169265747\n", + "Iter: 2155 loss: 0.01895931363105774\n", + "Iter: 2156 loss: 0.017873555421829224\n", + "Iter: 2157 loss: 0.019645214080810547\n", + "Iter: 2158 loss: 0.018990665674209595\n", + "Iter: 2159 loss: 0.018053710460662842\n", + "Iter: 2160 loss: 0.01915779709815979\n", + "Iter: 2161 loss: 0.0191991925239563\n", + "Iter: 2162 loss: 0.020497024059295654\n", + "Iter: 2163 loss: 0.020122170448303223\n", + "Iter: 2164 loss: 0.01910760998725891\n", + "Iter: 2165 loss: 0.01875331997871399\n", + "Iter: 2166 loss: 0.018742501735687256\n", + "Iter: 2167 loss: 0.019624412059783936\n", + "Iter: 2168 loss: 0.019100606441497803\n", + "Iter: 2169 loss: 0.019528955221176147\n", + "Iter: 2170 loss: 0.019107699394226074\n", + "Iter: 2171 loss: 0.019078582525253296\n", + "Iter: 2172 loss: 0.019622623920440674\n", + "Iter: 2173 loss: 0.02057287096977234\n", + "Iter: 2174 loss: 0.020188510417938232\n", + "Iter: 2175 loss: 0.018659740686416626\n", + "Iter: 2176 loss: 0.02040579915046692\n", + "Iter: 2177 loss: 0.017664283514022827\n", + "Iter: 2178 loss: 0.020358383655548096\n", + "Iter: 2179 loss: 0.018600642681121826\n", + "Iter: 2180 loss: 0.0196649432182312\n", + "Iter: 2181 loss: 0.018472492694854736\n", + "Iter: 2182 loss: 0.018929898738861084\n", + "Iter: 2183 loss: 0.017711669206619263\n", + "Iter: 2184 loss: 0.01854461431503296\n", + "Iter: 2185 loss: 0.01972222328186035\n", + "Iter: 2186 loss: 0.01939484477043152\n", + "Iter: 2187 loss: 0.01949647068977356\n", + "Iter: 2188 loss: 0.02031862735748291\n", + "Iter: 2189 loss: 0.020396053791046143\n", + "Iter: 2190 loss: 0.01856011152267456\n", + "Iter: 2191 loss: 0.01862090826034546\n", + "Iter: 2192 loss: 0.01962190866470337\n", + "Iter: 2193 loss: 0.019005775451660156\n", + "Iter: 2194 loss: 0.019287019968032837\n", + "Iter: 2195 loss: 0.01890745759010315\n", + "Iter: 2196 loss: 0.01942804455757141\n", + "Iter: 2197 loss: 0.0194108784198761\n", + "Iter: 2198 loss: 0.019951581954956055\n", + "Iter: 2199 loss: 0.019782215356826782\n", + "Iter: 2200 loss: 0.019982457160949707\n", + "Iter: 2201 loss: 0.018655508756637573\n", + "Iter: 2202 loss: 0.01991415023803711\n", + "Iter: 2203 loss: 0.017864972352981567\n", + "Iter: 2204 loss: 0.018616944551467896\n", + "Iter: 2205 loss: 0.01904168725013733\n", + "Iter: 2206 loss: 0.01892104744911194\n", + "Iter: 2207 loss: 0.01895281672477722\n", + "Iter: 2208 loss: 0.019781172275543213\n", + "Iter: 2209 loss: 0.01823139190673828\n", + "Iter: 2210 loss: 0.02026134729385376\n", + "Iter: 2211 loss: 0.020332157611846924\n", + "Iter: 2212 loss: 0.020565450191497803\n", + "Iter: 2213 loss: 0.019407033920288086\n", + "Iter: 2214 loss: 0.018821775913238525\n", + "Iter: 2215 loss: 0.01900768280029297\n", + "Iter: 2216 loss: 0.018873482942581177\n", + "Iter: 2217 loss: 0.020169556140899658\n", + "Iter: 2218 loss: 0.01868230104446411\n", + "Iter: 2219 loss: 0.019893109798431396\n", + "Iter: 2220 loss: 0.018823593854904175\n", + "Iter: 2221 loss: 0.01935422420501709\n", + "Iter: 2222 loss: 0.018658608198165894\n", + "Iter: 2223 loss: 0.018921464681625366\n", + "Iter: 2224 loss: 0.020059973001480103\n", + "Iter: 2225 loss: 0.019716709852218628\n", + "Iter: 2226 loss: 0.018243730068206787\n", + "Iter: 2227 loss: 0.018405139446258545\n", + "Iter: 2228 loss: 0.01881176233291626\n", + "Iter: 2229 loss: 0.019095391035079956\n", + "Iter: 2230 loss: 0.019415318965911865\n", + "Iter: 2231 loss: 0.019830942153930664\n", + "Iter: 2232 loss: 0.01959899067878723\n", + "Iter: 2233 loss: 0.018751174211502075\n", + "Iter: 2234 loss: 0.018880516290664673\n", + "Iter: 2235 loss: 0.019806206226348877\n", + "Iter: 2236 loss: 0.021049529314041138\n", + "Iter: 2237 loss: 0.019878536462783813\n", + "Iter: 2238 loss: 0.018486112356185913\n", + "Iter: 2239 loss: 0.01958051323890686\n", + "Iter: 2240 loss: 0.01952466368675232\n", + "Iter: 2241 loss: 0.01958790421485901\n", + "Iter: 2242 loss: 0.018944650888442993\n", + "Iter: 2243 loss: 0.019792616367340088\n", + "Iter: 2244 loss: 0.01988077163696289\n", + "Iter: 2245 loss: 0.019278675317764282\n", + "Iter: 2246 loss: 0.01875096559524536\n", + "Iter: 2247 loss: 0.018477261066436768\n", + "Iter: 2248 loss: 0.01912251114845276\n", + "Iter: 2249 loss: 0.0194128155708313\n", + "Iter: 2250 loss: 0.019698679447174072\n", + "Iter: 2251 loss: 0.017283201217651367\n", + "Iter: 2252 loss: 0.01850181818008423\n", + "Iter: 2253 loss: 0.01875382661819458\n", + "Iter: 2254 loss: 0.019704550504684448\n", + "Iter: 2255 loss: 0.019052982330322266\n", + "Iter: 2256 loss: 0.01821446418762207\n", + "Iter: 2257 loss: 0.019525259733200073\n", + "Iter: 2258 loss: 0.017965763807296753\n", + "Iter: 2259 loss: 0.01825043559074402\n", + "Iter: 2260 loss: 0.019628018140792847\n", + "Iter: 2261 loss: 0.020044177770614624\n", + "Iter: 2262 loss: 0.018878579139709473\n", + "Iter: 2263 loss: 0.01941990852355957\n", + "Iter: 2264 loss: 0.019304007291793823\n", + "Iter: 2265 loss: 0.01899513602256775\n", + "Iter: 2266 loss: 0.018848717212677002\n", + "Iter: 2267 loss: 0.01862618327140808\n", + "Iter: 2268 loss: 0.019694209098815918\n", + "Iter: 2269 loss: 0.02026507258415222\n", + "Iter: 2270 loss: 0.020038902759552002\n", + "Iter: 2271 loss: 0.020473897457122803\n", + "Iter: 2272 loss: 0.0196649432182312\n", + "Iter: 2273 loss: 0.01867765188217163\n", + "Iter: 2274 loss: 0.020446836948394775\n", + "Iter: 2275 loss: 0.019007742404937744\n", + "Iter: 2276 loss: 0.019281655550003052\n", + "Iter: 2277 loss: 0.018982738256454468\n", + "Iter: 2278 loss: 0.019781261682510376\n", + "Iter: 2279 loss: 0.01808983087539673\n", + "Iter: 2280 loss: 0.019767016172409058\n", + "Iter: 2281 loss: 0.02015233039855957\n", + "Iter: 2282 loss: 0.02017652988433838\n", + "Iter: 2283 loss: 0.01898413896560669\n", + "Iter: 2284 loss: 0.01810634136199951\n", + "Iter: 2285 loss: 0.01985079050064087\n", + "Iter: 2286 loss: 0.018736541271209717\n", + "Iter: 2287 loss: 0.018573105335235596\n", + "Iter: 2288 loss: 0.020129799842834473\n", + "Iter: 2289 loss: 0.01924148201942444\n", + "Iter: 2290 loss: 0.019451171159744263\n", + "Iter: 2291 loss: 0.018562763929367065\n", + "Iter: 2292 loss: 0.019604742527008057\n", + "Iter: 2293 loss: 0.017881721258163452\n", + "Iter: 2294 loss: 0.018045932054519653\n", + "Iter: 2295 loss: 0.019013941287994385\n", + "Iter: 2296 loss: 0.01926359534263611\n", + "Iter: 2297 loss: 0.01861831545829773\n", + "Iter: 2298 loss: 0.019191056489944458\n", + "Iter: 2299 loss: 0.019262880086898804\n", + "Iter: 2300 loss: 0.019082874059677124\n", + "Iter: 2301 loss: 0.019969403743743896\n", + "Iter: 2302 loss: 0.020321935415267944\n", + "Iter: 2303 loss: 0.019514769315719604\n", + "Iter: 2304 loss: 0.01958903670310974\n", + "Iter: 2305 loss: 0.019855767488479614\n", + "Iter: 2306 loss: 0.019276678562164307\n", + "Iter: 2307 loss: 0.019920051097869873\n", + "Iter: 2308 loss: 0.02004733681678772\n", + "Iter: 2309 loss: 0.019747763872146606\n", + "Iter: 2310 loss: 0.017897814512252808\n", + "Iter: 2311 loss: 0.018888533115386963\n", + "Iter: 2312 loss: 0.018624186515808105\n", + "Iter: 2313 loss: 0.0192316472530365\n", + "Iter: 2314 loss: 0.020080924034118652\n", + "Iter: 2315 loss: 0.01952230930328369\n", + "Iter: 2316 loss: 0.02028203010559082\n", + "Iter: 2317 loss: 0.017334014177322388\n", + "Iter: 2318 loss: 0.01764628291130066\n", + "Iter: 2319 loss: 0.01919388771057129\n", + "Iter: 2320 loss: 0.020702511072158813\n", + "Iter: 2321 loss: 0.020018726587295532\n", + "Iter: 2322 loss: 0.01897379755973816\n", + "Iter: 2323 loss: 0.019313305616378784\n", + "Iter: 2324 loss: 0.018458187580108643\n", + "Iter: 2325 loss: 0.01960146427154541\n", + "Iter: 2326 loss: 0.01781332492828369\n", + "Iter: 2327 loss: 0.02009350061416626\n", + "Iter: 2328 loss: 0.018106192350387573\n", + "Iter: 2329 loss: 0.019183635711669922\n", + "Iter: 2330 loss: 0.019285202026367188\n", + "Iter: 2331 loss: 0.019039839506149292\n", + "Iter: 2332 loss: 0.020169168710708618\n", + "Iter: 2333 loss: 0.018663763999938965\n", + "Iter: 2334 loss: 0.018798232078552246\n", + "Iter: 2335 loss: 0.017921745777130127\n", + "Iter: 2336 loss: 0.019217848777770996\n", + "Iter: 2337 loss: 0.017529696226119995\n", + "Iter: 2338 loss: 0.019413888454437256\n", + "Iter: 2339 loss: 0.01995226740837097\n", + "Iter: 2340 loss: 0.020380795001983643\n", + "Iter: 2341 loss: 0.0179327130317688\n", + "Iter: 2342 loss: 0.02092304825782776\n", + "Iter: 2343 loss: 0.01943153142929077\n", + "Iter: 2344 loss: 0.018359392881393433\n", + "Iter: 2345 loss: 0.017946571111679077\n", + "Iter: 2346 loss: 0.017616629600524902\n", + "Iter: 2347 loss: 0.020041614770889282\n", + "Iter: 2348 loss: 0.01814091205596924\n", + "Iter: 2349 loss: 0.02008339762687683\n", + "Iter: 2350 loss: 0.018943756818771362\n", + "Iter: 2351 loss: 0.018571138381958008\n", + "Iter: 2352 loss: 0.01771777868270874\n", + "Iter: 2353 loss: 0.01944822072982788\n", + "Iter: 2354 loss: 0.019549161195755005\n", + "Iter: 2355 loss: 0.0198516845703125\n", + "Iter: 2356 loss: 0.020529597997665405\n", + "Iter: 2357 loss: 0.019260287284851074\n", + "Iter: 2358 loss: 0.018128395080566406\n", + "Iter: 2359 loss: 0.018220245838165283\n", + "Iter: 2360 loss: 0.019112706184387207\n", + "Iter: 2361 loss: 0.019589126110076904\n", + "Iter: 2362 loss: 0.019588351249694824\n", + "Iter: 2363 loss: 0.01950058341026306\n", + "Iter: 2364 loss: 0.019208192825317383\n", + "Iter: 2365 loss: 0.019256919622421265\n", + "Iter: 2366 loss: 0.01969701051712036\n", + "Iter: 2367 loss: 0.018697649240493774\n", + "Iter: 2368 loss: 0.019334763288497925\n", + "Iter: 2369 loss: 0.01865103840827942\n", + "Iter: 2370 loss: 0.018116652965545654\n", + "Iter: 2371 loss: 0.018567532300949097\n", + "Iter: 2372 loss: 0.017658352851867676\n", + "Iter: 2373 loss: 0.020944207906723022\n", + "Iter: 2374 loss: 0.020011216402053833\n", + "Iter: 2375 loss: 0.021505236625671387\n", + "Iter: 2376 loss: 0.017680078744888306\n", + "Iter: 2377 loss: 0.019278764724731445\n", + "Iter: 2378 loss: 0.020276665687561035\n", + "Iter: 2379 loss: 0.019482046365737915\n", + "Iter: 2380 loss: 0.019813746213912964\n", + "Iter: 2381 loss: 0.020023047924041748\n", + "Iter: 2382 loss: 0.01901891827583313\n", + "Iter: 2383 loss: 0.01993805170059204\n", + "Iter: 2384 loss: 0.019320815801620483\n", + "Iter: 2385 loss: 0.019844263792037964\n", + "Iter: 2386 loss: 0.019079625606536865\n", + "Iter: 2387 loss: 0.018718212842941284\n", + "Iter: 2388 loss: 0.019873440265655518\n", + "Iter: 2389 loss: 0.01857125759124756\n", + "Iter: 2390 loss: 0.019453763961791992\n", + "Iter: 2391 loss: 0.018484383821487427\n", + "Iter: 2392 loss: 0.018374711275100708\n", + "Iter: 2393 loss: 0.01972869038581848\n", + "Iter: 2394 loss: 0.018885254859924316\n", + "Iter: 2395 loss: 0.018514245748519897\n", + "Iter: 2396 loss: 0.01887071132659912\n", + "Iter: 2397 loss: 0.02023637294769287\n", + "Iter: 2398 loss: 0.01818251609802246\n", + "Iter: 2399 loss: 0.0174027681350708\n", + "Iter: 2400 loss: 0.01837274432182312\n", + "Iter: 2401 loss: 0.01916980743408203\n", + "Iter: 2402 loss: 0.01882234215736389\n", + "Iter: 2403 loss: 0.0193021297454834\n", + "Iter: 2404 loss: 0.020036906003952026\n", + "Iter: 2405 loss: 0.020762920379638672\n", + "Iter: 2406 loss: 0.01889359951019287\n", + "Iter: 2407 loss: 0.018495410680770874\n", + "Iter: 2408 loss: 0.019341319799423218\n", + "Iter: 2409 loss: 0.01789960265159607\n", + "Iter: 2410 loss: 0.018785715103149414\n", + "Iter: 2411 loss: 0.01734057068824768\n", + "Iter: 2412 loss: 0.019491523504257202\n", + "Iter: 2413 loss: 0.01972213387489319\n", + "Iter: 2414 loss: 0.0194016695022583\n", + "Iter: 2415 loss: 0.019823431968688965\n", + "Iter: 2416 loss: 0.01939767599105835\n", + "Iter: 2417 loss: 0.0193556547164917\n", + "Iter: 2418 loss: 0.019462108612060547\n", + "Iter: 2419 loss: 0.019788116216659546\n", + "Iter: 2420 loss: 0.0184420645236969\n", + "Iter: 2421 loss: 0.01798906922340393\n", + "Iter: 2422 loss: 0.01930302381515503\n", + "Iter: 2423 loss: 0.018760353326797485\n", + "Iter: 2424 loss: 0.01780453324317932\n", + "Iter: 2425 loss: 0.019785702228546143\n", + "Iter: 2426 loss: 0.018502771854400635\n", + "Iter: 2427 loss: 0.018569082021713257\n", + "Iter: 2428 loss: 0.019010186195373535\n", + "Iter: 2429 loss: 0.018715322017669678\n", + "Iter: 2430 loss: 0.02011469006538391\n", + "Iter: 2431 loss: 0.01910245418548584\n", + "Iter: 2432 loss: 0.020023494958877563\n", + "Iter: 2433 loss: 0.02057000994682312\n", + "Iter: 2434 loss: 0.01944670081138611\n", + "Iter: 2435 loss: 0.01894456148147583\n", + "Iter: 2436 loss: 0.018669724464416504\n", + "Iter: 2437 loss: 0.019456714391708374\n", + "Iter: 2438 loss: 0.018713295459747314\n", + "Iter: 2439 loss: 0.018921852111816406\n", + "Iter: 2440 loss: 0.01968592405319214\n", + "Iter: 2441 loss: 0.01940932869911194\n", + "Iter: 2442 loss: 0.01897740364074707\n", + "Iter: 2443 loss: 0.019541680812835693\n", + "Iter: 2444 loss: 0.01881730556488037\n", + "Iter: 2445 loss: 0.01913931965827942\n", + "Iter: 2446 loss: 0.018410474061965942\n", + "Iter: 2447 loss: 0.019813060760498047\n", + "Iter: 2448 loss: 0.02115008234977722\n", + "Iter: 2449 loss: 0.02149951457977295\n", + "Iter: 2450 loss: 0.017820775508880615\n", + "Iter: 2451 loss: 0.01891961693763733\n", + "Iter: 2452 loss: 0.018698692321777344\n", + "Iter: 2453 loss: 0.01970738172531128\n", + "Iter: 2454 loss: 0.019682198762893677\n", + "Iter: 2455 loss: 0.018593281507492065\n", + "Iter: 2456 loss: 0.018805861473083496\n", + "Iter: 2457 loss: 0.019666314125061035\n", + "Iter: 2458 loss: 0.020086467266082764\n", + "Iter: 2459 loss: 0.02027985453605652\n", + "Iter: 2460 loss: 0.02052554488182068\n", + "Iter: 2461 loss: 0.02000373601913452\n", + "Iter: 2462 loss: 0.017131060361862183\n", + "Iter: 2463 loss: 0.01899409294128418\n", + "Iter: 2464 loss: 0.01865565776824951\n", + "Iter: 2465 loss: 0.01999613642692566\n", + "Iter: 2466 loss: 0.02069002389907837\n", + "Iter: 2467 loss: 0.01946672797203064\n", + "Iter: 2468 loss: 0.019460052251815796\n", + "Iter: 2469 loss: 0.01922592520713806\n", + "Iter: 2470 loss: 0.018742799758911133\n", + "Iter: 2471 loss: 0.018950045108795166\n", + "Iter: 2472 loss: 0.020404309034347534\n", + "Iter: 2473 loss: 0.02008962631225586\n", + "Iter: 2474 loss: 0.018321305513381958\n", + "Iter: 2475 loss: 0.01927351951599121\n", + "Iter: 2476 loss: 0.019342005252838135\n", + "Iter: 2477 loss: 0.019428610801696777\n", + "Iter: 2478 loss: 0.01936778426170349\n", + "Iter: 2479 loss: 0.0202275812625885\n", + "Iter: 2480 loss: 0.0187491774559021\n", + "Iter: 2481 loss: 0.01808565855026245\n", + "Iter: 2482 loss: 0.018637925386428833\n", + "Iter: 2483 loss: 0.018851876258850098\n", + "Iter: 2484 loss: 0.018689602613449097\n", + "Iter: 2485 loss: 0.02037772536277771\n", + "Iter: 2486 loss: 0.020009130239486694\n", + "Iter: 2487 loss: 0.01998227834701538\n", + "Iter: 2488 loss: 0.019067764282226562\n", + "Iter: 2489 loss: 0.019596010446548462\n", + "Iter: 2490 loss: 0.019023239612579346\n", + "Iter: 2491 loss: 0.018589764833450317\n", + "Iter: 2492 loss: 0.017648935317993164\n", + "Iter: 2493 loss: 0.019231349229812622\n", + "Iter: 2494 loss: 0.018498867750167847\n", + "Iter: 2495 loss: 0.018469959497451782\n", + "Iter: 2496 loss: 0.019240140914916992\n", + "Iter: 2497 loss: 0.018954366445541382\n", + "Iter: 2498 loss: 0.018600672483444214\n", + "Iter: 2499 loss: 0.019237101078033447\n" ] }, { @@ -897,7 +3305,7 @@ "Gauss()" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -923,513 +3331,2519 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iter: 0 loss: 2.015387535095215\n", - "Iter: 1 loss: 1.7370747327804565\n", - "Iter: 2 loss: 1.8333240747451782\n", - "Iter: 3 loss: 1.898452877998352\n", - "Iter: 4 loss: 1.7259045839309692\n", - "Iter: 5 loss: 1.8347198963165283\n", - "Iter: 6 loss: 1.766027808189392\n", - "Iter: 7 loss: 1.8237712383270264\n", - "Iter: 8 loss: 1.586094856262207\n", - "Iter: 9 loss: 1.7342983484268188\n", - "Iter: 10 loss: 1.687695860862732\n", - "Iter: 11 loss: 1.8270074129104614\n", - "Iter: 12 loss: 1.6753515005111694\n", - "Iter: 13 loss: 1.758275032043457\n", - "Iter: 14 loss: 1.6487704515457153\n", - "Iter: 15 loss: 1.7036995887756348\n", - "Iter: 16 loss: 1.6439865827560425\n", - "Iter: 17 loss: 1.821739912033081\n", - "Iter: 18 loss: 1.554531216621399\n", - "Iter: 19 loss: 1.6551446914672852\n", - "Iter: 20 loss: 1.5816500186920166\n", - "Iter: 21 loss: 1.614285945892334\n", - "Iter: 22 loss: 1.5026710033416748\n", - "Iter: 23 loss: 1.6022661924362183\n", - "Iter: 24 loss: 1.6406950950622559\n", - "Iter: 25 loss: 1.638658046722412\n", - "Iter: 26 loss: 1.650058627128601\n", - "Iter: 27 loss: 1.7661399841308594\n", - "Iter: 28 loss: 1.6890679597854614\n", - "Iter: 29 loss: 1.4886828660964966\n", - "Iter: 30 loss: 1.5586163997650146\n", - "Iter: 31 loss: 1.5308334827423096\n", - "Iter: 32 loss: 1.436030626296997\n", - "Iter: 33 loss: 1.6150496006011963\n", - "Iter: 34 loss: 1.4306293725967407\n", - "Iter: 35 loss: 1.5893100500106812\n", - "Iter: 36 loss: 1.472313404083252\n", - "Iter: 37 loss: 1.385436773300171\n", - "Iter: 38 loss: 1.4713941812515259\n", - "Iter: 39 loss: 1.422135353088379\n", - "Iter: 40 loss: 1.6138591766357422\n", - "Iter: 41 loss: 1.495896577835083\n", - "Iter: 42 loss: 1.4855828285217285\n", - "Iter: 43 loss: 1.4999996423721313\n", - "Iter: 44 loss: 1.4453084468841553\n", - "Iter: 45 loss: 1.3656474351882935\n", - "Iter: 46 loss: 1.4599230289459229\n", - "Iter: 47 loss: 1.3227547407150269\n", - "Iter: 48 loss: 1.4202868938446045\n", - "Iter: 49 loss: 1.3805346488952637\n", - "Iter: 50 loss: 1.2322009801864624\n", - "Iter: 51 loss: 1.4219787120819092\n", - "Iter: 52 loss: 1.3043807744979858\n", - "Iter: 53 loss: 1.2773553133010864\n", - "Iter: 54 loss: 1.3240689039230347\n", - "Iter: 55 loss: 1.2899359464645386\n", - "Iter: 56 loss: 1.4090406894683838\n", - "Iter: 57 loss: 1.2700166702270508\n", - "Iter: 58 loss: 1.4073481559753418\n", - "Iter: 59 loss: 1.2428456544876099\n", - "Iter: 60 loss: 1.2888344526290894\n", - "Iter: 61 loss: 1.2891182899475098\n", - "Iter: 62 loss: 1.316887378692627\n", - "Iter: 63 loss: 1.2068678140640259\n", - "Iter: 64 loss: 1.218657374382019\n", - "Iter: 65 loss: 1.2607393264770508\n", - "Iter: 66 loss: 1.4058046340942383\n", - "Iter: 67 loss: 1.3564274311065674\n", - "Iter: 68 loss: 1.02925443649292\n", - "Iter: 69 loss: 1.160806655883789\n", - "Iter: 70 loss: 1.2138845920562744\n", - "Iter: 71 loss: 1.2279679775238037\n", - "Iter: 72 loss: 1.0996155738830566\n", - "Iter: 73 loss: 1.3177845478057861\n", - "Iter: 74 loss: 1.1565635204315186\n", - "Iter: 75 loss: 1.2158774137496948\n", - "Iter: 76 loss: 1.2261382341384888\n", - "Iter: 77 loss: 1.288182258605957\n", - "Iter: 78 loss: 1.2109253406524658\n", - "Iter: 79 loss: 1.180246114730835\n", - "Iter: 80 loss: 1.1534751653671265\n", - "Iter: 81 loss: 1.0132838487625122\n", - "Iter: 82 loss: 1.0936992168426514\n", - "Iter: 83 loss: 1.0294578075408936\n", - "Iter: 84 loss: 1.190740942955017\n", - "Iter: 85 loss: 1.0266075134277344\n", - "Iter: 86 loss: 0.9942760467529297\n", - "Iter: 87 loss: 1.14082932472229\n", - "Iter: 88 loss: 1.141466498374939\n", - "Iter: 89 loss: 1.1416993141174316\n", - "Iter: 90 loss: 1.1887527704238892\n", - "Iter: 91 loss: 1.1594818830490112\n", - "Iter: 92 loss: 1.0478954315185547\n", - "Iter: 93 loss: 1.1357524394989014\n", - "Iter: 94 loss: 1.0196154117584229\n", - "Iter: 95 loss: 1.1265547275543213\n", - "Iter: 96 loss: 1.0104249715805054\n", - "Iter: 97 loss: 0.9940618276596069\n", - "Iter: 98 loss: 0.9331285357475281\n", - "Iter: 99 loss: 1.149217128753662\n", - "Iter: 100 loss: 0.9967703223228455\n", - "Iter: 101 loss: 1.0390899181365967\n", - "Iter: 102 loss: 1.0411601066589355\n", - "Iter: 103 loss: 0.8406941890716553\n", - "Iter: 104 loss: 0.9767002463340759\n", - "Iter: 105 loss: 1.040588617324829\n", - "Iter: 106 loss: 0.9702439904212952\n", - "Iter: 107 loss: 0.9393441677093506\n", - "Iter: 108 loss: 0.9527843594551086\n", - "Iter: 109 loss: 0.8928996920585632\n", - "Iter: 110 loss: 0.973575234413147\n", - "Iter: 111 loss: 0.9718660712242126\n", - "Iter: 112 loss: 0.8394665718078613\n", - "Iter: 113 loss: 0.9847955107688904\n", - "Iter: 114 loss: 0.9742685556411743\n", - "Iter: 115 loss: 0.8340031504631042\n", - "Iter: 116 loss: 0.8905564546585083\n", - "Iter: 117 loss: 0.8518843054771423\n", - "Iter: 118 loss: 0.8889281749725342\n", - "Iter: 119 loss: 0.8987523317337036\n", - "Iter: 120 loss: 0.931561291217804\n", - "Iter: 121 loss: 0.894851803779602\n", - "Iter: 122 loss: 0.881371021270752\n", - "Iter: 123 loss: 0.886530876159668\n", - "Iter: 124 loss: 0.797651469707489\n", - "Iter: 125 loss: 0.9459646940231323\n", - "Iter: 126 loss: 0.8723874092102051\n", - "Iter: 127 loss: 0.8367505669593811\n", - "Iter: 128 loss: 0.8005257844924927\n", - "Iter: 129 loss: 0.7848767042160034\n", - "Iter: 130 loss: 0.9146648645401001\n", - "Iter: 131 loss: 0.8193280100822449\n", - "Iter: 132 loss: 0.8553879261016846\n", - "Iter: 133 loss: 0.8991513252258301\n", - "Iter: 134 loss: 0.8238473534584045\n", - "Iter: 135 loss: 0.8532832264900208\n", - "Iter: 136 loss: 0.815254807472229\n", - "Iter: 137 loss: 0.7537687420845032\n", - "Iter: 138 loss: 0.8335564136505127\n", - "Iter: 139 loss: 0.8273523449897766\n", - "Iter: 140 loss: 0.8309304118156433\n", - "Iter: 141 loss: 0.853858470916748\n", - "Iter: 142 loss: 0.8361462354660034\n", - "Iter: 143 loss: 0.8665034770965576\n", - "Iter: 144 loss: 0.8072134852409363\n", - "Iter: 145 loss: 0.8892834186553955\n", - "Iter: 146 loss: 0.8192774057388306\n", - "Iter: 147 loss: 0.8784797191619873\n", - "Iter: 148 loss: 0.8126943111419678\n", - "Iter: 149 loss: 0.8364020586013794\n", - "Iter: 150 loss: 0.8518108129501343\n", - "Iter: 151 loss: 0.8058202266693115\n", - "Iter: 152 loss: 0.8093634247779846\n", - "Iter: 153 loss: 0.7515928745269775\n", - "Iter: 154 loss: 0.7731226682662964\n", - "Iter: 155 loss: 0.892591118812561\n", - "Iter: 156 loss: 0.7247739434242249\n", - "Iter: 157 loss: 0.8709316849708557\n", - "Iter: 158 loss: 0.7898622751235962\n", - "Iter: 159 loss: 0.7444814443588257\n", - "Iter: 160 loss: 0.8071475028991699\n", - "Iter: 161 loss: 0.7543092370033264\n", - "Iter: 162 loss: 0.7530892491340637\n", - "Iter: 163 loss: 0.6710883975028992\n", - "Iter: 164 loss: 0.7635507583618164\n", - "Iter: 165 loss: 0.7471477389335632\n", - "Iter: 166 loss: 0.7479056715965271\n", - "Iter: 167 loss: 0.8332226276397705\n", - "Iter: 168 loss: 0.8127352595329285\n", - "Iter: 169 loss: 0.8344995975494385\n", - "Iter: 170 loss: 0.7392017841339111\n", - "Iter: 171 loss: 0.7379903793334961\n", - "Iter: 172 loss: 0.8298947811126709\n", - "Iter: 173 loss: 0.8007851243019104\n", - "Iter: 174 loss: 0.7269250750541687\n", - "Iter: 175 loss: 0.7496753931045532\n", - "Iter: 176 loss: 0.6994330286979675\n", - "Iter: 177 loss: 0.7539608478546143\n", - "Iter: 178 loss: 0.8224101066589355\n", - "Iter: 179 loss: 0.7059401273727417\n", - "Iter: 180 loss: 0.8076727986335754\n", - "Iter: 181 loss: 0.6893214583396912\n", - "Iter: 182 loss: 0.8482866287231445\n", - "Iter: 183 loss: 0.7912777662277222\n", - "Iter: 184 loss: 0.7808178663253784\n", - "Iter: 185 loss: 0.7600032687187195\n", - "Iter: 186 loss: 0.6641794443130493\n", - "Iter: 187 loss: 0.7272983193397522\n", - "Iter: 188 loss: 0.7626299858093262\n", - "Iter: 189 loss: 0.6269119381904602\n", - "Iter: 190 loss: 0.7578856348991394\n", - "Iter: 191 loss: 0.7110026478767395\n", - "Iter: 192 loss: 0.7189971804618835\n", - "Iter: 193 loss: 0.7393997311592102\n", - "Iter: 194 loss: 0.851884126663208\n", - "Iter: 195 loss: 0.7727316617965698\n", - "Iter: 196 loss: 0.7050248980522156\n", - "Iter: 197 loss: 0.7153081893920898\n", - "Iter: 198 loss: 0.6972448825836182\n", - "Iter: 199 loss: 0.7525338530540466\n", - "Iter: 200 loss: 0.7437570095062256\n", - "Iter: 201 loss: 0.7763127088546753\n", - "Iter: 202 loss: 0.7933632135391235\n", - "Iter: 203 loss: 0.6771650314331055\n", - "Iter: 204 loss: 0.7125989198684692\n", - "Iter: 205 loss: 0.7270752787590027\n", - "Iter: 206 loss: 0.7524814605712891\n", - "Iter: 207 loss: 0.7362961173057556\n", - "Iter: 208 loss: 0.6627055406570435\n", - "Iter: 209 loss: 0.7975546717643738\n", - "Iter: 210 loss: 0.7971135973930359\n", - "Iter: 211 loss: 0.9134241938591003\n", - "Iter: 212 loss: 0.8180221915245056\n", - "Iter: 213 loss: 0.69419264793396\n", - "Iter: 214 loss: 0.6661743521690369\n", - "Iter: 215 loss: 0.7641063332557678\n", - "Iter: 216 loss: 0.781048595905304\n", - "Iter: 217 loss: 0.7315092086791992\n", - "Iter: 218 loss: 0.7785764932632446\n", - "Iter: 219 loss: 0.7659655213356018\n", - "Iter: 220 loss: 0.7597689032554626\n", - "Iter: 221 loss: 0.7707609534263611\n", - "Iter: 222 loss: 0.7561043500900269\n", - "Iter: 223 loss: 0.7819336652755737\n", - "Iter: 224 loss: 0.8247786164283752\n", - "Iter: 225 loss: 0.7793856859207153\n", - "Iter: 226 loss: 0.764335572719574\n", - "Iter: 227 loss: 0.7117246389389038\n", - "Iter: 228 loss: 0.7929847836494446\n", - "Iter: 229 loss: 0.7755059003829956\n", - "Iter: 230 loss: 0.7287429571151733\n", - "Iter: 231 loss: 0.6838661432266235\n", - "Iter: 232 loss: 0.7618117332458496\n", - "Iter: 233 loss: 0.8048937320709229\n", - "Iter: 234 loss: 0.772834300994873\n", - "Iter: 235 loss: 0.6365436315536499\n", - "Iter: 236 loss: 0.7396331429481506\n", - "Iter: 237 loss: 0.786303699016571\n", - "Iter: 238 loss: 0.7460566759109497\n", - "Iter: 239 loss: 0.7636287212371826\n", - "Iter: 240 loss: 0.7460388541221619\n", - "Iter: 241 loss: 0.7148211002349854\n", - "Iter: 242 loss: 0.7839720845222473\n", - "Iter: 243 loss: 0.7624784708023071\n", - "Iter: 244 loss: 0.7365087270736694\n", - "Iter: 245 loss: 0.7349621057510376\n", - "Iter: 246 loss: 0.7644662261009216\n", - "Iter: 247 loss: 0.7908880114555359\n", - "Iter: 248 loss: 0.716602623462677\n", - "Iter: 249 loss: 0.7531368136405945\n", - "Iter: 250 loss: 0.788802444934845\n", - "Iter: 251 loss: 0.7459379434585571\n", - "Iter: 252 loss: 0.7922657132148743\n", - "Iter: 253 loss: 0.7616049647331238\n", - "Iter: 254 loss: 0.7393152713775635\n", - "Iter: 255 loss: 0.6949020624160767\n", - "Iter: 256 loss: 0.7945558428764343\n", - "Iter: 257 loss: 0.8036083579063416\n", - "Iter: 258 loss: 0.7553720474243164\n", - "Iter: 259 loss: 0.7161386609077454\n", - "Iter: 260 loss: 0.7464461922645569\n", - "Iter: 261 loss: 0.7121982574462891\n", - "Iter: 262 loss: 0.7846755385398865\n", - "Iter: 263 loss: 0.7209047079086304\n", - "Iter: 264 loss: 0.7039474844932556\n", - "Iter: 265 loss: 0.7568688988685608\n", - "Iter: 266 loss: 0.7477756142616272\n", - "Iter: 267 loss: 0.7467594146728516\n", - "Iter: 268 loss: 0.7521229982376099\n", - "Iter: 269 loss: 0.7264541983604431\n", - "Iter: 270 loss: 0.7474174499511719\n", - "Iter: 271 loss: 0.7278149127960205\n", - "Iter: 272 loss: 0.6887592077255249\n", - "Iter: 273 loss: 0.8207972049713135\n", - "Iter: 274 loss: 0.6023831963539124\n", - "Iter: 275 loss: 0.6967577934265137\n", - "Iter: 276 loss: 0.7902585864067078\n", - "Iter: 277 loss: 0.7768569588661194\n", - "Iter: 278 loss: 0.7844904661178589\n", - "Iter: 279 loss: 0.7850034236907959\n", - "Iter: 280 loss: 0.8138133883476257\n", - "Iter: 281 loss: 0.7009655833244324\n", - "Iter: 282 loss: 0.8238435387611389\n", - "Iter: 283 loss: 0.710345447063446\n", - "Iter: 284 loss: 0.7734653353691101\n", - "Iter: 285 loss: 0.7516197562217712\n", - "Iter: 286 loss: 0.8026174902915955\n", - "Iter: 287 loss: 0.654378354549408\n", - "Iter: 288 loss: 0.7783005237579346\n", - "Iter: 289 loss: 0.7507986426353455\n", - "Iter: 290 loss: 0.6554824113845825\n", - "Iter: 291 loss: 0.8081242442131042\n", - "Iter: 292 loss: 0.6811625957489014\n", - "Iter: 293 loss: 0.7826297879219055\n", - "Iter: 294 loss: 0.7427203059196472\n", - "Iter: 295 loss: 0.7623210549354553\n", - "Iter: 296 loss: 0.7257794141769409\n", - "Iter: 297 loss: 0.7710167765617371\n", - "Iter: 298 loss: 0.6709098219871521\n", - "Iter: 299 loss: 0.8220888376235962\n", - "Iter: 300 loss: 0.7348825931549072\n", - "Iter: 301 loss: 0.7748338580131531\n", - "Iter: 302 loss: 0.7272309064865112\n", - "Iter: 303 loss: 0.8274815082550049\n", - "Iter: 304 loss: 0.7122097015380859\n", - "Iter: 305 loss: 0.7992658019065857\n", - "Iter: 306 loss: 0.7765675783157349\n", - "Iter: 307 loss: 0.7214409112930298\n", - "Iter: 308 loss: 0.7907858490943909\n", - "Iter: 309 loss: 0.7928735613822937\n", - "Iter: 310 loss: 0.7564806342124939\n", - "Iter: 311 loss: 0.6922836303710938\n", - "Iter: 312 loss: 0.7222381830215454\n", - "Iter: 313 loss: 0.7640241384506226\n", - "Iter: 314 loss: 0.7902056574821472\n", - "Iter: 315 loss: 0.7986220717430115\n", - "Iter: 316 loss: 0.6673418283462524\n", - "Iter: 317 loss: 0.725684404373169\n", - "Iter: 318 loss: 0.7630691528320312\n", - "Iter: 319 loss: 0.7350959181785583\n", - "Iter: 320 loss: 0.7392557263374329\n", - "Iter: 321 loss: 0.7534867525100708\n", - "Iter: 322 loss: 0.7819011807441711\n", - "Iter: 323 loss: 0.7125782370567322\n", - "Iter: 324 loss: 0.657027542591095\n", - "Iter: 325 loss: 0.7783377766609192\n", - "Iter: 326 loss: 0.811261773109436\n", - "Iter: 327 loss: 0.7643512487411499\n", - "Iter: 328 loss: 0.7227699756622314\n", - "Iter: 329 loss: 0.7462334632873535\n", - "Iter: 330 loss: 0.710282564163208\n", - "Iter: 331 loss: 0.6808659434318542\n", - "Iter: 332 loss: 0.7974796891212463\n", - "Iter: 333 loss: 0.6809424161911011\n", - "Iter: 334 loss: 0.6027542352676392\n", - "Iter: 335 loss: 0.7981838583946228\n", - "Iter: 336 loss: 0.8042013049125671\n", - "Iter: 337 loss: 0.6439282298088074\n", - "Iter: 338 loss: 0.7322103381156921\n", - "Iter: 339 loss: 0.7968769669532776\n", - "Iter: 340 loss: 0.7076438665390015\n", - "Iter: 341 loss: 0.7675689458847046\n", - "Iter: 342 loss: 0.7284392714500427\n", - "Iter: 343 loss: 0.6662174463272095\n", - "Iter: 344 loss: 0.7907255291938782\n", - "Iter: 345 loss: 0.8239973783493042\n", - "Iter: 346 loss: 0.6909716129302979\n", - "Iter: 347 loss: 0.7828558087348938\n", - "Iter: 348 loss: 0.7755829691886902\n", - "Iter: 349 loss: 0.7930855751037598\n", - "Iter: 350 loss: 0.7281858325004578\n", - "Iter: 351 loss: 0.7367218732833862\n", - "Iter: 352 loss: 0.7579019665718079\n", - "Iter: 353 loss: 0.7211028337478638\n", - "Iter: 354 loss: 0.8038854598999023\n", - "Iter: 355 loss: 0.7012667059898376\n", - "Iter: 356 loss: 0.7030913829803467\n", - "Iter: 357 loss: 0.7418922185897827\n", - "Iter: 358 loss: 0.7360727787017822\n", - "Iter: 359 loss: 0.7287763357162476\n", - "Iter: 360 loss: 0.794093906879425\n", - "Iter: 361 loss: 0.8854460716247559\n", - "Iter: 362 loss: 0.7606850266456604\n", - "Iter: 363 loss: 0.7292898893356323\n", - "Iter: 364 loss: 0.650062620639801\n", - "Iter: 365 loss: 0.7835565805435181\n", - "Iter: 366 loss: 0.7439582347869873\n", - "Iter: 367 loss: 0.7359039783477783\n", - "Iter: 368 loss: 0.7752363085746765\n", - "Iter: 369 loss: 0.8061758875846863\n", - "Iter: 370 loss: 0.8722704648971558\n", - "Iter: 371 loss: 0.7159672975540161\n", - "Iter: 372 loss: 0.7364559769630432\n", - "Iter: 373 loss: 0.7509206533432007\n", - "Iter: 374 loss: 0.7769456505775452\n", - "Iter: 375 loss: 0.6930586695671082\n", - "Iter: 376 loss: 0.8171588778495789\n", - "Iter: 377 loss: 0.812341570854187\n", - "Iter: 378 loss: 0.7377904057502747\n", - "Iter: 379 loss: 0.7708482146263123\n", - "Iter: 380 loss: 0.6859880089759827\n", - "Iter: 381 loss: 0.7258057594299316\n", - "Iter: 382 loss: 0.8184127807617188\n", - "Iter: 383 loss: 0.7229243516921997\n", - "Iter: 384 loss: 0.596248984336853\n", - "Iter: 385 loss: 0.7070154547691345\n", - "Iter: 386 loss: 0.719499409198761\n", - "Iter: 387 loss: 0.7700670957565308\n", - "Iter: 388 loss: 0.7862375974655151\n", - "Iter: 389 loss: 0.6795270442962646\n", - "Iter: 390 loss: 0.722249448299408\n", - "Iter: 391 loss: 0.7036303877830505\n", - "Iter: 392 loss: 0.7540175914764404\n", - "Iter: 393 loss: 0.6605984568595886\n", - "Iter: 394 loss: 0.7245537638664246\n", - "Iter: 395 loss: 0.7130937576293945\n", - "Iter: 396 loss: 0.8289496898651123\n", - "Iter: 397 loss: 0.7533465027809143\n", - "Iter: 398 loss: 0.8344225883483887\n", - "Iter: 399 loss: 0.6485474109649658\n", - "Iter: 400 loss: 0.769746720790863\n", - "Iter: 401 loss: 0.7483032941818237\n", - "Iter: 402 loss: 0.8280001878738403\n", - "Iter: 403 loss: 0.7509192228317261\n", - "Iter: 404 loss: 0.6927852630615234\n", - "Iter: 405 loss: 0.6626401543617249\n", - "Iter: 406 loss: 0.7286986708641052\n", - "Iter: 407 loss: 0.7318001985549927\n", - "Iter: 408 loss: 0.791917085647583\n", - "Iter: 409 loss: 0.7075235843658447\n", - "Iter: 410 loss: 0.7303764224052429\n", - "Iter: 411 loss: 0.7579562067985535\n", - "Iter: 412 loss: 0.691828191280365\n", - "Iter: 413 loss: 0.7008522152900696\n", - "Iter: 414 loss: 0.7394925355911255\n", - "Iter: 415 loss: 0.7498270869255066\n", - "Iter: 416 loss: 0.8036305904388428\n", - "Iter: 417 loss: 0.776680588722229\n", - "Iter: 418 loss: 0.7247750759124756\n", - "Iter: 419 loss: 0.6736465692520142\n", - "Iter: 420 loss: 0.8236139416694641\n", - "Iter: 421 loss: 0.6764218211174011\n", - "Iter: 422 loss: 0.7161667346954346\n", - "Iter: 423 loss: 0.7377354502677917\n", - "Iter: 424 loss: 0.687277615070343\n", - "Iter: 425 loss: 0.6355543732643127\n", - "Iter: 426 loss: 0.7471168637275696\n", - "Iter: 427 loss: 0.7231799960136414\n", - "Iter: 428 loss: 0.8102117776870728\n", - "Iter: 429 loss: 0.8089067935943604\n", - "Iter: 430 loss: 0.772988498210907\n", - "Iter: 431 loss: 0.7337077260017395\n", - "Iter: 432 loss: 0.6958280801773071\n", - "Iter: 433 loss: 0.7571672797203064\n", - "Iter: 434 loss: 0.7199589014053345\n", - "Iter: 435 loss: 0.77912437915802\n", - "Iter: 436 loss: 0.6851719617843628\n", - "Iter: 437 loss: 0.7430288791656494\n", - "Iter: 438 loss: 0.662026584148407\n", - "Iter: 439 loss: 0.7924825549125671\n", - "Iter: 440 loss: 0.6822394728660583\n", - "Iter: 441 loss: 0.6537541747093201\n", - "Iter: 442 loss: 0.7793594598770142\n", - "Iter: 443 loss: 0.7829992175102234\n", - "Iter: 444 loss: 0.7605007290840149\n", - "Iter: 445 loss: 0.6909720301628113\n", - "Iter: 446 loss: 0.7897834777832031\n", - "Iter: 447 loss: 0.6962301731109619\n", - "Iter: 448 loss: 0.7809285521507263\n", - "Iter: 449 loss: 0.6976435780525208\n", - "Iter: 450 loss: 0.7680391073226929\n", - "Iter: 451 loss: 0.7496058940887451\n", - "Iter: 452 loss: 0.7051645517349243\n", - "Iter: 453 loss: 0.7280505299568176\n", - "Iter: 454 loss: 0.7413552403450012\n", - "Iter: 455 loss: 0.7410157918930054\n", - "Iter: 456 loss: 0.7071528434753418\n", - "Iter: 457 loss: 0.7578914165496826\n", - "Iter: 458 loss: 0.7261902093887329\n", - "Iter: 459 loss: 0.797773003578186\n", - "Iter: 460 loss: 0.6572179794311523\n", - "Iter: 461 loss: 0.8458624482154846\n", - "Iter: 462 loss: 0.649715006351471\n", - "Iter: 463 loss: 0.7774164080619812\n", - "Iter: 464 loss: 0.722876250743866\n", - "Iter: 465 loss: 0.6858503818511963\n", - "Iter: 466 loss: 0.6881071329116821\n", - "Iter: 467 loss: 0.736808717250824\n", - "Iter: 468 loss: 0.7207440137863159\n", - "Iter: 469 loss: 0.7234143018722534\n", - "Iter: 470 loss: 0.7905018925666809\n", - "Iter: 471 loss: 0.7426812052726746\n", - "Iter: 472 loss: 0.7148537039756775\n", - "Iter: 473 loss: 0.7781558632850647\n", - "Iter: 474 loss: 0.7300354838371277\n", - "Iter: 475 loss: 0.6606340408325195\n", - "Iter: 476 loss: 0.7512770891189575\n", - "Iter: 477 loss: 0.7215319275856018\n", - "Iter: 478 loss: 0.7483927011489868\n", - "Iter: 479 loss: 0.7556651830673218\n", - "Iter: 480 loss: 0.7016016244888306\n", - "Iter: 481 loss: 0.7201612591743469\n", - "Iter: 482 loss: 0.6534396409988403\n", - "Iter: 483 loss: 0.815414547920227\n", - "Iter: 484 loss: 0.7213774919509888\n", - "Iter: 485 loss: 0.7324478030204773\n", - "Iter: 486 loss: 0.7404571175575256\n", - "Iter: 487 loss: 0.7186536192893982\n", - "Iter: 488 loss: 0.7655680775642395\n", - "Iter: 489 loss: 0.7527503371238708\n", - "Iter: 490 loss: 0.6685030460357666\n", - "Iter: 491 loss: 0.7174233198165894\n", - "Iter: 492 loss: 0.7797295451164246\n", - "Iter: 493 loss: 0.7637015581130981\n", - "Iter: 494 loss: 0.7968454360961914\n", - "Iter: 495 loss: 0.8005789518356323\n", - "Iter: 496 loss: 0.7488762736320496\n", - "Iter: 497 loss: 0.6909804344177246\n", - "Iter: 498 loss: 0.7687786221504211\n", - "Iter: 499 loss: 0.78254234790802\n" + "Iter: 0 loss: 1.9805617332458496\n", + "Iter: 1 loss: 1.8025901317596436\n", + "Iter: 2 loss: 2.031694173812866\n", + "Iter: 3 loss: 1.9945542812347412\n", + "Iter: 4 loss: 1.7202919721603394\n", + "Iter: 5 loss: 1.7191053628921509\n", + "Iter: 6 loss: 1.9015761613845825\n", + "Iter: 7 loss: 1.7722537517547607\n", + "Iter: 8 loss: 1.854692816734314\n", + "Iter: 9 loss: 1.8887362480163574\n", + "Iter: 10 loss: 1.7506593465805054\n", + "Iter: 11 loss: 1.6440036296844482\n", + "Iter: 12 loss: 1.920646071434021\n", + "Iter: 13 loss: 1.7272852659225464\n", + "Iter: 14 loss: 1.6098318099975586\n", + "Iter: 15 loss: 1.658937931060791\n", + "Iter: 16 loss: 1.6579564809799194\n", + "Iter: 17 loss: 1.645857810974121\n", + "Iter: 18 loss: 1.5768449306488037\n", + "Iter: 19 loss: 1.803770661354065\n", + "Iter: 20 loss: 1.7684088945388794\n", + "Iter: 21 loss: 1.6124722957611084\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iter: 22 loss: 1.645538091659546\n", + "Iter: 23 loss: 1.6214109659194946\n", + "Iter: 24 loss: 1.6601475477218628\n", + "Iter: 25 loss: 1.6856441497802734\n", + "Iter: 26 loss: 1.5801130533218384\n", + "Iter: 27 loss: 1.630822777748108\n", + "Iter: 28 loss: 1.680274248123169\n", + "Iter: 29 loss: 1.4901219606399536\n", + "Iter: 30 loss: 1.5419976711273193\n", + "Iter: 31 loss: 1.5257341861724854\n", + "Iter: 32 loss: 1.3775995969772339\n", + "Iter: 33 loss: 1.476729154586792\n", + "Iter: 34 loss: 1.555536150932312\n", + "Iter: 35 loss: 1.3680497407913208\n", + "Iter: 36 loss: 1.4090090990066528\n", + "Iter: 37 loss: 1.498034954071045\n", + "Iter: 38 loss: 1.3738770484924316\n", + "Iter: 39 loss: 1.4740275144577026\n", + "Iter: 40 loss: 1.5475012063980103\n", + "Iter: 41 loss: 1.4163392782211304\n", + "Iter: 42 loss: 1.5104678869247437\n", + "Iter: 43 loss: 1.4174026250839233\n", + "Iter: 44 loss: 1.4191768169403076\n", + "Iter: 45 loss: 1.3937981128692627\n", + "Iter: 46 loss: 1.3800904750823975\n", + "Iter: 47 loss: 1.3861405849456787\n", + "Iter: 48 loss: 1.3352952003479004\n", + "Iter: 49 loss: 1.5207905769348145\n", + "Iter: 50 loss: 1.3930941820144653\n", + "Iter: 51 loss: 1.4481498003005981\n", + "Iter: 52 loss: 1.2464197874069214\n", + "Iter: 53 loss: 1.3603137731552124\n", + "Iter: 54 loss: 1.3475170135498047\n", + "Iter: 55 loss: 1.403491497039795\n", + "Iter: 56 loss: 1.240339994430542\n", + "Iter: 57 loss: 1.35442054271698\n", + "Iter: 58 loss: 1.299458622932434\n", + "Iter: 59 loss: 1.3414273262023926\n", + "Iter: 60 loss: 1.3874589204788208\n", + "Iter: 61 loss: 1.3413195610046387\n", + "Iter: 62 loss: 1.4497981071472168\n", + "Iter: 63 loss: 1.367334246635437\n", + "Iter: 64 loss: 1.3887853622436523\n", + "Iter: 65 loss: 1.1768791675567627\n", + "Iter: 66 loss: 1.2191818952560425\n", + "Iter: 67 loss: 1.2394174337387085\n", + "Iter: 68 loss: 1.2720674276351929\n", + "Iter: 69 loss: 1.1870050430297852\n", + "Iter: 70 loss: 1.167008399963379\n", + "Iter: 71 loss: 1.0104048252105713\n", + "Iter: 72 loss: 1.220668077468872\n", + "Iter: 73 loss: 1.2049179077148438\n", + "Iter: 74 loss: 1.2226407527923584\n", + "Iter: 75 loss: 1.1349108219146729\n", + "Iter: 76 loss: 1.1596174240112305\n", + "Iter: 77 loss: 1.2130862474441528\n", + "Iter: 78 loss: 1.214403748512268\n", + "Iter: 79 loss: 1.1449862718582153\n", + "Iter: 80 loss: 1.0985286235809326\n", + "Iter: 81 loss: 1.1326711177825928\n", + "Iter: 82 loss: 1.1807959079742432\n", + "Iter: 83 loss: 1.048061490058899\n", + "Iter: 84 loss: 1.1341931819915771\n", + "Iter: 85 loss: 1.215437650680542\n", + "Iter: 86 loss: 1.0802685022354126\n", + "Iter: 87 loss: 1.1361114978790283\n", + "Iter: 88 loss: 1.0656828880310059\n", + "Iter: 89 loss: 1.089748740196228\n", + "Iter: 90 loss: 1.1064836978912354\n", + "Iter: 91 loss: 0.9860588312149048\n", + "Iter: 92 loss: 1.0804916620254517\n", + "Iter: 93 loss: 1.0388741493225098\n", + "Iter: 94 loss: 1.0707978010177612\n", + "Iter: 95 loss: 1.0359313488006592\n", + "Iter: 96 loss: 0.9742279052734375\n", + "Iter: 97 loss: 1.0084362030029297\n", + "Iter: 98 loss: 0.9701743125915527\n", + "Iter: 99 loss: 1.0614649057388306\n", + "Iter: 100 loss: 0.9868718385696411\n", + "Iter: 101 loss: 1.0476289987564087\n", + "Iter: 102 loss: 0.9918445348739624\n", + "Iter: 103 loss: 0.9954294562339783\n", + "Iter: 104 loss: 0.976019561290741\n", + "Iter: 105 loss: 0.9438324570655823\n", + "Iter: 106 loss: 1.016481876373291\n", + "Iter: 107 loss: 0.9031904339790344\n", + "Iter: 108 loss: 0.9559891819953918\n", + "Iter: 109 loss: 0.9234176874160767\n", + "Iter: 110 loss: 0.9827056527137756\n", + "Iter: 111 loss: 0.8893677592277527\n", + "Iter: 112 loss: 1.0373646020889282\n", + "Iter: 113 loss: 0.969677746295929\n", + "Iter: 114 loss: 0.9606840014457703\n", + "Iter: 115 loss: 0.9815815091133118\n", + "Iter: 116 loss: 0.8569760918617249\n", + "Iter: 117 loss: 0.9907503128051758\n", + "Iter: 118 loss: 0.9095526933670044\n", + "Iter: 119 loss: 0.9353654980659485\n", + "Iter: 120 loss: 0.8194756507873535\n", + "Iter: 121 loss: 0.9022062420845032\n", + "Iter: 122 loss: 0.8743700385093689\n", + "Iter: 123 loss: 0.9831135869026184\n", + "Iter: 124 loss: 0.8495036959648132\n", + "Iter: 125 loss: 0.9783182144165039\n", + "Iter: 126 loss: 0.9088736176490784\n", + "Iter: 127 loss: 0.9106994867324829\n", + "Iter: 128 loss: 0.9761142134666443\n", + "Iter: 129 loss: 0.8999398350715637\n", + "Iter: 130 loss: 0.8305215835571289\n", + "Iter: 131 loss: 0.9205377101898193\n", + "Iter: 132 loss: 0.8449883460998535\n", + "Iter: 133 loss: 0.8559181094169617\n", + "Iter: 134 loss: 0.9092606902122498\n", + "Iter: 135 loss: 0.955997109413147\n", + "Iter: 136 loss: 0.8423243165016174\n", + "Iter: 137 loss: 0.7789523601531982\n", + "Iter: 138 loss: 0.8368927240371704\n", + "Iter: 139 loss: 0.8050987720489502\n", + "Iter: 140 loss: 0.8245793581008911\n", + "Iter: 141 loss: 0.7718734741210938\n", + "Iter: 142 loss: 0.8626708388328552\n", + "Iter: 143 loss: 0.8142494559288025\n", + "Iter: 144 loss: 0.8319269418716431\n", + "Iter: 145 loss: 0.8541449308395386\n", + "Iter: 146 loss: 0.8789214491844177\n", + "Iter: 147 loss: 0.796822190284729\n", + "Iter: 148 loss: 0.8711612224578857\n", + "Iter: 149 loss: 0.7738094329833984\n", + "Iter: 150 loss: 0.7809597849845886\n", + "Iter: 151 loss: 0.7988883852958679\n", + "Iter: 152 loss: 0.7671294212341309\n", + "Iter: 153 loss: 0.833545982837677\n", + "Iter: 154 loss: 0.8244177103042603\n", + "Iter: 155 loss: 0.8273477554321289\n", + "Iter: 156 loss: 0.7487991452217102\n", + "Iter: 157 loss: 0.7389651536941528\n", + "Iter: 158 loss: 0.745494544506073\n", + "Iter: 159 loss: 0.8184966444969177\n", + "Iter: 160 loss: 0.9008775949478149\n", + "Iter: 161 loss: 0.683189868927002\n", + "Iter: 162 loss: 0.8497620820999146\n", + "Iter: 163 loss: 0.7113029360771179\n", + "Iter: 164 loss: 0.7480971217155457\n", + "Iter: 165 loss: 0.7600574493408203\n", + "Iter: 166 loss: 0.8647663593292236\n", + "Iter: 167 loss: 0.8160669803619385\n", + "Iter: 168 loss: 0.6222054362297058\n", + "Iter: 169 loss: 0.7866172790527344\n", + "Iter: 170 loss: 0.7427919507026672\n", + "Iter: 171 loss: 0.6945216655731201\n", + "Iter: 172 loss: 0.8221079707145691\n", + "Iter: 173 loss: 0.8030076622962952\n", + "Iter: 174 loss: 0.8049115538597107\n", + "Iter: 175 loss: 0.7886579632759094\n", + "Iter: 176 loss: 0.7404837012290955\n", + "Iter: 177 loss: 0.8319634795188904\n", + "Iter: 178 loss: 0.7716971039772034\n", + "Iter: 179 loss: 0.7472668290138245\n", + "Iter: 180 loss: 0.8388826847076416\n", + "Iter: 181 loss: 0.7416689991950989\n", + "Iter: 182 loss: 0.7435218691825867\n", + "Iter: 183 loss: 0.7047989368438721\n", + "Iter: 184 loss: 0.7407194375991821\n", + "Iter: 185 loss: 0.77459317445755\n", + "Iter: 186 loss: 0.7588302493095398\n", + "Iter: 187 loss: 0.7485222220420837\n", + "Iter: 188 loss: 0.7661924362182617\n", + "Iter: 189 loss: 0.7691460847854614\n", + "Iter: 190 loss: 0.7921717762947083\n", + "Iter: 191 loss: 0.7807445526123047\n", + "Iter: 192 loss: 0.7440702319145203\n", + "Iter: 193 loss: 0.7382485270500183\n", + "Iter: 194 loss: 0.7505578398704529\n", + "Iter: 195 loss: 0.7521969676017761\n", + "Iter: 196 loss: 0.7729941606521606\n", + "Iter: 197 loss: 0.7618523240089417\n", + "Iter: 198 loss: 0.6925379633903503\n", + "Iter: 199 loss: 0.7216784358024597\n", + "Iter: 200 loss: 0.7630573511123657\n", + "Iter: 201 loss: 0.7578184008598328\n", + "Iter: 202 loss: 0.7066788673400879\n", + "Iter: 203 loss: 0.6725234985351562\n", + "Iter: 204 loss: 0.8353860378265381\n", + "Iter: 205 loss: 0.7596644163131714\n", + "Iter: 206 loss: 0.6964012384414673\n", + "Iter: 207 loss: 0.7080748081207275\n", + "Iter: 208 loss: 0.7611230611801147\n", + "Iter: 209 loss: 0.6991662979125977\n", + "Iter: 210 loss: 0.8013142347335815\n", + "Iter: 211 loss: 0.7563574910163879\n", + "Iter: 212 loss: 0.7515873312950134\n", + "Iter: 213 loss: 0.7633510828018188\n", + "Iter: 214 loss: 0.7965489029884338\n", + "Iter: 215 loss: 0.7361522316932678\n", + "Iter: 216 loss: 0.8154727816581726\n", + "Iter: 217 loss: 0.7633712291717529\n", + "Iter: 218 loss: 0.747672975063324\n", + "Iter: 219 loss: 0.8227214813232422\n", + "Iter: 220 loss: 0.7286431789398193\n", + "Iter: 221 loss: 0.7252363562583923\n", + "Iter: 222 loss: 0.7726857662200928\n", + "Iter: 223 loss: 0.7255075573921204\n", + "Iter: 224 loss: 0.7621436715126038\n", + "Iter: 225 loss: 0.7439958453178406\n", + "Iter: 226 loss: 0.7842658162117004\n", + "Iter: 227 loss: 0.8126776218414307\n", + "Iter: 228 loss: 0.7845531702041626\n", + "Iter: 229 loss: 0.7619743347167969\n", + "Iter: 230 loss: 0.6935016512870789\n", + "Iter: 231 loss: 0.7405728101730347\n", + "Iter: 232 loss: 0.7962220311164856\n", + "Iter: 233 loss: 0.7580589652061462\n", + "Iter: 234 loss: 0.7536160945892334\n", + "Iter: 235 loss: 0.7131446003913879\n", + "Iter: 236 loss: 0.7761134505271912\n", + "Iter: 237 loss: 0.7293672561645508\n", + "Iter: 238 loss: 0.6967693567276001\n", + "Iter: 239 loss: 0.7903556823730469\n", + "Iter: 240 loss: 0.8251112103462219\n", + "Iter: 241 loss: 0.7999218106269836\n", + "Iter: 242 loss: 0.6811379790306091\n", + "Iter: 243 loss: 0.7090156674385071\n", + "Iter: 244 loss: 0.768743634223938\n", + "Iter: 245 loss: 0.6884755492210388\n", + "Iter: 246 loss: 0.7523618340492249\n", + "Iter: 247 loss: 0.7042577266693115\n", + "Iter: 248 loss: 0.7880843281745911\n", + "Iter: 249 loss: 0.6875710487365723\n", + "Iter: 250 loss: 0.8206250071525574\n", + "Iter: 251 loss: 0.7875389456748962\n", + "Iter: 252 loss: 0.7801828384399414\n", + "Iter: 253 loss: 0.6569035649299622\n", + "Iter: 254 loss: 0.7376194596290588\n", + "Iter: 255 loss: 0.6954792141914368\n", + "Iter: 256 loss: 0.7453858852386475\n", + "Iter: 257 loss: 0.6889872550964355\n", + "Iter: 258 loss: 0.7536426782608032\n", + "Iter: 259 loss: 0.8125402331352234\n", + "Iter: 260 loss: 0.8177505135536194\n", + "Iter: 261 loss: 0.6845332384109497\n", + "Iter: 262 loss: 0.8136887550354004\n", + "Iter: 263 loss: 0.8373847007751465\n", + "Iter: 264 loss: 0.7655545473098755\n", + "Iter: 265 loss: 0.7791152000427246\n", + "Iter: 266 loss: 0.7591190338134766\n", + "Iter: 267 loss: 0.7500302791595459\n", + "Iter: 268 loss: 0.8224740624427795\n", + "Iter: 269 loss: 0.7309026718139648\n", + "Iter: 270 loss: 0.718230128288269\n", + "Iter: 271 loss: 0.8316670060157776\n", + "Iter: 272 loss: 0.7898823618888855\n", + "Iter: 273 loss: 0.7477232217788696\n", + "Iter: 274 loss: 0.6895729303359985\n", + "Iter: 275 loss: 0.7868199348449707\n", + "Iter: 276 loss: 0.6705161333084106\n", + "Iter: 277 loss: 0.6775550842285156\n", + "Iter: 278 loss: 0.7814649939537048\n", + "Iter: 279 loss: 0.7454410195350647\n", + "Iter: 280 loss: 0.7650513648986816\n", + "Iter: 281 loss: 0.703502893447876\n", + "Iter: 282 loss: 0.6825293302536011\n", + "Iter: 283 loss: 0.748300313949585\n", + "Iter: 284 loss: 0.8003031611442566\n", + "Iter: 285 loss: 0.7226359248161316\n", + "Iter: 286 loss: 0.7482562065124512\n", + "Iter: 287 loss: 0.7037150859832764\n", + "Iter: 288 loss: 0.6599317789077759\n", + "Iter: 289 loss: 0.7885129451751709\n", + "Iter: 290 loss: 0.7391639351844788\n", + "Iter: 291 loss: 0.7782588005065918\n", + "Iter: 292 loss: 0.7988339066505432\n", + "Iter: 293 loss: 0.8073354363441467\n", + "Iter: 294 loss: 0.7786983847618103\n", + "Iter: 295 loss: 0.7772461175918579\n", + "Iter: 296 loss: 0.7132081985473633\n", + "Iter: 297 loss: 0.8281292915344238\n", + "Iter: 298 loss: 0.7663464546203613\n", + "Iter: 299 loss: 0.6490896940231323\n", + "Iter: 300 loss: 0.7675547003746033\n", + "Iter: 301 loss: 0.7649644017219543\n", + "Iter: 302 loss: 0.6963700652122498\n", + "Iter: 303 loss: 0.7550777792930603\n", + "Iter: 304 loss: 0.736324667930603\n", + "Iter: 305 loss: 0.7621028423309326\n", + "Iter: 306 loss: 0.7419945001602173\n", + "Iter: 307 loss: 0.6823716163635254\n", + "Iter: 308 loss: 0.7759464979171753\n", + "Iter: 309 loss: 0.7058022618293762\n", + "Iter: 310 loss: 0.6727997660636902\n", + "Iter: 311 loss: 0.8054975867271423\n", + "Iter: 312 loss: 0.8109613656997681\n", + "Iter: 313 loss: 0.7326411008834839\n", + "Iter: 314 loss: 0.7120062112808228\n", + "Iter: 315 loss: 0.8128442764282227\n", + "Iter: 316 loss: 0.7517625093460083\n", + "Iter: 317 loss: 0.7713884115219116\n", + "Iter: 318 loss: 0.8480547070503235\n", + "Iter: 319 loss: 0.702705979347229\n", + "Iter: 320 loss: 0.7059921622276306\n", + "Iter: 321 loss: 0.7872293591499329\n", + "Iter: 322 loss: 0.7349603176116943\n", + "Iter: 323 loss: 0.7161703109741211\n", + "Iter: 324 loss: 0.7818953990936279\n", + "Iter: 325 loss: 0.7599454522132874\n", + "Iter: 326 loss: 0.7697244882583618\n", + "Iter: 327 loss: 0.7867234349250793\n", + "Iter: 328 loss: 0.682836651802063\n", + "Iter: 329 loss: 0.7013850808143616\n", + "Iter: 330 loss: 0.6942458152770996\n", + "Iter: 331 loss: 0.7497996091842651\n", + "Iter: 332 loss: 0.7326624393463135\n", + "Iter: 333 loss: 0.7597166895866394\n", + "Iter: 334 loss: 0.7500086426734924\n", + "Iter: 335 loss: 0.7895935773849487\n", + "Iter: 336 loss: 0.8334783911705017\n", + "Iter: 337 loss: 0.7284033894538879\n", + "Iter: 338 loss: 0.7732714414596558\n", + "Iter: 339 loss: 0.676790714263916\n", + "Iter: 340 loss: 0.7243130207061768\n", + "Iter: 341 loss: 0.7773412466049194\n", + "Iter: 342 loss: 0.7079021334648132\n", + "Iter: 343 loss: 0.6370235085487366\n", + "Iter: 344 loss: 0.8005423545837402\n", + "Iter: 345 loss: 0.738919198513031\n", + "Iter: 346 loss: 0.8055499792098999\n", + "Iter: 347 loss: 0.7543529868125916\n", + "Iter: 348 loss: 0.7680253982543945\n", + "Iter: 349 loss: 0.7597320079803467\n", + "Iter: 350 loss: 0.71065753698349\n", + "Iter: 351 loss: 0.8280908465385437\n", + "Iter: 352 loss: 0.7558255791664124\n", + "Iter: 353 loss: 0.7213332653045654\n", + "Iter: 354 loss: 0.7861753106117249\n", + "Iter: 355 loss: 0.6860837340354919\n", + "Iter: 356 loss: 0.682718813419342\n", + "Iter: 357 loss: 0.8032821416854858\n", + "Iter: 358 loss: 0.8093968033790588\n", + "Iter: 359 loss: 0.8067198991775513\n", + "Iter: 360 loss: 0.6919136047363281\n", + "Iter: 361 loss: 0.7820616960525513\n", + "Iter: 362 loss: 0.7275558114051819\n", + "Iter: 363 loss: 0.7696441411972046\n", + "Iter: 364 loss: 0.8017007112503052\n", + "Iter: 365 loss: 0.7153326869010925\n", + "Iter: 366 loss: 0.7117183804512024\n", + "Iter: 367 loss: 0.8193935751914978\n", + "Iter: 368 loss: 0.6623105406761169\n", + "Iter: 369 loss: 0.7483440041542053\n", + "Iter: 370 loss: 0.7565128803253174\n", + "Iter: 371 loss: 0.810152530670166\n", + "Iter: 372 loss: 0.7762826681137085\n", + "Iter: 373 loss: 0.7920745015144348\n", + "Iter: 374 loss: 0.6655041575431824\n", + "Iter: 375 loss: 0.7805476784706116\n", + "Iter: 376 loss: 0.7534869313240051\n", + "Iter: 377 loss: 0.774760365486145\n", + "Iter: 378 loss: 0.8888921737670898\n", + "Iter: 379 loss: 0.6747276186943054\n", + "Iter: 380 loss: 0.7147196531295776\n", + "Iter: 381 loss: 0.7634982466697693\n", + "Iter: 382 loss: 0.7015461921691895\n", + "Iter: 383 loss: 0.6958515644073486\n", + "Iter: 384 loss: 0.7011913061141968\n", + "Iter: 385 loss: 0.7218649387359619\n", + "Iter: 386 loss: 0.6253352761268616\n", + "Iter: 387 loss: 0.7061758637428284\n", + "Iter: 388 loss: 0.8366891145706177\n", + "Iter: 389 loss: 0.7063533663749695\n", + "Iter: 390 loss: 0.76649010181427\n", + "Iter: 391 loss: 0.738723874092102\n", + "Iter: 392 loss: 0.6997895240783691\n", + "Iter: 393 loss: 0.8087694644927979\n", + "Iter: 394 loss: 0.7744677662849426\n", + "Iter: 395 loss: 0.8032159209251404\n", + "Iter: 396 loss: 0.7442559599876404\n", + "Iter: 397 loss: 0.6889336109161377\n", + "Iter: 398 loss: 0.7010838389396667\n", + "Iter: 399 loss: 0.6920999884605408\n", + "Iter: 400 loss: 0.6988369822502136\n", + "Iter: 401 loss: 0.7609533667564392\n", + "Iter: 402 loss: 0.7603869438171387\n", + "Iter: 403 loss: 0.7391469478607178\n", + "Iter: 404 loss: 0.8220537304878235\n", + "Iter: 405 loss: 0.7501609325408936\n", + "Iter: 406 loss: 0.7782684564590454\n", + "Iter: 407 loss: 0.7348254323005676\n", + "Iter: 408 loss: 0.7827073335647583\n", + "Iter: 409 loss: 0.7742752432823181\n", + "Iter: 410 loss: 0.7828977704048157\n", + "Iter: 411 loss: 0.7410584688186646\n", + "Iter: 412 loss: 0.7894389033317566\n", + "Iter: 413 loss: 0.705941379070282\n", + "Iter: 414 loss: 0.7824112176895142\n", + "Iter: 415 loss: 0.80355304479599\n", + "Iter: 416 loss: 0.8033602237701416\n", + "Iter: 417 loss: 0.8443747162818909\n", + "Iter: 418 loss: 0.7394675612449646\n", + "Iter: 419 loss: 0.7781858444213867\n", + "Iter: 420 loss: 0.7644594311714172\n", + "Iter: 421 loss: 0.6775036454200745\n", + "Iter: 422 loss: 0.7576867341995239\n", + "Iter: 423 loss: 0.6183066964149475\n", + "Iter: 424 loss: 0.7309356331825256\n", + "Iter: 425 loss: 0.7351677417755127\n", + "Iter: 426 loss: 0.7661881446838379\n", + "Iter: 427 loss: 0.8209323883056641\n", + "Iter: 428 loss: 0.758061408996582\n", + "Iter: 429 loss: 0.6897652745246887\n", + "Iter: 430 loss: 0.7691971063613892\n", + "Iter: 431 loss: 0.6881957650184631\n", + "Iter: 432 loss: 0.7915030717849731\n", + "Iter: 433 loss: 0.5993191003799438\n", + "Iter: 434 loss: 0.7800098657608032\n", + "Iter: 435 loss: 0.7229141592979431\n", + "Iter: 436 loss: 0.708081066608429\n", + "Iter: 437 loss: 0.7528186440467834\n", + "Iter: 438 loss: 0.6610016822814941\n", + "Iter: 439 loss: 0.7165145874023438\n", + "Iter: 440 loss: 0.7604984045028687\n", + "Iter: 441 loss: 0.7130099534988403\n", + "Iter: 442 loss: 0.6715193390846252\n", + "Iter: 443 loss: 0.802721381187439\n", + "Iter: 444 loss: 0.7663918733596802\n", + "Iter: 445 loss: 0.8131882548332214\n", + "Iter: 446 loss: 0.7429021000862122\n", + "Iter: 447 loss: 0.7491136193275452\n", + "Iter: 448 loss: 0.7803678512573242\n", + "Iter: 449 loss: 0.7608444094657898\n", + "Iter: 450 loss: 0.7629172205924988\n", + "Iter: 451 loss: 0.7747122645378113\n", + "Iter: 452 loss: 0.7447332143783569\n", + "Iter: 453 loss: 0.7283624410629272\n", + "Iter: 454 loss: 0.74388188123703\n", + "Iter: 455 loss: 0.6848688125610352\n", + "Iter: 456 loss: 0.5899306535720825\n", + "Iter: 457 loss: 0.7935217618942261\n", + "Iter: 458 loss: 0.7754243016242981\n", + "Iter: 459 loss: 0.7793595790863037\n", + "Iter: 460 loss: 0.8090521693229675\n", + "Iter: 461 loss: 0.7006677985191345\n", + "Iter: 462 loss: 0.7826583981513977\n", + "Iter: 463 loss: 0.7182949781417847\n", + "Iter: 464 loss: 0.8217929005622864\n", + "Iter: 465 loss: 0.791348934173584\n", + "Iter: 466 loss: 0.766833484172821\n", + "Iter: 467 loss: 0.798849880695343\n", + "Iter: 468 loss: 0.709846019744873\n", + "Iter: 469 loss: 0.7496819496154785\n", + "Iter: 470 loss: 0.7343877553939819\n", + "Iter: 471 loss: 0.6931027770042419\n", + "Iter: 472 loss: 0.6345368027687073\n", + "Iter: 473 loss: 0.7079441547393799\n", + "Iter: 474 loss: 0.7253770232200623\n", + "Iter: 475 loss: 0.6839807033538818\n", + "Iter: 476 loss: 0.7984067797660828\n", + "Iter: 477 loss: 0.7432788610458374\n", + "Iter: 478 loss: 0.7992345690727234\n", + "Iter: 479 loss: 0.6723811030387878\n", + "Iter: 480 loss: 0.752716600894928\n", + "Iter: 481 loss: 0.7713953256607056\n", + "Iter: 482 loss: 0.6256953477859497\n", + "Iter: 483 loss: 0.8506426215171814\n", + "Iter: 484 loss: 0.8180297017097473\n", + "Iter: 485 loss: 0.7713161706924438\n", + "Iter: 486 loss: 0.7811065316200256\n", + "Iter: 487 loss: 0.7286692261695862\n", + "Iter: 488 loss: 0.7758050560951233\n", + "Iter: 489 loss: 0.7685326933860779\n", + "Iter: 490 loss: 0.7028822898864746\n", + "Iter: 491 loss: 0.7066388726234436\n", + "Iter: 492 loss: 0.6814691424369812\n", + "Iter: 493 loss: 0.5959678888320923\n", + "Iter: 494 loss: 0.6790522933006287\n", + "Iter: 495 loss: 0.7618914246559143\n", + "Iter: 496 loss: 0.7663031220436096\n", + "Iter: 497 loss: 0.7289538979530334\n", + "Iter: 498 loss: 0.7066988348960876\n", + "Iter: 499 loss: 0.777870774269104\n", + "Iter: 500 loss: 0.7542997002601624\n", + "Iter: 501 loss: 0.6752946972846985\n", + "Iter: 502 loss: 0.718105137348175\n", + "Iter: 503 loss: 0.711881697177887\n", + "Iter: 504 loss: 0.754044771194458\n", + "Iter: 505 loss: 0.8272046446800232\n", + "Iter: 506 loss: 0.7916176915168762\n", + "Iter: 507 loss: 0.7699441909790039\n", + "Iter: 508 loss: 0.7934996485710144\n", + "Iter: 509 loss: 0.7461283802986145\n", + "Iter: 510 loss: 0.6816233396530151\n", + "Iter: 511 loss: 0.7319837808609009\n", + "Iter: 512 loss: 0.8662120699882507\n", + "Iter: 513 loss: 0.7970235347747803\n", + "Iter: 514 loss: 0.7527714371681213\n", + "Iter: 515 loss: 0.8468923568725586\n", + "Iter: 516 loss: 0.816019594669342\n", + "Iter: 517 loss: 0.7994211912155151\n", + "Iter: 518 loss: 0.6872672438621521\n", + "Iter: 519 loss: 0.816620409488678\n", + "Iter: 520 loss: 0.7121481895446777\n", + "Iter: 521 loss: 0.7245829701423645\n", + "Iter: 522 loss: 0.7529941201210022\n", + "Iter: 523 loss: 0.748563289642334\n", + "Iter: 524 loss: 0.763278067111969\n", + "Iter: 525 loss: 0.6893954873085022\n", + "Iter: 526 loss: 0.6565689444541931\n", + "Iter: 527 loss: 0.6494897603988647\n", + "Iter: 528 loss: 0.7940126061439514\n", + "Iter: 529 loss: 0.7272389531135559\n", + "Iter: 530 loss: 0.7045547962188721\n", + "Iter: 531 loss: 0.829017162322998\n", + "Iter: 532 loss: 0.6705955266952515\n", + "Iter: 533 loss: 0.8001565337181091\n", + "Iter: 534 loss: 0.6924157738685608\n", + "Iter: 535 loss: 0.7661989331245422\n", + "Iter: 536 loss: 0.7399759888648987\n", + "Iter: 537 loss: 0.7118505239486694\n", + "Iter: 538 loss: 0.7752941846847534\n", + "Iter: 539 loss: 0.7754896283149719\n", + "Iter: 540 loss: 0.7113470435142517\n", + "Iter: 541 loss: 0.7525705695152283\n", + "Iter: 542 loss: 0.7552124261856079\n", + "Iter: 543 loss: 0.7383772730827332\n", + "Iter: 544 loss: 0.8454131484031677\n", + "Iter: 545 loss: 0.8149975538253784\n", + "Iter: 546 loss: 0.8343053460121155\n", + "Iter: 547 loss: 0.8303731679916382\n", + "Iter: 548 loss: 0.7404186129570007\n", + "Iter: 549 loss: 0.6491808891296387\n", + "Iter: 550 loss: 0.7582641839981079\n", + "Iter: 551 loss: 0.7397945523262024\n", + "Iter: 552 loss: 0.6332842111587524\n", + "Iter: 553 loss: 0.8530568480491638\n", + "Iter: 554 loss: 0.7919273376464844\n", + "Iter: 555 loss: 0.7397810220718384\n", + "Iter: 556 loss: 0.6640031337738037\n", + "Iter: 557 loss: 0.794768750667572\n", + "Iter: 558 loss: 0.7567190527915955\n", + "Iter: 559 loss: 0.7367439270019531\n", + "Iter: 560 loss: 0.6475878953933716\n", + "Iter: 561 loss: 0.7887173891067505\n", + "Iter: 562 loss: 0.7730523347854614\n", + "Iter: 563 loss: 0.7952707409858704\n", + "Iter: 564 loss: 0.7736195921897888\n", + "Iter: 565 loss: 0.7310929894447327\n", + "Iter: 566 loss: 0.7469185590744019\n", + "Iter: 567 loss: 0.8295057415962219\n", + "Iter: 568 loss: 0.718482494354248\n", + "Iter: 569 loss: 0.7639539241790771\n", + "Iter: 570 loss: 0.7705737948417664\n", + "Iter: 571 loss: 0.6806334853172302\n", + "Iter: 572 loss: 0.7576005458831787\n", + "Iter: 573 loss: 0.7679342031478882\n", + "Iter: 574 loss: 0.7215850353240967\n", + "Iter: 575 loss: 0.7774286270141602\n", + "Iter: 576 loss: 0.6429439783096313\n", + "Iter: 577 loss: 0.8040923476219177\n", + "Iter: 578 loss: 0.7117185592651367\n", + "Iter: 579 loss: 0.78281569480896\n", + "Iter: 580 loss: 0.7163323163986206\n", + "Iter: 581 loss: 0.7732316255569458\n", + "Iter: 582 loss: 0.7721404433250427\n", + "Iter: 583 loss: 0.7721854448318481\n", + "Iter: 584 loss: 0.7370563745498657\n", + "Iter: 585 loss: 0.7589622139930725\n", + "Iter: 586 loss: 0.8662305474281311\n", + "Iter: 587 loss: 0.7512423992156982\n", + "Iter: 588 loss: 0.7307919263839722\n", + "Iter: 589 loss: 0.6990144848823547\n", + "Iter: 590 loss: 0.744266152381897\n", + "Iter: 591 loss: 0.7846451997756958\n", + "Iter: 592 loss: 0.7416443228721619\n", + "Iter: 593 loss: 0.7499116063117981\n", + "Iter: 594 loss: 0.7798794507980347\n", + "Iter: 595 loss: 0.8188069462776184\n", + "Iter: 596 loss: 0.7057804465293884\n", + "Iter: 597 loss: 0.8493301868438721\n", + "Iter: 598 loss: 0.6457215547561646\n", + "Iter: 599 loss: 0.7962671518325806\n", + "Iter: 600 loss: 0.8057527542114258\n", + "Iter: 601 loss: 0.6807793378829956\n", + "Iter: 602 loss: 0.7492597103118896\n", + "Iter: 603 loss: 0.7291449308395386\n", + "Iter: 604 loss: 0.7336897850036621\n", + "Iter: 605 loss: 0.761009156703949\n", + "Iter: 606 loss: 0.8143707513809204\n", + "Iter: 607 loss: 0.7720316052436829\n", + "Iter: 608 loss: 0.681858479976654\n", + "Iter: 609 loss: 0.8028898239135742\n", + "Iter: 610 loss: 0.7676985859870911\n", + "Iter: 611 loss: 0.6754050254821777\n", + "Iter: 612 loss: 0.8454763293266296\n", + "Iter: 613 loss: 0.7132472395896912\n", + "Iter: 614 loss: 0.7175079584121704\n", + "Iter: 615 loss: 0.7986752986907959\n", + "Iter: 616 loss: 0.7090780735015869\n", + "Iter: 617 loss: 0.8130205869674683\n", + "Iter: 618 loss: 0.7865747809410095\n", + "Iter: 619 loss: 0.7125381231307983\n", + "Iter: 620 loss: 0.7294386625289917\n", + "Iter: 621 loss: 0.7689241170883179\n", + "Iter: 622 loss: 0.646308422088623\n", + "Iter: 623 loss: 0.7665722370147705\n", + "Iter: 624 loss: 0.7725102305412292\n", + "Iter: 625 loss: 0.5930681824684143\n", + "Iter: 626 loss: 0.7687761783599854\n", + "Iter: 627 loss: 0.7884095907211304\n", + "Iter: 628 loss: 0.8037523627281189\n", + "Iter: 629 loss: 0.7616854906082153\n", + "Iter: 630 loss: 0.8242699503898621\n", + "Iter: 631 loss: 0.7369808554649353\n", + "Iter: 632 loss: 0.8226072192192078\n", + "Iter: 633 loss: 0.6963562369346619\n", + "Iter: 634 loss: 0.734079897403717\n", + "Iter: 635 loss: 0.7970098853111267\n", + "Iter: 636 loss: 0.7678261995315552\n", + "Iter: 637 loss: 0.6761040091514587\n", + "Iter: 638 loss: 0.7631828784942627\n", + "Iter: 639 loss: 0.6936546564102173\n", + "Iter: 640 loss: 0.6814842820167542\n", + "Iter: 641 loss: 0.7683150768280029\n", + "Iter: 642 loss: 0.7802019715309143\n", + "Iter: 643 loss: 0.7141402959823608\n", + "Iter: 644 loss: 0.7241312861442566\n", + "Iter: 645 loss: 0.6532038450241089\n", + "Iter: 646 loss: 0.7959935665130615\n", + "Iter: 647 loss: 0.689428448677063\n", + "Iter: 648 loss: 0.6615933179855347\n", + "Iter: 649 loss: 0.7345986366271973\n", + "Iter: 650 loss: 0.740093469619751\n", + "Iter: 651 loss: 0.7361541986465454\n", + "Iter: 652 loss: 0.6766804456710815\n", + "Iter: 653 loss: 0.7414337992668152\n", + "Iter: 654 loss: 0.7474998831748962\n", + "Iter: 655 loss: 0.7237476706504822\n", + "Iter: 656 loss: 0.629637598991394\n", + "Iter: 657 loss: 0.6950984597206116\n", + "Iter: 658 loss: 0.674511194229126\n", + "Iter: 659 loss: 0.6312990784645081\n", + "Iter: 660 loss: 0.7792407870292664\n", + "Iter: 661 loss: 0.7371089458465576\n", + "Iter: 662 loss: 0.7824864387512207\n", + "Iter: 663 loss: 0.7833467721939087\n", + "Iter: 664 loss: 0.6962792873382568\n", + "Iter: 665 loss: 0.6941642761230469\n", + "Iter: 666 loss: 0.7002071142196655\n", + "Iter: 667 loss: 0.8417989611625671\n", + "Iter: 668 loss: 0.8038674592971802\n", + "Iter: 669 loss: 0.8154886960983276\n", + "Iter: 670 loss: 0.7006633877754211\n", + "Iter: 671 loss: 0.728098452091217\n", + "Iter: 672 loss: 0.7281357049942017\n", + "Iter: 673 loss: 0.6674871444702148\n", + "Iter: 674 loss: 0.6991616487503052\n", + "Iter: 675 loss: 0.7797282934188843\n", + "Iter: 676 loss: 0.7612758278846741\n", + "Iter: 677 loss: 0.6974654793739319\n", + "Iter: 678 loss: 0.7905832529067993\n", + "Iter: 679 loss: 0.7542234063148499\n", + "Iter: 680 loss: 0.6588995456695557\n", + "Iter: 681 loss: 0.7957822680473328\n", + "Iter: 682 loss: 0.8139203786849976\n", + "Iter: 683 loss: 0.5719089508056641\n", + "Iter: 684 loss: 0.6996715068817139\n", + "Iter: 685 loss: 0.7555190324783325\n", + "Iter: 686 loss: 0.7377891540527344\n", + "Iter: 687 loss: 0.7497585415840149\n", + "Iter: 688 loss: 0.8554324507713318\n", + "Iter: 689 loss: 0.665812075138092\n", + "Iter: 690 loss: 0.7132008671760559\n", + "Iter: 691 loss: 0.6838510632514954\n", + "Iter: 692 loss: 0.7290314435958862\n", + "Iter: 693 loss: 0.7384650111198425\n", + "Iter: 694 loss: 0.6740379929542542\n", + "Iter: 695 loss: 0.8179587125778198\n", + "Iter: 696 loss: 0.72126305103302\n", + "Iter: 697 loss: 0.7319979071617126\n", + "Iter: 698 loss: 0.7691285014152527\n", + "Iter: 699 loss: 0.7741826176643372\n", + "Iter: 700 loss: 0.7903105020523071\n", + "Iter: 701 loss: 0.7199960947036743\n", + "Iter: 702 loss: 0.805852472782135\n", + "Iter: 703 loss: 0.6933834552764893\n", + "Iter: 704 loss: 0.749457061290741\n", + "Iter: 705 loss: 0.7255305051803589\n", + "Iter: 706 loss: 0.7825813293457031\n", + "Iter: 707 loss: 0.624657928943634\n", + "Iter: 708 loss: 0.8135653138160706\n", + "Iter: 709 loss: 0.6705268025398254\n", + "Iter: 710 loss: 0.651836097240448\n", + "Iter: 711 loss: 0.72135990858078\n", + "Iter: 712 loss: 0.7975751757621765\n", + "Iter: 713 loss: 0.7011063694953918\n", + "Iter: 714 loss: 0.6922042369842529\n", + "Iter: 715 loss: 0.6633785367012024\n", + "Iter: 716 loss: 0.7249318957328796\n", + "Iter: 717 loss: 0.795526385307312\n", + "Iter: 718 loss: 0.672636091709137\n", + "Iter: 719 loss: 0.7263181209564209\n", + "Iter: 720 loss: 0.7566694021224976\n", + "Iter: 721 loss: 0.7061856389045715\n", + "Iter: 722 loss: 0.6360621452331543\n", + "Iter: 723 loss: 0.8563234210014343\n", + "Iter: 724 loss: 0.8339136242866516\n", + "Iter: 725 loss: 0.8478607535362244\n", + "Iter: 726 loss: 0.6565355658531189\n", + "Iter: 727 loss: 0.7214223742485046\n", + "Iter: 728 loss: 0.6880843043327332\n", + "Iter: 729 loss: 0.7055199146270752\n", + "Iter: 730 loss: 0.779790997505188\n", + "Iter: 731 loss: 0.7171573638916016\n", + "Iter: 732 loss: 0.7596198320388794\n", + "Iter: 733 loss: 0.8228399753570557\n", + "Iter: 734 loss: 0.7453888058662415\n", + "Iter: 735 loss: 0.7922481298446655\n", + "Iter: 736 loss: 0.7403447031974792\n", + "Iter: 737 loss: 0.7911423444747925\n", + "Iter: 738 loss: 0.7222422361373901\n", + "Iter: 739 loss: 0.708378791809082\n", + "Iter: 740 loss: 0.7258405685424805\n", + "Iter: 741 loss: 0.6135589480400085\n", + "Iter: 742 loss: 0.7925164103507996\n", + "Iter: 743 loss: 0.7303773760795593\n", + "Iter: 744 loss: 0.6721828579902649\n", + "Iter: 745 loss: 0.7444866299629211\n", + "Iter: 746 loss: 0.7476383447647095\n", + "Iter: 747 loss: 0.6662862300872803\n", + "Iter: 748 loss: 0.7540536522865295\n", + "Iter: 749 loss: 0.7651287317276001\n", + "Iter: 750 loss: 0.70308917760849\n", + "Iter: 751 loss: 0.6892729997634888\n", + "Iter: 752 loss: 0.798305869102478\n", + "Iter: 753 loss: 0.690420925617218\n", + "Iter: 754 loss: 0.7613776922225952\n", + "Iter: 755 loss: 0.7380019426345825\n", + "Iter: 756 loss: 0.7217632532119751\n", + "Iter: 757 loss: 0.7252444624900818\n", + "Iter: 758 loss: 0.7303737998008728\n", + "Iter: 759 loss: 0.6692823767662048\n", + "Iter: 760 loss: 0.7069627046585083\n", + "Iter: 761 loss: 0.7754071950912476\n", + "Iter: 762 loss: 0.8210917711257935\n", + "Iter: 763 loss: 0.8045226335525513\n", + "Iter: 764 loss: 0.7256240844726562\n", + "Iter: 765 loss: 0.6653744578361511\n", + "Iter: 766 loss: 0.6822514533996582\n", + "Iter: 767 loss: 0.7348936200141907\n", + "Iter: 768 loss: 0.7968173623085022\n", + "Iter: 769 loss: 0.737127423286438\n", + "Iter: 770 loss: 0.7614621520042419\n", + "Iter: 771 loss: 0.7294434309005737\n", + "Iter: 772 loss: 0.6986842751502991\n", + "Iter: 773 loss: 0.7578296065330505\n", + "Iter: 774 loss: 0.8244525194168091\n", + "Iter: 775 loss: 0.7819098830223083\n", + "Iter: 776 loss: 0.7953604459762573\n", + "Iter: 777 loss: 0.70353764295578\n", + "Iter: 778 loss: 0.7339650988578796\n", + "Iter: 779 loss: 0.7344540357589722\n", + "Iter: 780 loss: 0.7988514304161072\n", + "Iter: 781 loss: 0.7027602195739746\n", + "Iter: 782 loss: 0.7822993993759155\n", + "Iter: 783 loss: 0.7508948445320129\n", + "Iter: 784 loss: 0.7839027047157288\n", + "Iter: 785 loss: 0.7094700336456299\n", + "Iter: 786 loss: 0.8351640105247498\n", + "Iter: 787 loss: 0.6826196908950806\n", + "Iter: 788 loss: 0.7229036092758179\n", + "Iter: 789 loss: 0.7935537695884705\n", + "Iter: 790 loss: 0.7847087383270264\n", + "Iter: 791 loss: 0.7283614873886108\n", + "Iter: 792 loss: 0.7170544862747192\n", + "Iter: 793 loss: 0.7648525238037109\n", + "Iter: 794 loss: 0.6935485601425171\n", + "Iter: 795 loss: 0.7641574144363403\n", + "Iter: 796 loss: 0.7833794355392456\n", + "Iter: 797 loss: 0.7557811737060547\n", + "Iter: 798 loss: 0.8108946681022644\n", + "Iter: 799 loss: 0.789556622505188\n", + "Iter: 800 loss: 0.7001446485519409\n", + "Iter: 801 loss: 0.7509393095970154\n", + "Iter: 802 loss: 0.7645784020423889\n", + "Iter: 803 loss: 0.6826161742210388\n", + "Iter: 804 loss: 0.7567908763885498\n", + "Iter: 805 loss: 0.8021522164344788\n", + "Iter: 806 loss: 0.7279335856437683\n", + "Iter: 807 loss: 0.7211346626281738\n", + "Iter: 808 loss: 0.761078417301178\n", + "Iter: 809 loss: 0.7373522520065308\n", + "Iter: 810 loss: 0.6825221180915833\n", + "Iter: 811 loss: 0.664487898349762\n", + "Iter: 812 loss: 0.7586029171943665\n", + "Iter: 813 loss: 0.7318552732467651\n", + "Iter: 814 loss: 0.7277081608772278\n", + "Iter: 815 loss: 0.8402461409568787\n", + "Iter: 816 loss: 0.7433162927627563\n", + "Iter: 817 loss: 0.607401430606842\n", + "Iter: 818 loss: 0.7759962677955627\n", + "Iter: 819 loss: 0.7293587327003479\n", + "Iter: 820 loss: 0.7733935713768005\n", + "Iter: 821 loss: 0.7361279129981995\n", + "Iter: 822 loss: 0.7673873901367188\n", + "Iter: 823 loss: 0.7248266935348511\n", + "Iter: 824 loss: 0.7842967510223389\n", + "Iter: 825 loss: 0.7273650765419006\n", + "Iter: 826 loss: 0.6838854551315308\n", + "Iter: 827 loss: 0.7313364744186401\n", + "Iter: 828 loss: 0.7154132723808289\n", + "Iter: 829 loss: 0.7207271456718445\n", + "Iter: 830 loss: 0.7996836304664612\n", + "Iter: 831 loss: 0.7953245639801025\n", + "Iter: 832 loss: 0.7318634390830994\n", + "Iter: 833 loss: 0.7722564935684204\n", + "Iter: 834 loss: 0.6260903477668762\n", + "Iter: 835 loss: 0.6996709704399109\n", + "Iter: 836 loss: 0.6729606986045837\n", + "Iter: 837 loss: 0.7055676579475403\n", + "Iter: 838 loss: 0.8030275702476501\n", + "Iter: 839 loss: 0.7896242141723633\n", + "Iter: 840 loss: 0.7209117412567139\n", + "Iter: 841 loss: 0.7357425689697266\n", + "Iter: 842 loss: 0.7521572113037109\n", + "Iter: 843 loss: 0.7353183627128601\n", + "Iter: 844 loss: 0.6931857466697693\n", + "Iter: 845 loss: 0.7401285767555237\n", + "Iter: 846 loss: 0.777733325958252\n", + "Iter: 847 loss: 0.7298422455787659\n", + "Iter: 848 loss: 0.7487521171569824\n", + "Iter: 849 loss: 0.7718564867973328\n", + "Iter: 850 loss: 0.7869136333465576\n", + "Iter: 851 loss: 0.7480627298355103\n", + "Iter: 852 loss: 0.7255220413208008\n", + "Iter: 853 loss: 0.7218125462532043\n", + "Iter: 854 loss: 0.7510019540786743\n", + "Iter: 855 loss: 0.6985117793083191\n", + "Iter: 856 loss: 0.7602972984313965\n", + "Iter: 857 loss: 0.7932947278022766\n", + "Iter: 858 loss: 0.7760773301124573\n", + "Iter: 859 loss: 0.8192526698112488\n", + "Iter: 860 loss: 0.750874936580658\n", + "Iter: 861 loss: 0.7390201091766357\n", + "Iter: 862 loss: 0.7732408046722412\n", + "Iter: 863 loss: 0.8150452971458435\n", + "Iter: 864 loss: 0.7977700233459473\n", + "Iter: 865 loss: 0.7511420845985413\n", + "Iter: 866 loss: 0.7866520881652832\n", + "Iter: 867 loss: 0.7535949349403381\n", + "Iter: 868 loss: 0.7491104006767273\n", + "Iter: 869 loss: 0.7713673710823059\n", + "Iter: 870 loss: 0.6991034150123596\n", + "Iter: 871 loss: 0.828181266784668\n", + "Iter: 872 loss: 0.6943123936653137\n", + "Iter: 873 loss: 0.7098063230514526\n", + "Iter: 874 loss: 0.8115687966346741\n", + "Iter: 875 loss: 0.7979116439819336\n", + "Iter: 876 loss: 0.6271792054176331\n", + "Iter: 877 loss: 0.807738721370697\n", + "Iter: 878 loss: 0.7233050465583801\n", + "Iter: 879 loss: 0.7554388642311096\n", + "Iter: 880 loss: 0.7800876498222351\n", + "Iter: 881 loss: 0.638181746006012\n", + "Iter: 882 loss: 0.8123814463615417\n", + "Iter: 883 loss: 0.777132511138916\n", + "Iter: 884 loss: 0.7864107489585876\n", + "Iter: 885 loss: 0.7401372790336609\n", + "Iter: 886 loss: 0.7730708122253418\n", + "Iter: 887 loss: 0.7647256255149841\n", + "Iter: 888 loss: 0.7272689342498779\n", + "Iter: 889 loss: 0.7574266791343689\n", + "Iter: 890 loss: 0.7715721130371094\n", + "Iter: 891 loss: 0.6995840668678284\n", + "Iter: 892 loss: 0.7459936738014221\n", + "Iter: 893 loss: 0.7280177474021912\n", + "Iter: 894 loss: 0.7713384032249451\n", + "Iter: 895 loss: 0.8092354536056519\n", + "Iter: 896 loss: 0.6572769284248352\n", + "Iter: 897 loss: 0.7061821222305298\n", + "Iter: 898 loss: 0.6844447255134583\n", + "Iter: 899 loss: 0.7427306771278381\n", + "Iter: 900 loss: 0.773879885673523\n", + "Iter: 901 loss: 0.7216307520866394\n", + "Iter: 902 loss: 0.7026581764221191\n", + "Iter: 903 loss: 0.7092133164405823\n", + "Iter: 904 loss: 0.7413239479064941\n", + "Iter: 905 loss: 0.7302433252334595\n", + "Iter: 906 loss: 0.7461535930633545\n", + "Iter: 907 loss: 0.700629711151123\n", + "Iter: 908 loss: 0.7581530809402466\n", + "Iter: 909 loss: 0.7278703451156616\n", + "Iter: 910 loss: 0.767773449420929\n", + "Iter: 911 loss: 0.6222560405731201\n", + "Iter: 912 loss: 0.8116770386695862\n", + "Iter: 913 loss: 0.7114895582199097\n", + "Iter: 914 loss: 0.6716817021369934\n", + "Iter: 915 loss: 0.7149060964584351\n", + "Iter: 916 loss: 0.7840996384620667\n", + "Iter: 917 loss: 0.6594297885894775\n", + "Iter: 918 loss: 0.7332265377044678\n", + "Iter: 919 loss: 0.6920665502548218\n", + "Iter: 920 loss: 0.7425927519798279\n", + "Iter: 921 loss: 0.6757159233093262\n", + "Iter: 922 loss: 0.7648040652275085\n", + "Iter: 923 loss: 0.7376945614814758\n", + "Iter: 924 loss: 0.7566453218460083\n", + "Iter: 925 loss: 0.7599607110023499\n", + "Iter: 926 loss: 0.777584433555603\n", + "Iter: 927 loss: 0.6805257797241211\n", + "Iter: 928 loss: 0.726241409778595\n", + "Iter: 929 loss: 0.7898449897766113\n", + "Iter: 930 loss: 0.7745088934898376\n", + "Iter: 931 loss: 0.7789832949638367\n", + "Iter: 932 loss: 0.7253491282463074\n", + "Iter: 933 loss: 0.7840139269828796\n", + "Iter: 934 loss: 0.7690697908401489\n", + "Iter: 935 loss: 0.743823766708374\n", + "Iter: 936 loss: 0.7930079102516174\n", + "Iter: 937 loss: 0.7253633737564087\n", + "Iter: 938 loss: 0.7207891345024109\n", + "Iter: 939 loss: 0.6610329747200012\n", + "Iter: 940 loss: 0.6913691759109497\n", + "Iter: 941 loss: 0.7465649247169495\n", + "Iter: 942 loss: 0.7559224963188171\n", + "Iter: 943 loss: 0.7498504519462585\n", + "Iter: 944 loss: 0.7797796726226807\n", + "Iter: 945 loss: 0.7198837995529175\n", + "Iter: 946 loss: 0.710913360118866\n", + "Iter: 947 loss: 0.7848744988441467\n", + "Iter: 948 loss: 0.721505880355835\n", + "Iter: 949 loss: 0.7137767672538757\n", + "Iter: 950 loss: 0.7077537178993225\n", + "Iter: 951 loss: 0.7176251411437988\n", + "Iter: 952 loss: 0.77483069896698\n", + "Iter: 953 loss: 0.7105432748794556\n", + "Iter: 954 loss: 0.7577517628669739\n", + "Iter: 955 loss: 0.8201916217803955\n", + "Iter: 956 loss: 0.7692194581031799\n", + "Iter: 957 loss: 0.7525696158409119\n", + "Iter: 958 loss: 0.7345455288887024\n", + "Iter: 959 loss: 0.757722020149231\n", + "Iter: 960 loss: 0.7880061864852905\n", + "Iter: 961 loss: 0.7793150544166565\n", + "Iter: 962 loss: 0.7544133067131042\n", + "Iter: 963 loss: 0.7538192868232727\n", + "Iter: 964 loss: 0.8193642497062683\n", + "Iter: 965 loss: 0.6882736682891846\n", + "Iter: 966 loss: 0.7260236144065857\n", + "Iter: 967 loss: 0.8014097213745117\n", + "Iter: 968 loss: 0.6881605982780457\n", + "Iter: 969 loss: 0.6849955916404724\n", + "Iter: 970 loss: 0.7060979008674622\n", + "Iter: 971 loss: 0.7455635070800781\n", + "Iter: 972 loss: 0.7151125073432922\n", + "Iter: 973 loss: 0.7016036510467529\n", + "Iter: 974 loss: 0.7017903923988342\n", + "Iter: 975 loss: 0.8868459463119507\n", + "Iter: 976 loss: 0.737339198589325\n", + "Iter: 977 loss: 0.6846007108688354\n", + "Iter: 978 loss: 0.7536394000053406\n", + "Iter: 979 loss: 0.7571871876716614\n", + "Iter: 980 loss: 0.722078800201416\n", + "Iter: 981 loss: 0.8025679588317871\n", + "Iter: 982 loss: 0.7417505383491516\n", + "Iter: 983 loss: 0.7638019323348999\n", + "Iter: 984 loss: 0.8254770636558533\n", + "Iter: 985 loss: 0.8285093307495117\n", + "Iter: 986 loss: 0.7451823949813843\n", + "Iter: 987 loss: 0.8292276859283447\n", + "Iter: 988 loss: 0.7210884690284729\n", + "Iter: 989 loss: 0.7861442565917969\n", + "Iter: 990 loss: 0.7385777831077576\n", + "Iter: 991 loss: 0.6807481646537781\n", + "Iter: 992 loss: 0.7472490072250366\n", + "Iter: 993 loss: 0.7809058427810669\n", + "Iter: 994 loss: 0.8010777235031128\n", + "Iter: 995 loss: 0.6625561714172363\n", + "Iter: 996 loss: 0.7397791147232056\n", + "Iter: 997 loss: 0.6718776822090149\n", + "Iter: 998 loss: 0.7716687917709351\n", + "Iter: 999 loss: 0.7588217258453369\n", + "Iter: 1000 loss: 0.7458823323249817\n", + "Iter: 1001 loss: 0.7612285017967224\n", + "Iter: 1002 loss: 0.8143988847732544\n", + "Iter: 1003 loss: 0.7199259996414185\n", + "Iter: 1004 loss: 0.8003984093666077\n", + "Iter: 1005 loss: 0.7432374358177185\n", + "Iter: 1006 loss: 0.807952880859375\n", + "Iter: 1007 loss: 0.7066463232040405\n", + "Iter: 1008 loss: 0.7890826463699341\n", + "Iter: 1009 loss: 0.7584750056266785\n", + "Iter: 1010 loss: 0.7466537356376648\n", + "Iter: 1011 loss: 0.7344527840614319\n", + "Iter: 1012 loss: 0.7411535978317261\n", + "Iter: 1013 loss: 0.8116076588630676\n", + "Iter: 1014 loss: 0.788882851600647\n", + "Iter: 1015 loss: 0.6887310147285461\n", + "Iter: 1016 loss: 0.7749596238136292\n", + "Iter: 1017 loss: 0.8034555912017822\n", + "Iter: 1018 loss: 0.7034541368484497\n", + "Iter: 1019 loss: 0.6912671327590942\n", + "Iter: 1020 loss: 0.7682822942733765\n", + "Iter: 1021 loss: 0.767099142074585\n", + "Iter: 1022 loss: 0.7955928444862366\n", + "Iter: 1023 loss: 0.7749770283699036\n", + "Iter: 1024 loss: 0.7329320311546326\n", + "Iter: 1025 loss: 0.7281012535095215\n", + "Iter: 1026 loss: 0.76936936378479\n", + "Iter: 1027 loss: 0.79134601354599\n", + "Iter: 1028 loss: 0.7259616851806641\n", + "Iter: 1029 loss: 0.7501120567321777\n", + "Iter: 1030 loss: 0.8448623418807983\n", + "Iter: 1031 loss: 0.7331525087356567\n", + "Iter: 1032 loss: 0.7237130403518677\n", + "Iter: 1033 loss: 0.7015702128410339\n", + "Iter: 1034 loss: 0.7432305812835693\n", + "Iter: 1035 loss: 0.8060393333435059\n", + "Iter: 1036 loss: 0.7201341986656189\n", + "Iter: 1037 loss: 0.8037415146827698\n", + "Iter: 1038 loss: 0.7045787572860718\n", + "Iter: 1039 loss: 0.7851817011833191\n", + "Iter: 1040 loss: 0.7053983211517334\n", + "Iter: 1041 loss: 0.7436673045158386\n", + "Iter: 1042 loss: 0.7299012541770935\n", + "Iter: 1043 loss: 0.8136020302772522\n", + "Iter: 1044 loss: 0.7601572275161743\n", + "Iter: 1045 loss: 0.7862766981124878\n", + "Iter: 1046 loss: 0.7836612462997437\n", + "Iter: 1047 loss: 0.686836838722229\n", + "Iter: 1048 loss: 0.7847157120704651\n", + "Iter: 1049 loss: 0.7817122936248779\n", + "Iter: 1050 loss: 0.689613401889801\n", + "Iter: 1051 loss: 0.721592128276825\n", + "Iter: 1052 loss: 0.7228052616119385\n", + "Iter: 1053 loss: 0.723995566368103\n", + "Iter: 1054 loss: 0.7966278791427612\n", + "Iter: 1055 loss: 0.8045709729194641\n", + "Iter: 1056 loss: 0.7703787684440613\n", + "Iter: 1057 loss: 0.7868667244911194\n", + "Iter: 1058 loss: 0.6995471119880676\n", + "Iter: 1059 loss: 0.6972930431365967\n", + "Iter: 1060 loss: 0.8025180101394653\n", + "Iter: 1061 loss: 0.7593256831169128\n", + "Iter: 1062 loss: 0.7763204574584961\n", + "Iter: 1063 loss: 0.8160125017166138\n", + "Iter: 1064 loss: 0.720819354057312\n", + "Iter: 1065 loss: 0.7511430978775024\n", + "Iter: 1066 loss: 0.7109164595603943\n", + "Iter: 1067 loss: 0.7237874865531921\n", + "Iter: 1068 loss: 0.8368091583251953\n", + "Iter: 1069 loss: 0.7318012118339539\n", + "Iter: 1070 loss: 0.7652682662010193\n", + "Iter: 1071 loss: 0.734851598739624\n", + "Iter: 1072 loss: 0.7078751921653748\n", + "Iter: 1073 loss: 0.6450165510177612\n", + "Iter: 1074 loss: 0.7201055884361267\n", + "Iter: 1075 loss: 0.7504255771636963\n", + "Iter: 1076 loss: 0.7331465482711792\n", + "Iter: 1077 loss: 0.7740919589996338\n", + "Iter: 1078 loss: 0.7186492681503296\n", + "Iter: 1079 loss: 0.7552741765975952\n", + "Iter: 1080 loss: 0.7113479375839233\n", + "Iter: 1081 loss: 0.711458683013916\n", + "Iter: 1082 loss: 0.7288287878036499\n", + "Iter: 1083 loss: 0.7554864287376404\n", + "Iter: 1084 loss: 0.7979670166969299\n", + "Iter: 1085 loss: 0.7879581451416016\n", + "Iter: 1086 loss: 0.7619279026985168\n", + "Iter: 1087 loss: 0.7397260069847107\n", + "Iter: 1088 loss: 0.6987736821174622\n", + "Iter: 1089 loss: 0.7059026956558228\n", + "Iter: 1090 loss: 0.7323989868164062\n", + "Iter: 1091 loss: 0.7409380674362183\n", + "Iter: 1092 loss: 0.7836825251579285\n", + "Iter: 1093 loss: 0.7317695617675781\n", + "Iter: 1094 loss: 0.8229706287384033\n", + "Iter: 1095 loss: 0.7191255688667297\n", + "Iter: 1096 loss: 0.7814294099807739\n", + "Iter: 1097 loss: 0.656065821647644\n", + "Iter: 1098 loss: 0.753029465675354\n", + "Iter: 1099 loss: 0.7531686425209045\n", + "Iter: 1100 loss: 0.6773442625999451\n", + "Iter: 1101 loss: 0.700816810131073\n", + "Iter: 1102 loss: 0.7845181226730347\n", + "Iter: 1103 loss: 0.8618970513343811\n", + "Iter: 1104 loss: 0.6949502229690552\n", + "Iter: 1105 loss: 0.7202837467193604\n", + "Iter: 1106 loss: 0.7966546416282654\n", + "Iter: 1107 loss: 0.7983170747756958\n", + "Iter: 1108 loss: 0.8158607482910156\n", + "Iter: 1109 loss: 0.7692034840583801\n", + "Iter: 1110 loss: 0.7867607474327087\n", + "Iter: 1111 loss: 0.7078642249107361\n", + "Iter: 1112 loss: 0.6931975483894348\n", + "Iter: 1113 loss: 0.773668110370636\n", + "Iter: 1114 loss: 0.770431637763977\n", + "Iter: 1115 loss: 0.7042849659919739\n", + "Iter: 1116 loss: 0.7197388410568237\n", + "Iter: 1117 loss: 0.7521220445632935\n", + "Iter: 1118 loss: 0.642038106918335\n", + "Iter: 1119 loss: 0.7676846385002136\n", + "Iter: 1120 loss: 0.6865366697311401\n", + "Iter: 1121 loss: 0.7864747047424316\n", + "Iter: 1122 loss: 0.7854028940200806\n", + "Iter: 1123 loss: 0.7155911326408386\n", + "Iter: 1124 loss: 0.716324508190155\n", + "Iter: 1125 loss: 0.7359987497329712\n", + "Iter: 1126 loss: 0.719052791595459\n", + "Iter: 1127 loss: 0.7016928195953369\n", + "Iter: 1128 loss: 0.668373703956604\n", + "Iter: 1129 loss: 0.7297943234443665\n", + "Iter: 1130 loss: 0.7409783601760864\n", + "Iter: 1131 loss: 0.7303416728973389\n", + "Iter: 1132 loss: 0.7186206579208374\n", + "Iter: 1133 loss: 0.7711188197135925\n", + "Iter: 1134 loss: 0.7954055070877075\n", + "Iter: 1135 loss: 0.7802067995071411\n", + "Iter: 1136 loss: 0.866436779499054\n", + "Iter: 1137 loss: 0.6821082830429077\n", + "Iter: 1138 loss: 0.7178361415863037\n", + "Iter: 1139 loss: 0.8043038249015808\n", + "Iter: 1140 loss: 0.6639183163642883\n", + "Iter: 1141 loss: 0.8238204717636108\n", + "Iter: 1142 loss: 0.7663021087646484\n", + "Iter: 1143 loss: 0.71146559715271\n", + "Iter: 1144 loss: 0.7589487433433533\n", + "Iter: 1145 loss: 0.7879709005355835\n", + "Iter: 1146 loss: 0.6705588102340698\n", + "Iter: 1147 loss: 0.7769877314567566\n", + "Iter: 1148 loss: 0.6359244585037231\n", + "Iter: 1149 loss: 0.8148684501647949\n", + "Iter: 1150 loss: 0.8087028861045837\n", + "Iter: 1151 loss: 0.6689475774765015\n", + "Iter: 1152 loss: 0.7615466117858887\n", + "Iter: 1153 loss: 0.7607048153877258\n", + "Iter: 1154 loss: 0.6642275452613831\n", + "Iter: 1155 loss: 0.6906198263168335\n", + "Iter: 1156 loss: 0.6973586082458496\n", + "Iter: 1157 loss: 0.7572925686836243\n", + "Iter: 1158 loss: 0.7024312615394592\n", + "Iter: 1159 loss: 0.7530525922775269\n", + "Iter: 1160 loss: 0.8443389534950256\n", + "Iter: 1161 loss: 0.75542151927948\n", + "Iter: 1162 loss: 0.7193657159805298\n", + "Iter: 1163 loss: 0.7337573170661926\n", + "Iter: 1164 loss: 0.6816851496696472\n", + "Iter: 1165 loss: 0.7450461387634277\n", + "Iter: 1166 loss: 0.7254074811935425\n", + "Iter: 1167 loss: 0.7204657793045044\n", + "Iter: 1168 loss: 0.679757297039032\n", + "Iter: 1169 loss: 0.7743158936500549\n", + "Iter: 1170 loss: 0.7701661586761475\n", + "Iter: 1171 loss: 0.697396457195282\n", + "Iter: 1172 loss: 0.7605921626091003\n", + "Iter: 1173 loss: 0.7437868118286133\n", + "Iter: 1174 loss: 0.7081080079078674\n", + "Iter: 1175 loss: 0.7879820466041565\n", + "Iter: 1176 loss: 0.7739839553833008\n", + "Iter: 1177 loss: 0.6973980665206909\n", + "Iter: 1178 loss: 0.6909294128417969\n", + "Iter: 1179 loss: 0.7609277367591858\n", + "Iter: 1180 loss: 0.7798363566398621\n", + "Iter: 1181 loss: 0.7846616506576538\n", + "Iter: 1182 loss: 0.7636496424674988\n", + "Iter: 1183 loss: 0.6856040358543396\n", + "Iter: 1184 loss: 0.6925544738769531\n", + "Iter: 1185 loss: 0.7369183897972107\n", + "Iter: 1186 loss: 0.768083930015564\n", + "Iter: 1187 loss: 0.7352701425552368\n", + "Iter: 1188 loss: 0.7179961800575256\n", + "Iter: 1189 loss: 0.660475492477417\n", + "Iter: 1190 loss: 0.7335329651832581\n", + "Iter: 1191 loss: 0.7300255298614502\n", + "Iter: 1192 loss: 0.7228922247886658\n", + "Iter: 1193 loss: 0.7769399881362915\n", + "Iter: 1194 loss: 0.7812575697898865\n", + "Iter: 1195 loss: 0.6816306114196777\n", + "Iter: 1196 loss: 0.7630911469459534\n", + "Iter: 1197 loss: 0.680941104888916\n", + "Iter: 1198 loss: 0.7389699816703796\n", + "Iter: 1199 loss: 0.7493231296539307\n", + "Iter: 1200 loss: 0.6842904686927795\n", + "Iter: 1201 loss: 0.7681946754455566\n", + "Iter: 1202 loss: 0.7266139984130859\n", + "Iter: 1203 loss: 0.6986435651779175\n", + "Iter: 1204 loss: 0.7386279106140137\n", + "Iter: 1205 loss: 0.8183100819587708\n", + "Iter: 1206 loss: 0.780634343624115\n", + "Iter: 1207 loss: 0.7213327884674072\n", + "Iter: 1208 loss: 0.7048221826553345\n", + "Iter: 1209 loss: 0.6322799324989319\n", + "Iter: 1210 loss: 0.7629324197769165\n", + "Iter: 1211 loss: 0.6732312440872192\n", + "Iter: 1212 loss: 0.7593302130699158\n", + "Iter: 1213 loss: 0.7434700727462769\n", + "Iter: 1214 loss: 0.7572190165519714\n", + "Iter: 1215 loss: 0.718971312046051\n", + "Iter: 1216 loss: 0.679471492767334\n", + "Iter: 1217 loss: 0.7912484407424927\n", + "Iter: 1218 loss: 0.6884592175483704\n", + "Iter: 1219 loss: 0.7589550614356995\n", + "Iter: 1220 loss: 0.6966626644134521\n", + "Iter: 1221 loss: 0.8062648773193359\n", + "Iter: 1222 loss: 0.6850965023040771\n", + "Iter: 1223 loss: 0.8737867474555969\n", + "Iter: 1224 loss: 0.7799881100654602\n", + "Iter: 1225 loss: 0.7041332125663757\n", + "Iter: 1226 loss: 0.8284391164779663\n", + "Iter: 1227 loss: 0.7318594455718994\n", + "Iter: 1228 loss: 0.7029868960380554\n", + "Iter: 1229 loss: 0.7614696621894836\n", + "Iter: 1230 loss: 0.7562311887741089\n", + "Iter: 1231 loss: 0.7654294371604919\n", + "Iter: 1232 loss: 0.6941525936126709\n", + "Iter: 1233 loss: 0.7216219902038574\n", + "Iter: 1234 loss: 0.6826213598251343\n", + "Iter: 1235 loss: 0.7236809134483337\n", + "Iter: 1236 loss: 0.7607020735740662\n", + "Iter: 1237 loss: 0.7184603214263916\n", + "Iter: 1238 loss: 0.6786964535713196\n", + "Iter: 1239 loss: 0.7217279076576233\n", + "Iter: 1240 loss: 0.7641152143478394\n", + "Iter: 1241 loss: 0.8162492513656616\n", + "Iter: 1242 loss: 0.7432061433792114\n", + "Iter: 1243 loss: 0.743198812007904\n", + "Iter: 1244 loss: 0.7407506108283997\n", + "Iter: 1245 loss: 0.7784754037857056\n", + "Iter: 1246 loss: 0.7863933444023132\n", + "Iter: 1247 loss: 0.8594076037406921\n", + "Iter: 1248 loss: 0.7811248302459717\n", + "Iter: 1249 loss: 0.7400460243225098\n", + "Iter: 1250 loss: 0.7025542855262756\n", + "Iter: 1251 loss: 0.8202373385429382\n", + "Iter: 1252 loss: 0.7248079776763916\n", + "Iter: 1253 loss: 0.6660768985748291\n", + "Iter: 1254 loss: 0.7279366254806519\n", + "Iter: 1255 loss: 0.6918366551399231\n", + "Iter: 1256 loss: 0.7448606491088867\n", + "Iter: 1257 loss: 0.7616186738014221\n", + "Iter: 1258 loss: 0.7428659200668335\n", + "Iter: 1259 loss: 0.7180656790733337\n", + "Iter: 1260 loss: 0.6570221781730652\n", + "Iter: 1261 loss: 0.6830594539642334\n", + "Iter: 1262 loss: 0.7198551893234253\n", + "Iter: 1263 loss: 0.7512423992156982\n", + "Iter: 1264 loss: 0.7472950220108032\n", + "Iter: 1265 loss: 0.7093519568443298\n", + "Iter: 1266 loss: 0.7521784901618958\n", + "Iter: 1267 loss: 0.7889750599861145\n", + "Iter: 1268 loss: 0.7445145845413208\n", + "Iter: 1269 loss: 0.7939425706863403\n", + "Iter: 1270 loss: 0.6722702980041504\n", + "Iter: 1271 loss: 0.7331950068473816\n", + "Iter: 1272 loss: 0.8245680332183838\n", + "Iter: 1273 loss: 0.7808346748352051\n", + "Iter: 1274 loss: 0.7509816884994507\n", + "Iter: 1275 loss: 0.7549850344657898\n", + "Iter: 1276 loss: 0.7696607112884521\n", + "Iter: 1277 loss: 0.7032329440116882\n", + "Iter: 1278 loss: 0.7811925411224365\n", + "Iter: 1279 loss: 0.7667773365974426\n", + "Iter: 1280 loss: 0.7880733013153076\n", + "Iter: 1281 loss: 0.774361252784729\n", + "Iter: 1282 loss: 0.6919401288032532\n", + "Iter: 1283 loss: 0.7897623181343079\n", + "Iter: 1284 loss: 0.7840321660041809\n", + "Iter: 1285 loss: 0.8021522164344788\n", + "Iter: 1286 loss: 0.7101333737373352\n", + "Iter: 1287 loss: 0.6989160776138306\n", + "Iter: 1288 loss: 0.6829581260681152\n", + "Iter: 1289 loss: 0.797978401184082\n", + "Iter: 1290 loss: 0.7777534127235413\n", + "Iter: 1291 loss: 0.6602428555488586\n", + "Iter: 1292 loss: 0.7247030735015869\n", + "Iter: 1293 loss: 0.7714444994926453\n", + "Iter: 1294 loss: 0.8146800398826599\n", + "Iter: 1295 loss: 0.7636663913726807\n", + "Iter: 1296 loss: 0.7073776125907898\n", + "Iter: 1297 loss: 0.7387295365333557\n", + "Iter: 1298 loss: 0.6729803085327148\n", + "Iter: 1299 loss: 0.7655537724494934\n", + "Iter: 1300 loss: 0.7069368362426758\n", + "Iter: 1301 loss: 0.664341926574707\n", + "Iter: 1302 loss: 0.7635451555252075\n", + "Iter: 1303 loss: 0.7986227869987488\n", + "Iter: 1304 loss: 0.8153151869773865\n", + "Iter: 1305 loss: 0.7508922815322876\n", + "Iter: 1306 loss: 0.7634550333023071\n", + "Iter: 1307 loss: 0.7658849358558655\n", + "Iter: 1308 loss: 0.7932479977607727\n", + "Iter: 1309 loss: 0.8286411166191101\n", + "Iter: 1310 loss: 0.8404305577278137\n", + "Iter: 1311 loss: 0.7935789823532104\n", + "Iter: 1312 loss: 0.8079262971878052\n", + "Iter: 1313 loss: 0.7408723831176758\n", + "Iter: 1314 loss: 0.682026207447052\n", + "Iter: 1315 loss: 0.7560690641403198\n", + "Iter: 1316 loss: 0.8268205523490906\n", + "Iter: 1317 loss: 0.7395905256271362\n", + "Iter: 1318 loss: 0.6371819376945496\n", + "Iter: 1319 loss: 0.757432758808136\n", + "Iter: 1320 loss: 0.7023610472679138\n", + "Iter: 1321 loss: 0.7736600637435913\n", + "Iter: 1322 loss: 0.749651312828064\n", + "Iter: 1323 loss: 0.7281091213226318\n", + "Iter: 1324 loss: 0.745817244052887\n", + "Iter: 1325 loss: 0.7221288084983826\n", + "Iter: 1326 loss: 0.7337676882743835\n", + "Iter: 1327 loss: 0.7203540205955505\n", + "Iter: 1328 loss: 0.7325349450111389\n", + "Iter: 1329 loss: 0.8276912569999695\n", + "Iter: 1330 loss: 0.7769517302513123\n", + "Iter: 1331 loss: 0.7207604646682739\n", + "Iter: 1332 loss: 0.6335384845733643\n", + "Iter: 1333 loss: 0.6751004457473755\n", + "Iter: 1334 loss: 0.8093096613883972\n", + "Iter: 1335 loss: 0.7496897578239441\n", + "Iter: 1336 loss: 0.8067459464073181\n", + "Iter: 1337 loss: 0.6951552033424377\n", + "Iter: 1338 loss: 0.7239397168159485\n", + "Iter: 1339 loss: 0.6553078889846802\n", + "Iter: 1340 loss: 0.7232840657234192\n", + "Iter: 1341 loss: 0.7874366641044617\n", + "Iter: 1342 loss: 0.6874471306800842\n", + "Iter: 1343 loss: 0.6969977617263794\n", + "Iter: 1344 loss: 0.6676977872848511\n", + "Iter: 1345 loss: 0.8453097939491272\n", + "Iter: 1346 loss: 0.7252237796783447\n", + "Iter: 1347 loss: 0.7564404010772705\n", + "Iter: 1348 loss: 0.7321025729179382\n", + "Iter: 1349 loss: 0.7385079860687256\n", + "Iter: 1350 loss: 0.7358025908470154\n", + "Iter: 1351 loss: 0.7069956660270691\n", + "Iter: 1352 loss: 0.727485716342926\n", + "Iter: 1353 loss: 0.8000389933586121\n", + "Iter: 1354 loss: 0.7343666553497314\n", + "Iter: 1355 loss: 0.758852481842041\n", + "Iter: 1356 loss: 0.6806297302246094\n", + "Iter: 1357 loss: 0.8157378435134888\n", + "Iter: 1358 loss: 0.6699011921882629\n", + "Iter: 1359 loss: 0.7507907748222351\n", + "Iter: 1360 loss: 0.7843145728111267\n", + "Iter: 1361 loss: 0.6443228125572205\n", + "Iter: 1362 loss: 0.7719689011573792\n", + "Iter: 1363 loss: 0.7390044331550598\n", + "Iter: 1364 loss: 0.7725590467453003\n", + "Iter: 1365 loss: 0.7192844748497009\n", + "Iter: 1366 loss: 0.764539897441864\n", + "Iter: 1367 loss: 0.7549643516540527\n", + "Iter: 1368 loss: 0.7934727072715759\n", + "Iter: 1369 loss: 0.6805031299591064\n", + "Iter: 1370 loss: 0.7252479791641235\n", + "Iter: 1371 loss: 0.7957310676574707\n", + "Iter: 1372 loss: 0.765354573726654\n", + "Iter: 1373 loss: 0.7096781730651855\n", + "Iter: 1374 loss: 0.796309769153595\n", + "Iter: 1375 loss: 0.6580199599266052\n", + "Iter: 1376 loss: 0.7164183259010315\n", + "Iter: 1377 loss: 0.7376850843429565\n", + "Iter: 1378 loss: 0.7869963645935059\n", + "Iter: 1379 loss: 0.7720034122467041\n", + "Iter: 1380 loss: 0.7884266972541809\n", + "Iter: 1381 loss: 0.7583557963371277\n", + "Iter: 1382 loss: 0.7567529082298279\n", + "Iter: 1383 loss: 0.8004679679870605\n", + "Iter: 1384 loss: 0.6823992133140564\n", + "Iter: 1385 loss: 0.7576234340667725\n", + "Iter: 1386 loss: 0.6897274851799011\n", + "Iter: 1387 loss: 0.729975700378418\n", + "Iter: 1388 loss: 0.7304361462593079\n", + "Iter: 1389 loss: 0.7667664289474487\n", + "Iter: 1390 loss: 0.7012089490890503\n", + "Iter: 1391 loss: 0.702725887298584\n", + "Iter: 1392 loss: 0.7964829206466675\n", + "Iter: 1393 loss: 0.7247989773750305\n", + "Iter: 1394 loss: 0.6367117762565613\n", + "Iter: 1395 loss: 0.7527363300323486\n", + "Iter: 1396 loss: 0.8443817496299744\n", + "Iter: 1397 loss: 0.7294092178344727\n", + "Iter: 1398 loss: 0.8260785341262817\n", + "Iter: 1399 loss: 0.7635456919670105\n", + "Iter: 1400 loss: 0.7769641280174255\n", + "Iter: 1401 loss: 0.6954951882362366\n", + "Iter: 1402 loss: 0.7982786893844604\n", + "Iter: 1403 loss: 0.7259102463722229\n", + "Iter: 1404 loss: 0.7525213360786438\n", + "Iter: 1405 loss: 0.7883046865463257\n", + "Iter: 1406 loss: 0.8692893981933594\n", + "Iter: 1407 loss: 0.7591536641120911\n", + "Iter: 1408 loss: 0.6920779943466187\n", + "Iter: 1409 loss: 0.7405335307121277\n", + "Iter: 1410 loss: 0.7743374109268188\n", + "Iter: 1411 loss: 0.8281155228614807\n", + "Iter: 1412 loss: 0.7831386923789978\n", + "Iter: 1413 loss: 0.7813692688941956\n", + "Iter: 1414 loss: 0.6764552593231201\n", + "Iter: 1415 loss: 0.7825957536697388\n", + "Iter: 1416 loss: 0.6989937424659729\n", + "Iter: 1417 loss: 0.8586523532867432\n", + "Iter: 1418 loss: 0.7016426920890808\n", + "Iter: 1419 loss: 0.7825716137886047\n", + "Iter: 1420 loss: 0.7223012447357178\n", + "Iter: 1421 loss: 0.8353307843208313\n", + "Iter: 1422 loss: 0.7329888343811035\n", + "Iter: 1423 loss: 0.7681535482406616\n", + "Iter: 1424 loss: 0.7662584781646729\n", + "Iter: 1425 loss: 0.7106090188026428\n", + "Iter: 1426 loss: 0.6419652700424194\n", + "Iter: 1427 loss: 0.7634360790252686\n", + "Iter: 1428 loss: 0.6912957429885864\n", + "Iter: 1429 loss: 0.7027904391288757\n", + "Iter: 1430 loss: 0.6884603500366211\n", + "Iter: 1431 loss: 0.7036934494972229\n", + "Iter: 1432 loss: 0.7567137479782104\n", + "Iter: 1433 loss: 0.7822278141975403\n", + "Iter: 1434 loss: 0.7047499418258667\n", + "Iter: 1435 loss: 0.7396219372749329\n", + "Iter: 1436 loss: 0.7831757664680481\n", + "Iter: 1437 loss: 0.6692970991134644\n", + "Iter: 1438 loss: 0.743764340877533\n", + "Iter: 1439 loss: 0.7241346836090088\n", + "Iter: 1440 loss: 0.6796566247940063\n", + "Iter: 1441 loss: 0.8039023876190186\n", + "Iter: 1442 loss: 0.72306889295578\n", + "Iter: 1443 loss: 0.7452573776245117\n", + "Iter: 1444 loss: 0.7270222902297974\n", + "Iter: 1445 loss: 0.7235696315765381\n", + "Iter: 1446 loss: 0.8326821327209473\n", + "Iter: 1447 loss: 0.6725573539733887\n", + "Iter: 1448 loss: 0.7905659675598145\n", + "Iter: 1449 loss: 0.7690698504447937\n", + "Iter: 1450 loss: 0.8061907887458801\n", + "Iter: 1451 loss: 0.6883384585380554\n", + "Iter: 1452 loss: 0.7650802135467529\n", + "Iter: 1453 loss: 0.7659178972244263\n", + "Iter: 1454 loss: 0.6377021670341492\n", + "Iter: 1455 loss: 0.7766063809394836\n", + "Iter: 1456 loss: 0.7688314914703369\n", + "Iter: 1457 loss: 0.6877411603927612\n", + "Iter: 1458 loss: 0.7368768453598022\n", + "Iter: 1459 loss: 0.7034438252449036\n", + "Iter: 1460 loss: 0.6426211595535278\n", + "Iter: 1461 loss: 0.7427951693534851\n", + "Iter: 1462 loss: 0.7197667956352234\n", + "Iter: 1463 loss: 0.7233195900917053\n", + "Iter: 1464 loss: 0.7077834010124207\n", + "Iter: 1465 loss: 0.6938784718513489\n", + "Iter: 1466 loss: 0.7415907979011536\n", + "Iter: 1467 loss: 0.7458853125572205\n", + "Iter: 1468 loss: 0.7197651863098145\n", + "Iter: 1469 loss: 0.7668079137802124\n", + "Iter: 1470 loss: 0.789344072341919\n", + "Iter: 1471 loss: 0.7559049129486084\n", + "Iter: 1472 loss: 0.7563329339027405\n", + "Iter: 1473 loss: 0.8128674030303955\n", + "Iter: 1474 loss: 0.7678963541984558\n", + "Iter: 1475 loss: 0.829454243183136\n", + "Iter: 1476 loss: 0.6814780235290527\n", + "Iter: 1477 loss: 0.7522017359733582\n", + "Iter: 1478 loss: 0.7370580434799194\n", + "Iter: 1479 loss: 0.608771562576294\n", + "Iter: 1480 loss: 0.7546439170837402\n", + "Iter: 1481 loss: 0.6684809923171997\n", + "Iter: 1482 loss: 0.7644760012626648\n", + "Iter: 1483 loss: 0.7458333969116211\n", + "Iter: 1484 loss: 0.6931530833244324\n", + "Iter: 1485 loss: 0.7002723217010498\n", + "Iter: 1486 loss: 0.7691053152084351\n", + "Iter: 1487 loss: 0.7469778656959534\n", + "Iter: 1488 loss: 0.6419986486434937\n", + "Iter: 1489 loss: 0.7440183758735657\n", + "Iter: 1490 loss: 0.693045437335968\n", + "Iter: 1491 loss: 0.7229612469673157\n", + "Iter: 1492 loss: 0.7113518118858337\n", + "Iter: 1493 loss: 0.7383423447608948\n", + "Iter: 1494 loss: 0.6250357031822205\n", + "Iter: 1495 loss: 0.719950795173645\n", + "Iter: 1496 loss: 0.6804659962654114\n", + "Iter: 1497 loss: 0.6487731337547302\n", + "Iter: 1498 loss: 0.789121687412262\n", + "Iter: 1499 loss: 0.7608580589294434\n", + "Iter: 1500 loss: 0.6653956770896912\n", + "Iter: 1501 loss: 0.7883548140525818\n", + "Iter: 1502 loss: 0.6910349726676941\n", + "Iter: 1503 loss: 0.7583508491516113\n", + "Iter: 1504 loss: 0.7047783732414246\n", + "Iter: 1505 loss: 0.7316937446594238\n", + "Iter: 1506 loss: 0.7237399220466614\n", + "Iter: 1507 loss: 0.7625682353973389\n", + "Iter: 1508 loss: 0.7782748937606812\n", + "Iter: 1509 loss: 0.693719744682312\n", + "Iter: 1510 loss: 0.795232892036438\n", + "Iter: 1511 loss: 0.7215946912765503\n", + "Iter: 1512 loss: 0.7096495032310486\n", + "Iter: 1513 loss: 0.7749184966087341\n", + "Iter: 1514 loss: 0.826755702495575\n", + "Iter: 1515 loss: 0.7542585730552673\n", + "Iter: 1516 loss: 0.7544187307357788\n", + "Iter: 1517 loss: 0.7232440710067749\n", + "Iter: 1518 loss: 0.71270751953125\n", + "Iter: 1519 loss: 0.7779833674430847\n", + "Iter: 1520 loss: 0.757243812084198\n", + "Iter: 1521 loss: 0.6769444346427917\n", + "Iter: 1522 loss: 0.782286524772644\n", + "Iter: 1523 loss: 0.6427665948867798\n", + "Iter: 1524 loss: 0.732613205909729\n", + "Iter: 1525 loss: 0.7553684711456299\n", + "Iter: 1526 loss: 0.7919402718544006\n", + "Iter: 1527 loss: 0.8071185350418091\n", + "Iter: 1528 loss: 0.7191745042800903\n", + "Iter: 1529 loss: 0.7866371870040894\n", + "Iter: 1530 loss: 0.7322075366973877\n", + "Iter: 1531 loss: 0.7470055222511292\n", + "Iter: 1532 loss: 0.6559278964996338\n", + "Iter: 1533 loss: 0.7490111589431763\n", + "Iter: 1534 loss: 0.801484227180481\n", + "Iter: 1535 loss: 0.755484938621521\n", + "Iter: 1536 loss: 0.6360989809036255\n", + "Iter: 1537 loss: 0.75662761926651\n", + "Iter: 1538 loss: 0.8096179366111755\n", + "Iter: 1539 loss: 0.7854663133621216\n", + "Iter: 1540 loss: 0.7602883577346802\n", + "Iter: 1541 loss: 0.8391993045806885\n", + "Iter: 1542 loss: 0.7216750383377075\n", + "Iter: 1543 loss: 0.6847792267799377\n", + "Iter: 1544 loss: 0.8604831695556641\n", + "Iter: 1545 loss: 0.8032664656639099\n", + "Iter: 1546 loss: 0.6836656928062439\n", + "Iter: 1547 loss: 0.6007961630821228\n", + "Iter: 1548 loss: 0.7669793367385864\n", + "Iter: 1549 loss: 0.6833890676498413\n", + "Iter: 1550 loss: 0.7942226529121399\n", + "Iter: 1551 loss: 0.7807022333145142\n", + "Iter: 1552 loss: 0.6977059841156006\n", + "Iter: 1553 loss: 0.8422725796699524\n", + "Iter: 1554 loss: 0.7863494157791138\n", + "Iter: 1555 loss: 0.6361396908760071\n", + "Iter: 1556 loss: 0.7283013463020325\n", + "Iter: 1557 loss: 0.7732226848602295\n", + "Iter: 1558 loss: 0.6322327852249146\n", + "Iter: 1559 loss: 0.7025633454322815\n", + "Iter: 1560 loss: 0.7661486864089966\n", + "Iter: 1561 loss: 0.7094522714614868\n", + "Iter: 1562 loss: 0.686864972114563\n", + "Iter: 1563 loss: 0.8110312223434448\n", + "Iter: 1564 loss: 0.78715980052948\n", + "Iter: 1565 loss: 0.7696778178215027\n", + "Iter: 1566 loss: 0.727145791053772\n", + "Iter: 1567 loss: 0.8169476985931396\n", + "Iter: 1568 loss: 0.7012186646461487\n", + "Iter: 1569 loss: 0.7997501492500305\n", + "Iter: 1570 loss: 0.7399566769599915\n", + "Iter: 1571 loss: 0.7849279046058655\n", + "Iter: 1572 loss: 0.7418566346168518\n", + "Iter: 1573 loss: 0.758053183555603\n", + "Iter: 1574 loss: 0.7039784789085388\n", + "Iter: 1575 loss: 0.6686407923698425\n", + "Iter: 1576 loss: 0.7550308108329773\n", + "Iter: 1577 loss: 0.757269024848938\n", + "Iter: 1578 loss: 0.7275238037109375\n", + "Iter: 1579 loss: 0.6782963871955872\n", + "Iter: 1580 loss: 0.6803371906280518\n", + "Iter: 1581 loss: 0.6827945113182068\n", + "Iter: 1582 loss: 0.6826313138008118\n", + "Iter: 1583 loss: 0.7428876757621765\n", + "Iter: 1584 loss: 0.7057737708091736\n", + "Iter: 1585 loss: 0.8042039275169373\n", + "Iter: 1586 loss: 0.762559175491333\n", + "Iter: 1587 loss: 0.6312514543533325\n", + "Iter: 1588 loss: 0.8156945109367371\n", + "Iter: 1589 loss: 0.7098879814147949\n", + "Iter: 1590 loss: 0.6111732721328735\n", + "Iter: 1591 loss: 0.7342547178268433\n", + "Iter: 1592 loss: 0.6865649223327637\n", + "Iter: 1593 loss: 0.8066556453704834\n", + "Iter: 1594 loss: 0.7885448932647705\n", + "Iter: 1595 loss: 0.7637661695480347\n", + "Iter: 1596 loss: 0.7892434000968933\n", + "Iter: 1597 loss: 0.6485741138458252\n", + "Iter: 1598 loss: 0.6180122494697571\n", + "Iter: 1599 loss: 0.7750210762023926\n", + "Iter: 1600 loss: 0.7531962394714355\n", + "Iter: 1601 loss: 0.7429220676422119\n", + "Iter: 1602 loss: 0.7799666523933411\n", + "Iter: 1603 loss: 0.8303220868110657\n", + "Iter: 1604 loss: 0.701013445854187\n", + "Iter: 1605 loss: 0.7512115836143494\n", + "Iter: 1606 loss: 0.7907262444496155\n", + "Iter: 1607 loss: 0.7535668611526489\n", + "Iter: 1608 loss: 0.7218270897865295\n", + "Iter: 1609 loss: 0.7017651200294495\n", + "Iter: 1610 loss: 0.7752445340156555\n", + "Iter: 1611 loss: 0.7624317407608032\n", + "Iter: 1612 loss: 0.7314299941062927\n", + "Iter: 1613 loss: 0.7475219368934631\n", + "Iter: 1614 loss: 0.7615203261375427\n", + "Iter: 1615 loss: 0.8172719478607178\n", + "Iter: 1616 loss: 0.7349031567573547\n", + "Iter: 1617 loss: 0.7334985733032227\n", + "Iter: 1618 loss: 0.7943015694618225\n", + "Iter: 1619 loss: 0.690048336982727\n", + "Iter: 1620 loss: 0.7813637256622314\n", + "Iter: 1621 loss: 0.7522569298744202\n", + "Iter: 1622 loss: 0.652825117111206\n", + "Iter: 1623 loss: 0.7942967414855957\n", + "Iter: 1624 loss: 0.7254180908203125\n", + "Iter: 1625 loss: 0.7349867820739746\n", + "Iter: 1626 loss: 0.7240675091743469\n", + "Iter: 1627 loss: 0.7669899463653564\n", + "Iter: 1628 loss: 0.7651888728141785\n", + "Iter: 1629 loss: 0.704544186592102\n", + "Iter: 1630 loss: 0.7879817485809326\n", + "Iter: 1631 loss: 0.6892054080963135\n", + "Iter: 1632 loss: 0.7012416124343872\n", + "Iter: 1633 loss: 0.7466799020767212\n", + "Iter: 1634 loss: 0.8139533996582031\n", + "Iter: 1635 loss: 0.7291160225868225\n", + "Iter: 1636 loss: 0.8348438739776611\n", + "Iter: 1637 loss: 0.6894038319587708\n", + "Iter: 1638 loss: 0.7356535792350769\n", + "Iter: 1639 loss: 0.7635272145271301\n", + "Iter: 1640 loss: 0.8272873163223267\n", + "Iter: 1641 loss: 0.7170341610908508\n", + "Iter: 1642 loss: 0.7202790975570679\n", + "Iter: 1643 loss: 0.7349926233291626\n", + "Iter: 1644 loss: 0.822182297706604\n", + "Iter: 1645 loss: 0.7644333839416504\n", + "Iter: 1646 loss: 0.7617817521095276\n", + "Iter: 1647 loss: 0.738028347492218\n", + "Iter: 1648 loss: 0.7632728815078735\n", + "Iter: 1649 loss: 0.7544152736663818\n", + "Iter: 1650 loss: 0.6676586270332336\n", + "Iter: 1651 loss: 0.7097325325012207\n", + "Iter: 1652 loss: 0.7524219751358032\n", + "Iter: 1653 loss: 0.772844135761261\n", + "Iter: 1654 loss: 0.7490829825401306\n", + "Iter: 1655 loss: 0.6460435390472412\n", + "Iter: 1656 loss: 0.6883137822151184\n", + "Iter: 1657 loss: 0.7492384910583496\n", + "Iter: 1658 loss: 0.7435044646263123\n", + "Iter: 1659 loss: 0.792518138885498\n", + "Iter: 1660 loss: 0.7025672793388367\n", + "Iter: 1661 loss: 0.6955775618553162\n", + "Iter: 1662 loss: 0.7473042011260986\n", + "Iter: 1663 loss: 0.778791069984436\n", + "Iter: 1664 loss: 0.7636544108390808\n", + "Iter: 1665 loss: 0.665870189666748\n", + "Iter: 1666 loss: 0.6006044745445251\n", + "Iter: 1667 loss: 0.7288739681243896\n", + "Iter: 1668 loss: 0.7008089423179626\n", + "Iter: 1669 loss: 0.6744778156280518\n", + "Iter: 1670 loss: 0.7423318028450012\n", + "Iter: 1671 loss: 0.8235660791397095\n", + "Iter: 1672 loss: 0.737273633480072\n", + "Iter: 1673 loss: 0.647990882396698\n", + "Iter: 1674 loss: 0.7512250542640686\n", + "Iter: 1675 loss: 0.750227689743042\n", + "Iter: 1676 loss: 0.7091837525367737\n", + "Iter: 1677 loss: 0.7228856682777405\n", + "Iter: 1678 loss: 0.72774738073349\n", + "Iter: 1679 loss: 0.7439438700675964\n", + "Iter: 1680 loss: 0.6766011714935303\n", + "Iter: 1681 loss: 0.7980378270149231\n", + "Iter: 1682 loss: 0.690377950668335\n", + "Iter: 1683 loss: 0.7897516489028931\n", + "Iter: 1684 loss: 0.7925162315368652\n", + "Iter: 1685 loss: 0.7519711256027222\n", + "Iter: 1686 loss: 0.8569429516792297\n", + "Iter: 1687 loss: 0.7547715902328491\n", + "Iter: 1688 loss: 0.7281038165092468\n", + "Iter: 1689 loss: 0.7785882353782654\n", + "Iter: 1690 loss: 0.7846272587776184\n", + "Iter: 1691 loss: 0.7802557349205017\n", + "Iter: 1692 loss: 0.7479340434074402\n", + "Iter: 1693 loss: 0.7338455319404602\n", + "Iter: 1694 loss: 0.7608702778816223\n", + "Iter: 1695 loss: 0.7399294972419739\n", + "Iter: 1696 loss: 0.7336244583129883\n", + "Iter: 1697 loss: 0.7523872256278992\n", + "Iter: 1698 loss: 0.7746156454086304\n", + "Iter: 1699 loss: 0.7316908836364746\n", + "Iter: 1700 loss: 0.7468541264533997\n", + "Iter: 1701 loss: 0.7147807478904724\n", + "Iter: 1702 loss: 0.8901670575141907\n", + "Iter: 1703 loss: 0.740950882434845\n", + "Iter: 1704 loss: 0.7667258977890015\n", + "Iter: 1705 loss: 0.6717071533203125\n", + "Iter: 1706 loss: 0.7361606955528259\n", + "Iter: 1707 loss: 0.7829816937446594\n", + "Iter: 1708 loss: 0.7443658709526062\n", + "Iter: 1709 loss: 0.740308403968811\n", + "Iter: 1710 loss: 0.777655303478241\n", + "Iter: 1711 loss: 0.7461327314376831\n", + "Iter: 1712 loss: 0.709749698638916\n", + "Iter: 1713 loss: 0.5688549876213074\n", + "Iter: 1714 loss: 0.8372604250907898\n", + "Iter: 1715 loss: 0.6787980794906616\n", + "Iter: 1716 loss: 0.7682942152023315\n", + "Iter: 1717 loss: 0.7071370482444763\n", + "Iter: 1718 loss: 0.7040879130363464\n", + "Iter: 1719 loss: 0.7265917658805847\n", + "Iter: 1720 loss: 0.7687665224075317\n", + "Iter: 1721 loss: 0.7803934812545776\n", + "Iter: 1722 loss: 0.8053440451622009\n", + "Iter: 1723 loss: 0.7289413809776306\n", + "Iter: 1724 loss: 0.7680889368057251\n", + "Iter: 1725 loss: 0.7464233040809631\n", + "Iter: 1726 loss: 0.7580093741416931\n", + "Iter: 1727 loss: 0.6577862501144409\n", + "Iter: 1728 loss: 0.7307132482528687\n", + "Iter: 1729 loss: 0.7774416208267212\n", + "Iter: 1730 loss: 0.7407591342926025\n", + "Iter: 1731 loss: 0.7584279775619507\n", + "Iter: 1732 loss: 0.7471103072166443\n", + "Iter: 1733 loss: 0.741097629070282\n", + "Iter: 1734 loss: 0.7593976259231567\n", + "Iter: 1735 loss: 0.8221578598022461\n", + "Iter: 1736 loss: 0.7673146724700928\n", + "Iter: 1737 loss: 0.7381066679954529\n", + "Iter: 1738 loss: 0.7149081230163574\n", + "Iter: 1739 loss: 0.6623178720474243\n", + "Iter: 1740 loss: 0.6711165904998779\n", + "Iter: 1741 loss: 0.659787118434906\n", + "Iter: 1742 loss: 0.7386153936386108\n", + "Iter: 1743 loss: 0.7188369035720825\n", + "Iter: 1744 loss: 0.7368210554122925\n", + "Iter: 1745 loss: 0.7267311215400696\n", + "Iter: 1746 loss: 0.7548285126686096\n", + "Iter: 1747 loss: 0.7502266764640808\n", + "Iter: 1748 loss: 0.7490077614784241\n", + "Iter: 1749 loss: 0.6870744824409485\n", + "Iter: 1750 loss: 0.616015613079071\n", + "Iter: 1751 loss: 0.7464386820793152\n", + "Iter: 1752 loss: 0.7310119271278381\n", + "Iter: 1753 loss: 0.8206648826599121\n", + "Iter: 1754 loss: 0.6378926634788513\n", + "Iter: 1755 loss: 0.789976179599762\n", + "Iter: 1756 loss: 0.7147000432014465\n", + "Iter: 1757 loss: 0.774763822555542\n", + "Iter: 1758 loss: 0.8050216436386108\n", + "Iter: 1759 loss: 0.8156088590621948\n", + "Iter: 1760 loss: 0.7194689512252808\n", + "Iter: 1761 loss: 0.7061481475830078\n", + "Iter: 1762 loss: 0.762345552444458\n", + "Iter: 1763 loss: 0.6887762546539307\n", + "Iter: 1764 loss: 0.782035768032074\n", + "Iter: 1765 loss: 0.7503158450126648\n", + "Iter: 1766 loss: 0.7530991435050964\n", + "Iter: 1767 loss: 0.6995118260383606\n", + "Iter: 1768 loss: 0.7768862843513489\n", + "Iter: 1769 loss: 0.7164066433906555\n", + "Iter: 1770 loss: 0.8016296029090881\n", + "Iter: 1771 loss: 0.789864718914032\n", + "Iter: 1772 loss: 0.7931199669837952\n", + "Iter: 1773 loss: 0.7696270942687988\n", + "Iter: 1774 loss: 0.7127840518951416\n", + "Iter: 1775 loss: 0.7379850149154663\n", + "Iter: 1776 loss: 0.698936939239502\n", + "Iter: 1777 loss: 0.789135754108429\n", + "Iter: 1778 loss: 0.7324663400650024\n", + "Iter: 1779 loss: 0.7184524536132812\n", + "Iter: 1780 loss: 0.7807961106300354\n", + "Iter: 1781 loss: 0.7125696539878845\n", + "Iter: 1782 loss: 0.7881243824958801\n", + "Iter: 1783 loss: 0.748732328414917\n", + "Iter: 1784 loss: 0.7877304553985596\n", + "Iter: 1785 loss: 0.7144836187362671\n", + "Iter: 1786 loss: 0.6797086596488953\n", + "Iter: 1787 loss: 0.7304419875144958\n", + "Iter: 1788 loss: 0.7274808883666992\n", + "Iter: 1789 loss: 0.7439969778060913\n", + "Iter: 1790 loss: 0.769633948802948\n", + "Iter: 1791 loss: 0.7247857451438904\n", + "Iter: 1792 loss: 0.7496353983879089\n", + "Iter: 1793 loss: 0.6224117279052734\n", + "Iter: 1794 loss: 0.6766530275344849\n", + "Iter: 1795 loss: 0.7956569194793701\n", + "Iter: 1796 loss: 0.5943689942359924\n", + "Iter: 1797 loss: 0.7651675343513489\n", + "Iter: 1798 loss: 0.7688357830047607\n", + "Iter: 1799 loss: 0.7238170504570007\n", + "Iter: 1800 loss: 0.7329664826393127\n", + "Iter: 1801 loss: 0.826664388179779\n", + "Iter: 1802 loss: 0.7976552248001099\n", + "Iter: 1803 loss: 0.7098749279975891\n", + "Iter: 1804 loss: 0.7480628490447998\n", + "Iter: 1805 loss: 0.745596706867218\n", + "Iter: 1806 loss: 0.7864081263542175\n", + "Iter: 1807 loss: 0.7231704592704773\n", + "Iter: 1808 loss: 0.7598491907119751\n", + "Iter: 1809 loss: 0.6781907081604004\n", + "Iter: 1810 loss: 0.7667868733406067\n", + "Iter: 1811 loss: 0.8465309143066406\n", + "Iter: 1812 loss: 0.7449272274971008\n", + "Iter: 1813 loss: 0.7669241428375244\n", + "Iter: 1814 loss: 0.7528369426727295\n", + "Iter: 1815 loss: 0.6602683067321777\n", + "Iter: 1816 loss: 0.6019042134284973\n", + "Iter: 1817 loss: 0.7392610907554626\n", + "Iter: 1818 loss: 0.71610027551651\n", + "Iter: 1819 loss: 0.7599263787269592\n", + "Iter: 1820 loss: 0.7484139800071716\n", + "Iter: 1821 loss: 0.6945720314979553\n", + "Iter: 1822 loss: 0.7374932169914246\n", + "Iter: 1823 loss: 0.7297463417053223\n", + "Iter: 1824 loss: 0.7185660004615784\n", + "Iter: 1825 loss: 0.7224330902099609\n", + "Iter: 1826 loss: 0.7388256788253784\n", + "Iter: 1827 loss: 0.6877565979957581\n", + "Iter: 1828 loss: 0.7393682599067688\n", + "Iter: 1829 loss: 0.6933851838111877\n", + "Iter: 1830 loss: 0.6944562792778015\n", + "Iter: 1831 loss: 0.7549258470535278\n", + "Iter: 1832 loss: 0.7271184325218201\n", + "Iter: 1833 loss: 0.8320997357368469\n", + "Iter: 1834 loss: 0.7279856204986572\n", + "Iter: 1835 loss: 0.7301474213600159\n", + "Iter: 1836 loss: 0.7611157894134521\n", + "Iter: 1837 loss: 0.7862890958786011\n", + "Iter: 1838 loss: 0.6832916736602783\n", + "Iter: 1839 loss: 0.7831583619117737\n", + "Iter: 1840 loss: 0.7657308578491211\n", + "Iter: 1841 loss: 0.766248345375061\n", + "Iter: 1842 loss: 0.7078534364700317\n", + "Iter: 1843 loss: 0.7451699376106262\n", + "Iter: 1844 loss: 0.8612386584281921\n", + "Iter: 1845 loss: 0.7484672665596008\n", + "Iter: 1846 loss: 0.8021516799926758\n", + "Iter: 1847 loss: 0.7327635884284973\n", + "Iter: 1848 loss: 0.7406715750694275\n", + "Iter: 1849 loss: 0.8288925886154175\n", + "Iter: 1850 loss: 0.6794785261154175\n", + "Iter: 1851 loss: 0.7639152407646179\n", + "Iter: 1852 loss: 0.7038987874984741\n", + "Iter: 1853 loss: 0.7394214272499084\n", + "Iter: 1854 loss: 0.7350714802742004\n", + "Iter: 1855 loss: 0.7642037272453308\n", + "Iter: 1856 loss: 0.7499666213989258\n", + "Iter: 1857 loss: 0.6291325688362122\n", + "Iter: 1858 loss: 0.7816743850708008\n", + "Iter: 1859 loss: 0.7187595367431641\n", + "Iter: 1860 loss: 0.8508560657501221\n", + "Iter: 1861 loss: 0.7271270751953125\n", + "Iter: 1862 loss: 0.7529198527336121\n", + "Iter: 1863 loss: 0.7602155208587646\n", + "Iter: 1864 loss: 0.8129931688308716\n", + "Iter: 1865 loss: 0.7882149815559387\n", + "Iter: 1866 loss: 0.7389829754829407\n", + "Iter: 1867 loss: 0.7276136875152588\n", + "Iter: 1868 loss: 0.6883428692817688\n", + "Iter: 1869 loss: 0.7166293859481812\n", + "Iter: 1870 loss: 0.6070755124092102\n", + "Iter: 1871 loss: 0.7811329960823059\n", + "Iter: 1872 loss: 0.7568522691726685\n", + "Iter: 1873 loss: 0.6768666505813599\n", + "Iter: 1874 loss: 0.828372597694397\n", + "Iter: 1875 loss: 0.7437134981155396\n", + "Iter: 1876 loss: 0.7290061116218567\n", + "Iter: 1877 loss: 0.7682694792747498\n", + "Iter: 1878 loss: 0.7854539752006531\n", + "Iter: 1879 loss: 0.7783591747283936\n", + "Iter: 1880 loss: 0.7584152221679688\n", + "Iter: 1881 loss: 0.8299990296363831\n", + "Iter: 1882 loss: 0.6945801377296448\n", + "Iter: 1883 loss: 0.7997492551803589\n", + "Iter: 1884 loss: 0.7983570694923401\n", + "Iter: 1885 loss: 0.6999067664146423\n", + "Iter: 1886 loss: 0.6935871839523315\n", + "Iter: 1887 loss: 0.7053513526916504\n", + "Iter: 1888 loss: 0.7841469645500183\n", + "Iter: 1889 loss: 0.7769492268562317\n", + "Iter: 1890 loss: 0.7850064039230347\n", + "Iter: 1891 loss: 0.7325348854064941\n", + "Iter: 1892 loss: 0.697784960269928\n", + "Iter: 1893 loss: 0.786586344242096\n", + "Iter: 1894 loss: 0.7488983273506165\n", + "Iter: 1895 loss: 0.7239713668823242\n", + "Iter: 1896 loss: 0.7717029452323914\n", + "Iter: 1897 loss: 0.7431281208992004\n", + "Iter: 1898 loss: 0.8022364377975464\n", + "Iter: 1899 loss: 0.7597664594650269\n", + "Iter: 1900 loss: 0.8230093717575073\n", + "Iter: 1901 loss: 0.8131939768791199\n", + "Iter: 1902 loss: 0.7122474908828735\n", + "Iter: 1903 loss: 0.832596480846405\n", + "Iter: 1904 loss: 0.7028428912162781\n", + "Iter: 1905 loss: 0.7523533701896667\n", + "Iter: 1906 loss: 0.7153759002685547\n", + "Iter: 1907 loss: 0.8285844326019287\n", + "Iter: 1908 loss: 0.7571156024932861\n", + "Iter: 1909 loss: 0.7201987504959106\n", + "Iter: 1910 loss: 0.7289168834686279\n", + "Iter: 1911 loss: 0.7041501998901367\n", + "Iter: 1912 loss: 0.8195207715034485\n", + "Iter: 1913 loss: 0.6990013718605042\n", + "Iter: 1914 loss: 0.7791592478752136\n", + "Iter: 1915 loss: 0.7785143256187439\n", + "Iter: 1916 loss: 0.734413206577301\n", + "Iter: 1917 loss: 0.7616924047470093\n", + "Iter: 1918 loss: 0.6847215890884399\n", + "Iter: 1919 loss: 0.6661587357521057\n", + "Iter: 1920 loss: 0.8095757961273193\n", + "Iter: 1921 loss: 0.7482253909111023\n", + "Iter: 1922 loss: 0.7985596656799316\n", + "Iter: 1923 loss: 0.7902195453643799\n", + "Iter: 1924 loss: 0.7269931435585022\n", + "Iter: 1925 loss: 0.6774306297302246\n", + "Iter: 1926 loss: 0.750386118888855\n", + "Iter: 1927 loss: 0.7016309499740601\n", + "Iter: 1928 loss: 0.7707419395446777\n", + "Iter: 1929 loss: 0.7757704257965088\n", + "Iter: 1930 loss: 0.7391317486763\n", + "Iter: 1931 loss: 0.7346602082252502\n", + "Iter: 1932 loss: 0.8099316954612732\n", + "Iter: 1933 loss: 0.7554373741149902\n", + "Iter: 1934 loss: 0.8146083950996399\n", + "Iter: 1935 loss: 0.7400709986686707\n", + "Iter: 1936 loss: 0.7545717358589172\n", + "Iter: 1937 loss: 0.7507610321044922\n", + "Iter: 1938 loss: 0.6881141662597656\n", + "Iter: 1939 loss: 0.7335575819015503\n", + "Iter: 1940 loss: 0.7555572986602783\n", + "Iter: 1941 loss: 0.7227919101715088\n", + "Iter: 1942 loss: 0.694144606590271\n", + "Iter: 1943 loss: 0.7476069927215576\n", + "Iter: 1944 loss: 0.6901819705963135\n", + "Iter: 1945 loss: 0.7610651850700378\n", + "Iter: 1946 loss: 0.6916483640670776\n", + "Iter: 1947 loss: 0.720573902130127\n", + "Iter: 1948 loss: 0.7718937397003174\n", + "Iter: 1949 loss: 0.7006458640098572\n", + "Iter: 1950 loss: 0.6849602460861206\n", + "Iter: 1951 loss: 0.7033776044845581\n", + "Iter: 1952 loss: 0.7740349769592285\n", + "Iter: 1953 loss: 0.8085356950759888\n", + "Iter: 1954 loss: 0.7253479361534119\n", + "Iter: 1955 loss: 0.748369038105011\n", + "Iter: 1956 loss: 0.6850368976593018\n", + "Iter: 1957 loss: 0.7556212544441223\n", + "Iter: 1958 loss: 0.7910392880439758\n", + "Iter: 1959 loss: 0.8377833962440491\n", + "Iter: 1960 loss: 0.7755349278450012\n", + "Iter: 1961 loss: 0.7568954229354858\n", + "Iter: 1962 loss: 0.7053293585777283\n", + "Iter: 1963 loss: 0.716086208820343\n", + "Iter: 1964 loss: 0.7996283769607544\n", + "Iter: 1965 loss: 0.7559871077537537\n", + "Iter: 1966 loss: 0.8246515393257141\n", + "Iter: 1967 loss: 0.8295792937278748\n", + "Iter: 1968 loss: 0.7364887595176697\n", + "Iter: 1969 loss: 0.6455883979797363\n", + "Iter: 1970 loss: 0.7354932427406311\n", + "Iter: 1971 loss: 0.768827497959137\n", + "Iter: 1972 loss: 0.7069068551063538\n", + "Iter: 1973 loss: 0.7824929356575012\n", + "Iter: 1974 loss: 0.744445264339447\n", + "Iter: 1975 loss: 0.8063799738883972\n", + "Iter: 1976 loss: 0.8410033583641052\n", + "Iter: 1977 loss: 0.7295395135879517\n", + "Iter: 1978 loss: 0.6927253603935242\n", + "Iter: 1979 loss: 0.7475943565368652\n", + "Iter: 1980 loss: 0.8376845121383667\n", + "Iter: 1981 loss: 0.728520393371582\n", + "Iter: 1982 loss: 0.8129603266716003\n", + "Iter: 1983 loss: 0.7503848671913147\n", + "Iter: 1984 loss: 0.6971872448921204\n", + "Iter: 1985 loss: 0.7066670656204224\n", + "Iter: 1986 loss: 0.75464928150177\n", + "Iter: 1987 loss: 0.7652050256729126\n", + "Iter: 1988 loss: 0.7557684779167175\n", + "Iter: 1989 loss: 0.7354727387428284\n", + "Iter: 1990 loss: 0.7205167412757874\n", + "Iter: 1991 loss: 0.7952291369438171\n", + "Iter: 1992 loss: 0.7079799771308899\n", + "Iter: 1993 loss: 0.7101590633392334\n", + "Iter: 1994 loss: 0.8060073852539062\n", + "Iter: 1995 loss: 0.742572009563446\n", + "Iter: 1996 loss: 0.6943045854568481\n", + "Iter: 1997 loss: 0.8228585124015808\n", + "Iter: 1998 loss: 0.7795497179031372\n", + "Iter: 1999 loss: 0.7665325999259949\n", + "Iter: 2000 loss: 0.6982818245887756\n", + "Iter: 2001 loss: 0.7352749109268188\n", + "Iter: 2002 loss: 0.7808296084403992\n", + "Iter: 2003 loss: 0.7178394794464111\n", + "Iter: 2004 loss: 0.7672840356826782\n", + "Iter: 2005 loss: 0.758770763874054\n", + "Iter: 2006 loss: 0.7167359590530396\n", + "Iter: 2007 loss: 0.7404651641845703\n", + "Iter: 2008 loss: 0.7044496536254883\n", + "Iter: 2009 loss: 0.7163969278335571\n", + "Iter: 2010 loss: 0.6572365760803223\n", + "Iter: 2011 loss: 0.7302152514457703\n", + "Iter: 2012 loss: 0.8348219394683838\n", + "Iter: 2013 loss: 0.7606926560401917\n", + "Iter: 2014 loss: 0.7750603556632996\n", + "Iter: 2015 loss: 0.823544979095459\n", + "Iter: 2016 loss: 0.7521427869796753\n", + "Iter: 2017 loss: 0.7935722470283508\n", + "Iter: 2018 loss: 0.8058887720108032\n", + "Iter: 2019 loss: 0.8515262007713318\n", + "Iter: 2020 loss: 0.7521181702613831\n", + "Iter: 2021 loss: 0.7376421093940735\n", + "Iter: 2022 loss: 0.7345385551452637\n", + "Iter: 2023 loss: 0.7895255088806152\n", + "Iter: 2024 loss: 0.7066248655319214\n", + "Iter: 2025 loss: 0.7654816508293152\n", + "Iter: 2026 loss: 0.7245686054229736\n", + "Iter: 2027 loss: 0.7836970686912537\n", + "Iter: 2028 loss: 0.8044099807739258\n", + "Iter: 2029 loss: 0.6343109607696533\n", + "Iter: 2030 loss: 0.7326492071151733\n", + "Iter: 2031 loss: 0.6893176436424255\n", + "Iter: 2032 loss: 0.7510631680488586\n", + "Iter: 2033 loss: 0.7617914080619812\n", + "Iter: 2034 loss: 0.7024680376052856\n", + "Iter: 2035 loss: 0.7677772045135498\n", + "Iter: 2036 loss: 0.7385350465774536\n", + "Iter: 2037 loss: 0.663316011428833\n", + "Iter: 2038 loss: 0.7760787010192871\n", + "Iter: 2039 loss: 0.6523404121398926\n", + "Iter: 2040 loss: 0.8048127889633179\n", + "Iter: 2041 loss: 0.7843398451805115\n", + "Iter: 2042 loss: 0.818772554397583\n", + "Iter: 2043 loss: 0.8136663436889648\n", + "Iter: 2044 loss: 0.7486963868141174\n", + "Iter: 2045 loss: 0.6919615864753723\n", + "Iter: 2046 loss: 0.8430956602096558\n", + "Iter: 2047 loss: 0.6351820826530457\n", + "Iter: 2048 loss: 0.7372164130210876\n", + "Iter: 2049 loss: 0.7448805570602417\n", + "Iter: 2050 loss: 0.6654884815216064\n", + "Iter: 2051 loss: 0.8029029965400696\n", + "Iter: 2052 loss: 0.7971924543380737\n", + "Iter: 2053 loss: 0.6845272183418274\n", + "Iter: 2054 loss: 0.7785727977752686\n", + "Iter: 2055 loss: 0.7030080556869507\n", + "Iter: 2056 loss: 0.6802806258201599\n", + "Iter: 2057 loss: 0.7273678183555603\n", + "Iter: 2058 loss: 0.7194667458534241\n", + "Iter: 2059 loss: 0.7615321278572083\n", + "Iter: 2060 loss: 0.7906833291053772\n", + "Iter: 2061 loss: 0.6255117654800415\n", + "Iter: 2062 loss: 0.7062637805938721\n", + "Iter: 2063 loss: 0.6585914492607117\n", + "Iter: 2064 loss: 0.740264356136322\n", + "Iter: 2065 loss: 0.7707991600036621\n", + "Iter: 2066 loss: 0.6545209288597107\n", + "Iter: 2067 loss: 0.7845494747161865\n", + "Iter: 2068 loss: 0.7755298018455505\n", + "Iter: 2069 loss: 0.7210005521774292\n", + "Iter: 2070 loss: 0.8534741401672363\n", + "Iter: 2071 loss: 0.8314063549041748\n", + "Iter: 2072 loss: 0.7009842991828918\n", + "Iter: 2073 loss: 0.7524632811546326\n", + "Iter: 2074 loss: 0.7698623538017273\n", + "Iter: 2075 loss: 0.7327963709831238\n", + "Iter: 2076 loss: 0.8242114782333374\n", + "Iter: 2077 loss: 0.7650673985481262\n", + "Iter: 2078 loss: 0.7209509611129761\n", + "Iter: 2079 loss: 0.643478274345398\n", + "Iter: 2080 loss: 0.7615836262702942\n", + "Iter: 2081 loss: 0.7162322998046875\n", + "Iter: 2082 loss: 0.7511301636695862\n", + "Iter: 2083 loss: 0.8154447078704834\n", + "Iter: 2084 loss: 0.7244824171066284\n", + "Iter: 2085 loss: 0.6617680191993713\n", + "Iter: 2086 loss: 0.7232285141944885\n", + "Iter: 2087 loss: 0.7582219839096069\n", + "Iter: 2088 loss: 0.6889092326164246\n", + "Iter: 2089 loss: 0.7910870909690857\n", + "Iter: 2090 loss: 0.7211535573005676\n", + "Iter: 2091 loss: 0.7367686629295349\n", + "Iter: 2092 loss: 0.7408621311187744\n", + "Iter: 2093 loss: 0.8141831755638123\n", + "Iter: 2094 loss: 0.7298778891563416\n", + "Iter: 2095 loss: 0.7582091689109802\n", + "Iter: 2096 loss: 0.767430305480957\n", + "Iter: 2097 loss: 0.774193286895752\n", + "Iter: 2098 loss: 0.6140254139900208\n", + "Iter: 2099 loss: 0.7396616339683533\n", + "Iter: 2100 loss: 0.7438144087791443\n", + "Iter: 2101 loss: 0.7654646039009094\n", + "Iter: 2102 loss: 0.648694634437561\n", + "Iter: 2103 loss: 0.7616299390792847\n", + "Iter: 2104 loss: 0.7029472589492798\n", + "Iter: 2105 loss: 0.8029411435127258\n", + "Iter: 2106 loss: 0.7680790424346924\n", + "Iter: 2107 loss: 0.8006886839866638\n", + "Iter: 2108 loss: 0.8413642048835754\n", + "Iter: 2109 loss: 0.7097117900848389\n", + "Iter: 2110 loss: 0.6866182684898376\n", + "Iter: 2111 loss: 0.7671371698379517\n", + "Iter: 2112 loss: 0.7819449305534363\n", + "Iter: 2113 loss: 0.8419113159179688\n", + "Iter: 2114 loss: 0.7985963225364685\n", + "Iter: 2115 loss: 0.6985411047935486\n", + "Iter: 2116 loss: 0.7618287205696106\n", + "Iter: 2117 loss: 0.6473105549812317\n", + "Iter: 2118 loss: 0.8265367746353149\n", + "Iter: 2119 loss: 0.7817987203598022\n", + "Iter: 2120 loss: 0.7473854422569275\n", + "Iter: 2121 loss: 0.7177948951721191\n", + "Iter: 2122 loss: 0.7517708539962769\n", + "Iter: 2123 loss: 0.7577227354049683\n", + "Iter: 2124 loss: 0.770144522190094\n", + "Iter: 2125 loss: 0.7126536965370178\n", + "Iter: 2126 loss: 0.792708694934845\n", + "Iter: 2127 loss: 0.6935935020446777\n", + "Iter: 2128 loss: 0.7309455871582031\n", + "Iter: 2129 loss: 0.7683677673339844\n", + "Iter: 2130 loss: 0.7489804029464722\n", + "Iter: 2131 loss: 0.6789701581001282\n", + "Iter: 2132 loss: 0.7308281064033508\n", + "Iter: 2133 loss: 0.7692906260490417\n", + "Iter: 2134 loss: 0.7885170578956604\n", + "Iter: 2135 loss: 0.7121861577033997\n", + "Iter: 2136 loss: 0.6833789944648743\n", + "Iter: 2137 loss: 0.7946696877479553\n", + "Iter: 2138 loss: 0.7051931619644165\n", + "Iter: 2139 loss: 0.7975533604621887\n", + "Iter: 2140 loss: 0.730012059211731\n", + "Iter: 2141 loss: 0.740680456161499\n", + "Iter: 2142 loss: 0.7447965741157532\n", + "Iter: 2143 loss: 0.7681249976158142\n", + "Iter: 2144 loss: 0.7384206056594849\n", + "Iter: 2145 loss: 0.6173918843269348\n", + "Iter: 2146 loss: 0.7096092700958252\n", + "Iter: 2147 loss: 0.7476096749305725\n", + "Iter: 2148 loss: 0.7285220623016357\n", + "Iter: 2149 loss: 0.7004218697547913\n", + "Iter: 2150 loss: 0.7351605892181396\n", + "Iter: 2151 loss: 0.758410632610321\n", + "Iter: 2152 loss: 0.7400996088981628\n", + "Iter: 2153 loss: 0.7793592214584351\n", + "Iter: 2154 loss: 0.6951926946640015\n", + "Iter: 2155 loss: 0.70775306224823\n", + "Iter: 2156 loss: 0.7251340746879578\n", + "Iter: 2157 loss: 0.7859318256378174\n", + "Iter: 2158 loss: 0.7831447124481201\n", + "Iter: 2159 loss: 0.744340717792511\n", + "Iter: 2160 loss: 0.811508297920227\n", + "Iter: 2161 loss: 0.6629199981689453\n", + "Iter: 2162 loss: 0.7425843477249146\n", + "Iter: 2163 loss: 0.7837598919868469\n", + "Iter: 2164 loss: 0.6770721673965454\n", + "Iter: 2165 loss: 0.6787885427474976\n", + "Iter: 2166 loss: 0.7684738039970398\n", + "Iter: 2167 loss: 0.7150668501853943\n", + "Iter: 2168 loss: 0.7192292809486389\n", + "Iter: 2169 loss: 0.7777823805809021\n", + "Iter: 2170 loss: 0.7343447208404541\n", + "Iter: 2171 loss: 0.7457724213600159\n", + "Iter: 2172 loss: 0.6478707790374756\n", + "Iter: 2173 loss: 0.7131615281105042\n", + "Iter: 2174 loss: 0.7993384599685669\n", + "Iter: 2175 loss: 0.7198173999786377\n", + "Iter: 2176 loss: 0.6868506073951721\n", + "Iter: 2177 loss: 0.7794121503829956\n", + "Iter: 2178 loss: 0.6532801389694214\n", + "Iter: 2179 loss: 0.6978592872619629\n", + "Iter: 2180 loss: 0.6795655488967896\n", + "Iter: 2181 loss: 0.7516896724700928\n", + "Iter: 2182 loss: 0.7623788714408875\n", + "Iter: 2183 loss: 0.7680546641349792\n", + "Iter: 2184 loss: 0.7215854525566101\n", + "Iter: 2185 loss: 0.7585170269012451\n", + "Iter: 2186 loss: 0.8554492592811584\n", + "Iter: 2187 loss: 0.7275096774101257\n", + "Iter: 2188 loss: 0.7619864344596863\n", + "Iter: 2189 loss: 0.6963942050933838\n", + "Iter: 2190 loss: 0.7126213312149048\n", + "Iter: 2191 loss: 0.6795763373374939\n", + "Iter: 2192 loss: 0.7226610779762268\n", + "Iter: 2193 loss: 0.6966503262519836\n", + "Iter: 2194 loss: 0.7988643050193787\n", + "Iter: 2195 loss: 0.7786710262298584\n", + "Iter: 2196 loss: 0.8386022448539734\n", + "Iter: 2197 loss: 0.7231125831604004\n", + "Iter: 2198 loss: 0.7986339926719666\n", + "Iter: 2199 loss: 0.7187389135360718\n", + "Iter: 2200 loss: 0.7562316656112671\n", + "Iter: 2201 loss: 0.762643039226532\n", + "Iter: 2202 loss: 0.7551765441894531\n", + "Iter: 2203 loss: 0.6440505981445312\n", + "Iter: 2204 loss: 0.7684208750724792\n", + "Iter: 2205 loss: 0.7090644240379333\n", + "Iter: 2206 loss: 0.7349479794502258\n", + "Iter: 2207 loss: 0.7539879083633423\n", + "Iter: 2208 loss: 0.7843973636627197\n", + "Iter: 2209 loss: 0.7893534302711487\n", + "Iter: 2210 loss: 0.7238591909408569\n", + "Iter: 2211 loss: 0.7856706380844116\n", + "Iter: 2212 loss: 0.6774031519889832\n", + "Iter: 2213 loss: 0.7423803806304932\n", + "Iter: 2214 loss: 0.6743386387825012\n", + "Iter: 2215 loss: 0.7485254406929016\n", + "Iter: 2216 loss: 0.7672616243362427\n", + "Iter: 2217 loss: 0.7682555317878723\n", + "Iter: 2218 loss: 0.8440612554550171\n", + "Iter: 2219 loss: 0.7926813960075378\n", + "Iter: 2220 loss: 0.8004173040390015\n", + "Iter: 2221 loss: 0.767185628414154\n", + "Iter: 2222 loss: 0.6781279444694519\n", + "Iter: 2223 loss: 0.6904734373092651\n", + "Iter: 2224 loss: 0.8743522763252258\n", + "Iter: 2225 loss: 0.7669227719306946\n", + "Iter: 2226 loss: 0.7074454426765442\n", + "Iter: 2227 loss: 0.7535327672958374\n", + "Iter: 2228 loss: 0.7515425086021423\n", + "Iter: 2229 loss: 0.8046891093254089\n", + "Iter: 2230 loss: 0.7168048024177551\n", + "Iter: 2231 loss: 0.7588936686515808\n", + "Iter: 2232 loss: 0.7961297631263733\n", + "Iter: 2233 loss: 0.7333986759185791\n", + "Iter: 2234 loss: 0.7181209325790405\n", + "Iter: 2235 loss: 0.7510613203048706\n", + "Iter: 2236 loss: 0.7695022821426392\n", + "Iter: 2237 loss: 0.7885795831680298\n", + "Iter: 2238 loss: 0.7472376227378845\n", + "Iter: 2239 loss: 0.7625131011009216\n", + "Iter: 2240 loss: 0.739044725894928\n", + "Iter: 2241 loss: 0.7621177434921265\n", + "Iter: 2242 loss: 0.7475835084915161\n", + "Iter: 2243 loss: 0.7716761827468872\n", + "Iter: 2244 loss: 0.7272748351097107\n", + "Iter: 2245 loss: 0.7368199229240417\n", + "Iter: 2246 loss: 0.7170726656913757\n", + "Iter: 2247 loss: 0.7599229216575623\n", + "Iter: 2248 loss: 0.7829437255859375\n", + "Iter: 2249 loss: 0.7057828903198242\n", + "Iter: 2250 loss: 0.8003440499305725\n", + "Iter: 2251 loss: 0.7891128659248352\n", + "Iter: 2252 loss: 0.7515465021133423\n", + "Iter: 2253 loss: 0.8234959244728088\n", + "Iter: 2254 loss: 0.6719788312911987\n", + "Iter: 2255 loss: 0.7297306060791016\n", + "Iter: 2256 loss: 0.7578842639923096\n", + "Iter: 2257 loss: 0.7669357061386108\n", + "Iter: 2258 loss: 0.7377139329910278\n", + "Iter: 2259 loss: 0.6913797855377197\n", + "Iter: 2260 loss: 0.6869228482246399\n", + "Iter: 2261 loss: 0.8603405952453613\n", + "Iter: 2262 loss: 0.7958390116691589\n", + "Iter: 2263 loss: 0.8119915723800659\n", + "Iter: 2264 loss: 0.7683757543563843\n", + "Iter: 2265 loss: 0.7306477427482605\n", + "Iter: 2266 loss: 0.7556589245796204\n", + "Iter: 2267 loss: 0.7552638649940491\n", + "Iter: 2268 loss: 0.7508562207221985\n", + "Iter: 2269 loss: 0.7446163296699524\n", + "Iter: 2270 loss: 0.7739006280899048\n", + "Iter: 2271 loss: 0.8112746477127075\n", + "Iter: 2272 loss: 0.6317403316497803\n", + "Iter: 2273 loss: 0.7206023931503296\n", + "Iter: 2274 loss: 0.7623235583305359\n", + "Iter: 2275 loss: 0.7266591787338257\n", + "Iter: 2276 loss: 0.685374915599823\n", + "Iter: 2277 loss: 0.7267049551010132\n", + "Iter: 2278 loss: 0.7020645141601562\n", + "Iter: 2279 loss: 0.7953951954841614\n", + "Iter: 2280 loss: 0.6801490187644958\n", + "Iter: 2281 loss: 0.7558114528656006\n", + "Iter: 2282 loss: 0.7161654829978943\n", + "Iter: 2283 loss: 0.7205798625946045\n", + "Iter: 2284 loss: 0.7506313323974609\n", + "Iter: 2285 loss: 0.7833394408226013\n", + "Iter: 2286 loss: 0.7230667471885681\n", + "Iter: 2287 loss: 0.7588260769844055\n", + "Iter: 2288 loss: 0.7768628001213074\n", + "Iter: 2289 loss: 0.6879702806472778\n", + "Iter: 2290 loss: 0.7759453058242798\n", + "Iter: 2291 loss: 0.7374826669692993\n", + "Iter: 2292 loss: 0.6475832462310791\n", + "Iter: 2293 loss: 0.6717051863670349\n", + "Iter: 2294 loss: 0.8150604367256165\n", + "Iter: 2295 loss: 0.7170904874801636\n", + "Iter: 2296 loss: 0.6933764815330505\n", + "Iter: 2297 loss: 0.6362384557723999\n", + "Iter: 2298 loss: 0.7327123880386353\n", + "Iter: 2299 loss: 0.770948052406311\n", + "Iter: 2300 loss: 0.732009768486023\n", + "Iter: 2301 loss: 0.8373671174049377\n", + "Iter: 2302 loss: 0.7933294177055359\n", + "Iter: 2303 loss: 0.7843462824821472\n", + "Iter: 2304 loss: 0.7915142178535461\n", + "Iter: 2305 loss: 0.7595245838165283\n", + "Iter: 2306 loss: 0.688908040523529\n", + "Iter: 2307 loss: 0.7463697791099548\n", + "Iter: 2308 loss: 0.7674683928489685\n", + "Iter: 2309 loss: 0.7743128538131714\n", + "Iter: 2310 loss: 0.7636487483978271\n", + "Iter: 2311 loss: 0.6847608089447021\n", + "Iter: 2312 loss: 0.7906643152236938\n", + "Iter: 2313 loss: 0.7051944732666016\n", + "Iter: 2314 loss: 0.7439665794372559\n", + "Iter: 2315 loss: 0.6798465251922607\n", + "Iter: 2316 loss: 0.6769459843635559\n", + "Iter: 2317 loss: 0.8040983080863953\n", + "Iter: 2318 loss: 0.8087010383605957\n", + "Iter: 2319 loss: 0.635482668876648\n", + "Iter: 2320 loss: 0.7449744939804077\n", + "Iter: 2321 loss: 0.700735867023468\n", + "Iter: 2322 loss: 0.7067851424217224\n", + "Iter: 2323 loss: 0.7533811926841736\n", + "Iter: 2324 loss: 0.7423226833343506\n", + "Iter: 2325 loss: 0.8017536997795105\n", + "Iter: 2326 loss: 0.7843659520149231\n", + "Iter: 2327 loss: 0.7236796021461487\n", + "Iter: 2328 loss: 0.6710689067840576\n", + "Iter: 2329 loss: 0.7029614448547363\n", + "Iter: 2330 loss: 0.6589871644973755\n", + "Iter: 2331 loss: 0.7312148809432983\n", + "Iter: 2332 loss: 0.6849077939987183\n", + "Iter: 2333 loss: 0.6982319355010986\n", + "Iter: 2334 loss: 0.8038316369056702\n", + "Iter: 2335 loss: 0.7434245944023132\n", + "Iter: 2336 loss: 0.7541549801826477\n", + "Iter: 2337 loss: 0.7970923781394958\n", + "Iter: 2338 loss: 0.823836088180542\n", + "Iter: 2339 loss: 0.6873316168785095\n", + "Iter: 2340 loss: 0.7234556078910828\n", + "Iter: 2341 loss: 0.7324331402778625\n", + "Iter: 2342 loss: 0.7128841280937195\n", + "Iter: 2343 loss: 0.7181422114372253\n", + "Iter: 2344 loss: 0.7804365158081055\n", + "Iter: 2345 loss: 0.7600523829460144\n", + "Iter: 2346 loss: 0.7175552845001221\n", + "Iter: 2347 loss: 0.752053439617157\n", + "Iter: 2348 loss: 0.7593463063240051\n", + "Iter: 2349 loss: 0.7314807772636414\n", + "Iter: 2350 loss: 0.7686779499053955\n", + "Iter: 2351 loss: 0.6832433938980103\n", + "Iter: 2352 loss: 0.7221429347991943\n", + "Iter: 2353 loss: 0.8140953183174133\n", + "Iter: 2354 loss: 0.7539276480674744\n", + "Iter: 2355 loss: 0.8079450130462646\n", + "Iter: 2356 loss: 0.7065097689628601\n", + "Iter: 2357 loss: 0.7885557413101196\n", + "Iter: 2358 loss: 0.680159330368042\n", + "Iter: 2359 loss: 0.6849876642227173\n", + "Iter: 2360 loss: 0.6472333669662476\n", + "Iter: 2361 loss: 0.7278973460197449\n", + "Iter: 2362 loss: 0.8010252118110657\n", + "Iter: 2363 loss: 0.7180361747741699\n", + "Iter: 2364 loss: 0.7085479497909546\n", + "Iter: 2365 loss: 0.7514404654502869\n", + "Iter: 2366 loss: 0.6892684102058411\n", + "Iter: 2367 loss: 0.7077505588531494\n", + "Iter: 2368 loss: 0.7333612442016602\n", + "Iter: 2369 loss: 0.7111672163009644\n", + "Iter: 2370 loss: 0.6062368154525757\n", + "Iter: 2371 loss: 0.7527382373809814\n", + "Iter: 2372 loss: 0.758457362651825\n", + "Iter: 2373 loss: 0.7441109418869019\n", + "Iter: 2374 loss: 0.733416736125946\n", + "Iter: 2375 loss: 0.7688854336738586\n", + "Iter: 2376 loss: 0.8052030205726624\n", + "Iter: 2377 loss: 0.7792822122573853\n", + "Iter: 2378 loss: 0.730072557926178\n", + "Iter: 2379 loss: 0.8110385537147522\n", + "Iter: 2380 loss: 0.7635213732719421\n", + "Iter: 2381 loss: 0.784222424030304\n", + "Iter: 2382 loss: 0.747942328453064\n", + "Iter: 2383 loss: 0.7779591679573059\n", + "Iter: 2384 loss: 0.6997353434562683\n", + "Iter: 2385 loss: 0.7570129632949829\n", + "Iter: 2386 loss: 0.8518645763397217\n", + "Iter: 2387 loss: 0.742125928401947\n", + "Iter: 2388 loss: 0.7746362686157227\n", + "Iter: 2389 loss: 0.7876268625259399\n", + "Iter: 2390 loss: 0.7049259543418884\n", + "Iter: 2391 loss: 0.7190911173820496\n", + "Iter: 2392 loss: 0.7440866231918335\n", + "Iter: 2393 loss: 0.8009029030799866\n", + "Iter: 2394 loss: 0.7192490100860596\n", + "Iter: 2395 loss: 0.7574002146720886\n", + "Iter: 2396 loss: 0.8175754547119141\n", + "Iter: 2397 loss: 0.6594262719154358\n", + "Iter: 2398 loss: 0.7873126268386841\n", + "Iter: 2399 loss: 0.647718071937561\n", + "Iter: 2400 loss: 0.8323908448219299\n", + "Iter: 2401 loss: 0.7054328322410583\n", + "Iter: 2402 loss: 0.7647086977958679\n", + "Iter: 2403 loss: 0.5936822295188904\n", + "Iter: 2404 loss: 0.790128231048584\n", + "Iter: 2405 loss: 0.7007232308387756\n", + "Iter: 2406 loss: 0.7397938966751099\n", + "Iter: 2407 loss: 0.7510621547698975\n", + "Iter: 2408 loss: 0.8105420470237732\n", + "Iter: 2409 loss: 0.7271573543548584\n", + "Iter: 2410 loss: 0.7471424341201782\n", + "Iter: 2411 loss: 0.766079843044281\n", + "Iter: 2412 loss: 0.7506208419799805\n", + "Iter: 2413 loss: 0.7890775203704834\n", + "Iter: 2414 loss: 0.731604814529419\n", + "Iter: 2415 loss: 0.7198953032493591\n", + "Iter: 2416 loss: 0.7249549031257629\n", + "Iter: 2417 loss: 0.7144594192504883\n", + "Iter: 2418 loss: 0.7799637317657471\n", + "Iter: 2419 loss: 0.7115166187286377\n", + "Iter: 2420 loss: 0.7490137815475464\n", + "Iter: 2421 loss: 0.8090767860412598\n", + "Iter: 2422 loss: 0.7368840575218201\n", + "Iter: 2423 loss: 0.7207573652267456\n", + "Iter: 2424 loss: 0.6931772828102112\n", + "Iter: 2425 loss: 0.7316250801086426\n", + "Iter: 2426 loss: 0.7313290238380432\n", + "Iter: 2427 loss: 0.7752944231033325\n", + "Iter: 2428 loss: 0.8295401334762573\n", + "Iter: 2429 loss: 0.6719842553138733\n", + "Iter: 2430 loss: 0.6849785447120667\n", + "Iter: 2431 loss: 0.7466281056404114\n", + "Iter: 2432 loss: 0.7303937673568726\n", + "Iter: 2433 loss: 0.7500646710395813\n", + "Iter: 2434 loss: 0.7925984263420105\n", + "Iter: 2435 loss: 0.7391482591629028\n", + "Iter: 2436 loss: 0.7367368340492249\n", + "Iter: 2437 loss: 0.7250650525093079\n", + "Iter: 2438 loss: 0.8432777523994446\n", + "Iter: 2439 loss: 0.7445283532142639\n", + "Iter: 2440 loss: 0.747085452079773\n", + "Iter: 2441 loss: 0.650607168674469\n", + "Iter: 2442 loss: 0.7861070036888123\n", + "Iter: 2443 loss: 0.7467817664146423\n", + "Iter: 2444 loss: 0.7428292632102966\n", + "Iter: 2445 loss: 0.7513748407363892\n", + "Iter: 2446 loss: 0.7612975239753723\n", + "Iter: 2447 loss: 0.6717371940612793\n", + "Iter: 2448 loss: 0.6567210555076599\n", + "Iter: 2449 loss: 0.819732129573822\n", + "Iter: 2450 loss: 0.7176337838172913\n", + "Iter: 2451 loss: 0.7744741439819336\n", + "Iter: 2452 loss: 0.7475559711456299\n", + "Iter: 2453 loss: 0.7366268038749695\n", + "Iter: 2454 loss: 0.7865174412727356\n", + "Iter: 2455 loss: 0.6744740605354309\n", + "Iter: 2456 loss: 0.6496120691299438\n", + "Iter: 2457 loss: 0.7363276481628418\n", + "Iter: 2458 loss: 0.6744320392608643\n", + "Iter: 2459 loss: 0.7942556738853455\n", + "Iter: 2460 loss: 0.7470142841339111\n", + "Iter: 2461 loss: 0.6523633003234863\n", + "Iter: 2462 loss: 0.6794524788856506\n", + "Iter: 2463 loss: 0.7264898419380188\n", + "Iter: 2464 loss: 0.6722845435142517\n", + "Iter: 2465 loss: 0.7192420959472656\n", + "Iter: 2466 loss: 0.6709460020065308\n", + "Iter: 2467 loss: 0.6962631344795227\n", + "Iter: 2468 loss: 0.8080081343650818\n", + "Iter: 2469 loss: 0.8609825968742371\n", + "Iter: 2470 loss: 0.7831999063491821\n", + "Iter: 2471 loss: 0.8188915252685547\n", + "Iter: 2472 loss: 0.6965222954750061\n", + "Iter: 2473 loss: 0.7041782736778259\n", + "Iter: 2474 loss: 0.7296375036239624\n", + "Iter: 2475 loss: 0.7129479646682739\n", + "Iter: 2476 loss: 0.6935248970985413\n", + "Iter: 2477 loss: 0.744705080986023\n", + "Iter: 2478 loss: 0.7781819105148315\n", + "Iter: 2479 loss: 0.7098931670188904\n", + "Iter: 2480 loss: 0.7267150282859802\n", + "Iter: 2481 loss: 0.801419198513031\n", + "Iter: 2482 loss: 0.7477928400039673\n", + "Iter: 2483 loss: 0.7545808553695679\n", + "Iter: 2484 loss: 0.7229301929473877\n", + "Iter: 2485 loss: 0.7119694948196411\n", + "Iter: 2486 loss: 0.7133360505104065\n", + "Iter: 2487 loss: 0.7130342125892639\n", + "Iter: 2488 loss: 0.6964353919029236\n", + "Iter: 2489 loss: 0.7233385443687439\n", + "Iter: 2490 loss: 0.7717710137367249\n", + "Iter: 2491 loss: 0.7439481616020203\n", + "Iter: 2492 loss: 0.7871140837669373\n", + "Iter: 2493 loss: 0.7445393800735474\n", + "Iter: 2494 loss: 0.7451239228248596\n", + "Iter: 2495 loss: 0.7371582984924316\n", + "Iter: 2496 loss: 0.7712447047233582\n", + "Iter: 2497 loss: 0.6957735419273376\n", + "Iter: 2498 loss: 0.757059633731842\n", + "Iter: 2499 loss: 0.7751864790916443\n" ] }, { @@ -1438,7 +5852,7 @@ "Gauss()" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -1464,7 +5878,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -1519,7 +5933,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1556,30 +5970,30 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[ 1.8024843 -0.6009391] 1.2450836 0.5235579 161.56725\n", - "[ 1.8024843 -0.6009391] 2.4901671 1.0471158 161.56725\n", - "[ 1.8024843 -0.6009391] 4.9803343 2.0942316 161.56725\n", - "[ 1.8024843 -0.6009391] 9.960669 4.188463 161.56725\n", - "[ 2.9873376 -0.9998031] 0.62564033 0.5742745 174.65733\n", - "[ 2.9873376 -0.9998031] 1.2512807 1.148549 174.65733\n", - "[ 2.9873376 -0.9998031] 2.5025613 2.297098 174.65733\n", - "[ 2.9873376 -0.9998031] 5.0051227 4.594196 174.65733\n", - "[ 2.318416 -0.78114593] 1.0562881 0.49855614 161.7324\n", - "[ 2.318416 -0.78114593] 2.1125762 0.9971123 161.7324\n", - "[ 2.318416 -0.78114593] 4.2251525 1.9942245 161.7324\n", - "[ 2.318416 -0.78114593] 8.450305 3.988449 161.7324\n" + "[ 1.8006767 -0.5934437] 1.232063 0.5174054 161.3418\n", + "[ 1.8006767 -0.5934437] 2.464126 1.0348108 161.3418\n", + "[ 1.8006767 -0.5934437] 7.3923783 3.1044323 161.3418\n", + "[ 1.8006767 -0.5934437] 12.320631 5.174054 161.3418\n", + "[ 2.996361 -1.003967] 0.5963283 0.5839089 163.66649\n", + "[ 2.996361 -1.003967] 1.1926566 1.1678178 163.66649\n", + "[ 2.996361 -1.003967] 3.57797 3.5034535 163.66649\n", + "[ 2.996361 -1.003967] 5.963283 5.8390894 163.66649\n", + "[ 2.9978373 -1.0013971] 0.50547326 0.5018366 156.68369\n", + "[ 2.9978373 -1.0013971] 1.0109465 1.0036732 156.68369\n", + "[ 2.9978373 -1.0013971] 3.0328395 3.0110197 156.68369\n", + "[ 2.9978373 -1.0013971] 5.0547323 5.018366 156.68369\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAC5CAYAAAC1Of4oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUM0lEQVR4nO3dd3gc1b3/8ffMdu2qd8uy5N4wLpjiBpgWCJACAUKHhITLvTfJTW4KCaGGllzSk18CIQkhECCQ0HszBmMwYNx7L5LV6/Yyvz9mV1qttqpL/r6eRw/W7szsLD4+5zPnzDmjaJqmIYQQQgghjnrqcJ+AEEIIIYQYGSQYCiGEEEIIQIKhEEIIIYQIk2AohBBCCCEACYZCCCGEECJMgqEQQgghhAAkGAohhBBCiDAJhkIIIYQQApBgKIQQQgghwiQYCiGEEEIIQIKhEEIIIQZJ0F1Dy1sn4NxyR4/XQ74mWt5ehHvPA+lv8/Zi2tdcTvuay2n74GI61n+boPtw3M/VtBCdG29ECzgJumtoe//zUe8FcW6+hY71/4MW9CY895DnCM4tt/fj249OxuE+ASFEYi0vv8iR+3+PFgyihUIUfuFCzKVlND33DFMffAgA76GDbFq+hMpb7qDkymsAqHvoz7i3b6PwCxew6+vXYplQDUDI6yFr1jFU3nw7psLC4flSYsRzer08tGIl6/YfwKCqZFnMXLf8VGaNr+CpD9fw6vqNAEwfV8a3zjkbk8HAnvp6/vD6m3S43QRDIWZWVHDDmafj8nq56YmnAGhxOgHIt9sBuOPiCynJyRmW7yiGjmLKw9/8AVoogKLqscNX9waKMTejbVRLMTknPNr1u+fgE3Su+yY5Jz6Oopp6fKbv8L8x5s1HMdrB39b1uqYFcW25HS3oxjHn/3rtF021lqGYcvE3voepaGn//ieMItJjmKYVK1awbNkyzjrrLGbMmMFll12Gx+MZ7tMSY5jvyBEO3XsnU//6KLOef5UZ/3yGlhefQwv4ca5fi6ZpALSvXEH2kmW0r1zRtW/nmg/JWboMgKxjjmXW868w6/lXmP3q25jLytnzjf8Yjq8kRoGQpnHzE09ht1r443XX8sfrruW65ady65P/YsP+A7y2YSO/ueZKHvjaVwiGNJ77ZC0Adz39LNeecjJ/vO4r3P+1r2JUVR56510Ks7O7jnPu/HmcO39e1+8SCo8OisGGMXcOgeYPul7z17+JqeTUjLaJZa28BBQD/qbVPV7XNA3Pwccwl50d83o4FGoB7MfckzQURpjLz8W9/28ptxtLJBhm4KOPPuLXv/41W7duxe/389vf/na4T0mMYYGWZrSAn6BL72Ux2O1U/+yX2I87HlNJKZ5dOwFoe/cdyv/zmzg3byTk1YdFOj/9hJzFy3odU1EUxn37u7i3bcW1bevQfRkxaqzft5/Gzg6uOnkZBlVvImaNr+AHnz8PgP8+60xsZjOKojCppJj6tnZA7w10+XwAqIrCFcuWcOqsGcPzJcSIYy45A1/9GwAE3bVgsKCaCjLeJpbBMZmQa1+P14KdO1GMdlRTd29jJBT66l7DVv3Vrl7JVIyOqYRc+wj5W9PafiyQYJiBJUuWMHPmTBRF4corr+Sdd94Z7lMSY1jWzFnknn4Wm844ma0Xns+hn92NFghgraomZ9ESOtd+jOb3496yGcdxC7HPnU/nx2tw79yBubwcY35+3OOqFguWiRPx7Nk1xN9IjAa76uqYXl6Oqig9Xl84aRLHVk3g2KoJgB4En/tkLYunTQXgP844ndv/9TTX/OF+fvnSK+yoPcLMioohP38xMpmKluFv+Rgt5Mdf/zrmkrP6tE1cqqXHryH3AVRLaY/XNG89qCZsU7+Fc8staCFf2ueuWkoJuWvS3n60k2CYAaOx+wojFAphMBjwer3U19cP41mJsazqjruZ8/b7FF96Jb6aw2y7+Au0vPwC2YuX4vzkYzrXfkLWsXNRDAZylp5M+6p36fzoQ3KWnpzy2KrFOgTfQIw2iqIQCt+mkMiR1ja+/+hjnDNvLnPDQfGsY+fwxDf/i+tOW45RVfn5Cy/x+1dfH4pTFqOAYrBizJ2Hv/kDfA0rMJcs79M2sYIdOzDYJ8a8qkJMj6BiLiZrxo+xjP8yiqkA965fZ3DyRlCOnrh09HzTAfD+++9z8OBBQqEQDz/8MGeddRaPP/44K1euHO5TE2NQ29tv0vzS85jLyij60sVM+tXvqbz5dhr/9RTZJ5yEc+N62t97h9xlpwCQs/RkOj78gM5PPiZnSeJgGPJ68ezejW3K1KH6KmIUmVZezs4jR7ruYY34x6r3+WDnLnbX1fHthx/h3PnzuWzJYgAONzfz6Hvvk2WxsHT6NL5x9ln86uoreGXDxuH4CmKEMpeeiWf/31AtxShGR5+3ifAcfAJUM8b843u8rmZVEnLX9nhNUY0oioKiKNhn3YLvyKv4GlaiaSHcu3+Pc8ttOLfeiXPrT9CC7h77hrx1qNZxffjGo5PMSs7A+PHjufbaazl48CCnn346119/PV/5yldwuVxs2LCBnTt3cs4557Bnzx7OO+88Fi5cyHnnncdPfvITHnjgAQDmz5/P17/+9WH+JmI0UG02Dt55G/a587FUjNdvqN61k6wZMzA4HBhyc2l94zWm/uXvAFirqgm5nLi2bsax4Li4x9SCQWp+eR+OhSdgqaoewm8jRos5leMpcDh46J13uerkpRhUlQ0HDvLsx2u546IL+dHjT/KNz5zJ0hnTu/bJzcrimY8+Zvb4CuZVVwGwr6GRSSXFw/U1xAhkKlyEa+vtWCsv7dM2IW8D7Wsu13/RNNSsCWTP/RVKzG0PRsdUtEAHIX87qqn3BCfVUkzWjBtxbb0DS+WlqLZKbJP/C4Bg525CvmYMtorw77swZFXHPc5YpWixl4UirhUrVnDbbbexYsWKHq8/9NBDOBwONm3axMknn8xpp53Gbbfd1iMYOhwOqqqqUBSFQ4cO8cgjjwzPlxCjTtO/n+TIg/ejBQKA3is4/gc3oVos1Pzq57S8/CKzX32ra/v9t/wI/5FapjzwVwA6PlzdY7kaLRTEPmculTfdgiH76KnoRGbaXW7++OZbbK+pwagasFstfO20U/lg527+veYjKgq6JwScOGUy1556MlsP1/DgWyto6GjHqBqoLCzgv846k5Lc7nL28Mr3ALjq5KNn6Q8xPLyHnkIL+bBOuCzpds5t92CrvhbVWoZr128JeWox5R+HpeJCAFw7fo6pcBGmwsVDcdojgvQY9lP0lUpOeOkFo9FIIBDA4/Hg8XiwWq1861vfory8nIceemiYzlSMRoUXXEThBRfFfW/c//wv4/7nf3u8VnXH3T1+zz5xEfPXbxu08xNjU06Wje+ff26v12dWVHDtqfFvU5hZMY6fX5m8EZZAKIaKueKLODfeiDbuc0mHpI3ZM/A3rcJScSFZU75BoHUd/uY1gD4zWvO3HVWhEKTHsN/eeecd7rrrLubPn89FF13EwoULWbNmDbfeeiszZ87kwIED3Hjjjdxzzz3k5ORw2mmnceWVVw73aQshhBBHvcg9hiH3QVDNKChYJ16HIatquE9t2EgwFEIIIYQQgMxKFkIIIYQQYRIMhRBCCCEEIMFQCCGEEEKESTAUQgghhBCABEMhhBBCCBEmwVAIIYQQQgASDIUQQgghRJgEQyGEEEIIAUgwFEIIIYQQYRIMhRBCCCEEIMFQCCGEEEKESTAUQgghhBCABEMhhBBCCBEmwVAIIYQQQgASDIUQQgghRJgEQyGEEEIIAUgwFEIIIYQQYcbhPoHB1OEJpbVdtlXysRhYgUAgre2MxjH9T1AMEyl/YrhI2Rv9FE3TtOE+iYGSbhBMRkKi6Kt0K8REpKIUfdXfsgdS/kTfSd03toyZYDgQoTCaBESRroFolKNJJSkyIeVPDBcpe2PTmEg/Ax0KB+uYQqRjoCtbMXYNRlmR8ieGi5S9kWFMBMPBIuFQpDJYFZlUkGI4SfkTqUjdN3aN+mAo4U0Ml8GuwKSCFMlI+RDDReq+sW1UD+inEwqd3mDC9+wWQ1qfIfcbir5wOp1J37fb7UN0JmKsSafhTFb+0il7gUBA7vkSfSJ13+g2phNPslAYeT/VNkLEMxBXtKkqTyH6KlXZcjqdUv5En0jdN/aN2lnJqXoLMw18yXoPpcdQxEpVOWZa8SW7gpZeGxFNyp4YTlL+xj5JPGHJgqTcxyiiDXTF2Nd9hBgIycqe3Oslokndd3QYk8Gwr8PDMqws+ksqOTGc+lr+pNyK/pIyNHaMyqHkZD14qe8r7L7isVvid1PHG1aW4WQRkeiqOZ37uqLFG0JJNKwiQyoCkvfYZFL+EpWzeK9L2RMRUvcdHcZU2kkWCp3eQI9QmOi1RGQ4WfRHvIoz3deESCVZuYk30SSTyScynCz6Q+q+0WdMBcNEUoW/3oFRhpRFZhJVaqka4HQrSGmcRV9k2pMjjbPIlNR9Y8+YGUqOF+bS7Q2MiB1aliFlEU+8iqq/V8CxwyiR3/11R3Bv2Yx7+zZ8+/fir6/DX19PyOPBWFCAqbAIY1ExpsJCjIVFmEvLcCw8HlNxSYbfSowGg1H2IHH5iyZDemIo675oUvaG1qgMhtA7HA5EMISe4VCCoYgnncqxLz0vkQpRCwRwvvsOnf/6J50fvN+nc7TNmEnOkpPJWbIMx/EnoFqtfTqOGHliy99ADctFN8jSOIt4BrvuS/Q7SPkbSqMyGKbTY9iXUAjSayhSG6zKUQsGCbz0PK1/f4hA3RH9RUXBOmUq1hkzsU6dhnVcBabiElSrlUBzM/6mRgKNjfp/mxrx7NuHe+tmiPpnrZgtOI4/gbzTzqDwi1/CkJ2d8bmJkWGwyh5I4yxSG6ryJ2VveB1VwTDRvYOx4U96DUUyqSrHeBWjy+WKe6ysrCwA/Pv20vbTO/Fv2QyAmpdPzhcuoPyKqzFXjO+xT6oK0t/URMfqVbSvepf2d9/BHwmZgGp3UHTRJZRcdS2WyglJjyNGnr42zKnKX4Q0ziKZwaj7IuTCZOQ4aoJhqgklIyEcpjPzWULp8Mu0ckxUMUYYtm2l5UffQ3O7UOx2ir7xHbLP/zyqxdLvylHTNDy7d9H+7js0PvEPPLt36W+oKnmnn0XJtV/FsfAEgsH0JlxJxTy8+hIMU5W/kRAO05lgIGVv+A103Tdayt5gffZIdVQEw3RmGQ9XMOzPMjgSEodeOut4ZVI5+td8gOvOW8HvxzxvPnk/vp2c6ok9thmoClILhWh/byX1f32Q9vdWdr1uO2YOJV+9ntzPnIOiKGkd62iqJEeSTINhqoYZBqZx9gUC7G9s5GBTMyFNw2wwYDQYMBpUTAYjRdkOxhcU9Chf/ZltKuVv6A103RcRXf6Gstewr+XvaCh7oy4YJgpS/Q2G0DMAprrXsL+hbCDXRZSAOHQGsmEO1hym8xv/AS4nxkVLKLr9bhSLBRj8K+fOrVtoePivtDz3NJrPB0DWguOo+NGtZM0+Ju3jHA2V5EiR7uLCmQZDyKxxjvydbz50iA927mbt3n3srqsjlKIpybXZmDW+ghnjyplVUcHUslLM/Sw/Uv6GzmBclEQkKn+DUfcN1PI3Y7nsjYlg2N9h5GiJwuFA9hoO1mLZEhAH30BVjlogQOe3/pPQnl0YZs/Bfu/PsefkdL0/WJVj7PkHmptofORh6v/6JzSPBxSFggsvpvw738OYX5D2ccdyJTlSDMYwcrR0G+d9DY385Z2VfLxnb4/Xs21WqouKMRkNBIJB/JGfQIDa1jZ8MedvNBg4cfIkzps/j2MnVKbdWx2PlL/BN9qD4WCthzgWy54EwxiDHQyH4gkqEhAHx0A2zN4Xn8Pzu1+h5OTi+P0DqEXFg145JqsYfbU11P7iZ7S+8BwAhrx8xt34Y/I/94WMGuyxWEmOFMMdDJs7nTzy3ipe27iJkKZhUFVOnjGd4ydPYm7VBIqysxOWFX8wyPbDh9lyqIYtNTVsPXyYFmf3uVUWFnDe/HmcNnsW9nCveV9I+Rscw132og103RdL0wJonlqCzr2gBVAtJahZ1ShGR9L9xlLZG3PBsL9PMRnMYJgqFPblXshEJBwOvIGqHDWPh46vXonW3IT1hm9g+dwXu95Lt4Ic6Moxct7udZ/ScO9P8O3aCYDthJMo+dEtmMZXJnyWaayxVEGOJAN943+sZGVv55E6fvTEkzi9XgCWTp/GV5efQkVBer3KseeuaRr7Ghp5ad163tq8BbffD4DFaOTk6dP4/IJ5lEb1oMeeUzJS/gbeYAdDGN66Twt5oOF5tKbXwXMINH/MVgpq1kSMpZ/BPO5LKAZb3GONlbI36oPhQPYWwvAEw748gi+dgCjhcGANVMPse/M13Pfdi1JSSvaDD6OYTF3vDUflGHveWsBP6yN/o/lPf0TzelHsdkpvuwvH8tMTnk88Y6WSHClSLWw9WA1zk8fD9//xBO1uN5NKirnhjNOYW12d0bGTlT2Xz8fK7Tt4deNmDrW0AGAyGDh37rF88bj5ZJnNPfaRsjf0BvuiBIan7uvsaIKGF9COPAGB1u43FAtYx4NqAV89+Bu73zLlY668ElP5F1EM8Xu3R3v5G1PBcCCeeTzUwbC/z2VOFRAlHA6cgaocnbf+iMCaD7BcfhXWK67p8d5gVY7phsJovoMHqL/9Zjzr1gKQd/VXKLzhGyhRn52qkR7tFeRIkiwYDlbDXN/ezi1PP0dTZydTy0q555KLyLJYBqT89bog0TS21NTyr48/YeOhw4A+YeWqJYtYNm1qr2FqKXtDZzQHw4ShsGkr2s6bwBde59VchlJ+KWTPB3MpitLddmr+Fmj7EK32H+CrBUCxlGKb/TMMjqlxjz+ay99RFwybXfoMzIIsc6/3ILNlazIJXX2ZTR3//OIXtmQBUcLhwMikckxUMbbW1sLXrkYJBnD88S8Yqqp7vD+UlWM6CyNrgQAdf/wdzicfB8B2/ImU3vVTjAWFCc+tP+cpEutvMGxtbQUgLy8v7vFjl61RTCZ+8M+nONLWTmVhAT+79BJyw9tk8vea6WxqTdNYd+gQj3/0CXXtHQDMHlfODactpzQ3p9dxpPwNvgGp+zIof4Nd93XWrUHbdTMEO8BUjK/wYoK5y0FJfGy73Y6mBaDpNbSaR8DfAAY7tln3YMxf2Gv70Vz2xmxiSBYKY/88XPryGD+nN5DRU11gaCa8iORaW1v1inHvHpRgAK2wqFcozEQmN1Ons22inkPFaCTnv/+HvFvvRLHZcH/0IQcuvxjPpg0p9830PMXASBYKY/+czKsbN3GkrZ1Ch4O7Lv5SVygcCMkuShRFYX5lJXd9/ny+tGAeRlVlc00t33nsCV5Ztz7lsaJJ+Rt+XXVf1O/90d+6z9/4DtqO7+uh0D4Dd9V9BPPOTBoKIXzbg8uLUvRZlFkPgONYCDpxb/oO/vrX+3WeI82YDYax4gXBoQqH6QSzeL2d8X6itx+IoXMxxA4d0P/bj1A4EFL1NsX+aCctpvCPf8EwoYpQQz2Hrruatqf+SWTAwel0JmygR3MFORbEa4hTNc7eQIAX1uvh/9KTTqCoj8/X7stFSaTM+bxeTpsymR9/5kymlxTjCwb586rV/OHNt2hrb096DCHiCbR8jGfLTaD5IPck3BW3gzG36/14dV/shZbT6UQxOlCm3gP5J4MWwLPtVvwNb/f+vFFa9436YJjuLN2+Hbv/XcHpDCHHLsadLODFC4iJjpvOeYj0DcjQQOS5xWXl/b5yTkc6Q8jRkj6lpaQU+y9+h/XkUyEQoOHen3Dk5z8l+m4UaaCHTrqzdPti9b79tLs9lORks3TqlD4dI9MnZcRrhAFKsh1845RlnDd7FgBvbdvBT199ncMNjT22kwuTwTPQw6LDUfeFPHW4t94MhKDgNJTJt+mTS8KS1X2xZdPpdOJy+1Em3gRF5wLg2XE3IU/tgH6H4TLqg2G0gQhyQyFZKIzW7PL1+kl1jHjHESNIQ73+35LSQf+o/ixIGxn+if1R7HbMN96M5drr9P0ff5Tan97FKLtVecwZyJDoDwZ59tN1AHxhwXwM6sA1E+nelxZb7trb2vjs7JncsHQxVpORnfUN3PbCi6zfuy/h8cXRq/fySCGcW26FQBvYpqBUfQeXy9P1fjp1X2S76G1dLjfKhP8G+yx9WHnrLWih0X8hMjqSVJRsq5pW75fdYugRkAqyzAM+dNzhCSWd2JHJmovRryc7z+jJM5F99O8a6BGMnd7goPamCp3dbs+sMerH0x1S8dXW0PTsv3Ft3oTv8CEC7e0Y8/IxFhZiKi7GvuB41HnzMRYWAclDYSJdN5BffBmKIxvPb3+J66knqA0GKf/hzSiqitPp7BVUAoHAqL4ZeyQwGo1p9X5lZWX1+PvMy8vLqIdma+0RWpwu8rOyOHXG9LjbpPr77OtkhVRlrzLLxg/OOI0HVq2mtr2De195jasXncjZ8+b2OPZg9qYKXcZ13zDy1zwJnRtAtaJMvhmXu7t8Zlz35eXhcrm6Jsu4XF6yJv4QbesNhDo249v/AJaJ/9m132is+0bX2fbTYITDTPQ3FEZrdvm6ZlZHQmBsOIyVKsiK/omuKBM2zvbw6vnOzoSz8zLl2bObmt/+ipaXX4Bgz95i3/59XX9ueuIxAMzTpmM5eTlZ538BNVzJRaQbIFpbW8n77PkoBgPuX/8c19NPURsIUH7z7QnDoRg+mYTD3eEh2mMrx2MyDMzFZX9DYTRLMMj3Tl/Ow2s+Zt3hGv68ajXBUIhzF8xPuM9obJxHk7TqvigDVffF02sI2deCd+/9ACjjv44r0POewoiM6r7YcBjIJqvqO2h77sB38BGMhadiyJnVz28yfMbEv5To3kG7xdgVumJ7DSHxMjXpfMZA6W8ojN4+WTiUXsOBl26vTTx5eXm4C4vwAZY4x4hdLiQdnZ9+wq6vXUOwrQ0Ax4mLyD31NEwTqjBk5xBsbSHQ3ETn7t24P/oA77at+HZsx7djOx0P/xXz6Wdi/vwFdOTmZfzZra2t5H3ms6AacP/yZ7ief4Z6oOTHt6HECRTSOA+86AY5WeMM6TfGuxoaAJhWVtp13IHS31AY4XE6+drik/j3+o28uWMnD63+EIOqdvUcyoXJwOtv3ZdMX+q+dDn3/R1CHsiahsu2vOv1SPnry/2O8cKhkr8MreB0aH4T774/YJvzm661N0db3Td6znSUSfWElujX4gXC3W2dCY89Obf7mY3R4bD7uIl7DqXXcHClapyVbP3vTuvsSHmcVDo/XcvOqy8j5HZjnzufCbffRdbsY4DeV83W8Dm1HzqId/X7OJ9+ksCO7fhefgHvKy/CqafBxZdDuAJvbOx5Y3+0oqKirj+3traSd+ZnwGjEfd89dDz/DASDlNz6E2mcR6naVv0io6qoMMWW8aV6Qgskb5TTLXttbW1cMHcOQS3Eip27+cuq1RhUlTOPnZPwvEZT4zzapKr7MjnOQNH87VCvP//dm39h1608A1H+YsOh0+kka9w1aC0rCbZ+QrD1Y4z5xw/YdxlKY/5fSbxew2TbDrZIb2GiUJgsEMZuEwmIkXAYr4dQeg2HV2wFqTj0ZT+0juTBMBVN0zh4522E3G6yFy9l8h8exJDgqju6YTbkF5D12fPQTllOcPNGOp/4B8rHa+DtN9E+XE3n5y7As2gpJJlw0NjY2LuCXH46itGA66d30fHS8xgKiyj61nf69R1F/2TSOEd6PXyBAM3hfcpyc5PtkhZN01i7bz+f7N/Pzto6WlwuVEXBqKpkm01U5eVRlZ9LdV4ebeHH4SUTabQj5a+trY2L5s0lGNJ4d/ce/vTe+2TZbCyZOkUuTIZZf8LhQHHu+weEXGCbSMihh7REoTBZIIzeJlk4dAWysRWdCw3P4DvwNwmGQynVBJTo4WT99/TDYfQxBltfQmHs9onCYar7DcXASXUTdnQFqYbXg9NiGsFkQynxGrf2N1/HtWEdqs3GxPt+1SMUplomxOVyoSgKneMnwP/eiLZjG4EH78d0cD/Zjz+CZd1a2q/+Kpoj8dp1sRUkgGnZqeQZjLT+5BZa//5XLNOmwTnn9Th/6bXpn1TDebFlMdPGuc3tBvRnFedYrX0/UWBbTQ1/emsFW2viL+FRD+xu1v8dWA0GZhcWMLe4kDxL/OfPRosuf21tbVyyYB6hUIhVe/fxm9ffxKCqnDR5Ur/OX6SWSd2XbJtkx89E9L8NLeBEq38aAF/+haCocUNhOoEwWry6L5pSdhFaw/ME29YS7NiCIXtW17mNlrpvdJzlAIj0miUKiAPZq5ZqGDn299hAuLE2+T+kOeXd/5DihcNYsb2GMpw8uOJVlpEKUp2krwkX3L0Tze1Gsdl6VYzpVIbNz/wLgOIrr8FUXJLxOfaoGAuK4Ls/xLbybezPP4152xZy7r2Dg1+6FM+48T32Kynp/qzoCjJy5awtXor9iqtxPvI36u+8DVPVROzHn5Dx+YmB0z17Mn69El3+IpNNAsG+LXkVaZjf276De597gZCmYTEaOWXGNKYWFZFtMhLSNFpa26h3OtlRV8/Bjk46/X4+qW/gk/oGqmxW5udm44jTiCYqf+1tbVy6cAGoKqt27+E3r79JWW4O1SAXJkMoWd0XT1/qvnQFmlbqTzexjCOYvajr9WShsL6+PuHxUtV9Xb2Gfju2guXQ/Aa+mqexTR99k1DGzL+Q2F7B2F7D6O1SH8sY83v6oTFZT2b0+SSaaJIqFEa2iQ6HvT9Heg1HoqysLLQpU3GXlRE8cgTDzu1YT1rcp2O51n8KQN4ZZ/V4PdXN4bEVdFfFqKrsnzUHS1EJlU/+A0tzExMf+hO155xP6/zu54BGKs5IJRmvgsz+6vUEdu/Cu3oVR773LYx/e5zcqqoe5yiN88CJbYwT9eKkc4N/QXj4WAN8wWDX7+mIlL11+/fzsxdeIqRpnDh5El9ZtoRIH6DL5dLLSUE+EwvymWyzEtI09rV3sOZQDTVeL/vdHg65PczJyWZWth01aomn+vr6Hg10NFVRuHT+PDq8XjYcOszPX3mNey+6UIaTR4DBnFwSEVv3BZre1f9QsBwUQ+K6j+hAGGKcbRcVWTtxGFswqj6cgVzqPVXsaziWgGZOWvdFKEVnozW/QaBxJdrUH6Coxq5zHA11n3Qb9UNfet2S9RZGh8Idte1xf+JtG32MRIEz9nPlSSh9F+8fdmzjk6gxUhQF83F6D5rv4zV9Ok7Q2UkgXKnZpnavM5do7ThN02jdvAnPeyvxvfU6rZ9+AqFQ3IrRW1LKnq/eQEP1JNRgkIoXnsHyxiu9rqSjf4+96nZ7POT9+HYME6oI1NVx5PvfJuTzxv3/IUYWc1TZ9vj9CbdL1LgFQyF+9+obBIJBlk6fxrfPOoOCcBlO1DCrioLD6+G04gLOLSkiX4EgsK69g5dqjnCwrq5HeUtU9lpbW1FVha8vW0Kh3c6Rtnb+8NYKOjt7jsjIk1D6rj91Xyr9OU6vBa2DXgLNHwDgsSzoej3SWxiv7ss2NXJq6eMcV/gaZba9OEytWA0uCi21zMz9gNPL/sb4rK1J675IGXcpE8GYB8EOgm1r0/4eI8WoDYbxQllsz15fesv601sYT7yh63jhLTYUJpJOOIz+3Hi9pmJ4WRbqwdAbJximQ/N1N9hqivvAPBvXc+jqy2i8+lJabvo+7v+7B+VH34P/+ArZDz2I+dNPqI88pg+9kjzS3s6ms85lX7incMrq95iw7mPq6+sTNtARkYpXdTgouPv/UB3ZeDasY/8tN8nTUQbIYDXOdrsdg6p2hUODyZTxMd7dtp2a1layrVa+fvKyXk9NiTcLNLoc+VtbWGhUOcagYARaNfjAH6I1pKUVDgHUYJD/OvVkDKrKh3v28mL4mc/i6BFs/UhfosZcgmZJfK9ppBwVWg6xuOhfZJua8QZMfFo7i5d3nsIzW8/gvf3H0erJxmzwMr/gTaZlr6G+vq7XsXqUbcUAeUsAcNe+PqDfbSiM2mCYrkzC4WAOu8YLaJEwlywUHjzc1vUTvU1ku3hDz8O5iLfolqhxthx3PCgKgb17CDY2JNw+0f6GnJyuPwfbE19EOD9dy+EbvoZ3yyYwmzFMnY7hmGPRrFaUjnasn6wh9y/3M+nPfyTrwL6eQU9R+GjSNDbN0pf+mPzh+1St/QiIHwjjXTkbKydQevfPQFVpf/bfNP/rn13vS6/N4MskHEZvawkHQ5cv83rk1Q2bAPj8cQuwmfVgGW9YO1Je4oU9RVEYZ1CZ1tmGNRjEC3wUCFEXDoeR7ZJdmEwqLuLS4/ULm0dWf8jmQ4cz/i6i7zK9MMnkwiadodhA40r9D3mLQVGSToDJNjZxfMHzmA1+ajuK+efmz/LaxjI27DWw/WCI7U2T+feWz/Bp7UwApueuYaKj+2IjUa+hkr9Uf6F1FZrW3UE0Guq+MR8MIb3AF2+bZL2FgzF5IzoUxobBRK9FSzWrWZ6hPHDS6bWJvBb7upqbi2maPgQc6TXMpCJVDAbU8IzhQEtz3G0iy9loHje2kxZT8s9ncPzmDwRuug3+9DCt3/oerjM+Q9BswVZbQ/XfHmTKqndQ/X4aGxu7KrutM+ewcba+aPCkj1ZTsmsHQNLGuYe58ym44RsA1Pz0LnxHxsZD5keLdMpV7DZFDn0y24HGprjbJ2qYQ5rG9lr973fRtCkpP9cdCNDk8+ENhnr1ADY2NmINhZjubCfP70MD1vuD1Ifi9zrHm1l6+oxpLJk6hWAoxD3PPk97eMa16J/+1H3xDMY9oP7m9wFQcrvv4Y4dRq6vr0clyNzcFzEZghxuL+XRD2dRU9dzKbHGxkYaGptZWzuHNYeOBWBW7iq8LZuSnoNLnQqGbAi0EmxPvu1IM+aCYaIwZ7cYu37ivT4U4gWzSI9fbChMJvJ+sl7DRJ8nhkekkoxUgpZF+jCD98XnE1aqiRiNRqzV1QA4N8UfJvMd2K/3FJpMZP/gJgz5Bd1vahqBkhKcn7uAnf/9bVrmLUABKjetZ+bz/8IQ6Hlv2bYZs9k2LXy1vOJ1HI09Q2Hkv5EKN3a4MP+qa7Eccyyhzk4O3SpDyoMlUZmJLXuxr8eaUV4GwNbDNRl9fnNnJx6/H4OqMqGw5+LY0T02m+rqeXjrdv6wYTMv1zfxZG0dq3xBNgdCHGjuuYyTAZjodpLv94KisN4fpCFqWDnRhUlkSabrTz2ZcXl5NDud/G3lexl9HzEw4pW/RGUy8l4i6fQWhnzN4G8GFFxKVdJtqx0byLe14/Zb+NcnUwmGEncGNTY2srF+OvtaK1CVEHPz3+waUo5b9ylGyNaDZKhjS8rzHklGdTDsa69dopDYc5vB6S2MDPMm6t2LDoW1B5t6/cRuFxsOI8eNHk5OdJ+hTEAZeOleIRd9+QowmfBsWId7w7q0jx+pGLMX68MU7avejbud79BBAMyVVRgK9EZaCwbhz/fDtZdTdNP3KLzpe5S+8So7ps1i/Tmfw280UtJQz7L3VtBaW0tDQ0PXz9ulFezPL8QYDDL7pecwuVPPnu8aUjEYKL3lDhSTmY6VK2h57pm0v6+Ir68zG5M1yBFzJ1YDxB1+Tfa5nvC9r1aTqde9haA3mtsaGnl8/UYa3R4ALOHtnMDhkMY2Rw57rVkcaWruKnuNDQ3YD+zXew7D4bBT6x0O4zXOIb+f/1h+CgCvrN/Atho97I6G4bzRJt26r689hOmW+ZBzj/4HSzmoidfEVAkw0f4JACt2TMTt15d6i673on8AGhubeG//QrwBE7nmJsbZdsU9dlfdlxVenqxzR1rnPlKM6mCYyGA+6WMw1/+LDYXxJHpdDL1EFVU6FZ+xqIjsc84DoPWRhzPeP2fJMgA6Vr2LFuod8LXwjFItqgH0/PVPKG+8ihLUX1M72snf8CnHP/UPshsbeGfpafhMJoqbGjh/41rMUT2HmqLw+sw5tNqyyHK7mPT6y6BpqYeSw8yTJlP6398EoPZndxNoS94rLvpmIIblZlWMA2BvQwMub/cFZqqG2Rq+p9Dj98ftFW50uvjH+o2EgOn5eVxUXspF40o51aQyydWp9wpqGi1mC0cmVOG12rr2VQDHgX1kB/yEFIX1/hCBNHueZ44r55QZ09CA37/2JsE4/15EZvpT9yUzEOU35Nqt/8E2MeE29fX1jLdvI8vkodObxaYavZc8EgABSnI8lOe5MaihHu8drutgc/00ACZnp5hxbNODYahzZ5++y3AZ9cEwUVDrTzhMtG+moTDdmcGxE05Shb/I+7G9hsnOQYw8eZdfBYDz7Tfwh3v40h1GcRy3ENWRjb++nrYVb/XaNmv+caCq+A/sI1hfj8vlIvDhagA6L7iYhl/8nr1XfoWOqdNRQyEmfbSaCYf2887S0/AYjZR1tHHyzm09jukzmnhl1rEEFYVxtYcp2d19FZys1yYy+cB+yWVYJk8h0NzEkd/+Mu3/TyK+wWic7XY7RdnZlObmENI0ttXWJP2saNbwLOZgKERLOPhHTzzZ2tBAIBSiLCuLs6snYDGoHKmrw6WBgkalx03p4QOYvF5CBiMN5RV4Ld2z7hUg+9ABTKEQTmBrMPmFSfTw9ZWLFuGwWNhdX8+bm0fXsN7Ror9DyBFdPYa2aqBnOYi+F7Xcpm+3tXEyIa27ba8ocHPd8r18//yd/O+5u7jjS1tZNkPfLxIOtzRMIaQp5JkbcDZv73Hs6LrPRbl+Tq59aKHRs2TXqA+GMHDh0G4xjKjnCjsP7O71ExEvPCYbThaDI1njnKqBtkyeQtbipaBptP7j7xlVjKrFSvGXLwOg7i9/6r19bi6WmbOB7gkuwfAs00BpGZhMuKonceCSK9i+9FQApu3aTs6eXbx4zHxCKExrOELhru3U1dVRV6ffS9Nsz+bjCfryD5NWvYPB602711Axmqj48W0AND32CK4tm9PaTyQ2UOEwtrzOqqgAYOOBQ+kfw2IhL7yQ8d44k0GOdESe8Z6DQVHwBEOsDoRYEwixOyubDdl5tOUXUlBXi9Lagqaq1JeNo9bp7Cp/hmCQ/NpDoGnUhrSuySip7nPNzbJxyaITAfj7u6uSrtEo0tOfui/ePpl+TiJBp95OKlE9hrHlwaD4KbTot0qs36eX2YaGBioK3PzXmbuZMU4vq26vgsUU4vPH1XL+glr0pd/1XsPD7aUAlNt2k5CxEIy5QKg7sI4CYyIYJpNO2Etnm8EYQo43aSRVb2F0OITUE1XE4EtWcaWqIMuuux6AjuefIRBnjbdkSq76ChiNdH64GufG9b3ezzpJfwyU68Vn9aG9mfqjmSzR2yoKNbOP5ZP5+sPeFx7Yg9doYmVhMQBn19diCg+9RRrnTyurabVlYfN4qPr0465DxQuIsctEZJ+0mNyzz4VQiMP33ZvR9xWZSaeBTrTNwkl6o/rm5s0oce4XjEdRlK5h6G21R3q97/brIydmg0p9fT1rWttwanojZAk/gs9jd1A/fgLq4YMoba1gNBKYeQyaydRV/iweD6XhBdO3BUIE0xxSPn/BfEpycmjq7OTZj0ffosMjUX/qvnTud+2LkFsffcE6IeE2hZbDGJQgHd4smpx6MDSqIa5YcgCzUWPLQRP/+5cCrv99EU+8q5/fKTMbmVvV1tVruK9Vf1xomXVv4rpPUcCmX0hLMBwGqYJbJPzF+xko/ZnMERvwYgNgvPeiQ2Sy4WToHs6WoeXBkaqCTPTjOGkx1pmzCLndNDz0YEbHNpeXU/DZ8wE4/POf9bqvK/eCi1CsNvybNuJ/5y1YcjIA1vffxXhgP9Ad5vZMnMLegiIMmsbcQ/t5t6CEFqOJ3ICfE1q7e3/q6uoIqSrvT5oKwLjN6zF4ew6RJOq1iSj/zvf0tQ3ffQf39m1xtxHpS9Wjkqz8JbJ02lRybDYaOzpZszt1gxaZzDFrfLinMc7ElbJsfRmcOpe+bEx9+P7FSc4OZjvbKTuwF4vbhaaqBGfMRj2wD8XpBJOJYLXeuEbCofHwQUyhEB7gkyO9FxuOFhnO9nu9XLVMXw3gubVr8ffxedCip77Wff09djyaFoRAeLkZY17C7Uqsev13qL0cUGhoaGDhpBaKc3y0dKr8+rlcsq0ax0318s4mG0+v1sPjOXPrUBS9nt12UM8O2aYmIj2Jces+k74ihOaPem2EGzPBEAZvYshgTjgZaOk8a1kMjr7MFFUUhbLwOn8Nf3kQ7/59GR2z/Jvf1mf7rnqXttde7rlvaRn513wFAM8ffguVE9BOXIQSCpH7x99giV69X1HYUq5fAZc3NRBQVVYV6M8End7Z86Kjrq6OfQXFtGfnYAoEGLctsyFhS+UEcs/8jH6sOMPgInMD/fxVk9HImXP0WxFeXPtp2vudNGUyABsPHqI+ZvH16vw8AA6Hg5oh6hnIACa/n6LawyitLWAwEJo4BXXXDtA0QsUlhKLChKpplHv1gLkvqBFMcyLUyTOmk2+30+J0sXrH6JoQMJINxvN/+3JMLRC1BqExJ+F2DmMrAPXO7mWVjqnUy+vrn9q4cnknt13WwrfOb+feq5vYtN+M06NQlO1jerk+zNzithEMqRjVAFmGJB0zhuze5zbCjZ7Ek6aBDnEDdbzonrqUC1En6S2MJ95wcvRnSC/hyJZzxlk4lixD8/s4fPcdGa3zZ62qpuzrNwBw+M7buoajI70k5i99GeOUqWjt7fDLn8HlV+MfX4na0UH13x6kdMdWCH9ee3gWaE7AD5rGTrteoY13uzCHYsqQovBJmd47NH7TOhpqky9cHfv0i+JrvwZA8/PP4I/zeCmRuYFunM9boD9j9qPdezjSmt4tK+Py85lXNQENeGPLVqD7doIJubkoQJvXR4PXR3F4FnOrydy1f8ORIxh3bodAAM3hQDEZURv0wBeqqOzxWYV+H8ZQCB9wKLz8DfScYBB7K4PRYOAzx+pP83lh7bq0vpMY2XosPRQIt3uqDZfLE38HwKLq5cLt1yc3WU1BppTqdZQGLJ3lIaRBu0shJ0vjP85p5+Nd+tI31cVOGhoa0DSVVo9eR2ab4j9oAMAf0veLDoYjfbmkMRcMYeT28A3kZJB0w6NMQBlafe01rLjpVhSTiY6VK2h/8/WMjlV2w3/ps30bGzl08409lq9RTCbyfnw7OBwoO7bDb39B+3U34K+eiNHjZtbbr7Po0b9y4oerOGfzOgDqLFZQFFrNZppMZgxAtav3Y812lJbjNZuxdnaSU9/7nrJ4umYoz51H1oLj0Px+6v/+UFr7itQGMhxWFOQzv7oKDXh5Xe97WBM5d/48AN7csrVrkkdraytWk5FZhfkAfNrWwRS7fiHSaDLTbug+b8XvR23Ww10oJxc1/LScUG4eGt3DyQpQ5NdvY9jp7D1SkuhWhrPnzkFVFNbt38+hpsQNusjMQJa9vh6ra+ZvkvULASwGvby4AnowHJfvxmjQaGhTmTtRbzOfWmXnu38ppM2pUJwbIhC+Nq7I7w6crZ5cIHkw1Ax6T7ff05Jwm5FmZCaoATAQ4XAoAmb0vYF9WaMwk/sMxdDoS6VmnTiJ4mu+CsChO26BOEEsEdViZcLd/4diMtP2xmvU/eF3Pd43TZyE45770OwOlJ07yPnL/ez+4sXUnXYmAZMJq7OTCYf2k+dx4zaaeKGkomvfJrNewTriXOEGVQN1JfpyDAXh5XbSnaEMUHLNdQA0PPYIwSTPMhWZGYgGOnKM8xbMB/RgmO5M3hMnT6IsN4d2t4eXN/VcGmZRWRlGRaHe56OmpZVxqgKKwm6bHZfdQVdfeWT9RLMFxdkJwSCYTGDrXtuwoaGBovAklCNeH+407xksycnpmlzz0rp1ae0j0jOQZa9PuoKhOeEm9fX1GBW9LNc36r142Va9fmvuVJk2Tn/vg+1W3D6VD3fo4dFh0y+4y/O7H63Y1K6XWJPqSVz3hYeSCcpQ8ojQn2CX6b6j4Ski8dZTHA3nPRr1pXIr/c9vYqmeSKChnkP33JnRvlnHzqXi1jsAqPvdr+hc8WaP9w1TpsHNt6Nl52A6sJ/Jf/4DntJyVl31NVYuXc7G2ceyYspMnlxwIjU2/UZrNI18v95Ad8R8n0ivTV2pvjBs/qEDCc8t0QPsc047A0tVNcG2NpqeeiKj7yuS60/jGr3voqlTKM3NodXl4umPPo67feywmNFg4LKT9KVhXtq0mcbO7oucHIuZxePCj9wLapQokOP3oakqTWXjCBw7j8DkqYTG6bObFacTRdNQOvUhwlD4GeERZk3DEb5VscGXOLjG3srw2Xn6879f3bAR3wgf1httBqrs9UnXLS8p2u/wBJKQphceo0H/PRBQiEzCb3OqPf4buSPWqHZfgERuk9W0nvfLRrhcLjQ1XJ8G07/YH25jOhhC5gEv26oO21B0eWVh6o0GgNxzODSMRmNGFZ3Z4aD63vtAUWh66gnaVq7I6PMKL7yYoiuuBqDu5h/iXr+u5wZVE+Hm2wkWFWNqb6fqsYeZ9cbLWMvK2DZ9NlvGjacz6mkTszrbKPZ58SsKh61ZcT+zvlhfyyunoQ60zC4yFIOBkquuBaD5hecy2leklmkjG6+8Gg0GrjlFn83+xPsf0BpnyDaekyZP4piKCvzBII9+/AmhqPtmF5QUM8FmRQM2BDWKfF5KvW7QQmiObEKlZWAworS3odZF7l0N7x/n/tu8cOvc4E1920wkIB43sZpCh4MOt4f1+xNf1Ii+ybTuy3T7xAeKhLDk5VQJl6f88DPkA0G9DFnM3eUrO9xDGOkpDIb0bQIBpddxumNjPJFtRs4ayamM+WAI3WEvXuCLfm84AuG08t4zp+wTJg/5eYjBk6zSi7wXed9x3PGUXHkNAPu++z94D6e/wDDAuO//CMeiJWhuNzXfuB5fbDisrKL5xltoOnExmqJSvH8vJzz1GJ995VlO3bGF6UdqOK61iS/WHuRLNXqDuSavEFfM+ZeW6oHQEw6SiqahejJf2T/39DMBcG5YR7BDboUYaLHlK9F7yRrl5bNnMaWsFJfPx9/ffS+tz1UUha+dugyL0cj2+gbejFryRlUUlhbkUWm1EAL2ZjkwhTTK9++loK4W9dABDDu3Y9yyCSUUQlNVNLu+1I3idvf6rNxwm9ySwaLVBlVlXpW+zt3mQ5n9GxPpy6TuGwhKZCZysDPuRUREIKQPNduM4VsRWvXh4vGFQXbW6AFu6SwPqqIxf5J+wdHUEX6ut697mNps0DtZgpop8TmlMbw90hwVwTDacAbBgqzRUzDEwIttiBNViBXf+yFZs48h0NLM7hu+ltH9d4rJRPXv7sd2woloLhfN3/8fvGs/6bmRxULoimvYdf1/Uz9xMiFVxe5yMevIYU7fsZnP1R1mXnsLBmBdTh5vFJcn/LyQwUDAoFekBk/vRhsgKyt+byOApWI8luqJEAzS8cHqtL+nyFy6QTCWqih8/bTlALz46Tp2HklvotG4vDyuWXwSACv27GNHY/f90KqisLQwn2JFfw73IVsWTWUVqKEQhkMHMTTU66FQUQhMnwVGI/h8+v2GMUzhHkN/KP3Z/ND9dJfNcdZcFAMr3bqvv7qCISEIxa+PSkpK6AjoPYV5Nv1itKHDgj+gYDVrfLJbD4lfXOTk7quaKcsP0unR3wOoaekeVbFb9NDoCcav47KyskAL92RLMBT9larXMPJ+JsPPdsvg/GMUA0u1Wpn8//6EsbAI99bN7P/hdzNawsaQlUX5L35H1qIlaB4PzT/4Dr7XX+21na+4hM1nncu711zPyiWnsmPKdA7n5rOvoIgP8wp5YMIUni6fQEhJNkwCIVUPhmofHzOWs2QZAO2r3u3T/mLwzauu4tRZMwlpGr955bUeQ8PJLJo0kWWTJ6EBj63fSG3UULRBUZhnVKl0u1A1DZ/VSmN5Bf4TF+OfMxf/zNn4F56Ilp8PwSDGbVtQ6O6tLi7Wn84TqdUCSc4p3oLKs8OLcW87XENAFrseExSDBRS9904JJV4WrsOvB8N8q74MU2FRCQea9HBnNmq8t8WKQYWKwiD+ADz4WjbzwrOVNx7sHuWLBENvyEYiSuTeQoOjj99q6EkwHCLRT1iZnNu7gFRW6NPe0wl6iUJjvGHpVOciRibzuAom/+6PKCYTLS+9wJH7f5/R/qrVStl9v8Z+8qng8+L+xU/hz/dDnPAWMpmoKxvH+rnH8ezchbx0zHw+OXYBh23xr4IjDTOAyefDHJ6g4s/NzegcIyQYjg7Xn76cLLOZ7TW1PJfBI+WuWnwSU4uL8QaDPL17L3VRPeCKojAzN5vZnW0Uez2ogQAoClp2Dlp+gT4T2e/HuG0LamdHj7IXkcmdrdEBcXxhAdk2K95AgF11spbmmBGeBWwzJw77kWCYZ+2+fWX1Tv21sxd4eXSFnfuezuXvbzv47l8KMapQlBPCF1DYeURvv41qkCKHHvpcgSR1XySgGrITbzPCSDAcRnPKEw+xgR4A4/1EREJkJFSKscWx8AQqb9FnGtf84v9ofeuNtPe12+2oFgtl9/0ax7XXgaKgvPEq3P7jrgWDQR9WASgqKup1jNLS0rg/EcXFxRQ16c8NdefkELJYu46XieyTFoHBgHff3ozvqRRDpzA7m2tP1Sei/Omtt9lek3xR8wiTwcANSxdTlZeLJxDgqZ178Gf17MEzaRqVXjfj9u+hfP8eCupqya8/QsnhA4w/sJdyq6VX2QO93DrDPYXZxswueFVFYfZ4/Wk/Mpw8dqjmPP0P/u51A/Py8nps0+7X67sSexPFRXogXH8gl5oWK1mWIDdf6sSllbO+pppZk3P46ll6uHt7czH+oEpxcTETClowqiE6vFl0BvIT1n1KILw4vFGC4VEn2f2KqYZwY3v6BnJ2stzXOLoVf/lyii+7EjSNvd/5Ju5dmT3GS1FVsq+5jvx7f47iyEbZvZOCe+7A9trLKHGW6Yg0uCnPq7gYNI1j9ujn45o2M6PzimbIzsF+7DwAOtd80OfjiMH3ueMWsHjaVPzBIHc+/QztbnfKZ+UCWE1Grlkwj8rcHLzBIE/u2MWOTmev8lZSXIwxEMDe2YGjox2Lx5N0vidAU/jewkJzzwkAsWEgninhsHmgMfM1ZMXIpNr1NSpx6xOeou9xjlwAt/hK8YUs2ExeSh2N4fdKeOz98bS7jYzL9/DDz2/nR5/fzvWn78VmDrGnPou3thR3ldnZlXpvYZN/EslmJSs+/aJDsYwb0O85mCQYDqJ4Q7bJglq6PX/llYW9egsj4TLSCxlvuFqMTuNvuhXH8ScScnay67qr8R7MfHkN60mLcfzufrRjjkXx+3A8/zTT//R7cjZvRAn1HIxLFQ4j748/dIC8IzUEDQYal5yc8TlFs1RVAeCPepyZGHkUReG7532W8rw86tra+b/nX4x7v2G8e/pKi4r46nELmJaXSwhY09rO6pY2/JoWt8c6nuLi4h69hR0hjcbwx88P3zOY7rEA7FZ9Afd0F+8WI59qnwqA5tqVcJviknKOuPUAOTH/YNfrAdMEfvfqZI60WjAZNAocfgJBhfe2F/LQO1UUFEZ6rTUqc/RJWPWeqsQno2mo3v36n20T+/6lhpgEwyEU7z7DRMPJiXoNo19PN0gmu6dwpD4+UHRTzWYm/fYPWKon4jt8iO2XX4xn/74e26TTa6OWlsGPbkX7z28SzMnB0NhA5b+fYPE/H6Fy/VpKs7uHOuKFw+hGecL+vZz40fsAtJywiEBO8rIYOYd4gQHAGN4/2J7eM3nF8HFYrdx8wRcwGQx8uGs3/1z9Ycp9Ir02ZqOBq48/jmUV5SjAHpeb9/0haoOhrtXeEl2YRL9eVFREUNPYGtQvaibYrBRYrQk/Nx6j0YjNpPcyenzy6NDRKrbuMzim6X9w705Y3wDUuPTtphTsZ1xp96idIauC+16cyn0vTOXBt6u459nprNo/F3tu9+oM8yf7ybY4CYRMNHrHJz65QBNKyAmo2AtnZP7lholMUx1A2Va1z08SmVaew47adiorcjl4WG8c0x1STnfSiRi9TIVFTHvkCXZedRmePbvYcflFTHv4cayTMlvzMi8/n9Zlp6IuPBHnk49heectzG2tTPngPSZ+/AH1hcXUlZZTV1KGWlBAyNB9UWH0+ymtP8LUndsoDt9beGTqDJqW62sRxt6vmM5QXoQhPHElkOD5tmJkmVJWyn9/5kx++dIrPPTOSmZWjGN2RXpDZYqicHxpCeVZWby8dx8dgSAbgxrZufkUuJzk+30pe619msamQIhWTV+uZm5O30ZIrGZ9BEd6DMcO1aH3GOI5hBbsXrImLy+P1tZWioqKaGxspMFbSbuvkBxzE3NKt1FT111+i4tLCAJNfjDHFK2iokLmlelPltrbOYegZkpY93X1FlorUUbRcjUSDIeI3WLseiRdQZaZZpePybkOdrf1nlIfHQ4TiddbKMPIY5u5tIxpjz7BjqsuxbNzB9uvuJhpf3sM29Rpcbe32+09HgWWlZXV/Xg6mw3XZz+H64yz8b39BoUfvo+1oZ7yulrK67onFfhMJrxmC6ZAAKu3++HxIVXl4LHz6Tzv86CoCW+8TtZjE80gPYajztlzj2XTwUO8vnETd/zrae758kVMilMOosthdOMMcF5pMVs6OtnU3kmHBh02O4csNvIDfhwBP/ZgELMWQkF/foRHVfHn5rHBHyKA/iyJU4vymVqR+TAy0NVj6JYewzFDNReimAvRfE3g3gtKVc+6L6ykpJRt7SdyQtFLzCnZwf4J49l2IHnHTlFREVMK9lFibyYYMrKnc17Suk9tCt/2M4qGkUGGkodcvGHdSKCL7vlLNkwc/V7svYXRou9njEyAkaVqRjdTUTHT/v4EthkzCTQ0sOOKS3Dv2A708TmjZjOt8xey+/pvsOaiy9m1aClN4yd0LVpt9vvJdnZ2hUKP3cG++QtZfdk1dJ7/RVB6ViGZNMzR52sMX2EH2iQYjhaKovCNs89iZsU4OjwefvTEU+xrSHyPaLyLhPLSUubkZPPF8hKmGBSsQFBVaTRb2JflYHN2Lp/m5LM2O49Ps/PY6shlV1AjAOSZjJxeXMicyspex43urU52G4OlKxhKj+FoFlv3qY7wsG3Hp0n3q/NMpMY1GYMaYvnE1VSUJp45XFRURL61lUWV+lJNOzoW4gv1ntjS4zw8OwBQbNVJz3ekGdlnNwrFDifbLYaMnk0cGVKG7gAY6T2MDYvxhpBjewslCI49psJCpj38ODuuuRz3lk16z+FfHyVr9jEJ90nUa9PY2EhJSQn19fXYZ8zkYEEhB49dAJqG0eels6YGi9dDdlExHkc2gTj3ccW7Ys5kGBlADS9fEuzoyGg/MbysJhN3XXIRNz72BDtqj/CjJ57k3ksvZkJhYa8e66THMRg4qbyMuro6GjV9pnGrptEe0kBR9B/0HsI8Babl5TIxy4Yatfh6bMOcTm91S/j8crMSL1AsRh9j4TKCzavQWt7DXn55krqvlA0Ny8kz15Nj6eC86W/xmmEZHT4HjY2R2cqRpW0aOWvye5gNARo9FezuWJC87gt5UTvDwTTn+EH/zgNJegyHSaQ3L94klNjAV1mRm7QHMVVvoRh7jPn5THv4H2QdO5dgSwvbvnwBTc8+nXK/RI1lpILrqugUhYDFinXiJJQZs+gsKu4RCuNViIka5mQ3gEf46/UFhk19WAdRDC+H1crdX76YyaUltLpc/PDxJznU3Jxw+0jD2dXgRv2dl5aWUqwqzDCqnGQycIbZwKkmlZPDP6eZVI4zGZhsz0JVlH5flNS2tAIwLj8/7X3EyGcsOhlQwb0LzavfGpOo7ssvnsCHjZ/DFcgmz9rBBbNe5fiK9UyvVKkqz6LcUc+yqjWcO+1tLEYfzd5SPm4+Gy0qPsWr+1TXBhTNA6ZiyJo6aN91MEgwHEKp1jNMFg5jZdJbKI/CG5uMuXlMe+hRcpaejObxsO+736Lm7jsIRd0vlSqUxRv+SLVIdfT7mTTMyc7Fe0C/SdsyIcnSD2LEyrHZuPfSS6guLqLF6eSHjz/ZFbogdTlMVKZURcGsKFjDP0qCMNjXi5J9DfokqooCCYajXfTwrGrKw5A3X/+lJf4TlaLLTGcgn/fqL6TJW45RDXJs6Xa+MPMNvjznBT47bQXTCvehKhqHXVP5oPEL+EO2lHWfoSM8Wz9vMQ7H6LrvX4LhIIhdAiZ2ODf29+hAFxsOowNg5Pfo1zLpLYz9XFmqZvQzZOcw5cG/Ufaf3wSg4e8Psfvqy/DXHUm6X7zwFts4R35iX4u3faJ7C9PpLQTwhBfutlZVp7W9GHlys7L46WVfZkJhIU2dnXz3H4+xt7mlxzaxvTbR5SZVWUtW/iLSvSiJhIgth2sAmDFu9Cw+LNJjLFoOgNbaMxgmqvu8IQfvN1zAh43nUe+ZgC9oJaQptHscHHZNYWXdRaxt/kyPWciQoO7TghidHwOg5C0euC81RCQZDKPoAJcoHELvgBhvO5mJfPRSDAYqvv1dJv/xzxiyc3CtW8uOC8/v9RSRSOOYbuMc/Vqmj7qL/YxkATHk8+Fcr9+Lk3XMsRl9jhhZ8u127r7kIiYWF9PidPHDJ57klY2b0GIWwY5unJOVv0RlL52LklQONzfT2NGBqihMKy/r0zHEyNJjQlvRKYACzm1kGfQn26Su+xTqPdV82Pg5Xq29jhcP/yfvNF7D2uazafP3fk53PPow8kYItILBgb10UX+/1pCTYDhIEvXGxc4OThYOkz1LOVEojBxPhpGPPnmnn8mMp1/QZyw3NbH7K1dS/+cHyLLFv7E+WeOcLAjGvh+9b7r3d0VX4B3vv0ewvR1jUXHSCTRidCjJy+Xnl1/KKTOmEwyF+PPK9/j9W29jtOhPGYk0zv0pf/H2ixwv3WHkJz9YA8CCidXYzHJP9lijmgsxFi4FQDvyZI/30i97PR91l27dZ2z6l/6HgtNQ1J5t8EifkQwyK3nIpDs7OXZtw2ThMNPPjybDyGOTtaqaGf98hv0330jzs09Te9+9tL31OkU33ox50uSumaKRdb0is/SArpl6Een0EvanYY5ofv5ZAPLP/iyKQWbRjwVWs4nvn38uU8vK+Ms7K3ln2w4ONrXwX6cso9ARv1z0pfylI94wckN7O69t2AjAZUtG31CfSMxoNBIIPwfeXHkFgaZ3ofkNssZdictvH/S6T3Vtw+DaCBhQyi4ZsO81lCQdDKJE9xom6zWE9IeFJ+c6pLdQ9KLabFT/36+ouPUnqFlZuNZ+wsHLL6Lp/v+H5vP1GlKOvXpOd2guWSiMluj+LgDPnt00v/gcAIVfuDCtzxUjn9FoRFEULjhhIT+56EJybFb2NDRw2wsv8dG+/djCvdixPcyZlL3+XJQ89eEaAqEQcyorOaYyySPNxKhmyJmDIXcBaAG02keGpO4zNoV7JwvPxJHfc2Hr0dBbCBIMh0064TA2+MW+Fy1ZKJTewqOPoiiUXXE1059/lexTlqP5/bT86Q8cuPgLON95u+uer3gVJCSvJNOpQNPpLdQ0jcP3/RSCQXJPOwP73Hmpv5gYdeZXV/Hrq66guqiQDo+H369Yya/fWoE7XAYTlb14ZSze68lCYbyLkgONjbz06XoALls6+u7/EqlFBzBL9fX6HxpfRXPv73p9MOo+xbMbg/MTQEUp+3LfTn4EULTYu4LFgIt9fnL0kHLkMXmR15pdmT+aKTYU6n+WYCggEAigaRptr77M4bvvINBQD4DtxEXYb/gGpomTejwqqjXDZxVHV6rpNMzQXWk3PP4oB27+IRgMzHr2ZWzTR89D5kV6IkN6AL5AgL+vfI9n1n5KMBTCYjRy7pxjOHliNWajIeOyB/F7qpOVv8ZOJ9/5+yM0dnRyTOV4fn7FZShKz/vIxNgQXfbcm79PoOk9yJqKMv3XuNx6OzugdZ8WxHboJnBug4LTyD7mzl77jJYeQwmGQyA2GELycAjpB8RMQyFIMDzaRCrIoLOT+gf+QP1fHwS/HxQFy6Il2C+6FPP8Bbjd+gPn060g+xMK299/j13XXYPm91HxvR9S9vUb+vLVxAgX3ThHbDt4kPtXrGR7rb6kUqHdzueOmcWCyvEYVDXj8pduKGzudPL9x56gpqWFqqJC7rviMnLTfJa3GJ0i5S/kqcO59moItEPJhaiV/9HjqTyRgNifui+r43m0w38GNQv7wkdRrT1nMY+WUAgSDIdMsl5D/ffe4RDiB8TYYWcJhSKZ2MbZe/AAB++9C+dbr3e9ZpwyFfuXLkFbtBQlaoZmvIoydugl3YYZ9Mqx5ZWX2Pudb6L5feSecRaTf/8AiirlcqyKLX9Op5OQprFq5y4eXf0hTZ36ZLs8m42lkyayZFI1uTbbgJa93XX1/Pyll9nX0Ehpbi6/vOpyirITPxdXjA3RZS/Q9C7uzT8AQJlyJ0ruiXHDYUQm5U91bcVy4MdAEKXquziqLui1rwRD0UuqXkP990DC9xLJJBSCBMOjVbyem5Ytm2l7/BHan38OzaP3FqoFBWR9/kKUMz6DWlCQ8riZhELF7eLQvXfS+M/HAcg76xwm/uI3qOFlTMTYFK/sRRpkr9/PC+s38OL6DXR4vID+tJN54ys4ZcokphQVJRzqTafsNXZ08PC7q3hz02Y0oMBu5xdXXS6PwDuKRJc/z+5f4T/8TzDkoEz/BYqtqtfzvGMDYiKR8qf46rAe/CH4myH/VBzH3NWrzI6mUAgSDIdUpuEw3vsRvZ+mYkz6PkgoPJrFa5xBb6CDbW20P/0Urf/8B8H6+q73jNOmY5i3AOOChRhmzu7qSUw18zg2FPpqDtP0z8dofvIJAs36QrMlV3+F8Tf+GGWUVZiib5KFQwB/MMiKzVt4a/sOdtU3dL1eZLczpbiIyUWFTCoqpCw7u1f5iv3darOxvbaW1Tt28cKn6/CGP3v5rJl8ZfkplOYmfu68GHuiy54W8uFadz2hzu1gyEaZcgeKQ187NZ2AGFv3KZ49WA/dCYFmsFbhOO7PKIbe9aMEQ5FQvGAI8cNfbEBMRkKhSEeycAigBfx0vvE6zf/4O/4tm3pso1itmOctwLLwBAwTqjDkF6Dm56PmF+CIamg1TcPq9+PZtRP39q10rl5F+4q3IKSXfUv1RKru+hnZJ5w4SN9SjESpyl60LQcO8tb27azesxdfoGfdaLeYmVJcTF6WDaNqwGaxYDIYMBpU2t0eDrW2sqe+AXfU88KPGT+er5+xXB57dxSLLn8hfyvuTd8j1LEZFDPKpB+h5C0B4pfHRFTneiyHfwohF1irUabejSO/utd2oy0UggTDIZdJONRfTxwQ461TKEPIIpFEjTP0rhADjY20vLsC30dr8H78IaHm5oT7qjk5GAoK0Xw+gk2NaF5vr22yFy+h+LKryDv9TOklPEplEg4BGlta2FHfwM76enbWNbC3sRFfML1bbLKtVuZWTeDUWTNYNmOGzDw+ysWWPS3owb31FoLN7wEqFJ2DUn4Zillf2DppQAy2Y+t4CeqeAi0Ajrkok2/Dkdv7kXmjMRSCBMMhlygYRqR7b2E8EgpFKpmEwwhN0/Dt2oHrg9W4P/mIQH0dweZmgi3NkKChNpWXY5sxC9uMWRR9/otYJ08ZkPMXo1eysgepe2sCwSD7GpvYWVePy+fFHwwRCAYJhIKgqNjMZqqLi5hYXMyEokIMqjpqG2Yx8HqFQy2Ad9cv8Nc+o7+gmKDosyglXwTLuB4XE5qmga8erfElqH8aQvo92eSfglL9fRzZ8e9ZHa3lT4LhMEgVDiHzgJgoFIIEQ9EtVeMM6Q+naKEQofZ2zG4XgaZGFLMZY3EJpqJiVKsVGL0VoxgcA1n+IpItpi7lT0QkKnuBtvX49j1AsO3T7heN+WCtBGMu+I6A5yCEPN3v2yajjLsK+7gzEvZGj+ayJ8FwGKQTDCNSBcRkgRAkFIre0mmcIb0GWhplkYl0yx6kLn+pnq4j5U/ESlT+NE0j2PoJvgMPEWzfoA8R92LQF8guuwTyluBwJH507WgvexIMh0km4TCa0xtMGQYjJBSKRDJpoCOcTmdaj7qD0V8xisHTl7IHUv7EwEhV/rSQl1DnTkKeGjRfM4q1DK9Sij1/KoqaulyNhbInwXAY9TUcpkNCoUilrw10KmOhYhSDa7DKHkj5E6lJ3ZecBMNhNtDhUAKhyMRAV5BjpWIUg0/KnhhOUv4SkxQxzAYyyEkoFJkayMpsLFWMYvBJ2RPDScpfYpIkRoBsqyqhTgybgajUxlrFKIaG0WiUsiOGjdR98clQ8giX7lCzBEsxGNIZbhmLFaMYfukO9Un5E4PhaK77JBiOQtFhUQKhGErRleVYrRTFyCXlTwyXo6nsSTAUQgghhBCA3GMohBBCCCHCJBgKIYQQQghAgqEQQgghhAiTYCiEEEIIIQAJhkIIIYQQIkyCoRBCCCGEACQYCiGEEEKIMAmGQgghhBACkGAohBBCCCHCJBgKIYQQQghAgqEQQgghhAiTYCiEEEIIIQAJhkIIIYQQIkyCoRBCCCGEACQYCiGEEEKIMAmGQgghhBACkGAohBBCCCHCJBgKIYQQQghAgqEQQgghhAiTYCiEEEIIIQAJhkIIIYQQIkyCoRBCCCGEACQYCiGEEEKIMAmGQgghhBACkGAohBBCCCHCJBgKIYQQQghAgqEQQgghhAiTYCiEEEIIIQAJhkIIIYQQIkyCoRBCCCGEACQYCiGEEEKIMAmGQgghhBACkGAohBBCCCHCJBgKIYQQQghAgqEQQgghhAiTYCiEEEIIIQAJhkIIIYQQIkyCoRBCCCGEACQYCiGEEEKIMAmGQgghhBACkGAohBBCCCHCJBgKIYQQQghAgqEQQgghhAiTYCiEEEIIIQAJhkIIIYQQIkyCoRBCCCGEACQYCiGEEEKIMAmGQgghhBACkGAohBBCCCHCJBgKIYQQQghAgqEQQgghhAj7/0xfyzk/cb8HAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAC5CAYAAAC1Of4oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXIUlEQVR4nO3dd5xcVd3H8c+908v27G42yaYnpBJ6C4QOAhEpig8gCAoiIlhQHkFBQEREARuPgtJRiiAggvReQkKA9JDeN9vb9HLv88ed2czO3pmd2b6b3/v12pc6M/fOnZcn53zvOeeeo+i6riOEEEIIIfZ66mBfgBBCCCGEGBokGAohhBBCCECCoRBCCCGESJBgKIQQQgghAAmGQgghhBAiQYKhEEIIIYQAJBgKIYQQQogECYZCCCGEEAKQYCiEEEIIIRIkGAohhBBCCECCoRBCCCEGWTy4i+Y3DsG/+uZOr2uRRprfPJzgpntz/8ybR9C2+HzaFp9P66JzaF/2A+LBnQP5c4Y162BfgBAid83/fYHd99yNHo+jaxplZ5yNvXI0jf9+lml/exCA8I7trDx2PtU33EzFBRcBUPvgfQQ/X8vEX/1m8C5eDBv+cJgH33qHz7Zuw6KquB12Ljn2GGaNG8tTHy3m5WUrANhnzGi+d8oXsFksbKqr48+vvk57MEhc05g5diyXn3g8gXCYnz7xFADNfj8AJR4PADefczYVhYWD8hvF0KPYiok2LULXYiiqEU8ita+hWIvy+ozqKKfwkL93/O/Q9ifwfXYVhYc+jqLaBujXDF8SDHP01ltvcf311+Nyudi2bRsHHHAA999/P06nc7AvTewlIrt3s+O2W5j57ItYS0qI+/2sO/8rVFx4Mf5ln6DrOoqi0PbOWxTMP4q2d97qCIa+xR9RctrCwf0BYljQdJ3rn3iKfSdU85dLLsaiqqzesZOf//Nprj/rDF5ZvoI/XHQBTpuN259/gX8v/YSzDzmYXz7zHFefdiqzxo1F03X+9NIrPPj2u1x+4vH85ZKLAXj4nfcAuHDBkYP5E8UQpVhcWApmEGtahG2UUUaida9jqzgmr8+kc1Z/lfDOp4k2foi9fEF//oQRQYaS87BkyRJ+//vfs2bNGqLRKH/84x8H+5LEXiTW3IQeixIPGL0uFo+HibffhefAg7FVVBLasB6A1nffpuo7V+FftQItHAbA9+lSCo84atCuXQwfy7ZspcHXzoULjsKiGk3ErHFj+d8vGTcW3z3pRFx2O4qiMLminLrWNsDoDQxEIgCoisLXjprPMbNmDM6PEMOWveIEInWvARAP1oDFgWorzfsz6SzeKWiBLf1yzSONBMM8zJ8/n5kzZ6IoChdccAFvv/32YF+S2Iu4Z86i6PiTWHnCAtac/UV23H4reiyGc8JECg+fj++Tj9GjUYKrV+E98CA88/bH9/FiguvXYa+qwlpSMtg/QQwDG2pr2aeqClVROr1+0OTJ7DthPPtOGA8YQfDfSz/hiOnTAPj2Ccdz09PPcNGf7+GuF19iXc1uZo4dO+DXL4Y326ijiDZ/jK5Fida9ir3ipB59xpTq6OOrHZkkGObBat0z8q5pGhaLhXA4TF1d3SBeldibTLj5Vua++QHl515AZNdO1p5zBs3//Q8FRxyJf+nH+D5ZinvfeSgWC4VHLqDt/XfxLfmIwiNl+ETkRlEUNF3P+pndLa1c8/fHOGW/ecxLBMWT9p3LE1ddwSXHHYtVVbnjPy9y98uvDsQlixFEsTixFu1HtGkRkfq3sFcc26PPpIu3r8PimdQflzziSDDMwwcffMD27dvRNI2HH36Yk046iccff5x33nlnsC9N7AVa33ydphefxz56NKO+fA6Tf3c31dffRMPTT1FwyGH4Vyyj7b23KTrqaAAKj1xA+0eL8C39mML5EgxFbqZXVbF+9270tHD4j/c/YNH6DWysreUHDz/Kafvvz3nzjwBgZ1MTf3/vA9wOB0fuM50rv3ASv/v613hp+YrB+AlimLNXnkho60OojnIUq7fHn0kKbX8CVDvWkoMBiAd30rbkwj6/7pFCgmEexo0bx8UXX8zMmTMZPXo0l112Ga+//jqPP/44N9xwA+eeey4PP/wwN954Ix9//DEACxcu5NNPP+Xyyy/n8ssv59577x3kXyGGK9XlYtcdtxPeuQMAXdcJbViPe8YMLF4vlqIiWl57hcJEMHROmIgW8BNYswrvAQcO5qWLYWRu9ThKvV4efPtd4poGwPJt23nu408o8Xi47vF/csVJJ3DGwXvKVJHbzbNLPuazLVs7XttS38DkivIBv34x/NnKDkfzb8JemXmIONtntHB9x3I1bR+dR6zlUwrm/c7oDY+2E975LxSLuz9/wrCm6Om3hcLUW2+9xY033shbb73V6fUHH3wQr9fLypUrWbBgAccddxw33ngjCxcu5KCDDmLhwoV4vV4mTJiAoijs2LGDRx99dHB+hBj2Gv/1T3b/7R70WAwwegXH/e9PUR0Odv3uDpr/+wKzX36j4/Nbb7iO6O4apt77wGBdshiG2gJB/vL6G3y+axdW1YLH6eDS445h0fqN/GvxEsaW7pnof+jUKVx8zALW7NzF3954i/r2NqyqheqyUq446UQqivYsRyNPJYuhwrfsB3jn3TXYlzEkyXI1vaSkTNAuTKzHZbVaicVihEIhQqEQTqeT733ve1RVVfHggw8O0pWKkaDsrK9QdtZXTN8b8/2rGfP9qzu9NuHmWwfissQIU+h2cc0XT+vy+syxY7n4GPNpCTPHjuGOC87Lel4JhEIMfRIMc3TMMcd06S0EmDhxIr/85S/Zf//9O1476aST+PnPf87MmTMpLi7mJz/5CVdeeSWFhYUcd9xxA3jVQgghhBC5k6FkIYQQQggByMMnQgghhBAiQYKhEEIIIYQAJBgKIYQQQogECYZCCCGEEAKQYCiEEEIIIRIkGAohhBBCCECCoRBCCCGESJBgKIQQQgghAAmGQgghhBAiQYKhEEIIIYQAJBgKIYQQQogECYZCCCGEEAKQYCiEEEIIIRIkGAohhBBCCECCoRBCCCGESLAO9gUMlPaQ1ul/FzglE4uBEYvFOv1vq3Wv+WcnhgApf2KwSNkbnhRd1/XBvoj+lB4IzUhIFP0hvVLMRCpL0R9yKX9S9kR/kLpveBuxwTCXQJhOAqLoK7lWjKmkkhR9QcqeGExS/oa/ERkMexIKkyQcit7oSaWYSipI0Ru9KX9S9kRvSN03coyoYNibQJhKwqHoid5WjElSQYp8SdkTg0nK38gyYhJQX4XCvj6X2Dv0VcXY1+cSI5+UPTGYpPyNPCMiGPZHkJNwKHLVH5WZVJAiF1L2xGCS8jcySb9tFu0hTYaVRVb9WYnpsRjx9nZ0LQ6ahq5pWAuLUF2ufvtOIcAo1zKsJ7KRADdyDfs5hgPRsyfhUGTSV5VjrKUF30cf4Fv0IaEN6wlv20qsoR60ruXbUlyMffQY7KNHY6sag33MGLz7H4hn/wNR7fY+uR4x9A1EwyzhUGTS3+VPyt7gGfHB0B+OZ33f47B0+x0SDIWZ7ipGv9+f9X0tFCTy+qs0Pf0kgRXLIds/RUUx/kyCYpLq8VBw+HyKjjqawgXH4BhXnfX7xfDW2/Ln8Xi6/Q5pnIWZ3pY9kPI3lI3YYNhdIEzXXUCUcCjSZascs1WMmt9P80P30fr0P9FaWzped0yZRsER83HP2RfHxEnYqsZgLSnB6nCgKAq6rhNvbyNaU0OkZpfxt3s34a2baf/wA2JNjZ2+xzl5KoVHLaBwwTEUHHoYqsPZ698sho5M5S+XRjlVdw20NM4iXU/rPjPZyp+UvcExrINhX4XCVNkCooRDkaonDbP/vXeo/9XNxGprAbCOGUvROedScOLJFE2ekvG47ipIXdMIrF5J2ztv0/buW/g+/QTie/4dWEvLKD//AsrPvxBb2ais5xJDX1+FwlTSQItc9XX5k7I3tEgwNJEpHEowFKnMKsdMFaMei1H/61toe+ZpAKxjxzHqe1fjOfpYFMue8tZXFWSsrZX2D96n7d23aH3rDaJ1dQAodgdlZ55FxUWX4Jo6LefziaGlP4IhZC5/0jiLVPnUfbmScDh0jLhg2NtQmCThUGSTT8OshULsvvbHBN59C1SV4vMvpPSy76A6zZ8u7uvGWY/FaH75RWrv/yuB5cs6Xi88+jgqv3kpBYcdgaIoPTq3GBz90TAnSTgU2fTXTQlI2Rsqhm0wzKe30Bc2L8heR+bCJsFQZJNrw6xHo2y//BIin30CdjvFN96C84ijAPB6vRnP3x8VpK7r+Jcuofb+v9Ly2isdD7u4Zs2h8huXUrrw9E69l2Joyqdh9vl8pp8d6LInRo58bkqk/A1PIyoY5hMKU2UKiBIOhZl8GuZdv/oFgaefRHG7KbntDuz77tflM2aVZH9XjqEtm6l78D4ann4SPRQCwDVzNuNvuAnvQYf0yXeI/pFrw5ypUU6VqYGWxlmY6YubklSDUfeJ7o3oYJhLKEwyC4cSDIWZXCvH+uefpfWm6wEo/uXtOOcflfGcg1VBxpqbqX/sUWrvu4d4WxsApV88g7HXXId99Og++x7Rd3IJhrk0yknSOItc5Vr3Dcfyp+s6eqSBuG8Dcd86Yr71oIPFMwmLZzIWz2RU11gUdeT/GxiWwTDXYeR8giHkHg4lGO7dcmmY2+pqaTjvK2gtzXjOv5CCSy/v9rzpFeRAVo7RxkZ23fUbGp58DHQd1e2m6rvfp/LiS1AkDAwZ/dEwQ+6NswTDvVtf35QkDWbdp2sxIjXPEdzyAHq4LvuHLW4cY87EOf5cVEdFn1/LUDFigmFvQ2FSejiUXkORrrvK0efz4XvwPnwP/g3LuGpGPfiPnMNVLhVkfzbOgVUr2HbzDfg/WQqAe/YcJtz6G9yzZvfbd4rc9VfDDIPbOIvhIZe6r6cGuu7TdZ1owzsEN/4JLbA18aqK6p6AxTsVi3caiqIS929K/G0BzZh2g2LDUX0uronfQLG6++yahooRGQzNQqE/1PU1j9O8kOUSDgciGGbqGZVQOnhy6i3ctZP6r56FHgxQ9PNf4Dr2BNM5OGYV31BonHVdp/GpJ9lx2y+M4WWLhYpvXErld65CdTolGAyinjTMuZY9GPwbk6RMPaNS9gZPT29KhmLdFw/uIrD6RmKtnwGg2IpxTroER9XpKBan6W/VdQ3aPia05cE9xzkq8M6+BWvxfr2+pqFk2AXDnvQWmoXCVOkBcTCDYT57P0tAHHi5NMyBfz9D2523Y500mbL7HiEQDGY8X08ryP5oINN/W7S+np233kTrSy8Cxs4sE//4Z5yTJvfbNYjMetIw57st3mAGw3z23pWyN/D66qYkabDqvlj7OnzLvoceaQTVgbP6XKxjz0OxZn5SOp3W8iHBdb9FC9WA6sA793ZsZYf36rqGkhGXLHo6hJzvOfIJcLmcK/mX73Fi6Am98RoArpNPyRoKoe/WnuupWCzW8ZfOVl7OxLv+xMQ/3YN1VDnhjetZ/5UzaH3tlY5jxdDRm2G8fM7Rl/+/Zyp/cU2jyeejPRgkFI0ST9sjXMre0Ndd3TYYdV+sdTntn1yGHmlE9UzBc9A/sE34Vl6hEEAtPpzCQ5/AVjYftDC+5VcTqXujn6564I24HsN8ewuTBqPXsC+DnfQeDozu7ppbt26h/sung67jeeDvqBWVOZ03W89Nf/Xa5NO4Ruvr2frDK/F/vBiAisuuYPSV30exWKT3ZoDk22OTa8M7GL2GZr8lrmms2L6d9z9fzwfr19PsD3R6v7qslJP3ncvxs2dR5N4zr0vK38DIp/zlE/oGqu6Lta+l/ZPLIe7HUrQ/rtm3oVgLenSuJIuq41/9c6J1rwEq7pk/w1G1sFfnHApG9L+oXENh8rOZ5hz2h77u7WsPaRIO+1kuQ3mR5Z+BrmOdvk/OoXAw5NvjYisvZ8r9j7Drt7fR8PAD1N1zN8FVKxj/m99BcbE0zkNMPg2z3+/Puh1ZX0sve7qu8+rKVTzw9ju0BjL3sG9vbOJvb77Ng2+/y2HTpnLhUfMZV1pKLBaT8tfP+nOnnYGghXbj++xKIxQWzsM15w4Ui7PX541rCp7ZvyBg8RCpeY7AmptRrAXYy4/ug6sePPKvKQNfOJZ1Z5Te6K8hYAmHg8vn8xH7fC0AytTpeR2brXHO9l68vY3I7hqiDQ0oqoqtvAJbeTmqtyDjNnc9HYZTbDbGXns97rn7sv36a2l/7x3Wf+VLTPzDn3HNnCWN8wjh8/my7kzRG+llr8Uf4LcvvMgnW4ynQgtdTg6fNo3506cxb8J4VEUhEosRjERYtGEjryxfybrdu3nv83Us2bSJbx9/HCfNnSPhcJD1tLcw+fme1H250nUd/5pfokdbUb3Tcc35bZ+EwqR4XMc94zpQLUR2/ovA2luxFs1FtZf22XcMtL3uX1JjINLx38vc9k7vDXSvYXfMdnLJtHxOkoTDwRXbshkANfGARrrW1lYAioqKenR+XdfxLfqApif+gX/ZZ0R315h+TnE6sVdU4tn/AAqPOobCIxdgKyvLKxRmepqwZOGXcE6bzpYrLyeyfRvrzz2b6pt/RcnpZ0jjPIQlyx50LX8D3WsIsK5mN7c8+xwN7T7sVitfm38EZxx0AFaLBb/fTySxIw+AQ1E4db95nLrfPDbV1fHXN95m2bZt/P6lV9hYW8dlxx8LEg6HtN7WfT0V2fUcseaPQLXjmnETirX7cp7Pk/wA8Xgc97QfEm9dTty3gcDaW/HM/c2w3YN+RM8xTB9KTg2FSenhMDUYpvYY9tUcw2y9hWZBMBtZY3Fg5TLHpv7r5xLfugXXL2/Hut8BnT6b2jAnpVaSqRVPeo+Ny2al+d/P0vDwA4TWr+v0nqW4GFvpKHRdI1pfj+Zr73rxioJr9hwKjjya0jPPxjF+QtbfkgtHLMa2H3+f9nffBmDUhRcz5n9/is1u7+ZI0RO9mePVXdmDzOWvr+Z5pV7/jsYmfvj3x/CFQowrLeGHJ59IdWnuPSwut5t/frSYh995Dx04YtpUrjvjdOw2W97XJbrX2/mFvan7elP+tNBuWj86F+J+HJO/i33ceaafy7fuyxgSQ5tpX3IR6FHcM36KY8yX8jrvULHX3141BiJdwmF/6ctQmHpMekCUXsPBoycqGMXTuXIzqxjTpfbapA7naT4fm675Af7FiwBQ3W5KzjibsoWn49pnBtbCzg28FgwSra8jvH0b7R++T+s7bxNcs4rgyhUEV66g7p67KTrhJMovvgTP/gf2eK5Q2Gpl0l/uo/bu31P7f3+k4eEH0IJBxt14i4TDYaC1tXXAem9Sg0VrIMDPn34GXyjEPlVVXLfwFNx5lpdgIMDCuXOoLi3l9v+8yAfrN/Doex9w4VHzpddwiOlN3dcbxhDyLRD3oxbOxTb2q6bf2xMZe9idk3BNuZzghj8QWH8X1pKDsLjG9ug7BpOkhzSZHljpSXBLlW0bv2zn9oVjHX+ZmB0vS9n0vVwaHD1oPEmpuHNbDb+7SjPW2MDOy76Bf/EiVI+Xqh/9hJlvvM+462+i4OBDu4RCANXlwjF+AoXzj2Lsj37C9H89z6y3F1H9q99QcNTRoOu0vvoyG877CmvPOQPfay+jx83LoM/ny7qESSAYpOAb32L8r+8EVaXpn4+z44briEa69s6LoS1TI9nbhwxSQ2E0FuOWZ/9NTUsL5QUF/OgLJ2YMhcmyl638zRs7hqtOPhGAxz9cxAfr1stSNv2gP8J2LoGxNyK7XyTWvNgYQp7+UxSlcwdKd+W6u7Ln9/tNz2Gp+grW4v0hHiC47o6eXfwgk2A4AHLd2xk6B8H0MJjtPQmHg0/XdfTkuoXOPnjirb2NnZd8nfDna7CWlTHl4ceo+Oa3sPagl8dWUUHpGWcz+d4H2Of5lyn98ldR7HbCK5az+yc/YvsFXyX4ycedGuPUSjHT60n2409k/K/vMMLh00+y/Wf/mzFsir1Heki7+9XXWbVjJy67nWtPO4XilBuobGUs23uHTpzAGQca0zbueOG/bGtolHC4l9N1ndC2hwGwj78Y1T2+0/tmga6ndV/6uRTFgnvGTwGVaON7xHzr++AXDSwJhll0t9B1b4KX2W4t+S7OLeFwaFEUBZJznKLRTu/1ZMiu5eEHiW7fhrVyNFMffbJH+xWbrhdXNYbSn/yMCc+/TMml30YtLCSy7nN2futiWm66nnhjY7fnNask7ceeYCxfY7HQ/MzTbL7mhxIOh6nuFrruSfBas3MXr6xYiQJcffKJVJeVdnxXvotzp3/+qwcfyL7V1QSjUW597nnimibhcIgY6IdNAGJNH6L5N4PFjX3M2R2vm/Xy5Vv+zD6ffk7dPgZbxfEAhLc+nO/lD7phFwyH29y5nm7hl+0v67G9HPIWvaN6jQVT9V7uQhFvbKDlH48AMOrH1+KYOKnX15bOWjYKx/lfZ9QjT+I6/UxQFEJvvkb9hf9D87+ewufzdVSkqX+p0ivIklMXMuG3vzfC4b+fYdOPv48uDXSfGG5z51KDmabr3PvGWwAcM3MG88ZXA+aLcmf7S5V6rNVi4aoTj6PQ5WRbYyOvrljZT79KDAehbX8HwDb69Iy7mmQKeJ3+0urA9OOzsSUedInUvko8uLOnP2VQDK+UNQJkC4Vmwc/0HGmfS+9tTP8O6TUcOGpBMhiaPBlsItPdtO/hB9DDIZz7zsNz9LE9upZcnyRUi4oo+uE1uH//f6hTpoHfR/gPdxC88afo7V1/R3olmf5EYvEXTmXCnX8Eq5WW559j09VXSTjcy729ei2f19TgtNk499CDga7lJpe5jGZlL3meIpeLMw/YH4C/v/8hoWhUeg2HsP7qSYy1ryPWvASwYB97Tsfr3e0S5Pf7UWP1eFoeo6j+Nsp2fYdRuy6huPZ6Cpr+gj24BL+vPeensS3efbCUHApohBNBdbjYq4Kh2dPH/flEcneBrLuldTL9pR6T6+4uEg77R/oyC0riYRB7MJDpkG7psRihV14CoPTyK/tsLaxsFZrf78cyZRruu/6Edt6F6DY78Y8X037Vt2ldsYzW1tYuk8WzhsOTvsDEu/6EYrPR8uJ/2CzhcFCZNcL9OcSXGshC0SgPvPMOAGcesD8lHk+3S+tk+ks9xixInjx3DhWFhTT6fDz/yaddrkX0nXyWNxpIyRBmLT8W1Tka6L7uUzQ/npZ/ULr7x7h9L2APr0TV2lD0MLboZpyB9yhq/D0ltddhC63OORzaqy8wrqnmebRI91N0hoq9Khjmq693PuluvUWz8GfGLCB2OacMKQ8Ka7UxyTm2dUuX99Ib4kwNc2zTRvRgANVbgOuAg3p0Hdkaw0wVWWtrK20+Hyz8EvpNv0Qvr0Cpq0W54Vp4/92Oz6Q30GbnBSg64SQm/P7/UGw2ml/8Dzt/e1uPfosYeH2588l/P1tOQ7uP8gIvp+23r2n5Mwt/ZjKVv+Q5bRYL5xx8IAD/XLSY9mDmLfbEwMm17ustLdJIpO4VAOzjzu3yvlnZs0R3UFTzE9y+F1GIEbBMp85xHtvd17DVcwM1zktptp1AHBfW2A6KG27F1f5y1rovyVK0P2rBbNDChHc+24e/tH+NuGDYaVFqk11Mytz2Tn/pMu180t2OI+my9dBlCoX5yjccSq9h73U3z8ua2PEktnmT6ftFRUUdf5lE138OgGP2HBRLfuUuE7PelfRQ2MnEyei/vB193/1QIhHUu3+H8vD9kAicqQ10tnMXHXs842+/C4Da++6l8bln+uT3iK6667VJLXtm5S9TT0++PUCpNyW6rvPy8hUAnHHA/kRTdjNJDYWp4prGpqZm/rN2HU+uWMW/Vq3hjU2baU4JednC4ZHTpzG+rBRfOMyLny3vck2iZ3o7xzWXuq+3og0fgB5H9e6DpWAmkL1+skS2UVR7Mza9mYhSzi7Xd9jluoo2+3zClglE1Ur8tv1odJ7JVu/NtNqOAMDb+gjutmfxd/OUsqIo2KvOMK6t7vW+/rn9ZnjNZs7A47AMSg9ZPg/CmF1ftlC4uS3zfJtJhXsqarMFuvtzn2eRXUcw3LKZEo8nrzXgkg1wfJcxUdlusjtJLnLpLcwWChtTn0r+5rdxv/hvPC+/iPLSC1C7G/37P+54+jq5SHJywdfUxWmTrxV/4VSCa6+g7p672frTa3BOmYJnzr49+m2iM0+eZayv5BoS1u3ezbbGRmwWC/OnTUVPPK1vFgp1XWf57lpeWLsOv0kZfn3jZqaXlbFwxjTK3G7TBbqT5W/hvH35vzfe4o1VqznnsEOG7dZkw1W+5bKvhp8jDe8BYC2d3+W99LpPjTdTWP8rLAQIqRPZ5b6c+qYw0GR67rKyMuod5xFTSiiLvICn7Sl0xY5fOTVj3QdgLTsKFCtx/wbi/i1YPBP75Lf2pxHXY5gun72P+2qf5Fx6CzOFws1t/qyhMPmZVMlzmM03lCHlgVW87zwA4jt3oLU09+gcWqKxtJT0zSbs2Sro1Ia5sbGxcygEUFUCC8+g9ZLL0W02lE+XEv31LZCygHV6z6HZsMroK79PwdHHoofDbPzOt4g2NvTmJ4kc5NPY9lXDnH5T8uqKVQAcNmVy1lAY0zQe++Qznly5Gn8shtNiYXZZKQvGVjG/ajTjC4wGd11jI3cvWsLa+oZO50gv44dMnoTNYmF7UxMbauv65LeJ7Ppq+kFPz6NrMWNBa8BaavTsZaz7dB1n3T1Y9XbC6hhWhs5NhMLMGhsbaWxqotlxKg32MwDwtD6BJbI1a92n2AqxFBsPXEWGSa/hiAyG6b1lfRX4eipTODMLhblKD5Dp4TDTmogynNz3UhtVS0kp1inTQNcJL1mcc4Ob+jk1uRWe39flvaRMPTb59Bamh8JsIvP2p/WyK9FtNhyrVxJLC4eZJL9LsViY8Ju7cEyaTLRmF5uuvLwjKIi+k8s+swMlHI3y1uo1ABw7Y59O76X3FD7x6TJWNTWjAIdXVXLZ3FmcPKGagyorOLSqki9Pm8LFs2Yw1uMhHI/z6GfLM4ZDn8+Hx+HgoEkTAXhz1WpAhpP7Q7by1ZO6L5f3MtV94aZPIO5HsRWjFszo9F563ac1vownvhIdK5+HziKOK6drBaOubLGfgM+6LwpxCpv+DHrXujA1lFpHHQ1AtPH9nL9nMA3LYGg2hNvdHMDuwmH6+90NxfZkPcX03sJU6aFwRU0g41+248xIr+HA8h61AIBwYm/j7irI9PeVROMeb2vr9bVkumPOFgrr6upM/3aWlLLlfy5At9uxr1lF7LabIRLudL5sd86WgkIm/ukeVI8X35KP2H7rzb3+fXsbs0Yx3/LV3fvd9djkOoz84foNBCIRygu8TCg2hnzNyuOLq9awOhEKvzRlElMsKo0NDV3KX7StlS9Pn8LM0hJ04MkVK2nwZ376f8H0aQC8vXYtcU1uiAdCvjcmfXnjEmv6EABLyeEoipqx7mtv3smo0NMAbI8dQ5CKjvcy1X3Jv6TGpqbEsHIB1tgO3O3/yVr3WUsPAyDetgot0tInv7c/DctgmAuzYOdxWjP+ZZPPgye59sil9hamhjuz8Jcu/TPJ43PtNRT9y3O4Mb8lsuQj9ESD5PF4Mv6lc40qB0Br730wTDKbWwjmoTCbwMTJiXDowL52DbHbbun0QEp3nJOnMOmO3wNQ/+hDNPzz8Zx/g8iNWbDLp/ylH5er9B65jzYaD2AdOX0aasocv9RysmLrNj6o2Q3AwcWFeMMhsmmsr2c/l4MxHjfhuMbDn3xKTNNMb0zmja+mwOmk2R/gs63bcv4dom/lU/Z6Mxwdb/oAAGvp4Z1eT6/7iqLvYCGIXxtNjbZnLmJ3dV/6Z+qaIzQ4vgKAs+0lFC3zE/CqowLVMwXQiTUtyu0HDaIRGwyh58vN9OWDG+m9dem9hemhMN363W2d/lKZfT6Xp5tlOLl3uuu1cc7bD9XjRWtpJrbu87zO7fV6URNrIcYaG/IaSslE13Win68l+PqrRF56gdaPFoHJVnXpFWN9fX2nv6TAhElsOTcZDlcTuu+eTsel3zmnh9Hi409kzPeuBmDbz3+G79NP8vo9ons9bWD7ap6Yrut8tmUrAPOqjV1O0stBQ0MDb+4wHrSa7HYx3du5rGcqfxZF4fBCL26rlcZQmMWJc6TfmNgsFg6ZbOwYtHTTZkCGk3srlx7rvip7+dR9WrgOLbAZsGAtOSTjd7S1NFAUNdbU3KUdBRidPrnWfemf3do2nohSgYUATv+bWes+S4nRaxhtXprx+oaKERUM811SxkyX+Yl9cE7o3HtnFt5SQ16mIJj6Xvpx6UPK6QFUhpMHjmK14TrEqATCiz/M+bhkxeiYOcs4ds1q4nk82WfW6AWXf8b2875M42UX0/qLGwj/8S7Um3+GctlFRG//JY6li0HTOlV2ZpVh+uuB8RPZ/iVjD1L322/ge+F5ILdew1gsxujvXEnxSaegRyNs+fH30WS9uV7piyG5vpyfuK2xkdZgELvVypiUwJdaPtY0NVMbCGJTFPYvMnYMytQYp74H4LJYmFtgnPeNjZsIpZT91MZ47rixAKzcsaPHv0XkL99w2NsbkkiLMZdV9UxEsRV2eT9ZJgqii40HTvQimjSjns237ut8jMqOqPGgi7PtBdAzz5tOLp8T92/I45cNjmEbDHOd4+d1WHPqAcz1c/l8d3fM5geahUEz2cJhavCU4eSBk9qQehLzDEMv/xfdpHcuXWrFaBtXjXXMWIjF8H+8uMfX07hkMbsuv5TI+nUoTieWOftiOeAgdK8XJRDA8dknFD74N7y33oR72xYA00oxXbKSbJ8xi7oFxnZ9BU88ChvWd3ymu6UqFFVl4m2/wVY5mvDWLez6/Z09/p17m1x7jL1eb04Nbq6fy+e7VyV68fYZXYnNZC3OhoYGFu82GtfZBV5cFktOZQ/2lNEpbheFVgvBWJzX1ho986nB0+fzMaPK2PliU109/nD2p05Fz/VmWDjT1Id8JMOWMVybuf4pjBrL2eyOHwZYuoTC7qQGxOSxDdq+xJQirHor9uCnGb9b9RhLmcV9G9H1oT1qN2yDYSaZevgyhb5sgbCveguTMm1flwx26aFw6/ZW07+k7kJktu3yZDi5dzI1kMkKzXvSF1CLiojt3IGydEnGStKsUVYUBXeix7H9w54/xdbwu9+ih0PYDzyY8iefxf3rO4n+6Fr0v9xP89XX4j/5NDSnE1dtDRMfuo+iZ59CTfS8pA+lZLyTXnAsbdNnosRi6HfcBs3NXRpnMK+oLQWFjL/5VgBqH/gr/uXLevxbRebGNJ+y1925crV2Vw0A0yorga7//9f4AzSFw1gUmO51dylb3ZW/+vp6VEVhbqHR07iqsQlN1zveT35fmddLRWEBmq6zLjGXUYaTe6e7ui9VtjKWzw1Jd7REMLR4pnV6PfVBEF/zNpyaMde0Ueu8jmp62cql7gMjHOpYqYvNAUBte6/Ld3esm+gaB4odtBBacGePfudAGXHBELKHw/S//tTT4dv0AGj2flIyHGbrNRQDT3W6KDrb2MC95dGHgD0VYepfJiULjgHA98F7GT+TTay5mdAnHwNQdM11HfMWAfAH0B0OAiefyrorfkDzfgeioDNuxWfM+e+/aaqpyXje1Eqyvr4eFJWdZ5xNbHQVltYWlD/dBXk8AVp83AmUfvEM0DS2/ORqNOnV6ZVs4TDXstcX1uzcBcC0ygrT91c1GosIT3C5sKt7mqFsjXDy/dT/Xu1yYlMU2iJRVmwzGv306QxTyo2HuTbU1vbgl4i+kE/568lNieY3HnRK9hiacceNZYt82hiiFHT0+KWXqUy61H0pmjQjGHpiK0E3v/FQFCuqx5jzOtSHk4d1MMw2pNvb3r6eHJ+pF85sfmEywKX3FqYHwpptDR1/qbIFx0zfL/MMB0ayYis65zyw2Qgt/4zQivx6w7yHHQ6qSmj9OoKfr8n7GiI1RsNsKRuFpdIYTtOjEZQ/3ol62UWU3nojo37yQ8b85zmaDjqU5aecTtxqo3TnduZ/8DaWRK9KbW1tx1+q1ApSczjZfNZX0e0OlDWr4HVjr9Jsw8mpvTbVP7sRa2kZofXrqHvwb3n/1r1RtiHd3vb29eT41P8/Y/E4u1paAKj0uDteTwa2uoYGPm823p/sdmVsbLsrewBWRWG8ywkYcxbT+Xw+JlcYwXD9bgmG/W0w1s3UdQ0tZPTAqa7qjJ/zxIzF1lv06abv51v+UoeU/XoVEd2LSgRb+PMsw8lGcI37JBgOmr4eCh5IZmEw/bVkOEzvNUyVbThZ9B+Px4N11CgKvnAqAC1/fzi/Y0tKKTrpCwDUP3h/x3u5zvFKbgGmhYLosRh+v5/wA39DSQxN63Y7SiRM4eermXzfnymqreHt+UcTtVqprK/lkLdeoXHXrk7nNKskkyJlo/B/8Qzjux97hNaNeyq+bMPJANbSUsZddz0ANXf/gUiWHkuRm8Fc2LrR50PXdayqSpGr68LBtf4AEU3DoSpUOrruV29WztJfS22cJ7qN79jU0oZuMpw8cdQoALY1ZF/EXfSN3pS9bMdmqvv0cD1oEVAsKM7KLu/7/X7QdVyxtQC0anuGm81uSoyytptCV5TpVT68zljWus+g0qpNBUBr+7Tj1fS6z9IRDDdmOdfgG9HBEPIPhx6HZdACZTLopQfCdN29n+sOKjLPsHe6C2kej4fi8y4AwPfGa0R3dv9kZGrFWH7RJQC0vPBvojmssZUqPnYcalERut9PNNHjGEkMLbd/9XwafvMHNl7yHVpnz0XRdSZ8soQJ27bw7vxjiFgsjGtt4cjN603Pnawg0yvV4IJjiU6aghIKoTz6YF7XW3r6mXgPOhgtGGTHr2/J61hhLt8GOpd1DXNR39YOGPP7VJM9inckGstKh6PjBiZZhlIbX01RiNlsxKxWknHPrHGucNhRAX8sxsZdXW8qRiWGLZtS5pvJPMPeyaXuy1dPy148uB0AxTkGRbGa3oD6WzZhIYimW/DrYzKuWVhbW0uZN8KPFm7kxi+v49snbOWGs9bxxQN2Y1G1jHUfgF83noB3xDPPH+zoMZSh5P6VyxPCuQa9XD7X0yeSs/XcZXuIJLB1fae/pGQ4zDakbPZ0sgwnD6zS/Q7Ae8SRoGm0PP73jJ8za5Q98/bDvf+B6NEoDf/I3uOY3tApFgvugw8FIJJ8sjkxl0t3uYxh6qox7Djrq6w95gR0YMrmDbg3b+LFmcbE7Dm7d1KweWOXVf8zqWtooP1/zkdXVZTFi4h9mn29rtRrVhSF6utvBlWl+YXnaV/0Qbfft7fLpfe4L7Yly+f7YE8wHJXY39jswROAcrst45yukMtNTfVEaidOoXbSVGrKK4knnm5Ob5wtikKZ3dbp3KnzDO2JWOkLhwnJNowDJtcbjd7ekMSCRt2k2ss7vZ764EkyrAX1cnQ6t/OpNyVF7ihXnLSZMSWJHZ38ClaLzrGzGzlt/8x1YF1dHQHd6K20a5mDoeIw5txq4aacfttgGfbBMFeZegKTrw9GL6HZ0G9qb2BqEMz2GuS+zI3oW7k0luUXfROA9ueeIZ62m0l3lWLy2MbH/048kH1HnHTuw4xV/QPPP4ceCsEsY4K0Iy2w7Z4xm6UHGIvCHrx9Mz6Hk0XFZQCcWl+DmhieSw2H6Y1zUnzMOIKJJWzC9/4fvvb23K931mzKz/0aADtuu6XTsKDouUxlLNfdT/JVlyjjyWDY5f3EmpVl9s7DyMkyFXE4aBwzDhwOSJQBvbiE3aPHopv0QNbX11OaCIa1Jv9GXDYbjsS/0yaT7cpEz+R6o9Bd+estPW6UJ8XqzvgZm27UXUG9PONnABYeUEuxJ8bORgtX3VPKFX8ZxZ9fNJ58P2ZWI1NH+zLWfclgaNObULSAac+lYk2ssRj3D+kla0ZEMMynFy81CA7WkLHZUG96z1+mAJjKbEi5u+300slwcv8rOHIBzqnT0QJ+/P94JK8Guej4E7GPn0C8tZXG+/+a1/d6TzkNtXI0WkM9kX8+hn70seiKgmPZp9hXfAbsqdw2T5xCTWUVFl1nTs0O3iirxG+xUB4JM69tz6T+XHoOA6d8Ed3lRtu2lXie6zCOueqHKE4ngVUr8S0e+ltHDbZ8dsHJZyu83ujoMTR58rS+oQFfxOi181qN+je1gdWBhqISUFWU5iasi97HunQJRCLgduMvKga6DikXW41g2BruuhqDoiiUJB6CafTtqXtlOHlg9ab8ZS3niWCI2nU+a5JNM8pYiLKO19KDXbE7yn4TjHb4zy8WUODWOHxGiOVb7Ly+zHjA6YsHZJ5nGMdFWDeCnyVqPm1IsSZ/t44ey33zgoE2IoIh9N2i0/35HX21hEx6aMznCWXR97prnBVFYfQPfgRA/YP3Ed68KedzKxYLVVdfA8Duv/6F8NYtOR+rOhwUXn4lAJF/Pg6xOJxsPAxT+MBf8WxKmeeiKHxWYlSaYxrqCFksfJToNZzu777Xr1Pj7nbDcScY3/vs0zlfLxgPoow6y9h/tPa+e/M6dm+V7xaJ/f0dDe175hgmdexlHI2iAwrgVLvWpxGXC72oGOJxlKZGYnPnEZ8yFTXxlH1rcQmp/ch7dkIxzuXLMFRcmggijXn0YIvuDUTZ605Hj6ElczC06EYvdkTvuisKGDcah09vwqLCqm02Dpoa4ZcXtHDFae3c8c0mPt5gJxaH6rIQ5YWdl9RKrfvCegkAoXbz4WRFdYBq9JTrsaE7yjdigiH0bzjM99zJuXyy88jeobsKsvDY4yk46mj0aJSdv/pFXsOkZacspOCII9EjYbbdfENexzqOPhbnMccZDe2dt6EfewLhOfuiRKOMf+wRJi75EEvEuGEJJ3pdXImdWja4jSGUSQE/Ssp3JnsNsz2lp598KrqqEl/2KdH163K+XoCKi74JikLrm68T2jS0n94bKvqzgc733KFEeTLbj7s90VvotlhMH0wJuY0wqbS3oU2eCt4C9OIStKoqiEbBZifi7BoA3In5h/4MwbAkEQybfEO3l2a46u+y1+35tUSPYZZgqOpGmIvjyDjqMaXSGG1bu93GGYcb/70toOB26Hz9OD9rdxj14z5Vvox1XxyjZ9GiZ97iMzmcrMeG7rSGERUMoe/DYYFTHZDeyL6W65PJou9kq8QURWHstdej2Gy0v/s2bW++nvP5FEVh/A03o9jstL3zFk3P/Svna1IUhcIfXIM6fgJKUxPKbb/Av/AMWmfNRdXiTFy6mPkP3sNxb77MKWtWALAr0fDucroIqipuLU5VOM+9jEeVw2HGHqL+Jx/reLm7rfIAnJMmU5Tocax9QNY1zFVfN9A5Ncomst24BBLDt8kevnTJ0KdbbaAoKE2NEAqC3QGJxc8jTmeX49yJ8/ljMeobuk6xsSd+RzSH7SlF/npaVvrifHt6DDPPMUwGQ03vujxS4ixUFYcAqC43yuj7axz86P5S2gIKo0viNPuMMja2NJTxe2K6UTZVutaXybpPsRo3P3ps6PZeD7/Ek4O+CHPDMRBmegBF1jIcWJkqNMekyR0Pk+y85Ubi/sx3jOnncE6ZStWV3wdg+y03Eq3LfbFetagI169+iz6uGqW5iaL/+x3x089k+9n/Q6C4BFXTKGtqxBGP0eRy83zFGMBYLqQ90YvojOc2FzX1blw/9YsAhN54lXiLMU8x17lFld/4FgCNzzxFtFHWn8tVXzTQvT1HMhea9QgmI2PXdwzx5PcmFq22bN2Cunt34oRGfRy3dW3cm1PKSDxl552OG5HERZlckuhDfREO8z1HMhhm6zFUSARDbFRUdN2Nx2nTcNmNclNZZNw8fPS5g0BYZdlmo7x5ncb7Lpv5zUVdXV1Hj6Gqd53r31H3JYNhVILhoOhpuOuLQJh8sKW/t90TQ1OmxrXisiuwjx1HtGYXNXf9NuOxZkZfchmuWXOIt7ay8cpv57V9nFpcgv6zm9Crx2Npa6Pkt7dib25iyZfP46P/uZBFhxzBc7P348n9DqEt0fBaNY2ixNBcW5bKOuM2UpOnok6cBPE4gcUf5XytAN6DD8E9Zy56OEzDY4/mdazoebjri4ZdTQQ4l0nPXs7TICyJ6wgFUULJhj/HhwVN0p9GMhhKMuxvvbmx6NFxyR5DtWt5S1J1Y3pDHFu3pytwGwGwqd0ox3WtRrlLPPiOy7HnxqPLqgw4Et+XuVdRSTwko8fze1B0II3oYJiUT0Acbr2EYmhLVpLJCs/i8TDu5lsBaPz7w/jSntrNVjEqNhuTf383loJC/J8sZfsvfp7fxRQWof/0JsKz5qDEYlS+8QoHP/UPCupr2V05hu0lZcSSja+uc1xjLQ5do8Vqo9HuyHja8vLMS0BY9j8QgLb33snrUhVF6eg1rHv0IbRw5opWZJZPI91XQ4Ga3n0IUzL1GSZfTg75OhzoyWVtOoaBs4dL0zPr3Xyv6HPpdV8un++RxMMcaJkf7tQVI9WpmI+ehaMqWqKMRGNGGSlMBMTkfwbCxutWdU8wTK/7kufXlT292r70JZIS16lYMgfZwbZXpaBkQMwU/vo7FJa5M81v6BvTRps/cSWGhmQlWbLgGErPPgeA7T/7CVoolHMF6pw4iUl3/REUhYYn/kF9vr1phYW0fftK2s6/iJjbg7ulmVmvv8zp/3mar65ZzuGbN3BK3S4u37aBI5uNuVqvjao0XT8uF9b9DgAgvHRJ3usSlnzhVGyjq4g1NtD8wvM9+n5h6K6R7sv5YbpJ71xRURFgLEYNEMtQFizRRMOduBGIj61GqzD2+iYxRKyazBMsS2x7l0kyrJoNb4v+l6389XbqgmI1HpLLNmdPw5h/aMX8BrOicjShiNH+b28wbo73mxxBQWfOeGPUJJIIjC2BzL2OKpHE92W+kU72FGabEznY9qpgmCo1JA6F+YQTqosG9fvFwKq+7npslZVEtm6h5vZb8zq26OhjGZtYwmb7L36O7+PF+VWsikL4sCNY/90fsOXAQ/AXl6DqOuWN9Ry4cyuHtzRSFQ4RURSerxjD8sKSTocn5+hUVnbdlzSdZc5csNnQancT3b4t92vE6CEddc65ALS89kpex4rMUhvpvn5oAMCSGEo2e9DDYzMa1ZC2573UXhdbIhAqiSkMeuVo8HqN3sLEsfZQ18Y9nAiNVlXtCJ9mZCh58PV12bPYjbZTj2eesx1XjOFbi5L5Ibr6diPM1bYY13TCvBDXndNKVWkcf2hPualrdWSs+yzJYKhkC4bdL68z2PbaYDjQPM49/wAmFfbt4rK9CZWDHYj3VtbCIibc+huj5++xR6l/4h95HV/5re9Qcspp6NEoG7/7bUIb8997U3M48Z96Okv+50Je+MLpLN3/YJZXjWPpuAk8VzGWOybPYElxWfcnSpE+sVtxurDNmg1AaNmnZodkVXSMsYtK2wfvo0X6Zh1Q0b+Sawa2JLanS33gqDpRPoJxraMXL5UzYDTuurcAZesWY2HrYBB1+1ZjJxRNwx7cMzcrGSr9MSNoFtpspuEvkgip1pSnoYfCGnyi95QcHubQlK49hunDwOtqjHJaURznvdUOVBVmVhs3KE++52bfiUb9s7XBPNBVVFRgUYzP6GQZHexYXkd6DIWJuVVdC0bVeGNIxD1hWsbjku8lP2umr8On6HtFC45hzPeNha+333Q9vk8+zvlYRVGYcNsduGbOJtbYwOdf+2qncJhsjL0mu0+YCXi8bJo8jXem7MOHE6eytLiUoCX3hjPrPMNy4+463tKS8/mS3LPnYi0tQ/P78H/6Sd7Hi4GXXNi6yWRpIo/dhoIx5S+kdX7SvbKyEkcggC0UNB40cbuxLlmEddmnaJXGcLK3pRlV17v02PgTwa/AbqOsrOvNTHIrvLIc/z2I4aNjKDluBEOzui+uGP/drmReVPqzLUYHy/6TI7z4sYt7Xirg3x+5+NU/iwCFApdOY7uNz2s6l6FOPd60d/q+9OswrlN6DPcqfd37li0cpkvOLzQLm6m9lWJoGX35dyk++ZREz99lRJJLc+TA4nYz7YFHcc2YSayhno1fP5dQlsWkk/O8zCQrt2SDa7akg9nr2QJhklpgVNxae+ZKORNFVSk8agEAre+8mffxYmCk9r6VJhrCZpN9iy2qSmHiYZK2aNcHARSgqKEOdB29vILYwYcRO+gQcLkhEqGguevSReXl5fhiyWDYuacmGRIa2o1gOCpRFsXIodiScwwzDyVbPFMAcCldl/lK1mGaYwIrtxdgtcC3T2ln8ToHT77npb7VwpmHGzc576wtQ9eVTselcihNAERV83pR1/U9T1FLMBTZZHtoJD0c5hMWxdCnKAoTf30nzun7EKuvZ+MV38rrCVxbWRnTH3os0XPYyMaLzie4bm2Xz6UO55n1qJjJFA7BfH5h8vPJ8yeDqNKLYAhQtCAxnPzO2z06XgyssoJEj2GGXUYq3EaD2BiNmjeuwSAlu3ehxONgt4PVCsEgFTU7UTXz9TSbEnMSR7m6PukZi8dpSYTUikJ5QG+kSfYYkiEYejweYrZqALyWDEtrJTy5aAztIQvjy+P8+qImrjm7hVu/3kSxR2dnk5OPNpRkrPus+LEl5jC6iiebf4EWJvmIvATDvZTZWobZnkxOzhVMHyJ2T5jW8ZfpmFQyjDy8WDwepv7fX7EUFRFY/hnbbrw+ryd4raWlTH/4Mdyz5xBramTjRV8jsHJ5t8dlC36pn0n9M5Ot19Dj8XT0GMbbehYMC49cAIpCcO3qvBb2FoOjzJvYfs7v7zSMlrxRGO0xRjUawnvmjKb3WLt97VRu3cSoHVsp27GNMTu3YYt0XrczeYyu6zQkttrbp6qqy/U0B4LogM1iocg9dBtj0TOqrRgALdKQsd6M2cYBYNXbsOLPWJf5QlYefLuaZr+VUYUa+06M4rTBtgYn974xnkisc2RKrfvcijHaE1FGgeo0XcxfjyR6vBV71gW5B5sEw0GSDG9mQ7+Qff5gpvfTz5UaQmWh7aHNMWEik393N6gqjU89Qf2jD+V1vLW4mGkP/QPXnLnEm5vYcP45tD3/bE7HJiu39MY5k1yeRk6lJx5CUE32uM2FtbQU51TjpiiwZnWPziEGTmnKHEOzB0xmjzV21qmLxkzfT5YvSzyOIxjEGQx02qs7vfy1RGOENQ2rqjKm0LgJSZ02EUj0Mo7yeuWp5BFIdVWDYoFYO3qk63aIxoecRmADPEpNx8tmdd/mOg+//vc0HvtgDP9aPJo/vjyRP708ifagLWvd51F2AhCxjMv4GS24I3HNY1GUoRu/hu6VjUDZ5volh5NTewAzhcPuQmO270z2Yoqhp/DIBYy75joAtv/yJto/+jCv461FxUy5/xEKjzkOPRKh7qbrqbvtFjyOPUsnJBvM7oaTM1WAqa+b9RSmDyMDxHYalaGtujrHX9KVa/o+AATXfd7jc4iBUVFYiMNqJRqPU9PSCnSeyjCmoACX1Uo4HqcmFO7SOENu5S9pe2L5mnFeD1Z1T5O2Z36h8UBARZY5tmL4UiwOVNd4ADT/RsD8ARTNNROASvfOrOerrKwkElNZsrGE9z4vY3Odh5imdlv3lTu2AKB752U8txbaEwyHMgmGfSyfB1AyDfmmh8P0v/TPycLWI0fFNy6l9PQzIR5n4+WX4l/2WV7HWwoKmXj3vVR+9/ugKLQ99QQ7vnUR8fo606GN5JBKpsY5/S/jdZsMzSS/L56Y82if0nkqRD7LhbimJYLhegmGQ1XH7j6qyqQKoxxtMtku0aKq7FdlPGW8OdB5Xblcy1/yc6NGjWKT3zjHjJJi0+va3GD0IlWXlfbkZ4lhwOI1Hi6J+82X7fJ4PEScRmDzxFcCfVv3WQjijG8CIOKcl3FViGSPocU9Pr8fOMAkGPazXOYZJoeAUwNed2sTdve+DCMPT4qiMOGXv8Z70MHE29tYd9H5+PJcpkVRVUZfcRWT/vw31IICwiuW0/itiwm9/27W48wqyN5+NlZTQ3TrFgBKD5+fw9Wbc06bDkBow/oen0MMnGmjjYZ0Y1296TzDZDDcEQoT0bRO5ai7MpX6fm04gi8ex66qTEsEw9Teaq/Xy/raOgBmjOk6/1CMDBbvVGBPj6GZiHNfdKzYtVpcSl2n93pb9xWpG1HQiKij0ayZb5I1vxEeLZ6J3X7PYJJgOMAyDSfnEw5TX09fpia1F7K7YWRZ3HpoUp1Opv7tYbwHH4rma2f9xV/LeY3D1F64wqOPZfpT/8Y+dRpacxMtP72G4G2/oCCx5lty2Nest6+8vDxjJZlL5Znkf+g+AFyHHIq1F0N59gojaMSamnp8DjFwkg+BfF6zZ/ml1B7rsYUFlDkdxHSdbYkHjXMJh+mf+Tzx5PP0kmJGp7yX/K5oPM7m+oZO1wSyuPVIY/F0DYbpvXa66ibinAtAtcdY1quv6r4y1eiF9FtmZ7xGXdfR/MaNrcU7PfOPGQIkGfSD9MCVrdfQbDg5PRym/5l9TowsFo+HqX97CO+hh6P5faz/xgX4Pl6c93kc4ycw7sF/UPz1b4BqIfbu2/gvuwj++x+I7VlHLn1YJSlZSab+pb6Xemz6/MLo5k0EX/mv8d53vpf3taeyJM4Za23t1XlE/0oGrjnVxgT8TfX1BCPRLr2GiqJw0nRjasHSunqCiZuV9PKVreztDoXZHgqjAAdUmDfYG2rriMbjFLldjMkw1CyGv44ew8AWdK3r+phgBMWQx1gTtTDyLpbELii9rfscNFOirgFALzm+4zNdFraONqFHWwAViyfDcjZDhATDQZDek2f2hHJ3oS/1/UxPNoMMIw9nFrebaX99kILDj0Dz+1n/zQtpX/xR3udRnU5GXfkDqh9+DOv0GRAIoD7yAMq1V1P2+WqIGxVpagWZz3CeGZeq0va734Km4Tn2BMoOPazT+/n22FgS689pvnZ0kz14xdBSUVhIRWEhmq6ztmbPU6CpvYazK8oZW1hAVNNYG452vJ5L2dN0naWtxvJH+44qM12/0Ov1snKH8aDBvPHj5YnkEUx1VoHFA3oMLbCpy/vJkBZxHkjMWoWFIBML9qxw0Ju6b7TlQxR0ApYZxO3ju8zl7hhGbjfCo+quRrF0La9DiQTDAdbdmobp4TDTn5lkwDQ7rwwjD0+qy8XUex6g4Igj0QIBNlxyYbdPK6eHrmTF5Jgxk7I//43CH12LUliEsnMH6p9+x6hf3IDr9VdQUvagBfM75vSK02woRm9vo/lHVxFd9imKw0nZFVf29Od3sLj3VLZaMJjlk2KoOGDiBAAWbTQaarNew1OmGz09q5qa2a3sqaOylT1d1/m4pY3maAyHReWIMaNNn4YHWL7DmOy/34Q9k/1lGHnkURQFa9G+AMSbl3S83iWkeQsIFCwEoDjyBqNKzXfCybXusxKgXDXmgDfbT8h6jbEmo962lRyc568beJIO+kmm4eSO/52h1xCy9wCmmlvlNp1baHZ+MXwZ4fB+Co9cgBYMsv6Sr9P24fs9OldBURHuhafj+etD2L92EXphEUpjA95nn6L0hp8w6b23cO7aCbr5DhOpUkNhWVkZ6DqebVsI/O8Pia5aiVpYyJg//5WS2XM7HdeThjmesr2a6hq6C8OKPf//HjvLWB5k0cZNRFKmLaQ21pNKSjhpqjGs9saOnQRzWOtyrc/PusTamCdNGM+4tCdGk+eva2tjbWKO4wGTJvbw14jhwlZ2BLAngKVL3piE3fOJW8qw6m2Uhp/veD+XBf/TPzvB8iIWJUJYHYu99NAu35Usi7quE2v6oNN1DmUSDAdBstfQ47R26t1LD4eZAmK297LtrCKGL9XpZMpf/kbh0ceih0JsuPQiGp95Kufj0++cvZWVOM79GgUPPYZ26eXoY8ehhkK433yNKff9mZm/u52xz/yTouWfYvW1dxxntgtKmccN77yF8tMfE/zJ1Whbt6COKmfsXx/Cte9+vf7tYAwhgxEKFYusxTkczK4eR3lBAYFIhKVbtgKdG8xk796CiROYU2EMDz+zYRPbdYVRJsN5MU1nZTjC0lajLCwYW8W04j09hOm9hW+vNR4w2G/CeNkKby9gKzscgHjbcvTYnu0Yu/YaFuErvgiA4uibjCvas/92th2e0uu+EmUNoyzL0VGoc54HimK6JBiAFtiEHq4F1YG15KAe/8aBIt1KA8jjsOAPd50fVea20xgwtoeaVOhhc9ueQt1d76HZwyvJ3sKOACrDyCOC6nAy5e572fT9K2h97RW2XPND/MuXMe7a61HtnW8IrFYrsZj5JGyv14vP58Pj8eAHOPYE9KOPQ1/+GdGXXsS2bg2qz0fxymUUr1wGgG53oBUWJv6K0C1W1PY2bC3NKKnb1DkcuE46Be8FF+GYPKXPfnvcb/ybUD3ebj4phgpVUThm1kz++dFiPti4icOndi0PRUVFtLa28uU5s1BXr2X57lre3rmLT+rqmVVWSpnTgaoobPf5WN/cSiBRpg8dXclJM2d0mTeYbJjdHg9vrjXWzzxxzpyO92UYeeSyuMejuqrRgtuJNS/CVn58l88k6z7bqCMJhj7B5X+TitDDREp+TF1z14fxMrHTymT7f0CHFvuJOEszL2oNdPQWWksOHPLzC0GCYb8qcKq0h8yH5LwOK75wDI/Tij8UyxoOM0kPhdJbOPKpDgdT7r6Xmj/9jpo//o76Rx8isHolk//wZ+yVo7Me6/F48CcCVrKChD2NM/sdgG2/A2isq8W2eRP21auwrVmJbcd2lEgYS0M9lgbzTeiVikpspyyk+KyvoBYVdXkiL6mnDXN4x3YA7CZ74YqhJ3ljctxsIxh+vGkz7aEQBU5n5xsTv7+j/J0zZxYTi4t4ef1G2qNRPtrddV9sr83GiePHcdDkSZ1eT+8tXLVzF/XtPjwOB0ck5jGKkc9ecRyhrQ8Rq3+9UzA0q/t8RedjD63CFq9jbOBOlJKrqG3u/jsqSlTGBh7BqrcTVscQKz+34zuS508XT84vLOv5Wq4DSYLhAEvtNexpODTrJUyGwvTeQjHyKKrKmKt+iHv2XLb8+Af4P1nKmjNPY8of/oz3oEM6Ppet1zApvXEGKKuohIpKGqdOh9PPhHAYta0Vta2VIk2D1hZjqZuiIigppWD2HNSiYtNhlExDK/kKfm70/iT3TBbDw4RRo5hcUc6munreWreeL+5rzDfNFA4PrR7HAWOqWLxpM+uaWwnH48R0jVKnk+nFRew3cUKnbe9gTyhMbZjf/NB4en/BjH1w2GwD+IvFYLJVHG8Ew6YP0eNBFEvmOauegjJatJ9QXP8r7PF6xgbuxFJ8CWHLJBobG7t8vqysDFfscyoCD2PTW4gqpfgq/hcUW9a6T4+1E29dYVzfMJhfCKDousku5qJPmfUaJsOhL7yn4faHjP+eDIe5SO0lTH3gRIaR9w6hLZvZ+J1LCa1fB1Yr1dfdQPnXvt4xxGYWDJN3zkBHr2HytdY81wlMb5Sh8x1zeoXZ0x7DDd+6mNY3X6f6ZzdS8fVv9OgcYuDFYjHeXLWG37zwIm67nfsvuwSLZtSHybIHPSt/qb2EqeWsPRbjB489SVzTuPNr53XseCLDyCOfruu0fXgWWmgnzunXYRu9sNP7ZnVfsG07RfW3YY3tQkfBZz2QNtt8wpaxaIoHVffjiG+nOPI6nrixxE1EraS94ido1vJu677IzqcIb7wT1TOJokOf6Lff3pckJQyy1J69ZLDLdUi4u1AoRj7nxEnM+OdzlJz2RYjF2H7zDWy55gcdS7qYNYZmFVnytfQhuWzyDYU9FQ8EaF9kzNHxHDj0J26Lzo6eNYPJFeUEIhGe+HDPOpxmZSXX8pcpFHq9Xh75YBFxTeOgyZNkG7y9jKIoOMaeBUBkx9/R01ZXMKurXIXVtJRfT8h9JAo6BbGPGRv8PZN91zCp/Wom+65hbPCPeOKr0VFpsR1N2+ibcgqFuh4nsvNxABxjv9I/P7ofSDAcAGa9dKk9eZnCYbaAmEsoTO8tFCOTxeNh0l1/Yty114PFQtOz/2LtOWcSWLsmp+PNwmG2Bjr1/UwVo5me9ti0vvkaWjCIvXo87rSlb8TQZrVaURWFixYcBcDzn36GL7bnAbxM4bC78pd+TPJcK3bsZMnmLaiKwiXHHt1nv0MMH46xZ6JYC9ACW4k1vpP1s8ny5y4cTXvpt2muuIWQ6wiiSglAx+4oUaWMNushNFfeTrTyUnTVm1PdF2t4Bz20C8VaiKNqoelnhiLpWhoikvMNgY45h9B972E+oVCGkUcuRVGo/MaluGfNZtP3riC4djVrzjyN0ZdeTtUVV6JZui56nTqskjrnC+iY95VNth7BvuotBGh6/jkASk/7ouxeMUwdOGki+1ZXs3z7dh5+9z2+kxLaUh+ESi2X+ZQ/r9dLXNN46D2jZ/m0/ecxPrHoNcgw8t5EsXpxjP0yoa0PEN3+KNayozvVG1nrPs9s2u0TjfNoQdRYPZp1FLraeXWQXOu+yM7HAHCMPXtYPI2cJElhgHTXawhdew6Tf2bS35PhYwFQcNgRzHr+JYpPOgViMXb/+Y+sPv0U032Wu6xtmNZ7k0/w624IuacNc2DVSlpffxWA0tPP6NE5xOCyWq0oisLFxxi9hm+uXsMHmzZ3+oxZ2ctU/tLfSx774rIVbG1sxOtwcP784THJX/QPR/VXQXUQb19NvGVpl/dzqft01UXcPr7bUJip7ou3rUBrWwmKDce44TOMDBIMB51ZOEwPeakh0Swsdvm8DCHv1WwVlUy5+x4m/+kerOXlhDdtZOMF/8O2635MtL7zcjPZKrnk+2Z/2Y7pSzvvvB2AkoVfwjVtn377HtH/9qmq4rwjjEWI//TKa+xsa+/0vtfrzan8pR8DsHTLVh75cBEAFy44kkLZHWevptpLcYw5HYDojkdMP9PfdV9kh9FbaB/9BVTHqLx/w2CSYDiAMg3lmgU5s4DYk890991i5Co5+RRmv/QGo75qrLPV/MzTrD3leOoe+BtaZM+T72aVnVkjnS5TQ95Xmv/7Am3vvAVWK2O+f3WfnVcMvGSP8XnzD+ewqVOIxuPc8uxzROk6NSDfsreloYG7Xn4VXdc5ae4cTtuv82LDMoy8d3JUnw+KhVjzEqINb5l+pr/qvljTB8Qa3gIUnNXn9eTyB5UsVzMIMi16bbYrSr4y9RZKMNy7+T/7lG2/uIHAcmMnE8ekyYz+/tUUHX9SxxZzqfNueiJTKOxJwxzatJE1Z30Rze+j8luXM+7H1/bq2sTQEIvF8IfD/OCRv7OjqZl9qqq48ewzsPawGWr0+fjp08/Q6PMzb/x4fvGVs7CmbZkowXDvFdx4N6GtD6HYinAf+Ciqvcz0c31Z9+nRNvxLv4YeacBRfS7uaT/o1bkHgwTDQZApGCb1JCB2N3wswVDomkbj0/9k529vI9ZkLOBqHz+B8gsvpuSMs7GkTcrOR7aewnwb5mhdLesuPJfQxg14Dz6U6Q8/hiKN+4iQXFdze2MjVz/6GL5wmNHFRfz8rDOYMGpUXuVvbU0Nd7z0Ki2BANWlpfz2a+dS4Ow6wV+C4d5L16K0f3wRcd96rGXzcc66PeMDbH1V9wU/v4VY7YsormqKDvn7sHroJEmC4SDpLhymyhYUc5lPKKFQpIq1tVJz719ofPxR4okFhS1FRZSdcy6jvvZ1bBWVHZ/NVlnmOmycT8Mc2rqF9RedT2THdmyVlcx85gVs5dn3LRXDSzIcbmts5OdP/Yva1jbsVisXH30Up87bF1tKeTErf5FYjKc+Xsq/P11GXNOYMKqMG88+k0qTp5glFIq4byNtH38dtAjufa7FUvnFnI7rSd0Xa3yf4KofAwrueX/BUbZ/Ty550EkwHET5hMPekGAo0sViMeKBAM3PPk39Q/cT2bYVAMVmo/jUL1J+0TdxzZjZ6+/Jp2FufulFtv38p8SaGnGMn8C0Bx7FMX5Cr69BDD3JcNjiD3DHi/9l6eYtABS6nBw3ezYn7zuHCaP2TNiPaxqrd+zkvXXreP/z9TQlGu2jZ87gqpNPxGU3X9ZLgqEACG37O8ENvwfViXv/+7B4JnV/UJ60cD2BT7+JHmnANu5cvNOH3xBykgTDQdbf4VBCocgk2Tjr8Thtb75O/YN/w7/04473PQcfStHxJ1Jw1NE4Jk3Oew3BXBvl8I7t7Lj1F7S8+hIArllzmHbfQ9hGlef1fWJ4SZY/Tdd54dPPeHLRYhpTtslz2+3YrBbsFiuhaJT2UKjjvRKPh8tPOI4j95me8fwSCkWSrmv4Pr2CWMtSFFsJrrl3YvH23SoHWqSZ4LLvoAW3oromUHjII8NyCDlJguEQ0F/hUEKh6E76XsqB5cuof/A+Wl75L8T3TGGwjRlL4VELKDjyaLyHHY7FW5D1vN01yrqu41+6hNqH7qfllZdA08BqpeqyKxh9+XdRHY6e/ygxbKSWv7im8cnmLby8fAUfbdxEXOtcL3qdTg6bOoUj95nO/hPGdxpyTiehUKTTIi34ll1FvH0titWLa/YdWIp6v5OSFmkkuOKHaP71KPYKCg68F4trTB9c8eCRYDhE9GU4lEAo8pEeDgEiO3fS+up/aXvnbfwfL0GP7lneBqsVzwEHUXDEfBwTJmEbXYVt9Ghs5RXYMgQ6LRwmvG0LgVUraXv/Xdref5dYypqKBUccybhrr8fdB8PXYngxK3/toRDtwSCRWJxILIaOzpSKii5PHKeTQCiy0WM+fMt+QKx1GahOXLNvw1pySI/PpwW2EVj5Q2PbO3spBQfcg8U9/Ke/SDAcQnoaDiUIit4ya5yT4oEA/sWLaHvvHdrffbtjPmIXFgu28gqspWWg66Br6PE4sZZmYg0NxmspFKeTstPPoOLr38Q1XRav3ptlK3/ZSBAU+dLjIXwr/pdY04egWLGPOw/7+K+jWHJfFF2PB4jteoLQtkchHkR1jcM77/dY3NX9eOUDR4LhEJNrOJQwKPpDLg10bOcO2t59G9/HS4js3kW0poZI7e5OQ89mVI8X19RpFBx2OAXzj8J7wEEyZCw65BoOJQyK3tK1KP7VNxGtewUAxVGBvfoCbJWnZZ0baFEhUvM8wc33okeMJb8sRfPwzr0t4xqJw5EEwyHMLCRKIBQDwayRztYg6/E40YZ6ojU1xFqawWIxHlaxWLAWFmIbXYW1tCzvB1jE3inf8idEvnRdJ9rwDsH1d6KFagBQrIWoBTNR3RNR3ZNR3ePRIw0Q2Ejct55Y+9qOQKg6x+Ka8h1sFSeMuHpNgqEQQggh9kp6PES45j+Etz3SERCzUWxFOCdegmPsWSiqbQCucOBJMBRCCCHEXk3XYsTbVhH3b0r8bSYe2IrqGIXFOw2LdyoW7zSsBTPymo84HEkwFEIIIYQQAMiENSGEEEIIAUgwFEIIIYQQCRIMhRBCCCEEIMFQCCGEEEIkSDAUQgghhBCABEMhhBBCCJEgwVAIIYQQQgASDIUQQgghRIIEQyGEEEIIAUgwFEIIIYQQCRIMhRBCCCEEIMFQCCGEEEIkSDAUQgghhBCABEMhhBBCCJEgwVAIIYQQQgASDIUQQgghRIIEQyGEEEIIAUgwFEIIIYQQCRIMhRBCCCEEIMFQCCGEEEIkSDAUQgghhBCABEMhhBBCCJEgwVAIIYQQQgASDIUQQgghRIIEQyGEEEIIAUgwFEIIIYQQCRIMhRBCCCEEIMFQCCGEEEIkSDAUQgghhBCABEMhhBBCCJEgwVAIIYQQQgASDIUQQgghRIIEQyGEEEIIAUgwFEIIIYQQCRIMhRBCCCEEIMFQCCGEEEIkSDAUQgghhBCABEMhhBBCCJEgwVAIIYQQQgASDIUQQgghRIIEQyGEEEIIAUgwFEIIIYQQCRIMhRBCCCEEIMFQCCGEEEIkSDAUQgghhBCABEMhhBBCCJEgwVAIIYQQQgASDIUQQgghRIIEQyGEEEIIAcD/Aw1mOpwWTuGgAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1619,7 +6033,7 @@ "#z =torch.exp(gauss_model_C2ST.log_prob(data)).detach().numpy()\n", "#axs[3].contour(x, y, z,colors =\"#458588\")#), cmap='coolwarm',fill=False)\n", "std_plot = [np.sqrt(.25),np.sqrt(.5),np.sqrt(1),np.sqrt(2)]\n", - "std_plot=[.25,.5,1,2]\n", + "std_plot=[.25,.5,1.5,2.5]\n", "plot_cov_ellipse(gauss_model_WS.cov().detach().numpy(),gauss_model_WS.mean.detach().numpy(),\n", " nstd = std_plot ,ax=axs[1],edgecolor='#cc241d', lw=1.5, facecolor='none')\n", "#axs[1].scatter(gauss_model_WS.mean.detach().numpy()[0],gauss_model_WS.mean.detach().numpy()[1],\n", @@ -1648,8 +6062,8 @@ " #make square subplots \n", " ax.set_box_aspect(1)\n", "axs[0].set_title(r\"$p_{true}$\")\n", - "axs[1].set_title(\"SWD\",color ='#cc241d')\n", - "axs[3].set_title(\"MMD \" +r\"($K_G$)\",color ='#eebd35')\n", + "axs[1].set_title(\"SW\",color ='#cc241d')\n", + "axs[3].set_title(r\"$MMD_1$\",color ='#eebd35')\n", "axs[2].set_title(\"C2ST\",color =\"#458588\")\n", "\n", "fig.tight_layout()\n", @@ -1658,12 +6072,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAADECAYAAABZYb9DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1qElEQVR4nO3dd3gUVRfA4d9sNr130kioAULvvVdBpElRUUSUIig2iuInIKDSBEHpiiBIUZogvfdeQwKBQAgpENLrJrs73x+TLAmkhxLkvs/DA9mdnZldcnfO3HKOJMuyjCAIgiAIglBsqud9AoIgCIIgCC86EVAJgiAIgiCUkAioBEEQBEEQSkgEVIIgCIIgCCUkAipBEARBEIQSEgGVIAiCIAhCCYmAShAEQRAEoYREQCUIgiAIglBCIqASBEEQBEEoIRFQPSN//fUX9erVo1atWtSoUYMZM2awevVqunbtatjm9u3bSJLE/PnzDY/NnTuX9957jwMHDmBlZUXt2rWpXbs2vr6+DBgwgKioqOfxdgSh2LJ+z999990cj9+7dw+1Ws3EiRNp3bo1VlZWpKSk5NimW7du+Pj4ALB8+XIcHByoXbs2tWrVwtfXl+HDhz/2GkEozRISEhg1ahTVq1endu3atGzZkuPHjwMwe/ZsqlevTvXq1Xn33XdJT08H4NKlS7Rt25ZatWrh5+fHkCFDSE5OJjw83HCNKFOmDGXKlDH8HBoa+jzf5ktBBFTPQFhYGJ999hm7du3i4sWLHD9+nDVr1pCRkcGJEyfIqv6zY8cOOnTowI4dOwyvPXjwIB07dgSgfv36XLhwgQsXLhAYGIinpyd9+vR5Lu9JEErCycmJnTt3kpGRYXhs3bp1ODo6Gn62t7dn27Zthp9jYmK4cOFCjv10796dCxcucPHiRS5fvkxcXBzDhw9/6ucvCE+CXq+na9eu2NnZGb7bf/jhB7p3787Bgwf57bffOHnyJJcvX0ar1fLzzz8D0K9fP6ZOnWr4vTc2NmbChAm4u7sb9jNs2DCGDRtm+NnLy+s5v9v/PhFQPQMPHjwgIyODpKQkAKysrPj9999p1qwZ7u7uBAQEAEpANWHCBM6ePYtGowHg2LFjtG/f/rF9SpLElClTuHjxIpcuXXp2b0YQngBLS0uaNGnCrl27DI+tX7+eXr16GX7u27cv69atM/z8999/06NHjzz3aWJiwuzZs1m9ejVxcXFP47QF4Ynav38/YWFhTJo0CbVaDUCTJk34448/AJg/fz6WlpZIkkStWrW4c+cOAJGRkSQmJgKgUqn45ptv6Nev3/N5E4KBCKiegVq1avHaa69RsWJFGjZsyNixY9FqtVSsWJF27dpx9OhRMjIyOH/+PM2aNaNRo0YcPnyYq1ev4uXlleOuPTtTU1MqV65MYGDgM35HglBy/fr1MwRMISEhmJub4+rqani+U6dOHDt2jOTkZADWrl1L//79892nm5sb9vb2XL9+/emduCA8IefPn6dBgwaoVDkvxZ06daJVq1a0atUKgPv37zN//nxee+01AH788Ud69uxJxYoV+eCDDzhz5gyNGzd+5ucv5CQCqmdkwYIF3L59m+HDhxMSEkKTJk1Yv3497du35+jRoxw7doyGDRtiZGREx44d2b17N4cOHTIM9+XH3Nz8GbwDQXiyunXrxt69e0lPT881WDIxMaFTp05s3bqViIgI9Ho9np6ehdq3aBPCi0ClUqHX6/Pd5vbt27Rp04b333+f1q1bAzBo0CAiIyOZMWMGxsbGvPvuu4waNeoZnLGQHxFQPQPbtm1j3bp1eHh48O6777JmzRp++uknli9fTqtWrTh9+jQ7d+6kU6dOAHTs2JEDBw5w5MiRfAMqjUZDYGAg1apVe1ZvRRCeGAsLC1q0aMGuXbvYuHFjjuG+LP369WP9+vWsX7++UEMaYWFhJCYmUqFChadxyoLwRNWvX5+zZ88a5tFmmTp1Klu3buXChQs0a9aMYcOG8dVXXwEQFBTElClTsLa2pmfPnvz8888cO3aMX3/99Xm8BSEbEVA9AxYWFnz55ZeEhIQAIMsyV69epWbNmlhbW2Nvb8/mzZsNAVXFihVJSkriwoULNG3aNNd96nQ6JkyYQIsWLcTFQ3hh9e/fn++++w53d3dsbW0fe75du3acPn2aVatWFbgAIy0tjTFjxjB48GAsLCye1ikLwhPTokUL3Nzc+Prrr9FqtQAcOnSIefPm4erqSufOnZk3b16O3idnZ2fmzp3L/v37DY/5+/tTs2bNZ37+Qk4ioHoG2rRpw9dff03Xrl3x9fWlSpUqaLVaJk6cCEDbtm3R6/U5VmG0bNmScuXKYWxsbHjszJkzhiWwtWvXJjo6mtWrVz/rtyMIT0znzp3x9/dnwIABuT6vVqvp0qULzs7Ouc4l3LJlC7Vr16ZOnTo0aNCAMmXK8OOPPz7t0xaEJ0KSJLZs2UJoaCg1atSgZs2aTJgwgU2bNrFp0yYSEhKYPHmy4Tv/q6++ws7Ojq1btzJx4kTKly9PlSpV+O2331i7du3zfjsvPUl+tK9REARBEARBKBLRQyUIgiAIglBCIqASBEEQBEEoIRFQCYIgCIIglJAIqARBEARBEEpIBFSCIAiCIAglJAIqQRAEQRCEEhIBlSAIgiAIQgmJgEoQBEEQBKGEREAlCIIgCIJQQiKgEgRBEARBKCERUAmCIAiCIJSQCKgEQRAEQRBKSARUgiAIgiAIJSQCKkEQBEEQhBISAZUgCIIgCEIJiYBKEARBEAShhERAJQiCIAiCUEIioBIEQRAEQSghEVAJgiAIgiCUkAioBEEQBEEQSkgEVIIgCIIgCCUkAipBEARBEIQSEgGVIAiCIAhCCYmAShAEQRAEoYREQCUIgiAIglBCIqASBEEQBEEoIRFQCYIgCIIglJAIqARBEARBEEpIBFSCIAiCIAglJAIqQRAEQRCEEhIBlSAIgiAIQgmJgEoQBEEQBKGEREAlCIIgCIJQQiKgEgRBEARBKCERUAmCIAiCIJSQ+nmfwJOg0+mIjY0lLi6O5ORkNBoN6enpaLVaZFlGkiTMzMywtrbGyckJZ2dnVCoRSwqCIAiC8GS8kAFVTEwMx44d48KFCwQFBREWFoZOpyv0601NTalYsSI1atSgcePG1KhRQwRYwn+CLMtERkYSEhJCREQE0dHRxMfHk5SURGpqquFGQ6vVotfrAVCpVJiYmGBpaYmtrS3Ozs54enpSvnx5vL29UatfyK8JQRDtQXimJFmW5ed9EoV1584dli1bxuHDh3n0tFUqFba2tlhaWmJubo6xsTFqtRojIyN0Oh1paWkkJiYSFRWFVqvN8VpHR0e6detG7969sba2fpZvSRBKLDExkYMHD3L8+HEuX75MYmLiE9u3qakp1apVo0GDBrRo0QJPT88ntm9BeBpEexCelxcmoNq1axczZswwBENVq1alYcOGVKtWDR8fH5ycnArVy6TX6wkLCyMgIICzZ89y/PhxQ4OztrZm+PDhdO7cGUmSnur7EYSSSklJ4ffff2fz5s1oNBrD42q1mrJly+Lh4YGzszO2trZYWVlhbm6OiYmJ4WYjq73o9Xo0Gg3JycnExcVx79497ty5w40bN0hJSclxTD8/P15//XVatmwp2ohQqoj2IDxvL0RAdfjwYb755htkWaZhw4YMGzaMcuXKPZF9a7VaDh06xKpVqwgODgbgtdde4+OPPxYNRCi17t69y9ixYwkPDwegXLlytGvXjnr16lGxYsUnMiwhyzJ37tzh3LlzHD9+nLNnzxqGRapUqcK4cePw9vYu8XEEoaREexBKg1IfUEVERDBkyBBSUlKeaqCj0+lYs2YNy5YtQ5ZlBg0axDvvvPPEjyMIJXX//n1GjBhBdHQ0Li4ufPrppzRs2PCp3wDExMSwefNm/vrrL1JSUjA1NWXixIk0btz4qR5XEPIj2oNQWpTqgCo9PZ3Ro0cTEBCAn58fc+fOxcjI6Kke899//2XGjBlIksSCBQvw9fUt+EWaNIiJAm0GWNuCrQOI3i3hKUhJSWHUqFEEBwfj7e3NnDlzsLOze6bnEB0dzXfffcfZs2cxNjbmxx9/xM/P75megyCAaA9C6VJqAypZlpk2bRp79uzB2tqaJUuW4Orq+vQOmJEOkXchIpT961aTEBKMl5MDdevUAWMTMLcACyvlj4kpyDIkJ8D9cHhwT/k5i7UdVKsDdZuDlZjkLjwZaWlpjBs3josXL2Jvb8+CBQuebpvIh1arZeLEiRw9ehQXFxd+++03LCwsnsu5CC8n0R6E0qbUBlRr165l4cKFqFQqpk+fTr169Z78QVKS4eo5CLoC4XdAr6ReSE9P52pAALIsU7lyZSwL0zCsbJTAKz7WsB/UaqjbDBq1BTPzJ3/+wksjLS2NsWPHcunSJSwsLJgzZw6VKlV6rueUkpLCkCFDiIiIoF+/fgwbNuy5no/w8hDtQSiNSmVAFRkZydtvv01GRgajR4/mtddee7IHiImCM4fA/yxkT6FgZQNuZaGMJ39s38XeE6do0LAhI957D1KTIDlRCcIy0pUhPXNLcHIFN++HPVEZ6RAcCGcOQ3iI8pi5BTRuB7Ubg9r4yb4X4T9PlmUmTJjAsWPHsLCwYMaMGVSrVu15nxYAJ0+eZNy4cajValatWoWLi8vzPiXhP060B6G0KpUZyjZt2kRGRgZ16tShe/fuT2aniXFw/QoEXnwY6AC4eoBfPahQNcfcp8ZOZVl26CR3jp2mz6hPcfEp5N2PsQn41oTKNSA4AA7+C9H3Yf8/cOoA1G6iDAfaOT6Z9yX85+3evZtjx45hbGzM9OnTS83FA6Bhw4bUrl2bCxcusGLFCj7//PPnfUrCf5xoD0JpVSrTg584cQKAHj16lHylRkIcbF4Ji76DfVuUYEqSlACq/zAY+BHUa64EONmOVbFiRWrXro1er+fvv/8u+nElCSpUg0GfQMfeyryq5EQ4uguW/ADLZsC2NcrPF0/CjatwL0zp4RKETLIss3r1agAGDRpU6ia7SpLEkCFDANi+fTt37959zmck/JeJ9iCUZqWuh0qWZUJDQwElt0eJxMfCH/MgJUn52cNH6T3yrakM7xWgX79+XLhwgS1btvDGG29ga2tb9HNQGUGtRlC9Ply7CJfPQGiwMuwYE/X49pKkDCP6+ELV2koPmvDSun//PiEhIRgZGdGjR4/nfTq58vPzo3Hjxpw4cYLFixczefLk531Kwn+UaA9CaVbqAqrU1FRDsjQbm4KDnnzt2agEU85loOsbyt9F0KhRIypVqkRQUBCrV69m+PDhxT8XIyOoVlf5k5YCYbchKlIJ+pITlN6r+BhITVEej4qE0weVOV2N2yo9aiIVw0sn6+bCy8urVK8aGjp0KCdPnuTw4cOcO3eOunXrPu9TEv6DRHsQSrNSN+SXPc9UVmBVLHHRyuRwSYLuA4scTIHSffvee+8BsGHDBkMW3hIzs1CGAxu3hU69ode7ytDjyIkwfAK8+qbSi6Yygog7sHE5rP4FIkOfzPGFF0ZqaioAlpaWz/lM8ufj42PoMZg9e3aO0h+C8KSI9iCUZqUuoDIxMTHUVHq0blKRXD0PgNbdh9DkNO7cuUNaWlqRd9OwYUPq16+PVqtl3rx5jxVlfuKsbKBKLej+Fgz7Ehq1UVYGhofAH/OVye1intVLw8TEBFBSeZR27733Ho6OjoSFhbF48eLnfTpPSAoQBkQAGc/5XATRHp430R7yU+qG/CRJwszMjJSUlGJH9ZE3g9BsXEVqTDRL9p/l3JJ1hn3XqFGD3r1706JFi0JNeJckiVGjRvHee+9x4sQJDh48SOvWrYt1XkVmaQ0tuyi5rA5sg4DzSjqG20FKwOUoluT+11lZWQGQlJT0RPcryzIxMTGEhoYSFxeHJEk4ODhQoUKFYg+lWFpaMmbMGMaOHcuGDRuoX78+TZo0eaLn/fTIQBxwE7iW7c/9bNsYATWATkA7QKRAedZEe3hWRHsojlKXh0qWZTp27IhWq2Xt2rVFyuMhyzJ/LlmE3d4NuKkhPENmdpQWMwsLJEkiOTnZsG3Dhg356quvCj1P67fffmPFihXY2dmxYsUKrK2fQwb04EDYvk6ZF2ZiCl0HQMXSs2RYePJu3LjB+++/j4ODQ/FWm2YjyzJXrlxh586dnDp1iqioxxdFqFQq6tevT58+fahfv36xVtnOnz+fv//++9lUOCi0ZOAocBoIAqJR7rBNUC4MqUBeN3DmgP6R512BYUArQMxtfFZEe3hSRHt4GkpdQHXr1i0GDx6MiYkJ27ZtK1KV8H9mTcP+zH4sVRJqGzviuwzAr0Vr7O3tAWWFyNatW1m7di3p6emULVuWOXPmGJ7PT0ZGBu+//z4hISF069aNzz77rNjvsShiY2M5ffo0V69e5fbt2yTfj+RVEvAx0iOpjDhlYke4ly8VK1WiZs2aVKlS5anXOxSenfPnz/Ppp5/i4eHBH3/8Uez9REdH88MPP3D69GnDY5Ik4e7ujqOjkhMtIiIix0WlUaNGfPHFF4bnCysjI4NRo0Zx7do1qlSpwrx584rUjp+s+8BKYBeQc5hIr5cN8zRVKlXmVAMPoBLgC1QBKgBWKHfsEcABYAPKBQigGfA5YPdU34WgEO2hpER7eJpKXUC1dOlSVq1aRaNGjfj+++8L96LkRBI3ruTm9k3IgGPVGpT9cDzYO+W6eXBwMOPGjSMqKooqVarw008/YWxccHflpUuX+Pjjj5EkiUWLFj21UgfR0dHs37+fffv2ERAQ8NjzKqCnrRHNLJW5ZgFpetbG6UjQK93MjRo1olWrVjRq1AhTU9Onco7Cs5HVHlq2bMmkSZOKtY+UlBSGDh3K3bt3UavVdOzYkdatW1OjRg3MzMxybHv37l02b97Mpk2b0Gq1ODg48P333xf5dz0yMpIPPviAxMTE51SGQ0b5ol+CTpdKcnIy9+6ZcfmyLZcvQ3BwCklJGoyNZVQqGY1GRXq6NXZ2Lnh4eFCuXDmqVq1K9erVcXBweGTfGmB15h8tYAuMAtryMt+dPwuiPRSXaA/PQqkKqDIyMujbty9xcXFMmjSJli1bFvyimwGwfR33Qm5xNyycG46e9PtxsVJHLx9hYWGMGDGChIQE+vfvz9ChQwt1jlOmTGHv3r1FC/gKQavVcuTIEbZt28bZs2dzTH6vXLkyderUoUKFCri5uWFjY4NKpUK6dAqLE3tIT0khITWVf6OS2B2dQnLm4kgzMzOaN29O+/btqV+/vui5esGkpaXRv39/4uPjmThxIq1atSrWfhYuXGgYPp85cyZeXl4FviYkJIRJkyZx69YtrKys+OmnnyhXrlyRjnvkyBG+/vprJEli7ty51KhRo1jnX1SynEhCwng0mv3Exydw5YrEP/+4cuuWJcX5gvf09KRBgwY0aNCAOnXqZLvo3gSmAcGZP5cHugKNAPdiHUvIm2gPxSPaw7NTqgKqAwcOMGnSJJycnFizZk3+AYAsw4m9cGQXAGfuhPNjYBivvT+cvn37Fup4R48eZcKECRgZGbF8+XI8PT0LfE1YWBgDBw5ElmVWrlyJp4MdxD6AxHgll1R6GuhlJaAztwAbe2XyuJVtrnmkZFlm3759LF26lMjISMPjfn5+tGvXjpYtW+bfxfwgEnb+DeEhyDIka9K4olWzMSiUUxEPDJs5OjrSuXNnunfvLupLvSDWrFnDokWLcHNzY+XKlcUKiGVZplevXsTFxTF16lSaNm1a6NcmJyczduxY/P39cXNzY/HixYZJwYU1ffp0tm/fTvny5VmyZIlhBe/TcPv2bU6dWoGn52+Ym8eh00ls2uTO0aNOuLi4Urt2bXx9ffH29sbV1RU7OzvMzMyQJAmNRkNsbCz3798nNDSUoKAgrl69yq1bt3Lc3BgbG1O3bl2aNGlC8+bNcXS0Bf7M/JOa7WzsUIZHfFCGSxrwsg6DPCmiPRSNaA/PXqkKqP73v/9x+PBh3nzzTUP6/jwd3AanDgIg12nK6z8vJzounnnz5lG9evVCH3PcuHGcPHmSTp06MW7cuIJfIMvM+/wjzIID6FSlAmUdCpk93cIK3LyUbO0ePlDGEy0S3333Hfv27QPAzs6OV199lS5duuDm5lbo94Asw/XLcHK/Ur4GpYM3XmXM8WQdv5+7yr34REAZG2/dujVvvfVWke+whGdHq9XSr18/YmJiGDt2LJ07dy7WfoKDg3nvvfcwMzPjn3/+KfLcjYSEBIYNG0ZERARdunRhzJgxRX79m2++SVJSUol6FfJz7tw5/vhjGR4ee2jT5j6SBHFxppw61ZVKlbrSqFEj3N3dizWhOCkpiQsXLnDq1ClOnz6d46YHoFq1arRt25Y2berj4HAGOARcRRn6yE6Ncrc+HBDD8EUl2kPhifbw/JSagEqWZV599VWSk5NZsGBB/mVn/M/Cv2uVf7d7jTN6U7744gssLCzYvHlzkRpJQEAAI0aMwNjY2LASI09REbDzb+5fOktYWBi2NjaUL19eqdNna6+kOTA1A0kFOi0kJynZz2MfgPxIklKVEefC7nE0+A5hWomGr/Wi61uDMDU3L/S5P0aWlXxVV85AwEXIUFZh6I3U3LRy4reAEI5fuAQoEzA7d+7M+++/X6hJ+cKzdfjwYf73v//h4ODA2rVriz2J9c8//2Tx4sU0bNiQH374oVj7uHLlCqNGjQJg8eLFRZ4/kjXvpUmTJkybNq1Y55Cb9PR0Zs2axY0bG3jjjTs4OqZjY2MLtKFMmR+wsHiyPbGyLBMSEsLx48c5evQo/v7+hudUKhWNGzfmtddeo0GDWkjSLZShj2DgEspKKlCWmc9EWU0lFJZoDwUT7eH5KzV5qCIiIkhOTsbExCT/X9CUJNi7Wfl30w5oazZiQeb8p86dOxe5oVWpUgVvb29CQkI4efIk7du3z33DwIuwfS1otZhaWnEkWc8DEzMmffytksIgPxnpcD9cyXp+9zaE3SbhXgTSvbu0sFRRvnx5bOJuweJp4F4WylaE8lXAqUzRys1I0sMesDavKud87giqqEgqxUcyzceGyDZDWXTmKgcOH2b79u0cOXKE0aNH07Zt28IfR3jqjhw5AkD79u2LffHQaDRs2rQJoHDzEfNQvXp12rdvz549e1i9ejXffPNNkV7fpk0bVq1axfnz59Hr9U9kmEOn0/HVV19harqDkSPv4uzshLOzH6amY4DCD+MUhSRJ+Pj44OPjw4ABA4iOjubgwYPs2bOHgIAAjh07xrFjx/Dx8eGtt96ibdsu2XoBzgLfAJeBRSiTdoXCEu0hf6I9lA6lJlN6dLSy7NLFxSX/sfHzx0GTBi7u0KQdy5YtIzg4GBsbGwYOHFjk40qSRKNGjQDlziNXF47D1tWg1UK5KtzrPogN8ToCUzIKDqYAjE2UIKd+S+jxNoz4mtmJxvwRqyWuYg1sqtZUtknXKEk7D22H5T/CrzPhxD5lblZRmZhCzYbwzifQ+z2lyHK6hjLXzvGNjy1LJn9NpUqVSExM5Ntvv2XOnDlotY92ywrPy9WrVwGoX79+sV4vyzLz58/n/v37ODk55X2jUEj9+/cHlAtbUZMqlitXDiMjI9LS0oiJiSnReWT5888/0et38/rr4VSsWBFPz8GYmq7maV08cuPo6EivXr345ZdfWL58Ob1798bCwoLbt28zZcoUhg4dmu2uvR7wdea/N/Jw4q5QGKI95E+0h9Kh1ARUWfkvChzXvZH5H1K/BVcDA1m7Vhn6++KLL7CzsyvWsX18fABlwnkOmjTYswl2b1SG02o1hl6DUFkr86Z0Ol2xjhd69y4HL1zmfBpUHTEG3hgBH02Gd0ZD2+5KIWS1GmKi4PAOWDgNtq9Xfi4qSYLyvkqtwC59lblc0feoeHInCwd0Z9BbbyJJEps3b+brr79+IUo6vAyy8t8UZqFEbv766y+2bt2KJEmMHTu2xOkzKlSogKenJ1qtlkuXLhXptSqVylB77UlkuE5ISGDfviX063cHLy9PrK3fBcYBz69Yrre3NyNHjmTdunUMHjwYCwsLgoKCGDlyJPPmzcus+tAIJfGhDCzI/FsoDNEe8ibaQ+lRagKqrGAoOjo6/3p5D+4pf3v48Pvvvxsyqzdv3rzYx8765TbU+nsQqfQSLfkezh9THmvaHjr0BJXKkLOquMHHr7/+CkCTJk0eZs1VqZRet3rNlWLJI/6nBEBuZUGvgyun4deZyNvWEOp/mZMnT3Lo0CFOnTpFSEhIwb1LkgTV68Pgz8CvLsgyqjOHeEeKY9bnozE1NeXEiRNMmTLl6dcrFAqUFawXZyXTpUuXWLBgAQDDhw8v9l39o3x9fQG4c+dOkV+b1WaeRC/oli3LefPNQGxszLC374wysbV0LMm2tLRk4MCBrFq1ii5dugBKYfWRI0dy//594AOUmRZngMPP8UxfLKI95E20h9Kj1Myhcnd3R61Wk5KSQmRkZN6r3DIv9loZzp49C8Bbb71VomOnpKSgBuoZpcPy2RCVbeWCnSO066H08mTKXk/qsTHwjHRlrlRMFGRkKIWNrW3ByRVsHdjyzz8cOHAASZIYNGhQ3idlaqYEQNXrQ9htNId3En3yMNGXL5OWoeVwko49SXo0mbGPqakp1atXp1mzZrRt2xZb2zxWH5pbwiv9oXJN2PkXRN+nTswDFg3sxQfL13P48GFWrFjBO++8U6zPUngyHBwcuH//Pvfu3Sty+aW5c+ciyzKdOnWiT58+T+ycsso0FadoeUlvQrKEhh6jTJnvcXBIx8GhPpL0FcW9eOh0OsLDw4mJiUGj0WBsbIydnR1lypTBvCSLQ1BuEMeMGUPr1q357rvvuHHjBh9++CGzZs2ibNn+wB/AbKAakHsCYuEh0R5yJ9pD6VJqAipjY2N8fX3x9/fn/PnzeQdUNnYQH0NaeKjhrqVIKQZykXznFp85q6mmi1eCKZURlPNVenIq+Sk/Z2Nvb4+xsTEZGRncu3dPOb5eB6cPwckDoEnN9ThRicnE+1+nuaWKOj36UqlixUKd35XYJL5ZvwvLxFhetVFR2VxNNxdz2rsZs0dryr6IGFJT0zh79ixnz57ll19+oV27drz55pt5J62rWA08PlOGNAMv4h1+g2Wta/HFgbP8/vvvNGnShMqVKxfhUxSepIoVK3L//n38/f2LlADwzp07BAcHY2JiwocfflispdF5yaqFWZwvVxsbGyIjI4mLiyvm0fVERy8lOvobHB3TkCRXnJ2XA4WrxZlFlmWOHj3Kv//+y7lz5/IswO7m5kbVqlUNOXYezw5dOA0bNmTRokWMGTOGkJAQPv30U375ZS4uLieAG8Ak4EdK0VdxqSTaw6NEeyiNSs2QH0C9evWAhz1PufLwAcDy/l1DFfDr168X/6CaNPyuHsfVWEK2tFbmMH34NfQaBL41HwumQBkD9/b2fnhsbQZs+F0ZJtSkgpUNVKgG1TIDMlcP4pOTCbsZRHUziQ8quNIz9iYsnAr/rIIzh+HOTUhNfuxYR44c4dNPP1UmL5bxxO3jb/CbMIMqjZpSu2J5Pq/iwbZBPVkxdzbDhw+nUqVKaLVadu7cyTvvvMOcOXNITMxjUru5Jbz6JnR/C8wt8DRRMcXXheYWEj9l3tUJz0dWWzh+/HiRXpc1ydXFxeWJF/AODw8HKFZxV3d3d6B4wyMQQUzMm4SHf4UspxEZ6Ua5cjuQJI8i7SUkJIQPP/yQr7/+muPHj6PRaDAzM8PLy4uKFStStmxZw2cWERHBgQN7WLZsKh999ApTprzHgQP/kJGRUeSzd3FxYe7cufj4+BAdHc2ECZPIyPgKZY7LFWB9kff5shHtITvRHkqrUhUG1q9fnxUrVhhKr+R6N1GpOlw9hxR4gaaNG7Nn3z62bNlCtWrVinfQiydQpyUTo5WJbtoV73qFm4vl5+fHjRs3uHLpEq2ib8GtQGV4r0NPJZDKNgwYHx/Pu++8jU2Klp71alC7VjWksNuQlKCkNgi8+HDHVjbg7I7s5sme67f5YeUadLJMs2bNmDBhwsM0/xWqKIlNT+5DCrmB193beDVpS98FCwi4fp0//viDY8eOsXnzZg4dOsTYsWMNqxkf41sTPMrBjvWUzcigd1w8VyKvcebwQRq0bF28z1UokebNmzNv3jwuX75MbGxsoXOFZX1RR0REEBcXV+yFGrkJDQ0FKFSpjkf5+vpy4MCBvFfS5uk6cXEfEBp6idRUiTNnGvHmm6uxtS3aHfKePXuYOXMmGo0Gc3NzevToQYcOjfDxMUGSYoEkIAG4j0Zzi+Rkf9LSbpOYGJ85pHMN2MCxYzaYm3ejVq3JmJoWvkiura0tP/zwA++//z5BQUEsX76b998fBfyAklW6N/+VXDxPg2gPWUR7KM1KVQ9V1apVsbCwID4+nhs3buS+UYWqykq1pATealIXgF27dhEUFJT79gW5E4w2I4MDyXps3Qof4desWRMA90tH4eZVZVVe78HKnKdH8oqsXr2a2PgEVJ4+dJk0A6n/UPhoEvT7AJp3VIbfbDO/IJISyAi6wq1VS3Da8xcTXY34qmlNJo0elbNwp9pYmSj/7mfgU0lJJHpkF/z+I1WtTJk6dSpz5szB29ub2NhYxo0bx6+//pp3r5OVNfR+F+POfXBwcaaamQpp5Tzk8OLcQQkl5eLiQpUqVZBl2ZCDpzBcXV2pUqUKOp3OsAL2SUhNTSU+Ph4AD4+i3QkD1KlTB1CyOBd+Im4kKSkjCQm5TEiIGbt2DWDIkE3Y2xf+4pGSksLMmTOZOnUqWm0qvXqVYf36xnzwwX7KlRuNJI0AvgK+A34G1mNqegYHh1Tc3V3x9a1G1arNcHQsh7GxMTY2CRgbr+b8+VqcOLGsSL24Li4ufP755wCsXbuWkBBfwBFIBPzze+lLT7QHEO2h9CtVAZVarTYEKhcvXsx9IyMjJWgBvB/cpW3btsiyzPfff1+sCX6yJpX09HQSdHKRJjtWq1qVPrZGlEuNRQ/w6ltQtsJj26Wnp/Pvv/8C8MEHH2Bikhl1G5soCTybtIeeg+CD8fDRZE5WrM/0s9c5EBlLmixR2cuTdnamGC2fDf+ugYS4nAewc4Q+Q6DbgMyUCPdhzULY+Te1fCuzePFievbsCcDKlSszG1IeDViSoG4zbIZ/RbRewiglkcRFPyiZ14VnrkWLFgAcOnSoSK/LWlCwbt06AgICnsi5KCtywMLCwjDUXhSVK1fGzs6O1NTUQt6Vy8jyNO7evcqdO6YcPtyT8eN/zHlTkd+rZZm9e/fy9tsDuXp1Lf37h/Lrr3GMHBmJpeV+IGvhiTNKbbH6QBvgdeBjYBbK0MMuzMy2UrbsOapUCUKj+ZzERFtMTZORpDHMnPk+Dx48yO0UctWiRQuaNm2KTqdj3ryfkeWsihC3C72Pl5VoD6I9lHalKqACDHX48v0lq9NU6QUKvcnH/ftgZ2dHcHAwP/74Y5Hn/cRrMtDp9diaqIt0p+EafIXmVmr0skxM48xeplycPHmSpKQknJ2d8x5yQ1lh8eMvCxj30wL2RCdz3LEczhPn4TJsLFK5KsrqRv9zsGwGnDqgTILPIklQtQ6897mSzBPg0kn4dSYmIUF89NFHjBs3DiMjI/bu3cu3336bbw4t20pVuNnkFa6k6YkMD0Pevg4ObDOssBSejaxUIBcuXHiY0qMQGjduTNu2bdHr9XzzzTeGpLklkZWjrbgLQCRJMsyDKVzent0kJh4jLi6FP//0ZezYSYaVUQXx9/dnxIjhbNz4BYMGHefzz+/wxhv2lC3rgCQ5AT2B74FtwDpgITAD+B8wAugB1EVZbfRw2oFabUvjxl/RuPElTEyaYGoqU6/eFoYNe5uTJ08W8pOAkSNHolarOXv2LMHBWSvE7hX69S8r0R5EeyjtSl1AlbWC4/Lly3kHRzZ2UFnZzubaeSZMmIAkSezYsYPly5cX6XiXQpRx8DrlvAtf0uDOTaRjuzFSG/FXnI4Y17J5brp//35AKTeQ1woTWZaZOnUqW7ZsQZIk3n77bRYsWEDFypWVEjR9BsNbo5QJ+doMdPu3EjXvW7b+sYKFCxfy888/s2rVKk5duoKm9avQfxg4OCsZ1jf9Dv+uoVPrVkyZMgW1Ws2hQ4eYPXt2vsHn628NZFWymo33EkmIj4fTB2HLH0q2eOGZ8PLywtXVFa1Wm3ePbR4+/fRTypYtS1RUFGPGjMl7YUIhXbhwAaBEKz+z8vYEBxeUFTkdWMqDB1Hs2lWGJk164eRU8FLq1NRUZs2axSefDKdBg528/34I9evbUaVKLaytXwfmoFwwPkJJKli8xIcmJjb4+a2nUqWWeHioadfuGuPHj2fdunWFuqFzc3OjX79+AGzceDozqXExpyy8RER7EO2htCt1AZWvry9qtZqYmBgiIiLy3rBhG+XvwIvUK+/Nxx9/DMCKFSv4+eefC5XF3N/fnz3nlbuDxpXKF+4EZdlQS/BkiszxFH2eWXfv37/P4cNKsrL8Sh2sXr2a/fv3o1ar+fbbb3n33XcfC+7S7J3ZYV+OpWEJnLl4mbunjuG4bSWXNq3jr7/+YunSpYwdO5ZevXoxb9M2YrsPgoatld4r/3OwYi6Ny5Vl4sSJSJLEv//+y19//ZXnOTk4ONC7d292JOpZHJaIrFLB9cuw4Tcl15bw1EmSRIMGDQA4depUkV5raWnJd999h4ODA8HBwYwePbrYd+aJiYns3LkTgKZNi1/KwtnZGYDY2NgCttxIenoYISFpHDrkbBiyzk9UVBQffvghO3duYdiwYNq3V1GtWnXKlPkYleovYAxQi9xy9CQmJuLv78/BgwfZuXMne/fu5eLFiyQkJORzREssLSdTqVJlunaVqFIljgULFrBo0aJCXUTeeustXFxcOHlSS2RkJHAeuFvg615moj2I9lDalbqAytTU1BC553sX4uoOWUNhx/fw2muvMXz4cEApMzBq1Kh80ymcPXuWcePGEaHRYW9nh5tJIT+KW9fgQSQZKiP+fpCKJEmUKVMm100XLVqEVquldq1aVLIwhqO7YNMKWDUffp8DK+eR/Nsc0jb8TmdrFVPf7EOzyhUgswwPKNnbV6xYQd++fflh+nRWXbzGD/fTuW9kRhl7O76s4s5XHZrTvl07XFxcSElJYcOGDbw1aBA7UlUwYDjY2ENcNKz+mWbONowcORKAhQsX5qgQ/qj+/ftjbW3Nv7cjOOlZXZn3FRIEG39XUkUIT13WBeT06dNFfq27uzuzZs0yXESGDh1a5Dt7rVbLd999R0JCAt7e3jRp0qTI55Ela45j/j3BicAq7t27x/btrlSvXq/AciMJCQl88skn3LoVzKBBD+jQwY2yZathbPwzMJRHc/MkJiaye/dupk2bxoAB/Rk2rD1r1vTj6tXBxMcPISnpbQIDu7FoUQM+/XQAq1atyuOiVxOV6nW8vLz46isVzs5prF27lgULFhR4ETEzM+Pjjz/mwQMzDh7UkJqaAszjv1B+42kS7UG0h9KsVKVNyFK3bl38/f05deqUIV19rpp1UNIVXD0PDVvTt29fXFxcmDFjBgEBAQwdOpQaNWrQtGlTypcvj5mZGffu3ePQoUOGlSL2flXx8rKA+BilOHFBxY4zJ2jftXcjVQZPT49ce6h27tzJvn37qGJmxERva1j9S667iw4Npa4ZWDvZUiHqppKp3cQUvCtyx9SGr1eu406EMmHQzc2NLl260Lp1azzd3JD2bYGLJ/BEQ/vadZHHj+fs+fMsXbqUa9eu8cMPPxDQvTsffTASo+3rlGBwyx/0bN+Tq+3asXfvXqZOncqyZctyTU5nbW1Nv379WLp0KT9v3UnDaZNQ/f2rElRt/VPJX/UEKqULeatbty4qlYrQ0FAiIiKKPGfDx8eH+fPnM378eEJCQhg9ejRdunRh0KBBBS7CiImJ4bvvvuPMmTMYGxszfvz4YpX+yJKVcydrKXvuVpOUFMGVK8mcOePJnDmD8t2nLMtMnz6dsLAw2rWT6NPHDhMTM2AqUD3HdmfOnGHTpk2cPHkSS8s0WrSIYujQWGxtMzAxMcbY2AQjIxV6vYr09HQqV05Cp9vJ1q2X6N//d3r27MXAgQMNpaoUHyBJV/HwuMqcORl8/HEa69evx87OjjfeeCPfc2/atCktWrRg48Y0ate+S5Uqp5Cko0Dxy2j914n2MCjffYr28HxJcinM3nj16lU+/PBDLCws2LRpU/6T7zatgKArSm9Vn8GA0t25ZMkS9uzZk29k3L17d0aMGIHprzOUnFD9h4FXPkN/Oh3MmwgZGv6QHFi2bSddunRhzJgxOTYLDw9n8ODBNFRnMMLXQ+nBMjZVcke5lVV6jNTGJCclMmXCV1jKWgb37oG7iRHcj4AMDQmJidwKDiZVp8ffyJJKb31A846dc5a5ASUp6IGtSk9dperQtT96IzWrV682pElo27YtX40fj2r/P3BBSYyX1vpVBs36mXv37vH6668zYsSIXN9yamoq/fr1IzExkcmTJ9PC2x3+WqakaajfAtq8mvfnJTwRo0eP5uLFiwwbNsww16CoUlJS+Pnnnw0rTlUqFY0bN6ZZs2ZUq1YNd3d3TExM0Gg0BAcHc+jQIbZs2UJKSgqmpqZMmjQp30UVhfHxxx9z6dIlPvvsM7p165bLFpGkpfUlKCiABQu88Pbux9ixY/Pd59GjR5kwYQLW1vDnn8ZYWmYA7wJvG7bx9/dn/vz5BAYGolLpadfuPq++moijoyVWVtZYWDigVtdBWd3kCVgB8aSlbSM5+TAPHjxg3z4z/vrLEwcHF8aOHftIPbg4YDQQQlhYMuPHS4SGWjBp0iRatmyZ7/lHR0fz9ttv07r1DQYPNsXRsTGwiNJSi600Eu0hb6I9PF+lMqCSZZnXX3+d6Oho5SKeuVw2VzFR8NssZZjs9SHg83CSYFRUFAcPHuTSpUuEhYWRnp6OnZ0d1atXp3PnzoZs52z5A65dUlIYNO+Y97GiImH5bGRjE14/EkB0dAxTpkyhWbNmOTabNm0a1w7sYUI5OypWrIhUuwm07KLU58tm06ZNzJ07l/Lly7N06VJl0rpeT/jFs/w55WtqqHVUdLDF29sHIzMzaNwWGrRSUkdkF3gRtq1RVv65eytpGCwsOXz4MJMnT0ar1dKzZ08+GjVKCb7OHAZJwt+3ISNnz8fIyIjly5fn2ZW8dOlSVq1aRf369ZkxY4ZyvH9WKU927A21SvbFIuRvy5Yt/Pjjjzl/T4rJ39+fZcuWcf78+ceeMzIyemzuYeXKlRk3bhzlypUr9jEB4uLi6N27N3q9ntWrV+fas5CW9g03by7k6lUT9u59hblzf8pzfiIo3xPvvfcet27dYurUMjRtGgl4A0sBNbIss3LlSpYvX44syzg4GPG//2nx9dVkLjf3A/oBjYHcbtpkYCOyPJ/ExHhOnUrkt9/siYiwZMiQIQwYMCDb/0UcyryUIG7fvs+331oQEeHM4sWLCxyiWb9+PcuX/8S0adepUaMKKtVyoGSf93+ZaA+5E+3h+SuV4zWSJNGhQwcAtm/fnv/GDs5KGgWAff/kSCfg7OxMnz59mDx5MsuWLWPlypXMmzePoUOHPgymQFlJB8qk6/ziyxRlZUhofBLR0THY2dnRsGHDHJtotVoOHTpEaysV7u7uSFVrQ/sejwVToCQkBXjllVcMv4iyJDFlyW9sjdGww706ZT+dhJGHtzIR/PAOZe5VZGjOHVWpBX3fB1NzCA+BP+bBg0hatGjBhAkTANi4cSP/bt8OrbtB9QYgy/jdvEDn+rXR6XSsXLkyz7fdtWtXQJl3FhMToxyvWWbguXsjBF/L+zMTSqxNmzYYGxsTHBxMYGBgifbl5+fH7NmzWb58Oe+88w41a9Y0DPdmXTysra1p0aIFU6ZMYeHChSW+eIAyBK7X66lcuXIewzQhREauJD09nePHa/H99z/ke/EAOHHiBLdu3aJSJT0NG4ZnPvoRWReP+fPn89tvvyHLMt26tWL1aldq1ZIwM3NASV44D2hB7hcPUO6KeyFJU7GxcaNtWze++y6aIUNucPDgLObPn5etB9wOZdVUHby9nfn00wfY2ipDRPpscyJz06NHD2xtvbhyxYwHD6KBwi85fxmJ9pA70R6ev1IZUIESZIDyS5Lvaj9QMoabmUP0PbhYtNUfAFT0UzKPR9+Du7fy3s7EjNTUVO5cVxrxwIEDHxuOvHfvHhqNhqrmaiXhW91mykq7R4SFhREQEIAkSbRp08bw+JEjRwgICMDc3JyvJkxAXckP3hoJr/QHCyv0DyKJmfctf382nP79+vLKK6/Qp08fxv28mL1lfNFZ2ynzwf74Ga5foVWrVrz33nsA/PTTT9wJDYWOvZQkpBkahrmaYy7Bvn378lxt4ubmZshSbMgv0qSdUjxa1sOWlRARmutrhZKztrambdu2gJKc8Enw9vZm0KBBzJ07l23btrFlyxbWr1/PP//8w+bNm5k8eTLNmjV7IsVk4+LiWLNmDaAMs+cmOflXYmNjuXzZlmHDZheqRMj69esxNtbz2WfpqNUqoB1KvhylF2PDhg1IksRnn33KZ5+lYmoajpKJ+RegPYUfRmgC/IpK1YGyZcvSoYMtw4YF4+ExnZUrv812EbEAvkOSalGpkjvvvXeXoKArbNu2Ld+9Gxsb88Ybb3D9ujVRUVHIcj61TAXRHvIg2sPzV2oDKi8vLxo2bIgsy/z555/5b2xmAc07Kf8+ths0hU/6przeHPyUJGsc3pFnL1VEuo6gm8FYoqdN7Rr06NHjsW10Oh0WElioJOXX0zn3SZMHDx4ElKKf2St3Z6Uy6NWrF46OmbWRJAn86hLQ5BU2Xb1JyO3blI+8ST99LObpqURHR3Py5EmmLFjCu3vOctfIDDI0sHkFHNnFm2+8Qf369dFoNEyfPl1JgdD9LbB1wFbW8klFF3RaLXv37s3zI8oaIzckoZMk6PQ6eFdSes/+WgpRBQS+QrH17dsXUH5vQkJCnui+JUnC2toaJycnrKysnshFI4tGo2HixInExcXh4+NDp06dctkqAY1Gmcty61bDQuX2CQkJ4fz58/TsGUa5cirAHhgFQGRkJAsWLABg6NChdOumB04Bpii1wh72TkdFRbFr11ZWrpzC3Llf8sMP37N06VIOHTpEUlJStiO6ABOAlTg7f4CnZwXKlUumSpU57Ns3Ldt2psBkTEzcqFnTjg4d7rF8+XI0Gk2+76dDhw6EhTmTnp5OYuJxQOR7y49oDzmJ9lA6lNqACuDNN98E4N9//y24KnfNRkoZlpQkOHe06Adr3FbppQq7nWuplejoaD4dNx7/JGW8eUynlo9PEEcp+mihAp1eh15trKQayMWJEyeAh9l/QclbdenSJSRJ4rXXXsux/cmTJ/lo7HjmhcSyMd0MJ3cPOvhVZlWHBiwf9wkffPABrq6uhEbH8M4/hzmSKikLTo/vQdq6mi8++QRzc3P8/f2VOwRzS+j5DqiNqW1nQTcbFQcOHMjz46latSpAzlQURkbQ421lon1aKqxbovTyCU9c+fLlad68ObIss3jx4ud9OoWSlJTE2LFjuXjxIhYWFnz99dd5LBHfjl6vISzMnIyMSoXa95YtW6hbN5ZOnbSYmJgCXwK2AIYv7Fq1atG3bzsg6/P6AFDKQ/n7+/PNNyPZsKEx9vZvU736LFq2XECjRrO5f38W06ZNoGfPnkydOvWR7x4PYBTOztuxsGiOsbGMre0srlz5O9s2tsDHODk50bFjPFrtPXbv3p3v+zE1NaVixY4kJqpJTLwPFG05/8tGtIecRHsoHUp1QFWzZk2aNGmCTqdj5syZ+Y+9Ghk9nFB+7mjR8yTZ2ClpGAD2blEmu2fKyMjg66+/JjIykgBzBypWqIBZwHlIejzbro2NjaG+Ul5RuEaj4erVqwA5VoocO3YMULLFZyV9A6VS+qRJk9BqtTRv3pyxy//Ea8JsrCr7YaYC70tHGOBszorffuONN95AD3y9/xTbZStQGcG1S7gc2sKQtwcCsGzZMqViuLMbdOmLrZ0dbayMMLsVQFxcXK7nXL68svrxzp07Of8fTEyhz3vg6qEEs+uWQHxBieqE4hgyZAgqlYpjx45x9GgxbhqeoQcPHjBq1CjDxeP77783/A7llAFswMjIiCNHnIiPzy95oEKn03H27HZefz0UJydHYCBK7THlxmfPnj0ADBs2FEn6EUgBqgI90Ov1/PLLL8ycOYiOHdfQsGEMtrbm2Nu74+bmSdWqTgwcmMHUqbdp0iSCAwd2MXjwYH777bdHJig7U7nyRtLS6mBkJHPv3qfExmZPFNkclao6bm6OtGp1ny1bthT4vho0aIi/v01mT8D+Ard/2Yn2oBDtofQo1QEVwEcffYS5uTmXL1/m119/zX9j35pgbadc2AOLEdHWb6mkTcjQwOaVhozgS5YsISAgAGtra4b98CPGXuWVgO3orsd2IUkSlg7KUJ02NUVJtfCI4OBgdDodDg4OOZKCnj2rjBU/uhx34cKFpKamUqNGDb755hsl74etPfQfqvSsAZw/hsnWVbw/6B1DBe8Z2/dzsmwNJegJDaaHLgYfD3fi4uLYuHGj8roqtTBp0Qlzc3P62RpxZe/OXD8aFxcXVCoVWq328blWZuZKgWZHFyX9xF9LIS0l1/0Ixeft7W1YJj5jxgxDgdbSJioqio8++ojbt2/j6OjITz/9ZCgp9bitwH3UahfOnrXn7t2CsyNfvnyZVq0CsLSUsLJqSPYl4bt370an0+Hn50eVKteAYyjp9j5HliWmT5/OiRPLGTYsGC8vW3x9u1K58i58fK5QpsxZXF1/wsurCfXqVWDcOEt+/PEebdqE8/ffvzJmzBjlRiSTJKmpW3cdkmSNg0MCGzaMzjZ/RALewsHBgSZNYrl9+1qBJUZq1KjB2bP2pKamotfvQ7nwCXkR7UEh2kPpUeoDqjJlyvDZZ58BsGrVKjZv3pz3xiojqN1Y+feVYkxkU6mg2xtgaQ0PImHnX5w6eZL169cDMH78eNw9PKBNZs6Qy6dynTekMzFDo5eR9XqIebyRZzWS7CsNZVk2FISuVauW4fHw8HAOHTqEJEl88sknObuIVUbQorOSJkFtDLevw+aVdO3SmbffVhrVt7+vJq5TPzA1QxUewtd1KgLKXC1DD1qzjmjcfVBLYHdgC6Qk5/LRqLC3tweUBHePsbBU0lZY2ym9e5tX5hpMCiUzaNAgKlWqRHx8POPHjy9xTbInLSkpiS+++IKIiAjc3d2ZP38+FSpUyGPrFGAFACYm76HVqoiLiyM1NTXfY1y7tpfateOwtrZBpfoceJhGJGtuYt++5VBWLYEytFGebdu2cfToVoYMuU3lymUpW7YnFhbLUJaLS4AJyuTc34BPsLDwpnp1N0aMMGXy5AAqVNjMt9+OzFGY19TUCXf3kUiShLn5QUPCYEUj1Gp3XF0tqVYt3lDXMy/Ozs5ERLhw/74p6emxQO43N8JDoj2I9lCalPqACqBdu3aGAGHOnDn8888/eW9cTVnVQOhNSIgr+sGsbAwZwNMvnmLHzG8BZSmnocyAZzmlOLMsK3mdHpGcksLtDBmVkREEP76sN+tOKntm3gcPHhAXF4dKpaJSpYfj5lmpFerXr5/3ct2K1ZS0CWpjJRv6yf288847+Pr6kpyczNKtO6D3YDBSU06XwuvudsTFxT2cM6VSYdr7XaK0Mvq4aPRb/shR/iaLjY1SsiDPmk7WdtD7XSWJ6Z2bsD+f/yehWExMTPj222+xt7cnODiYzz77LM9h2mdNq9UyadIkQkJCcHJy4scff8yzLJNiA0q+Gk9MTXsZsk7nnPz6OLVa+SJOT69N1hwQgPj4eK5du4anZwqNG28H9EAHoA9JSUksWrSQt94KoUoVZ+ztawGTUSbNPnYEoDuwGhiPvX1DqlSpQPPmcfTsuYkNG97LkTDYxaUfLi4uVKqUxOLF88nIyJpuIAFtsLe3o0aNePbu3ZtvomGljJUbhw87ZZYl+SvzPQh5Ee1BtIfS5IUIqEC5E+nTpw8As2fP5s8//8z9P8PGTkkJAHC56PWeAPAsR1rDNgQHB9PJOJ16Fcsb6gQatHpF6SG6HaSUYsmUlJREZGQkF1NlJW/I5dOPrRp88OABQI6K4bduKekavLy8MDF5OJE9a15Vu3bt8j9nDx8lySbAif2o0lIMNft27NjBfWML6NQbSZLo5WaDl7FkKPAJ4FuzFn9rLUjT6Um6eiHX4Uxra2sgn4AKlHlZ3QYoqwDPH8t1gr9QMq6ursyaNQs7OzuCgoL48MMPC1608ZTJsszMmTM5c+YMpqamTJs2rYBSHjKQ1dv8Dnq9yjA3r6ByHtbWNwGQpNY5Hr906RKWlul89NE9TEx0KEvGxwASW7dupUGDYGrW1OLs7AlMQlnWnR810BFYiIXFEtzdO2NiAlWr/su5c99k264srq6+mJurUauDDdm3FU2wtbWlWrUUIiLCDXMn8+Lo6MjJkw6kpRkD4cChAs5REO1BtIfS4oUJqCRJYsSIEYZ6QIsXL2b+/Pm5T1SvmZls8+KJYhXxTU9P58sNO/CPT8HSWM2kFrUxebT8jZ3jw+HFQw9TLVy4cAFZlrnv4IaxhSXEPoCgnAWIs3qosk88Dw1V8jiVLVvW8FhiYiI3btwAHhYFzVe1OsrkcG0GBFygevXq1KlTB51Op0wC9KsHVWtjb29PXzsjLly4QHx8PKB8vhUbN2dtnJaE+Hg4uV8ZQsz+ljNzoRRYHb1iNSXrPMCuDRD54lUNL+3KlSvHTz/9RJkyZQgPD2f48OHPbWKuLMvMnTuXnTt3olKp+N///pejlzV3d4AHKHfErQgNDUWWlZsQW1vbfI9lY6NMdrW2rp/juYCAq/TvH4qrqxplKfi3ZCU1PHduNV27RuDi4owkfUT2peIFk4CaODmtJD39dQCMjBaQmHjF8LyRkR+urq54eqaydu3abN9L1VCpzHF3t8TVVVPg6iY7OzsyMoy4dat25iOreNEKxD4Poj2I9lAavDABFSgX/ffff99Qd27Dhg1MnDjx8dV0lTMnpycnwvnjRTqGXq9n2rRpnL9wgS0aE8pXrITlvVC4GfD4xo3bKmkRIkOV0jVgSHxZq0FDJaknwJEdOTK4h4WFAeDh4WF4LDw8/LHHgoKCkGUZNze3HLmq8iRJSlAFcEsJhrLSL+zatUvp0WvbHVMraypYm1PTlBwlFxo3bsy5VJlD8elKgLh9XY7J5Vl3WJGRkQWfS9P2UKGqUvNvy8qi5wYTCuTl5cWCBQuoWbMmKSkpTJgwgUWLFqHVPrucLTqdjunTp7N582YkSWLs2LE0bdq0EK/MWkXrDhhz6pSSkNfPzy/fO/KYmAhMTZWbJCcnvxzPpaUdplq1BMzNrYGJZN1xh4Rco0OHk6jVEtbW3YFXivIWs5GoV+9nwsPLIstaAgO/zPZcBRwdHShXTiYiIoLTp7N6x9WAL/b2Dnh7J7Nv3758/3+y5ileulQJMAduAEfy3F54SLQH0R6etxcqoMry+uuv87///Q+1Ws3hw4cZPXp0zonSRkYPUyAc3V3oZfx6vZ6ZM2dy8OBB1Go1H0+agkWrzsqTezZB+iOBm6W1UlsP4MA25LRUwyS8pk2bKs+ZW0D0fUNuLFmWcw2esoKU7GPsWQnrcl9emwevzOHOsFug19GkSRMsLCyIiori2rVrYGEF9VtgZWVFOysjrvo/7D2rU6cOkiSxPCQajaWNsmJv/8OstlmT6LOGJ/MlSUp2d1sH5fPfJ+ZTPQ12dnbMmjWL3r2V4d41a9YwevRo7t17+vnAMjIymDRpEjt27EClUjFu3Dg6dsynFmYOWRXq4wHZMJ/v0bqYj4qIUG4UTExMUKttcjxXvvypzPPqBvgYHo+OnoWTUzqS5IKJyVhKUmjVyEiNu/tXAKjVx0hJyVoaXhGVSkWDBnaAUnngIV+sra2pXFkiMTHRsJo3N66urgCEhsYDmUP4LKc035WXJqI9PCTaw7P3QgZUoNRzmjVrFtbW1gQGBjJ06NCHWbwBqtdXCgVnaGDbnwWuOAsJCeHTTz9l+/btSJLEhAkTqFu3rlJixcYeEuNg/+MT0GnYSklhkBjHg3W/EhcXh4WFBbVr11bSCbToomx3eCc8iCQ6OpqMjAxUKtVjk9Ih50T16GjllzPrl6pQnN2U46ZrICIUExMT6tVTssCfO3dO2aZOU8wsLfE0kUi6+bAOn5WVFd7e3mQAgeVqKg9eOQ3hynyErIy9165dy3cyoYGZOXTt/3A/IpP6U6FWqxk5ciSTJ0/G0tISf39/hgwZYljh8zQkJyczduxYDh8+jFqtZtKkSUW4eACUR7lbjSEi4ihXr15FkiRatWqV76vCwpQLiCTZkP1CkJYWiodHFLIMNjbvZntFBPb2ypd5ePgAwLoI55i72rX7kJZmB+g4e3Z55qO+APj4aDE21nPq1KlsbaQCkgR16ih32zlXPuWUddOiDPX3RbkrDwbEXMTCEu1BtIfn5YUNqEBJ/PnLL7/g7e3NgwcPGD16NHPmzFECEUlSLuYmpkr2810bcp0c/u+//zJmzBjeffddLl68iLm5OZMmTXr4i2xsAl1eV/Z36ST4PxJNG5tAl34gSciXz9DWSkXNmjUfpjeo2RB8Kinzmjb+TnyEMtxnb2+foys3a2VKVhcnYFgum1Wss1BUKiin/DJzXRnT9vNTuoKvXcsMniys0JWvBoDbg5zzm7LmcN1IyVCCUoAjyuT18uXLY2xsTGJiomHYskAePsqKSIBLxaizKBRaixYtWLJkCVWrViUpKYmJEyfy/fffF7hKqKj8/f0ZNmwY58+fx9zcnOnTp+fI+F84poAyFHL37i+AMk/QUG4pD/fuKRNwTUxyDoHHxirJCyMjbbGyyt6ju4709FSuXbPG1rYoF7i8SZIKKytlTuOtW1l33q6AM5aW5lSurCEuLi5bG1HalLe38p2Q3x25r68vkiQRERFBTEwGkHlDxo4ncu4vE9EeRHt41l7ogArA09OTBQsW0LlzZ2RZZvPmzfTv35/x48ezbtdeLnnXICk5maQT+7mx7CfWrV3LtGnTGDhwIK+//jozZszg9OnTyLJM8+bNWbJkCS1atMh5kLIVoXHmKrsdfykpAbLzKg+tu5GSkkw3GyO6Ols+fE6SoOsApRcrLhqH3euxMyLHSj7IPXjKCrh0Rc3nVDmzd+naRZBlQ5Sfvci0qpaSPLSyLiXHxP2sgC4hIQGadlACtJAgiIpArVZTpUoVQEkmV2hZ87oemeQuPHlubm789NNPvPnmm0iSspLznXfeYfv27UX/PcomLS2Nw4cPM27cOEaOHMndu3dxdnZm7ty51KlTp5h77QWAhcUhLC0zchQJz0tSknIDYGzslONxjUZJ5Bsd7ZntUR2wF61Wy/79zjlW1ZaUp6fS65uQcDNzDqcE1EelkmjWTFnAcvNm1veE0sNsZ5eBSqUnIiIiz3xJVlZWhjxFFy5cALI+k7OU1mGO0ky0B9EenqXcCgm9cMzNzRk7diwdO3Zk2bJl+Pv7c+LECUO9vMYWKvraGcGNG0Qm6didoKw4kCQJX19fmjRpQrt27XLMaXpMsw5Knbrrl2Hjcuj3AZTxevh8veYcWLSAWkCNmFDYvRHadlfmc1lYKZnE1y7CNOoenzqp2arLmawtt+Apa1Vdrok081PeV8kFlRgP9+4aVolk/6U1rVSNeJ2MrZEe3c1AjHyVXqSsnjWdTqcEgRX9lPd85Qy0eRU/Pz8uX75MYGAgXbp0efzYufHKvEOKiVLK9ViVvJtZyJtarWbIkCE0btyYH374gbt37zJ9+nRWrFhB165dadq0KeXKlcuz6Kssy0RGRnLz5k0CAwO5fPkyV69eNUwelSSJzp07M2zYMENusuKpiUbjQ3r6BZo0iaZx48YFvkKWlfmQRkaPXgyUVbIaTfZi5MFAIqmpKoKCrPOom1Y8dnZuqNVqVCotN2/epFq1akBDYDvVqqUANtluYOxQVj6p8PCwJDQ0mcjISEMakkfVqVOHGzducPbsWdq2/Tjz0Xgggaz6bELhifaQRbSHp+0/EVBlqVOnDvPnz+f27ducOHGCgIAAIiMjCU1O5oBROq+YpPOqnQkt3HxIb9cDvxo1sbKyKtzOJQle6QepyRAaDOuXQt8PlDQFmc9vT9ARkqzjc2MTuHBcybb+6ptKslAHZ3hzJKrVC7C6do0BJKP7ZzVGLbuArT22trbExcURExNjmITu5aUEbFmpEwpNbazk4rp5Fe7eRqNWflGzNyBjExMupuppaWWEHHQFMgOqrBWThh60qnWUgOrGVWjzqiG5aFaah0Ixs1A+p3thyjnValTwa4QSq169OsuWLWPjxo38+eefREZGsmzZMpYtW4aFhQVeXl44OjpiYmKCLMskJycTExNDeHh4juzHWVxdXWndujXdunXD09MzlyMWlcTNm7WATbRpk46dXcFfjhYWyo2ITpfzy1elUnKjpadnf1xZ6BEba4MsS080i7YkpWJmZkpGhkRkZGTmBaQ2AE5OSZiZWWa7EVKhrLBKxsHBjNDQZJKTH69GkKV+/fqsX7+eM2fOoGSrtkDJop1IabuAvEhEexDt4Wn7TwVUWXx8fPDx8Xn8iavnlFQAej3cuQJ16xZtx8YmSpmXv5ZBeAisXayUW3FTAh8jIyMOJOsZ2KQT5QNOwt1b8PscZcjPpxLY2GE6+FNO7j1EQxMd6eePY379ElSpTT03J0JCQggODqZ+fWXuUvXq1QGl9l9MTEzhUidkcXSGm0BCLMFxypJcd3d3w9M6nY4gjUxLK1DdDzc8ntXIDIGmd0UlmIyLhsT4nEOCRVGllhJQXTktAqpnyMTEhH79+tGjRw/279/P/v37uXjxIikpKQ/n1OVCrVbj7e1N5cqV8fPzo1atWnh4eOR5F19cgYHOeHlJuLnpUXLx5J8Px95emaWQmJjzqysrTVxiYvaVuMq2NjbKMPqdO3eoWbPmkzht4CoqlYqoKLNsmaDtAAeMjO7h6Kh5pGSIcoIqlTbz77xnW9SsWRNJkrh//z7R0dE4OmZ95qVviONFI9qDaA9P038yoMpTtbpgbqnUmbtzA9Yugj7vKUNyhWVqprwmK6hat1gJsspWwMnJiYiICIJVZpQf+JGSfykqUikW3KAVNO+EZGLKTZ/qHLt4lgnVzKms18PVc/TVPsDXRU388b3QsR3YOWJvb0/VqlUJCAhg9+7dhkKghZI5dChLKkNG9LrZAsikpCRidDIqSUKV+vDuIOsuwjA53tQMHF2V3rb7YYYEbfk1gFxVqweHdygrBqMiwTm/EgzCk2Zqakrnzp3p3LkzWq2W0NBQwsPDiYuLQ6PRoFKpMDc3x97eHjc3N9zc3J7okEBekpP13L5tiaurEXCRgi4gzs7KxSAyMonM+w0AzMzsAIiLu4ssy5kXOh8AvLy0WFhoOXv2LN26dXsCZ30WuER6egb+/jZ065b9LlnpETA31z0yR0e5CGRdVCwts82zfISZmRllypQhIiKCsLAwHB2zLoomeb5GKBrRHkR7eBpe+EnpRVbOF/oPVQKre2Hw50JlrlFRZAVVXhWU9AR/LYPAi4ZsuJcvXzYM8VGzkbK68NQBWDUfou9Rv359QjNklsTJ8NYoqF4fa3sHnNUSlaNuo1v4Haz6GS4c59UOSsbxDRs2ZIv8C6DNMCQiPRF8h+vXr2NqappjGW94eDgWKgljExOl5y1TbmVxcMxM5RD7wJAvq6DVJ4+xsoYKysrCx1ZKCs+UWq2mXLlyNGvWjK5du9KrVy969OhBp06daNiwIV5eXs/k4gHKF+mtW5bodFrg8bqXj3JxUQL9mzdzDjlbW1dBkiSsrKKyDUd7AJWwt7eiS5cIjh8//gSGOe4Ck9FoNOzda0l8vCm+vr7Znk9Hr9ej1aqU0lMGGmRZJjpaOX7W/Mi8ZPUQp6UlAlmJDwsqDSIUh2gPJSHaQ3YvX0AFymTyN0Yo2dRj7sOahUUvpGxqBn0GQyU/JRv4P6vobKt0Y544cULJuWFsAp16w2tvKzmZ7oXBirm0tzVGhZKlPNHKDrr0xfyzaexW2xOQpiMuPk7p/dq9kU43TzLKw4pySQ/4Z9WKx1I/GMgypCRB0BVlKDIumlhNBlPXbgRg8ODBOVIy+Pv742sqKasKM+eB6XQ6Q1mcHLmvrDInWiYnEhSk1C0sUrLRLFVqKX8H55J1Xngp+fj4EBZmTnJyCrJ8s8DtPTyUO/bIyLs5kjWq1XWxtraievV4DhzIXsV+KObmFrRvn0LDhndZt25dCc42DvgCWU7g4kUNW7Z40KBBg2ztSgtEkZGRQVyccbYheh2QSkZGBqmpKtRqdY62mJuspf3W1lkXDzVQhJ504YUk2kPuXpT28HIGVKD0IA0YrmTyjosuXlClNobuAw0lZipE3GCoiymJUfdzFn2sXB3e/UzpHdNqcbx8gv9VcMBdpTckm5NMzfDs9BqLonV8F6uCVl3B2Q2VLNPay5V+dkaU37OO5OljYcVc+HOB0ov122xYMAVmfwk/T4ZNKyA8hJjERMYf9yc5Q0vr1q15/fXXDacjyzIH9++jgYUKG2tr8FXG0SMjI9HpdJiYmOSoM4hJ5p1FRgb+mZnVlUmHReSpTGgnJqrARKvCy8HPz4+4OGsyMjJITi44rYaFRRmsrKywttayZ8+ebM+0wdbWmbJlUwgM/CPb8EI9JOkdypQpQ8+eYcTF/cjdu0VYUGEgA9OQ5Uhu3kxh8mRz9HpjPvjgg2zb3AS0xMYqF5CH8zjjABmNJp2UFDVlypTJd8g8OTnZ0BPs6Zl1A1WGkmS0Fl4Moj087kVqDy9vQAVKWoD+w5RCx/ExxQuqVCpo9xp06oPK2IQmzraMcVFzYcvfObezsoHeg6Hz62BqThU7Kz5xViNtX6cEdMArr7yCsbExZ68FcdncAQZ9AoM/w75bP9LsXdDpZW4HXiXjbogy4T08RJnblJSg1AqUJGR7J07rzRhyLJBrKRm0aNGCr776KsfkyVOnTmETeQd7tRG2bh5KagSUye+gZKfNMdkyVannl45kKIdTtWrVon1OoJTqkVQPe9OEl56pqSmVKrUElPkekPdqH4U7Dg4OuLiksW3btmxFV+2wtX0HtVpNhw4XOXw4e4X7d7C1HYW1tTVt24Zx9mxv0tNTctt5Pnag15/i9u1wJkyQSE42ZvTo0YYcOYqTaDQarlyRkCQVNWpkJrRFWS6ekGCKXi/ln54FuHjxIrIs4+HhgbV11rCPb76vEf4bRHt43IvUHl7ugArAxk6ZU5U9qEqMK/p+ajaENz/E0ssHWyOJGgHHydi5ATLSH24jSVCjAQz+HPP6SiZd97hIMhZOg39WYZfwgE6Z85z++OMP5TWOrkjNOlB1ynzm4si0u8lMDQwnslEHZSjx9SEwcBR8MJ7EIeP45k4SY3YcJlYHvXr1YuLEiTnG/7VaLQsXLqSllRFOTk6o6zWHzOezknXmGAOXZWUCPxCeISPLMo6OjkVbcZj9/WeNo6eLYsmColOn19BoVMTExJCWVlAGfl/s7e2oWFFDZGR45lJqhbHxECwtK2Fnl0F6+lj0+qxVRRKS9C5OTj8gSWrKlg3i1KmO6HSFvYgkkpIyl6Cg66xcqeb+fQtGjx79yIRePbCD+/fvc+mSHQ0aNMg2L+Q2AOHhSjvLedF5XFbm6ObNqwJZNTALTvIo/DeI9pDTi9QeREAFylyq/kMzC/nGwJpFRZ+oDuDqgcPHE7kiWaDT6Ug8uF1JmxAanHM7K2ts+r/PZmsvrqXpiY+NhcCLsHYxI6Ro3rBXo798Gv8TxwwvsbOz4/uZs9A6uHAw9B5vT5nBTzv2ceZBApej4li19V/efnewoZbUp59+yqhRox7rSl27di3q8BAqmhvj6u4GtZXkcbIsc/SoUsA5q/YfAJdPK0N0JqZc1SjdrVm5qIrFLHMiYUpBd17Cy6J+/fro9TbodHqOHt1ewNa+qFTWeHpaU65cMlu2bMn2nAVlyixGqzXB2TmC27cHAA+XatvZDcDcfDZarQpLS39OnmxLWlr0Y0fITpb1XL06jKCgU9y6pef8+fJ8//33vPbaa49suZeUlJuEhsZz4YItb7zxRrbnlKGbq1eVm6usagN5uXz5MmZmOl599SRKvp3KZJUlEf77RHvI6UVqDyKgymJtpwz/ZZaIKW5PlcrMHLljLxZHa7kVFY0c+0BJz7Bnk7IiMJsqrTuwKEbHYo2FshrQ1BxzvY7Onk68Ya9GvfQH9Iu/h51/w7VLuDvYsXDhQho2bEhGRgYbN27kiy++4KOPPmLp0qXExcXh7e3N/PnzefXVVx87tzt37rDzj995094IDw931HWbGSacX7hwgfDwcMzNzR9m6I19APsy7wiatOdOpDLpMauUTbHY2Cl/J8QWfx/Cf4okSbi5VQTgwIFtBZQEUQPNcXJyokGDGI4dO2ZYmQpgYVGd2NixaDQqkpOPkp7+MfBweNnXdyBq9WzS040wN7/GmTMN8Pf/FVnWP3akoKCTbN3aHI3mX3Q6mUuXOrF48a80bNjwkS3j0el+JiQkhP37nWnevD21atXK9vxFNJp0zp5NRZKkR57LSaPREB0dwEcfBeHsHA3YAF9TGueLCE+HaA8PvWjtQQRU2dnYQb+hD4OqPxcY5jcVRffu3bmpVzPhZiwRjh7KsNn5Y/DrLAh+uBQ2qwDznktXiWnQBj78H/R9H8cuvYmQjUhOTSXqeqBSlHnLHzB/EvZbV/J9p+Ys/HgY/Vo2pUZZD3zdXOlQvw6Th7/P0q++wFefqrzm7BElXcORXcg7/yZk6hd84gBedjbYV/SF5p0M57JmzRoAOnbsiJmZmXLOO9ZDhkaZTF6/BeHhSgLQ7AlCi8wuMx1DbNE/V+G/y8urMmq1msTEKPbv31/A1l0xMzOjdesMrK3TDXnWsrRt+xGbN7cgIUEmMnIv8DnZ56LUqfMO9va/k5pqhaVlLOnpn3H+vDfnz7fhypU+nD/fjSNH/EhM7IynZwCSpCItbSRffLE852INAPTI8lRCQy8REgKXL1fh448/zvZ8GHCHBw+iuXHDinr16uVbniQk5CSjRl3D01OLsbEbMBt4Elm4hReJaA+KF609iIDqUbYO0H945pyqWGUlXfidIu3Czs6OV155hTQZZl4JUeY52dorPV5//wr/rIKkBNzc3KhatSqyLLNr1y6l7p93JSy69EEa+BFfRmQwJeAu4W7llVxQsgyRd5HOHsY36CzDrDL4qbo7C+uU5UsXNS1CLqDe9DtsXa30au3bAgf/heN7iNqzFaukWFQqFa6tOiL1H6akcgACAgI4deoUKpXqYfLQW9eUie9qY6XkjkplmJCeVRKnWOwz81fFPch/O+GlolZb4uzsjImJnl9//dVQJy131QE/XFzs6d49jK1btyppSgz7UvPmm1P45ZdK3LkTT1zcSZS72of7rFy5KzVrniIhoRPp6cZIUhJwgYyMvcBRLC3DUalAr6+Cl9dfNG36bS5ZsWVgPg8ebOf+/Tj++KMcX3450VA7U7GLjAwtJ06kk5qqpmfPnvm8Ly1mZtOwtc1Ao3FBkn4B8p9fIvw3ifYAL2J7EAFVbmzsYMAIJT9TSpIy/Hf5dN45oHLxxhtvoFarOX/+POdikpS0CfVbKBOzAy/C0hlw6gDdunQGYNOmTTkaTefOnWnaug1XUnQMX7+dW216w7CvoGt/qN0EPHyU4Tq1MaiMlNQG1nbg7KYkHK1QVUmH4FeXe27lWBEUxupYLZE93sNqwFBlxV2mX3/9FYBOnTrh5pZZTPNc5vyt2k3A1oHExERDgriCJhHmyzqzcSU/uTpSwn+BOc7Ozjg6WhAREcHGjRvz2VYCRmJnZ0+DBolUr36RU6dO5tiievXqtGr1LgsXViAoKIzU1GPATzm2sbJyo1WrNVSvHoRG8yOhoQO5ebMboaG9SEkZR9myx6hX7ziOjnlNgF1JcvIqwsLCWL3am1dfHf1IKQ8NsIXIyAgOH7ahUqVKNGnSJJ/3tRUjo2BSUoy4cOEtwCWfbYX/NtEeXsT28HKVnikKK2tlTtW2P5XCwDvWQ0gQdOilJPUsgIuLC927d2fDhg0sWbKEX375BanNq0r5m90bIeIOHPyXTlY2nHG25uC9e2zbts0wuU+SJMaMGUNERASBgYF8/PHHfPvtt9SqVVfZRyHdvn2bTz75hLh4JYVCx159cjx/6dIlzpw5g5GREQMHDlQeTEqA25l1rTLr7h0/fhxZlvH29i7eCr8sWTmtHplPJrzsrDEyUtGpUxN27DjP8uXLadeuXT6/a1VQqUbg6DiBV16JIDJyNLADpX6YYvDgwQQGBvLbbxkMHx5MpUrrMTMrB+S8K7a0tKVx40HAoEKeqwysJD19Mbdu3WLDBndsbF6lb9++j2y3iZSUcIKCErl82ZMffxyZT+03GVhHSkoK27eXoVmz2oU8F+G/SbSHF7E9iB6q/JiYQo93oEVnJX9SwAUlkebtghOuAbz11luYmZkRGBjIvn37lAddPeDND5VhNCsbjJISGO7jyHgXNZdWLiH6XqTh9WZmZkyfPp2qVauSmJjIJ598wuLFi0lJKdzy1lOnTvHRRx8RFxdHpUqVGDduXI5fYFmWWbhwIaDkwDL0Tp0+pPTGeZYDB2dkWTasHmnbtm2hjp0nySjr4CXbj/Afo8ytq1WrDL6+vqSkpDBv3rwCXtMXK6txgESZMteIiekBHDU8q1armTx5MhpNHTZudCIo6AZJSd+hXGiKKwL4hoyMJdy8eZPNm50IDW3wWNuCGGT5d0JD77Jzpytt2rQvoBDtRbTau8TEpHHqlGO2nD3Cy0m0hxexPYiAqiCSBI3bwoDMBKCJcbB+qdJjpck/l5K9vb1huejixYvRaDQP9+lXD4aMgVav4ORVFi9rC7qZphPxzUj0ezdDlJL8zNramh9//JGOHTsiyzJ//vknAwYMYPHixQQFBWVL5KaQZZmrV68yadIkxo4dS2JiItWqVWPWrFlYWOSsfbRx40YCAgIwNzfnnXfeUR68HQTnjij/bqR07Z45cwZ/f3+MjY3p2rVrCT5MQJXZyPSPryIRXmY+AEjSDT777DMkSeLAgQMcP34831fZ2g4mMHAUkZFmREQEoNONB1aQVYneysqK2bNnExbWnIMHbblxI4iIiE/Q6WahZGx+lB64B1wAdgFrgEXAd8BQ4E1SU3dz7VoQq1Y5cf58Nb777rtH2pYMzOTBg1CuX5fx9/dk+PDhBbz/vcTGxnD+vC2enhXw9Cy9E2+FZ8EHEO3hRWsPkiyLroJCy0iHQ9vhXGbUb2UDHXs9LPqbC41Gw9tvv839+/d55513GDRoUK77jdq7Df8Vi7CV9Dg6OuLl5YXkXEaZB1WpOji6cuz4cRYsWMDdu3cNLzU3N8fT0xMLCws0Gg1hYWGGgpeSJNHnte4Meb0XJrJemWtlbgGW1ly5dp1PPvkErVbLRx99RM9OHZSViCf2K1nXq9aBbgOQZZkhQ4YQHBxMnz59+PDDD0v2Gd65odQadHSBwZ+XbF/Cf0g00AdlPsh6Fi5cz9q1a3F0dGT58uWG4qi5SU1N5f3336V+/XN0755OuXLlkKSBwGDDNmlpacycOQNz8z9o2/Y+JiYmuLq6Y2/fGCMjRyANiEK54869CLleLxMVFcXBgyls3uyCLFdg+vTpj3zZy8AyNJrfuHr1GjNmVKRPnzH06tUrn/eehk7Xg4CAc8ydW5Zu3b7OJa+P8HIR7eFFbA8ioCqO0GClhyorpUKVWtCmuzLvKhcHDhxg0qRJGBsb8+uvv+YZbR85fJg10ybS0FyiddkyeHm4P8y2YesA5aug96nM8dBIduzbz9mzZ0lNTX1sP7bmprxVpxod3B2wTU18bHgtOSWFy0E3ic/Q4uhahnrV/ZASYh9uV7kGdB0AajX79u3j22+/xdLSktWrV+e7xLVQQoOVSf72TkoPnSAYjAT8gSFoNH0YMmQId+/epWPHjowfPz7fVwYGBjJq1CiaNo1gyBANnp6eSNKHKBclhSzL7N+/n3//nUqLFoGULZuCWm2Era0dNjbWWFhYYGxsgiSpUWqFuaDT2RMVpSEw8B7791/jwgUtCQkmNGjQgC+//DJb9mdQir4uRKdbR1BQEL/95kRqamvmzJmTb60y2EJY2OcEBMTz669tWb78d0xMTIr5GQr/HaI9vGjtQQRUxZWRDkd3w5nM+UYmptCsI9RpqqQ/yEaWZcaMGcOZM2eoU6cOs2bNynMy3rZt25g5cybmErzZsBb96vqhvnsLdNmWzapU4OKBvownD1BzX5NBqiYdc70W1/QkHKPuospe8sbcAkzNQacj8X4kt4Kuo9PrsbK0pEKFCg9/uct4Qv2WSoAoSciyzLvvvktISAiDBw9+OGm9JK5fgc0rlLlkb39c8PbCS2QXylCCI/An/v7XGTVqFLIs880339C6det8X71v3z6mTJlCu3aRDByYjpeXJ5I0Bnglx3apqals2rSJAwdWYWFxFzMzHVqtivh4YxITrZBlF4yNTUlLSyMmJibHsLqzszODBw+mU6dOj7ThEGAGWu0lgoODWb3alosXK7No0SJcXPJbnaQjPr4HwcFH2LjRg65dl9GoUaMifWrCf5VoDy9aexABVUlF3oXdG5S/QZln1awDVKmtBD6ZwsPDGTx4MBqNhs8+++yRukc57d69mx9++AGdToePjw//GzeWciqtkhvqdpBSHqcgDs5KyoPKNQypCo4fP87EiRMxykincfWqfPHhCMyNjZX6evZOYJGzG/nw4cP873//w9LSkrVr12JpaVnkjycHWYa/lirvoU5TaN+jZPsT/mO0wBsoQw2fAd1YunQpq1atwtLSkiVLljxcOJGH7du3M2PGdLp3D6NbtzR8fHxQqz8DHh8y0Ov1nDt3jmPHjnHp0iVu3br12JxEUOYx1qpVi9atW9OyZUuMjY2zPXsT2ADsQKNJJTDwDr/95syNGx7Mnj2bypUr53u+Ot1egoIGEh2dzpEjoxg79pv8PyLhJSLaw4vWHkRA9STo9UqeqiM7lbxVoAQoDVqBX10lVxSwfv16fvnlFywsLPj9999xcnLKc5eXLl1i4sSJxMbGolareeONNxgwYICSxTw+BsJuw70wiI6CpHhl3pOZBbi4Q+XqSi6qbHcMW7ZsYe7cuej1epo0acI333yDaVah4lzfkp4hQ4Zw69YtBg4cyODBg/PcttCunIHt65S5XO9+qgR9gpDDX8DPgBuwAq0WRo8ejb+/P76+vvz0008Fdv8fPnyYqVOn8MorwbRtG0/ZsmWxsRkGvEd+JSu0Wi1RUVHEx8eTkZGBqampoRD4w7tvGbiGsnrqMMqdOCQkJLBjRwJr1jijUrnz/fffU7FixQLf7a1brxIXd4RDh7x5550DjwyZCIJoDy8SEVA9SZo0ZWL36YOQljm3ydxS6Smq3Ri9hRUjR44kICCApk2bMmXKlHzycEBsbCwzZ87k2DElyaaDgwMDBgyga9eumJubF+qU4uPj+fnnn9m9ezegJAz97LPPUKvzT0H2119/8fPPP2Ntbc2qVauwts59flihRUXCH/NAm6GUvGnSrmT7E/6jNEB/lBVHXwCvcO/ePd5//30SExPp3r07n3zySYF7CQ4O5ptv/kf16mfo2PEeDg72ODv3wMJiElCc3+V4YDOwDbhveFSWjbh40Zqffgrn1i0LqlatyuTJk/O9WcqSnHyD4OAmZGRoCQubzauvvluM8xL+20R7eJGIgOppSNcotfTOHHlYYFllBFVrcbdMBd4d+yVarbZQ4+CyLHP48GEWLlxIRISSSsHCwsLQ3VqzZs3HgitZlrl+/Tp79+5l27ZtpKSkIEkSQ4YMYcCAAfkGcQA3btxgxIgRZGRkFDg8WSgpSfDHfKVnzacS9H4vx3CoIOS0HvgFsAeWAzacOnWKcePGIcsy48ePp2PHjgXuJS0tjcWLF3P37q/07XsHY2Owti6Hs/O3WFt3oXAFVlOAtZnnlLUAxBxoRFycHz/8cIATJ/wBePXVVxk1atQjQyB5++efd/D03MK9e2Vo3/5ygTc5wstKtIcXhQionia9TpmEffYIhIcYHr6SmMYvp64QaWHL77+vKFTvj1arZceOHaxbt85QAgaU1Aienp44OTllFtNM5M6dOzmSf1asWJHRo0fj5+dX4HESEhIYNmwYERERNG7cmGnTphUYgOUrJRnWLVbyatk5wpsjwaKEc7GE/7gMYAhwB6iHMjHXmOXLl/P7779jamrKggULKFeuXKH2FhgYyJo139K06V6cnTWoVBJQCQeH/nh6dkCSHFFS8mWg9Agkodx1XwL287CQbCWgL2lpDdi0aTsrVqwgNTUVU1NTPv3000Jd1LIcPnyYe/cGUKFCMra2X1G+vEghIuRFtIcXhQionpXwO3D2MFy7hF6v51pgIKHJaSRWrEHvr6caChUXRJZlLl26xL59+zh16hSRkZG5bmdhYUH9+vXp3LkzjRs3LlRQlHW3c/LkSdzc3Fi0aFHJhvrSUmHNAmW4z8IKBgwX86aEQroJfIjyhV4XmIheb8nYsWM5c+YMXl5eLFy48LFktXmRZZnjxw9w8+YkfH0vYWysfO2ZmJhga2uLtbU1lpaWqNVGubzaG43mDS5dsuPo0WPs27fPkOvNz8+PcePGFSnxYEBAAN9+O4LPP7+Aq6szHh6HAddCv154GYn28CIQAdWzFh8D546SeGwfN64qXaPeFSri0KQ1VK+vlHspQo9QdHQ0d+7cISYmBq1Wi5WVFW5ubnh7e2NklFtjyNuaNWtYtGgRJiYm/PLLLyUrggywaQUEXVEKMff7ABxfzEYiPC/ngS9Rkgy6Al8TF+fB+++/z4MHD2jXrh1fffVVkXpQZVkmIOAEgYHz0GqP4+ycjKWlFkkCnU4CzFCprMjIsCEmxp5r1xw5f14iIiKS7F+V7u7uDBw4MJfl4vkLDg5m9OjR9OhxmVatdJQr1xeVamahXy+8zER7KO1EQPW8aNLYNed7dGeP4mFqRGVfX8yy0hf41QW/+mBj98xO5+LFi3z66afo9fonM28qMhRWzlPmSr01Ssk7JQhFdhP4GiVjswoYyJUrdfj4Y+V3deTIkfTu3btYe05LS+P06dOcPHmSixcv5qhAkBsXFxfq169P69atqVevXgHJCR8XERHBhx9+SPXq13nrrTgqVKiIkdFiIP+l5ILwkGgPpZkIqJ4jrVbL6I8/JvlGAJ3c7OlTvRJqOTPvhyQpqQ9qNoCKfmD89DLFBgQEMGbMGJKSkmjfvj1ffvllyeZNARzfq6SRqFwDXnsCCUGFl1gyMAfYk/mzH1u31mTWrD9RqVR8//33NGjQoORHSU7mzp073L9/n+TkZPR6Pebm5jg5OVG2bFns7e2Lve+EhARGjvyQqlXP0LNnHBUrVkKtVmqhCULRiPZQWomA6jmLjo5mxIgR3L9/n2oVKzDjg0FY3PSH0JsPNzIxVWrrVa8HbmWLNCSYH71ez99//82SJUvIyMigevXqzJw5M9/8VIW2eyNcOK6kR2jeqeT7EwT2Aj8CyciyGX/95cwvv9zB3NyC2bNnU6VKled9grlKSUlh2rRh1Kq1n2rVNFSuXBlj47eB9yncyipByI1oD6WNCKhKgZCQEEaPHk1cXBw+Pj58//33uJoZw+UzcPUsxMc+3NjRBarVVf6UYEjQ39+fOXPmcOPGDQCaNm3KhAkTCp3fqkC7/oaLJ6FpByVzvCA8EZEoq5wuodfLHD6cyNy5ZqSn2zN9+nSqVcu7UPnzEBUVzJ49A6lc+SrGxkZUquSHufk4oMvzPjXhP0G0h9JEBFSlxO3bt/n888+Jjo7GxsaG8ePH07hxY6Vcy50b4H8Wrl1WEmNmcfeGanWgUnWwKlzRYq1Wy9KlS1m7di0AVlZWDB06lK5du5Z8mC+7v3+F4EBo002pDygIT4we2AgsQadL5erVUObPdyAkxIkJEybQvHnz532CaLUZHDs2BWPjRZiZaVCrjXB3742j40SUrNeC8KSI9lBaiICqFLl//z5ff/01169fB6Bdu3a8//77uLpmro7TpMH1y0pwFRqc88Xu3lDJD8r5glOZXIcFNRoN33zzDSdPngSUrOlDhw4teXp/rRai70HsA0iIg4g7ynkCDPxIKbosCE9cOPAtOt1VgoNDWLjQjnPn7BkwYACDBw9+LokBtVotu3ZtIilpEpUqKZN6NRpXKlacg5NT52d+PsLLRLSH500EVKVMeno6S5cu5a+//kKWZdRqNS1btqR169bUqFEDW1tbpScpMR6uXYTAS0oAk52lNXj4KIGMizs4uqIxMWPC119z5swZTE1N+fLLL2nZsgQ9R1ot3PCHq+cgJEj5+VENW0GrrsU/hiAUKAP4AVnew9274cyfb8apU45UqFCBzz///JnOIzl9+jSrV0+lS5cTODtrMDIyRqd7i1q1vkelenqLSgThIdEenicRUJVS169fZ+HChZw/fz7H46amptja2mJlZYWdnR2urq74erhRw0zCMz0Jk8jQnMOCQJpGQ3DIHULik4jFiJav9cKzei0lRYOdI1hZK6Vx8pORruTQuheuDEEG+YMm9eHzZubg4KLM63JwhgrVRM+U8IzIKJNz/yEuLo7ly2HLFltkWaJdu3YMHDgQb2/vp3Z0rVbLggULuH17Gf363cHc3Ag7u0q4uv6CiUntp3ZcQcidaA/PiwioSrnr16+zc+dOzpw5Q2hoKAX9d7m5OFPf3YUK5sY4ZKRgEh+NcXICEmBkZET5cuWwsrLK+SJJUoo4m5mDUWa3sF4POq0SSGnSHgvSALC2Bb96UKVWnsOMgvBsyMAiYC0ZGVr8/TWsW5dKeLg5Wq1EzZq+NGlSh2rV/HBwqIIkefEkVhQlJSXx7bdfU7bsPzRtGo2zsxOurq9gbDwZsC3x/gWheER7eB5EQPUC0Wg0REdHk5CQQGJiIrGxsYSHhxMcHExQUFCeZWhUQIeG9Xivdw+c1ZIy1ynrT0KsEjwVhokpOLmCuw9UqKpkdRdFjoVSZRcwF0ghJSWVe/ciiYuLz7GFWm1ERoYN169XIzi4DqamdlhbW+Pg4IC7uzteXl64u7sXWGng4sWLLFv2DZ07n8TDIx1vbx/s7D4EBqG0OkF43kR7eJZEQPUfkpSURHBwMGFhYcTHK43GycmJmjVr4uLikvuL9HpISVL+aNKUXilZBiMjpbdKbQKmpkoPlqnZM3w3glBc8cA24BQQQVpaMhERsYSHx5CYGI+DQ5qhdll8vDGbN7tz4YId2e/Q1Wo1np6eeHl54eHhgbOzM2ZmZmRkZBAZGcnZs2ewtz9J7953sbRU4+1dGyuraUD9Z/92BSFfoj08KyKgEgThpaHRaAgNDUaj2Y29/UaMjaPQ6XTExtoQFOTKzZtagoNjiY6WefDAhIyMx+/KLSy09O59l7p143B0dMTVtQsmJhMBx2f+fgShJER7eLJEQCUIwktKA6wF1gAPF1jIsrLaVhlityU01JawMDNSU/U4OydQrdod7OyMsLGxw9j4A2AAL8uQhvBfJtpDSYmAShCEl1wScBi4glJ0Nh6IAhLzeU154AugdJb3EITiE+2huERAJQiCkKtolIvKVeAukAa4Ak2AZrysd+HCy0q0h4KIgEoQBEEQBKGEREgpCIIgCIJQQiKgEgRBEARBKCERUAmCIAiCIJSQCKgEQRAEQRBKSARUgiAIgiAIJSQCKkEQBEEQhBISAZUgCIIgCEIJiYBKEARBEAShhERAJQiCIAiCUEIioBIEQRAEQSghEVAJgiAIgiCUkAioBEEQBEEQSkgEVIIgCIIgCCUkAipBEARBEIQSEgGVIAiCIAhCCYmAShAEQRAEoYREQCUIgiAIglBCIqASBEEQBEEoIRFQCYIgCIIglJAIqARBEARBEEpIBFSCIAiCIAglJAIqQRAEQRCEEhIBlSAIgiAIQgmJgEoQBEEQBKGEREAlCIIgCIJQQiKgEgRBEARBKCERUAmCIAiCIJSQCKgEQRAEQRBKSARUgiAIgiAIJSQCKkEQBEEQhBISAZUgCIIgCEIJiYBKEARBEAShhERAJQiCIAiCUEIioBIEQRAEQSghEVAJgiAIgiCUkAioBEEQBEEQSkgEVIIgCIIgCCUkAipBEARBEIQSEgGVIAiCIAhCCYmAShAEQRAEoYREQCUIgiAIglBCIqASBEEQBEEoIRFQCYIgCIIglND/AWp8dORAoRc4AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAADECAYAAABZYb9DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxiElEQVR4nO3dd1yVdfvA8c99zmHvDQIqoKKiggNnbnOnWZrjl5ZZZmXZsKccubJHs12aj2lqmZory7333gtRURQF2ciGwxn374+bc5QEZDjr+369eqmce50T33Nf93dclyTLsowgCIIgCIJQYapHfQGCIAiCIAhPOhFQCYIgCIIgVJIIqARBEARBECpJBFSCIAiCIAiVJAIqQRAEQRCEShIBlSAIgiAIQiWJgEoQBEEQBKGSREAlCIIgCIJQSSKgEgRBEARBqCQRUD0kK1eupHHjxoSGhlK/fn2++OILlixZQo8ePczbXLt2DUmSmDlzpvln3333HcOGDWPXrl3Y29sTFhZGWFgYwcHBDBw4kOTk5EfxdgShwky/50OHDi3y88TERDQaDZMmTaJdu3bY29uTm5tbZJuePXtSvXp1ABYuXIirqythYWGEhoYSHBzMG2+8cdc+gvA4y8zM5O2336ZevXqEhYXRpk0bDh48CMDXX39NvXr1qFevHkOHDqWgoACAM2fO0KFDB0JDQwkJCeHVV18lJyeHmzdvmu8R3t7eeHt7m/9948aNR/k2/xVEQPUQxMXF8cEHH7BlyxZOnz7NwYMH+f3339HpdBw6dAhT9Z9Nmzbx9NNPs2nTJvO+u3fvpnPnzgA0adKEU6dOcerUKS5cuICfnx99+/Z9JO9JECrD3d2dzZs3o9PpzD9bvnw5bm5u5n+7uLiwfv1687/T0tI4depUkeP06tWLU6dOcfr0ac6ePUt6ejpvvPHGA79+QbgfjEYjPXr0wNnZ2fzd/vnnn9OrVy92797NggULOHz4MGfPnkWv1zNr1iwA+vfvz2effWb+vbewsGD8+PFUqVLFfJwRI0YwYsQI87/9/f0f8bv95xMB1UOQkpKCTqcjOzsbAHt7e3755RdatWpFlSpViIyMBJSAavz48Rw/fhytVgvAgQMH6NSp013HlCSJqVOncvr0ac6cOfPw3owg3Ad2dna0aNGCLVu2mH+2YsUKnnvuOfO/X3jhBZYvX27+96pVq3j22WdLPKalpSVff/01S5YsIT09/UFctiDcVzt37iQuLo7Jkyej0WgAaNGiBb/99hsAM2fOxM7ODkmSCA0N5fr16wAkJCSQlZUFgEqlYuLEifTv3//RvAnBTARUD0FoaCi9e/emRo0aNG3alI8++gi9Xk+NGjXo2LEj+/fvR6fTcfLkSVq1akWzZs3Yu3cv58+fx9/fv8hT+52srKyoVasWFy5ceMjvSBAqr3///uaAKSYmBhsbG7y8vMyvd+nShQMHDpCTkwPAsmXLGDBgQKnH9PHxwcXFhUuXLj24CxeE++TkyZOEh4ejUhW9FXfp0oW2bdvStm1bAJKSkpg5cya9e/cG4JtvvqFPnz7UqFGD4cOHc+zYMZo3b/7Qr18oSgRUD8ns2bO5du0ab7zxBjExMbRo0YIVK1bQqVMn9u/fz4EDB2jatClqtZrOnTuzdetW9uzZYx7uK42Njc1DeAeCcH/17NmT7du3U1BQUGywZGlpSZcuXVi3bh3x8fEYjUb8/PzKdGzRJoQngUqlwmg0lrrNtWvXaN++Pa+99hrt2rUD4OWXXyYhIYEvvvgCCwsLhg4dyttvv/0QrlgojQioHoL169ezfPlyfH19GTp0KL///jvff/89CxcupG3bthw9epTNmzfTpUsXADp37syuXbvYt29fqQGVVqvlwoUL1K1b92G9FUG4b2xtbWndujVbtmxh9erVRYb7TPr378+KFStYsWJFmYY04uLiyMrKIigo6EFcsiDcV02aNOH48ePmebQmn332GevWrePUqVO0atWKESNGMG7cOACioqKYOnUqDg4O9OnTh1mzZnHgwAHmz5//KN6CcAcRUD0Etra2jB07lpiYGABkWeb8+fM0aNAABwcHXFxc+Ouvv8wBVY0aNcjOzubUqVO0bNmy2GMaDAbGjx9P69atxc1DeGINGDCAadOmUaVKFZycnO56vWPHjhw9epTFixffcwFGfn4+//nPf3jllVewtbV9UJcsCPdN69at8fHx4ZNPPkGv1wOwZ88efvjhB7y8vOjatSs//PBDkd4nDw8PvvvuO3bu3Gn+WUREBA0aNHjo1y8UJQKqh6B9+/Z88skn9OjRg+DgYGrXro1er2fSpEkAdOjQAaPRWGQVRps2bQgICMDCwsL8s2PHjpmXwIaFhZGamsqSJUse9tsRhPuma9euREREMHDgwGJf12g0dOvWDQ8Pj2LnEq5Zs4awsDAaNmxIeHg43t7efPPNNw/6sgXhvpAkiTVr1nDjxg3q169PgwYNGD9+PH/++Sd//vknmZmZTJkyxfydP27cOJydnVm3bh2TJk0iMDCQ2rVrs2DBApYtW/ao386/niT/va9REARBEARBKBfRQyUIgiAIglBJIqASBEEQBEGoJBFQCYIgCIIgVJIIqARBEARBECpJBFSCIAiCIAiVJAIqQRAEQRCEShIBlSAIgiAIQiWJgEoQBEEQBKGSREAlCIIgCIJQSSKgEgRBEARBqCQRUAmCIAiCIFSSCKgEQRAEQRAqSQRUgiAIgiAIlSQCKkEQBEEQhEoSAZUgCIIgCEIliYBKEARBEAShkkRAJQiCIAiCUEkioBIEQRAEQagkEVAJgiAIgiBUkgioBEEQBEEQKkkEVIIgCIIgCJUkAipBEARBEIRKEgGVIAiCIAhCJYmAShAEQRAEoZJEQCUIgiAIglBJIqASBEEQBEGoJBFQCYIgCIIgVJIIqARBEARBECpJBFSCIAiCIAiVJAIqQRAEQRCEShIBlSAIgiAIQiWJgEoQBEEQBKGSREAlCIIgCIJQSSKgEgRBEARBqCQRUAmCIAiCIFSSCKgEQRAEQRAqSQRUgiAIgiAIlSQCKkEQBEEQhEoSAZUgCIIgCEIlaR71BTwKycnJHDt2jJiYGLKyslCr1bi4uODn50etWrWoWrUqkiQ96ssUhIciKyuLPXv2cOzYMa5evUpaWho6nQ4rKyucnZ3x8fEhICCA4OBg6tevj6ur66O+ZEF4YER7ECpKkmVZftQX8bBcuXKFefPmcfjwYUp7205OTjRr1owOHTrQpEkT1Gr1Q7xKQXg40tPTWbx4MWvXrkWr1ZZ5v6CgINq0aUPnzp3x9vZ+gFcoCA+PaA9CZf0rAiqtVsvChQtZtmyZOZCqW7cuderUwdnZGb1eT2pqKjExMVy6dKlIY/Ly8mLQoEF0794djeZf2aEn/MPodDr+/PNPFi5cSG5uLgCBgYG0bduWunXr4uHhgaWlJfn5+aSlpREbG8uVK1c4f/480dHR5jYkSRJPPfUUL7/8MoGBgY/yLQlChYn2INwv//iA6vjx43z77bfExsYC0K5dO4YNG4afn1+x2+v1eiIiItizZw/btm0jMzMTUBrYuHHjREMRnlh6vZ5NmzaxePFiEhISAKhZsybDhw+ncePGZRrmzsjI4ODBg2zdupUTJ04Ayo3kueee47XXXsPKyuqBvgdBuF9EexDut39sQBUTE8OcOXM4ePAgAG5ubrz//vu0bNmyzMfQarWsX7+eX375hczMTCwtLfn4449p3779g7psQbjvdDoda9euZenSpaSkpADg6urKsGHD6Nq1KypVxdamxMTEsGDBAnbv3g1A9erV+fTTT0t8WBGEx4FoD8KD8o8LqHQ6HQsWLGDZsmUYjUbUajW9e/fmlVdewc7OrkLHTE9PZ/r06Rw+fBiA9957j169et3PyxaEB+LcuXN8/vnn5h5aNzc3BgwYwDPPPHPfnp6PHDnC559/TlpaGvb29kydOpXQ0ND7cmxBuJ9EexAepH9UQJWbm8vYsWM5ffo0AE899RTDhw/H39+/0sc2Go3MnDmT1atXAzB69Gh69OhR6eMKwoOya9cupk6disFgwNXVlZdeeolu3bphYWFx38+VlpbGhAkTiIiIQKPRMGnSJFq1anXfzyMIFSXag/Cg/aMCqk8//ZQdO3Zga2vLmDFjeOqpp+7r8WVZ5n//+x/Lly9HkiQmT55M69at7+s5BOF+uHbtGsOHD0en09G+fXtGjx6Nra3tAz2nVqtl6tSp7Nu3D5VKxSeffEK7du0e6DkFoSxEexAehn9MYs+IiAh27NiBSqVixowZ9z2YAmWy4YgRI+jZsyeyLDN16lQiIyPv+3kEobLmz5+PTqejadOmfPLJJw/85gFgZWXFpEmTePrppzEajXz66afs37//gZ9XEO5FtAfhYfjHBFQbN24EoHPnzoSEhDyw80iSxLvvvkvz5s0pKChg/Pjx5omNZSbLoM2HjFuQmgRpyZCbo/xcECopKyuLAwcOADBixIiHmqRWrVbz8ccfm28ikyZN4uTJkw/t/ILwd6I9CA/LPyKxkizLHDlyBIAOHTo82JPpClBnpjPh9WGMS7zJmavXmTRpEt9++23xeaoMBoi/DjeiITEWUpMhMw30+ru3tbIGb3+oXhOCG4CTyMArlN/hw4cxGAwEBAQQEBDw0M+vUqn46KOPyM/PZ+/evYwfP55Zs2ZRvXr1h34tgiDag/Cw/CPmUMXExPDyyy+j0WhYt25dxVZryDIUaEFXAAY96HWg1UJuNqSnQNJNSIhVepMKPzKttoALly6SotXjVqsOYa3bgbWN8npOltL7lByvHK84Gg1oLMBoVM79d1VrQOOnIKgOiFI4QhmNHTuWgwcP8uKLLzJs2LBHdh06nY7Ro0dz5swZfHx8mDNnDg4ODo/seoR/J9EehIflH9FDtWfPHgAaNmxYvmAqNweO7ILoC3ArBYyGsu1naQWWVlhp8qhWtSrGq1eRoy+QrTZgX1xqBhs7qBoEVaqCuzc4u4GdA1hY3t5Gr4e0JIi9ClHnlB6t65eV/1w9oXl7qBMGKlEGRyhZfHw8hw4dAuDpp59+pNdiYWHBp59+yogRI4iPj+ezzz5j2rRpok6m8NCI9iA8TE98QKXX61m3bh0AHTt2LPuOGWmwdDZkZRT9uSSBWqP0HllYga2dMvTm7g3efuDlB3b2ynayjHNONqe+/pxLhw8ScDWJVwYNRGOhUYIoF3fwrKL8ea9Go9Eo23pWgUatlPlVpw7A6cNKoLVhGezfqgRWIU1A1BcUivHzzz8jyzLh4eFUrVr1UV8Ojo6OTJkyhTfffJPDhw+zcuVK+vXr96gvS/iXEO1BeJie+CG/jRs3MmPGDJydnfn999/L3kO1djFcOK0EO627KnOX7OyVYKqcTwzZ2dm8/PLLpKam8tJLL/Hyyy+X/42URJsPpw7Csb3K8COAgzM0bQv1w4v2cgn/amfPnuWdd95BkiTmzJlDzZo1H/Ulma1du5avv/4ajUbDnDlzRAkn4YET7UF42J7oVX56vZ5ffvkFgIEDB5Y9mNIVQFSE8veegwongLso85kq0P1qb2/PyJEjAViyZIm5LtR9YWUNzdrD8I+hfU9lqDArHbb/BT9NV4Ysi5t/JfyryLLMzJkzAejRo8djdfMA6NmzJy1atECv1zN9+nQMhjIOrwtCBYj2IDwKT3RAtWPHDhITE3FxcaF3795l3zH+hjJR3N4RvHzvy7W0bduWhg0botPp+Omnn+7LMYuwsIQmbZTAqlMfcHRReqx2b1ACq2N7lRWFwr/SgQMHuHTpEjY2No904m1JJEnigw8+wN7enqioKHPFgcePAYgBjgHngNxHezlChYj2cL+I9lAeT/QcqjVr1gDw/PPPl28y+rVLyp9+AWRkZpKYmIhGo6FKlSpYW1tX6FokSeKtt97itddeY+fOnQwcOPDBPBVpLKBhC2jQFCJPwsHtkJ4KO9fCyQPQsTcE1r7/5xUea3/88QcAzz77LM7OzhU+TkJCArt27eLixYtkZmZibW2Nv78/DRs2pHHjxsWnBikjNzc3Xn/9db766isWLFhAp06dKnWtFZMG/AocANIBB8AbsAeygWgg/47tNUBb4EWg+kO8TqEyRHsoK9Ee7qcndg5VUlIS/fv3R5IkVqxYgZubW9l21BXAvBlk3oxlYUoBqy9cNb+kVqsJCwujT58+tGzZskKrL6ZOncr27dtp164dEydOLPf+5WY0wLljsG+LkqoBoHaoEljZ2j/48wuPXFJSEgMGDECWZZYuXYq3t3e5j5Gbm8vs2bNZv349JX0lODs707dvX/r27VvhQrKyLPP6668TFRVF//79GTFiRIWOUzERwHiUG0fx9HoDeXmQm+uIRpOPrW02VlbWqFQqoBfwKsrNRnhcifZQVqI93G9PbEC1cuVKZs2aRYMGDfjuu+/KtpMsI29eyc3Nf3EpPpHPEvUYUJ4UdDodmZmZ5k0bNmzIxx9/jKenZ7muKzo6mmHDhiFJEsuWLcPDw6Nc+1eYNh8ObEU+tg+tNp/0/AJ2aZw4kqHFYDTi6upKrVq1aNGihUgo9w+zePFi5s2bR1hYGN988025909KSuLDDz/k+vXrADRq1Ijw8HDc3d3Jycnh8uXLHDx4kNTUVACqVKnCJ598Qu3aFesJPXToEGPGjMHW1paVK1diY2NToeOUzxngI5Sn7SDgdbRaL+LiIoiLO8mNGxe4dOkGFy7kkZRkjSxLgIyfXx5duiTTvLkOZ2cXnJ0D0GjeAToAYrn740i0h7IQ7eFBeGKH/Ew1kcpcnLhAC1tWcXP7BhKTkliWbuDZ559n4MCB5t6tuLg4NmzYwKpVqzh58iQjRozgyy+/LNcKjMDAQBo0aMCZM2fYuXMnL7zwQrnfW3no9XquXLlCZGQkkZGRJJ6+QmdjBj4WEsGAnG/kjwwDZwxKtfWffvqJ+vXrM2TIEJo0afJAr0148GRZZtu2bUDF8uwkJyczatQoEhIScHd355NPPqFBgwZ3bWcwGNixYwdz587l5s2bjBo1ismTJ9O8efNyn7NZs2b4+voSFxfHwYMHH3x1A04iy2PIy0snNtaL1av9iYycxfXr14vpfbDB09MTV1dX9Ho9CQkJ/PyzLbt3Z9GvXyze3nF4eFzE3b0jFhZvAg+uzJVQfqI9lIVoDw/KE9lDlZWVxbPPPovRaGTJkiX4+PiUvsP1y7BpJanRUcRcv8GyDAPtRo6mW7duxW4eFxfHhAkTiI6OxsXFhTlz5pSrp2nVqlXMnDmTxo0b8+WXX5bnrZVJVlYWO3bsYP/+/Zw9e5b8/Pwir1tqNLwU7E9bKz02VlagUnPV0ZMNqXnsPn7SvKKkVatWvPfee2UfLhUeO1FRUQwfPhwLCwv++OMP7O3L3v2em5vLm2++SUxMDL6+vnz99df37JHNzs7ms88+49ChQ1haWvLtt99Sp06dcl/3Tz/9xNKlS+ncuTNjxowp9/5lFR//Jzrdx2RkpBIRYcP8+QHodLfX4jg6OlKrVi3q169P/fr1CQ4OLlI4V5Zl4uLi2L9/P5s2raVWreN06pSItbUaX98quLg0RZLaAeFATcRT+qMl2kPpRHt4sJ7IgGrLli1MmzaNwMBAfv7555I3NBph7yY4sov8/HwOnb/IojQdbf/vZYYMGVLqObKzsxk1ahTR0dE0bNiQr776qsxzqq5cucKrr76Kra0t69atu2+ZcLOzs/n1119Zs2YNWu3tVAkODg7UqVOHOnXqEBISQoMGDZQx/bRk2LEWrl5QNlRryA6ozYprSSxevwmDwYCjoyMfffQRLVu2vC/XKDxc8+fPZ9GiRbRp04bJkyeXa1/TfD83NzdmzZqFl5dXmfbT6/VMmDCBgwcP4u3tzfz588s9THH48GE+/vhjqlatak59cj/dunWLVavGExq6FI1GJiLCkeXL61K3bih169YlODiYoKAg3Nzcytw+ZVlm3759/P779zRocILGjW/h4mKPv39VLC0tAA+gB9APsC39YMIDIdpD8UR7eDieyCG/U6dOAUpXaam2roYzhwHYnJjB7MQCQsObMnjw4Huew97enilTpjBs2DBOnjzJ7t27adeuXZmur1q1aqhUKnJzc0lLS7svPUAXLlxgwoQJJCcnA8rQ4tNPP03Tpk0JCAgovhG4ekDfVyAmSsmyHncN+8vnGCpJ9H7pOabvOcbRy1cZN24cgwcPZujQoaIMwhPm3LlzQBnawt+cP3+e7du3o1KpmDJlSplvHgAajYbx48fzyiuvkJCQwKJFixg+fHi5zm+ax3fz5k2MRmPhJNf74+zZs/z442heeukYGo1MRkY9ataczh9/NKvUqixJkmjdujUtWrRg+fLlTJ06l5CQFEJDE+nUyQ1X12RgIbAemAyUv6dCqBzRHu4m2sPD80Tmobp27RoAwcHBJW905bwSTEkSiU068G3EdfQqNe+9916ZgwZfX18GDhwIwMKFC0tc7WEmy5CZjib+Om28nGluqyJv7xY4vBMO7VCScJ48CBfPQMINZSJ5GZw8eZJ3332X5ORkfH19mTFjBvPmzWPAgAEEBgbe+/1UqwkD34ABIyCgNsgyrgnXmF7LnUmtG2ItwaJFi5g0aVKRni/h8Xfz5k1ACeLLY8uWLQB06tSJunXrlvu8tra2vPPOO4AyxG2aoFtW7u7uSJKEXq8nPT293Ocvyfbt2/niixEMHHgCJydLqld/hnbtttOsWatK3TzupNFoGDRoEN9//wspKS2ZPduP/v2tWL26HkajN5AMvAecui/nE8pOtIeiRHt4uJ7IHqqMDKX+Xqk9P8f2Kn82acOBW3mAsnKvvEto+/bty/Lly4mJieH48eN3T+Q2GODSGSVIuh4NWuVcA+wM5EpqHI7tAienkk/g6AIePkoNPzcPsHcCa1uwsAC1mpMR5xkzaQparZbw8HAmTZpUZEy7zCQJ/AOV/xLjYN9mVNEXaOugIbh1CP89dpE9e/aQlJTEtGnTHkE+FKEiCgoKAMqdP+3ixYsAlRrqbdGiBSEhIURERLBy5Upef/31Mu+rVqtxdnbm1q1bpKam4urqWuHrAGWS8IIFc4mN/YGRI+Px8HCkatUOqNXfAw+mPFPVqlWZNWsW8+bNY9myZXz//Tl27gxi2rQQ7OwigHHATCDggZxfuJtoDwrRHh6NJ7KHytQjU2KPkSzDTWXJK/WbEB8fD1Chekl2dnZ07doVuJ1I1HyOyJMw93NYt1QpZaPNA5UKnN1IsbInIt9IgqsP1Gui1N0LaQw160GVardzRGXeUnrTDm5TjvP7/2Dh1zD3c25N+xBp5mQ+dTUyo64P0zqEY3vzGuj15X4fRXj5wvOvQL/XwMUdb3tb/htei//ztOXyhQu89dZb5ic94fFmZ2cHKAsVysP0UOLu7l7hc0uSxKBBgwBYt27dXYsj7sX0QJSWllbhawBITU1h1qz+BARMpHfvm/j6elC9el/U6u940DlyNBoNI0aMYNq0aTg4OHD27BWGDIkhKckHJav0WErL8yPcX6I9iPbwKD2RAZWjoyNAyV2jsgx6nfJ3G7sKP7WY9OjRA4CDBw8qDTUnC/5YoARAWelKCZsWHeHFt+Hdz+C1j9jnX5+f0wwc9awB3V6Arv2ge394dgj831vw1gR4e5IyDNehF9QLB78AcHYDGztupqQSfS0GWZZxd3aicTVf1GePwuqFMPtT2LFGyZBeGdVrwsvvQZPW2NvZ8WL9Goyp5kh+4k1GjhxJdHR05Y4vPHCmHtfY2Nhy7XfPh5IyatGiBT4+PmRnZ7N79+5y7WuapxIXF1fh80dHn2TXrqdo3Xo7Hh56fH3r4+v7NZL0BUrW54ejefPmzJ07l1q1apGWls0rr8QRG2sEElBuInkP7Vr+zUR7EO3hUXoiAypfX6X+ninx2l1UKrApHBbLvIWFhQWgrMaoiMDAQAIDA9Hr9Zze8Bf8+h1EXwC1Bp7qDK/+B57qAj7+oFYDtxuHqXesWNa2yhBc46egWz9lntNrH7HEtSb/dySa0fE6DrfoRfXPZqN69iVo2FIJ3vLz4Pg+mDdDCerSkiv0vgCllE37Z6DvMKydXWldK4hPqjnhlZvOu+++S1RUVMWPLTxwpvJGkZGR5drPtAopL69yX2ySJNG9e3dAma9RHqaJuFeuXKnQua9f30lcXA8CAxOxtLTFz28snp5bUFYWPfzFFV5eXnz//fc8/fTT5OSoeP/9Aq5dS0OWI1GSKJav10QoP9EeRHt4lJ7IgCooKAiAS5culbyRt7/yZ+xVc1mA8nbB3umpp56ikY2Ez561kJ0Jbp4w+B1o0UkpXPw3pkmRV69eveu10uzfv5+5c+cCMHz4cEaMHInk4g616kGnZ+H1scpwXfVat4cd53+lrGjMy6nw+yMgGIaMwsI/gHo1g3jX35Hmcg4ffPB+ud+D8PCYkg6ePHmyXPuZemsr0yZM2rRpY74GnU5X5v1MmaXPnz9f7nNmZp4kOfn/sLfPQ6fzIiBgM66uHwAV64W+X6ysrBgzZgzDhg0jOdmaCROsiI5OQJbPAm+hFJoVHhTRHkR7eJSeyEnppsRpERERyLJc/Cq3gGC4ehEunsXSUunqNA39VUQrLxdCXTTk52RDcANlGK+YQMqkRo0agPK0odfry7SiIj09nRkzZgBKwWfTCsMiVCql+HFgbfPkcqIvwKmDcOEUcrueJLj5kpCYSE6OEmDZ29tTpUoVPDw8Sl8R6OgMA99As+MvagDPc4Vqadl88uFovv5xdrnL8AgPXoMGDVCr1cTHx5OYmFjm5d6m30dTktfK8Pf3x9HRkczMTK5du1bmouD16tUDlFW7WVlZODiUbUhClnOIjv4/VKo8UlI8ad58J7a290juW4y4uDhOnjxJZGQkMTExJCUlkZWVZW6vjo6OeHt7ExQURGhoKOHh4WVaECJJEi+++CLu7u588cUXTJigYvz4FGrXBkl6HRgO9OHflvTwYRDtQbSHR+mJDKhq166NWq0mNTWV5OTk4m/0wQ1g51q4GYO9m/ILXeHGos0n4MJRzgF7M7TU6voCFqUEUwB+fn7Y2dmRk5NDbMQZqquNkJoIWRmQnw/IoNGAlS04OIKTK7+v+IOCrEwCAwPLViSzcHJ5VsQp0lYtRB8dTc6Rw5zP0/P7LQMZxqKbOzs707RpUzp37kyjRo2KD640Guj8PGqfqgRtXIHx4gW8szP5dsxoxv/wv4qtMBQeGFtbW2rWrMmFCxeIiIgo9w2kPE/QJZEkCW9vbzIzM0lJSSnzDcTZ2Rk/Pz9iY2OJiIgoc9mOU6feBeJJT7eiRo0VODiU/eaRlJTEhg0b2LFjBzdu3ABkqlTJw9s7n3r19NjZ6bG31+PkpMPRUYeFhRGtVk1MjCWHDtnj6tqGNm1GEBx8dzmSv+vatSs2NjZMmTKFDz/UMGmSROPGWiTpB2Avyqqnik+CFu4m2oNoD4/SExlQWVlZUbVqVa5evcqVK1eKD6jsHaFaDbgWhW9GElCJxhJ5Co1BR5JeZkW6gQG5uThblh5QSbJMj4Aq+CZcxeH3H+Eey2CzsrJoduUKzXwsCAr2QLN6Abh5Kf+5eympFSyLVjS/fv06ixcvZseOHRj1etraq+jmoKa2tZqJ1WzZbeXOZbUtGRkZxMfHk56ezpYtW9iyZQtBQUEMHz6cpk2bFn9B9cPReFYhYNlcDMeP8FxeAn9OHsPAad8g3cekc0LlBQcHc+HCBS5fvlzmOmAVXQ1VElMiwvJO6q1bty6xsbFcuXKlTDeQmJgjyPIfSBKoVB8QEHDvL3JQJikvXLiQHTt2IMsyVlYGunZNpUsXLZ6eGmxsbLC0tEejUSNJKmRZRq/XodUWkJubQ2ZmFlptBrCUzMzf2bEjhJCQiXh5dSr1vG3btmXcuHFMnTqVDz808umn4Tz11DmUnDwjgK+A8uVMEkon2sO9ifbwYDyRARUoc5SuXr1a+mqOuo3hWhT+mUpAdevWrYqdLOkmstHImTwjRjBPci9RZjqs/Y2eqmxSLCW02gIlVYK3Hzi5gJWNkhdKr4P8PAzpqez9fQl2BpkgLw8cJSNci1L+M5EkJVdVQDDagNrM/XMdf/zxh7nB1qxZk5rt2+NRK4iqEYdQJcbSEJRUDR17o1OpOX/+PDt37mTLli1cuXKFjz76iE6dOvHuu++av1CK8PLFevhHeP06k7g926gTG0nkN59Sd9RYZTK78Fjw8/MD7rEA4m/8/ZU5hqXOQyyHpCSljZU3f46pRmZZlorr9XqOHh1JUJCRnJyatGkzukz7/PbbbyxevNi8KKV3b28GDozD3d0dtVqFUhajBuAJOAEugDtWVm7Y2Vnh6pqDLF8nNXU/yck70GpjcXE5R3z8CyQmdqF+/Z+RpJJ7bjt06EBaWhqzZs1iwoTj/PDDx4SELAWuAR8Dc3nQy9n/TUR7KH0f0R4enCc2oDL1SplKsRSrVj3YaoUTuQRaSly6dKliaf0lyTz/ysbGpvRhr5wsWPIjZKUjayzYkGnAI7whw//vrRJ3Wb50KT/FpOPi4sKiid9DXrYyPJiaBCmJkJKgTIRPjEN7/SrRC37EPyuPBlZg17AFg4cMMU9oBCCsMRzcDoe2Q8RxiL2KRY8BhIaGEhoayrBhw1i0aBErV65k27ZtREZG8t///peqVavefXHWNni8NporeQYsj+xAd+oguQu+xXbQCLB7eMtwhZKZcueUJ39N48aNWbx4Mfv27SM3N7dSQ7kJCQmkpaWhUqnMK5XKKjs7G6BMtc9Wr/6BoKAoNBoN9ep9e88KAenp6UycOJEzZ84A0Lp1Q95+2xIPj8OAGvABhgFtuddXoSQ1x939BdzdZW7e3Mvx4xPw9T2NLG/iyJGWhISsw97er8T9n3/+eS5fvszmzZuZOPEnFiz4FgeH/wDxKDeQ9+75/oWyEe2heKI9PHhP7NiNU2H28VK7aC0soXYDbGxsaOdiQ1ZWFkeOHCn/ydy9yMnNpZqldO9SL3s2KrmpXNxZ7RTAtmwjNm4ljwunpaXx22+/ATBixAjsXN3Btzo0aKakM+j3KrwxHkaMJaFRO/46f5mc/HyCbC2ZEh7MZ7W9qO34t8anVivpHAaMAAdnyEiDpf+DfVvAaMDBwYE333yTmTNn4unpSVxcHCNHjuTChQvFX6Qk0eydj9juXJ1svYHEk0dg8azK58ES7gvT5NXMzMwy7xMWFoa/vz85OTksWrSoUuffs2cPoEyqLU+uN1mWOX78OHB7EUdJrl69Sm7uD0gSODg8jbNz6Rmtk5OTefvttzlz5gyOjlZ8/30bJk++WnjzAOgLLAA6Ur7nSokqVdrQs+dOsrI+JTfXEkvLGE6caE9ycskpRiRJ4t1338XPz4/U1FRmz16C8jQOSq2zSqQ+EYoQ7eFuoj08HE9sQGUaojJF9CUKa45Kkmjv44KTSqlGXu7J6dVqkpGRQaCliqahpYxRGwxw4TQActcX2HtGKdRpWpVYnAULFpCbm0vt2rV5+umnS9wuKa+AkbPnMzs+h19s/ag+cBiObu7KSr8lPyoT8PV/myPmFwBD34c6DUE2KtnYl/7PHAjVrVuXOXPmUKdOHbKyshg9enSJeackSaLv6DF8n2okOjWd7Js3YOlsuJVS8uchPBQuLi4A5aofJkkSb7zxBgDLli1j3759FTq3Vqtl5cqVgFIHrTxOnTpFbGwsVlZWJc/lA4xGIwsXfkKDBrdwcnKiWrVPSz1ueno677//PrGxsbRtq2LJEjX16+9BktKBqsA3KEu2re7aV5kror/n3BdJkmjbdiRVqqxAq7XDwSGFc+e6kJh4ucR9rK2t+c9//gPAxo0biYy0ABoABmBrqecTyk60h6JEe3h4ntiAytRo7tmt6+0P/oF4eXrSxc2GqKgoFi5cWK5z3cjJ51JqOmoJOtcoZljMJDdLCWokFcduJpGamoqdnR2hoaHFbh4TE8P69esBeOONN0rs+SooKGD8+PGkpqZSvXp1/vvNd9h3fQ5e+0iZIyXLSu3CxbPgVgrZ2dlERERw6NAhjp09R0z9lhi69Qcra7gZA798q9QeRFlZ8tVXX1G/fn1ycnL4+OOPzeP/fxcQEEDTLt35LkXP+cQUZRhyxTzI/uclaHuS+Pgoq3qysrLMJTTKokWLFvTu3RtZlpk8eXK5MzvLsszXX39NcnIyXl5edO7cuVz7m3pmu3btWuoQy4YNGwgK2odarcLTcwCSFFTitjqdjvHjxxMbG8sLL+Qwdmw+dna5KPNBRgM/A2Hm64+MjGTevHm8++47vP7607z/fkP++99Qvv22Lr/80pS//urDoUOfkZFRfL6cgIA21KixFr3eAWfnW5w61YP09JKfruvXr0+XLl0AmD17NrLcvvCV8uVNEkom2sNtoj08XE/sHCpTo4mNjS05F5VJs/ZY3IjmhVpVWZ96kd9++w1nZ2eef/75e56noKCA6dOnUz3PSC1fF7xzSpnYbkqlIBtZ99efAHTp0qXESewLFy7EEpkeTRvSQFUAR/cUBmSSkoXd0gqsbVixdj1xl6NwcnJi+vTpt/OT2Nor5WyCG6Bft5S0c6dI2LuLn2IzidAWfaKwsbGhfeMwXnK1waMgD2nNb9CkNbTtjo2NDdOmTeOdd94hOjqaiRMn8sMPPxSbO2vw4MFs2rSJTy8l8VtQEE4ZafDXr8rwYmGWeOHhsrGxMS+3joyMLPNya4CRI0eSnp7O7t27mTRpEn369OHVV1+95xySjIwMvv76a/bs2YMkSXz44YfmBLplER0dzYkTJ1CpVMXnWyuUl5fHn3/O5M03M/D29sXevvR0Ij/++CMRERG0bZvD0KEaLC0tgQHAUExFYY1GI1u3bmXp0qVkZV2iQ4ck+vVLx9b27z3XCUAUsIvo6K/IyAinZs0v8fWtX2Qrd/eGqNV/cvXqM3h6JrF9ex96995VYu65V199lZ07d3L27FnOnm2BkouyhKoPQrmJ9nCbaA8P1xPbQ1W1alXUajWZmZkkJCSUvnH1WuDli5uTI6Ofbg3AzJkz+fLLL83JL4uTlJTE6NGjOX/+PHFqG3z9/JQenpJY2YCtPTq9nhsnlLlavXr1KnbT+NPHCTqzl8+8LXjVTgcbl8OudUqizr2blL9vWUX20jnUPbmTqT4WzGtWE6/T++BGtNIrhZJba8WJcwzedpz91+Iw5OUyzE1D3ypO1KpZk4CAAGxsbMjLy2PDvoMMXLOH36/Ek5uXp/RqrZwP+XnY2dnx2Wef4eDgwIULF/j555+LvW5PT086duxIthHmpRtv93rtWlf6/wPhgWrYsCEABw4cKNd+Go2GTz75hH79+gGwevVqBgwYwE8//cSFCxeKlGsqKCjg3Llz/PjjjwwaNIg9e/ag0WgYO3YsjRs3Ltd5//rrLwBat25daq6gDRs2ULduNNbWVri7dweql7jtkSNH+PPPP3F0LODddzVYW1sBrwCvY7p5XLhwgddee40ZM/5LcPBhxo27RI8eBmrX9qVWrVDq1u1L3brvEBT0H1xc3kCv70ZWlhcg4+R0hKtXO/L775PQarVFzu3i0ghf3zmoVGoCAyNYvXpcidfp7u7Oc889B8DixesKm/I9pi4I5SLag2gPj4IkV7Ya5CM0cuRIIiIieP/993nmmWdK3/jcMdi4HNnZjSU2vvw8fz6yLOPg4EC3bt0IDw/H09MTo9HIjRs3OHjwINu2bUOn02Fra8vnkyZQb9cq5VjvTi05S/ofC0k+vIfZ52O46VuT//3vf3dvczOG619+QmpiAk6OjgSGNgI3D7Cxu52OQK9H1uazc+M6VNmZBHq4FV2F5+VLemhLxs/9hYiICAACq1fjvdAaBOelYaHRQFBd6P4CspUNly5dYsuWLaxfvx6tVkuorZr/1KuGj7sbkpsn9H0VHJ3Zt28fn3zyCZIkMWfOnGKT0l29epVXXnkFSZJYOeNTXHcqXwY8OwRq1iv9/4PwQBw7dowPP/wQBwcHVq1ade/UHiUc44cffihSI1OSJJycnDAajWRlZRWZSxEUFMTo0aOLrjAtA71ez/PPP09mZiZffvlliTcfWZYZMmQwr7yyhfr1vXB3/xFoXey2Wq2Wl19+mYSEBKZOdaJVqwwgBPgBkJBlmVWrVjF79mzc3XMZOvQmDRva4+7uhlodDvwfEIqy2ulu0dEbSE39GI3mBlqtilWr2jJy5DfmElO3t3ufjIwFJCdb4eW1ntDQ4t9bRkYG/fv3x9Y2k4ULtTg6ugOby/DpCWUh2oNoD4/CE9tDBcqYN9xeVVGqWvVBpUZKT+X/enTl66+/pmrVqmRlZbF8+XI+/PBDXnrpJYYOHcqECRPYuHEjOp2O0NBQ5syZQ70mTZXeGFBWzZWkaiCZmZkEWUq0bdu22E3k7X+RlZZKlNZISq+XYcRY6Pca9BwEXfsp//UcyE6Xanx6JY0vs61w+uQ7pYZf/XDQWKC9Hk3cN5NoGHcBd3tbPvzwQ+bNX0C9d8dj0XOgMmR45Tz8+j1SYizBwcG8/fbbLF68mLZt23I618CHJ6K5EHsTY0oiLJ4JKQk89dRTtG/fHlmWmTlzZrGTEQMCAggLC0OWZf44FQlNlNpVbFoBGRXM9SVUSqNGjXB3dycrK6ts7aEYTZo0Yf78+UyZMoU2bdrg4OCALMukp6eTmZmJLMs4OzvTvn17pk2bxty5c8t98wBl8m1mZibOzs6EhYWVuF1MTAx6/WVcXfW4uHgDJU/UXbt2LQkJCdSo4UDz5qbVXW9gunnMnTuXWbNm0qxZEp99lkKnTtXw8gpCrZ4IfAk0oqSbB0BgYHfCww/j7d0Ze3s13brt44MPhnPs2LG/bTcVe3s/PDy0bNnynxILsjs5ORXO15FITEwCjMVuJ1SMaA+iPTwKT+wcKlCyrs6bN48TJ06Qnp6Os7NzyRtbWimlWuKvQ8INwsIasmDBAg4dOsTOnTu5ePEiqampqNVqvLy8CAkJoWPHjtSrV+/2/CxnN2VVXVoKuHsXe5oCD1+ys7KobilRpVmzuzfQFaCNuUKBTseybBVLOpS8sm/58uUAvPDCCzh5eoGnFwTWJj20Fav/8xahBh0tXGwYGNoQ28ahytwrUIIuzyrw1yIl+Fv8I3ToBWHNcXNzY+LEiaxdu5bvv/+esRFxTJQh1A+kpbPh+WG88cYb7N+/nzNnznDo0CFz4HqnPn36cOrUKTZu3MjQpUtRx16FhBuwdrEyn6oMtQuF+0elUtGzZ08WLlzIypUr6dChwz3z0hRHrVbTunVrWrdujSzLpKWlkZGRgSRJuLi44OTkVKHj3sk02bd169aoS5l3d/LkSapXz8HOzh61ugHFrUICZQ7IihUrAHjnHT/U6kigIcoTOaxatYqlS5fQr18szz9vhaenH5LUBKXifXlKXdjg4zMPN7dXsLI6RK9eFxkz5mMmT55Cy5amZeu2+Pu/T1TUf6hTJ5KVK1cyYMCAYo/Wt29fNm5cSnZ2Nrm5WdjayvwT6pk9DkR7EO3hUXiie6j8/PyoXbs2RqORzZvL0D3oWUX5M0nJoKtSqWjZsiXjxo3j119/Zf369axZs4a5c+fy7rvvUr9+/aKNxaNw//iSJ8ydTUhBZ5RxsrKkuqvT3Rvk5ZKbk4NBBp8atUqcuHjt2jUuXryIRqOhd+/e5p/Lssz0777n19h0lqpcqNEoHNuCfCV1wuU7qpR7+cKQUVAzBIwG2LZamael1yNJEr169WLq1KlkSxrGnovjTEoG5OfB8rl45GWax7QXLFhQbC9Vy5YtcXJyIi0tjSPHj8Mzg5Q5ZPHXYcdfJX4+woPTu3dvLCwsuHDhAmfPnq308SRJws3NjcDAQAICAnB2dq70zQMw59pp1apVqdudOXOGKlXysbe3B2qVul1SUhJOTraEhJjaZl8AoqKimD17Nt26JfD881Z4eXkVFmSdQfE3Dxll4u1eIIK7n5QdsLT8L0FBwbRuLREensjEiROLfN7W1s/h4+OHr28eGzfOKzEfkoeHB82aKauaUlJSgNxSPw+hfER7EO3hYXuiAyqAHj16ALB+/fp7103yLCwamRRXsZNVLVyeevm8eVL43505f54EvYyDvT1SUjGlD4wGcnNzMVJ6fqr9+/cDSrezKYkpKMObhw8fxsLCgjc/nY7lq6OVSfd6Hfz5izJXrJBOrSGrQx+MrbuBpFKypi//CfKVX9TmzZvzySefkI/Ef45FESNbgE4Lq35mUKumWFlZERUVxdGjR++6Po1GY86btX37dqX3rudApZfs9GE4dbDUj1K4/5ydnenatSsAS5YsecRXU7zk5GTi4+NRqVTUr1+/1G3Pnz+Pi0tBYc65KiVut3fvXgD69auGSpUDuAHNkWWZ7777DlfXXPr2LSisrvAxyiqn2zdCvV7PoUM7Wb/+JY4dCyYi4inOn+9LVFQXLl1qSlTU73/7bqmJSvUa1atX45VXcvDxyWDChAl35D1yws2tLTY2Nvj6JrJ48eISr71792fRalWkp99Cq73H4hqhXER7EO3hYXviA6oOHTpgY2PDjRs3OHXqVOkb+1ZX/oyLgRLGcktVo64yaTwtCWKKT1h28eJFrhfI2NrZFb8i0GgkLz8foyyXWoXc9NRy55JfWZbNObQGDhxIQEAAWNvC80OhXjjIMvl/LmLtfycwePBgunTpQq/evek8/jOmXU7iZtotDNej4fc5kKusbmzTpg0vvfQSBTK8s/skeT7VQK/HYesKXumkzAH7/fffi73Gdu3aAXDw4EGl8HRgbWitfIGx7S+4XnJSN+HB6N+/P5IkcfjwYa5evfqoL+cupmz8gYGBpS5Fz8jIICkpCSsrY+F2xdSaLGSqftCypWmZdztAxcmTJ4mIiKB160z8/asgSU2B27mBZFlm48YNfPVVW/T6flSpsga1OpmsLD2XLmlISsonJ+cKWVlv8OOPXTl37twdZ30BSWpFYKA/o0YloVIl8tVXX5lvNJJUjypVfPDzy+PPP/8sMclkWFgY+fmOGAxGzp59MpMZPs5EewDRHh6eJz6gsrW1pWPHjgDmJJklcvdW6s/pCiCmAkUwrayhQeFEwL2biu2lunr1KtEFRqUWU8zdWcflAi35eXloZWVyd3F0Op155d6dkxTPnj3LtWvXsLGx4YUXXri9g0qNvtOzHMiXiIyMxDfiEK4pceZfZoPBwJaLVxl97DLHzkeSGX0JVv0MBcpS18GDB1OnTh0yc/P4/no6BNUBvZ7exltUs1IaYnR09F3XWbduXdzc3MjNzeXkycJEbE3b3c7M/tciUZ7mIfP19aV1a2Xljylj8+Pk8mUlyC7tYeLO7ZT5IipKmqQaHx9PbGwsarUKf3/TE60ydLJmzRoAOnWyK1zl1c28n1arZcqUcaSlvUHnzudxcpKwsamBSvUfHBy2EhS0ifz8haSnt0CtVtGy5RF+/33QHQ8XEjAOlaomdev68Prr1zhxYh+HDh0qfL0qDg6O1K5tT0FBAX/88Uex1y9JEs7OSk/1hQvbS/1MhPIT7QFEe3h4nviACqBnz56AMhxWaikaSYI6YcrfT1ZwSKpZB2WCe8INOHWoyEu5ubkkJSVxQSsrNZySbt61IjDr1i30BgM6meKLEaM8tRQUFODs7Fxkmx07dgBKz5Cp9A4oAdOkyZMZt+MIB3OMODk6Mik8mL9mf8+WLVv4/fffef/995E8q/BNfC5no65wK/IsrFsChcWiR40aBcDmbduJbdQeqtbASoKPanjior7dGO8kSZJ58qE534skQZfnlQz1+XnKMKSuoJwfslAZphw627ZtIz09/dFezN9cuqQ8yNyrVpnpyd3W1pSTp/h5F6bfu3btqqHRZKJM1K1HdnY2+/fvx8rKQECA6WsuDFCexD/9dAqBgYsJCcnC27sqderMpHbtg4SGjiEkpBH169enY8eetG+/npo1x+Pq6sJzz93g6NFpdwxZ2AKfY2PjT0iIA337xt4x57AKkgT16yvzUtauXXtXrh4TX1+lDaWnnylXZm+hbER7EO3hYflHBFS1atUiICAAnU6nzOcpTcOWyk3/6kWIv1H+k9k7wFNKqnx2ry9Sy+7atWsAWDq5oAkonDR4rugy0us3bwLgZGtT4oR0U29PWFiYedKjLMvmeVV/T8ewYMEC9u/fj4WFBXVHjSPo6Z64ODjguH01Fnk5eHl58cwzzzB//nxCO3Tmp1Q9V2Kuk3PmmJJIFAgODqZFixbIsszqtWuVnFKeVfB1deZVVw17d2wvdsmrKaDat2/f7XF1C0t4drCSyT05QRn+Ex6akJAQgoODKSgoYNmyZY/6csx0Op250n3dunVL3fbixYsAODqaenGL7+k0DW+0b+9S+JP6gAUHDhxAr9fTqJGr0luMG+AMKMkac3PXU79+FkFBwfj4/IZG05/iFz1L2Nq+S7Vq7+LrW4VBg66zb9/XHD5sKirrBkzCy8uL8PB0dLpTnD9/HlBWAbu7y3h7e5CVlcXBg8U/xHl4NMLW1gYPj1y2bn3yhjked6I9iPbwsPwjAipJkujWTem+XL16NUZjKTksnN2grpJFl+1/QWnblqRRK/APVHpe1i0xz8cyNY7atWvfHho8dahID82l5DRkwN3GqsThsNOnlQLLdw73XblyhZSUFKysrMxZgAGuX7/O0qVLARg7dizt2rdXJod7eENudpEeIisrKz7++GMCWrZh6S0dMdevYzy0Q8lXBebVhDt27MCgsYDnXsbBywd/Gwu6q/M4XcwctcaNG2NnZ0dqamrRMXUHZ2XlnyTBuaPm2oHCgydJEi+99BIAK1asMD/dPmo7duwgNzcXDw8PgoODS93WNN/F1dVUp+zu/GYGg+GOG1J+4U8bAbdz07Vvb9pf6enNyclhwYIFtGuXhK+vLw4Ob6DcdEojAW/j5TUIT093XnrpGr/+OoX8fNM566LR9MTZ2Zk2bZILbwJugAZJMtKtWxPg9kKTu1XD1dUNLy8tGzduvPfiGqFcRHsQ7eFh+UcEVADdu3fH3t6emJgY/vzzz9I3btNdGbaLv66UXykvSYLuA8DaBhJiYdc6ZFk2R9PNmjWDWg3AyUUJau44R0x8Ape0RqysreHwrrsOLcuyucHXq3c767hppV2jRo0K6zEpfv/9d4xGIy1btjRPEsfSCvq8rGReT4yDzSvN870kSWL06NHE2LqyLTWX1JQU2LAMMtNp3LgxDg4OpKenExkZCQ7OSL0H4+DoSCNbFSk77p6jZmFhYe6luquYaNUaypwqgK1/mCfCCw9e8+bNadu2LQaDgTFjxnDlypVHej05OTnMnz8fgGeffbbU5eYGg4GbhT25Li6FK3O5e9g4JiaG/Px8bG1tcHaOLfxpKHq93pxgMDTUtfDnyg1kw4YNSNItataUcXf3AIovDXU3CfgIH5/uODho6N37OH/+eWdvRy+cnV2oUyeTw4cPFDY35am8aVN/4PaD0t2q4eLigrOznri4KKKi7p57KVSOaA+iPTwM/5iAys7OjmHDhgFK1eoTJ06UvLG9I7RT5l2xd1Pp9flK4uisBFUAJw9wZtkvREdHY21tTYcOHZRCwaahwUM7IE2puJ2YmMjWLCNWlpZw9ogy9HiHhIQEcnNz0Wg0RdL4m3757ixLkJeXZ55XNWjQoKLX5+QKvQeDSgWRp+DAtttv396eIUOGsCbTyKmEVOS8PFi3BI1KMh/fvGLSL4C0ekqC0urRZ5UhvL8xBXK7du26+2miVWeltywvF/ZsKPHjFO4vSZL4z3/+Q82aNUlPT2fkyJFs2rTpkTztZWVlMW7cOJKSkvD29r5nUfL09HSMRiOSJOHgUFidoJjhB9NNsVEjHyQps3CbWkRFRaHVanFycsLDwzRMrSwz37p1Kz4+eXh4uCNJ/piGPcpGg0YzBXf3Wnh4aElK+uGOYfBg7O09sLaWkeUbxMfHA8rNLyBAGdpPTk4mKyurmOPao9G44OzshKtrATt37izHNQllIdqDaA8Pwz8moAJlyKpt27bo9Xo+/vhjtm3bVvLGDZoq5WiMBmU1WnZx/2PvIagOtOhEbl4e+vXL8NIoEyAdHByU1+s0hOo1lRxRa34DXQG3bt0iukAmK7Cu0mu0dgkk385XFRurPFn4+voWqc5tmrx451j78ePH0Wq1+Pj4FD8G7x8Infoofz+wFSJPml/q2rUrdo6O/O9mFhn5+RB3DQ7vMudCMa0yBLB+qjOR+UZ0+XmwfsldKSfCw8OxtrYmNTX17qXJajU8rSQJ5dyxIu9VeLBsbW35+uuvadSoEfn5+Xz++eeMHj262BWbD0JmZiarVq1i6NChnD59GltbWyZPnlzi3ME79wNwdHREpTINbbjctZ3yJQ116ph6bAMAjXkuY40aNZCk9MLX3EhNTSUqKgpHR0NhVQWPCrwrJ9zdJ6LRaGjc+BpHj5qK70qo1X7Y2tri6lpQ2H6Um5aVVRpubm4AxMWVlAPPHScnJxwcdOaUKcL9JdqDaA8P2j8qoJIkiXHjxtGqVSt0Oh2fffYZ//3vf4tfKSBJSs08V0/IzoTVC8u9Gi0tLY35F2+w/twlVEYD7wW482L/O9IZSBJ06184OTse1v9OTo6yCjG7aQeoUg20SnZyU6CRnKz0ZHl73y5tk5+fz61bSkO6c9Wfaby8adOmJXcZhzaD8MJJ7BtXmCfiW1pa0r59e9IMsFUuXDF4YBshXsoqjDu7Wb28vVmabiBdq0NOSlCCsztYWFgQEqKUNbgzEDPzra4Er7IM+5+sSYZPOnt7e7744gtee+01LCwsOHHiBK+++ipTpkx5IF3pOTk5bNiwgQ8//JDnnnuOmTNnkpqaip+fH99++y21apWc4dnENBfD2toaMH3h+ty1XVqasoLWx8c0D1JpG6a24u7uDpjmddiYl577+HgUPqxUrDySWt0BGxs/bG0NREXduRTfDltbGywtDYUPQKZrTjDfQEzXfDcr7OzssLCQiY6OxmAwlLCdUBmiPYj28CD9owIqUG7uU6ZMYciQIUiSxNatW3nxxRdZsWLF3cs0razhuZfBxrawDt2Se05Sl2WZAwcOMHbsWPr168ei337jl9QCNE4uNA6siuX+v5XAsXeEXi+CSg1R5+iIElBZ2topCTm9fJV5Vkv/B7FXzcHfndnRTU8oGo2mSPK3mBhlqPJeS25p0w2C6oJBr9TaK8w/ZZr79MeFq8rrRgOB0crQYmpqqjkFhZOTE9lGWJaux2DQw5HdkHizyClMeVRM13SXpwoTyF2OKLIyUnjwVCoVgwYN4pdffqFdu3bIsszOnTsZPnw4o0aNYuvWrSUuYS6rgoICfv31V1544QW++OILjh07hsFgoEaNGrz77rvMnz//nrl2TEyLSpS6ZqYbiN9d2+Xl5QHg4GDqMVW+pE3vRbkBmW4SusJyFuDs7Fb4swok9wVAhbW1Ut8yJ+fOVbxqbGxsUKlMK35NN5B4c3sufogDoAALC0sMBgmDwVB6+hehUkR7ANEeHox/XEAFSoMZOnQos2bNIigoiOzsbH788UcGDRrEkiVLiv5PdHFXJnCrNcpqt+1/lVhW5vr167z99tuMGzeOgwcPYjQaCQkJ4T8TJ1Pvo6lKlH/68N0Zwv0DoXt/AMLVero4qFCpVEqW8xdeK9JT5Zyo1F5SlrYqdDodoASLd/ZEmXKqmKL9Uj4Q6DFAWXmXkaYERNye9J6QkEhm0w6g0WCRcIPmns7A7e5YjUaDjY0N5/JlcqvWVJJ27ij6OZkaSIm/+G5eEFBb2UeUpXkkfHx8mDhxIvPmzaNjx46o1WrOnDnDf//7X/r06cPUqVPZu3dvuW8m8fHxvPXWWyxYsIDc3FyqVavGq6++yqJFi5g7d665plpZ3U4VYgSSCn96dzFy0/wXtdp0I7Au/LdSYFZ5qnUsfC3TvL3RaCpAW9EbCLi4hBaeK9HcPsGIlZU1RqNp6N5UHuQGtrZKe87JKWlhRhaybCQ3V7m28nxeQsWI9iDaw/1WsT6+J0SdOnWYM2cOmzdv5pdffiEpKYm5c+fyyy+/0KZNG7p27UrDhg1R+VZXAo61i5WbvbMbhLcpcqzTp08zduxYcnNzsbGxoVevXnTv3r1ocs7Q5sr+W/6Al9+HO+ZAUSdM6YmKiKCLgxrbCyehRo3bQdW6JXD5PGGxEbS3VxWpsa1SKXFvSekgylSg08oa2vVQ3uPZI9DqaWxtbXF3dyclJYWb2bk4NmwFR3fT2dmSQ0nKBHnTcl5ra2vy8vJIa9ASx6QbEHtVyQRfXemyLihQhktL/cVv2ByuXoDzJ6FtDyXQEx66oKAgxo8fz4gRI9iwYQObNm0iPj6e7du3s337diwsLAgNDSU8PJywsDCCgoLMX8p3kmWZffv28eWXX5KZmYmTkxPvvPMO7du3r1TRWNMqVqMxDzDdzO6eM2Kae6LTmdqFocjPlRuhqeBrCvb2Sg6f3FxT0F/x3z8bG6WHwMFBR05OTuEcFBlLSwtAR3JyMrLsV/g5ZOFSePm3l5b/XQYFBTpycjRYWVkVeaASHizRHkR7uF/+0QEVKNF59+7d6dy5M9u3b2flypVcvnyZbdu2sW3bNpydnXnqqado0aIFjZp3wvrgViVhp6sHBNVBlmV27NjBjBkzKCgooH79+kyYMKFwPPpv2nSDqHPKkNbxvVBYOdus8VPsM1rTDB2Ox3ZBQBCENFISYfYeAjvXotr4B884qkmLj1ImzKvU5gZRUFCALMvmxmma/F5S9e671KirBDHZmZCVAY7O2NnZkZKSonQXN2kNx/ZSXSPjqaFIvSWluxhy1RbQoBmc2A8nDpgDKtNYuNKQSlA9WEk1kZutTIL3DyzbdQsPhLu7O0OGDGHw4MGcP3+e3bt3s2fPHhITEzl27Jh5qbWVlRU1atSgatWquLu7o9FouHXrFqdPnzYvQggODmbKlCmFBVcrx97eHoCCgnRkWSr8fbe+aztXV2UJ+K1bpidipR2YqggovaWmlbKJVKmilODIykpAlm2RpJJrp91LTo5y87GxMd4xDC+h0VgAMgaDgdxcA3Z2VYA43N2Vm1bxvR0GQEtBQQF5eTb4+PhU6gYsVIxoD6I9VNY/PqAy0Wg0dOnShc6dO3Px4kU2bdrEjh07SE9PZ926daxbtw5JkhgR6EFTa5BmTWOrT10OXbxsXo7asmVLJkyYUPKqDCtraNtdyet0YBvUDlNyUd3hhJUrBUnpBBoMsHG5kjOqZogS6HToReyVa0jx66memQir5kOvweZfUFmWycvLM//b1FhNqzvu/SFYKBPkszMhLwccnc3BmL29vTLfq3ot1NdjaGCtKjJ8Z3pK0mq1ykT3E/uVlA+6ArCwJCkpqcg1FUuthoBgJY3DtUsioHpMSJJESEgIISEhvPHGG1y/fp0jR45w/Phxzp07R05ODhEREcUuOLC0tKRfv34MHjz4nquVysrNzQ1JkjAYCtDrVVhYWAF3f6H6+ChzMm7cMH0pJwLgUvj4q0zGNf0+JlGtWjVUKhVqdSY6nQWWlnc/5ZfVlSvK0LyTk80deeGU3lmNxjSUYgT8gThcXJT5Laae3KKUoRadTodeb4uHR0VWWwn3i2gP5Sfag+JfE1CZSJJE7dq1qV27NiNHjuTUqVPs27ePo0ePcvPmTeZcSULjriHAUsI3Np7YFD2WlpYMHDiQwYMHF9vVW0TdRso8qrhrsGk59HutyNCWq5sbqy9f5mkXb5wMuUo6hT4vQWBtkCTkRq1YuPovhlsVwLUo+G0mVs8OwdLSkoKCAjIyMswBlWm40bQstmwfQOG1GI0kJSVx69YtJEnCz69wkmONOrBnK7WsJPLu2M3USHQ6nTIfyt5RCcySE6BKVfNKEtNTUon8ApWAKqECZX+EB06SJKpVq0a1atXo168fsixz48YNoqKiiIuL49atW+j1euzt7alRowZNmza9nSbkPrGwsMDHx4fs7Gvk5+cV3kDuVr16dQAiIkyreJUvddMXcEJCArdvIMlYWVkRGBiIvX0MOTk5lbqBnDx5iLAwcHevcsdP1ej1OlQqGbVaXdgzoPRk29oqQxvFlW8yMRj0SFLRBSnCoyXaQ9mI9qD41wVUd9JoNDRp0oQmTZRU+CkpKURGRpJ09TJOZ/fiZdAxu2l1XF95D6d7BQompnQMv34H168ow4ftnzG/7OvrC8AuKw/q+DnCpbOw+helXExwA/z8/DiXL/NVfB7zwx1RpSUh/fYDLT0c2RWXQkpKivlJxLS6z5SjqmwKJ5JLmGsp1a1b9/YYtX8ger2eapYq4gq7muFvExsl6XZAlVeYBqKwN+ueXyYehZMpU5PLcc3CoyJJElWrVi2xkPeDUqdOHY4fv0Z2dg4ODsW3vYCAACRJ4uJFHTqdjIVFApBlfjhIT08nM9MaR0dQJvPKNGjQAGvr7WRnZ+HiYl/sce8lOzubhARl+KdKlbA7XtGRnZ2NwSARGBhYOPdReRCRJF3hn8UNXVgCEgaDEUtLY5HC58LjRbSHu4n2cJuYFXwHd3d3WrduzfNDhhL4/mSq+FclQNbitHc9lCcPhquHElSBUnZm3xbzijhTEHTh0iXoOQiCGyhzpdYuhqN78PL0xMrKiph8PfGd+oFfABRo+T97I30cVdyMuWY+jWnC+M2bN8teRd3UxWphyd69Skmcp556yvyy7OxORk4uFhLU8ry9etA0Id7cAAyFTxZqJSY3Ldm95+RBp8JjZmeU7zMV/lWUEktGsrIygeKfyK2srKhWrRp5eRrS003zNiKxtbXF318pb3HuXCLK8EgBkGZ+eMrMzCxcNVV+e/fuJTj4FtbW1ri6trrjlTRSU1PJydHQqpXp58oqpuxs5VzF3xwkwBaj0YCNjeGJmYArPDyiPTwZREBVEh//wtItaqUXaeU8yM8t+/61Q2+Xtzm4TVn5ZzCYUxVERkaiMxqVoCq0uRJw7VqHtOF3alZTnn4u30yAF4ZDeFusra1pba/Gf9efcFPpynVwcCAgQFmpcaqYwsV3yUxX0jNIErlqS/M+rVu3Nm9yNiKC+LwCVCpVkYDKtLzVPOGwMEEpNkqDKJrrpBR29spcLllWUjgIQjGaNGmCtbWBnJxcdDrLErczVQiIjjZ9MSvJbk2FxY8cOcHt5doxNGrUCL3ehoICHbGx56iIa9eWEhCQg5OTG5LUsfCn+WRnXyA7O4fUVHt69OhR+PObhfsoDxx3JuwtygmDwYCdnf6JeiIXHg7RHp4MIqAqTWBtJfmmhZUyfPfr95B08977mYS3gY69lSGyM4dh2Rz8nOxxdnZGp9Nx8eJFZX7V032gQy9lflPkKUbY6/C1kJTX1Wpo14PEp3qQZZBR3UqGJbNg0wrITCc8PByAffv2lX4tuTlKUAfgW50T5yIwGAz4+fmZhyEB1q1bR45RxsXZGQu90pul1+tJTFQmOJonCJqCSxs7ZFkmN1f5952JR4slSUruLzDXNxSEv/P09CQw0AuApKSSH2QaNWoEwIEDpnw2SmJa0xPx7t27MRqrF74WhZWVFd7eTQGIji5/1v68vMM0arQRAAuLAZiSJ8JhkpMTSEuzJDy8e+EqYD1wCb3ewMGDyqKNYktEAeCCXq/H0VH/RM0ZER4O0R6eDCKgupfqteD/3lRW62WkweJZEFGO2kKNWimJQy2tIO4a0q/f06NOEMDtAs6SBI2fgv7Dwd4Rb0s177pr0Jzcf3uo8OkezEg2sDctV+kNOnsU5k6nnyaX5rYqYg/tJevSeWX13LljSkHmHWuU/FaLfoDZU5UcUCo1tOvJ0aNHgaLFlnNycti9ezcqwM3d3TyB/eLFi+j1ehwcHJQnClm+nVFeoyE3N9c8JGhvX4ZxeM/CjLkJsaVvJ/yrNWyolDOKjy85s354eDiSJLF/fzZabQFwAdDSpEkT3NzcSE9P59w509CysiqrWbPhSBLY2kaxd+/GMl5NIvAd2dnDsbTUk5Tkjbv7h4WvyRQULCYjI4MTJ5x5/vm+hT8/B2hJStISF6ehevXqtxd/3MUDnU6Hs3PBvRP1Cv9Koj08/kRAVRYePjBklJLpW69T0iLsWKPMfSqLoDrK/l6+kJfDs8ZbPOOo4kRhUGPmHwgvv4dVSEPUEjTKjKfgt1mQmY6TkxO1QsNYkm5gk2sgVA0CoxG39ERe9rHndSeZjFlTYcU8JR3D3k1wfN/tFXVGg3L+Aa9j8KzC/v37AWjevLn59IcOHUJfUECQo53S01RYkmDXrl3A7caKJN1eLWgwmPNV2dralm2pcJXqyp83rpTt8xP+lerXbwBAcnJSiauBHB0dadSoEamplsTHF6A8BZ9HrVbTp49SGHzx4nMYjTJwCjDi49McG5sQNBqZw4c/JjIyspSriADGAwPR61eRmBjP8eMu5ORMQJJMv+tbyck5gk4H1641JCgoqPDn+5Bl2LtXC0j07t27xHw6suyDVqvF3V1bpMdYEExEe3j8iYCqrKxtleG/lp2Ufx/fB3/+WvaCyi7uMOgtaNQKB3sH2turaZ94Ee3fV7vZ2GH/f2+y08KVAhmyI0/Dwq8h4jjdunYFYNH2PeieewWGvo/UohNODRqTope5lJhMkqyG6jWhXhNo2laZx/XM/8Gr/4HB74BvdbZs2UJqairOzs5FeqiOHj1KazsVHk4OSPaO4FUFnU7H1q1KV3CnTp1uX6dlYeMpyDcPB5Y5iV31whpWcTHKSkFBKEa1arXRaDSo1dpS5wh269YNkDh4MPeOGwX06dMHZ2dnjh3LIjExE8gCLgESNWpMwMHBnrZtb/Dtt6+yZcsWcykORQIwCRgJ7Mdg0LN3bzbffVeVXbta0rPn84XbRQHfkJGRydatXoSGdij8uQHYSUZGBnv3qnBwcKBrYfstTlqaAwaDEV/fgifqBiI8PKI9PP5EQFUekgStOitZzTUauBIJK38GbUnp8/9Go4GOvbHsNwyjhSVVLSBn9n+VnFV/O49L2y58kaTjQkaucvwNy+iYHUc1d1dSU1PZsGEDuHvDU53xfmcCZ5p25dNEPUN2nOSQf33o9oJS3iW8jTJB3sUdJInr16/z448/AtC/f39zqRhZlsk8fZSejmol9UHLp0GlZv/+/WRkZODm5kbTpk1vX6M5oCrg+nVlknzJ3bd/4+ym1C+UjUoZHEEohkrlgrOzM3Z2erZv317idm3btsXNzY0zZ9TcupUGKEu4bW1tGTZsGEajxI4dmYVDIEqqELX6aapVG4irqz2vvRbJpUtv8f33z3Hq1JcUFHwKDAZ2o9cbuXAhgLffdmTKFCdu3vRi4sSJhXnZooDRGI15nDgB27d7mQuOK9eQRmxsJpGRDvTq1avUBRsXLyq93TVqgEYjvpaFu4n28Ph7cq70cVKrnrL6ztJKqWm3+hdlKLCMpOD6HK/binidTE5yIvw+R5n3dIcuXbqQYoAJkfGk12sGKjWqK5FMr+lGWzsVixYuKFJYctSoUTRr1gytVsuYMWOYMWMGMTEx5tf1ej1btmxh5MiRZGdnU7duXfr27Wt+PXnPVp6TstCoJGwaNocGSvBk6p3q2rVr0aSmpjqFep05k7xpxWGZhCnVyTm+v+wBqfAv44aLizO2tgb2799lTs3xdxqNhv79+xMZ6UBCQgJGYwSg9Pz26NGD0NBQTp+2IybmGkbjrsK9JCwsPiUgYAh+ft60bp1Kmza7kOXPiIj4mrNnT7FmTRxDhmh5442rREbm4OPjwzfffEPNmjVRVk+9B2Ry86YjP/3kh5ubJyEhIYXHX4dWq2XHDglZVtOzZ89S3+mhQ/HodBIuLlaASHorFEe0h8edCKgqyrf67aDqxhVlXlWRLtLSNWjTnm9T9BxMzUI2Fpah2b3BPNm7SpUqhIeHY5Blfo2KgyHvgLc/ns5OvOBpy5uWOez4aqo5GNFoNEydOpVnn30WgI0bN/Lyyy/z/PPP8/LLL9OzZ0+mTZtGVlYWtWvX5rPPPkOj0ShDljvWYFy7GLUESc5eWPR6ESSJrKwsjhxRepCKDPfB7UnpKhXnz58HbufFKpPaoUq+rrwcOFD+1SXCv4EDdnauWFlZYWGRwZYtW0rcsnfv3lhZ+XHhgmXhEPRaQMmbNmbMGK5erUJmZh5xcQeAi4V7WaFSfYq39yJq1HgHS8uGJCZ6s3evO19/HcA33/gSH29D1apVGT58OPPnz6dWrVrAPuBDIAdZrs/06W5otWp69OhROCfkJrCf1NQ0Dhxwp0mTJqUsD1dSjuzcuYf4eJvCFU0xJW4r/JuJ9vC4+1dnSq80H3+lbMyKn+HiGWUlYNse994PZXWdpa0ds+Oyado1iOrxV+DILkiOh+4DwNaOAQMGcPToUdatW8fAgQPxeHEkqrNH8TEsR3vuDC4Xj5P5+Yc4hjWDgGA0Vaox6u236dSpE0uWLOHIkSOkpaWZCxe7ubnRp08fXnjhBSx0WmUe2NE9yJnppKWmsjPbQJ3/G6CkakBJxaDX6wkICDCXNQCUwDEnC4D49ExiYmJQqVQ0aNCg7J+dWg3te8Gqn5XrqBMG3v5l31/4F5CQJE88PNxxdS1g5cqVPPPMM4UZl4uytLTkzTffZPXqSwQFxeDk9Cu2tr0BN7y8vPjgg4mcOjWIxo1TyMr6mLp1V5vPAY2xs2tMSAiEhEDLlpl0756ELMt4eHjcUfBbD/wKLESpONCSLVuaERHxDba2tuaHGViI0WjkyBGZxERrRozoXuq7XL9+PdnZ2RiNLtjbOwDplfvYhH8o0R4ed6KHqrKq1oCuhUNnR3bDqUNl2s3CwoKOHZUkaL9dS1ZKz2g0SsHhhV/DpXM0DAujQYMG6HQ6fv75Z2UOV4OmuIz+L9drNiJJL3P9SjS6cyeUvFTzv4RvxhFycD2fNajKhhGDWPZKPxa99Dyr3nqJFa/25/9sdVj8+h3MmqKsVMxKJylPy8z4XHbJdrTv0MF8jTt27ACgXbt2RS8+/royxGlhxdq9BwAl8Vy5a1gFBiuBlCzD5lVlXzUp/Iv44+rqRmCgRGxsLHv27ClxyzZt2mBn142YGBtiYi6i10/DVGqpefPmeHt/gCyDVruL/fs/KfE4jo6O1KhRg5o1axbePHKBv4CXgQWFx+xFdPTLfPfd/wAYPHhw4dP0HmArmZkZrFrljLOzc5FKBH+XlZXFL7/8AkBYWFWURU9PTiJD4WET7eFxJgKq+yGksTJZHWDbarhwuky7de+uROq7d+8m3ScAXnwb3DyV3p+/fkVaMZd3+/YGYPPmzZw5o2S9xcKSLh9P4ndbX2bE57EsJgmDt7+SgdxogFspcP0KFtGReCZcwy/5Oq5XzyOdPQqXz0OaklQNL19yW3Zm1NlYIrUy/fr1M08UvHXrFsePK/m2OtwRZCHLcGAbANqqNfhrrdKV3KtXr4p9dh16gbWNkjA14kTFjiH8g9VFrVbRo4eygnTx4sV/W310myRJjB79IRs21CM7W0tc3B/I8jzz6z16vElm5rMA2NjMZPfuVzAas0s5dwzwLdC38M84wBlZHsuePY0ZNep98vLyaNiwIf369QNOAp8BsG2bK7GxtvTo0UMZWi/BL7/8QmZmJi1aOFKtmmlOTP17fSjCv5ZoD48zSS7p/4ZQPrKsZCI/c1jpSerSF+qH33O3N954gwsXLvDqq6/yf//3f8qcpkM7lN6uwh6b04mpLIm8RpKLN7Pn/WwOemJjY3nzzTfJysoiPDycTydPxqogT0lAmpOlZEcv0Cp192RZqbtnYwfOruDlS2qelnHjxnHx4kX8/f2ZO3euOY/UH3/8wQ8//EDt2rWZPXv27Qs+sA32bwGVmuV2vsxetorAwEDmzZtXYk6Rezq6B3atA1dPeOUDqOhxhH+gG8AQ9Hojb7wBly+r+PTTT0t9yj158iRLl77CwIHX8PHxwdv7G6ALALJs5NixQWg0mwGwsXHCz68H9vb1AVeUIY8UlAzTF+84qj8GQ08OHnRh2bI1nDunlOkICQlh2rRpODjEAe8CWtLSatOvXySgZunSpSWmE7l58yaDB79I06bJfPSRE87OFsDTwNgKf1rCP51oD48zEVDdT7IMm1bCucKEnS07KekHSgkQNm/ezPTp0/Hw8GDp0qW3V9Jl3FICq4jj6Au0XLhwgWxtAfnVatHuzffALxBUKs6dO8fo0aPRarWEhIQwefLke2aW1Wq1rF+/3vw04OjoyHfffWeeJyXLMq+++irR0dG8/fbbPPfcc8p727NRmecFaNt057kpX5Cbm8vkyZNp06ZNxT83bb4yBGnQw7APlcnqgmA2FdhOVFQ+77xjgb9/bebMmVNqAP/nn38SFfURnTol4e9fHXf3RUC9wldljh37gvT073Bzy0WSJNzd3XB3d8fKyvqO5qrCYGjGhQshbN6cwJ49e8nIyACUIfsBAwYwePBgLCxygFeBVGS5MR9/bODIkVN06tSJcePGlXiNX389nSpVfiQ8nMLkh2EoT/T3KN8k/MuJ9vC4EgHV/fa3wIOa9ZScUFbF59zQ6XS88MILpKenM2nSJNq2bVt0g9xsOHuUtN2biTmtDIlV9ffHrXqgMv+odhhnE1MZM3YsOTk5ODg48Oqrr9K1a9fC3CC3Xb16lc2bN7Nx40YyM5WEmkFBQUycONFcjRzg2LFjfPjhh1hZWbFixQocJBk2LoNrUcoGbbqx+mY633//PVWrVmXhwoUV750y+fU7SIxTyvTUKKm+k/DvlAEMR6+/yfLl8cyd68ekSZPvbit/M2fO/7C2nk6DBhn4+tbF03M1cPvpODb2BgsXTiQ//ygeHlrs7PQ4ONhiaenJrVvunD5tw/nzN4tkpXZ1daVbt2706dOn8MFFRskcfQCoxrJlbfnf/37F0tKSBQsWUKVKFYqTlZXF3LnNaN8+nho1QnBwGAU8j5iFIdybaA+PKxFQPShnjypDgEaDMpT17GBw8yp20/nz57No0SLq1q3LrFmzij+eLLN2zkxubPqLhrZq6tcMul03z9mNW25V+HHjNnZfvo4OcHBwICwsDDc3N7Kysrhw4QJxcXHmw3l7ezNw4EC6d+9eZExbq9Xy+uuvExMTQ99nn+WtpxrD/q2gzVPmaHV5Huo24rXXXuPy5cu888475pIGFWY0wpz/KlnT+7+ulNURhCIuAiOJj4/lyy+tSEqqz4IFC0qdjyHLMt999zk1a35HlSr5uLiEU736X4BNkW2OHz/OH3/8wZEjRzAY7l4Y4ebmRosWLWjbti0NGzYsmo+NP4AfkGUNq1d34Ycf1gPw7rvv0rt37xKv7c8/V+LpOQJXVwuCg39Hkkq/GQpCUaI9PI5EQPUg3YyBvxYpgcIdwcjf3bp1ixdeeAG9Xs93331XYvoBWZaZPHky+3bvprGLLR/16oLrrQQofGIwyjIpqWmciU/mUmYuCXqZeJ1Mgl4m26jkqmrWrBndunWjRYsWdy231ev1TJ48mahD+2jj7sBrzcOwKChMuunlCz0GgJsXcXFxvPjii6hUKv7444/KVQOXZaXu4OGdyuT0EePAwvLe+wn/QoswGOZx6NAVJk4MYtiwEQwcOLDUPWRZZu7cT6lT5wfs7fVIUhPq1/8LtfruYYS8vDyioqJISEjAYDDg5ORE9erV8fHxKaYHVkbJ7fMter2e5cvdmTv3FqCscBo6dGgpdcpkJk7sTZ8+e/HyqkWVKodQ5qoIQnmI9vC4EQHVg5abDeuWQkzhcFm9cOjY63bplkLffPMNa9asITQ0lG+++abEXz6tVsvo0aM5d+4cTk5OfD19GoEqPVy5ADGXICsDWZbJyc0lNzcXg16PSq3GwtEZh8BaWFTxV0rWuHqAvSOoLUCbS17cdTbOnY190g08LVTUCCrsAXNwhuYdoEE4qJQnkV9//ZUFCxYQHh7OjBkzKv7ZGAzKqsgzheVnuvYr00R+4d+qABhEWloUM2bInDzpw9y5c6latWqpe8myzJo10/Hx+QILC5m8PD+Cg+fj5laR3zUZOA/8AhwlJyeXlSu1LFzojIWFJaNGjaJHj9Jz0Z08eZL9+/vRunUadeq8i6XlhApchyCI9vC4EQHVw2A0wsFtcHC70iPj4q7Mq/Ktbt4kKSmJF198EZ1Ox2effXZHDaS7ZWdn88EHH3Dp0iXs7Oz49NNPadiwoXLszHQlT1TSTUhJhNREZdVfKf+bC3RK+Zj8/HxUkorqQYE4hTaFug2VOWB3dOnKssyQIUOIjY1lzJgxdO7cuYKfiQH+XARXziuT9ts/A41LXqkiCIplyPL/OHo0hY8+cqNmzVrMnDnzrvmCxTl6dD4Gw8dYWelQq1XY2rYgMHAgKlV9IIji893IQBpwGaW8xn5MmZtTUzOYM0fH1q1u+Pn5M3HiRGrUqHHP6xg37k169/4dHx83/P2XAk3K+uYF4W9Ee3iciIDqYbp+BTb8DlkZShAR1gKe6gzWSnfrTz/9xNKlS/Hx8WHBggXmFAbFyc7OZuzYsZw9exaVSsWwYcMYMGBAsVlz0RUowVXyTUhOgJQEuJUKedloc3M5F3WZ+FwtKRobOr7yOv6tO5Y4if748eOMHj0aGxsbVq1ahY2NTbHb3ZMpVYJGA70GQ1Cdih1H+JfJBl6goCCTceNUHDum5plnnuH9998v0943b57ixInXqFLlMpIEVlZWeHl54eLijErlDLhwe05JLsqS8dwix9Dr1ezfb8XMmbdISbGiZcuWjBs3Dlvbe69GOnPmDIcPP0t4+C1q1eqNre0CntThDeFxINrD40QEVA9bfi7sWAsRStJMbGyhRScIbU5uQQFDhw4lKSmJvn378tZbb5V6KK1Wy1dffWUuYFy7dm1Gjhx5R0HK0p0/f55x48aRnp6On58fX3zxRak1lgDGjRvHgQMHePbZZxk1alSZzlOsn6YpqSE6Pw+hzSp+HOFfaDawnKQkRwYNysRggPfee6/MyWWNRiObNy/i1KmZ+PomU7VqLq6uyhwRR0dHbG3tsLS0vGO5uITR6EdqqifHjhlZuPAiSUnK8vLBgwfz8ssvl3mV61dfDaRDh024ublTtepfgFjRKlSWaA+PCxFQPSoxUbD9L0gtzFru4ARN23EkHz4aNx6Ar7/+WhnKK4Usy2zatImZM2eSm6s8OYSGhtKjRw+aN29ebDmY5ORkVq5cyapVqzAYDNSoUYMZM2bg4uJS6rliY2MZMmQIsiyzaNEi/Pz8KvDGUYLKHyYpfx/16V3zyQShdBnAYCCLQ4eCGDPmCiqViunTpxMeXvZ5ILm5uaxdu5Y///yT9PQ4XFwKsLPTY2VlxMLCAmtrF7Rae5KS1CQmphVZLl61alXee+89wsLCyny+iIjTxMV1wdOzgKCg0Tg4PDkJC4XHmWgPjwsRUD1KRgOcPQYHtiorAQFs7VmfmMnMfcexc3Vj3rx5dxSjLFlqairz589n8+bN5qWukiRRrVo1fH19sbOzIz8/n9jYWKKjo837tWvXjg8//LBM3bOzZs1i5cqVNG/enGnTplXoLQOQngpzP1dW8707teLHEf7FdgCfIsvw11/efPddAjY2Nnz//fdlmrdxJ1mWOXv2LAcOHODUqVNcuXKlyM3CxNbWloYNG9K5c2datWr1t+Xi97Z4cX/q1t2Cvb0vNWse4UlKWCg87kR7eByIgOpxoNcreauO7ILMWxiMRs5ejGJbSjZZNRsw8Yuvip8bVYykpCQ2bNjA7t27uXbtWonbNWjQgEGDBtGsWdmG2woKCujbty9ZWVlMnz69zPsVKzFOSeRp5wBvllyUUxBKtxD4BaNRZs0a+OEHGScnN77//vuK956ipA9JSkri1q1bFBQUYGlpiZubG15eXhVOYHvz5lWioprh6KjD13c6np6vV/j6BKF4CxHt4dESAdXjxGCAyJNwZBd5cde5dPESOqMRObg+4a+NAh//ctW5S01N5fLlyyQkJJCXl4elpSXe3t7UqVPnnsN7f7dz506mTJmCp6cnS5cuLXOAV6xzx2DjcqhSFf5vZMWPI/zLycAy4CcMBj179qTw3XcuWFr68u2335aYlflR2LSpL15e25EkH8LCTgMWj/qShH8c0R4etZLTqgoPn1oN9ZpASGNsLp/H9Y/fSDlzHC6d5dbMT3GpURtCGkFwA3AuvV4fKBlt71XXr6z++usvALp27Vq5YMpogBP7lb9XD74PVyb8e0nAAKA6avVnPPWUjKNjDP/7n5Z33nmHL7/80lyf8lG6dm0eXl7bAXB2HsM/5eYhPG5Ee3jUnqxCOf8WkgQ1Q/D/aBqXwjtzLNfI5ZjrZMVcUeoEzv1cGTLbv1UZPnvAnYxnz57l9OnTqNVqevbsWbmDHdiuXLOVNTRscX8uUPiXaw78hIVFbRo0qMb778dRp84F3n77bU6fPv0Ir6uArKzPyc5WJtumpLSievXBj/B6hH8H0R4eFTHk95iTZZlJkyZxZO8emjlZM/Lp1rjnZhQNouwdoVpNpQZelWpK4tDKFisuVFBQwIgRI7h69So9e/bkgw8+qPjBTh5UMqODUsammDI8glBxWuAb9PoNREdHs2qVAzt2+DFq1KjKPwiUWzxZWe9x/fpOCgoKOH26Fv36bcfOzv4hX4fw7yXaw8MmAqonQEFBAWPGjOHEiRPY2NgwY/JE6lmr4HIEXIsCva7oDlbW4FlFKTHj4QPefuDhbS4dU1YGg4GpU6eya9cunJ2dWbBgQfErDg0GiI6EpHjlWmxslSFJF3ewsoGsdDh1CM6fULZv2g7adq/IRyEI9yADSzAafyIm5jpz59pz8KA73bp145133sHauviEtfdTZuZp0tKGkpFxjcxMNdu2NeTNNxfh5VV8cXRBeHBEe3iYRED1hMjPz2fs2LGcPHkSS0tLJkyYQKtWrZQVgrFXlbxWsVeV4TTD3UtcsbQC/0AIrAM1Q5QVdqVITU1l+vTpHDt2DI1Gw4wZM4rPiXX5vNLrlJVx7zchSdCiI7R8+r71oAlC8RYiy7+QmJjElCnWREY64ufnx8cff1zmxLdlIcsy6enpXLt2jYsXL3Llym7atl2FnZ2OmzetOXGiH2+/PaVMqU8E4cER7eFhEAHVE0Sr1TJ58mQOHjyIJEkMHz6c/v37F126ajAo9fuS45UyM8k34eZ1KNDe3kaSlDqCwQ2gRgg4OgOg0+mIiIhg165dbNq0Ca1Wi5WVFZ988okSvN3JaIR9m+HwTuXf9o4QEKwEbrnZSmmbjFTQ5iuldfwDIbytslJREB44GZgObCEzM58ZM6zYv19CkiS6devGK6+8Uu4FGzqdjvPnz3P+/HmuXLnCtWvXuHnzJnl5eQB4e+fx+uvRODnpyMnxRqX6lhYtOld4abkg3D+iPTwMIqB6whgMBr7//nvWrFkDQIsWLRg9ejSurq4l72Q0KgHWtUtw6Rwk3EBvMJCbk0NuXh7xBomIbC2HbqZwOU+PtvA3IiQkhNGjR9+9MiQlAbauVnrEQClq3KYbaP45qzWEfwI9MBE4gF5vYPduJ775Jp2cHA0WFhZ07tyZbt26Ubdu3RK/5GVZ5uLFi6xfv54dO3aYqxGYODrqqF07i0aNoEmTLBwcbLG1rY29/TzA+UG/QUEoB9EeHjQRUD2BZFlm7dq1/PDDD+j1euzt7Rk8eDC9evUqdUxcr9ezfft2dq5Zjc31y9S3lqhuKRUpRanRaJBdPXCvUx+femFIjs5gaa0MI2akQcxluHFFmRSvsYCufaFO6eVxBOHR0aPUOvsDgKwsHbt2GTh4MJusLAsKClQYja54ejbG378abm5uWFpakp+fT3x8PGfPHuPatRsYjcqCaBcXFxo0aED9+l6Ehx/H0/M8lpaWqFSmVtQMGAM4PYL3Kgj3ItrDgyQCqidYdHQ006dPJyoqClBKAbRt25aGDRtSvXp1XF1dkWWZxMREjh07xtq1a0lNTTXv7+vrS2jNGjRytSNQbcRLl4NNQX7Zan3XrAftepQpH5YgPHongf8Bl5BlyMnJJjU1lYyMDAwGI7m5ao4cceXoUVckSaZRo3TCwtJxdS1AkiRkOQhX1x5Urfo0knQFWArkFx67NtAQaAXcv/kogvDgiPbwIIiA6glnNBrZtGkTixcv5ubNm/fc3s3Njeeee46nn34aDw+PuzfIzlQmtifHw60UyM6AggJQa8DeQVkxWCNEBFLCE0gGzgP7gWggE6Mxl5ycaPLzb6HVatHr9ciyEUlSYWlpgY2NLQ4ODmg0xa2QrQ+MAoIe4nsQhPtFtIf7TQRU/xCyLHP69GkOHDjA+fPniYuLIyNDWXnn6upKcHAw7du3p127dmg0IkG+INxmAI4Aa1Ce3NVAGNC18M984EThNrGAC9AJ6Ahl688VhCeIaA8VJQKqfzBZlv/RKyoEQRAE4XEhSs/8g4lgShAEQRAeDhFQCYIgCIIgVJIIqARBEARBECpJBFSCIAiCIAiVJAIqQRAEQRCEShIBlSAIgiAIQiWJgEoQBEEQBKGSREAlCIIgCIJQSSKgEgRBEARBqCQRUAmCIAiCIFSSCKgEQRAEQRAqSQRUgiAIgiAIlSQCKkEQBEEQhEoSAZUgCIIgCEIliYBKEARBEAShkkRAJQiCIAiCUEkioBIEQRAEQagkEVAJgiAIgiBUkgioBEEQBEEQKkkEVIIgCIIgCJUkAipBEARBEIRKEgGVIAiCIAhCJYmAShAEQRAEoZJEQCUIgiAIglBJIqASBEEQBEGoJBFQCYIgCIIgVJIIqARBEARBECpJBFSCIAiCIAiVJAIqQRAEQRCEShIBlSAIgiAIQiWJgEoQBEEQBKGSREAlCIIgCIJQSSKgEgRBEARBqCQRUAmCIAiCIFSSCKgEQRAEQRAqSQRUgiAIgiAIlSQCKkEQBEEQhEoSAZUgCIIgCEIliYBKEARBEAShkkRAJQiCIAiCUEn/D1VSONeD0jd4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1712,6 +6126,20 @@ "fig.tight_layout()\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null,