-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathtrain_common.py
152 lines (138 loc) · 5.52 KB
/
train_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
Different common functions for training the models.
"""
import os
import time
import torch
import torchvision.utils as tutils
from utils import batch_psnr
from fastdvdnet import denoise_seq_fastdvdnet
def resume_training(argdict, model, optimizer):
""" Resumes previous training or starts anew
"""
if argdict['resume_training']:
resumef = os.path.join(argdict['log_dir'], 'ckpt.pth')
if os.path.isfile(resumef):
checkpoint = torch.load(resumef)
print("> Resuming previous training")
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
new_epoch = argdict['epochs']
new_milestone = argdict['milestone']
current_lr = argdict['lr']
argdict = checkpoint['args']
training_params = checkpoint['training_params']
start_epoch = training_params['start_epoch']
argdict['epochs'] = new_epoch
argdict['milestone'] = new_milestone
argdict['lr'] = current_lr
print("=> loaded checkpoint '{}' (epoch {})"\
.format(resumef, start_epoch))
print("=> loaded parameters :")
print("==> checkpoint['optimizer']['param_groups']")
print("\t{}".format(checkpoint['optimizer']['param_groups']))
print("==> checkpoint['training_params']")
for k in checkpoint['training_params']:
print("\t{}, {}".format(k, checkpoint['training_params'][k]))
argpri = checkpoint['args']
print("==> checkpoint['args']")
for k in argpri:
print("\t{}, {}".format(k, argpri[k]))
argdict['resume_training'] = False
else:
raise Exception("Couldn't resume training with checkpoint {}".\
format(resumef))
else:
start_epoch = 0
training_params = {}
training_params['step'] = 0
training_params['current_lr'] = 0
training_params['no_orthog'] = argdict['no_orthog']
return start_epoch, training_params
def lr_scheduler(epoch, argdict):
"""Returns the learning rate value depending on the actual epoch number
By default, the training starts with a learning rate equal to 1e-3 (--lr).
After the number of epochs surpasses the first milestone (--milestone), the
lr gets divided by 100. Up until this point, the orthogonalization technique
is performed (--no_orthog to set it off).
"""
# Learning rate value scheduling according to argdict['milestone']
reset_orthog = False
if epoch > argdict['milestone'][1]:
current_lr = argdict['lr'] / 1000.
reset_orthog = True
elif epoch > argdict['milestone'][0]:
current_lr = argdict['lr'] / 10.
else:
current_lr = argdict['lr']
return current_lr, reset_orthog
def log_train_psnr(result, imsource, loss, writer, epoch, idx, num_minibatches, training_params):
'''Logs trai loss.
'''
#Compute pnsr of the whole batch
# psnr_train = batch_psnr(torch.clamp(result, 0., 1.), imsource, 1.)
# Log the scalar values
writer.add_scalar('loss', loss.item(), training_params['step'])
# writer.add_scalar('PSNR on training data', psnr_train, \
# training_params['step'])
print("[epoch {}][{}/{}] loss: {:1.4f} PSNR_train: {:1.4f}".\
format(epoch+1, idx+1, num_minibatches, loss.item(), 0.0))
def save_model_checkpoint(model, argdict, optimizer, train_pars, epoch):
"""Stores the model parameters under 'argdict['log_dir'] + '/net.pth'
Also saves a checkpoint under 'argdict['log_dir'] + '/ckpt.pth'
"""
torch.save(model.state_dict(), os.path.join(argdict['log_dir'], 'net.pth'))
save_dict = { \
'state_dict': model.state_dict(), \
'optimizer' : optimizer.state_dict(), \
'training_params': train_pars, \
'args': argdict\
}
torch.save(save_dict, os.path.join(argdict['log_dir'], 'ckpt.pth'))
if epoch % argdict['save_every_epochs'] == 0:
torch.save(save_dict, os.path.join(argdict['log_dir'], 'ckpt_e{}.pth'.format(epoch+1)))
del save_dict
def validate_and_log(model_temp, dataset_val, valnoisestd, temp_psz, writer, \
epoch, lr, logger, trainimg):
"""Validation step after the epoch finished
"""
t1 = time.time()
psnr_val = 0
with torch.no_grad():
for seq_val in dataset_val:
noise = torch.FloatTensor(seq_val.size()).normal_(mean=0, std=valnoisestd)
seqn_val = seq_val + noise
seqn_val = seqn_val.cuda()
sigma_noise = torch.cuda.FloatTensor([valnoisestd])
out_val = denoise_seq_fastdvdnet(seq=seqn_val, \
noise_std=sigma_noise, \
temp_psz=temp_psz,\
model_temporal=model_temp)
psnr_val += batch_psnr(out_val.cpu(), seq_val.squeeze_(), 1.)
psnr_val /= len(dataset_val)
t2 = time.time()
print("\n[epoch %d] PSNR_val: %.4f, on %.2f sec" % (epoch+1, psnr_val, (t2-t1)))
writer.add_scalar('PSNR on validation data', psnr_val, epoch)
writer.add_scalar('Learning rate', lr, epoch)
# Log val images
try:
idx = 0
if epoch == 0:
# Log training images
_, _, Ht, Wt = trainimg.size()
img = tutils.make_grid(trainimg.view(-1, 3, Ht, Wt), \
nrow=8, normalize=True, scale_each=True)
writer.add_image('Training patches', img, epoch)
# Log validation images
img = tutils.make_grid(seq_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
imgn = tutils.make_grid(seqn_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
writer.add_image('Clean validation image {}'.format(idx), img, epoch)
writer.add_image('Noisy validation image {}'.format(idx), imgn, epoch)
# Log validation results
irecon = tutils.make_grid(out_val.data[idx].clamp(0., 1.),\
nrow=2, normalize=False, scale_each=False)
writer.add_image('Reconstructed validation image {}'.format(idx), irecon, epoch)
except Exception as e:
logger.error("validate_and_log_temporal(): Couldn't log results, {}".format(e))