-
Notifications
You must be signed in to change notification settings - Fork 5
/
fine_tune_ignat_inception.py
317 lines (258 loc) · 10.1 KB
/
fine_tune_ignat_inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# iNatularist training and testing code adapted from
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models
import ignat_loader
import numpy as np
# training and testing hyper parameters
class Params:
arch = 'inception_v3'
num_classes = 5089
im_size_train = 299
im_size_test = 299
workers = 6
epochs = 64
start_epoch = 0
batch_size = 32
lr = 0.0045
lr_decay = 0.94
epoch_decay = 4
momentum = 0.9
weight_decay = 0.0
print_freq = 100
evaluate = False
resume = ''
rootdir = 'train_im_path' # path to train images
train_file = 'ann_path/train2017_3.json' # path to train file
val_file = 'ann_path/val2017_3.json' # path to val file
# uncomment if want to evaluate the test set and save a submission file
# evaluate = True
# save_preds = True
# resume = 'model_path/iNat_2017_InceptionV3.pth.tar' # path to trained model
# val_file = 'ann_path/test2017_3_public_use.json' # path to test file
# rootdir = 'test_ims_path/ignat_test_images_2017/' # path to test images
# op_file_name = 'inat2017_test_preds.csv' # submission filename
best_prec1 = 0
def class_ave(gt, pred):
classes = np.unique(gt)
correct = (pred == gt[..., np.newaxis]).sum(1)
cls_ave = 0.0
for cc in classes:
cls_ave += correct[np.where(gt==cc)[0]].mean()
cls_ave /= float(len(classes))
print('top 5 acc\t' + str(round(correct.mean()*100, 4)))
print('cls ave acc\t' + str(round(cls_ave*100, 4)))
return cls_ave*100
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
print('Epoch:{0}'.format(epoch))
print('Itr\t\tTime\t\tData\t\tLoss\t\tPrec@1\t\tPrec@5')
for i, (input, target, im_id) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('[{0}/{1}]\t'
'{batch_time.val:.2f} ({batch_time.avg:.2f})\t'
'{data_time.val:.2f} ({data_time.avg:.2f})\t'
'{loss.val:.3f} ({loss.avg:.3f})\t'
'{top1.val:.2f} ({top1.avg:.2f})\t'
'{top5.val:.2f} ({top5.avg:.2f})'.format(
i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
gt = []
pred = []
im_ids = []
print('Validate:\tTime\t\tLoss\t\tPrec@1\t\tPrec@5')
for i, (input, target, im_id) in enumerate(val_loader):
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
# store the top 5 classes for the prediction
im_ids.append(im_id.cpu().numpy().astype(np.int))
gt.append(target.cpu().numpy().astype(np.int))
_, pred_inds = output.data.topk(5,1,True,True)
pred.append(pred_inds.cpu().numpy().astype(np.int))
# measure accuracy and record loss
loss = criterion(output, target_var)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('[{0}/{1}]\t'
'{batch_time.val:.2f} ({batch_time.avg:.2f})\t'
'{loss.val:.3f} ({loss.avg:.3f})\t'
'{top1.val:.2f} ({top1.avg:.2f})\t'
'{top5.val:.2f} ({top5.avg:.2f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}\n'
.format(top1=top1, top5=top5))
# print class average acc
im_ids = np.hstack(im_ids)
gt = np.hstack(gt)
pred = np.vstack(pred)
cls_avg = class_ave(gt, pred)
return top1.avg, cls_avg, pred, im_ids
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
print(' * Saving new best model')
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Decays the learning rate"""
lr = args.lr * (args.lr_decay ** (epoch // args.epoch_decay))
for param_group in optimizer.state_dict()['param_groups']:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def main():
global args, best_prec1
args = Params()
# create model
print("Using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
model.fc = nn.Linear(2048, args.num_classes)
model.aux_logits = False
model = torch.nn.DataParallel(model).cuda()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("Loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch']))
else:
print("No checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# data loaders
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225])
train_loader = torch.utils.data.DataLoader(
ignat_loader.IGNAT_Loader(args.rootdir, args.train_file,
transforms.Compose([
transforms.RandomSizedCrop(args.im_size_train),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
ignat_loader.IGNAT_Loader(args.rootdir, args.val_file,
transforms.Compose([
transforms.Scale(int(args.im_size_test/0.875)),
transforms.CenterCrop(args.im_size_test),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.evaluate:
_, _, preds, im_ids = validate(val_loader, model, criterion)
# write predictions to file
if args.save_preds:
with open(args.op_file_name, 'w') as opfile:
opfile.write('id,predicted\n')
for ii in range(len(im_ids)):
opfile.write(str(im_ids[ii]) + ',' + ' '.join(str(x) for x in preds[ii,:])+'\n')
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
prec1, cls_avg5, _, _ = validate(val_loader, model, criterion)
# remember best prec@1 and save checkpoint
# could also save based on cls_avg
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best)
if __name__ == '__main__':
main()