-
Notifications
You must be signed in to change notification settings - Fork 0
/
Input.py
executable file
·159 lines (122 loc) · 4.26 KB
/
Input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from nltk.corpus import stopwords
import xml.etree.ElementTree as ET
import glob
import os
from nltk.tokenize import TweetTokenizer
import pandas as pd
import emoji
tt = TweetTokenizer()
wordsSubstitute = {"#USER#": "@user",
",": " ",
"#HASHTAG#": "",
"#URL#": "http",
"RT : ": "",
"RT @": "@",
"RT #": "#"}
def getFeedForUser(id, prepath=""):
tree = ET.parse("{}{}.xml".format(prepath, id))
root = tree.getroot()
return [elem.text for elem in root.iter("document")]
def getBaseNameWithoutExt(path):
base = os.path.basename(path)
return os.path.splitext(base)[0]
def getUsers(path="data/en/"):
files = glob.glob(path + "*.xml")
return [getBaseNameWithoutExt(file) for file in files]
def getUsersFeed(users, path):
feeds = [getFeedForUser(id, path) for id in users]
return dict(zip(users, feeds))
def getUsersLabel(path="data/en/"):
user_label = {}
with open(path + "truth.txt") as file:
for line in file:
items = line.rsplit(":::")
id, label = items[0], items[1][0]
user_label[id] = label
return user_label
def removeStopWords(text):
word_list = text.split()
filtered_words = [
word for word in word_list if word not in englishStopWords]
return " ".join(filtered_words)
# Preprocess text (username and link placeholders)
def preprocess(text):
for key, word in wordsSubstitute.items():
text = text.replace(key, word)
# text = emoji.demojize(text)
# text = " ".join(tt.tokenize(text))
# text = text.lower()
# text = removeStopWords(text)
return text
def preprocessFeed(feed):
return [preprocess(text) for text in feed]
def preprocessAndJoin(feed):
return " . ".join(preprocessFeed(feed))
def unnest(df, col, reset_index=False):
import pandas as pd
col_flat = pd.DataFrame([[i, x]
for i, y in df[col].apply(list).iteritems()
for x in y], columns=['I', col])
col_flat = col_flat.set_index('I')
df = df.drop(col, 1)
df = df.merge(col_flat, left_index=True, right_index=True)
if reset_index:
df = df.reset_index(drop=True)
return df
def get_frame(path):
users = getUsers(path)
users_label = getUsersLabel(path)
users_feed = getUsersFeed(users, path)
users_preprocessedFeed = {
key: preprocessFeed(value) for key, value in users_feed.items()
}
frame = pd.DataFrame(users_preprocessedFeed.items(),
columns=['id', 'text'])
frame['label'] = frame['id'].map(users_label)
return frame
def get_data_dict(path, with_label=True):
users = getUsers(path)
users_feed = getUsersFeed(users, path)
if with_label:
users_label = getUsersLabel(path)
if with_label:
return [
{
"id": key,
"input": preprocessFeed(value),
"label": int(users_label[key]) if users_label[key].isdigit() else users_label[key]
} for key, value in users_feed.items()
]
else:
return [
{
"id": key,
"input": preprocessFeed(value),
} for key, value in users_feed.items()
]
if __name__ == "__main__":
path = "data/en/"
users = getUsers(path)
users_label = getUsersLabel(path)
users_feed = getUsersFeed(users, path)
users_preprocessedFeed = {
key: preprocessFeed(value) for key, value in users_feed.items()
}
users_preprocessedAndJoinedFeed = {
key: preprocessAndJoin(value) for key, value in users_feed.items()
}
print("Tweet: ", users_feed[users[0]][0])
print("Preprocessed tweet: ", users_preprocessedFeed[users[0]][0])
print("Preprocessed joined tweet: ",
users_preprocessedAndJoinedFeed[users[0]])
print("Preprocessed joined tweet: ", len(
users_preprocessedAndJoinedFeed[users[0]]))
print("Label: ", users_label[users[0]])
frame = pd.read_csv(
'summary/custom_hate.tsv',
index_col=None,
sep="\t",
)
frame['gold'] = frame['id'].map(users_label)
frame.to_csv("summary/custom_hate.tsv", sep="\t", index=False)
print(frame.head())